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Léonard de Vinci





Remerciements
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Introduction

T
he need of mobile connectivity has hugely increased in the first decade of
the 21st century. Homes, schools, businesses and people are now connected

together for sharing information as soon as that information is produced. This
permanent connectivity has lead to a growing number of connected mobile devices
such as laptops, tablets, mobile phones, watches and plenty of other portable
devices. This multiplication of connected devices goes along with a large variety
of applications and traffic types needing diverse requirements.

3G 3G HSPA
3G HSPA +

WiMAX

4G LTE

4G LTE 

Advanced

Market impact 2003 2006 2009 2010 2016

Peak rate 384 kbps 7 Mbps 42 Mbps ≈150 Mbps ≈ 1 Gbps

Typical user rate 

downlink
~ 200 kbps 1-2 Mbps 2-10 Mbps 10-20 Mbps ≈ 30-100 Mbps

Typical user rate 

uplink
64 kbps 64-884 kbps 0.5-4.5 Mbps 5-10 Mbps ≈ 10-60 Mbps

Source: Ericsson – TeliaSonera joint technology study, October 2008

Figure 1: Communication standards evolution in mobile telephone networks

Accompanying this mobile connectivity evolution, the last years have seen
considerable evolutions of wireless communication standards in the domain of
mobile telephone networks, local/wide wireless area networks, and Digital Video
Broadcasting (DVB). Figure 1 shows the evolution of standards for mobile since
2003 in terms of throughput requirements. Besides the increasing requirements in
terms of throughput and robustness against destructive channel effects, the con-
vergence of services in single smart terminal becomes a crucial and challenging
feature. As an example, the fourth generation (4G) of cellular wireless stan-
dards aims at providing mobile broadband solution to laptop computer wireless
modems, smartphones, and other mobile devices. Diverse features such as ultra-
broadband Internet access, IP telephony, gaming services, and streamed multi-
media are provided. In order to enable such advanced services at the algorithmic
level, new state of the art data processing techniques have been developed and
adopted in the emerging wireless communication standards.
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Figure 2: Usage scenario example of a considered multiprocessor platform

Channel decoding is a key feature of a wireless communication standard. It
allows reliable data transfer targeting high throughput over unreliable commu-
nication channels. However, a channel coding technique is typically associated
to a variety of parameters and configuration options (frame size, communica-
tion channel, signal-to-noise ratio, etc). Among channel decoding techniques,
Turbo codes are frequently adopted in the recent wireless standards to reach a
very low bit error rate (BER). Furthermore, the high throughput requirement of
emerging services imposes the efficient exploitation of different parallelism lev-
els of the underlying algorithms. In this context, multiprocessor architecture
is a promising approach to reach high flexibility and high throughput. In fact,
flexible multiprocessor architectures are generally designed to support a set of
communication standards which correspond to some specific application needs
and usage scenarios. Each usage scenario corresponds to particular requirements
for example in terms of throughput, latency, error rates, and/or others. Figure 2
gives an example of such usage scenario which corresponds to a mobile terminal
supporting different services (High Definition Multimedia, Web Browsing, Voice
Conversation) at different channel conditions. At design-time, the multiproces-
sor architecture must be dimensioned to support the highest requirements while,
at run-time, the number of processors can be chosen depending of the current
level of requirements. Considering the emerging multi-mode and multi-standard
applications, as well as the increasing interest for Software Defined Radio and
Cognitive Radio applications, Turbo decoder architectures have to be able to be
dynamically adapted to face emerging requirements.



Introduction 3

Problematic and contributions

In this context, intensive research has been conducted to provide flexible Turbo
decoder targeting high throughput, multi-mode, multi-standard and power con-
sumption efficiency. However, flexible Turbo decoder implementations are not
often designed regarding dynamic reconfiguration issues in the context of high
throughput, multi-mode and multi-standard scenario requiring high speed con-
figuration switching. In fact, most of the existing related works have proposed
flexible hardware platforms while trying to optimize their efficiency in terms of
area, throughput, and energy consumption. Very few contributions have con-
sidered the crucial requirement of rapid dynamic configuration and the related
implementations and costs. Starting from this assessment, this thesis work aims
to propose novel contributions in order to reach efficient and high speed config-
uration of a flexible multiprocessor Turbo decoder. As a base architecture, we
consider an ASIP1-based flexible Turbo decoder developed at the Electronics De-
partment of Telecom Bretagne in Brest. The considered ASIP, namely DecASIP,
supports several wireless communication standards and is integrated in a scalable
and flexible multiprocessor platform, namely UDec2.

Toward the above mentioned objective, the following contributions are de-
tailed in this thesis:

� Configuration optimization of the flexible DecASIP processor
- Proposal of an efficient configuration parameters storage.
- Optimization of the configuration memory organization in order to pro-
vide a low latency configuration information transfer.
- Proposal of the support of multi-configuration storage and high speed re-
initialization of the ASIP.
- Proposal of a generic program in order to reduce the configuration load.

These contributions have been presented as a poster at GRETSI national
conference and as regular presentations at ISCAS’13 and ISVLSI’13 inter-
national conferences.

� Design of a configuration infrastructure for the UDec multi-ASIP
architecture
- Optimizations of the platform controller and the interconnection structure
of the UDec architecture in order to increase its flexibility.
- Implementation of a complete configuration infrastructure for high speed

1Application Specic Instruction-set Processor
2Universal channel Decoder
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configuration of the multi-ASIP UDec architecture.

These contributions have been realized during a collaboration with Pr.
Michael Hübner in the context of a researcher mobility of six months at
the University of Bochum, Germany and have been presented as regular
presentations at ReCoSoC’13 and DSD’13 international conferences.

� Configuration management of the UDec architecture
- Definition of a configuration management where configuration information
is stored in a global configuration memory.
- Proposal of two configuration management techniques where configuration
information is generated at run-time.
These last contributions have not been yet published. Several papers are
currently under revision and will be submitted soon.

Thesis outline

This thesis manuscript is composed of four chapters as described below:

Chapter 1 firstly introduces the basic concepts related to Turbo codes and
Turbo decoding techniques. An overview of the fundamental concepts of chan-
nel coding and the basics for error-correcting codes are introduced. Then, the
Turbo codes and their basic components are presented. Next, The Maximum
Aposteriori Probability algorithm for Turbo decoding and its different levels of
parallelism are described. The second section introduces the dynamic configu-
ration problematic for multi-mode and multi-standard Turbo decoders. This is
followed by the State of the Art in flexible channel Turbo decoder design. The
final part of this chapter presents the initial UDec architecture which constitutes
the starting point of this thesis work.

Chapter 2 proposes to tackle the optimization of the initial DecASIP pro-
cessor for Turbo decoding in order to offer an efficient dynamic configuration
of the multi-ASIP UDec architecture for Turbo decoding. An analysis of the
configuration lacks of the initial DecASIP architecture is proposed. Based on
these observations, optimizations to reach an efficient dynamic reconfiguration
are described. These optimizations lead to the implementation of a new proces-
sor called RDecASIP. The final part of this chapter provides implementations
results in terms of area overhead and configuration load. Finally, the architec-
tural choices are discussed.
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Chapter 3 addresses the dynamic configuration of the UDec multi-ASIP
architecture for Turbo decoding. The chapter proposes to study the lacks of flex-
ibility of the UDec architecture and points out needs to support the dynamic
configuration of the platform. A complete reconfigurable platform implementing
eight RDecASIPs is presented and detailed. In order to transfer the configuration
to each component of the architecture, the second part of this chapter addresses
the definition and the implementation of a dedicated configuration infrastructure
providing an efficient and low complexity solution for configuration data trans-
fer to each configuration memory of the implemented RDecASIPs. The proposed
configuration infrastructure is evaluated and validated through a SystemC/VHDL
mixed simulation model. Finally, implementation results and configuration tim-
ing performance are discussed targeting both FPGA and ASIC implementation.

Chapter 4 studies the configuration management of the UDec architecture
in order to offer high throughput and high decoding performance. An analysis of
the dynamic evolution of the number of decoding iterations regarding the level
of sub-block parallelism is provided in order to be integrated in the configuration
management of the UDec architecture. Then, this chapter presents two configura-
tion managements. The first one proposes to store the configuration information
for all possible configurations in a global memory while the second one proposes
the run-time configuration generation respecting the hard constraints in terms of
throughput and error rate in a multi-mode and multi-standard scenario.
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Turbo codes and state of the art in

channel decoder design

T
his first chapter starts with an overview of a typical communication system
and an introduction of the main concepts of error correcting codes. As this

thesis work targets the dynamic configuration of Turbo decoders, the Turbo cod-
ing and the Turbo decoding principles are introduced. Afterwards, the state of
the art in flexible channel Turbo decoder design is presented. One of these contri-
butions has been developed at the Electronics department of Telecom Bretagne
in Brest using a flexible multi-ASIP approach called UDec. The final part of
this chapter presents the initial UDec architecture which constitutes the starting
point of this thesis work.

7
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1.1 Context of channel coding

In the context of digital wireless communication systems, information is transmit-
ted over a noisy channel that may cause errors on the received message. Channel
coding techniques are used in order to reduce the noise disturbances effects by
introducing redundant information to the original message. These coding tech-
niques seek to increase as much as possible the correction capabilities of the
communication system to reach the theoretical limits defined by Shannon [1].

Transmitter

Source
Channel 

Encoder
Modulator

Channel 

Channel

Receiver

Destination
Channel 

Decoder
Demodulator

Figure 1.1: Elements of a digital communication system

1.1.1 Communication system

A simplified block diagram of a communication system is presented in Figure 1.1.
It consists of a source that generates a flow of bits representing a particular digital
message to be transmitted. This message can be related for example to a video
or audio signal, to digital data or be the samples of an analog signal. At the
receiver, an estimated message is provided to the destination. In an ideal case,
the estimated message is identical to the original message generated by the source.
Due to noise disturbances introduced by the channel, a channel encoder has to
be used at the transmitter such as the additional redundant bits can be used by
the channel decoder for error correction at the receiver. Then, the modulator
maps the encoded message into signal waveforms to be transmitted over the
channel. Modulation is performed by varying the amplitude, the phase, the
frequency or a combination of the three signal parameters of a sinusoidal waveform
called a carrier. The channel reflects the communication medium over which the
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message is transmitted (e.g. air, wire-line, optic fiber, etc.). At the receiver, the
demodulator extracts the information-bearing signal from the modulated carrier.
Finally, the channel decoder estimates the most probable transmitted message
based on the coding rules and the characteristics of the channel.

When a set of data has to be encoded, it is generally admitted that a step
of segmentation has to be performed before the encoding process. Indeed, this
step prevents excessive complexity and memory requirement of the decoding al-
gorithm at the receiver. The segmentation process consists in dividing the set
of data in several parts called frame in this document.This process is driven by
the application requirements (i.e. throughput, latency, etc...). The maximal size
of a frame and the segmentation rules are defined by the targeted standard. For
instance, the LTE standard [2] supports frame size from 40 to 6144 bits for Turbo
codes. Following the segmentation step, each frame is then encoded and mapped
to be transmitted.

1.1.2 Channel code performance

The channel code performance represents the ability of a code to correct trans-
missions errors. It depends on the Signal-to-noise ratio (SNR) value and the
decoding technique used. It is presented in terms of the Frame Error Rate (FER)
or Bit Error Rate (BER) values. The benefit that a code associated to a specific
decoding technique provides is quantized in terms of the coding gain which is
defined as the SNR difference between the coded and uncoded curves for a given
error rate value. The coding gain is usually expressed in decibels (dB).

Past years have seen the emergence of two main coding techniques provid-
ing excellent error corrections properties: LDPC codes and Turbo codes. The
next section introduces the Turbo coding concept which is the channel coding
technique focused of this thesis work.

1.1.3 Turbo encoding

The advent of Turbo codes [3] marks a major turning point for digital telecom-
munication. Indeed, Turbo decoding technique was the first practical solution to
closely approach the Shannon’s theoretical limits. For the recent and emerging
wireless communication standards supporting Turbo codes, a Turbo encoder is
usually built from the parallel concatenation of two Recursive Systematic Con-
volutional (RSC) encoders separated by an interleaver as shown in Figure 1.2.
The first RSC encoder receives the input data bits stream Di in a natural order
while the second RSC encoder receives the data in an interleaved one. Three
output streams are generated: the systematic Si, which is identical to the input
stream and two parities P1i and P2i generated by the encoders in natural and



10 Chapter 1. Turbo codes and State of the Art in channel decoder design
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Figure 1.2: Turbo encoder: Parallel concatenation of two RSC encoders
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Figure 1.3: Non-recursive non-systematic and Non-recursive systematic encoders

interleaved domain respectively. In recent standards, we observe two types of
RSC encoders: the Double Binary Turbo Code (DBTC) encoder and the Single
Binary Turbo Code (SBTC) encoder. The DBTC encoder generates double bi-
nary symbols by encoding bit pairs of the incoming data bits stream while the
SBTC encoder encodes bitwise the incoming data bits stream.

The rest of this section shows the concepts of the RSC encoders and interleav-
ing rules introduced in recent standards such as WiMax, DVB-RCS and LTE.

1.1.3.1 Recursive Systematic Convolutional encoders

Convolutional codes have been widely used in wireless telecommunication stan-
dards due to their low complexity. The most common form of convolutional
encoder is the non-recursive and non-systematic convolutional encoder presented
in Figure 1.3(a). This type of encoder can not be used for Turbo encoding since
it is not systematic. A second form of non-recursive encoder (Figure 1.3(b)) in-
troduces a systematic output but it is not suitable for Turbo decoding because of
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Figure 1.4: Recursive systematic convolutional encoders

the poor distance properties of the resulting code. Finally, RSC encoders shown
in Figure 1.4 introduce the feedback of one of the output. The encoders shown in
Figure 1.4(a) presents a single binary RSC encoder. It encodes, at each instant
i, one bit of the input data stream. Figure 1.4(b) presents a double binary RSC
encoder in which two bits of the input stream are encoded at each instant i.

These encoders have very simple structure that can be implemented with a
set of flip-flops and XOR operators. The number of states of the encoder is 2p

when p flip flops are implemented. Moreover, the value p + 1 is known as the
constraint length of the code. The code rate of a convolutional code is defined
by the ratio n/l where n is the number of bits that composes the input symbol
Di and l represents the number of bits of the coded symbol with l > n. In the
example of Figure 1.3(a), the code rate is 1/2 since at each instant i, the input
bit Di is encoded to a two bits coded symbol that consists of P0i and P1i. In
the example of Figure 1.3(b), the code rate is 1/3 since at each instant i, the
input bit Di is encoded to a three bits coded symbol that consists of P0i and
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Figure 1.6 — Recursive systematic codes (RSC)
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Figure 1.7 — Trellis diagram of encoder of Figure 1.6b

Trellis termination: During the encoding process the shift register of the encoder starts
typically with the state zero. Towards the end of the encoding process M zeros are inserted in

Figure 1.5: Trellis diagram of the RSC encoder of Figure 1.4(b)

P1i and Si. The code rate of both RCS encoders presented in Figure 1.4 is 1/2.
In order to adapt the code rate, the puncturing technique [2, 4] can be used. It
consist in removing some of the parity bits after encoding in order to increase the
code rate. Another commonly used representation of convolutional encoding is
the trellis diagram [5] which consists of nodes and branches. A node represents
the state S of the code while a branch represents a transition from one state to
another state due to an input bit or bit pair in case of double binary convolutional
code. An example of a trellis diagram corresponding to the Double binary RSC
encoder presented in Figure 1.4(b) is given in Figure 1.5. In this example, the
constraint length of the code is 4, i.e. p = 3. Thus, the number of states of the
encoder is 2p = 8. It can be noted that each state has 2b = 4 possible transitions,
where b = 2 is the number of bits per symbol at the input of the encoder.

For the first frame which has to be encoded, the initial state of the encoder is
typically the all-zero state. In order to reinitialize the encoder at the end of the
encoding process, tail bits are encoded in order to force the encoder back to the
all-zero state and then start to encode the next frame. This technique called zero
padding in the literature ensures that the encoder starts and finishes in the same
state. However, extra parity bits are generated and added to the encoded message
that leads to a minor loss of transmission bandwidth. Standards as WiMAX and
DVB-RCS adopt the Tail biting scheme. It uses a circular RSC encoder, which
allows the initialization with a particular state for each frame. This state, called
circulation state, ensures that the encoder returns to the same state at the end
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of the encoding process. The existence of such a state is guaranteed when the
size of the encoded frame is not a multiple of the period of the encoding recursive
generator [6]. The value of the circulation state depends on the frame to encode
and is determined by a pre-ending step. Following the initialization of the encoder
to the all-zero state, the frame is encoded once. From the final state reached at
the end of the encoding process, the circulation state is computed using simple
combinational operators or a lookup table as described in [6].

1.1.3.2 Turbo codes interleavers

Interleavers provide an efficient solution to enhance the protection of data against
destructive channel effects. For that purpose, the data is temporally dispersed.
In the context of Turbo codes, the parallel concatenation of two RSC encoders
provides two copies of the same symbol at different intervals of time thanks to
the interleaver that separates the two encoders. This solution allows retrieving
at least one copy of the symbol if the second one has been distorted during
the transmission. An interleaver (Π) satisfying this property can be verified by
studying the dispersion factor S given by the minimum distance between two
symbols i and j in natural order and interleaved order:

S = min
i,j

(|i− j|+ |Π(i)− Π(j)|) (1.1)

The design of interleavers respecting a dispersion factor can be reasonably
achieved through the S-random algorithm proposed in [7]. However, even if this
kind of interleaver can be sufficient to validate the performance in the convergence
zone of a code, it does not achieve a good asymptotic performance. Therefore
to improve the latter, the design of the interleaver must also take into account
the nature of component encoders. Complexity of the hardware implementation
should, in addition, be taken into account. In fact, the recent wireless standards
specify performance and hardware aware interleaving laws for each supported
frame length.

In following paragraphs, the interleaving laws associated to Turbo codes for
WiMAX and LTE standards are described.

WiMAX: For this standard, using double binary Turbo code, two levels of
interleaving are proposed.

1. The first one is the bit swapping in the alternate couple i.e. (aj,bj) = (bj,aj)
if j mod 2 = 0 where j = 0, 1, ...N-1 and N is the number of couples in
the frame.
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2. The second one is given by the following expression:

Π(j) = (P0 × j + P + 1) modN (1.2)

where

P = 0 if j mod 4 = 0

P =
N

2
+ P1 if j mod 4 = 1

P = P2 if j mod 4 = 2

P =
N

2
+ P3 if j mod 4 = 3

where the values of parameters P0, P1, P2 and P3 depend on the frame size
and are defined in the corresponding standard specification [4].

LTE: For this standard, using single binary Turbo code, the interleaver is
called quadratic polynomial permutation (QPP). It is given by the following ex-
pression:

Π(j) = (f1j + f2j) modN (1.3)

where f1 and f2 are integers parameters defined in the standard [2] and depend
of the frame size N .

The previous sections have introduced the basic concepts of Turbo coding.
The next section presents the Turbo decoding principle which is the considered
application of this thesis work.

1.1.4 Turbo decoding

Turbo decoding principle is based on an exchange of probabilistic information,
called extrinsic information between two (or more) component decoders dealing
with the same received set of data. As shown in Figure 1.6, a typical Turbo
decoder consists of two decoders operating iteratively on the received frame. The
first component (SISO decoder 0 in Figure 1.6) works in natural domain while
the second (SISO decoder 1 in Figure 1.6) works in interleaved domain. The
Soft-Input Soft-Output (SISO) decoders operate on soft information to improve
the decoding performance. Thus, besides its own channel input data, each SISO
decoder deals with the extrinsic information generated by the other SISO decoder
in order to improve its estimation over the iterations. Usually, but not necessary,
the computations are done in the logarithmic domain. Each decoder calculates
the Log-Likelihood Ratio (LLR) for the ith data bit di as
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Figure 1.6: Typical Turbo decoder structure

L(di) = ln
Pr(di = 1|y)

Pr(di = 0|y)
(1.4)

Input LLRs causing trellis transition can be decomposed into 3 independent
terms as

L(di) = Lap(di) + Lsys(di) + Lpar(di) (1.5)

where Lap(di) is the a-priori information of di, L
sys(di) and Lpar(di) are the

channel measurement of the systematic and parity parts respectively. Each SISO
decoder generates extrinsic information that is sent to the other decoder. Extrin-
sic information becomes the a-priori information Lap(di) for the other decoder as
shown in Figure 1.6.

Several algorithms for this SISO decoding have been proposed in the literature.
The Soft Output Viterbi Algorithm (SOVA) and the Maximum Aposteriori Prob-
ability (MAP) algorithms are the most frequently used. The SOVA algorithm [8]
is a soft output variant of the Viterbi algorithm targeting the minimization of
the FER while the MAP algorithm [9] targets to minimize the BER. This last
algorithm has been simplified in [10] to propose the Max-Log-MAP algorithm
that is most often adopted because of the efficient hardware implementation pos-
sibility. For a better understanding of the architectural and configuration issues
highlighted in the rest of this thesis work, the next section provides a short in-
troduction to the MAP decoding.
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1.1.4.1 The MAP Algorithm

A MAP decoder provides, for each coded symbol dsymb
i consisting in m bits of a

frame of N coded symbols, 2m a posteriori probabilities given the channel output
y received by the decoder. The hard decision on the corresponding value j, i.e.
dsymb
i = j, that maximizes the a posteriori probability is expressed in terms of

joint probabilities as:

Pr(dsymb
i = j|y) =

P (dsymb
i = j, y)

2m−1∑
k=0

P (dsymb
i = k, y)

(1.6)

The trellis structure of the code enables us to decompose the calculation of
joint probabilities between past and future observations. This decomposition
defined by Equation (1.7) uses a Forward recursion metric αi(S), which gives the
probability of the state S at instant i computed from the past values received
from the channel. It also uses a Backward recursion metric βi(S), which gives the
probability of the state S at instant i computed from the future values received
from the channel and a Branch metric γ(S ′, S), which gives the state transition
probability from state S ′ to state S of the trellis at instant i.

Pr(dsymb
i = j|y) =

∑

(S′,S)/dsymb
i =j

αi(S
′)γi(S

′, S)βi+1(S) (1.7)

The Forward recursion metric and Backward recursion metric are expressed by
Equation (1.8) and Equation (1.9) respectively.

αi+1(S) =
2m−1∑

S′=0

αi(S
′)γi(S

′, S), i ∈ 0...N − 1 (1.8)

βi(S) =
2m−1∑

S′=0

βi+1(S ′)γi(S
′, S), i ∈ N − 1...0 (1.9)

The initialization of these metrics depends of the initial and final state of the
trellis. The Branch metric is given by Equation (1.10).

γi(S
′, S) = p(yi|xi).P ra(dsymb

i = dsymb
i (S ′, S)) (1.10)

where p(yi|xi) is the channel transition probability. xi and yi are the ith trans-
mitted modulated symbol and received symbol respectively. Assuming an equi-
probable source, the apriori probability Pra(dsymb

i = dsymb
i (S ′, S)) = 1

2m
. The
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generated extrinsic information corresponds to the aposteriori probability (Equa-
tion (1.6)) in which the branch metric is modified in order to remove the symbol
channel input since the other decoder knows this information.

The next section introduces the different levels of parallelism that can be
exploited considering a MAP-SISO decoder. It particularly highlights the SISO
decoder level parallelism.

1.1.4.2 Parallelism in Turbo decoding

Turbo decoding provides an efficient solution to reach very low error rate perfor-
mance at the cost of high processing time for data retrieval. Researches target-
ing the exploitation of parallelism have been conduced in order to achieve high
throughput. These parallelism levels that can be categorized in three groups:
Metric level, SISO decoder level, Turbo decoder level.

The Metric level parallelism concerns the processing of all metrics involved
in the decoding of each received symbol inside a MAP-SISO decoder. For that
purpose, the inherent parallelism of the trellis structure [11, 12] and the paral-
lelism of the MAP computation can be exploited [11, 12, 13]. The MAP-SISO
decoder level parallelism consists in duplication of the SISO decoders in natural
and interleaved domain, each executing the MAP algorithm on a sub-block of
the frame to decode. Finally, the Turbo decoder level parallelism proposes to
duplicate whole Turbo decoders to process iterations and/or frames in parallel.
However, this level of parallelism is not relevant due to the huge area overhead
of such an approach (all memories and computation resources are duplicated).
Moreover, this solution presents no gain in frame decoding latency.

The SISO decoder level parallelism hugely impacts the configuration process
of a multiprocessor Turbo decoder. Indeed, the number of SISO-decoders that
have to be configured and the configuration parameters associated with each
SISO-decoder are both dependent of this parallelism level. At this level, three
techniques are available: Frame sub-blocking, Windowing, and Shuffled decoding.

Frame sub-blocking: In sub-block parallelism, each frame is divided into M
sub-blocks and then each sub-block is processed on a MAP-SISO decoder (Figure
1.7) using adequate initializations. Besides duplication of MAP-SISO decoders,
this parallelism imposes two other constraints. On the one hand, interleaving
has to be parallelized in order to scale proportionally the communication band-
width. Due to the scramble property of interleaving, this parallelism can induce
communication conflicts except for interleavers of emerging standards that are
conflict-free for certain parallelism degrees. In case of conflicts an appropriate
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Figure 1.7: Sub-block parallelism with message passing for metric initialization

communication structure, e.g. Network on Chip (NoC), should be implemented
for conflict management [14]. On the other hand, MAP-SISO decoders have to
be initialized adequately either by acquisition or by message passing. In [15] a
detailed analysis of the parallelism efficiency of these two methods is presented
which gives favor to the use of message passing technique. The message passing,
which initializes a sub-block with recursion metrics (α and β) computed during
the previous iteration in the neighboring sub-blocks (Figure 1.7), needs not to
store the recursion metric and time overhead is negligible compared to the acqui-
sition method.

Sliding window: In addition to the sub-block parallelism, the sliding window
technique is commonly used at the SISO decoder level. It allows to reduce the
memory size required to store the state metric values by splitting each sub-block
into a number of small windows, where the MAP decoding is applied to each
window independently [16, 17]. To illustrate this technique, let us assume that a
backward-forward schedule is adopted for the state metric recursions of the MAP-
SISO decoder (Figure 1.8). In this schedule, β recursion metrics are computed
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before α recursion metrics. Thus, using only sub-block parallelism would require
storing the intermediate recursion metrics calculated in the backward recursion
in an internal memory, called cross metric memory. Therefore, this memory has
to have a memory depth equals to the sub-block length. In order to increase
the area efficiency of the design, sub-blocks are further divided into L windows
[16, 17]. This implies cross metric memory depth reduction to the size of a win-
dow (with an additional requirement of storage state metric boundaries values of
all windows to be used in the next iteration). Consequently, each MAP-SISO de-
coder processes the sub-block, window by window as shown in Figure 1.8. In the
example of Figure 1.8, the level of sub-block parallelism is 2. Each MAP-SISO
decoder uses two recursion units and employs backward-forward schedule for win-
dow processing. The first recursion unit (processing in the backward direction of
the trellis) executes on window j while the second recursion unit (processing in
the forward direction of the trellis) executes on window j − 1 at the same time
(as shown in Figure 1.8). Boundary state metrics are then exchanged between
windows either immediately within the same iterations or stored and used in the
subsequent iteration as illustrated in Figure 1.8.
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Shuffled Turbo decoding: The principle of the shuffled decoding technique
has been introduced in [18]. In this mode, all component decoders work in paral-
lel and exchange extrinsic information as soon as it is created. Thus the shuffled
decoding technique performs decoding (computation time) and interleaving (com-
munication time) fully concurrently while serial decoding implies waiting for the
update of all extrinsic information before starting the next half iteration (Figure
1.9). Thus, by doubling the number of MAP-SISO decoders, component-decoder
parallelism halves the iteration period in comparison with originally proposed
serial Turbo decoding. Nevertheless, to preserve error-rate performance with
shuffled Turbo decoding, an overhead of iteration between 5 and 50 percent is
required depending on the MAP computation scheme, on the degree of sub-block
parallelism, on propagation time, and on interleaving rules [15].

The previous sections provided the basic background on Turbo codes and on
the different levels of parallelism which can be exploited in order to reach high
throughput requirement imposes by emerging communication standards. The
next section introduces configuration methods in embedded system and tackles
the specific dynamic configuration scenario of a Turbo decoder in a multi-mode,
multi-standard and mobility context.

1.2 Dynamic configuration of flexible Turbo De-

coders

1.2.1 Dynamic configuration in embedded systems

In the context of telecommunication, the multiplication of wireless standards is
introducing the need of flexible and dynamically reconfigurable multi-mode and
multi-standard baseband receivers. The methods to reconfigure an architecture
are multiple and can be organized in three main categories.
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The first one corresponds to architectures that are configured through a stream
of configuration bits that are spread over the architecture components to config-
ure the data and control path. For instance, the configured components can be
multiplexers, Lookup Tables (LUTs), Arithmetic Logic Unit (ALU), etc. This
configuration method is typically applied to Field-Programmable Gate Array
(FPGA) in which LUTs, multiplexers and programmable routing switches are
configured through a bitstream load at power-up. Recent FPGA technology also
proposes dynamic configuration techniques allowing hardware reconfiguration at
run-time. The configuration load of recent FPGAs represents several Mega Bytes
of information that can be loaded from various sources as an external memory, a
host PC, a microcontroller, etc. Figure 1.10 shows bitstream chain in a FPGA
which is sent from outside and is then spread inside the component. The config-
uration of the SRAM points of the FPGA can be seen as a huge shift register (in
practice, the configuration chain is divided into frames and latches are used).

Figure 1.10: FPGA reconfiguration chain

The second category corresponds to instruction-set based processors that pro-
vide inherently high flexibility in terms of control logic design. The reconfigu-
ration of these architectures is done by context switching. A context switch is
the switching of a processor from one task to another. For that purpose, the
program instructions/counter and processor’s registers have to be initialized for
the new task. As shown in Figure 1.11(a), depending on the system architecture,
a configuration infrastructure could be needed to load new instructions in the
program memory of the processor and modify processor’s registers values before
the execution of a new task.

The third category corresponds to traditional parametrized hardware archi-
tectures. The flexibility of these designs is incorporated by the designer through
the use of initialization parameters loaded from a configuration memory or in-
put ports of the architecture. Figure 1.11(b) shows a parametrized hardware



22 Chapter 1. Turbo codes and State of the Art in channel decoder design

Processor

Data

memory

Program 

memory

Processor’s Registers

C
o

n
fi

g
u

ra
ti

o
n

 in
fr

a
st

ru
ct

u
re

Configuration 

information

(a) Instruction-set based processor

Flexible 

Hardware

Configuration 

memory

C
o

n
fi

g
u

ra
ti

o
n

 in
fr

a
st

ru
ct

u
re

Configuration 

information

In
p

u
t p

o
rts

Input Data

Output Data

(b) Flexible Hardware

Figure 1.11: Reconfiguration of Instruction-set based processor and flexible hardware

Category
Configuration Configuration Configuration

data load granularity

Stream of
bitstream

From ≈ 10 to Low
configuration bits ≈ 100 of Mbytes (LUTs, switches)

Instruction-set Registers from ≈ 10 to High
based processor and Program ≈ 1000 Mbytes (Software)
Parametrized Ports and ≤ 1 Medium

hardware config. memory Kbytes (Control/data
paths, operands)

Table 1.1: Dynamic configuration methods

design which is configured through a configuration memory and configuration in-
formation from input ports. The configuration infrastructure associated to the
architecture allows the configuration memory loading with configuration param-
eters and drives the configuration input ports. This solution provides the lowest
configuration load since the number and size of each configuration parameter are
optimized at design time.

Table 1.1 summaries the main features of the three configuration methods de-
scribed in previous paragraphs. It can be notice than the ASIP technology can be
classed in both second and third categories. Indeed, an ASIP is an instruction-set
based processor that can incorporate configuration memories and configuration
pins if it is necessary.

The next section highlights the configuration issue of a Turbo decoder in a
multi-mode and multi-standard context.
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Figure 1.12: Worst case configuration scenario

1.2.2 Dynamic configuration in multi-mode and multi-
standard scenario

When a Turbo decoder is designed to support several communication standards,
the decoder behavior has to be adapted in order to respect the application re-
quirements and to take into account the communication channel quality. In this
thesis work, the scenario presented in Figure 1.12 is considered as the worst case
configuration scenario that should be met by a multi-mode and multi-standard
Turbo decoder in mobility.

In this scenario, the Turbo decoder deals with input frames that have to be
decoded for multiple applications that use different communication standards
or modes. Each application is associated with throughput and BER objectives.
Moreover, considering a mobile terminal, the configuration associated to an ap-
plication has to be adapted temporally depending on the communication channel
quality evolution. Consequently, as shown in Figure 1.12, each frame received
by the Turbo decoder is associated to a specific configuration which takes into
account the application requirements and the channel quality. In order to avoid
extra delays between two frames associated with different configurations, the con-
figuration process for a frame (i.e. computing and loading the new configuration)
can be performed during the processing on the current frame. Thus, the Max-
imum Configuration Latency (MCL) for a frame k ensuring a null extra delay
between two frames is evaluated using Equation (1.11).

MCL(k) = NPrevFrame(k).
F rameSize(k − 1)

Throughput(k − 1)
(1.11)

where k is the kth received frame, NPrevFrame is the number of consecutive frames
decoded with the same configuration that precede the frame k, FrameSize(k−1)
is the k−1th frame size in bits and Throughput(k−1) is the throughput require-
ment associated with the k− 1th data frame. In the example presented in Figure
1.12, NPrevFrame(2) = 1 since one frame is decoded with the Configuration1



24 Chapter 1. Turbo codes and State of the Art in channel decoder design

0

5

10

15

20

25

30

35

40

45

50

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990

fr
a

m
e

 d
u

ra
ti

o
n

 (
in

 µ
s)

Throughput (in Mpbs)

LTE cat.4 (2011)

(150 Mbps ; 14 µs)

LTE Advanced (2016)

(1 Gbps ; 2.5 µs)

HSPA +  (2010)

(84 Mbps ; 24 µs)

LTE cat.5 (2011)

(300Mbps ; 7 µs)

F
ra

m
e

 d
e

co
d

in
g

la
te

n
cy

(i
n

 µ
s)

Figure 1.13: Decoding latency of a 2048 bits frame

while NPrevFrame(3) = 2 since two frames are decoded with the Configuration2.
MCL, FrameSize and Throughput are expressed in seconds, bits and bits/s re-
spectively. Assuming the worst case when NPrevFrame(k) = 1, the maximum con-
figuration latency critically decreases with high throughput targeted by emerging
and future wireless communication standards as shown in Figure 1.13. This fig-
ure presents the decoding latency of a 2048-bit data frame for different current
and emerging wireless communication standards. Regarding the throughput re-
quirement evolution, the decoding latency of a frame decreases and will reach
latencies around few microseconds in LTE-advanced standard. Thus, considering
the dynamic configuration scenario presented in this section, emerging and fu-
ture high throughput multi-mode and multi-standard architectures would have to
deal with configuration latencies lower that 10 µs. That is why, in order to face
this challenge, this thesis work aims to bring contributions providing an efficient
and high speed dynamic configuration of a multi-mode and multi-standard Turbo
decoder.

1.3 State of the art in flexible Turbo decoding

architectures

Since the invention of Turbo codes in 1993 [3], a considerable amount of contribu-
tions targeting the VLSI implementation of Turbo decoders have been proposed.
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These implementations target diverse design objectives in terms of area efficiency,
energy efficiency, scalability, flexibility and high throughput. Among the initial
efforts in this context, the work described in [19] has investigated sub-block par-
allelism in order to increase the throughput. In [13], the authors have explored
different computational schemes for the MAP algorithm. Quantization optimiza-
tions for input and extrinsic information have been studied in [20]. Algorithmic
and architecture joint optimizations have been explored and proposed in [21].
[22] presents one of the first ASIC implementation achieving a throughput of 50
Mbps with 10 decoding iterations and an operating frequency of 1 GHz.

Turbo codes have been widely adopted in wireless communication standards
like CDMA2000, UMTS, LTE, WiMAX, DVB-RCS, etc. Several architecture ap-
proaches have been investigated in order to build high throughput and flexible
Turbo decoders. Many implementations have succeeded to meet the low through-
put requirements of the early standards (e.g. CDMA2000 and UMTS) using ad-
vanced DSP architectures [23, 24, 25], customizable processors [26]. However, the
scalability of such implementations is limited by the block interleavers specified
in these standards which cause memory access contentions when targeting higher
sub-block parallelism degree. In [27], the authors present an implementation of a
turbo decoder in the Coarse-Grained Montium Architecture. The implementation
offers a low reconfiguration latency of 6.36 µs but the architecture reaching 100
MHz supports the low UMTS throughput requirement (1.92 Mbps) only. FPGA
implementations have been investigated but this technology suffers from a pro-
hibitive reconfiguration latency. In [28], results show that the reconfiguration
process of the FPGA is 35 ms.

The introduction of contention-free interleavers, like ARP in WiMAX and
QPP in LTE, alleviated this limitation enabling high throughput implementa-
tions [29, 30, 31, 32, 33, 34]. The work presented in [29] targeting LTE, allows
multiple SISO decoders (1, 2, 4, or 8) to concurrently process frame subblocks
and integrates a three stage network to connect the multiple memory and SISO
decoder modules. Implemented in 90nm CMOS technology, the design achieves
a throughput of 129 Mbps with 8 iterations and occupies an area of 2.1 mm2
while exhibiting a power consumption of 219 mW and supporting the maximum
specified frame size of 6144 bits. Another example of flexible architecture is the
parameterized architecture of [30] which supports both Turbo modes (DBTC
and SBTC) and achieves a high throughput of 187 Mbps with 8 parallel MAP
decoders. Targeting Gbps throughputs, a recent work [35] has proposed an LTE-
Advanced compliant Turbo decoder architecture with 32 parallel SISO decoders
using Radix-4 trellis compression and butterfly schedule of forward backward cal-
culations. A throughput of 2.15 Gbps is achieved with an on chip area of 7.1 mm2
using 65nm CMOS technology. The architectures previously presented propose
to use multiple SISO decoders to reach high throughput of emerging and future
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standards. However, even if these turbo decoders offer certain degrees of flexibil-
ity to adapt for instance the number of SISO decoders, the turbo code mode (i.e.
SBTC or DBTC), or the frame size, the authors do not present any configura-
tion infrastructures associated to their architecture in order to support dynamic
configuration switches.

In order to support dynamic configuration, the authors of [36] present an
FPGA implementation of a High Speed MAP Decoder Architecture for Turbo
Decoding achieving 346 Mbps. However, the configuration latency cost of such
an implementation is not evaluated. The recent FPGA dynamic reconfiguration
mechanisms provide very high flexibility. The configuration latency of Xilinx
FPGA [37] depends on the targeted FPGA technology, the bitstream size and
the medium (ICAP, JTAG, etc.) used to transfer the configuration bitstream.
However, the configuration latency overhead is still important (from around 100
µs to 100 ms). Recent works investigated General Purpose Processor (GPP) im-
plementations using high performance multi-cores architectures taking advantage
of the Intel SSE (Streaming SIMD Extensions) instructions. In [38], a 418 Mbps
turbo decoder for LTE is implemented on an Intel Xeon processor X5670 with
a 12 threads level of parallelism. The 150 Mbps LTE throughput requirement
is reached with a 4 threads implementation. In [39], an adaptive turbo decoder
implementation on an Intel I7-960 core is investigated. The authors propose to
adapt the decoding algorithm depending on the communication channel qual-
ity. However, for both [39] and [38] works, no discussion is provided about the
context switching cost when the turbo decoder configuration has to be changed.
Moreover, these GPP implementations have been initially developed for base sta-
tion. Thus, they are not suitable for mobile terminals due to the high power
consumption of such processors.

Recently, Application Specific Instruction-set Processor (ASIP) designs solu-
tions have been investigated in order to offer architectures providing good compro-
mises in terms of flexibility, throughput and power dissipation. In [40] a flexible
and high performance ASIP model for Turbo decoding was proposed which can
be configured to support all simple and double binary Turbo codes up to eight
states. The architecture uses shuffled decoding with frame sub-blocking. The
extrinsic information is iteratively and concurrently exchanged between multiple
component decoders via an on-chip communication network presented in [41].
Afterwards, optimizations on the proposed ASIP have been added in [42]. More-
over, LDPC decoding has been integrated. Efficient resource sharing between
LDPC and Turbo decoding modes is proposed as well as new LDPC decoding
schedule adapted to a multi-ASIP architecture. In [43], the authors introduce
the FlexiTreP ASIP presented in [44] in a multi-ASIP architecture for turbo de-
coding consisting of two ASIPs and dedicated accelerator to reach the 150 Mbps
throughput requirement of LTE. This ASIP, whose general architecture is illus-
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Figure 1.14: FlexiTreP general architecture

trated in Figure 1.14, supports both SBTC and DBTC for various standards
and it is configured through an interleaver memory (IL), a program memory and
the Dynamically Reconfigurable Channel Code Control (DRCCC). The DRCCC
is a look-up table based unit which allows the configuration of the structure of
the convolutional code, the internal data-path, and the configuration memory.
Two configurations are stored in this unit, a working and a shadow configura-
tion. The working configuration holds the parameters that are actually used while
the shadow configuration is used to prepare the next configuration. One cycle
switching can be performed between these two configurations thanks to a special
instruction. However, using a specific instruction in the program to switch be-
tween two configurations limits the flexibility because the reconfiguration scenario
is defined statically. Moreover, even if the DRCCC allows to prepare the next
configuration parameters in parallel of the current decoding process, the program
and interleaver memories can not be modified during the processing. A configura-
tion delay, which is not detailed in the presented works, between two consecutive
frames is necessary to load these two memories for each ASIP implemented on a
platform.

Previous works provide an efficient way to reach the high performance re-
quirement of emerging standards. However, the dynamic reconfiguration aspect
of these platforms is superficially addressed. All these platforms can be reconfig-
ured through program and configuration memories of each core, but the configura-
tion mechanisms are not optimized for an efficient implementation in a multi-core
system. Furthermore, these platforms are not coupled with a configuration in-
frastructure that allows configuration broadcasting to the cores. As explained in
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Figure 1.15: Memory reconfiguration process presented in [44]

Section 1.2.2, the perpetual increase of throughput of wireless standards reduces
the reconfiguration time available between two data frames while the number of
cores increases to reach high throughput. This point is particularly challenging
as in many standards decoding parameters can be changed as early as one data
frame ahead [45]. Among the few works which considered this issue, we can cite
the recent architecture presented in [46] where the authors propose solutions for
the reconfiguration management of the NoC-based multiprocessor Turbo/LDPC
decoder architecture presented in [47]. Up to 35 processing elements (PEs) and up
to 8 configuration buses have been implemented. Each PE is configured through a
configuration memory which is organized as a circular buffer. The set of pointers
used to manage reading and writing operations are shown in Figure 1.15. The
start of current configuration (SCC) pointer and the end of current configuration
(ECC) pointer delimit the memory blocks that are currently being used. A read
pointer (RP) is used to retrieve the data during the decoding process, as shown
in Figure 1.15(a). The start of future configuration (SFC) and end of future con-
figuration (EFC) pointers, shown in Figure 1.15(b) are instead used concurrently
with the write pointer (WP) to delimit the locations that are going to be used
to store the new configuration data. The reconfiguration process to switch from
a configuration C1 to a configuration C2 can be masked by the current decoding
task (Figure 1.15(c)) if the configuration memory provides enough free space and
if a high speed configuration infrastructure is provided.

For that purpose, groups of four PEs are connected to a dedicated configura-
tion bus. The remaining PEs are shared among the buses when the number of
PEs is not divisible by four. Dynamic reconfiguration during one frame duration
is possible when the current configuration is small enough to load a new config-
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uration in the memory. If not, authors provide management solutions to deal
with this issue, such as erasing the current configuration during the last decoding
iteration and continue the reconfiguration process during the first iteration of the
new configuration, but it is not always sufficient. Then, stopping the current
processing to configure the new configuration is unavoidable and leads to a de-
coding quality loss in terms of BER. Moreover, the cost of the proposed multi-bus
configuration infrastructure becomes too high with the increasing number of PEs
and leads to a complex configuration transfer management.

To leverage these issues, it becomes essential to propose original solutions for a
low complexity and stopping-free configuration of multiprocessor Turbo decoders.
Previous works targeting reconfigurable Turbo decoder architectures tackled one
or two specific aspects of the reconfiguration process leading to inefficient global
reconfiguration mechanisms. Indeed, as summarized in Table 1.2, [44, 43] pro-
poses an efficient dynamically reconfigurable channel code control (DRCCC) unit
allowing a one cycle reconfiguration of the processor’s pipeline but the rest of the
configuration information (program and interleaver configuration) is not opti-
mized for a high speed configuration. In [46], the configuration memory of each
processing element has been designed to support configuration overlapping but
the configuration load is not optimized so a complex multi-bus configuration has
to be implemented to support high speed configuration. In this context, this thesis
work, starting from the works presented in [40, 41, 42], aims to further investigate
and optimize the dynamic reconfiguration process in order to support stopping-
free dynamic reconfiguration for high throughput requirements and high level of
parallelism in the context of multi-mode and multi-standard scenarios presented
in Section 1.2.2. Configuration latency below 10 µs, including run-time configu-
ration generation which is not implemented in previous work, must be proposed
to reach this objective for emerging and future communication standards.

Regarding a complete communication chain, reaching a low configuration la-
tency is even more important because the Turbo decoder is not the only com-
ponent to be reconfigured. Indeed, a turbo decoder is usually integrated as an
accelerator into an heterogeneous platform such as the MAGALI [48], the Sand-
brige [49], the Tomahawk [50], the IMEC SDR platform architectures [51] among
many other platforms [52, 53, 54]. Consequently, the configuration process per-
formed to reconfigure one component can have an impact on the entire receiver if
the required configuration latency introduces an extra delay leading to stop the
processing along the communication chain. The integration of a Turbo decoder in
a complete platform for telecommunication is out of the scope of this thesis work.
However, this thesis work aims to explore and propose a high speed reconfigurable
Turbo decoder to be implemented in such a platform in future works.
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[44, 43] [46] [40, 41, 42]

Config.
support

Program and In-
terleaver memories,
DRCC

Configuration
memory

Program and
configuration
memories

Config.
infrastruc-
ture

Not detailed
multi-bus (up to 8
buses for 35 proces-
sors)

NO

Config.
manage-
ment

Not dynamic (de-
coding is stopped for
configuration)

YES (the current
configuration is erased
during the process-
ing or decoding is
stopped)

NO

Stooping-
free

NO Not guaranteed NO

Run-time
config.
generation

NO NO NO

Table 1.2: Configuration overview of the most relevant SoA works

1.4 Initial multi-ASIP architecture for turbo de-

coding

The design of an ASIP-based multi-mode and multi-standard architecture for
turbo decoding has been initiated at the Electronic Department of Telecom Bre-
tagne in Brest in previous thesis works [55, 42]. In [55], the main objective was
to evaluate the abilities of newly ASIP-design tools in terms of quality of the
generated HDL code and flexibility limitation when targeting turbo decoding
application. The thesis work presented in [42] proposes to improve the initial
ASIP architecture mainly in terms of area and throughput and to introduce the
support of LDPC decoding. In this section, an overview of the multi-mode and
multi-standard turbo decoder which is the starting point of this thesis work is
given.

The UDec turbo decoder architecture is shown in Figure 1.16. It consists of
two rows of DecASIPs interconnected via a Butterfly Network on Chip. Each row
corresponds to a component decoder. In the example of Figure 1.16, four ASIPs
are organized in 2 component decoders respectively built with 2 ASIPs. Each
DecASIP is associated with 3 memory banks of size 24x256 used to store the
input channel LLR values ¬. There are also another 3 banks of size 30x256 used
for extrinsic information storing . Each ASIP is further equipped with two 88x32
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Figure 1.16: UDec system architecture example with 2x2 ASIPs

memories which hold state metric values ®. Moreover, each ASIP is configured
through a program memory ¯ and a configuration memory °. The configuration
memory contains all parameters required to perform the initialization of the ASIP
while the program memory contains the instructions in order to perform the
decoding algorithm. The detailed content of these two memories determining the
configuration of the DecASIPs is described in the next chapter.

At the SISO decoder level, multiple SISO decoders are supported by the use
of sub-blocking with message passing for boundary state metric initialization
through two 88-bit ring buses as shown in Figure 1.16. To increase the use of
parallelism degree, shuffled decoding is used by employing multiple SISO decoders
grouped into natural (component decoder 0) and interleaved (component decoder
1) domains. Finally, the generated extrinsic information generated is sent to the
other domain through the Butterfly NoC interconnection.

When a new frame has to be decoded, the first step consists to load the
new configuration parameters and a new program in the configuration memory
and program memory of each DecASIPs. Currently, there is no configuration
infrastructure associated with the UDec architecture to perform this task. The
content of these memories are generated at design time and are loaded from a host
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Physical level

HDL level

FPGA / ASIC

Figure 1.17: LISA-based ASIP architecture design flow

PC for FPGA prototyping or thanks to a simulation test bench for simulation
process. Then, ASIPs are initialized by reading the content of their configuration
memory. Depending on the decoding mode, the two component decoders can
run one after the other (serial mode) or concurrently (shuffled mode). Finally,
when the decoding process is completed for the fixed number of iterations, the
DecASIPs are reseted waiting for a new frame to decode.

1.4.1 Overiew of the DecASIP processor

The initial DecASIP considered in this thesis work corresponds to the DecASIP
developed during the thesis work of Purushotham Murugappa [42]. In the context
of this thesis work targeting Turbo-decoding only, the support of LDPC decoding
introduced in the initial DecASIP is not considered. The ASIP is developed
using the Synopsys Processor Designer tool that uses LISA ADL (Architecture
Description Language) [56]. This language provides a high flexibility to describe
instruction set and provides an efficient solution to describe complex pipelines.
Figure 1.17 illustrates the design flow adopted with the Processor Designer tool.
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The ASIP design flow is divided in three abstraction levels.

LISA level: ASIP design description in the LISA ADL and the assembly code
(ASM) define the functionality of the architecture through the instructions
designed for the specific application. These ASMs are interpreted and tested
for functional correctness through the use of macro assembler and linker.
The generated executable file can be later used for simulation and debug-
ging.

HDL level: at this level the design is translated to VHDL equivalent models
along with the memory architecture and HDL simulation memory files. A
exe2txt script that automatically converts memory initialization files de-
scribed in ASM to equivalent text (.mmap) is provided. These .mmap files
can be used for memory initialization in VHDL.

Physical level: at this level, ASIC or FPGA tools can be used for the hardware
implementation. At this level, the only missing elements are the synthe-
sizable memory models. Depending upon the target FPGA device and the
synthesis tool, the declaration of the memory models for simulation can be
replaced by equivalent declaration of synthesizable memories. The obtained
model containing the ASIP and its memories can be used for synthesis,
placement and routing to verify timing and area performances.

The DecASIP implements the Max-Log MAP algorithm for WiMAX, DVB-
RCS and LTE standards. It supports both single and double binary convolu-
tional turbo codes and implements radix-4 trellis compression technique for SBTC
mode. This gives the possibility to decode two source data bits at the same time,
thus increasing the throughput by two in this mode and allowing an efficient
hardware resources sharing with the DBTC mode. Large frames are processed
by dividing the frame into N windows each with a maximum size of 64 symbols.
Each ASIP can manage a maximum of 12 windows.

The DecASIP is modeled as a processor with 10 pipeline stages as shown in
Figure 1.18. The pipeline stages from BM1 toEXTR-CH implement the com-
putations related to the decoding process. First, in the BM1 stage, systematic
and parity information bits are fetched from the Input memories and combined
to form the systematic and parity symbols. In parallel, the extrinsic information
is fetched from the Extrinsic memories and is scaled by the Scale Factor stored
in the configuration memory. In the BM2 stage, the systematic symbols and the
extrinsic information are combined. Then, the branch metrics are calculated in
parallel. The EX stage contains the adders required to compute the 32 recursion
metric LLRs (α and β). First, this recursion unit is used to process the trellis
step in the backward direction (β). Then, it is used to process the trellis step in
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Figure 1.18: Overview of the DecASIP pipeline stages with its register file and mem-
ory banks

the forward direction (α). In MAX1, flexible max operators for calculating the
recursion metric LLRs as defined in the Max-Log-MAP algorithm are provided.
The max operators are reconfigured for the extrinsic generation phase. The final
aposteriori LLRs are generated by the max operators in the MAX2 pipeline stage.
The last stage of the pipeline generates the extrinsic information. The generated
extrinsic information packets also carry the address header which determines the
destination DecASIP and the memory address at which the information has to
be written. The memory address is generated at run-time by the ASIP during
the processing using the address generator presented in the next section.

1.4.2 Interleaved/deinterleaved address generator

The interleaving/deinterleaving addresses required w.r.t. the LTE standard QPP
interleaving rule is as described below.

Let N be the frame size in bits at the encoder input. For j = 0...N − 1,
I(j) = (f1 × j + f2 × j2)modN , where f1 and f2 are constants defined in the
standard with j being the index of the natural order. These addresses can be
recursively derived using the following expressions:

I(j + 1) = (I(j) +G(j))modN (1.12)

G(j) = (G(j − 1) + 2f1)modN (1.13)

The deinterleaved address pattern required by component decoder1 can be gen-
erated recursively as described here. Let the deinterleaved address sequence be
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D = [d0, d1, ...dN−1]. Taking a second order modulo-N linear circular difference of
the sequence D gives step size values as given by the Equation (1.14) and (1.15)
below. The number of steps (Nsteps) depends on the frame size and can take at
most eight different values.

D′ = [d0 − dN−1, d1 − d0, ..., dN−1 − dN−2]modN (1.14)

D′′ = [D′0 −D′N−1, D
′
1 −D′0, ..., D′N−1 −D′N−2]modN (1.15)

The following pseudo code illustrates the deinterleave address generation process:

for i = 1 : N
d(i) = (d(i−1) −D′i−1)modN ;
D′(i) = (D(i−1) +D′((i− 1)mod(Nsteps)))modN ;

end

Similar sequences is generated for the ARP interleaver specified in the WiMAX
standard, where the number of steps obtained is maximum 4. Figure 1.19 presents
the corresponding hardware generation architecture. Table 1.3 gives an example
of the steps and seeds values for LTE and WiMAX frames of length 1440 bits and
1920 bits respectively. Similar values can be derived from the above expressions
for all frame sizes specified in these standards.

For a given configuration, the Seeds and Steps values are stored in the config-
uration memory of the DecASIP and is read during the initialization phase. The
next section presents the Butterfly NoC used for extrinsic information exchanges.

1.4.3 NoC messages

The Butterfly NoC implemented in the UDec architecture consists of two unidi-
rectional Butterfly NoC as shown in Figure 1.20 through an example with four
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Value
LTE 1440 bits WiMAX 1920 bits

Interleaved Deinterleaved Interleaved Deinterleaved

Step 0 840 120 39 659
Step 1 840 120 35 587
Step 2 840 120 59 759
Step 3 840 120 135 87
Step 4 840 120 39 659
Step 5 840 120 35 587
Step 6 840 120 59 759
Step 7 840 120 135 87
Seed 0 929 1409 886 302
Seed 1 1111 1351 0 0

Table 1.3: Interleaved/deinterleaved address generation step and seed values

DecASIP per component decoder. The Transmission Network Interface (NITx)
has the extrinsic message and its attached destination address as input. The
address is a global address; it takes value from 0 to blocksize-1. This address
cannot be used as it is to route the extrinsic messages through the NoC. The
NITx transforms this global address to a routing information and in a local ad-
dress (@ Local). The routing information (3 bits considering the architecture
of Figure 1.20) is used by the NoC to transport the message to the appropriate
output router at each routing stage. The local address is used by the NIRx to
write the message in the appropriate location in the appropriate memory bank.

In SBTC mode, two NoC packets are generated corresponding to the system-
atic LLR bits (S0,S1) processed as a symbol (by the radix-4 trellis compression
technique). As these two addresses can be different they are packetized over two
NoC packets each of width 26 bits. This does not cause any congestion in the NoC
as two packets are generated every two clock cycles as explained in the previous
section. The packet structure for SBTC mode is shown in Figure 1.21(a)

In DBTC mode, three normalized extrinsic information quantized to 8 bits
is sent across the NoC in two packets as shown in Figure 1.21(b). The address
fields of these two NoC packets are the same as they are targeting to the same
location of the other component decoder.

1.4.4 ASIC synthesis results

The proposed ASIP was described in LISA and was translated into VHDL using
the Processor Designer tool. ASIC synthesis targeting 65nm general purpose
CMOS technology has resulted in a total DecASIP area of 175930 µm2 (logic
only) with a clock frequency of 500 MHz. Furthermore, the total memory area
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Figure 1.20: Butterfly NoC structure as used in the UDec architecture

Route @ Local 000 Extrinsic

25 23 22 12 11 8 7 0

(a) SBTC NoC packet

Route 1 @ Local Ext_11 Ext_10(7..5)

25 23 22 12 11 4 3 0

Route 0 @ Local Ext_01Ext_10(4..0)

25 23 22 12 11 8 7 0

(b) DBTC NoC packets

Figure 1.21: NoC packets format using Butterfly NoC

for a single ASIP is 216179 µm2 targeting 65nm CMOS technology.

Equation (1.16) gives the maximum throughput reached by the UDec archi-
tecture enabling the shuffled parallelism. An average of Ninstr = 4 instructions
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per iteration are needed to process 1 symbol which is composed of 2 bits.

Throughput =
2× Fclk × (NASIP/2)

Ninstr ×Niter

(1.16)

where Fclk and Niter are the clock frequency of the system and the number of
decoding iterations respectively. This throughput is divided by two when the
shuffled decoding is disabled.

1.5 Summary

This chapter provided the basic background on the considered application of
turbo decoding. The different parallelism levels which can be exploited in a
multiprocessor implementation of a Turbo decoder was also explained. Moreover,
an overview of state-of-the-art efforts in flexible solution for Turbo decoding was
addressed. The proposed overview presents a selection of recent work related to
the thesis scope in terms of dynamic reconfiguration support of Turbo decoding
in order to clarify the position of the proposed contributions.

The chapter has also presented the architecture of an initial multi-ASIP Turbo
decoder called UDec. This platform has been developed in previous thesis work
at the Electronic department of Telecom Bretagne in Brest. This architecture was
optimized to provide high performance and high flexibility. However, the dynamic
reconfiguration requirement was not addressed. This initial work constitutes the
starting point of this thesis work.



2
RDecASIP: optimized DecASIP for an

efficient reconfiguration

T
his second chapter presents the optimization of the DecASIP processor in
order to offer an efficient dynamic configuration of the multi-ASIP UDec ar-

chitecture for Turbo decoding. The chapter starts with an analysis of the program
and configuration memory content of the initial DecASIP architecture. This is
followed by the proposed optimizations to reach an efficient dynamic reconfigu-
ration of the DecASIP. These optimizations lead to the implementation of a new
processor namely RDecASIP. Finally, implementation results and architectural
choices are discussed.

39
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2.1 Initial DecASIP configuration

An overview of the DecASIP architecture was provided in the previous chapter
(Section 1.4). The DecASIP is the main element of the UDec architecture and
proposes a flexible architecture allowing an efficient multi-ASIP implementation
in order to reach high throughput of emerging and future communication stan-
dards. However the requirement of dynamic reconfiguration was not addressed.
Despite its high flexibility, it presents some lacks to offer an efficient dynamic re-
configuration. Its configuration is realized through the configuration and program
memories which are detailed in the following sections.

2.1.1 Configuration memory

The initial configuration memory of the DecASIP has been designed to contain
configuration parameters for LDPC and Turbo decoding as shown in Table 2.1.
The parameters for Turbo and LDPC decoding are shown in gray and white cells
respectively. The configuration parameters for Turbo decoding are described in
Table 2.2.

@ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 - StepIndex State TurboInitIteration Mode ASIPId NASIP

1 - - - - Nsteps d Z
(2∗NA)

e - - - - NumRows - (Z-1)%2

2 Param0 ScalingFactor LastWindowSize
3 Param2 zsize Param1
4 - Parity check
8 - Step 0
9 - Step 1
10 - Step 2
11 - Step 3
12 - Step 4
13 - Step 5
14 - Step 6
15 - Step 7
16 - Seed 0
17 - Seed 1
18 - Turbo/LDPC FrameSize (in Bits)
19 - Prev. Step
24 Π1,1 Π1,3 Π1,5

25 Π1,2 Π1,4 Π1,6

26 Π2,1 Π2,3 Π2,5

27 Π2,2 Π2,4 Π2,6

: : : :
: : : :
48 Π12,2 Π12,4 Π12,6

Table 2.1: Config memory contents of the DecASIP

They determine the configuration of the address generator for extrinsic in-
formation exchange (StepIndex, State, Nsteps, Steps, Seeds and Prev. Step), the
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decoding process (Mode, ScalingFactor, LastWindowSize, FrameSize), the multi-
ASIP management (ASIPId, NASIP ) and the debug mode (TurboInitIteration,
State MSB). The LDPC parameters will not be taken into account in the rest of
this document since this thesis work targets Turbo decoding only.

The configuration parameters contained in the configuration memory of the
DecASIP are read and stored in internal registers of the ASIP during an initial-
ization phase of the ASIP. The scheduling of this step is defined in the program
stored in the program memory. For the initialization step, the DecASIP reads a
configuration memory line each clock cycle. The number of read to be done is
directly inserted in a loop instruction word of the program. In the next section,
the instruction-set of the program for Turbo decoding is explained and program
examples are given.

Parameter Description

StepIndex
sets the initial value of the counter in interleaved/dein-
terleaved address generator

State

sets the state values for interleaved/deinterleaved ad-
dress generation. Moreover the MSB is used to define if
the extrinsic memory has to be read for the first decod-
ing iteration or not (used for debug)

TurboInitIteration
sets the initial number of iteration counter (used for de-
bug)

Mode
sets the ASIP mode for DVB-RCS, WiMAX or LTE
standard. Moreover the MSB is used to inform the
ASIPs concerned by tail bits in SBTC mode

ASIPId sets the Identifier of the ASIP in a multi-ASIP context.
NASIP sets the number of ASIPs used in a multi-ASIP context
NSteps sets the number of steps as defined in Section 1.4.2
ScalingFactor sets the extrinsic information scaling factor
LastWindowSize sets the length of the last window

Step 0...7
sets the number of steps values as defined in Section
1.4.2

Seed 0...1
sets the number of seeds values as defined in Section
1.4.2

FrameSize sets the size of the frame to decode

Prev. Step
sets the register value shown in Figure 1.19 for inter-
leaved/deinterleaved address generation

Table 2.2: Configuration parameters of the DecASIP for the Turbo decoding mode
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2.1.2 Program memory

An assembly code example of the DecASIP allowing the decoding of one data
frame in DBTC mode is as shown in Listing 2.1. First, the ASIP is initial-
ized by reading configuration parameters from the configuration memory. If the
Repeat until flag for X times instruction is decoded, the instructions until flag
are repeated X times. The instruction ASIP INIT initialises the ASIP registers
with parameters read from the configuration memory. Then, the current window
counter value, the window size and the final window number that have to be
processed by the ASIP are configured. The Repeat until instruction in line 9 con-
trols the number of decoding iterations while the PUSH instruction increments
the iterations counter. The ZOLB instruction in line 12 enables the execution of
backward and forward recursion metric calculation window size times set in line
6. In case the current window being processed is the last window of the sub-block
assigned to the ASIP, the execution of backward and forward recursion metric
calculation is performed LastWindowSize times. This parameter is defined in
the configuration memory (Table 2.1). Finally, extrinsic information packets are
generated and the boundary state metrics are sent to the next ASIP of the same
component decoder. NOP instructions are inserted at the end of the program in
order to flush the pipeline.

Listing 2.1: Example of an assembly code in DBTC mode

1 Repeat u n t i l i n i t f o r 63 t imes ; repeats instructions
2 from 3 to init for X times
3 NOP;
4 ASIP INIT ;
5 i n i t : NOP;
6 SET WindowsInit 0 , 63 ; set window counter (0) and window
7 size (63+1)
8 SET WindowsN 6 ; set Number of Windows (6)
9 Repeat u n t i l LOOP f o r 10 t imes ; set Number of decoding

10 iterations (10)
11 PUSH; Push the Number of iterations counter
12 ZOLB RW1, CW1, LW1 ; repeat instr 16 and 18 Window size
13 number of times followed by repeat 22 and 24 Window size number
14 of times
15 NOP;
16 DATA LEFT ADD metr ic column2 ; calculate backward recursion
17 metric
18 RW1: NOP;
19 EXCH BETA ALPHA; save old and fetch new boundary state across
20 windows within the ASIP
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21 CW1: NOP;
22 DATA RIGHT ADD metr ic column2 ; calculate forward recursion
23 metric
24 LW1 : EXTCALC ADD i n f o l i n e 2 ; generate extrinsic information
25 WINDOW INIT ALPHABETA 0 3 exchange boundary states(0..3)
26 across windows with the next ASIP
27 NOP;
28 WINDOW INIT ALPHABETA 4 7 exchange boundary states(4..7)
29 across windows with the next ASIP
30 NOP;
31 NOP;
32 NOP;
33 NOP;
34 NOP;
35 NOP;
36 NOP;
37 LOOP: NOP;

Listing 2.2 shows an example of assembly code of the DecASIP in SBTC mode
including tail bits decoding. In DBTC mode, the first step concerns the initial-
ization of the ASIP with the configuration parameters stored in the configuration
memory. Then, from line 6 to 21, instructions are dedicated to tail bits decoding.
The trellis termination strategy used in SBTC of the LTE standard is through
zero padding and is achieved by inserting 3 zeros at the end of the encoding
process (Section 1.1.3.1). This leads to process an extra 1 and half symbols (af-
ter radix-4 trellis compression) by the last ASIP of the component decoder. As
per the specifications of the standard, these tail bits do not exchange extrinsic
information but are needed to be processed to estimate the initial states for the
backward recursion of the last window of the last ASIP of the component decoder.
This tail bits processing is achieved by rounding off the extra 1 and half symbols
to 2 symbols by adding dummy zero LLRs to the last bit and processing these last
two symbols separately as a window (as shown in listing 2.2). The instructions
in lines 13 and 15 are repeated in order to process these tail bits by initializing
the fetch units to one more than the last window, and executing the two sym-
bols in the backward direction. After this tail bits processing is completed, the
window counter is initialized back to zero (line 22) and the execution continues
similar to the DBTC mode. During the tail bits processing, all other ASIP of the
component decoder execute (NOP) instructions to maintain the synchronization
ASIPs.
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Listing 2.2: Example of an assembly code in SBTC mode including tail bits decoding

1 Repeat u n t i l i n i t f o r 63 t imes ; repeats instructions
2 from 3 to init for X times
3 NOP;
4 ASIP INIT ;
5 i n i t : NOP;
6 SET WindowsInit 6 , 1 ; set window counter and window
7 size for tail bits decoding
8 SET WindowsN 7 ; set Number of Windows for tail bits decoding
9 Ta i lB i t s 361 ; set absolute address of tail bits

10 ZOLB RW, RW, RW; repeat instr 13 and 15 Window size
11 NOP;
12 Intructions 13 and 15 if last ASIP of the component decoder else NOP
13 DATA LEFT ADD metr ic column2 ; calculate backward recursion
14 metric
15 RW: NOP;
16 NOP;
17 EXCH BETA ALPHA; save old and fetch new boundary state across
18 windows within the ASIP
19 NOP;
20 NOP;
21 NOP;
22 SET WindowsInit 0 , 63 ; set window counter (0) and window
23 size (63+1)
24 SET WindowsN 5 ; set Number of Windows (5)
25 Repeat u n t i l LOOP f o r 10 t imes ; set Number of decoding
26 iterations (10)
27 PUSH; Push the Number of iterations counter
28 ZOLB RW1, CW1, LW1 ; repeat instr 32 and 34 Window size
29 number of times followed by repeat 38 and 40 Window size number
30 of times
31 NOP;
32 DATA LEFT ADD metr ic column2 ; calculate backward recursion
33 metric
34 RW1: NOP;
35 EXCH BETA ALPHA; save old and fetch new boundary state across
36 windows within the ASIP
37 CW1: NOP;
38 DATA RIGHT ADD metr ic column2 ; calculate forward recursion
39 metric
40 LW1 : EXTCALC ADD i n f o l i n e 2 ; generate extrinsic information
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41 WINDOW INIT ALPHABETA 0 3 exchange boundary states(0..3)
42 across windows with next the ASIP
43 NOP;
44 WINDOW INIT ALPHABETA 4 7 exchange boundary states(4..7)
45 across windows with next the ASIP
46 NOP;
47 NOP;
48 NOP;
49 NOP;
50 NOP;
51 NOP;
52 NOP;
53 LOOP: NOP;

Based on the description of the program and the configuration memories of
the initial DecASIP, the next section highlights the configuration lacks of the
initial DecASIP and proposes optimization solutions to reach an efficient dynamic
configuration.

2.2 Proposed optimizations for an efficient dy-

namic configuration

In this section, several optimizations are proposed to reach an efficient dynamic
reconfiguration of the DecASIP architecture. The first optimization is related
to the storage of configuration parameters. The second optimization deals with
the way used to load the configuration memory through the configuration mem-
ory organization. The third optimization corresponds to the development of a
generic program independent of the configuration to be performed and tackles
the management of interframe delay since the DecASIP is currently reseted after
each processed frame. The final proposed optimization technique deals with the
multi-configuration storage.

2.2.1 Configuration parameters storage

In the initial DecASIP architecture, the flexibility is spread over the configuration
memory and the program memory. Indeed, flexible parameters are directly in-
serted in instruction words. From the programs described in Section 2.1.2, seven
flexible parameters can be extracted. These parameters are presented in Table
2.3. We can notice that some parameters included in the program are fixed.
Indeed, the window size for tail bits decoding is fixed to 1 due to the SBTC
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Register file

Branch metric LLRs

State metric LLRs

Config. 

registers

Instruction Param. 1 Param. 2

Configuration memory

ASIP initialization

Instruction Param. 1 Param. 2

Instruction wordProgram memory

Figure 2.1: Flexible parameters transfer to configuration memory

structure and the initial window counter value for normal decoding is fixed to 0
i.e. the first window to decode is always the window 0.

Parameter Description

Config. Size
sets the number of configuration memory lines the
DecASIP has to read

WindowSize sets the window size

WindowN norm
sets the final window counter value for normal de-
coding

WindowN tail
sets the final window counter value for tail bits
decoding

WindowID tail
sets the initial window counter value for tail bits
decoding

@ Tail bits sets the address of tail bits in input memory

Max Iteration
sets the number of maximum decoding iteration
the DecASIP has to performed

Table 2.3: DecASIP program flexible parameters

To reach reconfiguration efficiency, all flexible parameters present in instruc-
tion words are moved from the program memory to the configuration memory as
shown in Figure 2.1. An exception is done for the configuration size parameter
(Config. Size), which is read from extra input pins of the DecASIP in order to
simplify the setting of the initialization loop counter when the ASIP is started.
This solution allows to reconfigure a single memory to change all the configura-
tion parameters (instead of loading both new program memory and configuration
memory). Furthermore, once the DecASIP is configured, the configuration mem-
ory can be accessed without any conflict since the configuration is loaded inside
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internal registers of the DecASIP during the initialization step. This is a key
point to prepare the next configuration if necessary. Indeed, the entire next con-
figuration can be loaded in the configuration memory during the processing of the
current data frame. Thus the configuration loading can be partially or completely
masked. If the configuration loading is completely masked, the configuration over-
head consists in the initialization step only. However, this modification impacts
the area of the configuration memory since it is necessary to store more parame-
ters. It also impacts the number of registers inside the DecASIP in order to store
these parameters after the initialization step. Finally, it impacts the initializa-
tion step duration since this step consists in reading the configuration memory
and then storing each parameter in the corresponding register. The program in
its current form contains seven configuration parameters. All these parameters
(except for Config. Size) can be moved to the configuration memory. So six
parameters have to be added to the configuration memory to obtain a parameter
independent program memory. The next sub-section presents a way to integrate
these new parameters in a dedicated memory organization.

2.2.2 Configuration memory organization

In order to improve the reconfiguration of the DecASIP, it is essential to analyze
the organization of the configuration memory. The parameters stored in the
configuration memory present different properties. They can be classified in four
categories as follows:

1. Domain dependent (for component decoder 0 or component decoder 1 in
Figure 1.16).

2. Identical for all DecASIPs.

3. Different for all DecASIPs.

4. Different for the last DecASIPs of each component decoder which decode
the tail bits in SBTC mode.

All these characteristics need to be taken into account in order to build a low la-
tency configuration process. Furthermore, in a multi-ASIP context, it is necessary
to only configure DecASIPs required for a specific execution context (it means
that only a subset of ASIPs may be required depending on the target perfor-
mance). A dedicated memory organization should allow an efficient broadcasting
of the configuration parameters to the required DecASIPs. Thus, depending on
the previously described categories, the parameters can be gathered in four groups
which occupy four different parts of the configuration memory.
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Width Depth Usage Configuration time
(in bits) (in %) (in cycles)

32 10 79.1 12
28 12 75.3 13
26 12 97.3 13
24 16 65.9 17
20 18 70.3 19
16 20 79.1 22
14 22 82.1 24

Table 2.4: Configuration memory architecture alternatives

As different memory architectures can be considered, it is important to define
the best size for the memory. Table 2.4 shows that the choice of the width and
depth of the memory impacts the time required to load the configuration into
the DecASIP and the area of the memory on the chip. We evaluate five solutions
from 14 bits to 32 bits memory width. Since the number and the size of each
parameter are fixed, the depth of the memory decreases when the width increases.
Furthermore, in order to take into account the final implementation technology
of the different memory alternatives, the depth and width of each memory must
be a multiple of 2. It represents the minimal constraint to design the memory
with the considered memory generator tool. Depending on the alternative, the
level of memory usage changes. Results of Table 2.4 show that a 26 bits memory
width is the most efficient one (97.3% area usage) while an initial 24 bits memory
width is inefficient (65.9% area usage).

The time required to configure the ASIP is proportional to the number of
memory lines to be read. Each clock cycle, the ASIP reads one data from the
memory and configures the corresponding register. One more clock cycle is nec-
essary to initialize the reading loop, and another cycle is required to complete the
initialization of the ASIP. For example, 12 cycles are needed to load the config-
uration in the ASIP with a 32 bits memory width while 24 cycles are necessary
for a 14 bits memory width. Moreover, the memory width has an impact on the
global multi-ASIP platform. Indeed, a large memory width increases the number
of connections between each ASIP and its configuration memory and between
each configuration memory and the configuration infrastructure in charge of the
configuration parameters transfer in the memories. Thus, a trade-off between
the initialization time, the memory usage and the global impact on the platform
has to be found. The 26 bits memory width is an interesting trade-off. This
memory alternative offers a fast configuration time (13 cycles) and the highest
memory usage efficiency (97.3%). Finally, the impact on the entire platform is
low compared to the current solution that implements a 24 bits memory width.
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Table 2.5 presents the 26 bits width configuration memory organization. The
memory is organized as follows: (1) from address @0 to @1, parameters can be
different for each ASIP. Furthermore, to optimize the initialization step of the
ASIP, the parameter Tail which indicates if the ASIP has to perform or not
the tail bits is included in this group. Only the last two ASIPs are concerned
by the tail bits in a single binary turbo code mode; (2) from address @2 to
@6, the parameters are domain dependent; (3) from address @7 to @10, the
parameters are the same for all ASIPs. This organization allows a good way
for a fast reconfiguration at the platform level. Indeed, multicast and broadcast
mechanisms can be used to load the configuration in order to minimize the data
transfers load. In this context, two multicast transfers are necessary to send
domain dependent parameters stored from address @2 to @6 of each configuration
memory to all ASIPs and one broadcast transfer for parameters stored from
address @7 to @10 of each configuration memory that are the same for all ASIPs.
Finally, unicast transfers are used to load the ASIP dependent parameters from
address @0 to @1 of each configuration memory.

2.2.3 Unified program

As shown in Figure 2.2, three different programs are currently used in the De-
cASIP (Section 2.1.2): two programs for SBTC mode and one program for DBTC
mode. In single binary mode, after the initialization step, the last two DecASIPs
of each component decoder have to perform the tail bits while other DecASIPs
execute NOP operations. So, a particular program is loaded in these last two
ASIPs. In DBTC mode, the frames are decoded after the initialization step.

These three programs can be merged to one unique program presented in
Listing 2.3. This solution allows to consider a single program for different config-
urations and thus reduces the configuration load. For this purpose, the program
which integrates the tail bits computation is used as a reference program. From
instruction 1 to 4 in Listing 2.3, the initialization phase of the ASIP is performed.
The number of iterations of the initialization loop (i.e. Config. Size) is now read
from a set of input pins instead of being directly fixed in the instruction word.
The new memory organization previously described requires 11 read accesses.
Hence the initialization step requires 13 clock cycles. (i.e. one clock cycle to read
the memory, one more clock cycle to initialize the loop, and another clock cycle
to complete the initialization of the ASIP).

Instructions from line 5 to 14 concern the tail bits decoding in single binary
mode. In DBTC mode, no tail bits have to be decoded. In order to minimize the
impact on the complexity of the ASIP by adding new control instructions, we have
chosen to modify the Fetch (FE) pipeline stage in order to detect and replace the
instructions for tail bits with NOP instructions if the ASIP is not concerned. This
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Figure 2.2: Unified program for SBTC and DBTC modes

is done by checking the Tail register value read from the configuration memory.
If Tail=0, when the program counter reaches the address corresponding to one of
the tail bits instructions, a NOP instruction is sent to the Decode (DC) pipeline
stage instead of the read instruction word. Hence, using a unique program in this
mode adds 14 extra NOP instructions before the decoding which corresponds to
tail bits computation in single binary mode. However, the extra introduced clock
cycles are negligible regarding the number of clock cycles required to perform the
decoding on one entire frame.

Instructions from line 18 to 40 concern the decoding of the frame. This part of
the program is common for SBTC and DBTC modes. In order to create a generic
program, the instructions Repeat until, SET WindowsN and SET WindowsInit
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have to be independent of the configuration parameters. For this purpose, the
behavior of these instructions is now dependent of the parameters stored in the
configuration memory (WindowSize, WindowN norm , Max Iteration).

Listing 2.3: Unified assembly code for DBTC and SBTC modes

1 Repeat u n t i l i n i t f o r Config. Size t imes ;
2 NOP;
3 ASIP INIT ;
4 i n i t : NOP;
5 SET WindowsInit WindowID tail , 1 ;
6 SET WindowsN WindowN tail ;
7 Ta i lB i t s 361 ;
8 ZOLB RW, RW, RW;
9 NOP;

10 DATA LEFT ADD metr ic column2 ; Replaced by NOP when
11 Tail =0
12 RW: NOP;
13 NOP;
14 EXCH BETA ALPHA; Replaced by NOP when Tail =0
15 NOP;
16 NOP;
17 NOP;
18 SET WindowsInit 0 , WindowSize ;
19 SET WindowsN WindowN norm ;
20 Repeat u n t i l LOOP f o r Max Iteration t imes ;
21 PUSH;
22 ZOLB RW1, CW1, LW1 ;
23 NOP;
24 DATA LEFT ADD metr ic column2 ;
25 RW1: NOP;
26 EXCH BETA ALPHA;
27 CW1: NOP;
28 DATA RIGHT ADD metr ic column2 ;
29 LW1 : EXTCALC ADD i n f o l i n e 2 ;
30 WINDOW INIT ALPHABETA 0 3
31 NOP;
32 WINDOW INIT ALPHABETA 4 7
33 NOP;
34 NOP;
35 NOP;
36 NOP;
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37 NOP;
38 NOP;
39 NOP;
40 LOOP: NOP;
41 ASIP STOP ;

In order to allow the decoding of consecutive frames without reconfiguration,
the instruction ASIP STOP in line 41 tackles the interframe management. It is
used to trigger the reset of all internal registers which are read during the de-
coding of the first symbol of a new frame. This reset avoids interferences caused
by previous data generated during decoding of the previous frame. Afterwards,
ASIP is stopped, and waits for a new trigger on an additional Restart pin to
perform a new frame with the same configuration without a new initialization
phase of the ASIP. When a new configuration has been loaded in the configura-
tion memory, the Reset pin is triggered to start the program by the initialization
loop.

2.2.4 Multi-configuration storage

In a multi-mode and multi-standard context in which mobile terminals deal with
several communication standards and are able to concurrently execute appli-
cations that simultaneously access to the network, an efficient technique is to
have several configurations available in the configuration memory and to switch
between one to another quickly. Furthermore, when configurations are often
executed, storing these configurations in the configuration memory saves data
transfers to load the memory and consequently reduces the penalty due to con-
figuration transfers. For this purpose, we need to design the RDecASIP to manage
these different configurations. A simple way to address this point, is to add extra
input pins in order to provide the address of the configuration that has to be
loaded into the DecASIP. This solution is presented in Figure 2.3. An additional
ASIP input defines the memory offset in the configuration memory in order to
select one of the configuration loaded in the memory. This offset is added to the
configuration memory address counter to form the final address used to drive the
configuration memory address port.

The optimization techniques described in this section allow to reduce the
reconfiguration impact: 1) locally through the optimization of the storage of
configuration parameters to efficiently use the memory capacity and through the
possibility to decode several frames without a new initialization step of the ASIP
and 2) globally thanks to the new memory organization and the generic program
which reduce the total configuration load to transfer when a new configuration
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has to be performed. Moreover, the multi-configuration management is becoming
a key feature to optimize the management of a mobile device which deals with
several communication standards and applications. The next section presents
the implementation results and the impact of the proposed optimizations on the
initial DecASIP.

2.3 RDecASIP Implementation

This section analyzes the implementation results in terms of logic area overhead
and configuration load of the optimized ASIP implementing the optimizations
described in the previous section.

2.3.1 ASIC synthesis results

The optimizations described in the previous section have been implemented on
the initial DecASIP. Synthesis of the previous and the new cores was done with
65nm CMOS technology with a clock frequency objective equals to 500MHz. To
evaluate the impact of the new features on the ASIP area, we extracted the area
synthesis results for each pipeline stage of the DecASIP and the optimized De-
cASIP, namely RDecASIP. Regarding the synthesis results presented in Table 2.6,
five main design units have been impacted by the proposed optimizations: Pre-
fetch (PF), Fetch (FE), Decode (DC) and Operands fetch (OPF) pipeline stages,
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as well as the Register file of the processor. Indeed, the proposed optimizations
were implemented along the pipeline stages as follows:

� PF: The PF stage insures the management of the new Restart pin of the
ASIP. Indeed, when this pin is triggered, the program has to restart from
a particular address instead of starting from the address 0x0 which is the
first address of the program memory. In this case, the initialization step is
skipped and the decoding process starts with the configuration parameters
currently stored in the internal registers.

� FE: The FE stage insures the automatic replacement of instructions for
tail bits computation by NOP when the ASIP is not concerned by tail bits
decoding. This is done by checking the Tail register value read from the
configuration memory. If Tail=0, when the program counter reaches the
address corresponding to one of the tail bits instructions, a NOP instruction
is sent to the Decode (DC) pipeline stage instead of the instruction word
read in the program memory.

� DC: This stage is mainly impacted by the transfer of all flexible parameters
in a unique configuration memory. Instead of a direct access to some pa-
rameters in instruction code words, parameters are now read from registers.
Thus, the number of connections with the register file has been increased.
It is also in charge of the internal counter incrementation to drive the con-
figuration memory address taking into account the configuration memory
offset.

� OPF: This stage is impacted by the new configuration memory organization
since it is in charge of the parameter registers initialization. The area over-
head comes from the increasing number of parameters in the configuration
memory and by added control structures that manage the configuration size
flexibility. Since more configuration parameters are read from the config-
uration memory, the number of connections with the register file has been
increased to configure additional registers.

Regarding results from Table 2.6 for the complete ASIP area, we observe that
despite of the different area overheads on the pipeline stages and on the Regis-
ter file caused by our optimizations, the global area overhead for the complete
processor is 5.1% (0.009 mm2). Indeed, the most complex part of the pipeline
consists of the execution stages that implement the decoding algorithm which are
not directly impacted by the proposed optimizations. The observed area over-
head is mainly due to the register file. So, the increasing complexity of the ASIP
is mainly due to the additional internal registers used to store the configuration
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Design unit
Area in µm2

Diff. in µm2

DecASIP RDecASIP

PF 3176 3753 577 (+18.2%)
FE 970 1098 128 (+13.2)%)
DC 4958 5662 704 (+14.2%)

OPF 3485 3767 282 (+8%)
BM1 5246 5172 -74 (-1.4%)
BM2 3934 4105 171 (+4.3%)
EX 23296 23348 52 (+0.2%)

MAX1 13650 13999 349 (+2.5%)
MAX2 4906 4943 37 (+0.7%)

EXTR-CH 7135 7032 -103 (-1.4%)

Total Pipeline 70756 72879 2123 (+3%)
Register file 85298 92092 6794 (+8%)

Memory interface 15449 15530 81 (+0.5%)

Total logic 175930 184992 9062 (+ 5.1%)

Total memory 216179 214887 1292 (- 0.6%)

Table 2.6: ASIC synthesis results for the initial DecASIP and optimized RdecASIP

parameters read from the configuration memory. On the memory side, the total
memory area for a single ASIP is quite similar for both DecASIP and RDecASIP,
it is reduced by 0.6% (0.0046 mm2).

2.3.2 Dynamic reconfiguration performance

In this section, the gain of proposed optimizations on reconfiguration timing
performance are analyzed. For this purpose, the following reconfiguration steps
are considered:

1. Memories loading: The first step of the configuration process is the trans-
fer of the configuration parameters in the configuration memory of one or
several ASIPs.

2. ASIP initialization: When the configuration parameters are available in
the memory, the ASIP can start the initialization process. During this
step, the ASIP reads the configuration stored in the configuration memory
and initializes the internal registers. Then, the ASIP is ready to execute
the computation on the input data frame.

Table 2.7 compares the configuration and program load (in bits) for the pro-
posed RDecASIP, the initial DecASIP and the FlexiTreP presented in [44]. For
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Configuration Program 1 n
memory memory ASIP ASIPs

RDecASIP 286 - 286 n.52+260+104
DecASIP 336 640 976 n.976

Gain 14% 100% 70% 90% (n = 8)

FlexiTreP [44]
383 +

∼1080
1463 + n.1463

Interleaver Interleaver + n.Interleaver
table table table

Gain 25% 100% 80% 93% (n = 8)

Table 2.7: Configuration and program bit load comparison in bits

one ASIP, we observe that RDecASIP can be configured with 286 bits instead
of 976 bits thanks to the generic program described in Section 2.2.3 while 1463
bits and the complete interleaver table are required for the FlexiTreP. Moreover,
the new memory organization proposed in Section 2.2.2 allows the optimization
of the configuration memory loading. Indeed, parameters can be sent to several
ASIPs through multicast and broadcast mechanisms. Thus, in a multi-ASIP con-
text, each DecASIP has to be configured with its own configuration and program
memory while configuration memory of the RDecASIP can be loaded using a
multicast and broadcast mechanisms as follows: 52 bits are independently loaded
in each ASIP. ASIPs that compose the same decoder component are loaded with
130 common bits. Finally, 104 configuration bits are broadcasted to all ASIPs.
Thanks to this new configuration memory organization, the impact of the number
of ASIPs on the configuration load is significantly reduced: n.52 bits instead of
n.976 bits, where n is the number of activated ASIPs. For example, if 8 ASIPs
are activated in a multi-ASIP platform, the configuration load to configure the
8 ASIPs is 7808 bits with the original DecASIP, 11704 bits for the FlexiTreP
plus the interleaver tables and 780 bits with the proposed ASIP. In this case the
configuration load is divided by 10 and 15 compared to the DecASIP and the
FlexiTreP respectively.

The new configuration organization has also an impact on the initialization
time of the ASIP. Indeed, for each new configuration, the ASIP reads the parame-
ters from the configuration memory and initializes the internal registers. The new
memory organization reduces the number of read accesses to the memory. Only
11 read accesses are necessary instead of 15 in the DecASIP, i.e. the initialization
time is reduced by 4 cycles. Thus, the RDecASIP can be reconfigured in 14 clock
cycles if we assume that one extra clock cycle is necessary to drive the Reset pin
of the ASIP, i.e 11 + 2 clock cycles for the initialization step + 1 clock cycle.

The configuration memory can store several configurations. In the RDecASIP,
4 bits are available to define the MSB of the configuration address in the memory.
Thus, a maximal of 16 configurations can be addressed with this implementation.
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When the configuration corresponding to the next frame is stored in the configu-
ration memory, the reconfiguration process consists in: 1) driving the input pins
of the RDecASIP to indicate the location of the next configuration and 2) reset-
ing the ASIP to launch the initialization step. In this case the RDecASIP can be
reconfigured in 15 clock cycles if we assume that one extra cycle is necessary to
drive the input pins of the RDecASIP which define the configuration location in
the memory.

Furthermore, when the initialization step is performed, the ASIP does not
read the configuration memory until the next initialization. Hence, during the
computation on a data frame, configuration parameters can be loaded in the
configuration memory. The memory loading process can be partially or totally
masked depending on when the reconfiguration order is triggered. If the loading
process is masked, the complete reconfiguration of a multi-ASIP platform repre-
sents an overhead of 15 clock cycles. This low (re)configuration time overhead
allows the implementation of such an optimized ASIP in multi-ASIP architecture
for future high throughput and low latency requirements.

It is important to note that the decoding performances of the RDecASIP and
DecASIP are purely identical. Indeed, the pipeline architecture is still the same
and both implementations are able to reach the maximum frequency of 500MHz.
However, in DBTC mode, the RDecASIP requires 12 extra clock cycles after
the initialization phase to start decoding. Since the initialization phase for the
new version is 4 clock cycles shorter than for the original version, 8 extra clock
cycles before the beginning of the decoding in DBTC mode are needed while it
is able to start the processing 4 clock cycles before the DecASIP in SBTC mode.
Nevertheless, these impacts can be neglected when compared to the decoding
time of a data frame (thousands of clock cycles) that is identical for both version
of the ASIPs.

2.4 Summary

This chapter started by providing an analysis of the configuration and program
memory of the DecASIP. Based on this analysis, optimizations have been pro-
posed and implemented in order to offer an efficient configuration of the De-
cASIP. The new version of the ASIP, called RDecASIP, provides a new configu-
ration memory organization allowing efficient configuration parameters transfers
in a multi-ASIP context by using both multicast and broadcast mechanisms, a
generic program reducing the configuration load of the ASIP by 70 % and a
multi-configuration storage management. ASIC logic synthesis results show that
these optimizations introduce a low area overhead of 0.009 mm2 while the decod-
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ing performance and maximum clock frequency of the RDecASIP have remained
identical to the initial implementation. Finally, the new configuration memory
allows the reduction of the initialization step latency of the ASIP leading to a
reconfiguration latency of the UDec platform in 15 clock cycles when the config-
uration parameters loading process is masked.



60



3
Reconfigurable multi-ASIP UDec

architecture

T
his chapter addresses the dynamic configuration requirement at the multi-
processor level for the considered turbo decoding application. Besides the

optimization techniques proposed in the previous chapter regarding the ASIP
architecture and the configuration parameters storage and transfer, further tech-
niques can be explored and proposed in multi-ASIP integration context. Depend-
ing on the application requirement, the number and the location of the activated
ASIPs can be dynamically tuned. Such a feature can have significant impacts
on the communication networks connecting the ASIPs and on the multi-ASIP
platform controller. In this context, several techniques are proposed and pre-
sented in the first part of this chapter considering a multi-ASIP platform for
flexible turbo decoding. This is followed by the definition and implementation
of a dedicated configuration infrastructure providing an efficient and low com-
plexity solution for configuration data transfer to each configuration memory of
the implemented RDecASIPs. Finally, implementation results and configuration
timing performance are discussed.

61
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3.1 Flexible UDec architecture

This section presents several techniques that we propose in order to increase the
dynamic configuration ability in the context of multi-ASIP platform for flexible
turbo decoding. These techniques concern the communication networks connect-
ing the ASIPs and the multi-ASIP platform controller.

Platform controller

To ASIPs To NoC

Control flow Data flow

N
o

C
in

te
rfa

c
e

RDecASIP

0

Extrinsic 

Memory

Input 

Memory

Extrinsic 

Memory

Input 

Memory

Program 

Memory

Config

Memory
Cross metric Memory

Butterfly 

N
o

C
in

te
rfa

c
e

RDecASIP

1

Program 

Memory

Config

Memory
Cross metric Memory

N
o

C
in

te
rfa

c
e

RDecASIP

2

Extrinsic 

Memory

Input 

Memory

Program 

Memory

Config

Memory
Cross metric Memory

N
o

C
in

te
rfa

c
e

RDecASIP

3

Extrinsic 

Memory

Input 

Memory

Memory
Cross metric Memory

Program 

Memory

Config

Memory
Cross metric Memory

Input interface

Noisy symbols

Data flow

N
o

C
in

te
rf

a
c
e

RDecASIP

4

Program 

Memory

Config

MemoryCross metric Memory

Extrinsic 

Memory

Input 

Memory

Extrinsic 

Memory

Input 

Memory

Butterfly NoC

N
o

C
in

te
rf

a
c
e

Program 

Memory

Config

Memory
Cross metric Memory

RDecASIP

5

N
o

C
in

te
rf

a
c
e

RDecASIP

6

Program 

Memory

Config

MemoryCross metric Memory

Extrinsic 

Memory

Input 

Memory

N
o

C
in

te
rf

a
c
e

MemoryCross metric Memory

Program 

Memory

Config

Memory
Cross metric Memory

RDecASIP

7

Extrinsic 

Memory

Input 

Memory

Figure 3.1: UDec architecture implementing 8 RDecASIPs associated to a platform
controller and an input interface

In this section, we consider a UDec architecture implementing eight RDe-
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cASIPs associated with a platform controller and an input interface as shown in
Figure 3.1. This specific number of RDecASIPs has been chosen in order to be
able to illustrate all dynamic configuration issues that the UDec architecture has
to face while keeping reasonable complexity for the clarity of the presentation.
In fact, the contributions presented in this chapter remain valid for lower and
higher number of RDecASIPs. In the following section, the possibility to adapt
at run time the number and the location of the active RDecASIPs used for a
given configuration is addressed. This is followed by the description of the new
platform controller allowing the management of the dynamically reconfigurable
UDec architecture.

3.1.1 ASIP number and location

In a multi-mode and multi-standard context, the requirements in terms of through-
put and BER evolve dynamically. Thus, depending of these requirements, the
number of activated ASIPs have to be adapted at run-time. Moreover, in order
to deal with hot spot and potentially faulty cores management for the UDec ar-
chitecture, the location of the activated ASIPs has to be dynamically defined.
Obviously, this new flexibility impacts the different components of the architec-
ture. In the initial UDec architecture, the number of ASIPs used for a given
configuration was fixed at design time and was equal to the total number of im-
plemented cores. Therefore, the two ring buses and the Butterfly topology NoC
did not support a dynamic evolution of the number and location of the ASIPs
selected for a given configuration.

3.1.1.1 Ring buses adaptation

The ring buses consist of direct connections between the ASIPs allowing to ex-
change boundary state metrics as shown in Figure 3.1. So, when the number and
the location of the selected ASIPs dynamically evolve, the loop connections be-
tween the last and the first selected ASIPs have to be adapted. Figure 3.2 shows
different examples of the ring buses adaptation for one component decoder. Fig-
ure 3.2(a) shows the case where only one ASIP is used in the component decoder
while Figure 3.2(b) shows the case where two ASIPs are selected to perform the
decoding task. Moreover, the location of the first ASIP has been shifted from
RDecASIP 0 to RDecASIP 1. Finally, Figure 3.2(c) shows the case where three
ASIPs are selected and the location of the first ASIP has been shifted from RDe-
cASIP 0 to RDecASIP 2. In this case, the last ASIP of the component decoder
becomes the RDecASIP 0. However, in order to reduce the design and the man-
agement complexity of this new flexibility feature, the selected ASIPs have to
be physically consecutive in the component decoder as shown in the examples of
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Figure 3.2: Ring buses dynamic adaptation examples

Figure 3.2 except for the first and last selected ASIPs.
The configuration of the ring buses is done using two parameters. The number

of selected ASIPs (NumASIPs) in each component decoder reflecting the level of
sub-block parallelism and the shift value (ASIPShift) determining which ASIP
is the first selected ASIP. Considering the configuration examples presented in
Figure 3.2(a), NumASIPs = 1 and ASIPShift = 0 while NumASIPs = 2
and ASIPShift = 1 for the example of Figure 3.2(b). Based on these two
parameters, a selection vector is computed. Each bit of this vector corresponds
to one RDecASIP of the component decoder. The same selection vector is used for
the two component decoders of the platform creating a symmetry. The selection
vector drives multiplexers that determine the ring buses configuration.

3.1.1.2 Butterfly topology NoCs adaptation

The extrinsic information transfers through the NoC are also impacted when the
location of the selected ASIPs changes dynamically. Indeed, the routing informa-
tion for the transfer is computed by the network interface associated with each
ASIP depending of a global address of the symbol generated by the ASIP. Figure
3.3 illustrates the routing principle for the considered Butterfly topology NoC.
The Butterfly NoC is a multistage interconnection network with indirect topol-
ogy: nodes at the ends and routers in the middle. This topology allows a unique
path in the network between each pair of nodes (source to destination). For each
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Figure 3.3: Butterfly topology routing principle

router, there are two inputs and two outputs. A single bit is used in a router to
select the appropriate output: 0 for the first output, 1 for the second. Considering
the UDec architecture implementing 8 RDecASIPs, the network has three stages
of routers. The routing information is composed of three bits. Each bit indicates
the output of the router of the different stages during the transportation. The
information routing, due to this topology also directly indicates the number of
the output of the network. In the example of Figure 3.3, the output number 4 is
targeted. Thus the routing information is 1 for the first router, 0 for the second
one and 0 for the last one corresponding to the binary value of 4.

In the initial UDec architecture, the level of sub-block parallelism is fixed at
design-time since all the implemented ASIPs are used whatever is the configu-
ration to be performed. Thus, the routing information calculation method was
also fixed at design-time and was not reconfigurable. In the proposed architec-
ture, the routing information has to be adapted depending of the location of the
ASIPs determined by the ASIPShift value and the level of sub-block parallelism
determined by the number of selected RDecASIPs for the configuration in each
component decoder (NumASIPs). Indeed, depending of the interleaving rule of
the standard, the level of sub-block parallelism and the frame size, the extrinsic
information has to be sent to a specific ASIP of the other component decoder.
Moreover, the ASIPShift value influences the location of the selected ASIPs, and
consequently, it influences the location of the destination ASIPs. Therefore, this
value has also to be taken into account.
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DBTC mode SBTC mode

Routing info. Local @ Routing info. Local @

0 ≤ G@ < FS
2

00 & 0 and 1 G@ 00 & 0 or 1 G@
2

FS
2
≤ G@ < FS 01 & 0 and 1 G@ - FS

2
01 & 0 or 1 (G@−FS/2)

2

Table 3.1: Routing information for a 2 selected ASIPs configuration

DBTC mode SBTC mode

Routing info. Local @ Routing info. Local @

0 ≤ G@ < FS
4

00 & 0 and 1 G@ 00 & 0 or 1 G@
2

FS
4
≤ G@ < FS

2
01 & 0 and 1 G@ - FS

4
01 & 0 or 1 G@−FS/4

2

FS
2
≤ G@ < 3.FS

4
10 & 0 and 1 G@ - FS

2
10 & 0 or 1 G@−FS/2

2

3.FS
4
≤ G@ < FS 11 & 0 and 1 G@ - 3.FS

4
11 & 0 or 1 G@−3.(FS/4)

2

Table 3.2: Routing information for a 4 selected ASIPs configuration

The routing information is generated from a global address (G@) generated by
the address generator implemented in the ASIP (Section 1.4.2). As an example,
Tables 3.1 and 3.2 show the routing information corresponding to the configura-
tions for 2 and 4 selected ASIPs respectively for both SBTC and DBTC modes.
In these examples the ASIPShift value is equal to 0.

When two RDecASIPs are selected in each component decoder, the frame
which has to be decoded is split and each RDecASIP is associated with half of
the frame. Thus two cases are met as shown in Table 3.1. When the global ad-
dress generated by the ASIP is lower than the frame size (FS) divided by two, the
extrinsic information has to be sent to the first ASIP of the second component
decoder while it has to be sent to the second ASIP when G@ is between FS/2
and FS. Considering the UDec architecture implementing eight RDecASIPs, i.e.
four in each component decoder, three bits are necessary to route the informa-
tion through three routers. As shown in Figure 3.3, the first destination ASIP is
reached with a routing information equals to 0 or 1 (000 or 001 in binary) and
the second destination ASIP is reached with a routing information equals to 2 or
3 (010 or 011 in binary). The last bit of the routing information depends on the
Turbo code mode. In DBTC mode a message is split (Section 1.4.3), so one half
is sent with the last stage route to 0 and the other half with the last stage route
to 1. That is why the routing information is presented in the form ”00 & 0 and
1” in Table 3.1.
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In SBTC mode, the route of the last stage is determined by the LSB of the
global address. That is why the routing information is presented in the form ”00
& 0 or 1” in Table 3.1. If the global address is odd, the route of the last stage
is 1 while it is 0 when the global address is even. Table 3.2 shows the routing
information for 4 selected RDecASIPs. In this case, the frame is divided in four
parts and each RDecASIP is associated with a quarter of the frame. Depending
on the global address value, the routing information is sent to the first (000 or
001), the second (010 or 011), the third (100 or 101) or the last ASIP (110 or 111).

The extrinsic information has to be stored in the extrinsic memory associated
with each RDecASIP. Thus a local address (Local @) is computed depending of
the global address computed by the emitter RDecASIP and the level of sub-block
parallelism as shown in Tables 3.1 and 3.2. In DBTC mode, one complete extrin-
sic information for one symbol is stored at each memory address. Thus depend-
ing on the level of sub-block parallelism, the extrinsic information is spread over
the extrinsic memories of each RDecASIP from the local address 0 to FS

NumASIPs

where NumASIPs is the number of the selected RDecASIPs in each component
decoder. In SBTC mode, extrinsic information for two symbols is stored at each
memory address. Thus depending of the level of sub-block parallelism, the ex-
trinsic information is spread over the extrinsic memories of each RDecASIP from
the local address 0 to FS/NumASIPs

2
. The FS

NumASIPs
and FS/NumASIPs

2
can be com-

puted using right shifting and addition operators when NumASIPs is a power
of two. Else, a divider has to be implemented.

In the example of configurations presented in Tables 3.1 and 3.2, the ASIPShift
value is equal to 0. However when this value changes, the routing information has
to be modified also. In order to reduce the complexity of the design, the same
ASIPShift value is considered in both component decoders. Thus, considering
the UDec architecture implementing eight RDecASIPs,when the RDecASIP 0 is
selected the RDecASIP 4 is selected too, and similarly for the pairs (RDecASIP 1
and RDecASIP 5), (RDecASIP 2 and RDecASIP 6), and (RDecASIP 3 and RDe-
cASIP 7). When the ASIPShift value differs from 0, the routing information can
be computed as shown in Figure 3.4. To obtain the final routing information
taking into account the ASIPShift value, the initial routing information is first
added with 2×ASIPShift (since each router has two output ports) and then, a
modulo operator is used in order to ensure a loop-like configuration where RDe-
cASIP 0 and RDecASIP 4 can logically follow the RDecASIP 3 and RDecASIP 7
respectively.

The optimizations presented in this section provide the support for ASIP
number and location run-time adaptation at the ring-buses and network-on-chip
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Number of RDecASIPs

implemented in each 

component decoder

Figure 3.4: Complete routing information generator

levels. The next section focuses on the control of the platform through optimiza-
tions implemented in the platform controller.

3.1.2 Platform controller

Due to the new flexibility introduced in the previous section and the need for a
flexible management of the platform, optimizations have to be implemented on
the UDec platform controller. The initial UDec platform controller was dedicated
to an architecture implementing eight ASIPs which are all activated whatever the
configuration.

In the initial version of the UDec architecture, the components of the plat-
form are reseted after each decoding process. In order to provide the possibility
to decode consecutive frames associated with the same configuration without any
initialization step before each data frame, we assume that a Configuration Man-
ager provides configuration order to the UDec platform controller. Figure 3.5
shows the Finite State Machine (FSM) associated with the platform controller.

Following a reset of the platform or the end of the decoding process, the first
step consists in waiting for the Configuration Manager order. When the config-
uration is already loaded into the platform, the controller checks that the input
symbols that have to be decoded are ready and the decoding process is launched
depending of the chosen decoding mode given by the configuration parameters.
When a new configuration has to be performed, a platform initialization step is
performed to read and to spread the configuration parameters to the different
platform components such as the network interfaces of the Butterfly topology
NoCs or the ring buses configuration interface. Once the platform is initialized,
the corresponding decoding process is performed i.e. Serial or Shuffled decoding
depending of the configuration parameters.
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Figure 3.5: Flexible UDec platform controller FSM

The communication with the configuration manager is performed thro-
ugh dedicated inputs and outputs control signals. Two 1-bit input signals are used
to inform the controller about the configuration status. The New configuration
signal indicates that a new configuration has to be executed when its value is
1. The Configuration ready signal indicates that the configuration is ready to be
executed when its value is 1. When both New configuration and Configuration
ready signals values are 0, the controller waits for a new order. When Configura-
tion ready value is 1 and New configuration value is 0, the current configuration
is re-executed while a new configuration is executed when both New configura-
tion and Configuration ready signals values are 1. Finally, when Configuration
ready value is 0 and New configuration value is 1, the controller considers that
the configuration is not loaded yet and waits for the Configuration ready signal
to be 1.

Platform initialization is performed through a specific configuration mem-
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ory presented in Table 3.3. This configuration contains some parameters identical
to the RDecASIP processor such as the seeds and steps which are used by the
input interface to spread the input symbols over the input memories of each
activated ASIP depending of the interleaving law of the selected standard. Com-
pared to the RDecASIP configuration memory presented in Section 2.2.2, four
parameters have been introduced.

Two of these parameters (NumASIPs ASIPShift) are used to manage the num-
ber and the location of the activated ASIPs and were presented in the previous
section. The ConfigSize and Config@ parameters are related to the RDecASIP
initialization step. Indeed, as presented in Section 2.2.4, the configuration mem-
ory of each ASIP is able to store several configurations. Thus, in order to address
a particular configuration the Config@ parameter is used to determine the four
MSB bits of the memory address where the configuration is stored. The Config-
Size parameter determines the size of the configuration that has to be read by the
ASIP. This parameter has been introduced for future evolution of the RDecASIP
processor providing flexible configuration size.

The RDecASIP processors are launched by enabling the clock signal
associated to the ASIP. In the original version of the UDec platform, a particular
control signal associated to each ASIP (CLK validation ASIP n) was driven by
the platform controller as shown in Figure 3.6(a). In order to support the ASIP
number and location flexibility, the platform controller generates two clock vali-
dation signals corresponding to each component decoder. The local ASIP clock
validation signal is then computed depending of the number of activated signals
and the ShiftASIP parameter value determining the location of the activated
ASIPs as shown in Figure 3.6(b). For this purpose the Selection vector presented
in Section 3.1.1 determining if the ASIP is selected for the configuration and an
additional AND logic gate are used.

The last two sections have introduced the new flexibility implemented in the
UDec architecture to propose a better dynamic conguration management . How-
ever, the current UDec architecture is not associated to a configuration infrastruc-
ture allowing the configuration information transfer to the different configuration
memories of the platform. The next section presents a novel configuration infras-
tructure optimized for high speed configuration information transfer.
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(a) Initial ASIP clock validation
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CLK_validation_per_Domain
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(b) New ASIP clock validation

Figure 3.6: Initial and new ASIP clock validation

3.2 UDec configuration infrastructure

The behavior of the UDec turbo decoder is dependent on the parameters loaded
in the configuration memory of each ASIP. The configuration memory presented
in Section 2.2.2 has been introduced in order to improve the reconfiguration pro-
cess. The configuration parameters stored in the configuration memory (Table
2.5) are divided in three categories as follows: (1) parameters can be different
for each ASIP, from address @0 to @1; (2) parameters are domain dependent,
from address @2 to @6; (3) parameters are the same for all ASIPs, from address
@7 to @10. This organization allows an efficient and fast reconfiguration at the
platform level. Indeed, multicast and broadcast mechanisms can be used to load
the configuration in order to minimize the data transfer load. In this context, two
multicast transfers are necessary to send domain dependent parameters to cor-
responding ASIPs and one broadcast transfer for parameters that are the same
for all ASIPs. Finally, unicast transfers are used to load the ASIP dependent
parameters. Initially, the UDec architecture is not associated with any configu-
ration infrastructure providing the possibility to transfer new configurations at
run-time. The next section highlights the challenges which have to be addressed
in order to propose an efficient dynamic reconfiguration of the UDec architecture.
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3.2.1 Main challenges for an efficient configuration infras-
tructure

Dynamic reconfiguration of flexible multiprocessor platforms is one of the main
challenges for system designers. This issue is important, especially when deal-
ing with multiprocessor platforms where no global communication interconnect
can be shared between application and configuration data. In this case, it is
mandatory to implement a communication infrastructure dedicated to configu-
ration data. In the UDec architecture, the 88-bit ring buses and the Butterfly
NoC are optimized and dedicated to data exchange between RDecASIPs. These
interconnections can not be used to transfer the configuration data. To build an
efficient solution, the configuration infrastructure has to take into account the
following requirements:

1. Low complexity

2. Multicast, broadcast and selection mechanisms

3. Incremental burst transfer

3.2.1.1 Low complexity

The configuration infrastructure only manages configuration memories updates.
Therefore, this extra hardware must have a minimal impact on the global design
complexity in terms of area overhead. When designing a communication architec-
ture for a multiprocessor platform, two main technologies are available: Network
on Chip or On-Chip Bus. Last decade has seen the huge adoption of Network
on Chip in complex System on Chip to mainly enhance the throughput and the
scalability compared to a bus-based communication infrastructure. However, the
design of a communication interconnect dedicated to configuration data does not
require such a complex approach. Indeed, broadcasting can be defined as a unidi-
rectional communication between a reconfiguration manager that generates and
downloads configuration data to one or a group of processing elements that have
to be configured. Hence, there is no transfer concurrency issue, and a unique
component, called Master, is able to initiate a transfer. Moreover, we assume
that the configuration manager is, at any time, aware of the configuration state
of the platform. Thus, no read operations are necessary to check a status or
the presence of a particular configuration in a given processing element. These
features lead to a bus-based structure that provides a simple and low complexity
communication interconnect for this particular context.
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3.2.1.2 Multicast, broadcast and selection mechanisms

The UDec platform is configured through the RDecASIP configuration memories.
As shown in Section 2.2.2, the RDecASIP configuration memory is organized in
order to allow multicast and broadcast mechanisms for an efficient and fast con-
figuration of the multi-ASIP platform. Moreover, depending on the application
requirements, the number of activated RDecASIPs to perform a given configura-
tion can be tuned at run-time. Hence, a mechanism of processor selection has to
be introduced in order to send configuration data to activated RDecASIPs only.

3.2.1.3 Incremental data burst transfer

The last point to build an efficient configuration infrastructure for the UDec plat-
form is related to the transfer mode. Since some of the configuration data has
to be loaded in adjacent parts in the configuration memory, all related transfers
can be defined as a burst starting from a base address in the configuration mem-
ory. For example, based on the RDecASIP configuration memory organization of
Table 2.5, configuration data identical for all RDecASIPs can be incrementally
transfered starting from the base address @7.

Many On-Chip Buses have been developed these last years that propose dif-
ferent topologies and different communication protocols. Table 3.4 proposes a
comparison of the most representative On-Chip-Buses of the literature. Repre-
sentative On-chip Buses are the AMBA [57], the CoreConnect [58] or the Avalon
bus [59]. Unfortunately, these solutions do not support multicast. Work presented
in [60] supports multicast but this solution implements complex arbitration mech-
anisms and communication protocols that are not necessary in our context. The
Fast Simplex Link (FSL) [61] proposes a low complexity unidirectional bus for
data transfer. Unfortunately multicast is not supported. It is thus mandatory to
propose an optimized bus dedicated to configuration data that could be used for
the UDec platform in order to reach the configuration latency challenge.

3.2.2 Configuration infrastructure

To address the main requirements highlighted in the previous section, we pro-
pose a new bus-based communication infrastructure as well as the associated
communication protocol. Our goal is to optimize configuration data transfers
into RDecASIPs configuration memories for the UDec platform. In this section,
we detail the proposed architecture, dynamic selection of activated RDecASIPs,
and communication protocol.
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Challenge
AMBA CoreConnect Avalon SiliconBackplane FSL This

[57] [58] [59] [60] [61] work

Unidirectional √ √ √ √ √ √
(or 1 master)

Multicast X X X
√

X
√

Broadacast X X X
√

X
√

Incremental √ √ √ √
X

√
burst

Low
X X X X

√ √
complexity

Table 3.4: SoA Buses comparison
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Figure 3.7: Architecture of the proposed bus interconnect

3.2.2.1 Architecture overview

The proposed bus architecture is presented in Figure 3.7. This architecture can
be split in four functional blocks: Master Interface (MI), Slave Interface (SI),
Selector and interconnect. Each configuration memory is connected to the bus
through a SI. The configuration manager deals with the configuration generation
which is based on internal decisions and external information and commands (this
point is not addressed in this work).

The MI provides an interface allowing the connection of the configuration
manager to the bus. To initiate a transfer, the MI receives, from the configura-
tion manager, the address of a SI or a group of SIs (called Destination address)
and the memory base address where the transfer starts. During a transfer, the
MI also manages the increment of the memory address based on the base address.
An overview of the MI architecture is shown in Figure 3.8. It consists of a com-
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Transfer initialization

Data_enable

Reset

CLK

 Dest. @

Data

D Q

CE

RST

D Q

CE

RST

D Q

RST

D Q

RST

Base @

COUNT

upPort_data Port_q

CE

LOAD

Dest. @

Mem. @

Data

Transfer enable

26

8

8

Combinatorial

logic

8

26

8

                                                                                                   Master Interface  (MI)        

Figure 3.8: Master interface architecture overview

binatorial logic block for control signals generation, an 8-bit counter for memory
address generation implementing a LOAD function for counter initialization, and
several Flip-Flops for clock synchronization.

The SI provides an interface between the bus and the configuration memory.
Its role is, when a transfer is enabled, to check if the destination address cor-
responds to its own address or one of its associated multicast addresses. Then,
the SI retrieves the data (and the associated memory address) from the bus and
writes it into the configuration memory. An overview of the SI architecture is
shown in Figure 3.9. It mainly consists of a 8-bit comparator used to compare the
received destination address with the SI’s addresses, a combinatorial logic block
for control signals generation and a row of Flip-Flops for clock synchronization.

The Selector provides a simple and efficient solution to select, at run-time,
RDecASIPs that are targeted by the next configuration data. For this purpose,
each SI has a 1-bit input that is driven by the Selector. When this input is en-
abled, the associated SI is activated and reacts to the events on the bus while it
ignores all transfers in the other case. An overview of the Selector architecture is
shown in Figure 3.10. It mainly consists of a 8-bit comparator used to compare
the received destination address with the Selector’s address, a row of Flip-Flops
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for clock synchronization and an AND logic gate for control signal generation.

The interconnect part of the proposed architecture consists of three buses and
a transfer enable control signal. Two address buses are required. The first one
(Dest.@ in Figure 3.7) is used to select the destination (i.e. one SI or a group
of SIs) and the second (Mem.@) is used to indicate the target memory address.
The third bus is used to send the configuration data. Finally, a control signal
(T enable) is used to inform SIs that a transfer has been enabled.

3.2.2.2 Addressing

Due to the context of this work which deals with a platform that consists of
several implementations of specialized processing elements, and to minimize the
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design complexity, we choose to statically, at design-time, define the SIs addresses
and the different multicast addresses associated with each SI. Indeed, the interest
of a run-time address definition is reduced by the fact that the RDecASIPs are
statically grouped depending on the domain in which they perform the processing.
Each SI connected to the interconnect block owns an unique address. This address
allows configuration information transfers to a particular configuration memory
only. Moreover, each SI is associated to a multicast address. This address is
common for SIs associated with RDecASIPs in the same domain. Finally, all the
SIs are associated to a single broadcast address.

3.2.2.3 Transfer protocol

The transfer of configuration data can be divided in three steps: 1) initialization
and data transfer from the configuration manager to the MI, 2) data transfer
from the MI to one or several SIs and 3) configuration memory loading from the
SI.

From the configuration manager to the MI (upper part of Figure
3.11)

During the initialization step, the configuration manager sends the destination
address and the base memory address to the MI. The T init control signal (Fig-
ure 3.7) is driven to indicate to the MI that a transfer initialization is required.
On the MI side, when these two addresses are read, the first one is stored and
the second one is used to initialize the memory address increment process. These
addresses are used until a new transfer initialization step is performed. After the
initialization step, the configuration manager can send one data per cycle on the
Data bus. The D enable control signal is also driven at the same time to inform
the MI that a data is available. Obviously, the data transfer can be suspended if
no data is available. Figure 3.11 shows an example of transfer initialization and
data transfer between the configuration manager and the MI.

From the MI to the SI(s)(middle part of Figure 3.11)
Figure 3.11 presents two examples of data transfer on the bus. The first one

shows the transfer of a single data, and the second one shows a data burst. The
transfer on the bus consists of two phases: address phase and data phase. The
address phase lasts for a single clock cycle. During this cycle, the destination
and the base memory addresses are sent on the corresponding bus. The T enable
control signal is also driven to indicate that a transfer occurs. During the data
phase, the data is sent on the Data interconnect. When a data burst is performed,
a data is available at each clock cycle. The destination address is maintained on
the bus during the transfer procedure while, for each data, the memory address
is incremented by the MI.
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From the SI to the configuration memory (lower part of Figure 3.11)

When a transfer occurs, the SIs involved in the transfer store the memory
address (read during the address phase) and get the data on the next clock cycle.
To write into the configuration memory, the memory address is stored during one
clock cycle. When the data is available, the control signal write enable of the
memory is driven and the memory address and the data are sent on the intercon-
nect between the SI and the configuration memory.

These three steps allow the transfer of a data into the configuration memory
in 5 clock cycles while 11 clock cycles and 6 clock cycles are necessary through the
CoreConnect PLB4 [58] and the AMBA AXI4 [57] buses respectively. Moreover,
thanks to the pipeline nature of the transfers, the configuration infrastructure is
able to provide one data per clock cycle to the destination.

3.2.2.4 Selection

The proposed optimizations to the UDec platform allow to dynamically select
the number of RDecASIPs involved in the decoding process depending on the
requirements of an application (e.g. throughput, error rate, etc.). When a con-
figuration command occurs, a selection mechanism is launched to select the SIs
associated to the configuration memories connected to the RDecASIPs involved
in the next configuration. When an SI is not selected, it ignores all transfers on
the bus. The Selector is configured through the bus infrastructure by the con-
figuration manager which sends a configuration vector on the bus. Each bit of
this vector corresponds to the state of one SI. This solution allows a fast selection
of SIs compared to a mechanism in which each SI is selected through a unicast
transfer. To reduce the complexity of the Selector, one Selector is associated with
a number of SIs corresponding to the width of the data interconnect (that deter-
mines the width of the configuration vector). For the UDec platform 26 SIs can
be associated to one Selector. Depending on the number of SIs, several Selectors
can be distributed along the bus infrastructure.

Since the selection is performed through a transfer on the bus, the SIs targeted
by the selection process are ready to receive configuration data after 5 cycles
(Figure 3.11). However, taking into account the pipeline nature of the bus, a
data transfer can be initialized by the configuration manager with a delay of
one clock cycle after the selection data has been sent to the MI. This delay is
sufficient to guarantee that the targeted SIs are ready when the first configuration
data arrives.

This section has detailed the configuration infrastructure highlighting main
features and providing an analysis of the latency. Next sections focus on the
two-step validation process. First a SystemC/VHDL mixed model is described,
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then an FPGA prototype is detailed and logic synthesis results targeting an ASIC
implementation are given.

3.2.3 SystemC/VHDL mixed Validation

To validate our contribution we propose to analyze the configuration infrastruc-
ture through a mixed SystemC/VHDL simulation model based on the UDec
architecture implementing 4 RDecASIPs. For this purpose, a complete Cycle
Accurate and Bit Accurate (CABA) SystemC [62] model of the proposed bus
architecture was implemented. Such an approach has been selected in order to
provide more flexibility all along the prototyping process. This model was con-
nected to a VHDL model of the UDec platform to allow a mixed SystemC/VHDL
simulation. Finally, A non-timed SystemC model was developed to simulate the
configuration manager (which is in charge of the configuration generation based
on parameters set by the designer). The goal of this mixed model was to vali-
date and to provide early evaluation of the proposed configuration infrastructure
architecture through realistic configuration scenarios.

3.2.3.1 Platform model

Figure 3.12 presents the different components implemented in the platform model.
On the VHDL model side, A Random generator associated with an Emitter pro-
duce the encoded symbols. The channel model is an Additive White Gaussian
Noise (AWGN). The Input interface distributes the received symbols in the Input
memories of each RDecASIP. A verification module compares original symbols
with decoded symbols to evaluate the decoding performance. Finally, A con-
troller is used to manage the platform. In Figure 3.12, data and control flow are
highlighted with full black and broken lines respectively.

On the SystemC model side, 1 Selector and 5 SIs are implemented. Each SI is
connected to a configuration memory: 4 RDecASIP configuration memories (see
Section 2.2.2) and one configuration memory associated with the controller of
the platform. This last memory is used to configure the modules of the platform
(see Section 3.1.2). For clarity reasons, connections between the Selector and the
SIs are not represented in Figure 3.12. The SystemC model of the Configuration
Manager allows an interaction with the designer in order to simulate complete
dynamic reconfiguration scenarios. In Figure 3.12, Configuration data flow is
shown in doted lines.

3.2.3.2 Model evaluation

The proposed SystemC/VHDL mixed model allows a fast evaluation of the config-
uration performance with respect to the decoding time for realistic configuration
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Standard frame size Config. time Dec. time Config. time
(in bits) (in cycles) (in cycles) ratio ( in %)

DVB-RCS 440 43 4528 0.95
DVB-RCS 1728 43 25548 0.17

LTE 440 43 4751 0.91
LTE 1728 43 26455 0.16
LTE 3008 43 45215 0.095

Table 3.5: Configuration loading impact for 4 active ASIPs

scenarios generated at run time by the configuration manager. The configuration
latency of the UDec platform using the proposed approach is defined by Equation
(3.1).

ConfigurationLatency =
31 + (3.NASIP )

F
(3.1)

Where NASIP is the number of RDecASIPs and F is the frequency of the pro-
posed bus architecture. 31 clock cycles are necessary to transfer the parameters
common to all ASIPs and the parameters common to ASIPs of the same decoder
component. 3 additional clock cycles are necessary to transfer parameters that
are different for each ASIP.

Table 3.5 shows, for DVB-RCS and LTE standards and for different data
frame sizes, the ratio of the configuration loading regarding the decoding time
for 4 active ASIPs and 6 decoding iterations. The last column represents the
configuration time when compared to the total time required to configure and
decode a frame. The configuration time is constant since the number of ASIPs is
fixed. However, when the data frame size increases, the decoding time increases
too. Consequently, the configuration time impact becomes negligible with high
frame size (0.095% for a 3008-bit frame in 3GPP-LTE mode). And even with
smaller frame size, the impact of configuration loading is still low (less than 1%
for a 440-bit frame size).

The SystemC/VHDL mixed model has enabled an early and fast validation
of the main features described in Section 3.2.2. Starting from this model, next
section presents the first hardware implementation on FPGA and an evaluation
for an ASIC target technology.

3.2.4 FPGA prototype

To validate the proposed configuration architecture and the communication pro-
tocol presented in Section 3.2.2, a hardware prototype has been developed on a
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Figure 3.13: Architecture of the prototype

Xilinx XUPV5 platform implementing a Virtex 5 LX110T FPGA for CoreCon-
nect PLB4 comparison and on a Digilent Atlys board implementing a Spartan-6
XC6SLX45 FPGA for AMBA AXI4 comparison.

The prototype architecture is shown in Figure 3.13. It consists of a Xilinx
Microblaze soft core that generates the configuration at run-time. The config-
uration is then sent through an FSL bus to an FSL to MI interface. The FSL
[61] connection has been considered as this interconnect structure proposes a
fast, simple and unidirectional connection for the Microblaze which ease its in-
tegration within the configuration infrastructure (other interconnection solution
to the Microblaze would lead to a higher complexity and lower performance).
An asynchronous FIFO is associated to the FSL connection in order to provide
frequency domain flexibility on both Microblaze and configuration infrastructure
sides. The FSL to MI interface realizes the protocol adaptation between the FSL
communication protocol and our bus protocol. Finally, the outputs of each SI are
connected to a Xilinx ChipScope module that allows the run-time monitoring of
the related signals. This module replaces the configuration memories associated
with the SIs.

The FSL bus provides a solution to transfer, each cycle, a 32-bit width data.
Hence, we define an adaptation protocol in order to, starting from a 32-bit frame,
extract control and data information. Figure 3.14 shows the two FSL frame
models used to adapt the communication protocol. Depending on the control flag,
the FSL to MI interface provides a transfer initialization or a data transfer service
on the bus. Figure 3.14(a) shows the FSL frame model sent by the Microblaze
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Figure 3.14: FSL to MI protocol adaptation

to initialize a transfer on the bus. In this case the control flag is set to 1, the
flag indicates that this frame corresponds to a transfer initialization. The 8-bit
component destination and the 8-bit base memory address are extracted. One
cycle later, the interface drives MI’s inputs as described in Section 3.2.2.3. Figure
3.14(b) shows the FSL frame model sent by the Microblaze to transfer data after
a transfer initialization. In this case the control flag is set to 2, the flag indicates
that this frame corresponds to a data transfer. The 26-bit data is extracted from
the frame and the interface drives MI’s inputs as described in Section 3.2.2.3.

Using the proposed hardware implementation, configuration transfer time
were evaluated for several numbers of RDecASIPs. For this purpose, the Mi-
croblaze and the proposed bus frequency is set to 125 MHz. The ChipScope
module is configured to monitor the output signals of the SIs. Table 3.6 shows
the configuration transfer times of the bus compared to designs we have imple-
mented using CoreConnect PLB4 [58] and AMBA AXI4 [57] buses connected to
a Microblaze with the same clock frequency (set up to 125MHz). Thanks to the
multicast mechanisms, a low overhead of 144 ns is necessary to configure each
additional couple of RDecASIPs (one ASIP in both natural and interleaved do-
mains) while 1936 ns and 1056 ns are necessary for [58] and [57] respectively.
Results of Table 3.6 illustrate that the proposed implementation significantly re-
duces the configuration time overhead when the number of active RDecASIPs
increases compared to classical bus approaches.

Compared to Equation (3.1), the performance of the proposed configuration
infrastructure FPGA prototype is defined by Equation (3.2).

ConfigurationLatencyFPGA =
93 + (9.NASIP )

FMicroblaze

(3.2)

Where NASIP is the number of RDecASIPs and FMicroblaze is the frequency of
the Microblaze and the proposed bus. 93 clock cycles are necessary to transfer
the parameters common to all ASIPs and the parameters common to ASIPs of
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Nb. Transfer latency (in ns) Speedup
ASIPs This work CoreConnect [58] AMBA [57] vs. [58] vs. [57]

4 1 032 3 872 2 212 3.75 2.14
6 1 176 5 808 3 168 4.94 2.69
8 1 320 7 744 4 224 5.87 3.2
16 1 896 15 488 8 448 8.17 4.45
32 3 048 30 976 16 896 10.16 5.54
64 5 352 61 952 33 792 11.57 6.31
128 9 960 123 904 67 584 12.44 6.78

Table 3.6: Configuration transfer time in ns

CoreConnect AMBA This work This work
Infrastructure [58] Virtex 5 [57] Spartan 6 Virtex 5 Spartan 6
Component FF LUT FF LUT FF LUT FF LUT

Master
143 286 18 6 85 14 81 13

Interface
Slave

123 67 207 355 52 6 49 4
Interface
Selector - - - - 35 2 34 2

Total 266 353 225 361 172 22 164 19

Table 3.7: FPGA synthesis results comparison

the same decoder component. 9 additional clock cycles are necessary to transfer
parameters that are different for each ASIP. Compared to Equation (3.1), the per-
formance penalty is due to two factors. Indeed, the FSL bus used to connect the
Microblaze processor to the configuration infrastructure and the protocol adap-
tation between the FSL bus and the MI lead to additional cycles which impact
the transfer latency. Moreover, the Microblaze does not send one data per cycle
on the FSL bus since several cycles are necessary to build the frames presented
in Figure 3.14 before each transfer. However, as shown in Table 3.6, using this
solution combined with our low latency configuration infrastructure allows us to
perform the configuration of up to 128 ASIPs in less than 10 µs (9.960 µs) which
opens very interesting perspectives for future reconfigurable decoders.

In order to compare the complexity of the proposed solution, the FPGA syn-
thesis results are presented in Table 3.7. This table shows that the area in terms
of flip flops (FF) and LUTs of the AMBA AXI4 master interface is the lowest
when compared to the CoreConnect PLB4 and the proposed bus master inter-
faces. Indeed, the AXI-lite version of the AXI bus has been implemented in
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this prototype. However, the slave interface of the propose bus owns the lowest
complexity leading to the lowest total complexity.

Infrastructure Component Area (in µm2)

MI 1 790
SI 1 150

Selector 784
Infrastructure for 4 RdecASIPs 15 199

4 RDecASIP 739 968

Table 3.8: Area of the proposed configuration architecture

Nb. Transfer latency (in ns) Speedup
ASIPs FPGA ASIC (estimated)

4 1 032 86 12
6 1 176 98 12
8 1 320 110 12
16 1 896 158 12
32 3 048 254 12
64 5 352 446 12
128 9 960 830 12

Table 3.9: Estimated Configuration transfer time in ns for an ASIC implementation

A logic synthesis of the proposed bus components was also done with a 65nm
CMOS technology with a clock frequency objective equals to 500MHz. Table 3.8
shows the area evaluation for the three components of the proposed configuration
infrastructure. The logic overhead due to the configuration infrastructure is 0.015
mm2 which leads to a low area penalty of 2% regarding the logic area of the 4
RDecASIPs (0.704 mm2). The complexity of the Selector is the lowest one since
only a comparison with the input component address is necessary to know if the
input vector has to be copied into the output or not. The complexity of the SI and
MI components is quite similar. The difference is mainly due to the presence of a
counter in the MI for incremental burst while 8-bit comparators are implemented
in the SI for address comparison. Furthermore, considering an ASIC implemen-
tation with the frequency objective of 500 MHz, a significant speedup on the
configuration transfer latencies shown in Table 3.6 can be expected compared
to the 125 MHz FPGA prototype. Table 3.9 shows the estimated configuration
transfer time for an ASIC implementation. Results are estimated using Equation
(3.1) with a bus frequency fixed to 500 MHz and show that a speedup of 12 can
be reached compared to the FPGA implementation.
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Compared to the recent related work proposed in [46], where the configuration
infrastructure consists of several buses, each connected to a group of 4 PEs. Up
to 8 buses have been implemented to configure 35 PEs. However, the way the
buses are driven is not described in details in [46] but the management of the
8 buses in parallel should increase the complexity of the configuration manager
used to load new configurations. Results presented in this section show that
the proposed configuration infrastructure offers an efficient solution for the UDec
implementing up to 128 ASIPs. It guarantees configuration latency below 10µs
in a FPGA implementation providing a very low configuration latency overhead
and meeting the configuration latency challenge as explained in Section 1.2.2.
Such a solution meets future standard requirements where a code switch can be
done as early as one data frame ahead [2].

3.3 Summary

This chapter has provided an analysis of the lack of flexibility of the UDec ar-
chitecture and proposes original solutions in order to reach an efficient dynamic
configuration management. Flexibility has been brought at the Butterfly topol-
ogy NoCs level, at the ring buses level and at the platform controller level in order
to adapt at run-time the number and the location of the activated processing el-
ements. In the second part of this chapter, the definition and implementation of
a dedicated configuration infrastructure providing an efficient and low complex
solution for configuration data transfer to each configuration memory of the im-
plemented RDecASIPs and to the platform controller configuration memory have
been presented. Implementation results show that configuration transfer latency
below 10µs is reached with an FPGA implementation considering up to 128 im-
plemented RDecASIPs. Moreover, for an ASIC implementation considering up to
128 RDecASIPs, configuration transfer latency below 1µs can be reached. This
very low configuration transfer latency is a key feature in order to support dy-
namic configuration in the multi-mode and multi-standard scenario presented in
the first chapter (Section 1.2.2).



4
Configuration management for the UDec

architecture

T
his last chapter addresses the configuration management of the UDec archi-
tecture. Indeed previous chapters provide a solid base for an efficient dy-

namic configuration of the platform through the RDecASIP processor proposed
in chapter 2 and the dedicated configuration infrastructure described in chapter
3. In order to provide a complete solution it is now required to propose some
techniques in order to meet at run-time application constraints through dynamic
reconfiguration of the whole platform. Indeed to respect decoding performances
in terms of throughput and FER in a multi-mode and multi-standard scenario,
it is mandatory to dynamically tune the level of sub-block parallelism (which
directly impacts the number of active ASIPs). The main point when performing
the reconfiguration of the platform is to define the new configuration parameters
which depend of the execution context. Thus, this chapter proposes two configu-
ration approaches in order to manage at run-time the execution of the platform.
The first one proposes to store the configuration information for all possible con-
figurations in a global memory. Such a solution requires an off-line analysis of
potential configurations that will be supported by the platform. The second one
is more dynamic and proposes to generate at run-time each new configuration.
Such an approach provides more flexibility at the cost of additional computation
as will be detailed. To address these points, this chapter starts with the analy-
sis of the decoding performances in terms of FER taking into account the level
of sub-block parallelism and shuffled mode in order to determine at-run time,
the number of necessary decoding iterations. The second part of this chapter
presents and analyses the two configuration managements. Finally, a discussion
and a comparison with the most relevant SoA work is provided.

89
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4.1 Parallelism impact on decoding performance

This section introduces the studies on sub-block parallelism and shuffled decoding
parallelism impact on turbo decoding performance in terms of FER or BER.
Indeed, this point is important since the level of sub-block parallelism determines
the number of RDecASIPs that have to be activated and reconfigured.

4.1.1 Sub-block parallelism

In the context of this work considering the UDec architecture, sub-block par-
allelism method is associated with initialization by message passing which en-
ables better error rate performance compared to initialization by acquisition as
demonstrated in [15]. As explained in Section 1.1.4.2, this method initializes dy-
namically a sub-block with recursion metrics computed during the last iteration
in the neighboring sub-blocks. The authors of [15] have studied the impact of

Figure 4.1: Convergence of message passing method example of DVB-RCS, code
rate=6/7, 188 bytes frame, SNR=4.2dB, 5 bit quantification, Log-MAP
algorithm
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Figure 4.2: Number of iterations with message passing method, DVB-RCS, code
rate=6/7, 188 bytes frame, SNR=4.2dB, 5 bit quantification, Log-MAP
algorithm

sub-blocking on the turbo decoding performance in terms of FER considering
message passing. Figure 4.1 presents the FER performance for different paral-
lelism (from 1 to 100) degrees in function of iterations number. This figure shows
that asymptotic error rate is not affected by message passing approach whatever
the parallelism degree. Thus it ensures that initialization by message passing
can be used without performance degradation in terms of decoding quality by in-
creasing the number of decoding iterations in parallel with the level of sub-block
parallelism. Also, it can be noticed that the convergence of the decoding process
is slowed down when the parallelism degree increases reducing the architecture
efficiency.

Figure 4.1 reveals that with sub-block parallelism, additional iterations are
mandatory to reach a given FER. This is a key point in the context of this work
targeting the dynamic configuration of the multi-ASIP UDec architecture. The
number of decoding iterations with message passing for a given level of sub-block
parallelism can be estimated at fixed FER value as shown in Figure 4.2 for a
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Code rate
6/7 3/4 1/2 1/3

Frame size (in bits)

424 3 3 4 5
848 4 5 8 9
1504 8 11 16 20

Key sub-block size 180 135 100 85

Table 4.1: Threshold values for DVB-RCS

given DVB-RCS configuration example.
It appears that the necessary number of iterations is constant for low level of

sub-block parallelism (8 on Figure 4.2). After a specific threshold, it increases
linearly with the level of parallelism. Thus, in order to reach a given decoding
performance defined by a fixed FER value, the number of necessary decoding
iterations is given by Equation (4.1).

Niter = NiterP=1 +
P

T
(4.1)

where NiterP=1 is the number of decoding iterations that have to be performed
when the level of sub-block parallelism P = 1 for a fixed SNR, and T is a con-
stant threshold which depends of the code rate and data frame size. The threshold
position can be interpreted as the minimum sub-block size which provides reli-
able recursion values at the end of the first iteration. Under this minimum size,
recursion values have to be refined using more iterations.

In [55], intensive simulations have been performed in order to extract thresh-
old values for the DVB-RCS standard considering three frame sizes and four
code rate defined in the standard. These threshold values are presented in Table
4.1. On the one hand, we observe that the threshold linearly increases with the
frame size for a given code rate. Thus, a key sub-block size can be extracted for
each code rate. This key sub-block size corresponds to the initial sub-block size
from which the number of decoding iterations is increased. It is determined by
computing the average value of sub-block size from which the number of decod-
ing iterations is increased for the different frame sizes considering a fixed code
rate. For example, considering the code rate equals to 6/7, the key sub-block size
equals to (424

3
+ 848

4
+ 1504

8
)/3 = 180 bits. On the other hand, we observe that the

threshold decreases when the code rate increases for a given frame size. Indeed,
a low code rate provides more redundant information increasing the reliability of
obtained recursion metrics.

This section has illustrated how the number of decoding iterations evolves
depending of the level of sub-block parallelism. The next section shows the impact
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Level of Sub-block Nber. of iterations Nber. of iterations shuffled
parallelism without shuffled with shuffled efficiency

1 8 12 0.66
4 11 15 0.73
8 16 20 0.8
53 47 51 0.92

Table 4.2: Comparison of necessary number of decoding iterations regarding the level
of sub-block parallelism for 53 bytes DVB-RCS interleaving code rate=6/7,
SNR=4.0dB, Log-MAP algorithm, FER=1.6e03

Level of Sub-block Nber. of iterations Nber. of iterations shuffled
parallelism without shuffled with shuffled efficiency

1 8 11 0.72
2 9 11 0.82
4 9 12 0.75
16 13 15 0.86
64 19 23 0.83
128 34 37 0.92

Table 4.3: Comparison of necessary number of decoding iterations regarding the level
of sub-block parallelism for 188 bytes DVB-RCS interleaving code rate=6/7,
SNR=4.0dB, Log-MAP algorithm, FER=1.6e03

of the shuffled decoding on the turbo decoding performance.

4.1.2 Shuffled decoding

For shuffled decoding, the parallelism degree is limited to the number of compo-
nent decoders (2 in the UDec architecture). The work presented in [63] shows
that when using shuffled decoding the number of decoding iterations is slightly
increased compared to the number of decoding iterations required to reach the
same error rate performance using serial decoding. For example, in [63], the
authors study the shuffled decoding parallelism efficiency (i.e. decoding perfor-
mance in terms of FER) for the DVB-RCS interleaving rules. Table 4.2 and Table
4.3 show that the number of decoding iterations guaranteeing the same decoding
performance has to be increased when shuffled decoding is used. However, it
can be highlighted that the shuffled decoding efficiency increases when the level
of sub-block parallelism increases too. Consequently, the number of additional
decoding iterations when shuffled decoding is enabled is relatively constant, i.e.
4 in Table 4.2 and between 2 and 4 in Table 4.3.
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Figure 4.3: Pre-computed configuration principle

This section has shown that the number of decoding iterations evolves depend-
ing of both sub-block and shuffled decoding parallelisms. This is a key feature
considering the context of this thesis work targeting the dynamic configuration of
the UDec architecture. Indeed, in order to adapt the platform for a given through-
put, the number of activated RDecASIPs can be tuned at run-time. However, as
shown in this section, when the level of sub-block parallelism increases, the num-
ber of decoding iterations has to be adapted in order to guarantee the decoding
performance in terms of FER. Obviously, the number of decoding iterations influ-
ences the throughput of the decoder as demonstrated by Equation 1.16. This fact
must be taken into account when a configuration is generated at run-time. The
next section analyzes the configuration management scenario where the configu-
ration information is pre-computed and stored in a global configuration memory.

4.2 Pre-computed configuration management

This section proposes to study the solution in which the configurations are pre-
computed and stored in a global configuration memory. Since the different con-
figurations are pre-computed at design time in this solution, all different con-
figurations that can be launched at run-time have to be stored in the global
configuration memory as shown in Figure 4.3. In this context, the configuration
manager is a simple Finite State Machine that performs the configuration pro-
cess from a configuration ID or a configuration address in the global configuration
memory. The configuration information is sequentially sent to the configuration
infrastructure presented in the previous chapter that loads the different configu-
ration memories of the UDec architecture.

In this section we consider the following context: the RDecASIP configuration
memory presented in Section 2.2.2, the platform configuration memory presented
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in Section 3.1.2 and the UDec architecture implementing the configuration in-
frastructure presented in Section 3.2 and a maximum of 128 processor (i.e. 64
RDecASIPs for each component decoder) leading to a maximum level of sub-
block parallelism of 64. Considering a global configuration memory that contains
all different configuration alternatives, it is necessary to compute the required
size for this memory. For that purpose, the following equations is used.

ConfigLoadASIPs(P ) = (4.P + 14).26 (4.2)

Equation (4.2) highlights the configuration load in bits for the ASIPs for a given
level of sub-block parallelism P . Indeed, thanks to the configuration infrastruc-
ture associated with the UDec architecture allowing multicast and broadcast
transfers the following transfers are required:

- one transfer of two 26-bit memory lines for each RDecASIPS (i.e. 2× 2×P
26-bit transfers)

- two multicast 26-bit transfers of five memory lines
- one broadcast 26-bit transfer of four memory lines.
Since the configuration information is pre-computed and stored in a global

configuration memory, all possible configurations have to be taken into account
to provide the complete flexibility of the platform. Thus, considering 64 levels of
sub-block parallelism, Equation (4.2) becomes Equation (4.3).

ConfigLoadASIPs =
64∑

p=1

(4.P + 14).26 (4.3)

However, configuration parameters such as the frame size, the number of decoding
iterations, and the decoding mode (shuffled or serial) can be tuned depending on
the configuration. Thus configuration load expressed by Equation (4.3) has to
be multiplied by the number of different frame sizes of each supported standard,
the number of different possibilities for decoding iterations and by 2 for each
decoding mode (shuffled or serial). Consequently, Equation (4.4) expresses the
total ASIPs configuration load in bits for all possible configurations considering
the UDec architecture implementing 128 RDecASIPS.

TotalConfigLoadASIPs = 2.ConfigLoadASIPs.NFrame.Niterations (4.4)

where NFrame is the number of frame sizes in each supported standard ( e.g. 188
for LTE) and Niterations is the number of different possibilities for decoding iter-
ations that can be necessary to decode a frame and to reach a given decoding
performance. Moreover, besides the ASIPs configuration memories, the config-
uration information for the configuration memory of the platform controller has
also to be stored in the global configuration memory. As for the RDecASIP
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configuration memory all different configurations have to be stored leading to a
configuration load in bits as expressed by Equation (4.5).

ConfigLoadController = 1490944.NFrame.Niterations (4.5)

where the constant value 1490944 is obtained by multiplying the 64 possibilities
of sub-block parallelism, the 64 possibilities of ASIP shift location as shown in
Section 3.1.1, the two turbo decoding modes and the seven 26-bit memory lines
of the controller configuration memory presented in Section 3.1.2. Thus, the total
configuration load in bits that have to stored in a global configuration memory
is obtained by Equation (4.6).

TotalConfigLoad = ConfigLoadController + TotalConfigLoadASIPs

= NFrame.Niterations.[1490944 + 2.(4.P + 14).26]

= NFrame.Niterations.1970176 (4.6)

Considering Equation (4.6), the 188 frame sizes of the LTE standard and a range
of decoding iteration of 20, the total configuration load that has to be stored in
a global configuration memory is around 883 MBytes. This result shows that the
memory cost of such an approach in order to offer the complete range of flexibility
of the UDec architecture is prohibitive and can not realistically be implemented.
In the next section, a solution where the configuration information is generated
at run-time is proposed.

4.3 Run-time configuration generation manage-

ment

This section introduces a configuration manager that generates the configuration
information at run-time and studies its impact on the configuration latency in
the context of the multi-mode and multi-standard scenario presented in Section
1.2.2. The next section builds on this scenario where the total configuration la-
tency (including the configuration information generation and the configuration
information transfer) must be lower or equal to the decoding duration of the cur-
rent data frame whatever is the configuration that has to be performed. Indeed,
in this scenario the Turbo decoder deals with input frames that are associated
with different throughput and FER objectives. Consequently, each frame received
by the Turbo decoder is associated to a specific configuration which takes into
account the application requirements and the channel quality.
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Figure 4.4: Configuration steps of the UDec platform

4.3.1 Restricted configuration management

In the context of this work, the maximum configuration latency of a frame is
constrained by the previous frame decoding duration as demonstrated in Section
1.2.2. The configuration of the UDec platform is divided in three steps as shown
in Figure 4.4:

1. The configuration manager receives the configuration order associated with
the frame parameters (i.e. frame size, standard, throughput, targeted BER)
necessary to generate the configuration for the RDecASIPs.

2. the configuration manager generates the configuration parameters for each
selected RDecASIP presented in Section 2.2.2.

3. The configuration parameters for each selected RDecASIP is transfered
through the configuration infrastructure presented in Section 3.2.2.

For this sudy, we assume that the configuration manager is a GPP that generates
at run-time the configuration information for the entire UDec architecture based
on the configuration parameters received with the configuration order for the next
frame. These parameters are: the frame size, the throughput requirement, the
standard, the decoding mode and the number of decoding iterations. From these
basic parameters, the number of activated RDecASIPs is first determined depend-
ing on the number of decoding iterations using Equation (4.7) which is deduced
from Equation (1.16) that determines the throughput of the UDec architecture.

NASIP =
2× Throughput×Ninstr ×Niter

Fclk

(4.7)

where Fclk and Niter are the clock frequency of the system and the number of de-
coding iterations respectively. Moreover, an average of Ninstr = 4 instructions per
iteration are needed to process 1 symbol. The number of active ASIPs using the
previous Equation (4.7) has to be divided by two when the shuffled decoding is
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enabled. Then, the contents of the different configuration memories of the UDec
architecture can be generated. For that purpose, a C-code has been developed
and configuration generation latency has been studied.

In order to evaluate the configuration generation latency of the proposed ap-
proach the developed C-code allowing a run-time configuration generation has
been implemented on an ARM cortex A9 core with a frequency of 600 MHz. It is
important to note that the considered C-code has not been fully optimized and
not parallelized. The configuration generation latencies for a level of sub-block
parallelism of 1 and 32 ( 2 and 64 RDecASIPS respectively) are 5 µs and 14 µs
respectively and it can be assumed that it evolves linearly since the number of
configuration parameters that have to be generated evolves linearly regarding the
level of sub-block parallelism. This configuration generation latency is quite large
compared to the configuration transfer latency, which is lower than 1µs (table
3.9) considering an ASIC implementation of the configuration infrastructure pro-
posed in the previous chapter. However, it does not impact the generality of the
contributions presented in the rest of this chapter. A discussion on this specific
point is provided in Section 4.4.

In the context of the multi-mode and multi-standard scenario considered,
where the configuration latency for a frame is limited by the decoding duration
of the current frame, the minimum decoding duration respecting this rule can
be deduced from the maximum configuration latency of the platform which is
reached when all the RDecASIPs processors have to be configured. It guaran-
tees that the configuration latency is lower than the decoding duration whatever
is the configuration which has to be performed. Thus, the maximum achiev-
able throughput is theoretically limited for a given frame size and is given by
Equation (4.8) where Frame durationmin is equal to the maximal configuration
generation latency plus the maximal configuration transfer latency. For instance,
Frame durationmin is equal to 14 + 0.446 µs considering an ASIC implemen-
tation of the UDec architecture implementing 64 RDecASIPs associated to the
proposed configuration infrastructure with a frequency of 500 MHz for the entire
platform.

Tmax (in bps) =
Frame size (in bits)

Frame durationmin (in s)
(4.8)

Considering the UDec platform implementing RDecASIPs, the maximum achiev-
able throughput is limited by the number and the performance of the ASIPs.
Considering Equation (4.7) and Equation (4.8) where the number of RDecASIPs
is limited to 64, Table 4.4, shows the maximum estimated throughput achievable
allowing the support of a multi-mode and multi-standard scenario and the corre-
sponding number of RDecASIPs that have to be used for different frame sizes and
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Frame size Throughputmax NASIP Configuration number of decoding
(bits) (Mbps) latency (µs) iteration

96 6.6 2 5.074 8
480 33.2 6 5.678 8
880 60.9 8 5.98 8
1920 132.9 18 7.49 8
4800 332.2 54 12.926 10

6144 363,6 64 14.446 11

Table 4.4: Estimated maximum throughput supporting the considered multi-mode and
multi-standard scenario with NiterP=1=8, T=10 and Pmax=32

a number of reference decoding iterations (i.e. NiterP=1) equals to 8 . Based on
NiterP=1, the necessary number of decoding iteration is computed using Equation
(4.1). Moreover, for the example of this section, a fixed threshold T equals to 10
is considered in Equation (4.1).

Results of Table 4.4 show that a throughput up to 363,6 Mbps can be reached
considering a 6144-bit frame size for a maximum level of sub-block parallelism
(Pmax) equals to 32. This maximum throughput does not correspond to the the-
oretical maximal throughput computed using Equation (4.8) (i.e. 425.3 Mbps).
Indeed, the maximum level of sub-block parallelism (i.e.Pmax = 32) is used to
reach 363.6 Mbps respecting the decoding performance thanks to 11 decoding
iterations. Thus, for the 6144-bit frame size, the throughput performance is lim-
ited by the maximum level of sub-block parallelism Pmax (i.e. the number of
implemented ASIPs) and not by the maximum configuration latency. For the
other frame sizes, the maximal throughput is defined by Equation (4.8). Equa-
tion (4.7) is then used in order to determined the number of RDecASIPs that
have to be activated to reach this throughput considering 8 decoding iterations.
For example, considering this maximum throughput and the 4800-bit frame size,
54 RDecASIPs are necessary. Thus, considering this approach the 64 ASIPs can
not be used to reach a throughput higher than the throughput defined by Equa-
tion (4.8) without violating the limit imposed by the considered scenario (i.e. the
configuration latency for a frame must be lower or equal to the decoding dura-
tion of the current frame). However, a greater number of ASIPs can be activated
in order to support the maximum throughput with a higher number of decod-
ing iterations than the 8 decoding iterations considered in the example of Table
4.4. The strict respect of the configuration latency considered in this section
reduces the performance possibilities offered by the UDec architecture in terms
of throughput since the maximum performance is limited by the configuration
management method and not by the architecture itself. In order to reduce the
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Figure 4.5: Oversized configuration principle

impact of the configuration management on the maximum performance, the next
section proposes a solution in which the configuration latency for a frame can be
greater than the decoding duration of the current frame respecting the targeted
throughput.

4.3.2 Oversized configuration management

This section proposes to reduce the configuration management impact on the
maximum throughput which can be reached by the UDec architecture imple-
menting 64 RDecASIPs by generating oversized configuration at run-time.

4.3.2.1 Oversized configuration principle

The Section 4.2 has shown that the configuration management method impacts
the maximum throughput performance of the UDec architecture. In order to
reduce this impact, a configuration management method introducing a flexible
configuration latency that can become greater than the decoding duration of the
current frame is presented in this section.

In the example of Figure 4.5, the configuration latency corresponding to the
frame (n+2) is greater than the decoding duration of the frame (n+1). Thus,
the decoding of the frame (n+2) can not start at T (n + 1). This leads to an
extra delay between the end of frame (n+1) decoding and the beginning of frame
(n+2) decoding. However, in the context of the multi-mode and multi-standard
scenario considered in this thesis work, the decoding duration allocated to the
frame (n+2) is fixed. Consequently, the new decoding duration for a data frame
becomes:

Latencyframe(n+2) = (Tn+2 − Tn+1)−Delay (4.9)
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where Delay is defined by:

Delayframe(n+2) = ConfigurationLatencyframe(n+2) − (Tn+1 − Tn) (4.10)

when ConfigurationLatencyframe(n+1) > (Tn − Tn−1) else Delay = 0.

Considering the new decoding duration, the configuration for the frame (n+2)
has to be oversized in order to adapt its associated throughput to the reduced
decoding duration. This method provides a solution to go beyond the limit fixed
by the configuration latency. Compared to the Restricted configuration manage-
ment presented in Section 4.3.1, the decoding duration can now be lower than the
14.446 µs which was imposed by the maximum configuration latency of the UDec
architecture implementing 64 RDecASIPs, i.e. 14 µs to generate the configura-
tion and 0.446 µs to transfer the configuration parameters. This new flexibility
aspect leads to the possibility for increasing the maximum throughput supported
for a given frame size. In the next section, the algorithm allowing to generate
oversized configuration at run-time is studied.

4.3.2.2 Oversized configuration generation

This section tackles the implementation of an algorithm for the generation of the
configuration information for the UDec platform by implementing the oversized
configuration management previously presented. It also considers the dynamic
evolution of the number of decoding iterations regarding the level of sub-block
parallelism as explained in Section 4.1.

When a new configuration has to be generated, the configuration can be ana-
lyzed in order to determine if this configuration introduces a configuration Delay
(i.e. the configuration latency for this configuration is greater than the current
decoding duration). If the introduced delay is not null, an oversized configura-
tion has to be generated in order to counterbalanced the effect of the delay and
to respect the original deadline associated to the frame. To respect the original
deadline the level of sub-block parallelism is increased to reduce the decoding
duration. However, as demonstrated in Section 4.1, when the level of sub-block
parallelism increases, the number of decoding iterations has to be increased re-
specting the Equation (4.1). Consequently, an algorithm allowing the selection
of a UDec configuration respecting the deadline associated to a frame and the
decoding performance in terms of FER is presented in Listing 4.1.

The algorithm presented in Listing 4.1 requires the following inputs: (1) the
frame size and the throughput of the current configuration in order to compute
(Tn − Tn−1), (2) the frame size and the throughput associated with the new
configuration in order to compute both ConfigurationLatencyframe(n+1) and
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Throughputoversized, (3) the reference number of decoding iterations for P=1,
(4) the threshold value T is used to compute the necessary number of decod-
ing iterations and (5) Pmax is the maximum level of sub-block parallelism sup-
ported by the platform. This algorithm is built with a search loop with level
of sub-block incrementation. This incrementation increases the throughput by
rising the number of activated ASIPs. For each level of parallelism the corre-
sponding number of decoding iterations is deduced from NiterP=1 and T . Then
the throughput (Throughput) corresponding to the level of sub-block parallelism
and the computed number of decoding iterations is calculated. The configura-
tion Delay is then computed as explained in Section 4.3.2.1. The new throughput
(Throughputoversized) that has to be reached by the architecture is then calculated
taking into account the configuration delay. Finally, the architecture throughput
and the objective oversized throughput are compared. If the oversized throughput
is greater than the current throughput of the architecture, the level of sub-block
parallelism has to be increased to reach the throughput requirement. Once the
loop iterations finished, the architecture throughput and the objective oversized
throughput values are compared. If the architecture throughput is greater than
the objective oversized throughput then a configuration solution exists with a
level of sub-block parallelism of P and Niter decoding iterations. If no solution
is found, shuffled decoding can be enabled if the condition in terms of frame
size and code rate are met. Indeed, shuffled decoding can not be used efficiently
on small frame and high code rates configuration [55]. If shuffled decoding can
not be used, the UDec architecture is not able to support such a configuration
respecting the required decoding performance.

Listing 4.1: Oversized configuration research algorithm

1 // Level of sub-block parallelism initialization
2 P = 0;
3 do {
4 // Level of sub-block parallelism incrementation
5 P = P + 1;
6 // Number of decoding iterations computation taking into account the level
7 of sub-block parallelism
8 Niter = NiterP=1 + P

T
;

9 // Throughput computation in serial mode
10 Throughput = Fclk×P

Ninstr×Niter
;

11 // Delay computation
12 Delay = ConfigurationLatencyP − (Tn − Tn−1);
13 // Delay validation
14 if (Delay <= 0) Delay = 0;
15 // Throughput adaptation considering the delay
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16 Throughputoversized =
FrameSizeframe(n+1)

OriginalDecodingDurationframe(n+1)−Delay
;

17 // If the required throughput is greater than the reached throughput then
18 a new loop iteration is performed
19 }while (Throughputoversized > Throughput and P ≤ Pmax);
20 // Result analysis
21 if (Throughputoversized < Throughput and P ≤ Pmax)
22 then EXIT;
23 else ERROR;

This algorithm presents two advantages compared to the configuration man-
agement method presented in Section 4.3.1. Firstly, the maximum throughput
for a given frame size and for a reference number of decoding iterations is not
limited by the maximum configuration latency anymore. The actual decoding
duration of the current frame is now taken into account at run-time in the algo-
rithm through the (Tn − Tn−1) term in the configuration delay equation (line 12
in Listing 4.1).

Secondly, this algorithm allows the introduction of a configuration latency
greater than a decoding duration introducing much more flexibility in the config-
uration management.

Figure 4.6 shows an example of oversized configuration search in which two
frames with different configurations are sequentially decoded. The first frame is
a 4800-bit frame decoded at 400 Mbps and the second frame is a 1920-bit frame
decoded at 280 Mbps. Moreover, NiterP=1 = 8, T = 10 are considered. The de-
coding duration of the first frame is 4800

400
= 12µs. The original decoding duration

objective is 1920
280

= 6.86µs. The algorithm presented in Listing 4.1 is executed
in order to determine the number of RDecASIPs which have to be activated to
perform the second frame. Figure 4.6 shows that from a level of sub-block paral-
lelism equals to 23, a configuration delay is inserted leading to a lower decoding
duration objective allowing the respect of the deadline. It is interesting to note
that a configuration beyond the configuration management limit of the previous
method which does not introduce a configuration delay and proposes a better
throughput can be found (shown in red diamonds). Finally, this figure shows
that four configurations (shown in green diamonds) for the second frame respect
the original deadline and the decoding performance by taking into account the
dynamic evolution of the number of decoding iterations necessary to reach a given
FER.

The algorithm described in Listing 4.1 does not guarantee to find a solution.
When the conditions that satisfy efficient shuffled decoding mode requirement
are not met (i.e low code rate and small frames), a second search step can be
performed. This search consists in: setting the maximal value for the level of
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Figure 4.6: Oversized configuration search example. 1st frame: size = 4800 bits,

throughput = 400 Mbps. 2nd frame: size = 1920 bits, throughput = 280
Mbps. NiterP=1 = 8, T = 10 and Pmax = 32

sub-block parallelism and then, determining the maximum number of iterations
that can be performed respecting the decoding deadline. The complete algorithm
is presented in Listing 4.2.

Listing 4.2: Oversized conguration research algorithm including shuffled decoding

1 // serial decoding mode similar to Listing 4.1
2 P = 0;
3 do {
4 P = P + 1;
5 Niter = NiterP=1 + P

T
;

6 Throughput = Fclk×P
Ninstr×Niter

;

7 Delay = ConfigurationLatencyP − (Tn − Tn−1);
8 if (Delay <= 0) Delay = 0;

9 Throughputoversized =
FrameSizeframe(n+1)

OriginalDecodingDurationframe(n+1)−Delay
;

10 }while (Throughputoversized > Throughput and P ≤ Pmax);
11 if (Throughputoversized < Throughput and P ≤ Pmax)
12 then EXIT;
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13 else {
14 // If shuffled decoding possible
15 if (shuffled = 1) {
16 P = 0;
17 do {
18 P = P + 1;
19 // Number of decoding iterations computation taking into account the level
20 of sub-block parallelism and shuffled decoding
21 Niter = NiterP=1 +NIter.shuffled + P

T
;

22 // Throughput computation in shuffled mode
23 Throughput = 2×Fclk×P

Ninstr×Niter
;

24 Delay = ConfigurationLatencyframe(n+1) − (Tn − Tn−1);
25 if (Delay <= 0) Delay = 0;

26 Throughputoversized =
FrameSizeframe(n+1)

OriginalDecodingDurationframe(n+1)−Delay
;

27 }while (Throughputoversized > Throughput and P ≤ Pmax);
28 // Shuffled result analysis
29 if (Throughputoversized < Throughput and P ≤ Pmax)
30 then EXIT;
31 }
32 // No solution in shuffled mode
33 // Maximal value for the level of sub-block parallelism
34 P = Pmax;
35 // Maximal delay computation
36 Delay = ConfigurationLatencyp=Pmax − (Tn − Tn−1);

37 Throughputoversized =
FrameSizeframe(n+1)

OriginalDecodingDurationframe(n+1)−Delay
;

38 Niter = NiterP=1 + P
T

;
39 // Loop for number of iterations decrementing
40 while (Throughputoversized > Throughput and){
41 Niter = Niter − 1
42 Throughput = Fclk×P

Ninstr×Niter
;

43 }
44 }

This algorithm starts by a search considering serial mode as presented in List-
ing 4.1. Then if no solution is found, a search considering shuffled decoding is
performed if the shuffled mode is enabled. In this case, a constant NIter.shuffled

is added to the number of decoding iterations (line 21) and the throughput of
the architecture is multiplied by 2 (line 23). If no solution is found in shuffled
mode or if the shuffled mode is disabled for the configuration, a solution with
the maximum level of parallelism in serial decoding mode is searched (line 34 to
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Figure 4.7: Stable configuration scenario

43) by reducing the number of decoding iterations until the decoding deadline is
respected. Obviously, the found solution does not guarantee the decoding per-
formance in terms of FER since the number of iterations can be hugely reduced.
However this method guarantees to find a configuration that respect the decoding
deadline whatever the throughput objective reachable by the UDec architecture
implementing Pmax RDecASIPs.

The next section studies the impact on the maximum decoding performance in
terms of throughput of the proposed flexible configuration management regarding
multi-mode and multi-standard configuration scenarios.

4.3.3 Oversized Configuration management scenario

As demonstrated in the previous section, the generation of oversized configu-
ration is a promising approach in order to benefit from the UDec architecture
by allowing an extra configuration delay which is compensated by an oversized
configuration. However, considering a flow of data frames each associated with
specific parameters and high requirements in terms of throughput and decoding
performance, this method can lead to a scenario where the decoding performance
is not guaranteed anymore since the number of decoding iterations has to be
reduced in order to respect the decoding deadline. In this section, two scenarios
guaranteeing the decoding performance are presented.

4.3.3.1 1 frame - 1 configuration

This first scenario, presented in Figure 4.7, illustrates a stable scenario where
the configuration delay is managed whatever is the parameters and requirements
associated to a frame which has to be decoded. In this scenario, when the con-
figuration latency for a frame is greater than the decoding latency of the current
frame, the extra delay does not impact the existence of a configuration solu-
tion for the next frame. Indeed, in the example of Figure 4.7, the extra delay
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(Delay(n + 1)) imposed by the configuration for the frame (n+1) delays the
configuration generation and the configuration transfer for the frame (n+2) (i.e.
Delay(n+ 2) increases) which should start at T (n). Thus, this delay reduces the
chance to find an oversized configuration for the frame (n+2) allowing the respect
of the decoding deadline (T (n+ 2)) and the decoding performance.

This scenario guarantying the decoding performance requirement is verified
when a configuration solution respecting the decoding deadline and the decoding
performance is found for each configuration whatever is the frame parameters and
requirements in terms on throughput and decoding performance. The existence of
such a scenario depends of the consecutive frame parameters and requirements.
Indeed, to decode consecutive data frames associated to different parameters
with high throughput and high decoding performance will lead to an unstable
scenario where the configuration delay can not be managed anymore. The stable
scenario presented in this section can be reached when frames associated with low
requirements and frames associated with high requirements are mixed. In this
case, the frame associated with low requirements leads to a high decoding duration
allowing the management of the configuration delay. This scenario corresponds,
for example, when a low throughput DVB-RCS standard transfer for TV reception
is realized in parallel with web browsing through the LTE or WiMAX standard
in a mobility context leading to dynamic decoding parameters evolution to reach
both throughput and decoding performance requirements. When this stability
in not ensured anymore, the number of decoding iterations has to be reduced
to compensate the delay. In order to go beyond this lack of flexibility of this
scenario, the next section presents a scenario where a set of frames is associated
with the same parameters and requirements.

4.3.3.2 Decoding of multiple frames

In order to benefit from the possibilities offered by the UDec architecture in a
multi-mode and multi-standard context decoding consecutive data frames asso-
ciated to high throughput and high decoding performance in terms of FER, it is
necessary to reduce the flexibility of the previously considered scenario. Indeed,
the previous sections have shown that the extra configuration delay can lead to a
reduction of the decoding performance in order to compensate it when consecu-
tive frames associated to high requirements are decoded. Thus, in order to avoid
the decoding performance loss, a set of frames associated to the same parameters
and requirements can be consecutively decoded as shown in Figure 4.8.

Figure 4.8 illustrates a scenario where four frames (from frame (n+1) to frame
(n+4)) associated to the same parameters and requirements have to be consec-
utively decoded. First an oversized configuration is generated for frame (n+1).
Since the frame (n+2) is associated with the same parameters and requirements,
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Figure 4.8: Multi-frame configuration scenario

the same oversized configuration can be used to decoded this frame. Thus, no ex-
tra configuration delay is inserted between the frame (n+1) and the frame (n+2).
The decoding duration of the frame (n+2) is lower than T (n+2)−T (n+1) since
the oversized configuration is used. Since a set of frames have to be decoded
with the same parameters and requirements, the normal configuration is gener-
ated directly after the end of the previous configuration process. In this case the
system behaves as if the delay is null, so the configuration can take place at the
beginning of the next frame slot. In the example of Figure 4.8, the frame (n+4)
is decoded with the normal configuration at T (n + 3). Once the configuration
process is done for the normal configuration, the rest of the set of frames can be
decoded with this configuration. In the example of Figure 4.8, it is necessary to
decode three frames, i.e. frame (n+1), frame (n+2) and frame (n+3) to provide
the normal configuration and to compensate the configuration delay in parallel.

The number of frames that have to be decoded in order to entirely compensate
the configuration delay is given by Equation 4.11.

Nframes ≥
LConfigNoOversized +Delay

T (n+ 2)− T (n+ 1)
(4.11)

where LConfigNoOversized and T (n + 2) − T (n + 1) are the configuration process
latency for the normal configuration and the maximal decoding latency associated
with each frame of the set respectively.

Table 4.5 shows examples of number of frames associated with the same pa-
rameters and requirements that have to be consecutively decoded regarding a
series of two configurations associated with high throughput requirements. In
this table, frame (n) and frame (n+1) correspond to the example of the sce-
nario presented in Figure 4.8. The parameters of the frame (n) define maximum
decoding duration of the frame independently of both the number of decoding
iterations and the level of sub-block parallelism. Nframes defines the number of
frames associated to the same parameters as the frame (n+1) that have to be
decoded to compensate the configuration delay caused by the two configuration
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Parameters frame (n) Parameters frame (n+1)
Frame size Throughput Frame size Throughput

Niter P Nframes(in bits) (in Mbps) (in bits) (in Mbps)

880 120 1920 170 9 16 2
880 300 4800 150 9 14 1
1920 130 4800 360 10 29 2
4800 350 6144 360 10 29 1

Table 4.5: Multi-frame scenario examples: NiterP=1 = 8, T = 10 and Pmax = 32

Frame size Throughputmax Table 4.4 New Throughputmax

(bits) (Mbps) (Mbps)

96 6.6 34.6
480 33.2 172.9
880 60.9 317

1920 132.9 363,6
4800 332.2 363,6
6144 363,6 363,6

Table 4.6: Estimated maximum throughput comparison with NiterP=1=8, T=10 and
Pmax=32

processes illustrated in Figure 4.8. Results show that the number of extra frames
to compensate the configuration delay is quite low (from 1 to 2 in Table 4.5)
and it demonstrates that this approach is interesting to guarantee the decoding
performance in terms of FER with a low cost in scenario flexibility. Moreover,
compared to results presented in Table 4.4 considering the restricted configuration
management presented in Section 4.3.1, we observe that the throughput reached
in Table 4.5 are quite greater. This is particularly true for low frame size since
this configuration management allows the usage of higher level of sub-block par-
allelism. For instance, the maximum throughput for a 880-bit frame considering
the restricted configuration management is 60.9 Mbps while it can reached 300
Mbps using the oversized configuration management.

4.4 Configuration management discussion

The Section 4.3 demonstrates that the adoption of a smart and flexible configu-
ration management is a key feature to reach high performances in a multi-mode
and multi-standard context. However, the maximum performances in terms of
throughput and FER are critically dependent on the configuration latency pro-
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cess. In Section 4.3, the assumed configuration generation latency is quite large
(i.e. from 5µs to 14µs for a level of sub-block parallelism up to 32) compared
to the configuration transfer latency offered by the configuration infrastructure
(≤ 0.446µs for a level of sub-block parallelism up to 32, cf. Table 3.9). This
configuration generation time has been evaluated thanks to a non fully optimized
and non parallelized C-code on a 600 MHz ARM core. This C-code is highly
parallelizable since the configuration parameters specific to each ASIP, which
represent the major part of the computation when the number of active ASIPs
increases can be generated in parallel. Moreover, the recent processors in embed-
ded systems such as mobile phone and tablets provide processors implementing
two or more cores with a clock frequency close to 2 GHz. Considering this fea-
ture, we estimated that the configuration latency can be divided by 6 leading to
a configuration generation latency from 0.83µs to 2.33µs. Indeed, the increasing
processor clock frequency provide a improvement factor of 2000

600
= 3.33 which can

be multiplied by two considering a 2-core processor. Table 4.6 shows maximal
throughput considering the new configuration generation latency and a restricted
configuration management. These results are compared to the results from Table
4.4. The comparison results show that the reduction of the configuration gener-
ation latency has a huge impact on the maximum throughput. The maximum
throughput offered by the UDec architecture by considering a maximum level of
sub-block parallelism is now reached starting from 1920-bit frame. It is important
to note that the improvements provided by the oversized configuration manage-
ment stay true in these new conditions.

The configuration management proposed in this thesis work can be compared
to the configuration management presented in [46] which proposes a configuration
management where the number of decoding iterations can be reduced when the
configuration latency is too big. However, contrary to the approach proposed in
this thesis work, the current configuration and the next configuration are stored
simultaneously in the same memory. Moreover, the current configuration is read
during the decoding process. Thus, the authors of [46] have to deal with two
situations: (1) the configuration memory can not contain two configurations for all
cases and (2) the configuration latency can be too big to support high throughput.
For the first situation, the authors propose to stop the current decoding process in
order to load the rest of the configuration for the next configuration leading to a
decoding performance loss in term of FER since the number of decoding iterations
has been reduced. For the second situation, the authors determine a minimum
number of frames that have to be decoded with the current configuration in order
to provide more time for the next frame configuration process.

The configuration management proposed in this chapter differs from the work
presented in [46] from different points. Table 4.7 compares the two configuration
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[46] This work

Dynamic evolution of
X

√
the number of iterations
Run-time configuration

X
√

generation

Number of iterations

√ √

reduction
(if the configuration (if the configuration delay

is too large) is not managed anymore)

Decoding of

√ √

multiple frames
(When configuration

(to ensure stability)
latency is too large)

Table 4.7: Configuration management comparison

management approaches. Firstly, the dynamic evolution of the number of decod-
ing iterations regarding the level of sub-block parallelism described in Section 4.1
is taken into account. Indeed, this dynamic evolution can require more compu-
tation and thus increase the number of processors that have to be activated to
respect the throughput requirement of a given configuration. Secondly, the pro-
posed configuration management provides a high level of configuration flexibility
since the configuration information is generated at run-time on a independent
processor. Indeed, the storage of all the possible configurations for a standard
leads to a prohibitive cost in terms of memory as shown in Section 4.2. Thirdly,
the oversized configuration management proposed in Section 4.3.2 provides an
efficient solution to guarantee the throughput and the decoding performance in
terms of FER even if the configuration latency for the next frame becomes bigger
than the decoding duration of the current frame. Moreover, it can be noticed that
when the number of decoding iterations has to be reduced when an oversized con-
figuration is searched, the performance loss impacts the next configuration and
not the current configuration as in [46].

4.5 Summary

This chapter studied the configuration management of the UDec architecture im-
plementing RDecASIPs and the configuration infrastructure presented in Chapter
3 in order to offer high throughput and high decoding performance in terms of
error rate. An analysis of the dynamic evolution of the number of decoding iter-
ations regarding the level of sub-block parallelism has been provided in order to
be integrated in the configuration management of the UDec architecture. Then a
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configuration management where all possible configurations are stored in a global
configuration memory has been studied. Results show that such an approach is
prohibitive in terms of memory cost. Thus a configuration management where
the configuration information is generated at run-rime has been proposed. The
proposed oversized configuration management enabling configuration latency big-
ger than decoding duration allows to take advantage of the possibilities offered
by the UDec architecture thanks to a novel algorithm for run-time configuration
solution research.
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Conclusion

The 21st century will be the century of connectivity. People as well as objects will
share information through different connected devices. In this context, the last
years have seen considerable evolutions of wireless communication standards in
the domain of mobile telephone networks, local/wide wireless area networks, and
digital video broadcasting. Channel coding is a key feature of a wireless standard
allowing reliable data transfer. Among channel coding techniques, Turbo codes
are frequently adopted to reach a very low bit error rate. The work accomplished
during this Ph.D thesis is motivated by the emergence of reconfigurable multi-
processor architectures for Turbo decoding in order to provide high flexibility and
high throughput considering current and future wireless communication standards
requirements. Moreover, the multiplication of communication standards leads to
complex scenarios where the configuration process becomes a key point in order
to guarantee high performances. In fact, most of the existing related works have
proposed flexible hardware platforms while trying to optimize their efficiency in
terms of area, throughput, and energy consumption. Very few contributions have
considered the crucial requirement of rapid dynamic configuration and the related
implementations and costs. In this context, this thesis work tackles the dynamic
configuration issues of multiprocessor platform for Turbo decoding in order to
respect hard constraints imposed by emerging multi-mode and multi-standard
scenario. For that purpose, contributions at the processing element level as well
as at the system level are proposed. These contributions are illustrated with the
multi-ASIP UDec architecture developed at the Electronic Department of Tele-
com Bretagne in Brest.

In this manuscript, the first chapter provides the basic background on Turbo
codes along with its construction and decoding process. A presentation of the
different parallelism levels which can be exploited in the implementation of a
Turbo decoder is proposed. This chapter also provides a description of the initial
UDec architecture which constitutes the starting point of this thesis work.

The set of ASIPs implemented in the UDec architecture is used for the de-
coding process. They are the main components that have to be configured to
adapt the platform to the input frame parameters and requirements. The second
chapter of this thesis work presents the contributions allowing the optimization of
the dynamic configuration of the initial DecASIP processor for Turbo decoding.
For that purpose, the configuration lacks of the DecASIP have been highlighted
and optimizations have been proposed and implemented in order to offer an effi-

113



114 Conclusion and perspectives

cient configuration of the DecASIP in a multi-ASIP context. The new processor
named RDecASIP provides new features such as a new configuration memory
organization which takes into account the multi-ASIP context of the UDec ar-
chitecture, a generic program reducing the configuration load of the ASIP and a
multi-configuration storage management. These optimizations lead to a config-
uration load reduced by 70% compared to the initial ASIP. Results show that a
dedicated memory organization taking into account the multiprocessor context
hugely reduces the configuration load (i.e. more than 90%) when a configuration
infrastructure implementing multicast and broacast mechanisms is used. Logic
synthesis results targeting 65 nm CMOS technology show that these optimiza-
tions introduce a low area overhead of 0.009 mm2 while the decoding performance
and maximum clock frequency of the RDecASIP have remained identical to the
initial implementation.

The second contribution of this thesis work concerns the development of a
complete configuration infrastructure for the UDec architecture. Since the initial
UDec architecture has not been designed to support the dynamic configuration,
the third chapter describes optimizations at the platform level in order to reach
an efficient dynamic configuration management. Flexibility has been brought at
the Butterfly topology NoCs level, at the ring buses level and at the platform
controller level in order to adapt at run-time the number and the location of the
active processing elements. The configuration process of the proposed platform
consists in loading configuration information in configuration memories associated
with each active RDecASIP and with the platform controller. For that purpose,
a complete bus-based configuration infrastructure has been developed and vali-
dated using a SystemC/VHDL mixed simulation model. It is optimized for data
memory loading using unicast, multicast and broadcast mechanisms. An FPGA
prototype has been developed and results have shown that the configuration of the
entire platform implementing 128 RDecASIPs can be performed in less than 10 µs
providing a speedup up to 12 compared to classical approaches. ASIC synthesis
results considering up to 128 RDecASIPs have demonstrated that a configura-
tion transfer latency below 1µs is reachable providing an efficient solution in order
to support dynamic configuration in the multi-mode and multi-standard scenario.

The last chapter of this manuscript addresses the configuration management
issues of high throughput Turbo decoder. The limits of both pre-compiled man-
agement where all configurations are stored in a global configuration memory
and restricted configuration management where the configuration information is
generated and sent at run-time respecting a strict deadline fixed by the decoding
duration of the current frame are studied. In order to exploit efficiently the Turbo
decoder performances, the oversized configuration management is proposed. It
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provides a solution in order to manage large configuration latencies by generat-
ing oversized configurations that guarantee throughput and decoding performance
requirements in terms of FER. For that purpose, an algorithm for configuration
solution search has been proposed. It explores configuration solutions by in-
crementing the level of sub-block parallelism sequentially until throughput and
decoding performance requirements are met. If not, shuffled decoding mode can
be enabled. In the case no configuration solution is able to respect throughput
and decoding performance requirements, the number of decoding iterations is
decremented in order to find a configuration solution respecting the throughput
requirement only. The analysis of the results has demonstrated that, for example,
the maximum throughput for a 880-bit frame considering the restricted configu-
ration management is 60.9 Mbps when the maximum configuration latency con-
sidered is 14.446 µs while it can reach 300 Mbps using the oversized configuration
management. Moreover, considering the oversized configuration management and
the decoding of multiple frames associated to the same configuration, results have
shown that the maximum number of extra frame to compensate the configuration
delay inserted by large configuration latency is quite low, i.e. one or two regarding
the scenario considered in this thesis work. This result demonstrates the interest
of the proposed approach in order to guarantee the decoding performances with
a low cost in scenario flexibility.

Overall, the contributions proposed in this thesis work have been implemented
and validated on the UDec architecture for Turbo decoding. The analyses pro-
vided in this Ph.D manuscript have shown that the configuration latency of mul-
tiprocessor architectures can be reduced by optimizing the configuration process
at the processor level, at the system level and at the configuration management
level. The proposed studies have demonstrated that the optimization of a process-
ing element by taking into account the configuration process allows the reduction
of the configuration load that becomes a key feature when the number of process-
ing elements that have to be reconfigured increases. Moreover, this configuration
process must take into account the multiprocessor context. This thesis work has
shown that the configuration memory organization of a processing element has
a significant impact on the configuration transfer latency when it allows the us-
age of optimized transfer mechanisms. Considering a context where the data
exchange between processing elements is a critical point of the architecture, ded-
icated interconnection structures are mandatory in order to ensure high speed
exchanges. These interconnection structures are not designed to support con-
figuration flows that can disturb the data transfer. To deal with this issue, an
efficient and low complexity configuration infrastructure for memory loading has
been presented. It has been associated to the UDec architecture to demonstrate
its efficiency when an important number of memories has to be loaded during the
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configuration process by taking advantage of a dedicated memory organization.
Finally, the last contribution of this thesis work introduced a novel configuration
management of a high throughput Turbo decoder, considering a high constrained
multi-mode and multi-standard scenario, that reduces the impact of the configu-
ration process latency on the maximum decoding performance and throughput.

Perspectives

Regarding future perspectives, several ideas can be investigated. At the RDe-
cASIP level, the application of turbo decoding only has been considered in this
work. In order to propose LDPC decoding also with a high speed configuration,
the programs and the memory organization have to be analyzed for this new
context. Concerning the configuration memory organization, LDPC parameters
have to be studied in order to provide a dedicated memory organization merging
Turbo and LDPC codes parameters. As for Turbo mode, the different programs
for LDPC mode have to be optimized in order to reduce the configuration load.
Since this optimization leads to a unique program per code, a solution where
programs are replaced by a FSM dealing with the two modes can be studied and
compared to a programmable architecture in terms of area and flexibility taking
into account future component evolutions in order to support more standards and
codes.

At the system level, the new UDec architecture proposed in this thesis work
allows the management of the number and the location of the active RDecASIPs.
However, decision methods in order to define the location of the active RDecASIPs
for a given configuration have not been addressed in this work. Considering the
UDec features, decision algorithm for optimizing the power consumption, the
fault tolerance or the hardware degradation can be explored.

The input data flow management is also a key point to support the multi-mode
and multi-standard scenario considered in this work which has to be addressed
for the UDec architecture. Indeed, the current input interface and input memo-
ries associated to the ASIPs are not able to deal with more than one input data
flow. Thus the input symbols of the following frame can not be loaded in the
input memories before the end of the current decoding process. A simple solu-
tion consists in doubling the number or the size of the input memories in order
to load input symbols during the decoding process. However the cost of such a
solution when an important number of ASIPs is implemented seems prohibitive.
Consequently, alternatives have to be explored.
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At the configuration management level, an implementation of the proposed
oversized management has to be proposed in order to evaluate the impact of
the proposed algorithm on the configuration process latency. For this purpose,
software, hardware and ASIP-based solution can be explored in order to propose
an efficient solution for the configuration management and configuration gener-
ation processes. Furthermore, the proposed approach allowing the definition at
run-time of the number of decoding iterations regarding the level of sub-block
parallelism has been built regarding simulation results in DBTC. Thus, the ap-
proach has to be validated for SBTC mode also. Moreover, the approach has
to be validated through detailed realistic scenarios where the probability that
configuration parameters change regarding mobility speed and environment con-
ditions (for each supported standard) and a set of running applications dealing
with different standards have to be taken into account.

Finally, the contributions and methods proposed in this thesis work can be
adapted to other components and architectures developed during previous works
at the Electronic Department of Telecom Bretagne in Brest. Indeed, ASIP-based
architecture for Turbo demapping and Turbo equalization have been recently
introduced. In order to ensure an efficient dynamic configuration of a complete
reception chain, the principles described in this thesis work can be adapted and
optimized in order to build a dynamic reconfigurable heterogeneous multi-ASIP
architecture for a complete multi-mode and multi-standard receiver.
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Glossary

3GPP 3rd Generation Partnership Project
4G Fourth Generation

ADL Architectural Description Language
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
AWGN Additive White Gaussian Noise
AXI Advanced eXtensible Interface

BCJR Bahl-Cock-Jelinek-Raviv
BER Bit Error Rate

CABA Cycle Accurate and Bit Accurate
CMOS Complementary Metal Oxide Semi-conductor

DBTC Double Binary Turbo Codes
DVB-RCS Digital Video Broadcasting Return Channel Satellite
DSP Digital Signal Processor

FER Frame Error Rate
FEC Forward Error Correction
FIFO First In First Out
FPGA Field Programmable Gate Array
FSL Fast Simplex Link
FSM Finite State Machine

GPP General Purpose Processor

IP Internet Protocol

HDL Hardware Description Language

LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio
LTE Long Term Evolution
LUT Look Up Table
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MAP Maximum A Posteriori
MI Master interface
MPSoC Multiple Processor System on Chip

NI Network Interface
NoC Network on Chip

PE Processing Element
PLB Processor Local Bus

QPP Quadratic Permutation Polynomial

RAM Random Access Memory
RSC Recursive Systematic Convolutional
RTL Register Transfer Level

SBTC Single Binary Turbo Codes
SDR Software-Defined Radio
SI Slave Interface
SIMD Single Instruction Multiple Data
SISO Soft In Soft Out
SNR Signal to Noise Ratio
SoA State of the Art
SOVA Soft Output Viterbi Algorithm
SRAM Static Random Access Memory

UMTS Universal Mobile Telecommunications System

VHDL VHSIC Hardware Description Language
VLIW Very Long Instruction Word
VLSI Very-large-scale integration

WiMAX Worldwide Interoperability for Microwave Access
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Appendix

An analytical approach for sizing of heterogeneous mul-
tiprocessor flexible platforms for iterative demapping and
channel decoding

As mentioned is the last perspective of this thesis manuscript, an heterogeneous
platform for Turbo demapping (also called iterative demapping) has been de-
veloped during previous work leaded at the Electronic Department of Telecom
Bretagne in Brest. A contribution concerning the sizing of an heterogeneous plat-
form integrating both Turbo demapping and channel decoding has been proposed
during this Ph.D thesis. However, in order to focus the contributions on the mul-
tiprocessor platform for Turbo decoding only, we did choose not to introduce this
specific work directly in the core of the manuscript.

This contribution has been presented at the 2012 International Conference
on ReConFigurable Computing and FPGAs (ReConFig 2012) in a paper that
can be found in the next pages. It proposes a novel analytical approach for
sizing of heterogeneous multiprocessor flexible platforms for iterative demapping
and channel decoding, which could be used both at design-time and run-time.
Indeed, for a given communication requirement many architecture alternatives
exist and selecting the right one at design-time and at run-time is an essential
issue. The proposed approach defines the mathematical expressions which exhibit
the number of heterogeneous cores and their features. It has been applied on
a flexible multi-ASIP hardware platform for iterative demapping and channel
decoding. Results analysis demonstrates a reduction of the chip area of 9.6%
compared to a traditional approach where exploration is performed manually.
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Abstract—Flexible baseband receivers gain the interest of many
research efforts to enable the design of future multi-modes multi-
standards terminals. A main challenge in this domain is to provide this
flexibility with minimum overhead in terms of area, speed, and energy.
In this regard, heterogeneous multiprocessor platforms are emerging
as a promising implementation solution. However, the heterogeneity
of such platforms makes it complex to find the required number of
processors supporting a specific configuration (i.e. requirements level).

This paper investigates, in this context, the significant optimization
potential both at design-time and at run-time regarding the selection
of the most appropriate hardware configuration of a multiprocessor
platform for iterative demapping and channel decoding. A formal
representation of the architectural solution space which allows de-
signers to find the minimum hardware configuration is proposed.
The proposed approach is illustrated through a flexible multi-ASIP
hardware platform for iterative demapping and channel decoding.

Keywords-Multiprocessor, ASIP; Self-adaptation; Wireless multi-
standards receiver; Platform sizing; Run-time; Design-time;

I. INTRODUCTION
Last years have seen considerable evolutions of wireless com-

munication standards in the domain of cellular telephone networks,
local/wide wireless area networks, and Digital Video Broadcasting
(DVB). Besides the increasing requirements in terms of throughput
and robustness against destructive channel effects, the convergence
of services in single smart terminal becomes a crucial and challeng-
ing feature. As an example, the fourth generation (4G) of cellular
wireless standards aims at providing mobile broadband solution to
laptop computer wireless modems, smartphones, and other mobile
devices. Diverse features such as ultra-broadband Internet access,
IP telephony, gaming services, and streamed multimedia will be
provided.

In order to enable such advanced services at the algorithmic
level, new state of the art data processing techniques have been
developed and adopted in the emerging wireless communication
standards. At the architecture level, many efforts are being con-
ducted towards the design of flexible high throughput hardware
platforms which can be configured to the required configuration.
The overall flexibility of the radio platform can be achieved
through the flexibility of individual components at transmitter side
(encoder, interleaver, mapper, etc.) and at receiver side (demapper,
deinterleaver, decoder, etc.). In this context, heterogeneous multi-
processors platforms [1], [2], [3] have been widely adopted. These
platforms usually integrate different tiles that provide high perfor-
mances and high flexibility to respect services requirements. ASIP
based tiles have been adopted to provide flexible and powerful
solutions. For example, in [1], an 10.8 Mbps ASIP core is used
for turbo-decoding. However, the high throughput requirement of
emerging services imposes the efficient exploitation of different
parallelism levels. Several recent works propose multiprocessor
approaches to build these tiles [4], [5], [6], [7]. In this work we
investigate the sizing of a heterogeneous multiprocessor flexible

platform for iterative demapping and channel decoding and propose
a novel approach for efficient design-time and run-time sizing. We
illustrate how for a given level of requirement several architecture
alternatives with different number of processors exist. A formal
representation of the architectural solution space is proposed. This
formulation enables the designer to find the most efficient hardware
configuration. Based on this formal representation, the architecture
can be chosen both at design-time and at run-time according to an
optimization objective which could be, for example, minimizing
the number of processors, reducing the active area on the chip,
reducing the clock frequency, etc.

The proposed approach is illustrated through a flexible multi-
ASIP hardware platform for iterative demapping and channel
decoding. This platform integrates two different types of ASIPs
(Application-Specific Instruction-set Processor): one for demap-
ping, called DemASIP, and the second for turbo decoding, called
DecASIP. This paper presents the following contributions:

• A formal representation of the architectural solution space is
proposed.

• A method to apply this formal representation at design-time
and at run-time is defined.

• A use case that demonstrates the interest of the proposed
method to reduce the chip area at design-time and the active
area at run-time is presented and evaluated.

The rest of the paper is organized as follows. Section II provides
an overview of relevant literature. Section III presents the system
model and the configuration parameters. Section IV describes the
proposed formal representation of the architectural solution space
which allows the designer to size the platform depending on the
system configuration. Section V evaluates the impact of a design-
time sizing on the chip area and the impact of a run-time sizing on
the active area for different receiver configurations. Finally, section
VI provides a discussion on the proposed work and concludes the
paper.

II. STATE OF THE ART

The high throughput requirement of emerging services imposes
the efficient exploitation of different parallelism levels. In this
context, multiprocessor architecture [4], [5], [6], [7] is a promising
approach to reach high flexibility, high throughput and energy
efficiency. In [4], an heterogeneous architecture for convolutional
and turbo-decoding consisting of a dedicated 150Mbps IP block
and a cluster of ASIPs is presented. The dedicated IP block is
used when high throughput is required while ASIPs are used for
lower throughput. Even if the authors superficially describe a multi-
ASIP architecture in which the ASIPs are connected through a
crossbar, the sizing of such an architecture is not addressed. The
presented results are limited to two ASIPs that share a memory.
In [5] and [6], the authors present a multi-ASIP platform for
decoding in which the ASIPs are connected through a Network
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Figure 1. Usage scenario example of the considered heterogeneous multi-
processor platform integrates two different types of processors that perform
demapping and decoding algorithms respectively (Proc1 and Proc2).

on Chip. The high flexibility of such architectures allows dynamic
reconfiguration at run-time but the run-time sizing task is not
addressed. In [5], different decoding tasks can be mapped at
run time on different ASIPs but no methodology to define the
number of processors necessary to perform a given configuration
is presented. As in [7], recent works propose to combine several
functionalities, like decoding and demapping, in a multi-ASIP
heterogeneous platform. Unfortunately, the sizing of such platforms
is not well addressed in the literature. We assume that the designer,
based on his background and simulations, has to deal with the
sizing of these complex heterogeneous platforms. However this
approach could provide sub-optimal solutions and decrease the
sizing flexibility at run-time since all the decisions are taken at
design-time. In fact, flexible hardware multiprocessor platforms for
iterative demapping and channel decoding are generally designed
to support a set of communication standards which correspond to
some specific application needs and usage scenarios. Each usage
scenario corresponds to particular requirements for example in
terms of throughput, latency, error rates, and/or others. Fig. 1 gives
an example of such usage scenario which corresponds to a mobile
terminal supporting different services (High Definition Multimedia,
Web Browsing, Voice Conversation) at different channel conditions.
Hence, at design-time, the platform must be dimensioned to support
the highest requirements while, at run-time, the number of proces-
sors can be chosen depending of the current level of requirements.
Furthermore, for a heterogeneous multiprocessor platform, and for
a specific requirement level, several architectural configurations
(i.e. with a different number of each type of processors) exist
(Fig. 1). The alternatives exploration and the selection of the
most appropriate one is a complex task. However, it represents
an important optimization room which is not investigated in the
literature. In this paper we address this point and propose a formal
approach to find the optimal configuration.

III. SYSTEM MODEL AND CONFIGURATION

In order to illustrate the proposed approach for sizing of hetero-
geneous multiprocessor flexible platform for iterative demapping
and channel decoding we consider in this paper the communication
system model of Fig. 2. It consists of a multi-modes advanced wire-
less communication system integrating convolutional turbo code,
Bit Interleaved Coded Modulation (BICM), various modulation
schemes, and Signal Space Diversity (SSD). A brief presentation
of the system model and the considered parameters is given in this
section.
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Figure 2. System model with TBICM-ID-SSD.

A. System model

Fig. 2 presents a simplified structure of the transmitter, the
channel, and the receiver. On the transmitter side, information bits
U which are called systematic bits are regrouped into symbols ui

consisting of k bits, and encoded with a q-binary turbo encoder. It
consists of a parallel concatenation of two identical convolutional
codes (PCCC). The output codeword C is then punctured to
reach a desired coding rate Rc. In order to gain resilience against
error bursts, resulting sequence is interleaved using an S-random
interleaver Π2. Punctured and interleaved bits denoted by vi are
then Gray mapped to complex channel symbols sq chosen from
a 2M -ary constellation X , where M is the number of bits per
modulated symbol. Applying the SSD consists of a rotation of the
constellation followed by a signal space component interleaving.

At the receiver side (which is the topic of this paper), the
corresponding operations to the transmitter ones are applied in
reverse order. However, in order to meet the increasing require-
ments in terms of reduced error rates, the iterative processing is
considered at two levels. The first level is at the channel decoding
by adopting a turbo decoding process. The second level is between
the channel decoder and the soft demapper. In fact, besides extrinsic
information exchange inside the channel turbo decoder, additional
extrinsic information is feedback as a priori information used by
the demapper to improve the symbol to bit conversion. Thus, the
receiver model, denoted as TBICM-ID-SSD, implements iterative
demapping with turbo decoding.

B. Receiver configuration

A flexible software model of the whole system of the Fig.2
(transmitter, channel, and receiver) was developed. This model
supports many parameters corresponding to the constellation type
and modulation order, interleaving laws, turbo code type, code rate,
and frame size.

Furthermore, the receiver can be configured to execute iterative
or non iterative demodulation. For the case of iterative demod-
ulation, state of the art implementations apply one turbo code
iteration for each demapping iteration [8]. Thus, the number of
demapping iterations (itdem) is equal to the number of turbo
decoding iterations (itdec) in this case. This number of iterations
constitutes another flexible parameter of the system model. On the
other hand, for non iterative demodulation itdem will be equal to
1.
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Figure 3. Generic architecture of the heterogeneous multiprocessor
receiver. In this configuration, 2 DemProcs and 4 DecProcs are not used.

The configuration of these flexible parameters is generally con-
strained by the available communication standard, the channel
condition, and the target system requirements in terms of through-
put, latency, and error rate performance. The determination of
their values should also take into consideration the complexity
issue in order to advise the most efficient configuration (as many
solutions generally exist). This task is out of the scope of this paper.
However, in order to define the suitable system configurations of
the usage scenario that will be considered in Section V, commu-
nication system experts were inquired and extensive simulations
were conducted.

Based on the system model, the next section proposes a generic
architecture model and a formal method for an efficient sizing of
such platforms.

IV. PLATFORM SIZING

Multi-standards and multi-modes platforms have to be able to
self-adapt when application requirements and environment evolve
at run-time. A configuration is defined by the communication
parameters which are chosen in accordance with the application
requirements and the environment in which the communication is
established. In this section we propose formal expressions which
allow designers to optimize the receiver architecture by computing
the required number of processors depending on each configuration.
This point is essential as it enables designers to formally explore
potential architectures that will meet performance constraints.

A. Generic heterogeneous multiprocessor architecture model

Fig. 3 presents the generic architecture of a flexible multi-
processor hardware platform for iterative demapping and channel
decoding. The aim of this platform is to provide a flexible and
dynamic solution compared to existing ones [1], [2], [3] (generally
based on hardware accelerators) where designer can tune the
number of resources both at design-time and at run-time. As it
will be presented, such an approach allows the system meeting
performance constraints without loosing its flexibility. These fea-
tures will be mandatory for future communication systems. In
Fig. 3, DemProc and DecProc perform demapping and decoding
algorithms respectively. These two processors are characterized by
their area, maximum frequency, and their performance defined by
the number of cycles to demap or decode one modulated or coded
symbol respectively. The platform integrates a communication
interconnect that allows extrinsic information exchanges (between
DecProcs themselves and between DecProcs and DemProcs). In
this paper, we assume that the communication interconnect is

designed for the worst case configuration in which all processors
exchange data at the same time and it is congestion and conflict
free.

B. Formal representation of the architectural solution space

The generic architecture of Fig. 3 can be abstracted as two
components: one demapper and one decoder. Each component uses
several processors in parallel to perform the frame computation
exploiting sub-bloc parallelism. These two components are serially
connected. The time required to process one frame (Tsyst) corre-
sponds to the sum of the time required by the demapper (Tdem)
and the time required by the decoder (Tdec) to execute all their
iterations on the frame. It can be expressed as:

Tsyst = Tdem + Tdec

= Ndem.Tdem/symb +Ndec.Tdec/symb (1)

where Ndem and Ndec represent, respectively, the number of mod-
ulated and coded symbols per frame. Tdem/symb and Tdec/symb

represent the time required by the demapper and the time required
by the decoder to execute all their iterations on one modulated
and coded symbol respectively. Hence, the system throughput
(Dsyst = Ndec/Tsyst) can be expressed as below.

Dsyst =
Ddem.Ddec.Ndec

Ndem.Ddec +Ndec.Ddem
(2)

where Ddem (= 1/Tdem/symb) and Ddec (= 1/Tdec/symb) are
the demapper and the decoder throughputs (in modulated and coded
symbols, respectively). In fact, considering the code rate Rc and the
number of bits per symbol M , the relation between the number of
coded symbols (Ndec) and the corresponding number of modulated
symbols (Ndem) can be written as follows.

Ndem =
q

M.Rc
.Ndec

= α.Ndec (3)

where q depends on the coding scheme (q = 1 for simple binary
turbo code and q = 2 for double binary turbo code). Introducing
this expression of Ndem into equation (2) gives the following
system throughput expression.

Dsyst =
Ddem.Ddec

Ddem + α.Ddec
(4)

The throughput of the system Dsyst is generally imposed by the
application requirement. On the other hand, the throughputs of the
demapper and the decoder depend on the number of processors,
the number of iterations, the number of clock cycles required to
process on symbol, and the clock frequency. They can be expressed
as follows.

Ddem =
NbdemProc.Fdem

itdem.cyclesdem/symb

(5)

where NbdemProc is the number of demapping processors, itdem
is the number of demapping iterations, cyclesdem/symb is the
number of cycles necessary to demap one symbol, and Fdem is
the clock frequency.

Ddec =
NbdecProc.Fdec

2.itdec.cyclesdec/symb

(6)

where NbdecProc is the number of decoding processors, itdec is
the number of decoding iterations, cyclesdec/symb is the number
of cycles necessary to decode one symbol, and Fdec is the clock
frequency.



n NbdemProc NbdecProc

0.25 40 44
0.75 56 21

1 64 18
1.25 72 16
1.75 88 14

Table I
ARCHITECTURE ALTERNATIVES IN FUNCTION OF N. EXAMPLE FOR:

Dsyst = 200 MBPS, QPSK, Rc = 0.5,
itdem = itdec = 8, cyclesdem/symb = 6, cyclesdec/symb = 1.75 AND

0.75 FOR THE LAST ITERATION, Fdec = Fdem = 300MHz

It is worth noting that the linear increase in throughput with
the number of decoding processors is limited due to the sub-bloc
initialization issue [9]. This limitation, which depends on the target
frame size and code rate, should be considered in the platform
sizing. However, this issue is not encountered in the demapping
sub-bloc parallelism.

In order to establish a relation between the demapping time and
the decoding time, we define the ratio n as follows.

n.Tdem = Tdec (7)

From this equation we can obtain a relation between the
throughputs of the demapper and the decoder:

n.
Ndem

Ddem
=

Ndec

Ddec

Ddem = Ddec.n.
Ndem

Ndec

Ddem = Ddec.n.α (8)

We deduce from (8) and (4) the equations which link the
throughput of the system with the throughputs of the demapper
and the decoder:

Ddec =
n+ 1

n
.Dsyst (9)

Ddem = α.(n+ 1).Dsyst (10)

Finally, from equations (5) and (6) we can express NbdemProc

and NbdecProc as follows.

NbdemProc = Cdem.Ddem (11)

NbdecProc = Cdec.Ddec (12)

where
Cdem =

itdem.cyclesdem/symb

Fdem
and Cdec =

2.itdec.cyclesdec/symb

Fdec

depend on the system configuration and the processor parameters.
Replacing Ddem and Ddec by their expressions from equations

(10) and (9) allows to compute the number of processors necessary
for a given configuration and a given n.

NbdemProc = Cdem.α.(n+ 1).Dsyst (13)

NbdecProc = Cdec.
n+ 1

n
.Dsyst (14)

Table I illustrates, for a given configuration, how different values
of n lead to different architecture alternatives, although all of them
acheiving the target throughput and supporting the target system
configuration. Depending on n we observe that the architecture
alternative could be quite different. For example, when n= 0,25
the architecture consists of 40 processors for demapping and 44
processors for decoding while when n=1.25, 72 processors for
demapping and 16 processors for decoding are necessary. It is
essential, both at design-time and at run-time, to determine the
value of n which optimizes the resources use. The optimization

goal depends of designers priorities and could be for example the
number of processors used for each possible configuration, the total
area of the chip, the clock frequency for each type of processor, etc.
In this paper we extend the previous equations in order to optimize
the total area of the chip at design-time. The same optimization can
be applied at run-time in order to reduce the active area for the
configurations performed on the platform.

C. Area optimization

Heterogeneous processors have typically different areas and
performances. One main optimization objective is to determine
the number of DemProcs and DecProcs in order to minimize the
receiver area for a given configuration. The total area of the receiver
depends on n. It can be computed using the expression below.

An = Adem.NbdemProc +Adec.NdecProc (15)

where Adem and Adec are the area of one DemProc and one
DecProc respectively. Therefore, by putting equations (11), (12)
and (8) into equation (15), An can be expressed as a function of
Cdem and Cdec.

An = (Cdec.Adec + Cdem.Adem.α.n)Ddec (16)

On the other hand, using equation (4), Ddem can be expressed
as:

Ddem =
α.Dsyst.Ddec

Ddec −Dsyst
(17)

Moreover, Ddec can be expressed as a function of Dsyst and n
by putting equation (8) equals to equation (17).

Ddec =
Dsyst(n+ 1)

n
(18)

Finally, An can be expressed as a function of n by putting the
equation of Ddec above into equation (16).

An =
a.n2 + b.n+ c

n
(19)

where a = Cdem.Adem.Dsyst.α

c = Cdec.Adec.Dsyst

b = a+ c

The derivative function of the equation 19 is then computed.
Only one extremum (next) is found.

next =

√
c

a
=

√
2.itdec.cyclesdec.Fdem.Adec

itdem.cyclesdem.Fdec.Adem.α
(20)

The second derivative function is also computed at next. It shows
a positive value corresponding to the minimum area (Anext) of the
receiver. Finally, Anext can be expressed as:

Anext = a+ c+ 2
√
a.c (21)

For a given configuration, next is determined with equation
(20). With the obtained value of next, the number of DemProc
and DecProc which minimizes the area can be calculated using
equations (13) and (14). The number of processors is then rounded
up to guarantee the throughput constraint. Note that, due to the
sub-bloc initialization issue [9], the number of DecProc is limited
by the maximum number of frame sub-blocs that can be extracted
from the entire frame. If the number of processors determined is
upper that this limit, their number is saturated in accordance to
the maximum level of available parallelism and the corresponding



number of DemProc is computed with respect to the throughput
requirement.

Based on the set of equations above it is now possible to analyze
how the system can be tuned both at design-time and at run-time
to meet performance requirements for a given configuration.

D. Design-time sizing

Platform sizing at design-time allows designers to determine
the hardware configuration which minimizes the total area of the
chip. This objective has been considered as it strongly impacts
the cost of the chip. The design space of potential configurations
is too large to allow designers to efficiently explore all possible
architecture alternatives. So first, the designer needs to list the
critical configurations that will be executed on the platform. These
configurations will require the largest number of operations to
demap and decode a frame. Then, equations (20), (13) and (14)
are successively used to determine for each critical configuration
the architecture alternative which minimizes the total area. Finally,
The number of processors implemented on the chip is the maximum
number of DemProcs and DecProcs among the different hardware
configurations.
E. Run-time sizing

Platform sizing at run-time allows to determine the hardware
configuration which optimizes the resources usage. Several objec-
tives can be addressed using equations previously described. When
a configuration has to be executed on the platform, the architecture
alternative which optimizes the objective can be determined using
the proposed equations. Configuration parameters are used to
determine next which optimizes the objective. Then, next is used
in equations (13) and (14) to compute the required number of
DemProcs and DecProcs. If the number of processors required
to perform the configuration is lower than the platform capacity,
which is defined at design-time, unused cores can be for example
switched-off as they will not be use during the execution of the
current configuration.

In this section, we have proposed formal equations to explore the
alternative architectures of a heterogeneous multiprocessor receiver.
These equations have been applied on a particular optimization
objective in order to optimize the total area used for a given
configuration. We have also explained how to consider such a
solution both at design-time and at run-time. The next section
presents the results of this method on a typical heterogeneous multi-
ASIP receiver.

V. CASE STUDY AND RESULTS

A. Multi-ASIP platform

In order to apply and evaluate the proposed approach we consider
the heterogeneous multi-ASIP receiver platform presented in [7].
This platform integrates two types of ASIPs which perform the
main functions of iterative demodulation and turbo decoding.
The first, called DemASIP [10], is dedicated to the Max-Log-
MAP Demapping Algorithm. This ASIP can be used for multiple
modulation schemes adopted at the transmitter side. The DemASIP
provides support for BPSK to 256-QAM constellation for any
mapping style with or without SSD. Depending on the modulation
scheme, the time to demap one symbol evolves from 6 to 258 clock
cycles. The second called DecASIP [6], performs the Max-Log-
MAP Decoding Algorithm. It supports convolutional turbo codes

Conf. Mod. Throughput Freq. itdem itdec Rc

( Mbps) (MHz)
1 QPSK 200 300 8 8 1/2
2 16-QAM 200 300 6 6 1/2
3 64-QAM 200 300 1 8 1/2
4 64-QAM 200 300 1 9 2/3

Table II
USE CASE CONFIGURATIONS

up to eight-state double binary turbo codes or sixteen-state simple
binary codes. It is able to decode a symbol in 1.75 clock cycles
in turbo-demodulation scheme and in 0.75 clock cycle when only
turbo-decoding is applied.

Based on this platform and in order to demonstrate the benefits
of the proposed approach, a representative use case has been
developed.

B. Use Case Study
The considered use case targets at the output of the channel

decoder a throughput of 200 Mbps with BER performance between
10−5 and 10−6 for an SNR range from 3dB to 13dB. It can
correspond to future wireless HD Media service in mobility context
(e.g. during a train trip).

In order to find the suitable system parameters of the flexible
communication system model of Fig. 2 with respect to this use
case, extensive simulations were conducted. Results of this step
(out of the scope of this paper, cf. sub-section III-B) correspond to
the configurations described in Table II. The frequency of each
ASIP is 300 MHz. The other parameters evolve depending on
the environment conditions: Conf. 1 corresponds to severe channel
conditions (i.e. lowest SNR) whereas Conf. 4 corresponds to good
channel conditions (i.e. highest SNR).

C. Results
The first step of platform sizing is performed at design-time. For

this purpose, the method described in sub-section IV-D is used to
determine the best hardware sizing for the critical configurations
which will be performed on the platform. For the scenario previ-
ously explained, the critical configurations are Conf. 1 and Conf.
2. They require higher number of iterations than Conf. 3 and Conf.
4 (Table II). These configurations determine the maximum number
of ASIPs which needs to be implemented on the chip. Table III
shows the comparison between the number of processors and the
total area of the chip using the proposed method and an approach
where next is not defined. In that last case, the designer may not
be able to efficiently tune the ratio between the time to demap a
frame and the time to decode a frame in order to minimize the
total area of the chip. A manual exploration based on the designer
experience can still be performed in order to test several ratio but
such an approach is time consuming and there is no guarantee to
find the best one. Thus a default value of n = 1 is generally used.
n = 1 means that the time to demap a frame is equal to the time
to decode a frame. The last row of Table III corresponds to the
number of processors that have to be implemented to support the
highest requirements. It is determined by selecting the maximum
number of processors needed to perform critical configurations. For
this case, results show that using our formal equations allows to
save 9.6% of the total area by implementing 55 DemASIP and 23
DecASIP instead of 72 DemASIP and 18 DecASIP when a default
value of n is used.



Conf. proposed method no exploration Gain
n NbdemASIP NbdecASIP Area (in mm2) n NbdemASIP NbdecASIP Area (in mm2) (in %)

1 0.63 53 23 8.75 1 64 18 9.1 3.8
2 0.51 55 19 8.35 1 72 13 9.15 8.7

Chip - 55 23 8.95 - 72 18 9.9 9.6
Table III

DESIGN TIME: APPLICATION OF THE PROPOSED METHOD ON THE TWO CRITICAL CONFIGURATIONS OF THE CONSIDERED CASE STUDY.
Adec = 0.15mm2 AND Adem = 0.1mm2 (90nm CMOS).

Conf. n NbdemASIP NbdecASIP Active area
(in mm2)

1 0.63 53 23 8.75
2 0.51 55 19 8.35
3 0.91 29 9 4.25
4 1.1 24 9 3.75

Table IV
RUN TIME : APPLICATION OF THE PROPOSED

METHOD.Adec = 0.15mm2 AND Adem = 0.1mm2 (90nm CMOS).

Once platform sizing performed, various required configurations
(Table II) can be selected at run-time. The number of ASIPs that
the configuration mode requires can be calculated at run-time on
a GRC processor (Global Receiver Controller, Fig. 3). As the
complexity of the proposed approach is very low (constant time),
it allows a very efficient analysis of the best configuration at run-
time. This point will be mandatory to meet real-time constraints for
future adaptive communication systems. Once a new configuration
has been computed the whole platform can be reconfigured.The
reconfiguration mechanism itself is out of the scope of this paper
but the general schedule can be sketched. The ASIPs that will be
used to perform the new configuration can be loaded with appro-
priate parameters and program whereas the rest of the ASIPs will
be idle. Once the right configuration is available the computation
starts. Depending on the context the unused ASIPs can be for
example powered down to reduce the total power consumption.
Table IV shows the number of ASIPs necessary to perform the
different configurations using our approach to reduce the active
area. Results demonstrate a significant reduction of the active
area when configuration corresponding to low requirement are
performed. For example, in the case of Conf. 4, only 3.75 mm2 of
the chip have to be activated while 8.75 mm2 are necessary for the
highest requirements corresponding to Conf. 1. Such an approach
allows to build optimization strategies for example to tune power
consumption or to minimize platform aging.

VI. FINAL DISCUSSION AND CONCLUSIONS

Heterogeneous multiprocessor platforms for iterative demapping
and channel decoding provide high performance and high flexi-
bility to perform several configurations. Moreover, they provide
promising solutions to be integrated in future flexible baseband
receivers. Unfortunately, the first degree of flexibility of a multi-
processor system (i.e. the number of processors used for a given
configuration) is currently not taken into account. The platforms
are generally statically sized at design-time to reach a given
maximum requirement and used, at run-time, without changing
the architecture configuration. In this context, the proposed work
provides an efficient method for platform sizing which could be
used both at design-time and run-time. Depending on the actual
requirements, this method allows a dynamic sizing at run-time
which optimizes the resources management of the platform.

In this paper we propose an approach for efficient sizing of

heterogeneous flexible multiprocessor for iterative demapping and
channel decoding. In fact, for a given communication requirement
many architecture alternatives exist and selecting the right one at
design-time and at run-time is an essential issue. The proposed
approach defines the mathematical expressions which exhibit the
number of heterogeneous cores and their features. It has been
applied on a flexible multi-ASIP hardware platform for iterative
demapping and channel decoding. Results analysis demonstrates
a reduction of the chip area of 9.6% compared to an approach
in which alternative architectures presented in this paper are not
explored. Future work targets the model extension with more func-
tionalities, like equalization, and the application of the proposed
sizing approach on a dynamic reconfigurable platform and to build
optimization strategy to dynamically adapt the configuration.
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Flexible High Throughput Multi-ASIP Architecture for LDPC and
Turbo Decoding,” in Proc. of Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2011.

[7] A. R. Jafri, A. Baghdadi, and M. Jezequel, “FPGA Prototype
of Flexible Heterogeneous multi-ASIP NoC-based Unified Turbo
Receiver,” in University Booth of the Design, Automation and
Test in Europe Conference & Exhibition, DATE’11, 2011.

[8] S. Haddad, A. Baghdadi, and M. Jézéquel, “Reducing the Number
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Résumé

Les travaux de thèse présentés dans ce manuscrit s’inscrivent dans
le cadre de la conception des systèmes de communication sans fils.
En effet, depuis plusieurs années, les standards de communication
dans le domaine des réseaux téléphoniques mobiles, des réseaux
sans fils locaux et étendus ainsi que des réseaux de diffusion de
vidéo numériques ont fortement évolués. Ces évolutions ont no-
tamment imposé une augmentation significative du débit et de la ro-
bustesse des communications vis à vis des effets de l’environnement
sur les canaux de communication. Face aux nombreux standards
devant être gérés par les appareils mobiles, la convergence des ser-
vices au sein des terminaux devient un enjeu crucial. Par exemple, la
4ème génération (4G) de standards pour la communication sans fils
à haut débit a pour objectif de fournir des solutions pour les modems
d’ordinateurs portables, les smartphones, ainsi que tout autre ap-
pareil mobile communicant. Diverses fonctions comme l’accès inter-
net haut débit, la téléphonie sur IP, les jeux en ligne, et le multimédia
en streaming seront alors disponibles. De nouveaux algorithmes ont
ainsi été développés et validés afin de permettre la mise en oeu-
vre de ces nouveaux services en vue de leur intégration dans les
standards de communication sans fils émergents. Au niveau archi-
tectural, de nombreux efforts ont également été fournis pour réaliser
de nouvelles plateformes offrant des débits importants et une grande
flexibilité permettant notamment une configuration dynamique de la
plateforme afin de sadapter aux conditions d’exécution et à la de-
mande des utilisateurs. Pour atteindre ce niveau de performance et
de flexibilité, l’équipe I.A.S (Interaction Algorithme Silicium) du lab-
oratoire Lab-STICC a développé un Turbo-décodeur multistandard
et multiprocesseur à base de processeurs ASIP (Application Spe-
cific Instruction Set Processor) nommé DecASIP. Ces précédents
travaux ont démontré l’intérêt de l’utilisation d’une architecture multi-
processeur pour atteindre un haut degré de performance et de flexi-
bilité. Toutefois, l’aspect reconfiguration dynamique de la plateforme
n’avait pas été abordé. Ces travaux de thèse s’articulent donc autour
de cette plateforme et ont pour but de développer un récepteur mul-
tistandard dynamiquement reconfigurable pour les futurs standards
de communication. Ces travaux sont divisés en plusieurs étapes afin
d’atteindre cet objectif :
La première étape a été l’étude du processeur DecASIP afin
d’optimiser sa conception dans le cadre d’un système multipro-
cesseur reconfigurable. Cette étape a donné lieu à une nou-
velle spécification intégrant une réorganisation du stockage des
paramètres de configuration. Cette première contribution a permis
d’optimiser les performances de reconfiguration du DecASIP. Une
nouvelle implémentation du DecASIP optimisé a également été pro-
posée.
La seconde étape a eu pour but de définir une infrastructure de com-
munication dédiée à la reconfiguration. Cette deuxième contribution
a permis d’optimiser le chargement des nouvelles configurations et le
contrôle des DecASIP. Pour cela, une approche basée sur une archi-
tecture de bus unidirectionnel pipeliné de faible complexité et offrant
des mécanismes de multicast et de broadcast a été proposée. Cette
solution permet le transfert d’une configuration pour 128 processeurs
avec une latence inférieur à la microseconde.
Enfin, la dernière étape des travaux de thèse a été l’étude d’une
politique de management de la plateforme afin d’adapter ses
paramètres en fonction des données recueillis sur l’environnement
et sur l’application exécutée. Cette dernière contribution a abouti
au développement d’une approche permettant de supporter
la reconfiguration dynamique de la plateforme dans le cas de
scénarios à fortes contraintes de débits et de taux d’erreur binaire
où chaque trame ou groupe de trames de données est associé à
une configuration particulière.

Les résultats de ces travaux permettront au laboratoire de proposer
un démonstrateur de Turbo-décodeur dynamiquement reconfigurable
respectant les besoins des futurs standards de communication en
termes de débit, de correction d’erreurs, et de flexibilité. Un tel
démonstrateur permettra de tirer profit du savoir-faire du Lab-STICC
au niveau des algorithmes de décodage, des architectures multipro-
cesseurs, de la reconfiguration dynamique et de l’auto-adaptation.

Abstract

Recent years have seen a huge evolution of wireless communica-
tion standards in the domains of mobile phone, local and wide area
networks and video broadcasting. These evolutions aim at increas-
ing the requirements in terms of throughput, robustness against de-
structive channel effects and convergence of services in a smart ter-
minal. As an example, the fourth generation (4G) of cellular wire-
less standards aims at providing mobile broadband solution to laptop
computer wireless modems, smartphones, and other mobile devices.
Diverse features such as ultra-broadband Internet access, IP tele-
phony, gaming services, and streamed multimedia are provided. In
order to enable such advanced services at the algorithmic level, new
state of the art data processing techniques have been developed and
adopted in the emerging wireless communication standards. At the
architecture level, many efforts are being conducted towards the de-
sign of flexible high throughput hardware platforms which can be con-
figured to the required configuration. In order to reach high flexibil-
ity, the I.A.S. (Algorithm Silicon Interaction) team of the Lab-STICC
laboratory has developed an Application Specific Instruction Set Pro-
cessor (ASIP) based multi-standard multiprocessor Turbo decoder.
This architecture is based on the DecASIP processor. Previous work
provides an efficient way to reach the high performance and high
flexibility requirements of emergent standards. However, dynamic re-
configuration aspect of the architecture has not been addressed. In
this context, this Ph.D work targets the development of a dynamically
reconfigurable multiprocessor Turbo decoder for future communica-
tion standards. For that purpose, this thesis work is divided in several
steps:
The first step consists on the study of the initial processor architec-
ture in order to propose optimizations in a multiprocessor context.
This step leads to a new implementation of the DecASIP processor
integrating a new configuration memory organization in order to re-
duce the configuration transfer latency.
The second step leads to the development of a configuration infras-
tructure allowing an efficient and high speed configuration transfer for
the ASIPs and the controller of the platform. The proposed approach
is based on a low complexity unidirectional pipeline bus implement-
ing optimized transfer mechanisms such as multicast and broadcast.
This configuration infrastructure provides an efficient solution in order
to transfer an entire configuration for 128 processors in less than one
microsecond.
Finally, the last step of this thesis work concerns the development
of a configuration management of the proposed platform in order
to adapt the configuration parameters regarding the environment
evolution and the application requirements. This step leads on
an approach allowing the support of dynamic configuration of the
platform in the context of highly constrained scenario in terms of
throughput and error rate performances where each frame or group
of frames is associated to a specific configuration.

This thesis work will allow the laboratory to present a prototype of
a dynamically reconfigurable Turbo decoder respecting future com-
munication standards requirements in terms of flexibility, throughput
and error rate performances. Such a contribution gathers the skills
present in the Lab-STICC laboratory at the decoding algorithm, mul-
tiprocessor architecture, dynamic reconfiguration and self-adaptation
levels in a single prototype.
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