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Résumé

La gestion de l’énergie est une préoccupation majeure dans les
réseaux de capteurs sans fil. Ces capteurs sont généralement ali-
mentés par une batterie embarquant une quantité d’énergie finie. Par
conséquent, le temps pendant lequel les capteurs peuvent surveiller
une zone et communiquer par signaux radio est limité lorsqu’il n’est
pas possible de remplacer leur batterie. En outre, les réseaux de
capteurs sont parfois déployés dans des zones difficiles d’accès ou
dans des environnements hostiles dans lesquels le placement des
capteurs peut être considéré comme aléatoire (c’est le cas par ex-
emple lorsque les capteurs sont largués d’un avion ou d’un héli-
coptère). Ainsi, l’emplacement des capteurs n’est pas connu a pri-
ori et les approches pour utiliser efficacement l’énergie sont néces-
saires. Cette thèse explore l’utilisation de la génération de colonnes
pour optimiser l’utilisation de l’énergie dans les réseaux de capteurs
sans fil. La génération de colonnes peut être vue comme un cadre
général pour résoudre différents problèmes dans la conception et
l’exploitation de ces réseaux. Plusieurs versions du problème et
divers modèles sont proposés pour représenter leur fonctionnement,
en utilisant notamment la génération de colonnes. Ces approches
exploitent le caractère naturel de la génération de colonnes pour
modéliser les différents aspects des réseaux de capteurs sans fil.
Dans cette thèse, des contributions algorithmiques sont apportées
afin de tirer le meilleur parti de la génération de colonnes au plan
de l’efficacité computationnelle. Des stratégies hybrides combinant
génération de colonnes et (méta)-heuristiques et donnant lieu à des
méthodes exactes et approchées sont proposées et évaluées. Des
tests numériques montrent l’efficacité des approches proposées et
procurent des bornes supérieures qui peuvent être employées pour
évaluer l’efficacité des méthodes centralisées et distribuées. Enfin,
des perspectives sont dégagées concernant les performances et la
portabilité de la génération de colonnes pour aborder des problèmes
plus réalistes et tenir compte des caractéristiques des réseaux de
capteurs sans fil du futur.
Mots clés: Réseau de capteurs sans fil, Durée de vie, Génération
de colonnes, Contraintes de connexité

Resumen

En el diseño de redes inalámbricas una de las principales preocupa-
ciones es cómo hacer un uso eficiente de la energía. Estas redes
están compuestas de sensores que son alimentados por una fuente
externa de energía (batería) que tiene una capacidad limitada y, en
muchos casos es irremplazable. Este hecho limita el tiempo durante
el cual los sensores pueden realizar su trabajo de monitoreo a una
zona y transmitir las señales percibidas. Por otro lado, en algunas
aplicaciones ser requiere que los sensores estén ubicados en lu-
gares de difícil acceso u hostiles, impidiendo su ubicación manual,
lo que implica que el posicionamiento es aleatorio (p.ej. lanzados
desde un helicoptero, un "dron" ó un avión). Dadas todas estas cir-
cunstancias, el uso de estrategias para optimizar el uso de energía
es requerido. En esta tesis se explora el uso de modelos basados
en redes para explicar el consumo de energía en una red de sen-
sores inalámbricos y la técnica de generación de columnas como
herramienta de solución para la optimización del uso de dicha en-
ergía. La técnica generación de columnas ofrece una herramienta
de solución que puede usarse para representar con naturalidad la
asignación y programación de la operación de los sensores. En este
trabajo se proponen diferentes mejoras que permiten tomar ventaja
de la la técnica de generación de columnas y mantener su eficien-
cia. Algunas estrategias híbridas que combinan el principio de la
descomposición con metaheurísticas y métodos exactos son prop-
uestas. Las propuestas fueron extensamente evaluadas y los exper-
imentos computacionales confirman la eficacia de los métodos, pro-
porcionando cotas superiores que pueden ser usados para evaluar
el rendimiento de otros métodos centralizados y distribuidos. Final-
mente, algunas direcciones de investigación son dilucidadas sobre
la base de éste método y su uso como estrategia para atacar prob-
lemas más realistas que consideren las características de las redes
de sensores inalámbricos del futuro.
Palabras clave: Redes sensores inalámbricos, Vida útil, Gen-
eración de Columnas, Restricciones de conectividad

Abstract

Energy is a major concern in wireless sensor networks (WSN). These
devices are typically battery operated and provided with a limited
amount of energy. As a consequence, the time during which sensors
can monitor the interesting phenomena and communicate through
wireless signals might be limited because of (sometimes) irreplace-
able batteries. Additionally, it is very common for WSN to be used
in remote or hostile environments which possibly makes necessary
a random placement strategy (by using an airplane, a drone or a
helicopter). Hence, the sensors location is not known a priori and ap-
proaches to efficiently use the energy are needed to answer to net-
work topologies only known after sensors deployment. This thesis
explores the use of column generation to efficiently use the energy
in WSN. It is shown that column generation can be used as a gen-
eral framework to tackle different problems in WSN design. Several
versions of the problem and models for the operation of the WNS are
adapted to be solved through column generation. These approaches
take advantage of the natural way that column generation offers to
consider different features of the WSN operation. Additionally, some
computational improvements are proposed to keep the column gen-
eration method operating as an efficient exact approach. Hybrid
strategies combining column generation with (meta)heuristic and ex-
act approaches are considered and evaluated. The computational
experiments demonstrate the efficiency of the proposed approaches
and provide practitioners on WSN research with strategies to com-
pute upper bounds to evaluate heuristic centralized and decentralized
approaches. Finally, some future directions of research are provided
based on the performance and adaptability of column generation to
consider more sophisticated models and characteristics newly intro-
duced in sensor devices.
Keywords: Wireless sensor networks, Lifetime, Column genera-
tion, Connectivity constraints
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1
Introduction

1.1 Motivation

Already in 2003, wireless sensor networks (WSN) were promoted as one of the ten
breakthrough technologies with potential to change the world [MIT Technology review,
2003]. The research in this field is still growing at a rapid pace and the future continues
to be promising. Indeed, recent reports indicate that the world market for WSN is
expected to raise from US$ 2.7 billion in 2012 to U$12 billion in 2020 [The wall street
journal: market watch, 2014]. Moreover, as with most current technologies, probably
we have not devised yet the whole range of applications where WSN can successfully
provide support. Nonetheless, research on this topic has benefited from large financial
support while world leading companies have massively invested in sensor technology for
different applications [Tech investor news , 2014].

WSN technology is becoming more and more important thanks to the rise up of
new connectivity technologies, and the new practical uses for smartphones and similar
devices connected to the Internet of Things. WSN have been successfully deployed in
environments where the use of traditional wired networks was too difficult or unpractical
[Biagioni and Bridges, 2002, Bokareva et al., 2006, Chen et al., 2013, Kim et al., 2007,
Werner-Allen et al., 2006]. WSN present several advantages over wired networks in
specific applications. For example, it is worth and useful to detect forest fires in situ,
as close to their origin as possible in spatial and temporal contexts [Ramsden, 2009]. In
general, WSN might be easily adopted to monitor distant and/or hostile environments
with sensors that can be remotely deployed and controlled, e.g., by using an airplane,
a helicopter or a drone.

Wireless sensors are tiny electronic devices provided with low computational, mem-
ory, and communication capabilities that are typically powered from an external, usu-
ally limited, energy source. Although processors, memory and radio technology seem
to have achieved a mature development stage, the energy sources of wireless sensors are
still their biggest weakness. In general, the exploitation of micro-sensors is possible.
Nevertheless due to the high cost, or impossibility, of either renewing the energy supply
of the nodes, or redeploying the sensor nodes, the constraints faced when designing a
WSN system are still severely limiting their usability [Zhang, 2012].

The new advances in WSN technology at different levels have brought many new
problems to be studied for researchers in different fields. Routing and communication
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protocols, for example, are key aspects in WSN design [Akkaya and Younis, 2005, Li
and Bartos, 2013, Younis et al., 2013]. Nonetheless, efficient use of sensors energy is
probably one of the major issues to be addressed, specially when it concerns remotely
deployed and unattended WSN [Raghunathan et al., 2002]. A large number of different
approaches have been proposed to optimize the use of energy stored in the batteries
while satisfying some operational constraints, e.g., coverage of some targets regions or
points, and connectivity to the base station [Anastasi et al., 2009, Zorbas and Douligeris,
2010].

A vast part of the literature devoted to network lifetime, or the use of energy
throughout lifetime, of WSN is based on the use of both heuristic criteria and heuris-
tic algorithms to tackle the problems [Cardei et al., 2005, Slijepcevic and Potkonjak,
2002, Yang et al., 2006, Zhao and Gurusamy, 2008]. Less efforts have been focused on
producing global solution approaches able to return optimal solutions for such prob-
lems. Moreover, neither global solutions nor methods that guarantee that the optimal
solutions are found are available for many problems. As a consequence, even if such
methods are efficient and competitive, an accurate evaluation might not be possible and
comparisons are often performed against previous proposals rather than to the optimal
solution.

The role of global approaches to solve coverage and scheduling problems in WSN
has only been slightly explored [Gentili and Raiconi, 2013, Gu et al., 2009b, Liu et al.,
2011, Raiconi and Gentili, 2011, Rossi et al., 2012b]. In general it consists on the use
of centralized approaches used to define the operation and the structure of the network
during its lifetime. Several approximation algorithms have been proposed for metrics
as the lifetime, defined as the time until which sensors are able to satisfy the coverage
requirements and transmit the information to the base station. Unfortunately, such
approximations may lead to suboptimal solutions that are still far from optimal and
inefficient from the view point of the use of the energy. Efficient exact approaches have
been proposed as well for some specific classes of problems in WSN [Liu et al., 2011,
2009]; nonetheless, some considerations are not general and might require to be adjusted
to consider a wider set of characteristics that are possible in the WSN operations.

Column Generation (CG) is one of the most efficient global strategies to compute
energy efficient operation schedules in WSN. Based on a single model built over an
exponential number of variables, CG offers an elegant and natural method to tackle
lifetime and coverage problems in wireless sensor networks. By considering CG, it is
possible to represent different characteristics and requirements on the network opera-
tion within a single framework that, additionally, can be easily adapted to deal with
different objectives. The general idea is to divide the problem into two: (i) a restricted
master problem (RMP) used to consider the scheduling decisions, i.e., the operational
schedule for every single node (or subsets of nodes) during its lifetime and (ii) a pricing
subproblem (PS) that identifies configurations of the network sensors that might help
to extend lifetime or to improve the quality of coverage.

CG iterates between both, the RMP and PS subproblems exchanging the infor-
mation required to compute the solution that optimizes the desired objective. In the
context of WSN the use of CG to maximize lifetime has been recently explored [Gu
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et al., 2009a, 2011, Raiconi and Gentili, 2011, Rossi et al., 2012a, 2013, Singh et al.,
2013]. It has demonstrated to be an interesting approach that aims to globally solve
the problem considering the necessary constraints imposed by the sensor devices and/or
by the application. The simplicity of its use in WSN design relies on the fact that the
RMP does not need to consider integer variables and, in this way all the pressure to keep
the method efficient falls over the pricing subproblem. However, CG has still several
drawbacks that may limit its usability. The RMP may be defined over an exponential
size set of variables and, in addition, the algorithm can present slow convergence to an
optimal solution. Hence, by using CG it can be required to enumerate a large number
of columns with the implicit cost of a higher computational effort [Gu et al., 2009a,b].
Moreover, PS may be a difficult problem, what is a drawback considering that it has to
be solved at each iteration. Then efficient strategies to produce interesting columns can
be necessary with the purpose of exploiting efficiently the CG approach. As expected,
the combination of the two characteristics can be catastrophic for the CG performance.

In this thesis, the use of column generation as a general framework to optimize the
use of the energy in wireless sensor networks is explored. The study is devoted to the
use of CG to solve several versions of the maximum network lifetime problem in wireless
sensor networks (MLP) in which sensors are required to monitor discrete targets. The
use of CG is evaluated in the context of nodes scheduling where different objectives and
requirements for the deployed networks have to be continuously satisfied. Moreover,
the difficulties faced when using CG are analyzed in detail to provide helpful strategies
that might be more efficient.

1.2 Contributions of this thesis

A central part of this work is dedicated to the study of CG as a framework to solve cov-
erage and scheduling problems in WSN. Along the manuscript, it is demonstrated that
this technique can be efficiently combined with exact and metaheuristic approaches
to tackle the design of energy-efficient WSN. With this purpose, the use of hybrid
approaches combining linear programming, integer programming techniques and meta-
heuristic approaches in a single framework is studied. The main contributions of this
thesis are summarized below:

• It is shown how column generation can be “easily” adapted to tackle a wide range of
optimization problems in the context of energy-efficient design of WSN operations.

• The performance of the CG method applied to WSN is analyzed in its simpler
form based entirely on state-of-the-art solvers used to tackle mixed and integer
representations of the problem. Whenever limitations of these simpler implemen-
tations of CG are observed, the causes of poor performance are analyzed in order
to identify strategies to overcome the existing difficulties.

• The proposed CG-based method is used to solve several versions of the MLP in
wireless sensor networks. Characteristics such as connectivity to the base station



Outline 7

by using energy-efficient connected structures are evaluated. Moreover, it is shown
how these approaches can be efficiently adapted to consider extended versions of
the problem for which partial coverage of the targets is allowed.

• Several solution strategies based on heuristics and exact approaches are proposed
to solve the hard combinatorial problems corresponding to the PS found for the
different versions of WSN problems.

• It is shown that by combining efficiently the use of exact and heuristic approaches
within the CG framework, this method can be used to compute upper bounds
for the lifetime of WSN and to provide a tool to evaluate the performance of the
distibuted and heuristic approaches widely adopted for the WSN practitioners.

1.3 Outline

• Chapter 2 introduces the WSN and presents some generalities about the operation
of these devices. Moreover, an overview of the related work is proposed. The
advantages and disadvantages of these approaches are discussed. Finally, the
general characteristics of CG to optimize the use of the energy in WSN is provided.
The general modeling strategy adopted in this work is introduced and it is shown
how it can be adapted to different versions of the maximum network lifetime and
related problems.

• Chapter 3 evaluates the performance of CG in the context of WSN. CG is used
to solve the minimum coverage breach problem under bandwidth constraints
(MCBB), and its performance in this problem is deeply evaluated to characterize
its convergence. The use of several general strategies intended to improve the
performance of CG, and that can be extended to different WSN problems, is eval-
uated. The effect of those methods on the number of iterations required to achieve
the optimal solution is explored to highlight the advantages and disadvantages.
General remarks applied to CG for WSN optimization are also formulated.

• Chapter 4 addresses the maximum network lifetime problem (MLP) in wireless
sensor networks with connectivity constraints (CMLP). In order to solve the prob-
lem, an exact approach based on column generation that combines heuristic and
exact approaches is proposed. Moreover, it is extended to the case of targets par-
tial coverage, where it is not necessary to cover all of the targets but al least a
fraction α of them (α-CMLP). A hybrid sequential strategy to efficiently approach
a (near)optimal solution for the problem is proposed. Moreover, the use of the
techniques presented in Chapter 3 is adapted in this problem to further accelerate
the method.

• Chapter 5 extends the use of CG to solve a extended version of CMLP in which
sensors can adopt different energy consumption profiles according to the tasks
they perform within the network (CMLP-MR). In this section the use of exact



8 Introduction

approaches to solve both, the restricted master problem and the pricing subprob-
lem is explored. The use of Benders decomposition and constraint programming
approaches are evaluated and compared as strategies to solve the pricing subprob-
lem. Finally, a simple acceleration procedure is presented to help the method to
approach optimal or near optimal solutions efficiently.

• Chapter 6 provides a sequential strategy to solve CMLP-MR when partial coverage
of the targets is allowed (α-CMLP-MR). An evolutionary algorithm with connec-
tivity and coverage repair operators is proposed to efficiently solve the problem.
Then, a constraint programming strategy is added to keep the method operating
as an exact approach.

• The conclusion section provides a compilation of the findings of the specific re-
search on WSN addressed in this work. A summary of the results obtained and
the challenges faced when CG is adopted to solve the different versions of the opti-
mization problems is also presented. Additionally, the readers will find interesting
directions of research to extend the approaches proposed here to a general lifetime
optimization problem in WSN considering sensors with heterogeneous and diverse
capabilities. Possible extensions of the studied approaches not only to the field of
WSN optimization but in general to network design problems are indicated.

1.4 How to read this document

The structure of this manuscript is defined in such a way that the main chapters are self
contained so they can be read independently. The latter is a consequence of the fact that
Chapters 3 to 6correspond to published or submitted material for journal publication.
Consequently, when reading this document from the beginning to the end, the reader
will find inevitable repetitions.

For those readers interested in the whole content of the manuscript, it may be in-
teresting to make a special focus on Chapters 2 and 3 where the background of the
adopted approaches is described. Then, these readers may save some time by skipping
the introductory sections and skimming reading the generalities of the column gener-
ation adopted to solve the problem, as they rely on the same general structure. In
contrast, readers interested in the techniques and theory related with some of the spe-
cific problems addressed may directly start by reading those chapters. In the latter case,
the author will find all the information and a detailed description of the methodology
in the required section.



2
Energy efficient coverage in wireless sensor

networks (WSN)

2.1 Introduction

Wireless Sensor Networks (WSN) are one of the new promising technologies introduced
with the purpose of making easier the collection of data from natural or built environ-
ments. WSN are compound by small devices called sensors (or sensor nodes) provided
with sensing and monitoring capabilities that are deployed to monitor or control some
interesting phenomena. WSN have found space in a wide range of domains. Recently,
WSN have shown to be profitable in industrial settings, environmental monitoring, for-
est fire detection, and some applications where the use of traditional wired networks
was complex or even impractical [Biagioni and Bridges, 2002, Bokareva et al., 2006,
Chen et al., 2013, Dargie and Poellabauer, 2010, Gaura et al., 2010a, Kim et al., 2007,
Werner-Allen et al., 2006].

WSN are a classical example of a network composed by “cooperating objects" that
work in collaboration to satisfy an expected result e.g., the monitoring of a certain
interesting phenomenon and the communication of the collected information to the
final user. While the capabilities of a single sensor might be quite basic, the interest of
their use relies on the capabilities and new possibilities obtained by deploying hundreds
or thousands of these devices. Sensors can provide monitoring that has not previously
been available [Tech investor news, 2013]. They can operate unattended in conditions
of temperature, pressure or humidity, where previously was not possible to access with
measurement technologies to keep record of needed variables.

Although interesting applications for WSN have been well known for a long time,
the rise of WSN technology in industrial or environmental applications is recent. This
delay in WSN adoption is probably a consequence of the lack of technology necessary
to produce sensor devices at a low cost and the delay in the development of commu-
nication protocols appropriate for this kind of devices. Recent advances in material
science, networking and semiconductor technologies have empowered the development
of the elements required to implement large-scale WSN. Furthermore, new manufac-
turing process, micro-machining and technology improvements in power sources allow
finally to have access to these technologies at an attractive cost.

This chapter aims at introducing some generalities concerning the operation of WSN.

9
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Some technical details that characterize their operation are introduced with special em-
phasis in those concerning the energy-efficient design. The sources of energy consump-
tion in wireless sensor networks are presented and the abstractions and assumptions
considered for modeling along this research work are described. The related work asso-
ciated to that described along the manuscript is presented, as well as some generalities
of the solution approach adopted to solve different versions of coverage and scheduling
problems in WSN.

2.2 Overview of wireless sensors networks

As previously mentioned, WSN are composed by a large number of sensors deployed
to monitor an interesting phenomenon. Sensors are typically small electronic devices
composed by the combination of sensor circuits used to collect information from the
environment that might be application-dependent. A sensor node integrates sensing,
processing, and communication sub-systems. The sensing subsystem links the sensor
to the world and signals that it has to monitor. The processing subsystem provides
the sensor with the capabilities to perform medium to high complexity computations
and to make low complexity decisions. The communication module consists typically
in a radio unit that allows the sensor to communicate with other nodes around it by
using short range radio signals. Finally, all of these parts are coupled with a power
subsystem in charge of providing the energy required for the sensor nodes to perform
their operations.

Sensors are either passive or active [Sohraby et al., 2007]. Passive sensors are those
used to monitor signals as humidity, temperature, vibrations, etc. by using passive
measurement sensing units. Active sensors include elements as radars or sonars that
might require as much energy as the communication technologies in order to detect the
interesting signal from the environment. As expected, this characteristic complicates
the network design, as the WSN might require to answer to different energy draining
conditions that may heavily affect its performance. Current technology combines differ-
ent characteristics into a single device that may be used to accomplish different and/or
simultaneous tasks before exhausting all of its energy.

2.2.1 Types of networks

The application for which WSN are developed may certainly affect the challenges and
constraints faced when planning their operation. Depending on the environment in
which sensors will operate, the characteristics of the sensors, their technical specifica-
tions, and the strategies adopted to use efficiently their resources may require to be
adapted.

WSN may operate unattended in certain applications, e.g., when it is deployed in re-
mote of hostile environments. These unstructured networks may be randomly deployed
from a remote location where neither the location of the sensors nor the topology of the
network are known in advance, before sensors deployment. As a consequence, efficient
algorithms, protocols and strategies need to be designed to answer to these uncertain
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conditions in order to use the resources efficiently. By contrast, in structured networks
the location of the sensors can be pre-planned in such a way that the operational con-
straints of the network and the waste of sensors resources can be avoided a priori, before
sensors actual deployment. In other words, the WSN are designed to operate efficiently
rather than to respond to random conditions.

Yick et al. [Yick et al., 2008] classify the WSN into five types: terrestrial, under-
ground, underwater, multimedia, and mobile WSN. However, the limits between these
categories might be unclear and diffuse considering that current sensor technology may
embed a lot of different technologies and capabilities into a single node. An overview of
the specifications of these categories regarding the structure of the network and energy
consumption is outlined in Table 2.1.

Energy consumption
Type of WSN Cost Numb. of Sensors Transmission Sensing
Terrestrial Low High Low - Medium Low
Underground Medium - High High High High
Underwater Medium - High Low High Low
Multimedia Medium Low High Medium - High
Mobile Medium - High Low - Medium Medium Low - High

Table 2.1 – A comparison of WSN main families

2.2.2 Sensing models

One of the most important questions in WSN design is the coverage [Cardei and Wu,
2004]. Sensors are deployed to retrieve periodically information either from the environ-
ment or from some targets to keep record of the values of some interesting variables. As
expected, the coverage strongly depends of the characteristics and technology embedded
in the sensors. Sensor nodes may have different types of sensing devices that are selected
based on the requirements of the application [Amac Guvensan and Gokhan Yavuz, 2011].
Furthermore, each application may specify different conditions that impose the terms
in which coverage is provided.

The coverage that sensors provide strongly depends on the technologies they have
embedded and the application for which they are used. Consider for example a video
network used for surveillance, in this case the monitored area for each sensor might
correspond only to a region that lies within a certain angle and distance. By contrast,
a sound sensor may be able to monitor the phenomena occurring within a spheric 3D
region around it defined by the maximum sensing distance.

Maybe the simplest coverage model that can be considered is the binary disc model
in 2D regions [Zhu et al., 2012]. According to it, each sensor is capable of sensing only
from points located within the circular disk around it and located within a defined
sensing range Rs. This is probably the most studied model regarding to the coverage
in WSN and is the basis for a lot of theoretical advances in WSN theory. As the name
indicates, every point in the binary disc model only has two states, covered or uncovered
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according to its distance to the nearest active sensor. Nonetheless, this model can be
extended to consider probabilistic coverage in which the probability of coverage may
decrease as the distance to the active sensors increases [Zhu et al., 2012]. Figure 2.1
depicts the coverage and communication disk model in WSN. The external and internal
discs represent the communication Rc and sensing Rs ranges, respectively, for sensor
s1. Sensor s1 is able to establish communication with sensor s2 and is able to survey
the point κ1. The sensor s3 is disconnected as it is located out of the communication
range. In the same way, the points out of the disk are not covered, e.g., the point κ2.
Similar considerations may apply for a binary disc connectivity model.

Sensors may be deployed to monitor a continuous area around it, that is probably a
representative sample of the space around it, as in the case of temperature or humidity
sensors. In this case it is possible to say that sensors are deployed for area coverage
(see Figure 2.2a), and the interesting area can be seen as a collection of areas, derived
from the region covered by each sensor, to be covered. Point or target coverage consists
in the monitoring of certain points located at discrete positions in the space that may
correspond to positions on a grid or randomly distributed in the interesting space (Figure
2.2b) [Cardei and Du, 2005, Cardei et al., 2005, Jia et al., 2008, Rebai et al., 2014]. In
Barrier coverage the idea is to guarantee that any intrusion to an interesting area is
detected, which indicates that emphasis must be addressed to cover any point in the
frontier of that region [Kumar et al., 2005]. Finally, in WSN deployed for tracking
applications, sensors are at charge of tracing the position of a given target at every
moment. Target tracking is a typical and challenging application that in addition to
identify the set of sensors able to monitor the intrusion, may require the prediction of
the movements in order to optimize the use of the energy.

In addition to the previous categories, the applications may impose additional con-
straints in order to guarantee that the collected information is reliable and/or the quality
of the coverage is appropriated. In Q-coverage, for example, it is mandatory to cover ev-
ery target (area) up to Q times, i.e., with at least Q active sensors [Abrams et al., 2004,
Singh et al., 2013]. Different reasons may imply that the coverage is not geometric, for
example the covered area might not be a perfect disk around the sensor, but a region
with a different shape (see Figure 2.2c). In the case of directional sensor networks, the
region covered by the sensors may be a conic region or a semicircle in the 2D space (see
Figure 2.2d). All of these considerations may affect the performance of the sensors and
the operations planning in WSN; however, in practice, the modeling can be simplified if
it is possible to assume that every sensor is aware of the regions (targets) that it covers.
A complete review of coverage problems in WSN is presented by Li and Liu [Deying
and Liu, 2009].

Relations between area coverage and discrete target coverage are well known [Gallais
et al., 2008]. For example, area coverage may be represented by using discrete points
representing either the regions covered by the same set of sensors or the intersection
between the frontiers limiting the covered area. This kind of relationships can be ex-
ploited when area coverage problems are considered in such a way that approaches used
for discrete coverage can also be used to approximate the coverage of continuous areas.
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munication ranges

A1

A2

A3

A4

A5

A6

A7

A8

A17

A16

A9

A10

A11 A12

A13 A14

A15

A15

(a) Area coverage with sensors (b) Target coverage with sen-
sors

(c) Irregular sensing area (d) Directional sensors

Figure 2.2 – Different models for coverage in WSN
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2.2.3 Connectivity

If sensors are not provided with storage capabilities, are located distantly, or the in-
formation must be addressed on time when it is available, connectivity represents an
important issue in WSN. The connectivity requirement is met when every active sensor
is able to find a path to send data to the final user or sink. Sensors use their transceiver
units to communicate the information they collect or retransmit the information re-
ceived by other sensors on the network. In general, communication is addressed to a
final user or sink via multi-hop wireless communications. Consequently, in order to
establish communication and transfer the information, each sensor on the network re-
quires to be able to find a path to the sink for the information it collects. If such a path
is not available, the sensor is isolated and is useless within the network.

In general, connectivity between sensors is achieved through wireless signals that
are not necessarily directed but scattered in the space through an undirected antenna.
Thus, connectivity is obtained through a virtual backbone [Lu et al., 2005] representing
these virtual communication links, and the paths used to address the information to
the final user (Figure 2.3). Those paths may require to be multiple (m-connectivity) in
order to improve the resilience of the network and make it fault tolerant. If this is the
case, the network structures will be more complex than a tree backbone.

Relations between coverage and connectivity have been previously described. Tian
et al. [Tian and Georganas, 2005] demonstrate that in sensors deployed to accomplish
area coverage, connectivity is guaranteed if the transmission range is at least as big
as twice the sensing range. However, the same observation is not valid anymore when
discrete target coverage is considered [Lu et al., 2005]. In addition, this assumption
is not always realistic and, as a consequence, current approaches to guarantee area
coverage and communication need to consider both requirements simultaneously.

Figure 2.3 – Virtual backbone

2.2.4 Energy consumption in wireless sensors

Energy consumption in WSN strongly depends on the characteristics of the sensor
node [Anastasi et al., 2009]. Indeed, recent research demonstrates that there exist huge
differences in the energy consumed by different commercial nodes [Raghunathan et al.,
2002]. It has been claimed that certain remarks remain present almost in every current



Overview of wireless sensors networks 15

sensor node, however, no agreement on this subject has been reached yet. In general,
it is assumed that the communication subsystems account for the largest portion of
the energy consumed by sensor nodes [Anastasi et al., 2009, Farahani, 2008]. However,
in certain applications the sensing, the signal processing and the hardware operation
consume an important amount of power as well [Puccinelli and Haenggi, 2005].

The function of the sensor nodes in the WSN consists in detecting the interest-
ing phenomena, processing the collected information, and (re)transmiting the collected
data. Thus, consumption of energy at the sensors is consistently related with these
activities [Sohraby et al., 2007]. Power consumption in WSN mainly comes from three
factors: communication, sensing and computing.

• Communication: It consists on the energy consumed by the transmission and
reception modules embedded in the sensor. In general, sensors employ low energy
consumption devices; nonetheless, it generally accounts for the bigger portion of
the energy consumed. Moreover, the intensity of the use can be an important
source of consumption and networks with higher sampling rates necessarily drain
the energy faster than networks that sample occasionally.

• Sensing: Different applications may imply a lot of differences in the energy con-
sumption rates associated with the sensing activities. Sensors may be used to
monitor easy variables as the temperature, which only require the use of a pas-
sive device with a low energy consumption rate. However, some applications (for
example the ultrasonic sensors) may require the sensors to generate signals and
capture the answer, which can lead to a higher energy consumption.

• Computing and information processing: This is the energy consumed by
the sensors to perform data processing and decision making tasks. Current tech-
nologies allow sensors to perform even complex computation tasks; nonetheless, it
means that energy expenses may increase. Each sensor receiving data either raw
from the environment or processed originated in other sensors might be required
to encode and create packets with the information at expenses of higher energy
consumption rates.

In multi-hop WSN, the communication task certainly implies harvesting, processing
and re-transmiting the information collected by other sensors, consequently the power
consumption could increase depending on the traffic of the network.

The energy consumption rate associated to a sensor node is also related with the
activity that it performs within the network. The rate at which power is drained from
the sensors might not be constant; consumption rates may depend on the different roles
assumed by the sensors, and that can be used to save energy. Some operating modes
(roles) that they can adopt can be classified into the four following categories [Zhu et al.,
2012]:

• On-duty: All the components of the sensors are operative in order to collect
information about the interesting variables, process the information, perform any
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type of computation and (re)transmit the information to other sensors or the final
user.

• Used for transmission: In this case the sensor is only used to re-transmit the
information collected by other sensors. It is not retrieving any information from
the environment but still has to perform any type of computation to transmit the
information it receives. The sensor is only used to help keeping connectivity within
the different parts of the network and providing a path to send the information
to the final user.

• Used for coverage: Sensors can turn off the communications technologies in
order to save energy and avoid redundant information interfering in the networks.
Sensors can activate their communication modules as a response to a phenomenon
detected or may store the information in a memory unit, if sensors are provided
with it, to transmit it just in the right moment when it is required.

• Off-Duty: The sensor is in an idle state in which it is neither used for com-
munication nor for sensing purposes and it consumes energy at a negligible rate
(typically some self-discharge is observed). The sensor may have some mechanism
that will reactivate the sensor once it is required.

As expected, each of the modes above consumes power at different rates depend-
ing on the sensor modules involved in the operations. Moreover, additional variables
may influence the power consumption of the sensors. The power consumed might in-
crease as a consequence of the traffic that passes through a sensor node due to the
amount of transmissions established and the processing, packing and retransmission of
the information. Similarly, the energy consumed by transmission may depend on the
distance to the receptor node (sensor of base station). A classical example of sensors
draining energy at different rates is observed in sensors that can adjust their sensing or
communication ranges.

2.3 Lifetime and coverage optimization on WSN

Several studies have been devoted to represent all of the aspects of the energy con-
sumption, the network operations, and the lifetime in WSN. Different characteristics
and specifications of the network operation have been provided, some of them designed
with the specific purpose of network optimization in one of the large number of aspects
involved in WSN design. WSN are resource constrained devices that impose big chal-
lenges to overcome the operational constraints and successfully deploy these devices
without neither affecting their reliability nor wasting their energy. The use of energy
and the knowledge of its consumption is a major concern to be considered when dealing
with WSN design.

Lifetime is probably one of the most studied metrics in WSN; however, its definition
might be flexible and application specific [Sha and Shi, 2005]. A lot of definitions have
been proposed according to different specifications and requirements for the network
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operations. It was classically defined as the time until which the first node fails [Shi,
2007]. Nonetheless, this definition does not take into account that WSN can be still
fully operative and able to survey the required phenomenon after some sensors fail, e.g.,
densely deployed WSN for temperature monitoring. Consequently, several definitions
based on the availability of nodes, the sensor coverage, and the connectivity have been
also explored. For a complete review of definitions of network lifetime in WSN, the
reader may be referred to the manuscript of Dietrich et al. [Dietrich and Dressler,
2009].

In the context of this work, network lifetime is defined in terms of sensor coverage
and network connectivity. It is defined as the time interval during which sensor network
can perform the sensing functions and is able to transmit the collected information to
the sink used to compute or retransmit the information [Cardei and Wu, 2004]. In other
words, the lifetime of a sensor network is the total time that the WSN have sensors with
the necessary energy to provide the required level of coverage of the interesting phe-
nomena and transmit the information to the sink. This definition does not make any
assumption about the characteristics of the coverage that has to be delivered. Conse-
quently, it is possible to extend this definition to different scenarios, e.g., when sensors
are required to overcover targets by using several sensors, sensors are heterogeneous, or
when sensors are used to survey a 3D region.

2.3.1 Related works

WSN technology is still on a development phase and requires to be optimized for a
successful adoption. Some works are devoted to improve the performance of WSN not
only in the technical aspects, the technology embedded, their sensing capabilities, and
their power sources, but also to take the maximum advantage of the possibilities they
offer and the limited resources they have.

Several metrics have been defined to evaluate the lifetime and the efficiency of the
energy usage in WSN [Dietrich and Dressler, 2009]. Lifetime and coverage are typi-
cally related objectives that are commonly used to define network operation in WSN.
Whereas it is interesting to provide reliable and timely coverage, it might be also im-
portant to guarantee the operation of the network as long as possible. As could be
expected, network lifetime strongly depends on the battery lifetime of each individual
node. Coverage depends on the availability of sensors; moreover, reliable coverage might
require the use of extra sensors that can reduce network lifetime.

According to the capabilities of the sensors, the purpose of the network, or the inner
structure of the device, it is possible to create a wide classification of WSN and its
energy usage. Anastasi et al. [Anastasi et al., 2009] present a comprehensive review
of energy conservation schemes on WSN. The authors consider approaches for energy
conservation based on power management on sensor nodes as well as approaches based
on data acquisition and energy-efficient protocols. From the viewpoint of coverage
and connectivity, the applications of WSN can be classified as: (i) Area coverage, (ii)
Target coverage, and (iii)Target tracking. Zorbas et al. [Zorbas and Douligeris, 2010]
present a survey considering the main characteristics studied by researchers regarding
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the energy efficiency of WSN used for target coverage. If a continuous region requires to
be monitored, it has been demonstrated that area coverage can be accurately represented
by discrete points corresponding to the intersections of the circles delimiting the covered
area for each sensor [Gallais et al., 2008].

Most approaches proposed to efficiently use sensors energy in WSN rely either on
power aware configuration of the networks or efficient scheduling of sensors operations.
In the former case, the objective is typically to minimize the energy consumption asso-
ciated to communication, coverage and computation by finding energy efficient network
topologies involving all the sensors [Abdulla et al., 2012, Berman et al., 2005, Santos
et al., 2012]. In this way, longer lifetimes are achieved by avoiding misusing the energy
in tasks that are not necessary or use it inefficiently inefficient. This approach is partic-
ularly useful when sensors are not densely deployed and are required to be active most
time throughout network lifetime. In the second case, sometimes called duty scheduling,
the objective is to allocate tasks to the sensors and timing for these operations during
network lifetime. This strategy is typically adopted when more sensors than required
to satisfy the coverage and connectivity constraints are available, e.g., remote or hostile
environments where it might not be possible neither to decide the placement of the
sensors a priori nor to replace sensors batteries after they are deployed [Bokareva et al.,
2006, Castaño et al., 2014, Rossi et al., 2012a].

While power aware configuration and routing schemes try to extend network lifetime
by minimizing the energy consumption on nodes, this approach might still have some
problems. In power aware schemes the decisions considered can lead to overload some
particular sensor nodes which typically lead to network lifetime shortages. This problem
can be even worst if network lifetime is bounded by the sensors located one-hop away
from the base station; an incorrect use of energy can lead to isolate the base station from
the network and make the network useless (see the Hot-spot problem [Abdulla et al.,
2012]). In contrast, approaches pointing to duty scheduling typically solve the problem
through global decisions that ensure that power management decisions on nodes are
aware of this characteristic.

In densely deployed WSN, it is possible to satisfy the coverage and communication
requirements by activating only a subset of sensors. Then, it is possible to extend the
lifetime by activating sequentially these subsets at different moments in time in such
a way that operational constraints are continuously respected. This approach, known
as duty scheduling is focused on the strategic planning of the network operation. The
general idea is to put a subset of sensors in active mode, while ensuring coverage and
connectivity to the sink, and to schedule subsets of active sensors over the time [Cardei
et al., 2005, Castaño et al., 2013, 2014, Lu et al., 2005, Zorbas et al., 2010].

2.3.2 Duty scheduling on densely deployed WSN

In order to extend the lifetime, a proven useful approach is to divide the network into a
set of cover sets (or feasible subgraphs) and to schedule them [Cardei et al., 2005, 2006,
Gentili and Raiconi, 2013, Gu et al., 2011, Lu et al., 2005, Singh et al., 2013]. Then,
only sensors in the active set operate while the rest are inactive. Two main approaches
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have been adopted, disjoint and non-disjoint sets. In the former case, a selected subset
of sensors do not share nodes in common with any other throughout network lifetime,
i.e., it is used until the nodes in that structure run out of energy. As expected, only
one cover set is active at any time and the remaining ones might be in a sleep state in
which the sensors do not consume energy (or consume at a very low rate). In the latter,
it is allowed to use sensor nodes in different network structures that are scheduled to
optimize the use of energy while considering sensors batteries’ constraints.

The basic ideas behind duty scheduling were first introduced by Slijepcevic and
Potkonjak [Slijepcevic and Potkonjak, 2002], who propose the use of disjoint subset
of sensors to extend the lifetime. They propose a heuristic approach to maximize
the number of mutually exclusive subsets that will operate until sensors deplete their
battery. This concept has been remarkably exploited by researchers in the field of WSN
optimization and has conducted to a wide spectrum of similar approaches considering
a high number of special characteristics of the network operation [Cerulli et al., 2012,
Dhawan et al., 2006, Gu et al., 2009a, Jia et al., 2008, Rossi et al., 2013, Wang et al.,
2009].

The use of disjoint cover sets has been largely explored by researchers, and efficient
approaches have been proposed to tackle different problems [Ahn and Park, 2011, Cardei
et al., 2005, Chen et al., 2010, Slijepcevic and Potkonjak, 2002]. The use of disjoint
sets offers robustness on the network operations in the sense that an specific node only
belongs to a subset and its failure does not affect different subsets, and only affects the
quality of the coverage provided for the current set. Nonetheless, this approach can lead
to shorter lifetime as decisions taken are not globally directed to maximize lifetime but
the number of cover sets.

Recently, the adoption of non-disjoint approaches to maximize the lifetime in WSN
while considering additional characteristics of the network operation has received an in-
creasing attention [Cardei and Du, 2005, Raiconi and Gentili, 2011, Wang et al., 2009].
In this case the objective changes from maximizing the number of subsets to the identi-
fication of optimal schedules for subsets of sensors while respecting the battery capacity
and the network constraints. In some cases, the problem can be efficiently solved in
polynomial time [Liu et al., 2011, 2007]; however, it largely depends on the character-
istics of the network that are considered and in most cases the problems involving the
optimal use of energy in WSN require to face hard combinatorial problems. Recently,
Gu et al. [Gu et al., 2011] demonstrate that, in general, the optimal schedule of sensor
nodes in target coverage problems can be represented by using patterns (indicating the
energy consumption rate of each sensor) and lately propose a solution method based on
column generation (CG) to address a lifetime problem in WSN [Gu et al., 2009c].

In Figure 2.4a it is depicted the idea of non-disjoint subsets previously discussed.
Three sensors S = {s1, s2, s3} are used to monitor three targets K = {κ1, κ2, κ3} and
send the collected information to the base station BS in the middle of the figure.
The inner circle represents the area within which a target can be considered covered
by a sensor, and the external circle represents the communication range to establish
communication between sensors and the BS. As observed, none of the sensors is able
to monitor all the targets at the same time. Consequently, if the three of them have to
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be covered, it will be necessary to turn on several sensors simultaneously. By contrast,
activate all of them at the same time is not an intelligent strategy, as it consumes
more energy than actually required to provide coverage of the targets. If each sensor
battery capacity is assumed to provide energy to run the sensor 1 unit of time while
used for coverage and communication purposes simultaneously, it is possible to extend
the lifetime by activating subsets of sensors in rounds. So, sensors s1 and s2 can be
active for t1 = 0.5 time units, then sensors s2 and s3 can operate for additional t2 = 0.5
time units and the battery of s2 has been depleted; nonetheless, sensors s1 and s3 have
still 0.5 time units of remaining energy that can be used to extend the coverage time
up to 50% compared to the initial proposal (see Figure 2.4b).
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Figure 2.4 – Optimal schedule for the operation of a simple network

2.3.3 Battery life and network lifetime

Gu et al. [Gu et al., 2011] present an interesting and simple model, assuming the binary
disc coverage model that represents the lifetime of a WSN and is independent of the
inner characteristics of the network operations. The latter model is adopted as the
basis for the use of column generation and, indirectly, guides the research presented in
this work. Consider a set S = {s1, s2, s3...sm} of sensors deployed to monitor a set of
targets (points or regions) K = {κ1, κ2, κ3...κn}. Each sensor is provided with an initial
battery charge bsi and is aware of the targets it covers. Let Uκi

⊆ S denote the set of
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sensors that can monitor the target κi. The indicator function xsi(t) is set to 1 if sensor
si is active at time t. The function esi(t) indicates the total energy consumption rate
assumed for the sensor si to perform the coverage and communication tasks. If coverage
of the targets needs to be guaranteed at every moment during network lifetime, it is
possible to represent it through the set of constraints:

∑
si∈Uκk

xsi(t) ≥ 1 ∀κk ∈ K (2.1)

Additionally, it is possible to consider the battery limitations for each sensor until
network lifetime (T ) is reached by representing the cumulative energy consumption
through the following constraint:

∫ T

0
xsi(t)esi(t) dt ≤ bi (2.2)

Any schedule for the sensors activation must guarantee that both constraints above
are respected, no matter what the objective is. Additionally, extra features such as
the connectivity, partial coverage of targets to extend lifetime, or extra requirements
of coverage can be introduced by either modifying the previous equations or adjusting
additional ones.

Although complex models can be used to represent the sensors’ energy reservoirs
during its lifetime, simplifications considering battery efficiency factors are typically
adopted to estimate the actual lifetime of the battery [Farahani, 2008]. Battery effi-
ciency factors can be used to estimate the actual duration of the battery and, finally,
to construct accurate lifetime models. Consider Figure 2.5 which represents the in-
stantaneous energy consumption rate and the remaining energy of sensor s1 in Figure
2.4. Sensors are able to establish reliable coverage and communication only when the
remaining energy is above certain threshold level (TH). If the available energy is below
that threshold, the sensors might fail and their appropriate operation cannot be guaran-
teed anymore. The Figure 2.5 presents a simple linear consumption model, the energy
is consumed at a constant rate when sensors are active and, consequently, the energy
stored decreases linearly when the sensor is providing coverage and/or communication
capabilities in the network.

2.4 Column generation based approaches for wireless sen-

sor networks optimization

This section introduces some generalities of the maximum network lifetime problem in
WSN. The model will be defined for a generic problem without making any assumption
on the energy consumption models adopted for that problem. Then, the characteristics
of the method proposed to solve the problem will be presented and it will be indicated
how it can be extended to solve other related problems addressed in this work.

As it was metioned in the introductory section, Column Generation (CG) has been
proposed as an efficient strategy to solve coverage and scheduling problems in WSN.
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Figure 2.5 – Energy consumption and remaining energy during sensor lifetime

This strategy decomposes the problem in two: (i) a restricted master problem (RMP),
and (ii) a pricing subproblem. RMP is used to solve the original problem over a reduced
part of the solution space expressed by a subset of columns (variables). The PS is used
to identify additional columns that can bring new information to RMP and can be
exploited to further improve the objective function of RMP. CG operates iteratively;
at the first iteration RMP is constructed over the reduced set of columns and new
interesting columns are added by using any possible method useful to solve PS. At each
iteration RMP is solved, and the dual variable values associated to the optimal solution
are used to check, through the reduced cost criterion, whether or not it exists a new
profitable column to improve the objective function. If a new column is available, it
is added to RMP and a new iteration is performed; otherwise, the algorithm finishes.
If such a column does not exists, it is possible to guarantee that current solution is
optimal. A general overview of the CG algorithm is depicted in Figure 2.6.

2.4.1 General model and basic ideas

Consider a set S = {s1, s2, s3...sn} of sensors used to monitor some interesting phenom-
ena. Let G(S,A) denote a graph where A is the set of arcs used to indicate whether
or not communication is possible between the two sensor nodes u, v ∈ S. A commu-
nication link between u and v can be established when the node v is located within
the communication range Rc of node u. In order to have symmetric connectivity, it is
required for node v to be located within the communication range of u; otherwise we
say that asymmetric connectivity exists. An arc a(u, v) ∈ A exists only if the nodes u
and v can establish a communication link. A subgraph G′[S ′,A′], where N ′ ⊆ N and
A′ ⊆ A, is feasible if it can satisfy the purpose for which the WSN is deployed, i.e.,
coverage, while satisfying some specific constraints as connectivity to the base station,
multiple coverage of the interesting phenomena, network resiliency among others. The
subgraph Cj ⊆ G is the feasible subgraph obtained after allocating energy consumption
rates to the nodes to perform the coverage and connectivity requirements. The set of
all feasible subgraphs is denoted by Ω.
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Figure 2.6 – Overview of the column generation algorithm

The total energy consumed for a sensor node in the subgraph Cj can be computed
as the sum of the individual energy consumption associated to communication tasks
Et

vj , sensing tasks Es
vj , the energy required to keep the sensors operating Ea

vj and the
self-discharge rate of the sensor when it is idle Ei

vj . So, energy consumed depends on
the task that sensors performs within the network. Let tj denote the time interval
allocated to the subset Cj ∈ Ω, the Maximum Network Lifetime Problem in WSN can
be defined as finding the optimal pairs (Cj , tj) such that the battery lifetime of sensor
nodes is respected. Assuming that the set Ω is known, the optimal lifetime, and the
time intervals that each subgraph Cj ∈ Ω is used can be computed through the following
model:
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The maximum network lifetime problem (MLP)

Maximize:
∑

j|Cj∈Ω

tj (2.3)

∑
j|Cj∈Ω

(Ea
vj+Es

vj+Et
vj+Ei

vj)tj ≤ bsv ∀ sv ∈ S

(2.4)
tj ≥ 0 ∀ j|Cj ∈ Ω (2.5)

The objective is to maximize network lifetime (Eq. 2.3), i.e., the time until which
network can guarantee the operational constraints by using only feasible network con-
figurations (coverage, connectivity, etc.). Constraints (Eq. 2.4) are used to guarantee
that sensors are only scheduled to operate respecting their battery limits. Of course,
time variables are linear and continuous (Eq. 2.5).

2.4.2 Related problems and directions of research

Although the model above might be easily solved by using state-of-the-art optimization
solvers, the overall problem might require a bigger effort. As expected, by assuming
that the set Ω is available, it is assumed that an exponential set of variables is available.
However, most times it is not the case and the full enumeration of the elements of such
a set is not practical. Moreover, even if somehow they can be enumerated, only part of
them will be part of the optimal solution [Dantzig, 1963]. As a consequence, the use
of the CG framework previously discussed can be a valuable strategy to address the
problem efficiently by enumerating only those columns that look promising to improve
the objective function.

Recent research has demonstrated the efficiency of CG to address different lifetime
problems in WSN. This approach has been shown to be successful even when new
considerations and models regarding the energy usage of these devices are included. It
is precisely in that flexibility that relies the interest of the use of CG to solve coverage
and scheduling problems in WSN. CG can be “easily” modified to represent different
requirements on the network operations, the new inner characteristics of the energy
consumption, or the specifications about network structure.

This work makes emphasis on the use of CG to solve two related problems in WSN
design. The first concerns the use of CG to solve optimization problems in WSN de-
ployed to provide coverage of discrete targets. This research is mainly focused on the
case where information is required to be transmitted to the base station and the cover
sets correspond to a connected structure. The second case corresponds to WSN in which
partial coverage of targets is allowed as a strategy to extend the lifetime. The latter
case includes as well WSN in which lifetime is more important than any other metric
and the purpose of the network is to monitor the environment as well as possible [Thai
et al., 2008, Wang et al., 2009].
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2.4.2.1 Maximum network lifetime

CG has been recently explored in the context of WSN optimization to solve coverage
problems in which sensors have different characteristics. This fundamental result is
supported by Gu et al. [Gu et al., 2009b] who evaluate the use of CG to solve several
versions of the maximum network lifetime problems in WSN. Nonetheless, the author’s
conclusions seem to indicate that even if CG is an interesting approach to tackle this
problem it evidences some limitations when complex characteristics of the network are
included.

The convergence of CG is the main problem observed, and the authors indicate
that it might be necessary to use a heuristic criterion to decide whether or not to stop
the optimization process. Raiconi and Gentili [Raiconi and Gentili, 2011] evaluate the
use of CG in a WSN problem where connectivity to a base station is required. The
authors results confirm that the basic implementation of CG might be inefficient and
can be easily outperformed by using global heuristic approaches. If connectivity is not
considered, the use of a pure CG problem using ILP to address PS can be efficient
enough in certain problems [Cerulli et al., 2012, Gu et al., 2009c, Rossi et al., 2012a,
Singh et al., 2013]; however, the complexity of PS increases as additional characteristics
are considered and the use of sophisticated approaches seems to be necessary.

2.4.2.2 Partial coverage and lifetime

In some applications, it is possible to cover only partially the interesting phenomena
and still be able to accurately estimate the values of the required variables [Gentili and
Raiconi, 2013, Li et al., 2011, Liu and Liang, 2005], e.g., in environmental temperature
monitoring. If this is the case, it is possible to neglect certain targets or regions as a
strategy to extend network lifetime. In other applications it might be more important
to guarantee a minimum network lifetime than it is to cover fully the interesting phe-
nomena (or the interesting targets). These two problems might be easily captured and
represented under the CG framework studied in this work.

Previous attempts to solve this problem are presented by Wang et al. [Wang et al.,
2009], Chen et al. [Cheng et al., 2005] and Rossi et al. [Rossi et al., 2012a] who addressed
particularly two target coverage versions of the problem namely the minimum coverage
breach problem under bandwidth constraints (MCBB) and the maximum network life-
time problem under bandwidth constraints (MNLB). In the former, the purpose is to
guarantee that coverage is provided during at least a minimum lifetime T0 by using WSN
that are constrained in the bandwidth, i.e., the number of sensors that can collect and
transmit information simultaneously. This constraint in the number of active sensors
may imply that all targets cannot be covered simultaneously, so a global measure that
computes an average of the total uncovered targets during lifetime, called the breach
rate, is defined and is used as the objective to be optimized. In MNLB, a limit on the
value of the breach is established and the objective is to maximize the lifetime keeping
this value under the desired level of coverage.

Unlike the MCBB and MNLB, where a minimum number of targets covered is not
obligated, it is possible to consider an additional version of the problem that obligates
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to cover at least a fraction α ∈ [0, 1] of the targets at every moment during the whole
network lifetime. In this way, it is possible to take advantage of the reduced levels of
coverage to extend the lifetime considering that exists a clear trade-off between those
objectives. Figure 2.7 presents a BoxPlot illustrating the relations between the value α
and the increment in lifetime (%). As observed, the variations on lifetime are interesting
even for high values of α demonstrating the importance of considering these problems
in WSN design when it is possible.
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Figure 2.7 – Relation between coverage and lifetime in WSN

In order to adopt the CG framework to solve these two problems, small modifications
of the method must be performed. In the case of MCBB, lifetime can be included as
an additional constraint in the model (2.3-2.5) and the objective function must be
addressed to minimize the breach rather than maximize the lifetime. In the case of
MNLB, an additional constraint considering the uncovered targets can be added whereas
the objective function (Eq. 2.3) remains untouched. Finally, in the problems in which
partial coverage is allowed, the model does not need to be modified; however, in general,
the structure of the columns must guarantee that the operational constraints of the
network, the energy consumption model and additional requirements are considered.

2.4.2.3 Strategies to solve the pricing subproblem

Even the simplest version of the maximum network lifetime problem may imply that a
new hard combinatorial problem needs to be solved at each iteration of CG. In the case,
where connectivity is neglected and sensors assume a unique role, the PS corresponds
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to a weighted set covering problem, one of the 21 Karp’s problems known to be NP-
Hard [Karp, 1972]. Even if efficient strategies have been already developed to address
some combinatorial problems, this is not always the case. Indeed, by considering the
connectivity requirement the effort required to solve PS is largely increased [Klein and
Ravi, 1995]. As a consequence, the use of more sophisticated strategies to address PS
and accelerate the convergence of CG must be developed to keep this approach operating
as an efficient strategy.

In this work, we adopt three different strategies to improve the performance of CG
when applied to WSN optimization. Along the manuscript it is shown how it is possible
to take advantage of the characteristics of the models used, the efficiency of the heuristic
procedures and the information provided for the PS to boost up the CG method.

Heuristic approaches Taking advantage of the fact that CG does not need a proven
optimal solution to improve the objective function of RMP, the use of efficient heuristic
methods is a natural choice when designing CG algorithms. The use of hybrid strategies
combining CG with other approaches has been largely explored [Blum et al., 2008, Talbi,
2013]. For example, in the context of vehicle routing problems CG has been successfully
combined with heuristic approaches where columns represent abstractions of the routes
and the oracle is used as a route generator taking advantage of interesting advances in
methods to solve routing problems. Nonetheless, the drawback of this approach relies
on the fact that, without using an exact approach to solve PS, the global approach is a
heuristic and cannot guarantee that a solution of RMP is optimal. As a consequence,
even if a good method is used to compute solutions for PS, at least one iteration must
be performed with an exact approach to keep CG operating as an exact approach.

In this work, the reader will find that several heuristic approaches are either neces-
sary or worth as strategies to solve PS efficiently and improve the performance of CG.
Several problems addressed in this manuscript are successfully tackled with heuristic
approaches. Problems as the weighted set covering [Chvátal, 1979], the node weighted
Steiner tree [Agrawal et al., 1991, Guha and Khuller, 1999] and other related network
design problems are addressed in this work and the heuristic approaches are further
exploited to help improve CG performance.

Exact approaches The use of efficient exact approaches to solve the PS is necessary
to guarantee that solutions found through CG are optimal. In some cases it is possible
to take advantage of the structure of PS to solve it efficiently through exact approaches
that, additionally, help to keep the global solution method as an exact approach. If
exact methods and heuristics are available, it can be worth to take advantage of the
best characteristics they offer by combining them in a single method. This approach
is specially useful when the performance of the heuristic is weak and it is difficult to
improve, yet it produces suboptimal solutions fastly for the PS. Then, each time it fails
to find a profitable column, it is replaced by an exact approach which might be required
several times before reaching the optimal solution. As a consequence, the performance
of such an exact method used to address PS is key for the success of the adopted CG.
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This research explores the use of exact approaches to address PS as a unique strategy.
Thus, CG is combined with tools as Benders decomposition and branch-and-cut to solve
the implicit network design problems obtained as subproblems in the proposed CG
method. Moreover, interesting approaches combining CG and constraint programming
are implemented and proved to be very efficient.

Accelerating Column generation It is well known that column generation might
present some problems that may limit its usability. Additionally to the difficulty of the
PS observed in certain cases and addressed through the use of the heuristic and exact
approaches previously described, CG may present some problems typical of the structure
of the approach. Convergence is an important issue regarding the implementation of
CG. While in the first iterations the evolution of the objective function is fast, in the
latter iterations these improvements may be marginal and require a large number of
iterations to compute the optimal solution (tail-off effect) [Gilmore and Gomory, 1961,
1963]. Several causes have been identified for such problem, however, the research points
to indicate that it is mostly a consequence of the instability of the dual variables [Gilmore
and Gomory, 1961, Lübbecke, 2010]. Additionally, it can appear a heading-in effect when
implementing CG that can largely affect its performance [Vanderbeck, 2005]. It consists
in the successive enumeration of irrelevant columns at the first iterations of CG while
not enough information is available to produce interesting columns.

In order to successfully use CG, several methods have been proposed to overcome
the typical problems affecting the convergence of CG [Ben Amor et al., 2006, Du Merle
et al., 1999, Elhallaoui et al., 2008, Marsten et al., 1975, Rousseau et al., 2007, Wentges,
1997]. The use of some of these techniques is explored in this work in the context of CG.
Moreover, it is explored the use of methods returning several and diverse columns at
each iteration of RMP to help accelerate the convergence of CG [Moungla et al., 2010].
Finally, a simple technique used to avoid the heading-in effect is adopted to improve
the performance of the CG method.
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A numerical evaluation of acceleration strategies
for column generation applied to wireless sensor

networks optimization

This chapter addresses a specific problem presented in Wireless Sensor Networks, the
minimum coverage breach problem under bandwidth constraints. To solve it, a column
generation approach is adopted. Column generation is known to present issues that
may lead to slow convergence. This phenomenon used to be associated to an unstable
behavior of the dual variables caused by degeneracy of the master problem. The scope
of this research, for the wireless sensor networks optimization, is to evaluate and com-
pare a set of stabilization and intensification strategies, in order to identify their effect
on the behavior of the dual variables, the number of iterations required for the column
generation algorithm and finally on the computational time required to solve the prob-
lem. The results show that both strategies succeed to accelerate the proposed column
generation approach. Furthermore, numerical evaluations indicate that intensification
strategies might be useful to tackle the unstable behavior of the dual variables and to
accelerate the solution process through column generation.

3.1 Introduction

A Wireless Sensor Network (WSN) is a net made of a large amount of battery-powered
wireless sensors that are deployed to accomplish a set of monitoring and communication
tasks. Two main considerations on WSN design are the energy usage and the coverage.
Unfortunately, these two objectives may be contradictory. When a WSN is deployed to
monitor a set of discrete targets, e.g., to guarantee a minimum level of coverage, network
lifetime can be considered as the time until WSN cannot satisfy that constraint. By
contrast, if it is permitted to undercover the set of targets, network lifetime might be
imposed as an operational constraint. As a consequence, a lower level of coverage may
be necessary to guarantee that lifetime achieves the desired duration.

Some applications require the WSN to operate in remote or hostile environments.
Consequently, a predefined location of sensors might not be possible, neither the re-
placement of batteries during network lifetime. When this is the case, the control of
sensors’ energy must be done in situ, i.e., after sensors are actually deployed and net-
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work topology is known. Thus, to extend the network lifetime, it might be necessary to
adopt strategies to organize the use of the sensors in these uncertain conditions. In this
way, it can be possible to improve the efficiency in the usage of sensors’ battery budget
while appropriate coverage of the interesting phenomena is provided.

A sensor is active if it is performing monitoring, processing, etc. tasks. If not, it
is in an idle state in which it operates at negligible energy consumption rate and does
not perform any activity within the network. In order to extend network lifetime, a
typical approach is to deploy more sensors than actually needed. Then, it is possible to
extend network lifetime by allocating the sensors to different subsets (covers). In this
way, network lifetime can be extended by activating the covers (the sensors that belong
to them) sequentially to monitor the targets assigning a time interval during which they
are used that respects the battery capacity of each sensor [Deschinkel, 2011, Gentili and
Raiconi, 2013].

WSN networks can be bandwidth constrained, e.g., the number of channels used to
transmit the information is limited and some sensors can not have channel access for data
transmission [Cheng et al., 2005, Wang et al., 2009]. In this case, full target coverage
can no longer be used as an indicator of a network properly operating. The Minimum
Coverage Breach problem under Bandwidth constraints (MCBB) can be defined as the
problem of generating and scheduling a set of covers guaranteeing a minimal network
lifetime T0 with the purpose of minimizing the total breach coverage, i.e., the time-
weighted sum of the uncovered targets along network lifetime. The network is composed
of n homogeneous sensors, with the same battery autonomy and the same coverage
radio Rs. The purpose is to minimize the coverage breach, the time that all targets are
uncovered while the number of simultaneous active sensors is restricted to a bandwidth
limit W .

Column generation (CG) algorithm has been proven to be a natural and efficient
strategy to solve coverage and scheduling problems in WSN [Castaño et al., 2014, De-
schinkel, 2011, Gentili and Raiconi, 2013, Gu et al., 2011, Rossi et al., 2012a]. The
method iterates between a Restricted Master Problem (RMP) and a Pricing Subprob-
lem (PS). RMP selects among the existent covers, the ones that allow to minimize the
coverage breach, and the PS seeks for interesting covers that might be useful to improve
the current objective function. In this chapter a decomposition based approach based
on CG is adopted to solve MCBB. The method divides the problem in two. First, the
RMP containing a reduced set of columns is used to allocate the optimal time intervals
that each subset has to be used. Then, PS is used to identify additional attractive
subsets of sensors that might be useful to improve the objective function of RMP. Each
column contains the information about the structure of the subset sensors that com-
pound the cover, i.e., a column represents a set of sensors (or the corresponding energy
consumption rates for those sensors) that could be scheduled using RMP to accomplish
the monitoring tasks.

It is well known that CG often suffers from convergence issues that may limit its
usability [Amor et al., 2009, Moungla et al., 2010]. Gu et. al. [Gu et al., 2009b]
report that, in a WSN application, the use of CG may keep on iterating with only
marginal improvements on the objective function. Consequently, it may be necessary
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the consideration of an approximated criterion to stop the optimization process, which
may imply to accept a suboptimal solution. This problem is particularly notorious
when the problem instances show degeneracy signals leading to an unstable behavior
of the dual variables along CG iterations [Briant et al., 2008]. Extensive numerical
experiments demonstrate that this drawback is present when the CG approach is applied
to solve MCBB and other related WSN lifetime optimization problems. Then, the use of
strategies to accelerate the convergence and to reduce the computational effort required
to find an optimal solution is studied.

This chapter is structured as follows. Section 3.2 introduces the definition of MCBB,
the approach based on column generation adopted to solve this problem and some
highlights about the performance of this method. A set of strategies used to accelerate
the CG and evaluations of their performance are presented in Section 3.3. Finally, the
conclusions of this study and the future paths of research are summarized in section
3.4.

3.2 Problem description and related work

Consider a set K = {k1, k2, .., km} of targets with known locations and a set S =
{s1, s2, s3...sn} of sensors deployed to cover the targets that are located within their
sensing ranges Rs, i.e., the maximum distance within which a sensor can be used to
monitor a target. The maximum number of sensors that could be active at the same time
is limited by the network bandwidth, W . The set Ω = {C1, C2, . . . , Cl} denotes the set of
all the possible subsets of S, such that |Cj | ≤W . A parameter bj indicates the number
of uncovered targets when cover Cj is used. The decision variable tj is introduced
to identify the time interval allocated to a feasible cover Cj . The minimum coverage
breach problem under bandwidth constraints is to find a collection of pairs (Cj , tj)
that minimizes the breach coverage of the network,

∑
j|Cj∈Ω′⊆Ω bjtj , and guarantees a

minimum lifetime T0.
In CG a cover Cj is represented by a column vector in RMP, which initially contains

only a reduced set of columns Ω′ ⊆ Ω. Then, RMP is solved to proven optimality and the
dual variables values found are used as an input for PS. Next, PS is solved iteratively to
identify interesting columns useful to reduce the total breach coverage. If a new column
is found, this is added to RMP and the process starts again. Otherwise, the process
stops. If the method used to solve PS is exact, it indicates that the current solution
is optimal. The next section introduces the mathematical details of the decomposition
approach used to solve MCBB and provides an analysis of the convergence of CG when
it is applied to MCBB.

3.2.1 Mathematical approach

As previously mentioned, the solution approach adopted to solve MCBB divides the
problem into time related and subset allocation decisions. The method guarantees
that the battery capacity of each sensor is respected by imposing individual constraints
for them in terms of the total power consumed during the network lifetime. In the
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following, the decomposition based approach used to find optimal solutions for MCBB
is presented.

3.2.1.1 Master problem

We assume that all the sensors are homogeneous and consume energy at the same rate
when they are active. The parameter aij denotes the energy consumption rate of sensor
si if it is included in the cover set Cj . When the sensor is idle it takes the value 0. The
RMP used to solve the MCBB is presented as follows [Rossi et al., 2012a]:

Minimize : ∑
j|Cj∈Ω′

bjtj (3.1)

Subject to: ∑
j|Cj∈Ω′

aijtj ≤ 1 ∀ i ∈ S (3.2)

∑
j|Cj∈Ω′

tj ≥ T0 (3.3)

tj ≥ 0 ∀ j|Cj ∈ Ω′ (3.4)

As mentioned above, the masters’ problem objective (3.1) is to minimize the cov-
erage breach. The set of constraints (3.2) guarantee that a sensor is only used for a
maximum time bounded by the battery lifetime (normalized to 1). The purpose of
constraint (3.3) is to guarantee that the minimum network lifetime is reached by using
the selected covers. Note that the time that a cover set is used is continuous and is
not bounded directly for the model; however, it is bounded indirectly by the battery
lifetime constraints (3.2).

3.2.1.2 Pricing subproblem

PS is used as column generator. To generate a new cover set Cj an iteration of CG is
performed, and the corresponding interesting column j is added to RMP. For each col-
umn, a new decision variable tj is created. This variable has associated the coefficients
aij in RMP. Let Lk be the set of sensors able to cover the target k and rk ∈ {0, 1}
an auxiliary variable introduced to indicate whether or not a target k is covered by
the active set of sensors. We denote by πi the cost of an active sensor, obtained as the
dual variable value associated with the sensors battery constraints (3.2), and Π the dual
variable associated with the minimum lifetime constraint (3.3). In this way, the cover
structure Cj = [a1,j , a2,j ..., an,j , 1], where the 1 is related with the minimum lifetime
constraint (3.3), is defined through the PS as follows:

Minimize :

bj −
∑
i∈S

aijπi −Π (3.5)
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Subject to: ∑
i∈S

aij ≤W (3.6)

bj = |K| −
∑
k∈K

rk (3.7)

rk ≤
∑
i∈Lk

aij ∀ k ∈ K (3.8)

rk ∈ {0, 1} ∀ k ∈ K (3.9)

aij ∈ {0, 1} ∀ i ∈ S (3.10)

The purpose of PS is to define a cover structure with minimum reduced cost (3.5).
Equation (3.6) is used to guarantee that the bandwidth limit is not exceeded. Constraint
(3.7) defines the breach coverage used to calculate the reduced costs and then used as
the cost of the generated column in RMP. Sets of constraints (3.8) are used to help the
model to define the coverage breach and the covering status of a target.

3.2.1.3 Convergence of the Column Generation algorithm

It is widely reported in the literature that, in many applications, the CG shows conver-
gence issues [Lubbecke and Desrosiers, 2005, Westerlund, 2005]. Figure 3.1 presents the
typical evolution of the objective function of MCBB along iterations of CG. It is pos-
sible to observe that while a near-optimal solution is approached considerably fast, the
improvement of the objective function is slow in the last iterations. This phenomenon,
known as tail-off effect, has been widely studied and is reported to be present in patho-
logical cases of slow convergence in CG [Briant et al., 2008, Gilmore and Gomory, 1961,
1963].

Several explanations for the tail-off have been proposed; however, most authors agree
that this effect is strongly associated to an unstable behavior of the dual variables, i.e.,
in consecutive iterations the values taken for the dual variables are very far from the
previous ones [Briant et al., 2008]. Moreover, the distance ||πj − π∗||, where π∗ is
the optimal dual solution, does not necessarily decrease along consecutive iterations
(see Figure 3.2), i.e., ||πj − π∗|| < ||πj+1 − π∗|| [Vanderbeck, 2005]. In addition, the
presence of alternative solutions for PS implies that the column returned could be
basically selected at random among the pool of optimal solutions without considering
CG convergence. That means that the CG algorithm is almost completely unable to
exploit the fact that it has already reached a good set of dual variables values, near to
the optimal dual solution, to improve the overall convergence [Amor et al., 2009].

Dual variables stabilization (DVS) [Du Merle et al., 1999, Marsten et al., 1975] is
proposed as a strategy to avoid the large oscillations of the dual variables values by
imposing a set of bounds to the values they can take. If a good dual estimation is avail-
able, the dual values could be restricted to a small region around the optimal solution
in such a way that PS only produces near optimal columns which could accelerate the
overall CG convergence [Amor et al., 2009]. Unfortunately, most of the time this is not
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Figure 3.1 – Tail-of effect.

the case. So, the idea behind DVS is to keep under control the dual variables values at
each iteration and try to guide them in a smooth fashion to the optimal dual solution.

In order to manage the unstable behavior of the dual variables, Elhallaoui et al. [El-
hallaoui et al., 2008] propose the dynamic constraint aggregation (DCA) to be used in
highly degenerate set partitioning problems. The basic idea of this method is to reduce
the solution space by dealing dynamically with aggregated versions of the master prob-
lem. In this way, the effects of degeneracy are expected to decrease as a consequence
of the reduction on the number of basis generating degenerate pivots. Benchimol et
al. [Benchimol et al., 2012] extended the DCA method by applying DVS strategies.
The result obtained shows that the proposed combination highly outperforms the effect
of the individal methods in set partitioning problems.

On the other hand, intensification procedures have been proposed also as interesting
strategies to improve the performance of CG [Desrochers et al., 354]. In this latter
approach, the idea consists in returning several columns, instead of one, at each iteration
of CG using different criteria to select the ones that are interesting. Macambira et
al. [Macambira et al., 2005] and Touati et al. [Moungla et al., 2010] report the benefits
obtained by this approach. They report a decrease on the total number of iterations
required to reach an optimal solution.

The use of intensification strategies may lead to a faster increase in the size of
RMP. Moreover, most columns included are useless because they will not be part in
the optimal solution. As a consequence, strategies to control these undesirable effects
might be required. In this way, it is possible to control the enlargement of RMP size
whereas it is improved the performance of CG to solve the problems it tackles. Touati
et al. [Moungla et al., 2010], propose the use of κ-intensification and diversification
approaches to accelerate the CG convergence without overly increasing the size of the
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Figure 3.2 – Unstable behavior of dual variables along successive CG iterations.

RMP. However, such a filter might be not necessary if the RMP is not too complicated
to solve. A description of these approaches will be provided in Section 3.3.2.

In this chapter we evaluate a set of stabilization and intensification procedures to
identify the most suitable to be used in MCBB. The methods are evaluated in terms
of convergence on MCBB measured as the number of iterations required to reach an
optimal solution. Furthermore, the effect of both strategies to reduce the unstable
behavior of dual variables strategies is presented. To improve performance, we provide
an intensification strategy by using a genetic algorithm which is used to solve the PS
within the CG framework. Nevertheless, when the genetic algorithm fails to find a new
interesting column, it is followed by an exact method which allows to verify whether or
not the current solution is optimal.

3.3 Acceleration strategies for the column generation algo-

rithm

In this section, we evaluate the use of stabilization and intensification strategies to im-
prove the convergence of the CG framework when applied to the coverage and scheduling
problems in wireless sensor networks, particularly (MCBB). Both methods are evaluated
in terms of their suitability to accelerate CG. Furthermore, the effect on the evolution
of dual variables is evaluated as well as the technical specifications required to make a
successful implementation of both strategies.
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3.3.1 Dual variables stabilization

The purpose of stabilization methods is to use the information offered by the dual
variables to keep a smooth convergence to the optimal dual solution accelerating the CG.
In dual-variables-based stabilization (DVS), the strategy is to manage the information
of the dual variables by controlling the changes of their values to produce interesting
columns around the optimal solution. Two main strategies are discussed in this chapter,
the BoxStep based methods comprising the Marsten’s method [Marsten et al., 1975] and
its generalization proposed by Du Merle et al. [Du Merle et al., 1999]. A second type of
strategy presented by Neame proposes to generate columns using a linear combination of
the dual variables obtained in the previous iterations [Neame, 2000]. Although simple,
this method used to show interesting practical results. A description of these methods
will be presented in the next sections.

3.3.1.1 BoxStep stabilization method

Marsten et al. [Marsten et al., 1975] proposed a technique to accelerate CG convergence
and stabilize the behavior of dual variables. The method works on the dual problem by
defining a set of bounds intended to avoid the dual variables to move too far from their
current values. This method, widely known as BoxStep, requires the dual variables to
take values within the box.

Consider the following dual problem associated to the model (3.1)-(3.4):

Maximize : ∑
i∈S

πi +ΠT0 (3.11)

Subject to: ∑
i∈S

aijπi +Π ≤ bj ∀ j|Cj ∈ Ω′ (3.12)

πi ≤ 0 ∀ i ∈ S (3.13)

Π ≥ 0 (3.14)

The idea of BoxStep method, is to impose upper bounds δi,∆
+ and lower bounds

δ−i ,∆
− on the dual variables values associated to RMP constraints in order to limit

the values that they can take in an iteration of CG. In order to adapt the Marsten’s
method, the next set of constraints must be added to the dual problem (3.11)-(3.14):

πi ≥ δ−i ∀i ∈ S (3.15)

πi ≤ δ+i ∀ i ∈ S (3.16)

Π ≥ ∆− (3.17)

Π ≤ ∆+ (3.18)



Acceleration strategies for the column generation algorithm 37

Constraints (3.15) and (3.17) impose a lower bound on the dual variables values
associated with the battery lifetime constraints and the minimum network lifetime re-
spectively. In the same way, the constraints (3.16) and (3.18) are used to impose upper
bounds on the dual variables. The overall effect of this strategy is to keep the dual
variables value inside a box centered at the middle of the range [δ−i , δ

+
i ].

In RMP, the addition of the dual variables bounds implies the raise of a new set of
primal variables, y+i , y

−
i , Y

+ and Y −, with a penalty corresponding to the dual variables
bounds. This means that CG is performed on relaxed versions of RMP, so it is possible
to take infeasible solutions for the problem along the CG iterations.

Minimize : ∑
j|Cj∈Ω′

bjtj +
∑
i∈S

δ+i y
+
i −

∑
i∈S

δ−i y
−
i +∆+Y + −∆−Y − (3.19)

Subject to: ∑
j|Cj∈Ω′

aijtj + y+i − y−i ≤ 1 ∀ i ∈ S (3.20)

∑
j|Cj∈Ω′

tj + Y + − Y − ≥ T0 (3.21)

tj ≥ 0 ∀ j|Cj ∈ Ω′ (3.22)

y+i ≥ 0, y−i ≥ 0 ∀i ∈ S, Y +, Y − ≥ 0 (3.23)

In order to guarantee a valid solution at the end of the CG algorithm, it is necessary
to verify that none of these variables appear in the final solution. Once an optimal
solution is found, the values of the “relaxation variables" are evaluated. If the solution
is not feasible for the original problem, the penalty for these variables is increased. As
a consequence, the “Box Sizes” are increased. The process is repeated until the optimal
solution for PS is non-negative, i.e., bj −

∑
i∈S aijπi − Π ≥ 0, which means that there

are no other columns to improve the optimal solution.
The method, however, has a drawback. It allows a lot of flexibility with regard to

parameter selection and no clear rules are established to improve its performance [Amor
et al., 2009, Tran et al., 2006]. Consequently, a deep knowledge of the model details
and instance’s characteristics might be required to set up a successful implementation
leading to accelerate the convergence of CG. Three mechanisms are considered in this
research to update the box center: Stationary, sliding and hybrid [Tran et al., 2006,
Westerlund, 2005]. Let µj

i be the box center associated to the dual variable πi in the
BoxStep process and Bj the box size in an iteration j, that is Bj = δ+i − δ−i , where

the values δ+i = µj
i +

Bj

2 and δ−i = µj
i −

Bj

2 denote the dual variable bounds. A brief
description of the methods is presented below:

Stationary Center In this updating strategy the center µj
i is the same during the

whole CG process, i.e., µj+1
i = µj

i = µ0
i , where µ0

i is the center used at the beginning
of CG process.
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Sliding Center At each iteration of the CG, the box centers are updated. In this
case, the values for the centers take the value of the current dual solution, it is µj+1

i = πi.

Hybrid Center In this strategy, the centers are updated only when the dual variables
do not present any slack regarding the box bounds in an iteration of CG.

For the three updating methods it is possible to observe that, if no new column can
be found, and the set of variables y+i , Y

+ and y−i , Y
− have values greater than zero,

the solution is not yet feasible for the RMP and the bounds need to be updated. This
means that the value of Bj is enlarged and the primal penalty increased. In that case,
the box size is enlarged by x%, Bj = (1 + x)Bj .

3.3.1.2 Generalized BoxStep method

Du Merle et al. [Du Merle et al., 1999] have proposed a generalization of the BoxStep
method. In this case, a three-piecewise function allows the dual variables to take values
outside of the box if a penalty is incurred. In terms of RMP the original problem is
modified in such a way that the set of variables y+i , y

−
i are obligated to remain below

a certain value ǫi, the penalty term in the associated dual problem. Let γ+i and γ−i be
the dual variables associated with the relaxation of the dual bounds respectively, the
dual problem for MCBB under Du Merle’s method could be expressed as follows:

Maximize :

∑
i∈S

πi +ΠT0 +
∑
i∈S

ǫ−i γ
−
i +

∑
i∈S

ǫ+i γ
+
i + ζ−ω− + ζ+ω+ (3.24)

Subject to: ∑
i∈S

aijπi +Π ≤ bj ∀ j|Cj ∈ Ω′ (3.25)

πi + γ+i ≤ δ+i ∀i ∈ S (3.26)

−πi + γ−i ≤ −δ
−
i ∀ i ∈ S (3.27)

Π+ ω+ ≤ ∆+ (3.28)

−Π+ ω− ≤ −∆− (3.29)

πi, γ
+
i , γ

−
i ≤ 0 ∀ i ∈ S (3.30)

ω+, ω− ≤ 0 (3.31)

Π ≥ 0 (3.32)

It is possible to identify three regions for each variable in the model above. First,
a region with no penalty in which it is possible to satisfy the constraints (3.26)-(3.29)
without incurring in any penalization (for the use of the variables γ−i , γ

+
i , ω

+, ω−). The
other two regions are used to allow a dual variable to take values out of these bounds.
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The counterpart is to pay a penalty on the objective function that increases linearly
with the violation.

From the viewpoint of RMP, the original model is transformed as follows:

Minimize :

∑
j|Cj∈Ω′

bjtj +
∑
i∈S

δ+i y
+
i −

∑
i∈S

δ−i y
−
i +∆+Y + −∆−Y − (3.33)

Subject to: ∑
j|Cj∈Ω′

aijtj + y+i − y−i ≤ 1 ∀i ∈ S (3.34)

∑
j|Cj∈Ω′

tj + Y + − Y − ≥ T0 (3.35)

y+i ≤ ǫ+i ∀ i ∈ S (3.36)

y−i ≤ ǫ−i ∀ i ∈ S (3.37)

Y + ≤ ζ+ ∀ i ∈ S (3.38)

Y − ≤ ζ− ∀ i ∈ S (3.39)

y+i , y
−
i ≥ 0 ∀ i ∈ S Y +, Y − ≥ 0 (3.40)

tj ≥ 0 ∀ j|Cj ∈ Ω′ (3.41)

It is possible to observe that, either for Marsten’s BoxStep and Du Merle’s methods,
it is required the initialization and updating of the box centers µj

i , box width Bj and
dual penalties ǫ+i , ǫ

−
i , ζ

+, ζ−. This implies that a lot of tuning work could be required
to select a good set of parameters. Furthermore, a good choice of the parameters value
also may rely on the characteristics of each problem instance.

As in the Marsten’s BoxStep method, the Du Merle’s method allows a lot of flexibil-
ity regarding the selection of the initial parameters and updating strategies. The same
set of strategies used in the BoxStep method of section 3.3.1.1 is applied and evaluated
to improve the performance. In addition, the dual penalty terms ǫ+i , ǫ

−
i , ζ

+ and ζ− are
initialized with the right hand side values of the associated constraint in the original
model [Du Merle et al., 1999], i.e., equal to 1. In order to reduce their values, a factor
df is defined, then after each iteration a reduction equal to (1− df)% is applied to the
dual penalty terms.
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3.3.1.3 Neame’s stabilization method

Neame [Neame, 2000] proposes an algorithm to accelerate the CG without using neither
stabilizing terms nor including additional variables in the original model. The method
proposes to use a linear combination of the current dual variables values and the ones
obtained at previous iterations to solve PS and find a new interesting column. Let πk

be the set of dual values of the primal problem at iteration k, and θk the dual values
obtained as a linear combination and used for PS. At iteration k the values for θk are
updated in the following way:

θk = απk + (1− α)θk−1 (3.42)

where α ≥ 0 is a parameter.
New columns are profitable only if they have an interesting reduced cost based on

the values πk. When non-profitable reduced cost column is found (missprice), a new
iteration of CG is performed using only these original dual values for the current CG
iteration PS. The method finishes when no profitable columns exists and current solution
is optimal.

3.3.1.4 Dual variable values initialization

It is well known that the selection of initial dual box centers could have a significant
effect on the number of CG iterations. Several strategies have been proposed to select
initial dual values. Du Merle et al. [Du Merle et al., 1999] and Ben Amor et al. [Amor
et al., 2009] propose to approach the optimal solution using heuristic methods and use
the dual variable values to initialize the stabilized CG process. As a default, when no
information is available about the optimal dual solution, it is permissible to use µi = 0.
Nonetheless, in general this is not a good choice and previous experiences show that the
performance of stabilization approaches could be highly improved by selecting a good
set of initial box centers. An incorrect choice, by contrast, can be counterproductive to
the stabilizing effect and so enlarges the CG process .

In order to initialize the box center of the dual variables in the stabilization process,
an initial solution is approached through a greedy heuristic. The dual value correspond-
ing to this initial solution is used as the initial center in the dual variable stabilization.
In the same way, the initial solution obtained is used as the initial basis in the CG
process.

3.3.1.5 Computational experiments

The purpose of this section is to evaluate stabilization strategies. The effects of dual
stabilization on the dual variables are presented as well as the computational benefits
of using such strategies. In the same way, the updating strategies are compared for the
BoxStep based methods in order to identify the best strategy for MCBB. Finally, the
effect of the value α on the performance of the Neame’s method is evaluated for the
case of convex combination of previous dual variables values.
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The proposed approaches are implemented in Python and executed on an Intel Core
i-5 processor at 1.6 GHz with 2 GB of RAM running under OS-X Lion. The version
4.0.2 of Gurobi optimization engine is used to solve RMP and PS. Eight classes of
instances are considerered for analysis. They are defined by the number of sensors n,
the number of targets to be covered |K| and the sensing range RS . As proposed by
Wang et al. [Wang et al., 2009] and Rossi et al. [Rossi et al., 2012a] it is assumed that
sensor and targets are randomly deployed in a 500x500 square area. For each category
a group of three instances is designed and experiments are performed for two values of
bandwidth, W = 5 and W = 10.

Several authors have devoted efforts to evaluate the impact of the parameters se-
lected for the initial box sizes Bj and center µi, the percentage x of enlargement of
the box size and the initial dual penalty for the Du Merle’s method [Amor et al., 2009,
Westerlund et al., 2006]. In order to perform standard experiments, a common set of
parameters is selected based on the observations obtained through some preliminary
experiments. The initial box size for the dual variables values is selected as 0.5 times
the value of the right hand side (RHS) for the battery lifetime constraints (Eq. 3.2).
The initial observations also show that unstable behavior was mainly caused by the
dual variables values associated to the battery lifetime constraints with little affecta-
tion coming from the minimum network lifetime constraint (Eq. 3.3). For this reason,
it is proposed the use of big size initial boxes for the dual variable Π associated to this
constraint, in this way is avoided any possible bias introduced in the evolution of this
variable along CG iterations.

Figure 3.3 shows a comparison of the evolution of the quantity ||πj − π∗|| along the
iterations j of CG. It can be seen that the use of BoxStep method and the generalization
presented by Du Merle (CGS3P) reduces considerably the oscillations when using the
CG without stabilization. In addition, it is possible to observe that, in general, the use
of stabilization techniques based on box penalties produces a smooth convergence to the
optimal dual solution. As presented in Figure 3.3, by using DVS a step effect appears.
This effect is related with the box sizes updates (see Section 3.3.1.1). Nevertheless, most
of the time a smooth behavior appears between each pair of steps as a consequence of
the application of stabilization strategies.

The three updating strategies of stabilization methods, namely hybrid, sliding and
stationary, are compared in terms of computational time and average number of itera-
tions or equivalently the number of columns generated. Tables 3.1 and 3.2 present this
comparison. The column headers n, |K|, Rs and W indicate the instances characteris-
tics. Each line presents the average obtained by using the approach on three randomly
generated instances with the same specifications.

The average variation on the number of iterations compared to CG without sta-
bilization is also presented. The results show that most stabilization strategies lead
to reductions on the number of iterations compared to the CG without stabilization.
However, the stationary updating strategy does not provide a significant advantage in
terms of convergence compared to the CG without stabilization. In this study, the same
values for initial box size and percentage of enlargement are used for similar instances
groups in order to analyze the overall performance of the method more than the best
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Figure 3.3 – Evolution of ||πj−π∗|| along the iterations using BoxStep method (BoxStep) and
du Merle’s method (GC3PS).

case performance for each instance.

n |K| Rs W Hybrid Sliding Stationary No stabilization
Time (s) #Cols Time (s) #Cols Time (s) #Cols Time (s) #Cols

50 30 130 5 1.86 90.00 1.77 87.00 2.33 78.00 2.06 99.67
10 0.52 31.33 0.55 31.67 0.71 40.67 0.87 52.33

150 5 1.64 78.00 1.49 66.67 1.70 82.00 1.61 80.00
10 0.54 26.67 0.52 26.00 0.49 25.00 0.77 39.33

100 60 130 5 47.99 253.00 51.82 238.33 152.10 282.00 41.87 304.33
10 8.04 121.00 8.42 122.67 8.25 135.67 10.30 142.00

150 5 27.06 232.00 30.60 200.00 93.71 262.33 28.08 249.67
10 6.73 84.67 6.63 84.00 6.69 92.67 7.51 99.67

150 90 130 5 242.24 432.33 361.12 417.33 877.64 544.33 234.34 468.67
10 29.64 200.00 30.75 205.00 25.88 207.67 37.35 264.00

150 5 215.40 405.00 398.97 379.00 857.28 530.67 250.86 441.67
10 23.76 128.67 22.90 124.33 20.88 123.33 23.73 134.67

200 120 130 5 3224.89 761.67 4681.22 709.33 2630.60 843.33 3518.33 879.67
10 100.94 301.67 88.03 292.33 76.88 289.33 102.29 365.00

150 5 2345.87 605.33 2050.08 582.00 2563.28 652.00 2283.45 653.00
10 59.44 160.00 55.96 147.00 43.15 146.33 61.19 181.33

Average variation -9% -15% 0% -19% 52% -8% - -

Table 3.1 – Comparison of the updating strategies in the BoxStep method.

With a few exceptions, the strategies are able to reduce the efforts devoted to solve
MCBB reducing the computational time and the number of iterations. However, as
presented in Tables 3.1 and 3.2, the reductions in computational time are not propor-
tional to the reductions on the number of iterations. The experiments show that in most
cases a reduction in computational time and number of iterations is obtained. The best
performance is shown by the hybrid updating strategy of section 3.3.1.1. However, even
in this case, the ratio between the average percentual reduction in number of iterations
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|K| Rs W Hybrid Sliding Stationary No stabilization
Time (s) #Cols Time (s) #Cols Time (s) #Cols Time (s) #Cols

50 30 130 5 1.62 57.00 1.53 58.33 1.50 59.67 2.06 99.67
10 0.79 22.00 0.77 20.67 0.90 27.33 0.87 52.33

150 5 1.32 41.33 1.29 42.33 1.27 47.00 1.61 80.00
10 0.32 4.00 0.42 7.33 0.42 8.33 0.77 39.33

100 60 130 5 38.24 167.67 45.25 173.67 44.34 205.67 41.87 304.33
10 8.15 79.00 8.52 83.33 8.87 95.33 10.30 142.00

150 5 23.24 145.33 22.96 153.67 24.20 172.00 28.08 249.67
10 3.66 25.33 3.39 22.00 3.49 23.00 7.51 99.67

150 90 130 5 266.86 319.67 300.92 339.00 212.70 346.33 234.34 468.67
10 33.58 126.33 38.10 138.33 43.44 170.00 37.35 264.00

150 5 309.74 301.33 378.57 333.33 230.01 335.67 250.86 441.67
10 12.83 39.33 12.64 39.00 12.23 35.67 23.73 134.67

200 120 130 5 3291.33 599.00 4277.14 635.33 3051.96 645.67 3518.33 879.67
10 150.07 203.67 148.01 214.33 149.95 251.33 102.29 365.00

150 5 2908.94 477.67 3222.84 499.33 2185.13 485.33 2283.45 653.00
10 45.87 53.33 42.39 45.67 38.37 55.33 61.19 181.33

Average variation -11% -50% -5% -48% -14% -43% - -

Table 3.2 – Comparison of updating strategies in the Du Merle’s method.

and computational time is 5:1. This indicates that the time required to perform each
iteration in the methods that use dual variable stabilization are higher than in CG
without stabilization.

As for Neame’s method, the results confirm that it is always useful to reduce the
number of iterations required to reach an optimal solution. Table 3.3 presents a compar-
ison among the average number of iterations and computational time obtained through
Neame’s method and CG without stabilization. The results show that this method is
useful to accelerate the convergence of CG. The method is tested in the same set of in-
stances as the BoxStep based methods using an arbitrary α value of 0.5. Furthermore, it
is observed an average reduction of 42% in the number of iterations and 35% in compu-
tational time compared with the CG without stabilization. Additionally, the Neame’s
method generally produces a smoothing effect on the evolution of the dual variables,
measured by the distance to the optimal dual solution ||πj − π∗||, even though this is
not directly the purpose of this method (see Figure 3.4).

Tables 4 and 5 present a comparison among the number of iterations and computa-
tional time, respectively, obtained for a selected group of randomly generated instances
and α values in the range 0.1-1.0. The columns labeled with α in the range 0.1-0.9
correspond to the values obtained by using the Neame’s method in the number of itera-
tions and the computational time respectively. By contrast, the last column corresponds
to the number of iterations without stabilization (α = 1). It is observed that Neame’s
method outperforms the CG without stabilization with a reduction of about 21% on the
average number of iterations and 11% in computational time. That means that whereas
a smaller number of iterations is required, the time required to perform an iteration is
higher than in the CG without stabilization. In the tables, the bold numbers are used
to highlight the best value obtained with the different α possibilities. Although the
parameter has a significant impact on the performance of the method, there is no single
value better than the others to reduce the number of iterations. Nevertheless, small
values of α seems to perform better when W = 5.
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Figure 3.4 – Comparison of dual variables behavior without stabilization (CG) and the Neame’s
method.

In general, the results obtained through the application of stabilizing strategies
within the CG framework used to solve MCBB seem to indicate that the method pro-
posed by Neame outperforms the DVS strategies. By using this approach it is possible
to obtain interesting reductions regarding to computational time and number of iter-
ations. The experimental results show that this strategy was always useful to reduce
the computational time required to solve MCBB. Furthermore, this method is simple
enough to avoid requiring a large computational effort. The results seem to indicate
that by using this approach it is possible to obtain reductions in computational time
compared to DVS studied here.

3.3.2 Intensification strategies

In order to evaluate the effect of the use of intensification strategies in MCBB, a set
of experiments using this strategy are performed. Two methods are evaluated, κ-
Intensification and Diversification. A description of these methods is presented below.

3.3.2.1 κ-Intensification

In a pure intensification strategy, it is possible to return to the RMP all the interesting
columns found through PS to the RMP at each iteration of CG. This strategy usually
leads to reduction in the number of iterations in CG; however, it could lead also to an
overloaded RMP with a huge number of variables that make each iteration of CG slower.
Touati et al. [Moungla et al., 2010] propose to limit the number of added columns to
only those κ that are most interesting regarding to the defined criterion, typically the
reduced cost. The purpose of such a strategy is to control the problem size taking
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n |K| Rs W Neame No stabilization
Time #Cols Time #Cols

50 30 130 5 0.86 54.33 2.06 99.67
10 0.66 26.00 0.87 52.33

150 5 1.02 41.33 1.61 80.00
10 0.46 23.00 0.77 39.33

100 60 130 5 9.32 129.33 41.87 304.33
10 6.30 92.00 10.30 142.00

150 5 18.96 143.00 28.08 249.67
10 4.13 30.00 7.51 99.67

150 90 130 5 180.39 352.33 234.34 468.67
10 31.46 118.00 37.35 264.00

150 5 376.57 343.67 250.86 441.67
10 10.92 58.00 23.73 134.67

200 120 130 5 2202.11 600.33 3518.33 879.67
10 48.87 215.67 102.29 365.00

150 5 2320.29 633.67 2283.45 653.00
10 15.19 85.00 61.19 181.33

Average variation -35% -42% - -

Table 3.3 – Comparison of Neame’s method and CG without stabilization.

n |K| Rs W α

0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 1

50 30 130 5 60 55 81 82 88 78 87 91 98 92
10 29 36 32 36 38 35 31 36 32 43

150 5 67 75 72 71 74 68 74 74 69 84
10 27 25 26 24 25 24 25 24 22 40

100 60 130 5 209 209 231 224 230 250 245 241 266 281
10 138 125 128 114 124 114 118 125 117 158

150 5 156 164 203 215 202 197 201 208 224 241
10 92 85 90 82 76 65 67 64 67 93

150 90 130 5 393 383 419 407 432 463 458 478 478 531
10 155 140 143 121 126 120 121 129 130 206

150 5 302 306 320 317 345 333 345 358 364 372
10 126 105 100 93 85 83 70 78 80 120

Average variation -22% -23% -19% -21% -19% -23% -22% -20% -19% -

Table 3.4 – Evaluation of the effect of α in the number of iterations in the Neame’s
method.

n |K| Rs W α

0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 1

50 30 130 5 1, 11 0, 96 1, 64 1, 63 1, 76 1, 89 1, 77 1, 90 2, 13 1, 65
10 0, 46 0, 56 0, 49 0, 56 0, 59 0, 53 0, 50 0, 57 0, 51 0, 67

150 5 1, 08 1, 61 1, 49 1, 55 1, 41 1, 35 1, 41 1, 46 1, 31 1, 63
10 0, 52 0, 48 0, 49 0, 46 0, 48 0, 45 0, 49 0, 47 0, 43 0, 74

100 60 130 5 23, 98 71, 52 76, 12 62, 44 64, 37 66, 43 61, 03 65, 44 64, 30 56, 30
10 4, 08 7, 46 7, 77 6, 89 7, 52 6, 82 7, 15 7, 63 7, 10 9, 75

150 5 17, 99 23, 74 38, 12 29, 99 30, 45 29, 17 28, 99 26, 54 29, 31 26, 65
10 7, 40 6, 43 6, 82 6, 15 5, 80 4, 93 5, 08 4, 88 5, 10 7, 06

150 90 130 5 159, 71 545, 24 466, 68 440, 43 420, 98 463, 61 533, 74 386, 78 416, 03 363, 22
10 22, 39 20, 49 20, 98 17, 86 18, 66 17, 71 17, 89 19, 17 19, 28 30, 71

150 5 84, 47 152, 17 151, 37 146, 82 133, 85 108, 38 108, 79 121, 73 107, 02 112, 99
10 24, 14 20, 18 19, 34 18, 02 16, 51 16, 13 13, 76 15, 26 15, 67 23, 54

Average variation -31% -6% 0% -8% -8% -12% -12% -12% -12%

Table 3.5 – Evaluation of the effect of α in the computational time (s) for the Neame’s
method.
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advantage of the benefits offered by the intensification strategy.

3.3.2.2 Diversification

In order to keep under control the RMP size and include diversification features in the
returned columns, some authors recommend to add to RMP only columns contributing
to different constraints [Desrochers et al., 354, Moungla et al., 2010]. Within the CG
framework these strategies are known as diversification and two main strategies are dis-
tinguished by the authors, diversification by resolution and diversification by selection.

Diversification by resolution is especially useful when the optimal solution for PS is
easy to obtain. It consists in computing at each iteration of CG an interesting set of
columns that are 0-neighbors between them using as a criterion to generate them the
reduced cost. In the context of MCBB, it computes iteratively new solutions for PS
removing those sensors (imposing to them a fixed value of zero ) that already belong to a
previously generated cover. By using diversification by selection the idea is to return to
RMP only the columns found during the PS solution process that do not contribute to
the same constraints but are still feasible and useful in terms of the possible contribution
to improve the objective function. This strategy is mostly used when the algorithms
applied to solve PS are able to compute more than a single solution along the solution
process for PS. Within MCBB, this strategy selects and returns at each iteration several
covers based not only on the reduced cost criterion but also in how similar it is compared
to the best solution found.

In this study, the proposal is to use diversification by selection to generate columns in
a diversified manner and try to accelerate the CG convergence by avoiding the inclusion
of columns with similar structure to the best one obtained based on the reduced cost
criterion.

3.3.2.3 Intensification and diversification through a Genetic Algorithm

To include diversification and intensification we propose a GA to find approximated so-
lutions for PS. Two strategies are considered. First, a raw group of the k best columns
found will be added to RMP. A second strategy consists in adding to the master prob-
lem only solutions that share at most τ sensors in common with the one with the best
reduced cost found during PS solving process. As in the exact methods, the objective is
to minimize the reduced cost of the solution to guarantee that only interesting columns
are added to the problem. The GA uses an elitist strategy that keeps the best chromo-
somes at each generation, and uses them to improve the pool of solutions during the
whole execution of GA. The characteristics of the GA are described below:

Chromosomes Each chromosome is defined as a vector Aj = [a1, a2, a3...an] with
ai ∈ {0, 1} where the value of 1 indicates that sensor i belongs to the subset and 0
otherwise.
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Initial population An initial population of Npop individuals is randomly generated
and used to initialize the algorithm. For each individual in the population the initial-
ization procedure indicates a random number r ≤ W of sensors to be active. Then, it
randomly selects these r sensors to add them to the cover represented by the chromo-
some.

Fitness assignment For all the members in the population the fitness is calcu-
lated using the objective function of the PS, i.e., the reduced cost criterion. Let
F1 = [f(A1), f(A2), f(A3), ...f(ANpop)] be a vector containing the objective function
of the solutions in the population and let FMax and Fmin be the maximum and mini-
mum objective function values of the elements in the population. Then the fitness Fiti
could be defined as:

Fiti =
FMax−f(Ai)
FMax−Fmin

Selection In order to generate a new population, two parent solutions are selected
with a probability Pi calculated as:

Pi =
Fiti∑

i∈1...Npop
Fiti

Crossover At each iteration, a new population is generated through crossover and
mutation operators. For each couple of parents that were selected by using the selecion
operator, then they are crossed with a probability Pc to generate a single children that
will mutate with a probability Pm. The crossover operator proposed uses the parent
structure to define the activation state of each sensor in the child. If both parents have
a sensor active, with a high probability Pon this sensor will be in the same state at
the child. If just one parent has a sensor active, with a probability Pmed this sensor
will be active in the child. Finally, if none of the parents have a sensor active with a
low probability Poff this sensor will be active on the child. The proposed GA then
verifies that the new child is not already in the pool of elite solutions. If this is not the
case, it is included and the process is repeated until the new population is complete.
Otherwise, the recently generated child is discarded. In order to tune up the values
for the probabilities inside the algorithm a large set of experiments was conducted in
randomly generated instances of PS.

Mutation The mutation operator selects a random number of sensors to perform a
bit-flip that changes the current state of these sensors.

Feasibility preservation For each individual generated, a feasibility check is per-
formed after the crossover and mutation operations are performed. The columns that
have more than W sensors active cannot enter to the new population. In the same way,
duplicates are removed.

At each iteration of the CG, the GA is used during Niter iterations. After this,
the best solution is evaluated to check if it is profitable. If the reduced cost of this
value is negative, the best κ columns with negative reduced cost are added to the RMP.
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If there are no negative reduced cost individuals, the algorithm continues for another
N ′

iter = 2Niter iterations. If no reduced cost columns are found, the integer programming
solver is used to find a new solution. If a new profitable solution is found, a new CG
iteration is started. Otherwise, the optimal solution is obtained and CG stops.

3.3.2.4 Computational experiments

The methods are tested with the same instances as the stabilization procedures. For the
GA a population of Npop = 50 individuals is generated at each iteration and the best
10 individuals of each generation are stored. A testbed of instances of the PS was used
to select the values for Pon, Pmed, Poff , are selected as 0.95, 0.5 and 0.05 respectively.
Similarly, the crossover probability is set at Pc = 0.95 and the mutation probability to
Pm = 0.03. All the experiments are performed using the same set of parameters. In the
intensification strategy, all the individuals of the population with negative reduced cost
are returned to RMP; by contrast, in the diversification strategy only the interesting
columns that share at most one sensor in common with the best reduced cost column
found are returned.

Table 3.6 presents a comparison of the number of iterations obtained by using the
intensification strategies. The columns labeled κ-Int and Div presents the results of the
κ-Intensification and diversification approaches respectively. The experiments confirm
that, by applying intensification strategies to CG, the number of iterations required to
reach the optimal solutions is largely reduced. The results seems to show that intensi-
fication allows to reduce the number of iterations by tackling indirectly the degeneracy
problem by, likely, providing more information to RMP. As a consequence, next iter-
ations lead to the production of better quality columns which allows to improve the
objective function more efficiently along CG process. Regarding to MCBB, previous
results mean that CG might be improved by returning several solutions found in the
solution process of PS, instead of one, contributing indirectly to deal with the problems
that are the cause of the slow convergence.

Regarding the behavior of the dual variables, the use of intensification strategies
produces an interesting behavior. In Figure 3.5 it is depicted the typical evolution of
the dual variables values distance to the optimal one ||πj − π∗||. It was observed that,
whereas in the first iterations the evolution of dual variables shows a behavior not too
different to the one observed in CG without stabilization, a more stable behavior is
observed after a few iterations have been carried out. The observed behavior seems to
indicate that, by using intensification approaches and return more than a single column
at each iteration a stable behavior of the dual variables is induced. Consequently, the
use of stabilization strategies might be unnecessary.

As expected, the results show that the rough inclusion of a big group of columns to
RMP improves the performance compared to the diversification strategy. This could be
explained by the fact that, without using any other criterion to generate the columns
neither deletion, the filtering of the columns is limiting the information included in
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n |K| Rs W CG-CA CG
κ-Int Div

#Iters Time (s) #Iters Time (s) #Iters Time (s)

50 30 130 5 40.33 1.33 48.00 1.77 99.67 2.06
10 22.67 1.12 29.33 1.11 52.33 0.87

150 5 33.00 0.67 67.67 1.01 80.00 1.61
10 5.67 0.81 38.33 0.65 39.33 0.77

100 60 130 5 155.00 33.54 205.33 43.27 304.33 41.87
10 67.33 5.46 125.33 7.65 142.00 10.30

150 5 122.00 9.36 198.00 23.56 249.67 28.08
10 36.00 2.79 65.67 12.02 99.67 7.51

150 90 130 5 285.33 92.30 275.33 177.86 468.67 234.34
10 143.67 41.54 126.33 27.57 264.00 37.35

150 5 263.00 99.69 311.33 213.54 441.67 250.86
10 64.00 29.66 93.67 21.66 134.67 23.73

200 120 130 5 581.33 1995.65 48.67 2256.63 879.67 3518.33
10 232.00 71.78 158.67 77.65 365.00 102.29

150 5 420.67 1677.11 477.00 1257.45 653.00 2283.45
10 102.00 48.93 140.33 60.67 181.33 61.19

Average variation -50.3% -28.8% -34.1% -12.5% - -

Table 3.6 – Comparison of number of iterations for κ-intensification and diversification tech-
niques.
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Figure 3.5 – Comparison of dual behavior in the CG without stabilization (CG) and the
intensification strategy (CG-GA).
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the RMP compared to the rough intensification approach. In this way, it is possible to
conclude that the expansion of the RMP provides the CG with the ability to explore the
solution space in more efficient ways than when it is limited to changes of one column
each time.

3.3.3 Hybridizing stabilization and intensification strategies in col-

umn generation

Touati et al. [Moungla et al., 2010] briefly outline the relation between stabilization
and diversification strategies for CG. As previously mentioned, the objective pursued
by using stabilization methods is to try to compute an estimation of the optimal dual
solution that will guide the solution process smoothly to the optimal primal solution
in a reduced number of iterations. In other words, this method is intended to reduce
the number of iterations by using an estimated approximation of dual function based
on current best dual solution found. By contrast, by using diversification strategies the
purpose is not to estimate this function, but to construct a good dual function global
approximation based on the idea of providing a more rich source of information to the
RMP.

As previously mentioned, the use of hybrid methods combining stabilization and
other approaches often produces improvements in the convergence of CG [Benchimol
et al., 2012]. The overall idea consists in taking advantage of the benefits offered by
each one of the techniques by combining both into a single algorithm. In this study
it is proposed to combine the κ-intensification strategy with a stabilization method to
evaluate the effect over MCBB. The purpose of such hybridization is then to enrich the
information available in RMP to approximate a good dual optimal solution that can be
used to guide the solution in an efficient manner to the optimal solution for MCBB. We
choose the most efficient DVS method reported in section 3.3.1.5, namely Du Merle’
stabilization method. The proposal is to use a GA to generate several columns at each
iteration of GA and return several of them to the stabilized version of RMP.

3.3.3.1 Computational experiments

As in the κ-Intensification approach, the hybrid strategy is tested in the same set of
instances as the stabilization procedures. The initial dual box centers for DVS are se-
lected as the dual variables values obtained through the initialization heuristic. The
GA is used to solve PS using as input the dual variables values corresponding to the
current optimal dual solution of the stabilized versions of RMP (3.33)-(3.41). Further-
more, the parameters of the GA are set to be the same previously used in the pure
κ-Intensification strategy.

Table 3.7 compares the hybrid approach (S-κ-Int) with CG without stabilization and
the pure κ-Intensification (κ-Int) strategy introduced in section 3.3.2.1. The methods
are compared in terms of the number of iterations (#iters) and the computational time.
The results show that, by using the combined approach, it is obtained an improvement
compared to the κ-Intensification strategy and CG without stabilization. The proposed
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strategy is shown to be able to reduce the number of iterations required to reach an
optimal solution. Furthermore, the hybrid strategy reduces the average computational
time required to solve MCBB.

n |K| Rs W CG-CA CG
κ-Int S-κ-Int

#Iters Time (s) #Iters Time (s) #Iters Time (s)

50 30 130 5 40.33 1.33 37.67 1.51 99.67 2.06
10 22.67 1.12 22.33 1.13 52.33 0.87

150 5 33.00 0.67 31.00 0.75 80.00 1.61
10 5.67 0.81 7.00 0.41 39.33 0.77

100 60 130 5 155.00 33.54 143.33 23.54 304.33 41.87
10 67.33 5.46 63.33 6.85 142.00 10.30

150 5 122.00 9.36 116.00 7.32 249.67 28.08
10 36.00 2.79 42.67 3.29 99.67 7.51

150 90 130 5 285.33 92.30 280.33 104.57 468.67 234.34
10 143.67 41.54 143.67 31.05 264.00 37.35

150 5 263.00 99.69 273.00 99.69 441.67 250.86
10 64.00 29.66 63.33 24.00 134.67 23.73

200 120 130 5 581.33 1995.65 578.00 2286.20 879.67 3518.33
10 232.00 71.78 217.00 74.56 365.00 102.29

150 5 420.67 1677.11 422.00 1465.11 653.00 2283.45
10 102.00 48.93 37.67 50.32 181.33 61.19

Average variation -50.3% -28.8% -53.0% -34.5% - -

Table 3.7 – Comparison of number of iterations for κ-intensification and diversification tech-
niques.

Although the method seems to perform better than the other intensification ap-
proaches, it is observed that the obtained reductions are close to the ones obtained by
using a κ-Intensification approach. This could be partially explained by the fact that
the use of intensification strategies significantly reduces the unstable behavior of the
dual variables values in such a way that the use of DVS could be not required.

3.4 Conclusions and future work

This chapter evaluates the effect of stabilization and diversification strategies when
applied in a CG scheme used to solve the MCBB. The obtained results allow to conclude
that both strategies are able to accelerate the CG. The effects on the dual variables
evolution is presented. It is possible to observe that, as expected, by using stabilization
strategies the zig-zag effect observed in the dual variables is reduced compared to the
CG without stabilization and so the number of iterations. Compared with CG without
stabilization, intensification strategies do not present a different behavior of the dual
variables values during the first iterations of CG. However, it is possible to conclude that
intensification strategies naturally lead to a more stable behavior of the dual variables
and, in general, help to improve convergence. Hence, it might indicate that the use of
stabilization strategies became unnecessary when intensification is applied to MCBB.

The use of GA seems to be a simple and natural approach to solve the PS inte-
grating κ-Intensification and diversification strategies. This seems to be confirmed with
the numerical experiments. Regarding to MCBB, it was observed that, in general, in-
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tensification strategies arise as the best strategy to improve the performance of CG. In
addition, by using intensification without applying any filtering to the returned columns,
i.e., including diversification, the method seems to perform better. This result could
be explained because more information is provided to RMP and it might reduce the
undesirable effects of degeneracy.

A similar approach can be adopted to solve other problems in WSN, e.g., the maxi-
mum network lifetime problem. It is possible to conclude that stabilization and intensifi-
cation strategies are attractive methods to accelerate the convergence of CG approaches
applied to WSN. Consequently, the techniques explored in the chapter can be easily ex-
tended when considering those problems.

Extensions to the MCBB in which connectivity constraints must be enforced or
adjustable sensing ranges could be considered can be benefited of the use of these
strategies. Intensification and acceleration strategies could report huge benefits when
the time required to solve PS is high and it is desired to avoid performing useless
iterations.



4
A column generation approach to extend lifetime

in wireless sensor networks with coverage and
connectivity constraints

This chapter addresses the maximum network lifetime problem in wireless sensor net-
works with connectivity and coverage constraints. In this problem, the purpose is to
schedule the activity of a set of wireless sensors, keeping them connected while network
lifetime is maximized. Two cases are considered. First, the full coverage of the targets is
required, and second only a fraction of the targets have to be covered at any instant of
time. An exact approach based on column generation and boosted by GRASP and VNS
is proposed to address both of these problems. Finally, a multiphase framework com-
bining these two approaches is built by sequentially using these two heuristics at each
iteration of the column generation algorithm. The results show that our proposals are
able to tackle the problem efficiently and that combining the two heuristic approaches
improves the results significantly.

4.1 Introduction

Wireless sensors are small devices with low energy consumption rates that are typically
deployed to monitor some interesting phenomena, e.g., surveillance, military applica-
tions, environmental monitoring, etc [Dargie and Poellabauer, 2010, Yick et al., 2008].
In wireless sensor networks (WSN) deployed to monitor targets, these devices work col-
laboratively or individually to collect information from the field and to deliver or spread
the collected data to a remote base station through a multihop path of active sensors.

Energy consumption is a major concern for the implementation and deployment of
WSN [Cardei et al., 2005, Slijepcevic and Potkonjak, 2002]. Furthermore, there exists
an extended range of applications in which the replacement of sensors or the renewal of
batteries is not feasible, like in hostile or contaminated environments. This fact stresses
the necessity of designing efficiently schemes for the simultaneous use of sensors energy.

In order to keep the network operating as long as possible, a common strategy is
to deploy more sensors than actually needed. Then, network lifetime can be extended
by activating sequentially subsets of sensors able to meet the network requirements.
The sensing range Rs is defined as the maximum distance a sensor can cover a target.

53
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Two sensors are considered connected if the distance between them is less than the
communication range Rc (in practice, Rs ≤ Rc). Only the sensors from an active set
are available for monitoring targets and transmitting the collected data. So, the optimal
use of network energy can be obtained by identifying and creating schedules for the use
of the sensors in the network.

In some applications, the complete collection of information originated in the targets
is not a critical requirement. Thus, a threshold can be defined as the minimum level of
coverage provided by the network, i.e., the fraction α of targets that have to be covered
at any instant of time. This characteristic provides the network with a bit of flexibility
which, in addition, allows to increase its lifetime by neglecting some of the targets that
are poorly covered and become a bottleneck limiting the network lifetime [Gentili and
Raiconi, 2013].

In order to optimize the usage of the energy in WSN, researchers have addressed
the maximum network lifetime problem (MLP) [Cardei et al., 2005, Deschinkel, 2011,
Jia et al., 2008, Slijepcevic and Potkonjak, 2002]. This problem consists in maximizing
the lifetime of a WSN whilst guaranteeing the coverage of a discrete set of targets.
Specifically, a lot of effort has been devoted to solve the non-connected version of MLP.
Thus, previous works provide a good starting point for the development of efficient
approaches to solve new versions of MLP.

Recent researches show a growing interest in the use of exact approaches to solve
optimization problems in WSN [Alfieri et al., 2007, Gu et al., 2009b, Rossi et al., 2012a].
Column generation (CG) has been largely used to address different versions of MLP. CG
decomposes the problem in a restricted master problem (RMP) and a pricing subprob-
lem (PS). The former maximizes lifetime using an incomplete set of columns, and the
latter is used to identify new profitable columns. Gu et al. [Gu et al., 2011] have studied
the coverage and scheduling problem in WSN. As maximum network lifetime problem
with coverage constraints inherently involves time issues, the problem is represented by
using a time-dependent structure that considers the coverage as a function of time and
impose constraints on it. Then, they show that this kind of representation for MLP
can always be converted into a pattern-based representation that points to maximize
lifetime by using subsets of sensors (patterns) that satisfy the coverage requirement.
As the number of feasible patterns grows exponentially with the number of sensors,
the authors conclude that CG offers a natural way to address coverage and scheduling
problems in WSN. Experimental results show that this approach is able to find optimal
solutions to medium size instances of MLP. Moreover, recent researches show that this
method can be improved by using heuristic approaches embedded in CG to solve the
pricing subproblem [Rossi et al., 2012a, Singh et al., 2013].

When the connectivity constraint is also required, the problem is referred to as
CMLP. In area coverage, a sufficient condition to guarantee connectivity is that the
communication range Rc is at least twice the sensing range Rs (Rc ≥ 2Rs) [Tian and
Georganas, 2005]. However, Lu et al. [Lu et al., 2005] have shown that this property
does not hold for target coverage, and have proposed a distributed heuristic to solve
the problem. Further results presented by Singh et al. [Singh et al., 2013] show that,
for the Q-coverage version of CMLP, in which each target has to be covered by at
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least Q active sensors at any time, an efficient approach can be generated by relaxing
connectivity constraints in the PS. In other words, by solving the problem as in MLP
and trying to restore connectivity if necessary.

CMLP has been addressed by Cardei and Cardei [Cardei and Cardei, 2008a] who
propose three different heuristic approaches. First, an integer programming model of
the problem which is solved to create, through a heuristic, an energy-efficient scheme of
the problem. Then, the authors propose two greedy heuristics to create iteratively set
covers in centralized and distributed manners respectively. Raiconi and Gentili [Raiconi
and Gentili, 2011] propose a greedy procedure namely CMLP-Greedy and two variants
embedded in a greedy randomized adaptive search procedure (GRASP) to find pattern
based solutions seeking to maximize network lifetime. Furthermore, the authors com-
pare their results with an exact decomposition based approach using CG and show that
their method is computationally efficient and, in addition, is able to find near optimal
solutions in most cases.

Zhao and Gurusami [Zhao and Gurusamy, 2008] propose to solve CMLP by modeling
the problem as a maximum cover tree problem (MCTP). In their proposal, the idea is
to find a collection of subtrees and timings to maximize network lifetime. The authors
show that MCTP is NP-Complete by reduction of 3-SAT problem. The authors propose
an upper bound to the network lifetime and propose two heuristics to solve the problem.

Several mixed approaches combining heuristic and exact approaches have been in-
troduced recently to solve optimization problems in various of contexts [Blum et al.,
2011, Maniezzo et al., 2010]. Heuristic approaches combining CG or Lagrangian relax-
ation with (meta)heuristic approaches are shown to be successful in a lot of applications.
Recently, Rossi et al. [Rossi et al., 2012a] presented an efficient implementation of a ge-
netic algorithm based CG to extend lifetime and maximize coverage in wireless sensor
networks under bandwidth constraints. The authors show that the use of metaheuristic
methods to solve PS in the context of CG allows to obtain optimal solutions quite fast,
and to produce high quality solutions when the algorithm is stopped before returning
an optimal solution.

In this chapter an exact multi level approach based on CG is proposed to solve
the CMLP. Our proposal is to speed up the solution process by embedding two heuris-
tic approaches within the CG framework. First, a greedy randomized adaptive search
procedure (GRASP) [Feo and Resende, 1995] is proposed to solve PS. This approach
relaxes connectivity constraints, so a repair procedure is necessary. Then, when GRASP
approach fails to find a profitable solution to PS, a variable neighborhood search (VNS)
heuristic [Hansen and Mladenović, 2001] is attempted for finding profitable columns.
Finally, if both heuristics are unable to find a profitable solution, integer linear pro-
gramming (ILP) is used to solve PS. It is also used for proving optimality of the current
RMP solution at the very end of the search. An extension of the problem, namely
α-CMLP, is also considered. It consists in replacing the full coverage requirement by a
constraint for enforcing a minimum quality of service. Thus, it is possible to neglect a
fraction 1− α of the targets, which allows to extend lifetime.

This chapter is organized as follows. Section 4.2 introduces the problem description
and the decomposition approach used to solve α-CMLP. A detailed description of the
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proposed approach is presented in Section 4.3. The results obtained through the use
of the proposed methods and a detailed analysis of the computational experiments are
reported in Section 4.4. Finally, conclusions and future work are presented in Section
4.5.

4.2 The maximum network lifetime problem under cover-

age and connectivity constraints

Consider a set K = {k1, . . . , km} of targets with known locations and a set S =
{s1, . . . , sn} of sensors deployed to cover the targets. If the distance between a sen-
sor node and a target is less than its sensing range Rs, then this sensor is able to cover
the target and an observation link exists. The sensor nodes collect and (re)transmit the
information to other sensor nodes within their communication range Rc (communica-
tion link). All the information generated by the targets must be collected by a single
sink node r. A sensor is able to send the information to the sink node only if a com-
munication link exists between them, otherwise the information have to be addressed
indirectly through a multi hop path of sensors.

Let E be the set of all pairs e(u, v) such that a communication link exists between
the elements u, v ∈ S ∪ {r} or an observation link exists between the elements u ∈ K
and v ∈ S. A feasible cover Cj ⊆ S is a subset of sensors such that for at least ⌈α|K|⌉
targets, there exists a communication link e(u, v) between u ∈ K, v ∈ Cj and there
exists a path between the elements of Cj and r. The set of all the feasible covers of S
is denoted by Ω = {C1, C2, . . . , Cℓ}.

Variable tj is the time during which cover Cj is used. The α-connected maximum
network lifetime problem (α-CMLP) is defined as finding a collection of pairs (Cj , tj),
such that network lifetime,

∑
j∈Ω′⊆Ω tj , is maximized without exceeding the battery

capacity bsi of the sensors si.
Let ysij be a binary parameter that is set to 1 iff sensor si is active in cover Cj .

α-CMLP can be formulated as the following linear program:

Maximize:
∑
Cj∈Ω

tj (4.1)

Subject to:

∑
Cj∈Ω

ysijtj ≤ bsi ∀ si ∈ S (4.2)

tj ≥ 0 ∀ Cj ∈ Ω (4.3)

The objective (4.1) is to maximize the network lifetime by using a collection of covers
Cj that meet the connectivity and coverage constraints. The set of constraints (4.2)
is used to guarantee that battery constraints of the sensors are respected. Constraints
(4.3) are the non-negativity constraints.
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4.2.1 Decomposition approach

The model (4.1-4.3) is linear and is known to be easy to solve with a linear programming
solver [Deschinkel, 2011, Gentili and Raiconi, 2013]. By contrast, the enumeration of
all the feasible covers Cj is generally impossible, as the number of such covers grows
exponentially with the number of sensors O(2|S|) which stresses the need for intelligent
strategies to identify profitable covers. This can be achieved by using the reduced cost
of the decision variables of tj for all j ∈ Ω.

In order to solve α-CMLP, our proposal is to divide the problem into two. First,
a restricted master problem (RMP), containing a reduced set of the feasible columns
Ω′ ⊆ Ω, is used to identify the timings for the covers in Ω′. In a second stage, a pricing
subproblem (PS) is used to identify new profitable covers in Ω, that will be added to Ω′.
In order to identify profitable columns, the reduced cost criterion is used iteratively to
generate and add columns to RMP. For each new cover the reduced cost is evaluated.
If it is strictly positive, which means that the cover is interesting, it is added to RMP
and a new CG iteration is performed. The CG process stops when no more profitable
columns are found.

4.2.1.1 Pricing subproblem

The pricing subproblem is to identify connected structures using different subsets of
sensors so that the network lifetime can be extended. Then, PS purpose is to find
a minimum cost tree spanning a fraction α of the targets and the base station, i.e.,
guaranteeing connectivity.

In order to find profitable covers, we propose an extension of the flow model pre-
sented by Raiconi and Gentili [Raiconi and Gentili, 2011] in which partial coverage is
considered. The authors propose to formulate the problem as a single-commodity flow
to find a tree connecting all the active sensors. In their model, the authors simulate a
flow leaving the base station which value is equal to the number of active sensors that
consume this flow. Let y̆u be a binary variable that is set to 1 if sensor su is part of
cover Cj being generated at iteration j of CG. Let zm be a binary variable that is set
to one if and only if target k ∈ K is covered by a sensor in Cj . The binary variables xuv
are used to decide if a communication link is established between sensors su and sv. In
the same way, the integer variables fuv are used to identify the flow passing through
the communication link e(u, v). For each sensor sv, the dual variable associated with
constraint (4.2) is denoted by πv.

By using the above notation, the PS can be modeled as follows:

Maximize: 1−
∑
su∈S

y̆uπu (4.4)
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Subject to:

∑
su∈S|∃e(r,u)

fru =
∑
su∈S

y̆u (4.5)

∑
sv∈S|∃e(v,u)

fvu −
∑

sv∈S|∃e(u,v)

fuv = y̆u ∀ su ∈ S (4.6)

∑
su∈S|∃e(u,v)

xuv = y̆v ∀ sv ∈ S (4.7)

xuv ≤ fuv ≤ xuv|S| ∀ su, sv ∈ S (4.8)∑
su∈S|∃e(u,k)

y̆u ≥ zk ∀ k ∈ K (4.9)

∑
k∈K

zk ≥ ⌈α|K|⌉ (4.10)

fuv ∈ Z+ ∪ {0} ∀ su, sv ∈ S (4.11)

y̆u ∈ {0, 1} ∀ su ∈ S (4.12)

xuv ∈ {0, 1} ∀ su, sv ∈ S (4.13)

zk ∈ {0, 1} ∀ k ∈ K (4.14)

As previously mentioned, the purpose of PS is to identify profitable network struc-
tures based on the reduced cost criterion (4.4). Equation (4.5) ensures that the flow
offered by the base station is equal to the number of active sensors consuming the infor-
mation. Flow balance constraints are imposed in (4.6). Furthermore, if a sensor is part
of Cj , then exactly one entering communication link has to be active (4.7). Bounds are
imposed on the flows by using the set of constraints (4.8). Constraints (4.9-4.10) are
used to guarantee a minimum level of target coverage.

4.3 Solving the pricing subproblem

Integer programming has been used to solve the full coverage version of PS [Raiconi
and Gentili, 2011]. Nonetheless, experimental results show that exact methods become
inefficient even for small problem sizes. Furthermore, by following a CG framework the
number of required iterations is expected to grow with the problem size as the number
of feasible covers also grows.

Angelopoulos [Angelopulos, 2006] and Li et al. [Li et al., 2009] model the PS as a node
weighted Steiner tree and show that it is NP-Hard. Although polynomial algorithms
exist in the literature to approximate this problem and some of its variants, these results
are not good enough for being used in a CG algorithm, because attractive columns might
be missed, leading to a premature convergence of the CG approach.

In order to speed up the CG approach and obtain optimal solutions for α-CMLP,
we propose to solve PS by using a multiphase approach. An overview of the proposed
method is presented in Figure 4.1. At each iteration of CG, the method attempts to find
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interesting solutions for PS by resorting to three methods. First, a GRASP heuristic
is proposed to solve PS. This method is based on the simple idea of addressing PS by
relaxing connectivity constraints, and then repairing the solution. If a profitable column
is found, it is returned to RMP and a new iteration of CG is performed. Several columns
can be returned at each iteration of CG as an strategy to accelerate the convergence of
the technique [Lubbecke and Desrosiers, 2005, Moungla et al., 2010]. If GRASP fails
to find a profitable cover, a VNS approach is executed for solving PS without relaxing
connectivity and coverage constraints. If this also fails, then ILP is used to solve PS. If
no profitable column exists, the current solution to RMP is proved optimal for α-CMLP.

Start
Identify
Initial

Solution

Solve RMP
Calculate
πv ∀sv ∈ S

Solve PS GRASP

Profitable
column(s)?

Solve PS VNS

Profitable
column(s)?

Solve PS ILP

Profitable
column?

STOP

Add columns
to RMP

no

no

yes

no

Figure 4.1 – Multiphase column generation approach.

Pure heuristic approaches can be obtained as well by not solving the ILP formulation
of PS, and by applying sequentially both heuristics as mentioned above (or even by
running a single heuristic). These variants are considered in this chapter. A detailed
description of the heuristic approaches is presented below.



60 Maximizing lifetime in WSN with connectivity constraints

4.3.1 A GRASP approach to solve the pricing subproblem

As previously mentioned, the first strategy consists in solving a relaxed version of
PS where the connectivity constraint is ignored. The problem can then be seen as
a weighted set covering problem where the cost of using a sensor is equal to its dual
value. The purpose is to find the minimum cost subset of sensors which is able to meet
the coverage constraints. Then, in order to produce feasible covers, a repair procedure
must be performed for non-connected solutions.

In this chapter, a GRASP algorithm is used to solve the relaxed version of PS. An
overview of the proposed GRASP heuristic is presented in Algorithm 4.1. Note that the
objective of the algorithms is to minimize

∑
u∈S y̆uπu for maximizing the objective value

of PS (4.4). The GRASP algorithm uses a greedy randomized constructive phase (line
4) to compute an initial solution Ĉj which is improved through a local search procedure
(line 5). The constructive phase is based on the algorithm proposed by Chvátal [Chvátal,
1979]. A feasibility check is performed to evaluate connectivity of the solutions (line 7).
If the solution is connected and its cost is lower than the best solution found so far, the
solution is stored. Otherwise a repair operator is performed (line 10). The reparation
consists in computing the main connected component (i.e., the one that contains the
base station), and the other connected components. Connectivity is then enforced by
adding the sensors on the shortest path to the main connected component. The repair
completes when the desired level of coverage is reached through the recently included
sensors, or when the solution is connected.

Algorithm 4.1: Set Covering GRASP

1 GRASP_SC(πv,α)

2 Cj ← ∅, Ĉj ← ∅, time← 0, iter ← 0, f (Cj)←∞
3 while time ≤Max_time & iter ≤MaxIters do

4 Ĉj ← Greedy_Construction(πv, α, β)

5 Ĉj ← Sol_Improvement(Ĉj)

6 if f (Ĉj) ≤ f (Cj) then

7 if Fesibility_Check(Cj) then

8 Cj ← Ĉj , iter ← 0
9 else

10 Shortest_Path_Repair(Cj)

11 if f (Ĉj) ≤ f (Cj) then

12 Cj ← Ĉj , iter ← 0
13 end

14 end

15 end

16 time← Update_time(), iter ← iter + 1

17 end

18 return Cj
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4.3.1.1 Greedy randomized construction

The constructive phase of the algorithm is based on the greedy heuristic for the weighted
set covering problem proposed by Chvátal [Chvátal, 1979], it is described in Algo-
rithm 4.2. Let Tv denotes the set of targets covered by sensor v, the method iteratively
selects the next sensor to be included in a cover based on the ratio indv between the
reduced cost of sensor sv ∈ S and the number of uncovered targets that it covers (lines
4-5). Then, it creates a restricted candidate list RCL containing only the elements
within a fraction β of lowest index ignoring those sensors not covering any uncovered
target (lines 7-9). A random selection is performed among the elements in RCL (line
10) and the selected sensor is included in the current cover. The process stops when
the required coverage level is reached (line 3).

Algorithm 4.2: Greedy Randomized Construction

1 Greedy_Randomized_Construction(πv,α,β)
2 Cj ← ∅, Kcov ← ∅, Kunc ← K, Sav ← S
3 while |Kcov| < α|K| do

4 for sv ∈ Sav do

5 indv = πv

|Tv∩Kunc|

6 end

7 cmin = minsv∈Sav
indv

8 cmax = maxsv∈Sav
indv

9 RCL← {sv ∈ Sav|πv ≤ cmin + α(cmax − cmin)}
10 sel← random_selection(RCL)
11 Cj ← Cj ∪ sel
12 Sav ← Sav \ sel
13 for u ∈ Kunc do

14 if ∃ e(sel, u) then

15 Kunc ← Kunc \ u
16 end

17 end

18 for v ∈ Sav do

19 if Tv ∩ Kunc = ∅ then

20 Sav ← Sav \ v
21 end

22 end

23 end

24 return Cj

4.3.1.2 Solution improvement

A local search is performed for improving the solution by trying to remove the sen-
sors that do not contribute to the solution feasibility. A best improvement strategy is
performed by evaluating first the removal of the sensors with the highest πv value.
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4.3.2 A VNS approach to solve the pricing subproblem

Variable neighborhood search is a well known metaheuristic introduced by Hansen and
Mladenović [Hansen and Mladenović, 2001] consisting on the systematic exploration of
several neighborhoods for solving optimization problems. The method exploits several
ideas that allow to address problems in the context of global optimization. First, the
method is able to obtain solutions that are locally optimal under several neighborhood
structures. In addition, the method provides strategies to escape from locally optimal
solutions so it enables the evaluation of unexplored regions of the feasible space.

In order to efficiently solve PS, we propose to apply a basic variable neighborhood
search heuristic (BVNS). This variant of VNS relies on a combination of stochastic
and deterministic changes of neighborhood to explore the search space. An overview of
BVNS is presented in Algorithm 4.3.

Let Nk(Cj) denote the kth neighborhood of a feasible solution Cj for PS. A shake
function is used to select a random solution C ′

j ∈ Nk(Cj). Once the new point has been
selected, a local search procedure is executed until no better solution is found. Then, a
change of neighborhood is performed if the process falls into a local optimum and the
neighborhood is unable to provide means to escape from it, otherwise, the process starts
again with the first neighborhood. This process is repeated until a maximum number
of iterations with no improvement is performed or the running time reaches the time
limit.

Algorithm 4.3: Basic variable neighborhood search

1 BVNS(TimeLimit, MaxIters, α, πv)
2 Sav ← ∅, Sact ← S, Kcov ← ∅, s0 ← r
3 Cj ← Greedy_DFS(Sav, Sact, Kcov, πv, G, s0, α)
4 k ← 1
5 while time < TimeLimit & iter ≤MaxIters do
6 Ĉj ← shake(Cj , k)

7 C̆j ← Local_Search(Ĉj , k)

8 if f (C̆j) < f (Cj) then
9 Cj ← C̆j

10 k ← 1
11 time← Update_Time()

12 else
13 k ← k + 1
14 time← Update_Time()

15 end

16 end

17 return ~Cj
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4.3.2.1 Initial solution

In general, any connected set able to cover the whole set of targets and to send the
information to the base station is useful. However, a greedy heuristic is intended to
provide the local search procedures with a good starting point to seek for a high quality
solution.

The proposed approach is a recursive algorithm used to add new sensors to an ini-
tial tree. A general description of the algorithm is outlined in Algorithm 4.4. The
algorithm starts with an initial tree consisting only of the base station node. Next,
unconnected sensors are added to the tree following a deep first search (DFS) strategy
that prefers the sensors with the lowest dual variable value πv associated to the battery
limit constraints (4.2) and related to the set of sensors (lines 3-4). Each time that a new
sensor is added to the tree, the targets sharing an observation link with it are marked as
covered (lines 6-7). The procedure completes when a fraction α of the targets is covered.

Algorithm 4.4: Greedy depth first search (recursive)

1 Greedy_DFS(Sav, Sact,Kcov, πv, G, s0, α)
2 while |Kcov| < α|K| do

3 s0 ← argmin
v
{πv|v ∈ Sav ∧ ∃e(S0, v)}

4 Sact ← Sact

⋃
s0

5 Sav ← Sav \ s0
6 for u ∈ K | ∃ e(u, s0) do

7 Kcov = Kcov

⋃
u

8 end

9 GR_DFS(Sav, Sact,Kcov, πv, G, s0, α)

10 end

11 return Sact

4.3.2.2 Local search

The proposed local search consists in selecting an initial solution Ĉj and an improvement
direction, by performing moves leading to better solutions belonging to the neighbor-
hood Nk(Ĉj). Two types of strategies can be considered, best improvement and first
improvement. The former evaluates the whole set of solution members of Nk(Cj) and
selects the best one as the next starting point. The latter performs a move each time
that an improvement direction is detected. In this chapter, a first improvement strategy
is proposed to explore the selected neighborhoods.
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Algorithm 4.5: First improvement local search

1 Local_Search(Ĉj , k)
2 repeat
3 C̆j ← Ĉj , i← 0
4 repeat
5 i← i+ 1

6 if f (Ĉi
j) < f (Ĉj) ∧ Ĉi

j ∈ Nk(Ĉj) then

7 Ĉj ← Ĉi
j

8 end

9 until f (Ĉj) < f (C̆j) or i = |Nk(C̆j)|

10 until C̆j = Ĉj

11 return Ĉj

A fast exploration of the neighborhoods is obtained by avoiding checking the fea-
sibility on the neighbors that are not profitable. This is possible by considering as
interesting only those moves that are able to reduce the objective function and satisfy
the quality of service and connectivity constraints of the network. We can identify the
profitable neighbors before the evaluation of feasibility by using a simple mathematical
relation. Let S ′ ⊆ S be a subset of sensors for which the activation status is modified
in a feasible solution Ĉj = {y1j , y2j , y3j , . . . , y|S|j}, where the elements y̆v are binary
and take the value 1 if sensor sv belongs to cover Cj . Let ∆Cj be the variation of
costs in that solution after modifying the activation status of the sensors in S ′. Since
∆Cj =

∑
v∈S′ (1− 2y̆v)πv, only those modifications of a current solution producing a

negative ∆Cj value are considered interesting. Then, a feasibility check can be per-
formed to evaluate if the produced exchange maintains the required level of coverage.

4.3.2.3 Neighborhoods

Using an initial solution as starting point, the local search procedures are required to
evaluate moves and modifications of the current solution that allow to improve the ob-
jective function, i.e., the network reduced cost. Consider Ĉ1

j = {y11j , y
1
2j , y3j1 , . . . , y

1
|S|j}

and Ĉ2
j = {y21j , y

2
2j , y

2
3j , . . . , y

2
|S|j} representing two valid solutions able to guarantee the

coverage and the connectivity constraints in a WSN. The Hamming distance [Hamming,
1950] between the two solutions Ĉ1

j and Ĉ2
j is defined by d(Ĉ1

j , Ĉ
2
j ) =

∑
v∈S(y̆

1
v ⊕ y̆2v).

Then, a k-neighbor solution of Ĉ1
j is a feasible solution Ĉ2

j such that d(Ĉ1
j , Ĉ

2
j ) = k.

In other words, the number of sensors in which two sets differ is equal to k.
In this chapter we consider two neighborhoods for which k ∈ {1, 2}. First, A remove

neighborhood (k = 1) is proposed to check for useless sensors which are not required
to meet the coverage and connectivity constraints (see Figure 4.2b). Since all the
associated dual variables are greater that or equal to zero, a best improvement strategy
can easily be applied by considering the elements to remove according to the decreasing
dual variable value associated with them. A remove-insert neighborhood (k = 2) is
also considered. In this case one active sensor is replaced by an inactive sensor with a



Solving the pricing subproblem 65

lower cost if it is able to keep the connectivity and coverage requirements (see Figure
4.2c). In general, similar neighborhood structures can be applied to explore a larger
or structurally different portion of the solution space. For example, in order to make
a fast exploration it could be useful to sample the solution space around the current
best solution by randomly selecting a subset S ′ ⊆ S of sensors such that |S ′| = k and
by modifying their activation status. Finally, the connectivity could be evaluated by
performing a DFS between the active subsets of sensors.
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Figure 4.2 – Neighborhood structures considered in the VNS approach for PS.

4.3.2.4 Shake

In order to provide a mechanism to allow the VNS procedure to escape from local op-
timal solutions and diversify the search, a shake function is proposed. This function
takes as input an initial set of sensors that satisfy the coverage and connectivity re-
quirements and modifies it to obtain a new solution. Several variations of this method
can be considered. In this chapter, we propose the randomization of the VNS algorithm
by including in a feasible subset a few more sensors that were not active before. Then,
a new local search process starts from this random point using the same neighborhoods
as previously mentioned.
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4.4 Computational experiments

The proposed approaches are imlmented in C++ and executed on an Intel Core i-5
processor at 1.6 GHz with 2 GB of RAM running under OS-X Lion. The Gurobi op-
timization engine is used to solve RMP and PS. Two main groups of instances were
considered. First, the approaches are executed on the instance set proposed by Raiconi
and Gentili [Raiconi and Gentili, 2011] for the full coverage case. Additionally, a new
set of instances is considered to evaluate the performance of the method on different
scenarios varying the ratio between the sensing and communication ranges. At each
iteration of CG, GRASP or VNS are performed for a maximum duration of 1 second.
Additionally, the algorithms are stopped if |S|/2 iterations are performed without im-
provement. The column generation process starts by finding an initial set of covers used
to initialize the master problem. In a standard manner, a trivial solution consisting in
only one column containing the whole set of sensors is used.

The use of stabilization strategies [Amor et al., 2009, Du Merle et al., 1999, Marsten
et al., 1975] was considered to accelerate the convergence of the CG. However, the use of
these strategies was discouraged by the fact that this problem does not exhibit unstable
behavior for the dual variables numerical value from an iteration to the next one, neither
a remarkable tailing-off effect, i.e., while a near-optimal solution is approached consid-
erably fast, the improvement of the objective function is slow in the last iterations.
Figure 4.3 presents the typical evolution of the objective function (network lifetime)
along successive iterations of CG. It can be observed that the network lifetime is rarely
stalling, and keeps increasing by a non marginal amount even at the end of the search.

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100

Li
fe

tim
e

Iteration

CG

Figure 4.3 – Evolution of the objective function for CMLP.

Some experiments demonstrated that degeneracy problems can appear in some in-
stances when the sensing and communication ranges are enlarged. Then, in order to
evaluate the performance of stabilization and intensification approaches, the connectiv-
ity constraint was neglected. In stabilization the purpose is to control the behavior of
the dual variables values (πv), associated to convergence issues in CG, by limiting the
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set of values that they can take at each iteration of CG. As RMP initially contains only
partially the information relevant to the columns useful to extend network lifetime, the
purpose of intensification is to provide more (probably diverse) information to RMP
that help the CG process identifying better columns and reducing the number of iter-
ations. This research considered the implementation of the BoxStep method [Marsten
et al., 1975], and the generalization proposed by Du Merle et al [Du Merle et al., 1999].
The selection of the parameters for these methods was based on the specialized litera-
ture [Tran et al., 2006]. Moreover, we considered an intensification strategy in which at
most 50 profitable columns are returned to the master problem at each iteration. The
selection is based on the reduced cost criterion (Eq. 4.4).

Figure 4.4 presents the evolution of the euclidean distance to the optimal dual
solution ||π∗ − πj || along successive iterations of CG for several intensification and
stabilization strategies. As it could be observed, the use of stabilization strategies was
useful to reduce the number of iterations required to reach an optimal solution for
the problem. In the same way, intensification (and diversification) strategies offer a
substantial reduction in the number of iterations required to reach the optimal solution
for the problem. Moreover, our findings show that it presents as well a stabilizing effect
reducing the large oscillations observed in the behavior of the dual variables in CG. The
value at each iteration of the πv variables are expected to be in the range [0, 1]. Although
the knowledge of these values can be exploited by stabilization approaches, the results
show that the use of intensification strategies can be used to accelerate the convergence.
As a consequence, along this chapter the application of the described intensification
strategy is adopted to accelerate the convergence of the proposed approach.
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Table 4.1 presents a comparison between the approaches introduced in this chap-
ter and the heuristic approaches proposed by Raiconi and Gentili to address α-CMLP
when α = 1. Columns LT and Time report respectively the best lifetime found and the
computational time for each approach. Labels CMLP-Greedy and CMLP-GRASP refer
to the heuristics proposed by Raiconi and Gentili [Raiconi and Gentili, 2011]. Similarly,
CG-EXACT refers to the results obtained through the multiphase exact approach pro-
posed in this chapter and CG-MULTI reports the results obtained when it is applied as
a pure heuristic approach (i.e., ILP is never used). Finally, CG-CNS and CG-GRASP
refers to the implementation of the CG using the VNS and GRASP heuristics, respec-
tively, to generate the columns introduced in Section 4.3.1. In order to have a fair
comparative study, the CPU times reported by Raiconi and Gentili have been scaled
according to the Linpack benchmarks [Longbottom, 2012]. Bold font is used to high-
light the fastest approaches among those that return an optimal solution. Of course,
only CG-EXACT is able to prove optimality.

|S| |K| CMLP-Greedy CMLP-GRASP CG-EXACT CG-MULTI CG-VNS CG-GRASP
LT Time (s) LT Time (s) LT Time (s) LT Time (s) LT Time (s) LT Time (s)

50 15 2.0 0.02 2.00 3.01 2.00 0.51 2.00 0.04 2.00 0.06 2.00 0.24
2.0 0.02 2.50 3.71 2.50 0.73 2.50 0.19 2.44 0.12 2.26 0.02
3.0 0.02 3.00 3.33 3.00 0.45 3.00 0.05 3 0.02 3.00 0.03
4.0 0.03 4.00 6.18 4.00 0.42 4.00 0.03 4 0.032 4.00 0.02
3.0 0.02 4.00 7.70 4.66 0.71 4.66 0.37 4.66 0.84 4.58 0.34

75 15 5.0 0.05 6.00 24.37 7.00 1.61 7.00 0.64 7 2.43 6.99 0.60
4.0 0.06 4.00 12.24 4.00 0.88 4.00 0.07 4 0.30 4.00 0.04
3.0 0.03 3.00 4.10 3.00 1.15 3.00 0.51 3 0.03 3.00 0.03
6.0 0.08 7.00 26.55 7.00 1.27 7.00 0.70 7 0.34 6.68 0.66
6.0 0.04 6.00 19.31 7.00 1.37 7.00 1.01 7 1.36 6.80 0.58

100 15 8.0 0.11 9.00 33.20 10.00 6.31 10.00 2.59 10 11.22 10.00 2.54
6.0 0.23 7.00 33.11 7.00 2.13 7.00 0.27 7 1.61 7.00 0.24
6.0 0.06 7.00 17.48 7.00 1.72 7.00 0.12 7 0.24 7.00 0.09
9.0 0.17 9.00 46.21 9.00 2.42 9.00 0.31 9 1.86 9.00 0.27
8.0 0.20 8.00 86.49 8.00 3.45 8.00 0.26 8 1.07 8.00 0.19

150 15 12.0 0.25 15.00 69.22 17.00 87.84 17.00 54.83 17 99.27 15.50 5.37
11.0 0.33 13.00 67.32 14.00 15.12 14.00 8.38 14.00 25.57 13.46 2.24
10.0 0.17 12.00 30.37 16.00 14.45 16.00 5.77 16.00 25.48 16.00 5.69
12.0 0.63 13.00 125.56 13.00 5.70 13.00 0.57 13 6.61 13.00 0.51
13.0 0.29 14.00 131.02 14.00 5.84 14.00 0.76 14 3.13 14.00 0.62

200 15 18.0 0.58 20.00 160.51 25.00 95.04 25.00 78.00 24.79 97.13 16.21 1.78
17.0 0.85 18.00 141.21 20.00 11.54 20.00 10.97 20 16.61 19.46 5.74
13.0 0.27 14.95 156.00 19.00 17.12 19.00 15.24 19 42.18 18.73 6.38
16.0 1.30 18.00 225.03 18.00 32.68 18.00 2.08 18 24.84 18.00 1.89
18.0 0.70 19.00 218.34 19.00 7.00 19.00 2.96 19 9.513 19.00 2.93

#Opt 7 15 25 25 23 15
Av. Time 0.26 66.06 12.70 7.47 14.87 1.56

Av. Deviation 14.2% 5.9% 0.0% 0.0% 0.06% 2.8%

Table 4.1 – Comparison of the proposed approaches on the Raiconi and Gentili set of
instances.

In general, it is observed that the CMLP-Greedy is a fast approach which runs in
a low computational time, but it can find an optimal solution only for 7 out of 25
instances. An improvement of this method is proposed by the authors in which the
previous constructive heuristic is embedded into a GRASP procedure used to solve the
whole problem. Although the method performance is improved, an optimal solution is
found for 60% of the experiments, at the cost of a significant increase of computational
time.
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As observed in Table 4.1, CG-EXACT is able to find the optimal solution for all the
instances. Furthermore, the method is shown to be fast by solving all the problems in an
average computational time of 12.7 seconds, which significantly outperforms previous
approaches. However, as could be observed in Table 4.1, this lower computational time
is the result of the good performance offered by the CG-MULTI approach, which is able
to find all the optimal solutions in an average time of 7.47 seconds. As a matter of fact,
with all the proposed instances, ILP is only used to prove optimality at the last iteration
of the CG. This shows that the combination of GRASP and VNS is very efficient to
find profitable columns. In addition, it can be seen that the proof of optimality can be
obtained using ILP at the cost of a computational time increase of 41%.

CG-VNS is shown to be very efficient as it found the optimal solution for 23 out of
25 instances. The produced solutions have an average deviation of 0.06%. Nonetheless,
it is observed that the time consumed by this approach is more than for the CG-MULTI
approach. In contrast, CG-GRASP is shown to run in the smallest CPU times at the
expense of solution quality. CG-GRASP is able to find the optimal solution for 60% of
the instances and presents an average deviation to optimality of 2.8%.

The results in Table 4.1 show that optimal lifetime often takes an integer value.
Two main reasons can explain why this happens, the number of sensors located one hop
away from the base station and the maximum number of sensors covering each target.
In the former case, an upper bound for network lifetime can be computed as the sum
of the lifetime of each one of the sensors within the communication range of the base
station. In the latter case, specially notorious in problems demanding full coverage of
targets (α = 1), the lifetime is limited by some critical targets that are covered by a
few sensors.

A second group of instances is presented to evaluate the performance of the pro-
posed approaches with different communication and sensing ranges. As proposed by
Deschinkel [Deschinkel, 2011] and Singh et al. in [Singh et al., 2013], it is assumed
that sensors and targets are randomly deployed in a 500 × 500 square area. A group
of five sets of instances with |S| ∈ {100, 200, 300, 400, 500} sensors are used. Two sets
of targets |K| ∈ {15, 30} and a randomly located base station are also given for each
instance. The sensors are assumed to be identical and bsv = 1 ∀ sv ∈ S. Four instances
are generated for each combination of the previous parameters. Three levels of cover-
age are considered α ∈ {0.7, 0.85, 1}. Finally, variations on the ratio between sensing
and communication ranges are considered. For all the experiments, the communication
range is Rc = 125, the sensing range Rs is in the set {100, 125}. This represents two
sets of 120 instances whose solutions are presented in Tables 4.2 and 4.3. A time limit
of 3600 seconds is established for all the experiments, if no optimal solution is found
before the time limit, then the best solution found so far is reported.

Tables 4.2 and 4.3 present a comparison between the approaches proposed in this
article to solve α-CMLP with different ratios between the sensing and communication
ranges. The methods are compared in terms of the average objective function value,
the average computational time and the number of optimal solutions found for each
instance group. The tables also present separately the experimental results concerning
the instances for which a proven optimal solution is known, as well as those for which the
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optimal solution was not obtained before the time limit. Of course, only CG-EXACT
is able to prove optimality.

|S| |T | α CG-Exact CG-MULTI CG-VNS CG-GRASP
LT Av. Time(s) #Opt LT Av. Time(s) #Opt LT Av. Time(s) #Opt LT Av. Time(s) #Opt

100 15 0.7 6.88 8.78 4 6.63 4.08 3 6.88 4.97 4 5.60 0.76 1
0.85 6.64 921.47 4 6.04 10.16 1 6.02 25.27 3 5.16 1.43 0
1 4.00 1.80 4 4.00 0.84 4 2.50 0.85 2 3.79 0.32 1

100 30 0.7 7.00 6.54 4 6.75 4.75 3 7.00 5.35 4 5.96 1.57 0
0.85 6.57 1922.59 2 6.49 44.82 2 6.29 82.50 1 5.28 2.22 0
1 4.00 4.06 4 4.00 2.75 4 3.66 5.54 2 3.66 0.72 1

200 15 0.7 16.25 414.98 4 15.96 212.26 2 16.22 293.80 3 11.21 1.47 0
0.85 15.42 941.60 3 15.37 253.00 3 15.30 496.17 3 10.82 2.82 0
1 10.25 12.69 4 10.25 8.64 4 10.25 25.70 4 9.15 1.34 2

200 30 0.7 16.25 128.92 4 16.00 100.17 3 15.95 170.52 3 12.45 3.48 0
0.85 15.35 1514.62 3 14.69 715.21 1 14.51 1365.67 1 11.76 7.92 0
1 8.75 19.80 4 8.50 3.29 3 8.75 24.78 4 8.50 2.75 3

300 15 0.7 18.25 34.72 4 18.00 9.00 3 17.55 31.30 2 12.95 1.67 1
0.85 18.25 91.10 4 18.00 28.88 3 18.00 83.05 2 12.56 3.79 0
1 15.00 86.26 4 15.00 54.26 4 15.00 82.69 4 11.50 4.51 3

300 30 0.7 18.25 47.93 4 17.00 9.26 3 18.25 28.94 4 13.75 2.18 2
0.85 18.25 104.34 4 16.44 39.28 3 16.25 116.98 3 13.58 11.35 1
1 13.25 48.34 4 13.25 29.72 4 13.25 66.99 4 11.50 6.26 3

400 15 0.7 30.68 999.22 3 30.56 693.82 3 30.81 920.56 2 20.46 6.38 0
0.85 28.66 1151.16 3 28.63 1077.91 3 28.64 1297.94 3 19.94 12.67 1
1 18.25 95.70 4 18.25 28.67 4 18.25 68.89 4 16.34 5.58 0

400 30 0.7 29.55 1007.00 3 29.55 947.06 3 29.43 1013.43 3 25.72 32.54 1
0.85 26.90 1907.09 2 26.90 1877.53 2 26.20 1886.35 2 23.08 92.89 1
1 18.00 125.38 4 18.00 46.64 4 18.00 190.97 4 17.53 19.17 1

500 15 0.7 45.04 2554.30 2 45.04 2498.70 2 44.09 2252.47 2 32.65 34.75 0
0.85 39.20 2742.29 1 39.20 2714.57 1 38.02 3145.49 1 30.45 74.19 0
1 29.00 335.83 4 29.00 227.92 4 29.00 522.13 4 26.21 64.71 0

500 30 0.7 44.83 2748.99 1 44.83 2692.89 1 44.47 2661.04 1 37.00 98.20 1
0.85 37.24 2768.34 1 37.24 2740.50 1 36.83 2870.65 1 32.35 190.26 0
1 26.25 308.25 4 26.25 198.10 4 26.25 573.85 4 26.00 140.29 2

Av. Time (Optimal) 195.43 102.86 129.114 13.99
Av. Time (Non Optimal) 3600 1724.43 1955.934 31.19

Av. Time 768.47 575.82 677.16 27.61
#Optimal solutions (%Opt) 100 (83.3%) 85 (70.8%) 84 (70.0%) 25 (20.8%)

Av. LT Variation - 1.61% 3.10% 18.40%

Table 4.2 – Comparison of average lifetime and average running time (Rs = 100, Rc = 125).

The results confirm the observations obtained with the set of instances proposed
by Raiconi and Gentili. CG-EXACT was able to find the optimal solution in 83.3%
and 85% of the instances when Rs < Rc and RS = RC respectively. However, the
experiments show that the performance decreases when instance size grows, as the
number of iterations also increases. As a result, the CPU time for addressing ILP also
increases. As shown in Tables 4.2 and 4.3, this behavior is accentuated when partial
coverage is allowed (α < 1).

Figure 3 presents the typical evolution of the CG-EXACT algorithm in terms of
both, the objective function along CG iterations, and the approaches used to find an
interesting column to be returned to RMP (see Figure 4.1). The phases are represented
by bars and the height is divided in three levels, the first level indicates that the GRASP
was successful in finding profitable columns for RMP, the second level indicates that
GRASP failed and VNS was required. Finally, if VNS fails, the third level indicates
that an iteration with ILP was performed.

The results confirm that ILP is mainly used at the last iteration of CG-EXACT,
mostly with the purpose to prove optimality of the current solution. Experiments show
that the use of ILP is only required 1.28 times per problem on average, and for 2.95%
of iterations. By contrast, as presented in Figure 4.6, it accounts for 54.5% of the total
CPU time of the CG-EXACT approach; nonetheless, as presented in Tables 4.2 and
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|S| |T | α CG-Exact CG-MULTI CG-VNS CG-GRASP
LT Av. Time(s) #Opt LT Av. Time(s) #Opt LT Av. Time(s) #Opt LT Av. Time(s) #Opt

100 15 0.7 7.00 1.79 4 7.00 0.84 4 7.00 4.01 3 6.66 0.51 2
0.85 6.88 8.37 4 6.88 4.31 4 6.85 5.96 3 6.27 0.96 0
1 4.75 3.62 4 4.75 2.07 4 4.50 5.95 4 4.41 0.51 2

100 30 0.7 7.00 3.05 4 6.75 0.68 3 6.75 10.07 4 6.75 0.67 3
0.85 6.79 327.39 4 6.78 9.56 3 6.76 37.04 3 6.21 1.93 1
1 4.75 91.41 4 4.71 4.94 3 4.60 3.59 3 4.40 0.96 2

200 15 0.7 16.25 19.56 4 16.00 8.88 3 16.25 128.62 3 12.41 0.90 0
0.85 15.75 31.46 4 15.00 19.70 2 14.25 52.37 4 12.08 1.18 0
1 13.00 46.56 4 12.50 36.06 3 12.41 66.94 4 11.27 2.49 1

200 30 0.7 16.25 19.34 4 16.25 6.61 4 15.66 151.76 4 13.65 1.83 0
0.85 16.09 925.98 3 15.74 210.15 2 15.37 338.87 3 13.29 3.41 0
1 11.75 96.81 4 11.75 90.65 4 11.75 100.81 4 10.75 3.71 1

300 15 0.7 18.25 27.97 4 18.25 6.22 4 18.00 42.00 4 13.50 0.65 2
0.85 18.25 40.07 4 18.25 13.22 4 18.25 24.42 4 13.50 2.06 2
1 16.75 52.10 4 16.75 23.10 4 16.75 28.17 3 13.00 3.44 2

300 30 0.7 18.25 29.23 4 18.25 6.59 4 18.25 92.93 4 15.25 1.47 2
0.85 18.25 50.03 4 18.25 18.23 4 18.25 34.28 4 15.25 3.98 2
1 16.00 82.83 4 15.75 27.25 3 16.00 53.17 4 13.91 7.95 1

400 15 0.7 33.36 991.85 3 32.86 908.98 2 33.09 884.22 4 24.40 5.83 1
0.85 31.06 998.19 3 31.06 939.45 3 30.94 1330.59 3 23.42 12.17 1
1 24.88 298.96 4 24.88 208.49 4 24.88 642.52 4 20.10 10.29 0

400 30 0.7 32.08 956.19 3 31.76 748.26 2 31.05 771.21 2 28.21 17.53 1
0.85 29.08 1021.31 3 29.08 961.71 3 29.12 1043.68 3 24.84 27.10 1
1 22.38 245.22 4 22.38 149.90 4 22.38 1212.56 4 20.42 23.53 1

500 15 0.7 50.51 1957.14 2 50.51 1901.83 2 47.71 1809.20 0 35.70 21.24 0
0.85 45.58 2624.69 2 45.58 2569.32 2 37.82 2911.82 1 32.02 20.96 1
1 36.82 1937.38 2 36.82 1881.92 2 36.79 3305.68 0 29.87 49.82 0

500 30 0.7 51.13 1947.69 2 50.51 1892.06 2 50.03 1720.43 1 39.58 38.96 1
0.85 43.07 2741.61 1 43.07 2713.86 1 42.64 2723.56 1 35.02 72.01 0
1 34.47 1938.50 2 34.47 1883.25 2 32.73 1967.87 2 30.68 136.32 0

Av. Time (Optimal) 128.5 73.69 103.9 6.51
Av. Time (Non Optimal) 3600 2078.68 2555.54 19.8

Av. Time 650.54 574.94 716.81 15.81
#Optimal solutions (%Opt) 102 (85%) 90 (75%) 90 (75%) 25 (20.8%)

Av. LT Variation - 0.70% 2.40% 16.60%

Table 4.3 – Comparison of average lifetime and average running time (Rs = 125, Rc = 125).
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Figure 4.5 – Evolution of the CG-EXACT (Instance S100_T15_a70) .
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4.3, the overall effect over the solutions quality is modest. In fact, the lifetime of the
solutions returned by CG-MULTI, which is similar to CG-EXACT up to the moment
where VNS fails to find any profitable cover, are only 1.15% less than with CG-EXACT.
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Figure 4.6 – Comparison of average time spent at each CG phase.

Regarding the contribution of VNS, it is shown to provide a fast and efficient alter-
native to GRASP for finding profitable columns. Then, VNS empowers the CG process
to continue the search of interesting columns and take advantage of the low computa-
tional time consumed by the GRASP phase until it is unable to find interesting columns.
Figure 4.5, shows the benefit of using VNS to increase lifetime when GRASP fails. VNS
is used on 13.7% of the iterations and it only consumes 5.5% of the CPU time required
by the CG-EXACT approach (see Figure 4.6). As expected, the VNS phase consumes a
bit more of computational time than the GRASP. This is clearly explained by the fact
that, during the implicit local search procedures, moves are only performed in the set
of feasible solutions. It means that for each interesting neighbor of a solution for PS,
connectivity and coverage must be checked.

Tables 4.2 and 4.3 show that CG-VNS can be used efficiently to solve α-CMLP.
Nonetheless, by combining it with GRASP into CG-MULTI it is possible to reduce the
computational time required to obtain optimal solutions. This conclusion is especially
true for the instances that require the full coverage of targets (α = 1). Of course, this
can be partially explained because of GRASP procedure is expected to be more effective
finding connected structures in problems with higher levels of coverage.

The results confirm the efficiency of using the GRASP approach to solve PS and
return interesting columns for RMP. As observed in Figure 4.6, the GRASP phase
consumes on average only 10.6% of the total CPU time required to solve α-CMLP.
By contrast, the structure of the approach implies that it is used at each iteration.
This fact means that, on average, the time spent generating interesting columns by
using the GRASP and VNS approaches is lower than the total time used to solve the
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RMP along the CG approach, which consumes on average the 27.9% of the total time.
Although GRASP often fails to find an optimal solution for PS it is able to retrieve
useful columns in a very low computational time, which suggests to use this approach
for very large instances. Moreover, even when it fails, the GRASP method is still useful
as a subprocess of CG-MULTI and CG-EXACT to keep the process running in a low
computational time.

4.5 Conclusions and future work

In this chapter we have addressed the maximum network lifetime problem in wire-
less sensor networks with coverage and connectivity constraints. An extension of the
mathematical model presented by Raiconi and Gentili [Gentili and Raiconi, 2013] is
introduced to allow partial target coverage. An exact column generation approach is
proposed to solve the problem. In order to speed up the method, it is empowered by the
use of heuristic approaches to solve the pricing subproblem. A multiphase metaheuris-
tic approach is introduced to help the CG framework to solve the problem in a low
computational time. The method sequentially applies a GRASP and a VNS heuristic
to find profitable solutions for PS and only applies ILP when both of them fail to find
an interesting column. Furthermore, the exact algorithm is turned into a pure heuristic
approach by turning off the ILP phase.

Experimental results confirm that the exact approach is efficient to solve the prob-
lem. Moreover, CG-MULTI is a very efficient heuristic, and emerges as promising
candidate for addressing large and difficult problem instances. Although the proposed
GRASP alone is not efficient for computing the optimal columns for PS along CG it-
erations, experiments confirm that it helps reducing the CPU time required to solve
α-CMLP. Several reasons can be attributed to this result. First, the proposed GRASP
procedure runs in low CPU times, and during the first iterations of CG it is easy to
find columns with interesting reduced costs. As a consequence, the method allows to
approach efficiently interesting solutions for α-CMLP. Moreover, by default the pro-
posed GRASP procedure produces solutions in a diversified manner. In this way, the
method enriches the RMP with columns contributing to different constraints. Then, an
overall effect of reducing the number of iterations required to reach the optimal solution
is observed.

Since α-CMLP may be enriched with additional constraints (like bandwidth con-
straints, adjustable sensing ranges), or with more complex energy consumption models,
the proposed algorithms may serve as a basis to address these problems. More specif-
ically, further research will consider the effect of having different roles and different
energy consumption rates for the sensors. Additionally, the effect of the distance be-
tween sensors and between sensors and targets on the energy consumed by transmission
and detection respectively will be considered.



5
Exact approaches for lifetime maximization in

connectivity constrained wireless multi-role
sensor networks

In this chapter, we consider the duty scheduling of sensor activities in wireless sensor
networks to maximize the lifetime. We address full target coverage problems contem-
plating sensors used for sensing data and transmit it to the base station through multi-
hop communication as well as sensors used only for communication purposes. Subsets of
sensors (also called covers) are generated. Those covers are able to satisfy the coverage
requirements as well as the connection to the base station. Thus, maximum lifetime
can be obtained by identifying the optimal covers and allocate them an operation time.
The problem is solved through a Column Generation approach decomposed in a master
problem used to allocate the optimal time interval during which covers are used and in a
pricing subproblem used to identify the covers leading to maximum lifetime. Addition-
ally, Branch-and-Cut based on Benders’ decomposition and Constraint Programming
approaches are used to solve the pricing subproblem. The approach is tested on ran-
domly generated instances. The computational results demonstrate the efficiency of the
proposed approach to solve the maximum network lifetime problem in wireless sensor
networks with up to 500 sensors.

5.1 Introduction

Wireless sensor networks (WSN) have undergone a growing popularity during the last
decade [Arampatzis et al., 2005, Diamond and Ceruti, 2007, Hadjidj et al., 2013, Othman
and Shazali, 2012]. The wide range of potential applications for sensors made them an
interesting area of research [Yick et al., 2008, Zorbas and Douligeris, 2010]. Data such as
temperature, light, sound or pressure can be collected by sensors and then transmitted to
the user through multi-hop communication. Military applications as depot monitoring
or intrusion detections in remote environments, industrial applications as inventory
control, environmental monitoring, healthcare monitoring, among other fields are only
a small sample of the fields into which WSN are used.

WSN are typically composed by a large amount of sensor nodes deployed to accom-
plish some monitoring and communications tasks. Sensors are constrained devices with
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low computing capabilities that are basically composed by three components [Anastasi
et al., 2009]: a sensing subsystem, a processing subsystem and a wireless communica-
tion subsystem. These components are coupled to guarantee that each device is able to
collect information from the environment, to decide how to manage that information
and how and where to transmit that information to be processed. Additionally, the
power supply is obtained from a battery provided with a limited amount of energy. As
a consequence, energy usage is a major concern in wireless sensor network design. In
most applications, the use of wireless sensors demands the efficient design of strategies
to manage their energy whilst keeping network operating properly.

Some applications require the sensors to be located in remote or hostile environ-
ments in which sensor placement cannot be controlled. Instead, sensors are randomly
deployed from a remote location and their operations cannot be planned before their
deployment. Hence, the replacement of sensors batteries is not possible. Consequently,
some scenarios require the operation of sensors to answer to unknown operating condi-
tions and topologies. Then, the way in which sensors are used must be defined in situ
after network topology is known.

This research considers target coverage with wireless sensor networks, i.e., sensors
are used to collect information from the targets located within their sensing range. In
order to efficiently use sensors battery’s energy, a typical approach is to deploy more
sensors than actually needed. Then, it is possible to identify subsets of sensors (covers)
able to satisfy the coverage (i.e., the coverage of some or all the targets) and connectivity
requirements (i.e., the information must be transmitted to a base station) [Deschinkel,
2011, Raiconi and Gentili, 2011, Rossi et al., 2012a, Zorbas et al., 2010]. Hence, lifetime,
defined as the total time during which the WSN is able to provide target coverage and to
send sensing information to the base station, is extended by activating these subsets at
different moments. Therefore, such an approach can be successfully extended to consider
WSN in which sensors can adopt different roles at different energy consumption rates.

A wide range of exact and heuristic approaches has been proposed to efficiently use
the energy in wireless sensor networks. A complete review of approaches to efficiently
use the energy on WSN is presented by Zorbas et al. [Zorbas and Douligeris, 2010].
Efforts have been mostly focused on the design of methods to maximize network lifetime
by using heuristic criteria [Deschinkel, 2011, Gentili and Raiconi, 2013] and hybrid
approaches as linear programming based rounding methods [Cardei et al., 2005]. Gu
et al. [Gu et al., 2011] demonstrate that the solutions for the sensors coverage and
scheduling problem can be accurately represented by using pattern structures, where
patterns (covers) represent the energy consumption rate of sensors during the time
interval in which they are active. Exact approaches based on column generation (CG)
are currently state-of-the-art algorithms to solve coverage and scheduling problems in
wireless sensor networks [Alfieri et al., 2007, Castaño et al., 2013, Gu et al., 2009b, Rossi
et al., 2012a, Singh et al., 2013]. CG relies on covers and decomposes the problem in two
subproblems. The restricted master problem (RMP) maximizes the network lifetime on
a restricted set of covers, and the pricing subproblem (PS) generates new covers that
may increase lifetime even further in the master problem.

CG has been shown to be efficient when simple network models are considered,



76 Maximizing lifetime in multi-role WSN

however addressing the subproblem becomes very challenging when network models get
more complex, e.g., when connectivity is required or the adoption of different roles
for sensors within the network is allowed. Hence, improvements to the classical exact
methods are necessary in order to guarantee that optimal solutions are obtained.

Most research on maximum network lifetime in WSN is concerned with the design
of strategies to efficiently use the energy considering a homogeneous set of sensors be-
ing either active or inactive [Cardei and Cardei, 2008a, Cardei et al., 2005, Gentili and
Raiconi, 2013, Lu et al., 2005, Raiconi and Gentili, 2011, Slijepcevic and Potkonjak,
2002]. An active sensor is able to monitor all the targets that are located within its
sensing range and to establish communication with other sensors, or the base station,
if they are located within its communication range. A sensor is inactive if it is nei-
ther monitoring nor transmitting and it operates at negligible energy consumption rate
without performing any activity within the network. In this chapter we adopt a more
general approach to consider wireless sensors having up to three operation modes [Zhao
and Gurusamy, 2008]. An active sensor is a source if it is performing monitoring and
transmission tasks and is a relay if it is only used to transmit the information collected
by source nodes to other sensors or to the base station. We will show that both scenarios
can be tackled in a similar way since the case considering only two operation modes is
a special case of the previous one.

In order to solve the problem we propose an exact CG approach, where two methods
are proposed for addressing the pricing subproblem. The first method used to address
the pricing subproblem, also decomposes it into two, that are solved through a Branch-
and-Cut method based on Benders’ decomposition. Additionally, the method is rein-
forced by adding some valid inequalities and connectivity cuts that help to improve the
performance of this approach. The second method used to address the pricing subprob-
lem is based on constraint programming. It uses specialized graph variables with global
constraints (tree constraint, globalCardinality constraint and channeling constraints) to
model an underlying pricing subproblem. A specialized constraint propagation scheme
guided by specific problem information is used to bring results in a quasilinear number
of decisions throughout the search process.

This chapter is structured as follows. In Section 5.2 a detailed description of the
maximum network lifetime problem with connectivity constraints is provided as well
as the mathematical model adopted to tackle this problem. In Section 5.3, the solu-
tion approach based on CG adopted to solve the problem is presented. Section 5.4
introduces the two algorithms for addressing the pricing subproblem. In Section 5.5,
the performances of these algorithms are measured, by incorporating them into the CG
framework, and by solving the lifetime maximization problem on a large set of instances.
Finally, conclusions and future work are presented in Section 5.6.

5.2 Problem description

Consider a set of sensors S = {s1, s2, . . . , sm} randomly deployed to monitor a set of
targets K = {k1, k2, . . . , kn} and to transfer sensing information to the base station,
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denoted by S0. Each sensor is able to assume three different roles within the network.
A sensor is a source node if it collects information from the targets that are located
within its sensing range Rs and transfer information to the base station or to other
nodes located within its communication range Rc. In addition to its own collected
data, a source may also transfer information sent by other sensors. A sensor is a relay
node if it is not sensing and is used only to re-transmit information collected by source
nodes to other sensors or to the base station. Finally, a sensor that is neither collecting
nor transferring information is inactive. The complete list with the notation used along
the chapter is summarized in Table 5.1.

Notation Meaning

m Number of sensors
n Number of targets
S Set of sensors
K Set of targets
S0 Base station
Rs Sensing range
Rc Communication range
Es Energy consumption rate for a sensor operating as a source
Er Energy consumption rate for a sensor operating as a relay
Ei Energy consumption rate for an inactive sensor
E Set of energy consumption rates E = {Es, Er, Ei}
Sj
s Set of sensors operating as sources

Sj
r Set of sensors operating as relays

S
j
i Set of inactive sensors

Pj Partition of S into Sj
s , S

j
r and S

j
i

Ω Set of all the feasible partitions that satisfy the coverage and connectivity requirements
N Set of nodes equal to S ∪ K ∪ {S0}
Nj Subset of nodes Nj ← N \ Si

A Set of existing arcs between the nodes of N
G(N ,A) Graph containing the whole set of nodes and arcs
G[Nj ] Subgraph of G induced by Nj

tj Decision variables that denotes the amount of time allocated to partition Pj

bsu Battery’s capacity of the sensor su
xuv Flow passing between nodes u, v ∈ N
ysvℓj Binary role allocation variable for sensor sv in partition Pj

T [N T ,AT ] Directed graph variable for Constraint Programming model

Table 5.1 – Notations.

Let G(N ,A) be a directed graph where N = S ∪ K ∪ S0 is the set of nodes and
A is the set of arcs used to indicate if communication is possible between sensor nodes
or if a target is monitored by a given sensor. An arc a(u, v) ∈ A, used to represent
the possibility of transmitting information between the elements of the network, exists
if: (i) u ∈ K, v ∈ S and u is located within the sensing range Rs of v, (ii) u, v ∈ S
and they are located within the communication range of each other or (iii) if the base
station v = S0 is located within the communication range of a sensor u ∈ S.

The energy consumption rate (i.e., the consumed power) of a sensor only depends
upon its current role: the consumption rate of a source (respectively a relay and an
inactive sensor) is denoted by Es (respectively Er and Ei). The set E = {Es, Er, Ei}
contains the energy consumption rates of the sensors. In general Es > Er > Ei, but
this hypothesis is not necessary here. If Es ≤ Er, the relay mode is useless and can be
discarded, consequently an active sensor is always a source. The latter case has been
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considered by Castano et al. [Castaño et al., 2013], where the use of hybrid approaches
is proposed to solve the problem.

Let Pj be a partition of S into three (non overlapping) sets: the source nodes (Sj
s),

the relay nodes (Sj
r) and the inactive nodes (Sj

i ). We define Nj as Nj = N\S
j
i and let

G[Nj ] denote the subgraph of G induced by Nj . The partition Pj is said to be feasible
if for all targets ki ∈ K, there exists a path from ki to S0 in G[Nj ]. Let Ω denote the set
of all feasible partitions Pj , the maximum network lifetime problem with role allocation
and connectivity constraints (CMLP-MR) is to find the optimal utilization time of these
partitions; so as to maximize lifetime while respecting the battery’s capacity bsv of the
sensors. The case in which Es = Er is known as connected maximum network lifetime
problem (CMLP)[Castaño et al., 2013, 2014, Raiconi and Gentili, 2011].

The set of binary variables ysuℓj is used to identify the structure of the partition
Pj . It is used to indicate whether or not a sensor sv assumes the energy consumption
profile ℓ ∈ E in feasible partition Pj ∈ Ω. In this way, a cover is defined as a vector
indicating the power allocated to each particular sensor according to the partition Pj .
Hence, the structure of the cover can be derived from the structure of the partition.
Figure 5.1 presents a simple representation of the concept of partition. In Figure 5.1a
a potential network configuration is presented, where dotted lines indicate the possible
links between the sensors (circles) and the base station (triangle) or the sensors and
the targets (square). In Figures 5.1b and 5.1c two different feasible partitions of S are
represented; the solid lines indicate the connections actually established between the
nodes of the network. These partions correspond to Sj

s = {s5, s7}, S
j
r = {s1, s3} and

Sj
i = {s2, s4, s6} for Figure 5.1b and Sj

s = {s4, s6}, S
j
r = {s1, s2} and Sj

i = {s3, s5, s7}
for Figure 5.1c. Finally, Figure 5.1d presents an infeasible partition that cannot provide
full target coverage.

As previously mentioned, the objective is to maximize network lifetime by allocating
an optimal time interval tj for each partition Pj to be used. For each sensor, a battery
constraint is imposed to guarantee that the allocated time intervals respect the limited
energy resources considering that sensors can operate at different energy consumption
rates. Then, the implicit network configurations are represented by columns (covers)
indicating at each row the energy consumption rate at which their nodes operate for
each time interval along network lifetime. Assuming that the set Ω is completely known,
and so the values ysuℓj , it is possible to formulate the problem by using the following
linear programming model (Model M1):
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Figure 5.1 – Representation of feasible and infeasible partitions in a simple network.

Model M1: Maximum network lifetime problem

Maximize :
∑

j|Pj∈Ω

tj (5.1)

∑
j|Pj∈Ω

(
∑
ℓ∈E

ℓysuℓj)tj ≤ bsu ∀ su ∈ S (5.2)

tj ≥ 0 ∀ j|Pj ∈ Ω (5.3)

The objective of model (5.1-5.3) is to maximize network lifetime (5.1) by using the
partitions Pj ∈ Ω. Constraints (5.2) are used to guarantee that the initial amount of
energy bsu for each particular sensor is respected. As expected, time variables tj are
continuous (5.3), and can be upper-bounded by taking into account initial battery level
and consumption rate. However, enforcing these upper bounds is of no use for solving
this problem.

5.3 Solution approach

In Model M1, the number of columns grows exponentially with the number of sensors.
Consequently, assuming that the whole set of feasible partitions is known in advance
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is not always realistic. Moreover, it is well known that, in the optimal solution, only
part of these columns will be used for a non zero time, and the remaining will not be
useful at all. Therefore, a more intelligent strategy is to generate them only if they
are required and promising to extend network lifetime. In this chapter the use of CG
is proposed as a strategy to identify interesting partitions leading to network lifetime
improvements. Considering the fact that Model M1 is a LP problem that can be easily
solved with standard solvers when the number of columns is not prohibitively large, the
focus is to efficiently generate those interesting connected structures, called attractive
covers.

In Model M1, the CG algorithm starts with a subset of covers Ω′ ⊆ Ω. Solving
M1 on that subset allows to access optimal dual variables values πv associated to each
sensors’ battery constraint. Then, these values are used in the pricing subproblem
(PS) to identify only interesting partitions leading to lifetime improvements. In other
words, PS is used to gradually enlarge set Ω′ with interesting covers that are added
to the initial pool of columns of M1, allowing to increase the network lifetime. The
reduced cost criterion is used to identify those interesting columns. If the optimal
network configuration obtained by PS produces a column with positive reduced cost,
which means that it has potential to extend lifetime, it is added to the set Ω′ (i.e., an
additional column in the Model M1) and the process starts again. Otherwise, the CG
process terminates, proving that the current solution of the master problem is optimal.

5.3.1 Pricing subproblem

Any valid cover derived from partition Pj has to cover all the targets. Consequently, in
order to generate interesting covers, we devise a network flow model where each target
sends one unit of flow. The coverage requirement is then satisfied by a cover if and only
if the base station receives |K| units of flow. The variables xuv are integer variables used
to identify the amount of flow passing through the link a(u, v) and the binary variable
ysvℓj is used to identify the energy consumption profile assumed by sensor sv. Such a
situation is represented by using the following mathematical model:
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Model M2: Pricing subproblem

Maximize : 1−
∑
v∈S

∑
ℓ∈E

πvℓysvℓj (5.4)

Subject to:
∑

u∈S|∃a(v,u)

xvu = 1 ∀ v ∈ K (5.5)

∑
u∈N|∃a(v,u)

xvu −
∑

u∈N|∃a(u,v)

xuv = 0 ∀ v ∈ S (5.6)

∑
u∈N|∃a(u,S0)

xuS0 = |K| (5.7)

xuv ≤ |K|(ysvErj + ysvEsj) ∀ u, v ∈ S|∃a(u, v) (5.8)

xvu ≤ |K|(ysvErj + ysvEsj) ∀ v, u ∈ S|∃a(v, u) (5.9)

xuv ≤ ysvEsj ∀ u ∈ K, ∀ v ∈ S|∃a(u, v) (5.10)∑
ℓ∈E

ysvℓj = 1 ∀ v ∈ S (5.11)

xuv ∈ Z+ ∪ {0} ∀ u, v ∈ N (5.12)

ysvℓj ∈ {0, 1} ∀ v ∈ N , ℓ ∈ E (5.13)

As previously mentioned, the objective function is to maximize the reduced cost
(5.4). The equations (5.5-5.7) are balance flow conservation constraints used to guar-
antee that flow arise only on targets (5.5), passes through sensor nodes without any
consumption (5.6) and is directed to the base station which “consumes" that flow (5.7).
Constraints (5.8-5.9) guarantee that links between nodes of the network are used only
if the sensors operating the corresponding sensing and transmission are either sources
or relays. In the same way, constraints (5.10) allow the existence of sensing links only if
the corresponding sensor is active as a source; only one unit of information is originated
in the target node. Finally, constraint (5.11) is used to guarantee that sensors assume
exactly one of the three energy consumption profiles presented in this chapter.

5.4 Solution approaches to address pricing subproblem

As it will be shown, the classical implementation of CG based on state-of-the-art solvers
present several drawbacks that may affect the usability of CG to solve CMLP and
CMLP-MR. Instead, in this chapter a Branch-and-Cut based on Benders’ decompo-
sition (BBC) [Benders, 1962] approach, and a Constraint Programming approach are
developed to efficiently solve PS.
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5.4.1 A decomposition approach to address pricing subproblem

Consider the Model M2. If the values for the set of variables ysvℓj are predefined, and
considering that no cost is associated to the xuv variables, the problem is reduced to
check whether or not each target can send one unit of flow to the base station. Then, the
set of variables ysvℓj can be considered as a set of complicating variables increasing the
difficulty of the PS. If their values are known, the number of integer variables required to
obtain an optimal solution for PS is largely reduced as the configuration of the network
becomes easy to compute.

Benders’ decomposition [Benders, 1962] is an approach for exploiting the structure
of mathematical programming problems with complicating variables [Geoffrion, 1972];
Benders’ decomposition has been largely used in network design problems [de Camargo
et al., 2008, de Sá et al., 2013, Easwaran and Üster, 2009]. As in column genera-
tion, Benders’ decomposition divides a problem in two subproblems: A Benders master
problem (BMP) containing only complicating variables and a Benders’ suproblem (BSP)
useful to create a correct representation of the optimal solution, based on the extreme
directions and extreme points of the dual problem associated to the BSP.

In this chapter the proposal is to use BBC in order to solve PS, i.e., to generate
interesting columns for Model M1. On one hand BMP is used to allocate energy con-
sumption rates to the sensors on the network depending on the task assigned to them
in the network. On the second hand, BSP is used to check whether or not the solution
found is feasible in terms of connectivity and coverage. When it is not feasible, it can
be used to generate new cuts to be included in BMP and guide the ysvℓj values to
the optimal solution. The general approach adopted to solve CMLP-MR is depicted in
Figure 5.2.

Let θdv denote the dual variable values associated with flow constraints (5.5), and θdS0

the dual variable value associated with flow constraint. βd
uv and ηduv are used to identify

the dual variables related with constraints (5.8-5.9) and (5.10) respectively. The set
of extreme rays computed iteratively through BSP is denoted by D. The Benders
reformulation of Model M2 can be expressed as follows through Model M3:
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Model M3: Benders’ Master Problem

Maximize : 1− ZBMP (5.14)

Subject to:

ZBMP ≥
∑
v∈S

∑
ℓ∈E

ysvℓjℓπv (5.15)

∑
u,v∈S|∃a(u,v)

(ysvErj + ysvEsj)β
d
uv|K|+

∑
v,u∈S|∃a(v,u)

(ysvErj + ysvEsj)β
d
vu|K|+

∑
v∈K

θdv − |K|θ
d
S0

+
∑
v∈K

θdv − |K|θ
d
S0

+
∑

u∈K,v∈S|∃a(u,v)

(ysvEsj)η
d
uv ≥ 0 ∀d ∈ D

(5.16)

∑
ℓ∈E

ysvℓj = 1 ∀ v ∈ S (5.17)

∑
v∈S|∃a(u,v)

ysvEsj ≥ 1 ∀ u ∈ K (5.18)

∑
v∈S|∃a(v,S0)

(ysvErj + ysvEsj) ≥ 1 (5.19)

∑
v|∃a(u,v)

(ysvErj + ysvEsj) ≥ (ysuErj + ysuESj) ∀ u ∈ S|∄a(u, S0) (5.20)

ysvℓj ∈ {0, 1} ∀ v ∈ N , ∀ ℓ ∈ E (5.21)

ZBMP ≥ 0 (5.22)

As previously mentioned, the model above is used to identify interesting columns
for Model M1 which is calculated based on the reduced cost criterion (5.14). The
set of Benders feasibility cuts is represented by constraints (5.16), it consists in an
exponential set of constraints that brought the information provided by the infeasible
solutions found for BSP. Initially, these constraints are not included in BMP as they
are added afterwards by computing Benders’ feasibility cuts.

A typical solution for the pricing subproblem is highly affected by the set of variables
ysvℓj . As observed in Model M2, the allocation of roles to the sensors affects network
structure as well as feasibility. Consequently, it is possible to define structural inequal-
ities, based on these variables, which are valid for the model and help to strengthen
the model formulation [Saharidis et al., 2011]. The set of constraints (5.18) are used to
enforce coverage, i.e., at least one sensor operating as a source must be active around
each target. In the same way, constraint (5.19) indicates that at least one active sensor
must be located within the communication range of the base station S0 in order to
transmit the collected flow to this one. Finally, the constraints (5.20) are used to forbid
sensors operating as source or relay, that are not located within the communication
range of the base station S0, to be active if they are isolated.

The classical implementations of Benders’ decomposition implies that an IP problem
has to be solved iteratively to prove optimality each time that a new cut is found. This
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Figure 5.2 – Column generation approach to solve CMPL-MR

might not be a problem at the beginning of the solution process, when the number
of constraints is low; nonetheless, it can be quite complex when new constraints are
added. Moreover, no feasible solution is obtained until the end of the solution process.
To overcome this problem, we embed the generation of Benders’ feasibility cuts within
a Branch-and-Cut strategy (BBC) as proposed by Errico et al.[Errico et al., 2012]. In
this way, it is possible to take advantage of the infeasible integer solutions found to
improve the solution process, and to reduce the computational time.

The new cuts for BMP are generated through BSP. Considering the fact that vari-
ables xuv make no contribution to the objective function, the information leading to
construct useful cuts is only derived from infeasible solutions for BSP, or the unbounded
solution for the dual associated to BSP. The information required to compute these new
cuts is obtained by computing the Farkas’ dual variables associated to BSP when it is
infeasible. Then, the classical constraint, widely known as Benders’ feasibility cut as
can be seen in Equation (5.16), is built using this information. Moreover, it is possible
to construct an additional set of constraints to strengthen the BBC strategy. It is in-
tended to avoid connected components that are not connected to the base station. As
for the Benders’ feasibility cuts, these new cuts are added to Model M3 each time that
an infeasible solution for BSP is found.

Lemma 1 Consider an infeasible partition obtained through pricing subproblem. Let
C ⊆ S denote the set of connected components that do not contain the base station
neither has any sensor able to communicate to this one and cci a connected component
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in this set. Then, in order to recover feasibility, it is at least necessary for each connected
component cci to establish a connection with a sensor out of it. That is, it must satisfy
the following constraint:

∑
su∈cci

(ysuErj + ysuEsj) ≤ |cci|
∑

sv∈S\cci
|su∈cci,∃a(u,v)

(ysvErj + ysvEsj) ∀ cci ∈ C (5.23)

Proof If a connected component cci not connected to the base station is required to
monitor the targets, the information retrieved by the sensors in this set need to be
transmitted to the base station through multi-hop communication. In other words, at
least one sensor able to establish communication with the nodes in cci has to be active.

It is widely known that column generation can present some drawbacks that may
limit its usability [Marsten et al., 1975, Moungla et al., 2010, Vanderbeck, 2005]. Espe-
cially in WSN networks lifetime optimization, Gu et al. [Gu et al., 2009b] demonstrated
that the use of approximated criterion might be necessary to stop the CG process when
a near optimal solution is detected. In CMLP and CMLP-MR the use of state-of-the-art
ILP solvers to solve PS tends to generate densely populated columns, i.e., partitions
with an unnecessary high number of active sensors, in those iterations in which most of
the associated dual variables have a zero value. This is detrimental to CG convergence.

Several factors have been identified as the causes of the slow convergence of CG and
a bunch of approaches to attack this problem have been proposed when this is an effect
of the degeneracy problems in the master problem [Marsten et al., 1975]. However, it
might not be the case in CMLP and CMLP-MR. Consequently, we propose the use
of a different approach to speed up convergence. An additional constraint is used to
limit the number of sensors active in a given column returned through PS and to avoid
the heading-in effect observed during the first iterations. This constraint is modified
dynamically throughout CG to guarantee that in the end the solution found is optimal.
Let Max_Actj be an arbitrarily selected upper bound on the maximum number of
active sensors (as source or relays) in a partition, or column in the model M1. In order
to avoid generate highly populated columns the following constraint can be added to
Model M3:

∑
v∈S

(ysvErj + ysvEsj) ≤Max_Actj (5.24)

As expected, the previous constraint may be removing feasible solutions that are
potentially interesting to continue the CG process. This means that, by considering
this constraint, CG may converge prematurely, perhaps in a suboptimal solution if an
interesting column is cut off by constraint (5.24). In order to overcome this issue and to
keep the method operating as an exact approach, a dynamic modification of the value of
Max_Actj is proposed (Algorithm 1). The general idea is to start CG with a reduced
search space and gradually enlarge this by a factor (1 + α), where α > 0, throughout
the CG process. Finally, once the value of Max_Actj reaches m, the number of sensors
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in the network, and assuming that no positive reduced cost columns exists, the current
solution of the pricing subproblem is optimal.

Algorithm 5.1: Acceleration procedure for column generation
1 j ← 0
2 RMP (Ω′), Lifetime← Initial_solution();
3 Pj ← ∅;
4 ZBMP ← 0
5 Act_limit_ctr ← True

6 while ZBMP > 0 or Act_limit_ctr do

7 j ← j + 1
8 if Max_Actj ≥ |S| then

9 Act_limit_ctr ← False

10 end

11 ~π, Lifetime← Solve_RMP (RMP )
12 Pj , ZBMP ← Solve_PS(~π)
13 if ZBMP > 0 then

14 Ω′ ← Ω′ ∪ Pj

15 end

16 else

17 if Act_limit_ctr then

18 Max_Actj ←Max_Actj × (1 + α)
19 end

20 end

21 end

5.4.2 A constraint programming approach to address the pricing sub-

problem

We now propose a constraint programming approach to solve PS. In a first step, we
describe the variables used in the model, then the constraints involved and finally a
search strategy.

Variables We introduce a directed graph variable T [N T ,AT ] [Dooms et al., 2005]
based on the graph G(N ,A), that will represent the underlying solution. N T is a subset
of nodes (N T ⊆ N ) activated in the partition and AT is the subset of arcs (AT ⊆ A)
incident to N T . A mandatory set of nodes K and the base station S0 directly belong
to the kernel of nodes set of this graph variable.

We manipulate also integer domain variables vectors of size m : i) Succ where
D(Succu) = {1, . . . ,m} represents the index of the successor of node u (Succ is com-
posed by two parts, successors from target node K, called SuccK, and successors from
sensor nodes S, called SuccS), ii) DegS and DegK where D(DegSu) = {0, . . . ,m} and
D(DegKu) = {0, . . . , n} represent incoming degree on node u ∈ S respectively from S
and K and iii) Cost where D(Costu) = {0, . . . , πu} represent the associated dual value
of node u. Finally an integer variable TotalCost sum up all these Cost variables (where
variables are in upper case, as is common in constraint programming).
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Constraints We have the following CP Model M4:

Model M4: Pricing Problem in Constraint Programming

tree(T, 1) (5.25)

sumWeight(T,Cost, TotalCost) (5.26)

TotalCost ≤ 1 (5.27)

channeling(T, Succ) (5.28)

globalCardinality(SuccS, S,DegS) (5.29)

globalCardinality(SuccK, S,DegK) (5.30)

DegK(u) > 0 ⇐⇒ Cost(u) = Esπu ∀ u ∈ S (5.31)

DegS(u) > 0 =⇒ Cost(u) ≥ Erπu ∀ u ∈ S (5.32)

DegS(u) +DegK(u) = 0 ⇐⇒ Cost(u) = Eiπu ∀ u ∈ S (5.33)

Equations (5.25) imply that T is constrained to be a unique tree, as described by
Lorca et al. [Fages and Lorca, 2011] and Unsworth [Prosser and Unsworth, 2006].
Complexity to maintain such a constraint is referred to be enforced in O(|N T |+ |AT |).
Constraints (5.26-5.27), indicate that the overall sum of the cost associated to the nodes
S, referred as TotalCost, is restricted to be less than 1 to ensure generation of valid
columns for the master problem. Only bound consistency on TotalCost is necessary
and the associated scalar complexity is linear in O(|N T |).

Constraints (5.28-5.33) are associated to the cost behavior. First, Succ variables
are derived from T via a standard channeling constraint (5.28) to maintain the domain
of variable Succ equivalent to the neighbors of nodes in T , i.e. v ∈ D(Succu) ⇐⇒
v ⊂ N(u) of T . Second, two global cardinality constraints are used to compute the
occurrence number of node u in S from respectively their neighbors of S and K (5.29-
5.30), i.e., incoming degree from S and from K. Finally, the three remaining constraints
describe the three different energy consumption conditions of a node, with associated
rates Es, Er and Ei.

Search Strategy As a search implementation, we use a standard max regret strategy
on Cost variables. The regret here is the difference between the smallest value (Eiπu)
and the next value (Erπu) of the variables. The biggest regret (and first in enumeration)
occurs for the most penalized nodes. Value assignment starts from minimum value
(i.e. trying to deactivate the node). Reachability propagator inside the tree constraint
ensures that the necessary connecting nodes will not be removed in the path between
the targets and the base station in the final solution.

Equations (5.25) and (5.26) could be aggregated in a single global weighted node
spanning tree constraint where propagator can be developed in the spirit of what has
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been done for the weighted edge spanning tree constraint [Régin et al., 2010]. We decide
to let a simple propagator because 94% of instances are solved optimally with an average
complexity to find new column less than the total number of nodes in the graph (i.e.,
propagation automatically fixes the last nodes and very few backtracks happen).

5.5 Computational experiments

In order to evaluate the advantages offered by each of the proposed approaches a
set of experiments is conducted to compare the performance over a set of 160 in-
stances. The instances were randomly generated with a number of sensors in |S| =
{100, 200, 300, 400, 500} and a number of targets in |K| = {15, 30}. Sensors are as-
sumed to be deployed in a 500× 500 area with a fixed communication range Rc of 125
and two different sensing ranges Rs = 100 and 125 [Castaño et al., 2014]. We assume
that the energy consumption rate associated to a sensor acting as a source is Es = 1.0,
as a relay is Er = 0.8, and inactive Ei = 0 for the case of CMLP-MR. By constrast, in
CMLP it is assumed that Es = Er = 1.0 and Ei = 0.

A CPU time limit of 3600 seconds is established for the execution of the proposed
approaches. The best solution found during this time is returned and used for compar-
ison. The experiments were performed over a workstation with 6GB RAM DDR3 and
an Intel Xeon Quad-Core W3550 processor @3.06GHz.

Tables 5.2 and 5.3 present the results obtained through the single application of an
ILP solver to solve the pricing subproblem during CG iterations (CG+ILP), the pro-
posed BBC strategy (CG+BBC) and the constraint programming approach (CG+CP).
The columns m, n and Rs indicate respectively the number of sensors, targets and
the sensing range of the instances. The column Opt/BKS* indicates the optimum or
best known solution for the considered group of instances. In order to compare the
performance of the different methods considered in this chapter the best solution found
(Sol), the computational time in seconds (Time), the required number of CG iterations
(#Iters) and the percentual deviation (%Dev) compared to the BKS are presented.

The results obtained through the use of GC+BBC and GC+CP seem to indicate
that both methods outperform CG+ILP. It is observed that CPU time and quality of
the solutions found are improved through the solution approaches. According to the
results observed, both CG+BBC and CG+CP approaches might be used as efficient
strategies to tackle the PS derived from the CG framework adopted to solve CMLP
and CMLP-MR. The experiments indicate that CG+BBC and CG+CP find 67.5% and
93% of the optimal solutions for the evaluated instances respectively, while only 12.5%
are returned by CG+ILP. Additionally, it is observed that all the instances solved
by CG+BBC are also solved by CG+CP; it can be computed that the CPU time
consumed for CG+BBC over the set of instances optimally solved is slightly lower
than the required for CG+CP, i.e., 277.3 seconds against 351.5 respectively. Regarding
CG+BBC, the experiments indicate that the cause of a poor performance in the 33% of
unsolved instances is to be sought in some particular iterations of CG. In those cases,
the combined effect of the values for the dual variables and the inner characteristics of
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Instance m n Rs Opt/BKS* CG+ILP1 CG+BBC CG+CP
Time # Iters Sol % Dev Time # Iters Sol % Dev Time # Iters Sol % Dev

CMLP_MR_001 100 15 100 5.40 3600.0 75 5.00 7% 72.3 49 5.40 0% 3.2 86 5.40 0%
CMLP_MR_002 100 15 100 4.00 3600.0 54 3.61 10% 2.9 26 4.00 0% 2.4 54 4.00 0%
CMLP_MR_003 100 15 100 3.75 32.8 33 3.75 0% 11.4 39 3.75 0% 2.8 62 3.75 0%
CMLP_MR_004 100 15 100 4.00 140.2 67 4.00 0% 6.5 26 4.00 0% 6.4 65 4.00 0%
CMLP_MR_005 100 30 100 5.00 3600.0 192 4.61 8% 137.3 126 5.00 0% 11.5 108 5.00 0%
CMLP_MR_006 100 30 100 4.00 116.5 38 4.00 0% 21.2 31 4.00 0% 5.5 71 4.00 0%
CMLP_MR_007 100 30 100 3.00 3600.0 18 2.67 11% 27.9 18 3.00 0% 3.9 48 3.00 0%
CMLP_MR_008 100 30 100 4.00 72.8 38 4.00 0% 9.2 32 4.00 0% 5.1 70 4.00 0%
CMLP_MR_009 200 15 100 8.00 2943.6 273 8.00 0% 11.2 422 8.00 0% 29.1 126 8.00 0%
CMLP_MR_010 200 15 100 12.00 3600.0 354 10.03 16% 23.0 159 12.00 0% 49.5 207 12.00 0%
CMLP_MR_011 200 15 100 9.00 3600.0 321 8.87 1% 13.3 102 9.00 0% 21.4 149 9.00 0%
CMLP_MR_012 200 15 100 14.60 3600.0 289 9.58 34% 3600.0 144 11.96 18% 110.9 394 14.60 0%
CMLP_MR_013 200 30 100 8.00 3600.0 304 4.79 40% 13.8 211 8.00 0% 40.5 170 8.00 0%
CMLP_MR_014 200 30 100 7.00 3600.0 536 5.47 22% 4.6 118 7.00 0% 32.1 137 7.00 0%
CMLP_MR_015 200 30 100 9.00 3600.0 336 4.96 45% 14.8 151 9.00 0% 46.3 181 9.00 0%
CMLP_MR_016 200 30 100 11.40 3600.0 301 5.28 54% 1356.2 1015 11.40 0% 58.1 253 11.40 0%
CMLP_MR_017 300 15 100 15.00 3600.0 224 3.60 76% 51.6 117 15.00 0% 128.3 291 15.00 0%
CMLP_MR_018 300 15 100 21.25 3600.0 271 3.41 84% 3600.0 2313 19.59 8% 2585.1 1225 21.25 0%
CMLP_MR_019 300 15 100 12.00 3600.0 263 3.58 70% 25.0 150 12.00 0% 93.7 239 12.00 0%
CMLP_MR_020 300 15 100 16.00 3600.0 218 3.61 77% 250.9 378 16.00 0% 133.4 295 16.00 0%
CMLP_MR_021 300 30 100 15.00 3600.0 342 3.48 77% 209.2 290 15.00 0% 186.7 360 15.00 0%
CMLP_MR_022 300 30 100 13.20 3600.0 261 2.67 80% 110.2 214 13.20 0% 195.7 377 13.20 0%
CMLP_MR_023 300 30 100 12.00 3600.0 270 2.69 78% 42.6 292 12.00 0% 121.1 283 12.00 0%
CMLP_MR_024 300 30 100 13.00 3600.0 193 2.73 79% 61.1 208 13.00 0% 143.2 309 13.00 0%
CMLP_MR_025 400 15 100 18.60 3600.0 212 2.73 85% 3600.8 789 18.28 2% 447.0 406 18.60 0%
CMLP_MR_026 400 15 100 18.00 3600.0 147 2.65 85% 101.2 472 18.00 0% 470.4 421 18.00 0%
CMLP_MR_027 400 15 100 22.00 3600.0 179 2.66 88% 33.7 259 22.00 0% 541.3 459 22.00 0%
CMLP_MR_028 400 15 100 17.00 3600.0 230 2.68 84% 40.9 350 17.00 0% 387.3 371 17.00 0%
CMLP_MR_029 400 30 100 17.60 3600.0 253 2.58 85% 181.6 391 17.60 0% 499.2 429 17.60 0%
CMLP_MR_030 400 30 100 18.00 3600.0 188 2.31 87% 63.3 339 18.00 0% 576.3 475 18.00 0%
CMLP_MR_031 400 30 100 21.00 3600.0 153 2.35 89% 56.3 509 21.00 0% 750.3 550 21.00 0%
CMLP_MR_032 400 30 100 17.00 3600.0 120 2.39 86% 78.7 536 17.00 0% 538.0 450 17.00 0%
CMLP_MR_033 500 15 100 30.00 3600.0 125 2.23 93% 3600.0 3307 24.31 19% 1855.2 690 30.00 0%
CMLP_MR_034 500 15 100 27.00 3600.0 146 2.24 92% 385.5 674 27.00 0% 1667.6 647 27.00 0%
CMLP_MR_035 500 15 100 31.00 3600.0 121 2.17 93% 414.2 1041 31.00 0% 1700.7 657 31.00 0%
CMLP_MR_036 500 15 100 28.00 3600.0 206 2.37 92% 235.3 840 28.00 0% 1482.3 607 28.00 0%
CMLP_MR_037 500 30 100 23.00 3600.0 102 3.61 87% 317.7 752 23.00 0% 1490.4 608 23.00 0%
CMLP_MR_038 500 30 100 27.00 3600.0 123 5.03 81% 603.3 772 27.00 0% 1798.9 672 27.00 0%
CMLP_MR_039 500 30 100 27.00 3600.0 75 6.53 77% 225.7 860 27.00 0% 1803.8 678 27.00 0%
CMLP_MR_040 500 30 100 28.00 3600.0 156 3.87 86% 1537.1 1699 28.00 0% 1915.1 704 28.00 0%
CMLP_MR_041 100 15 125 6.40 3600.0 87 6.01 6% 1785.5 172 6.40 0% 4.7 107 6.40 0%
CMLP_MR_042 100 15 125 4.40 34.7 39 4.40 0% 17.9 109 4.40 0% 2.8 58 4.40 0%
CMLP_MR_043 100 15 125 3.75 16.9 25 3.75 0% 14.1 67 3.75 0% 2.6 52 3.75 0%
CMLP_MR_044 100 15 125 6.56 3600.0 38 5.83 11% 3600.0 371 5.93 10% 7.7 168 6.56 0%
CMLP_MR_045 100 30 125 6.40 3600.0 123 5.39 16% 3600.0 528 6.20 3% 9.3 194 6.40 0%
CMLP_MR_046 100 30 125 4.40 58.4 41 4.40 0% 3.0 77 4.40 0% 3.1 63 4.40 0%
CMLP_MR_047 100 30 125 3.75 50.9 33 3.75 0% 36.3 124 3.75 0% 2.6 51 3.75 0%
CMLP_MR_048 100 30 125 6.40 3600.0 247 5.59 13% 3600.0 723 6.32 1% 11.0 215 6.40 0%
CMLP_MR_049 200 15 125 9.60 3600.0 323 8.45 12% 36.0 188 9.60 0% 19.8 141 9.60 0%
CMLP_MR_050 200 15 125 16.80 3600.0 319 8.23 51% 3600.0 618 14.31 15% 69.6 378 16.80 0%
CMLP_MR_051 200 15 125 16.00 3600.0 353 9.21 42% 194.6 447 16.00 0% 169.7 553 16.00 0%
CMLP_MR_052 200 15 125 15.00 3600.0 331 8.88 41% 105.7 277 15.00 0% 49.0 270 15.00 0%
CMLP_MR_053 200 30 125 9.60 3600.0 460 9.09 5% 86.9 1034 9.60 0% 25.2 167 9.60 0%
CMLP_MR_054 200 30 125 11.00 3600.0 280 3.48 68% 46.2 1086 11.00 0% 35.8 213 11.00 0%
CMLP_MR_055 200 30 125 15.00 3600.0 287 3.57 76% 3600.0 1528 14.44 4% 152.8 518 15.00 0%
CMLP_MR_056 200 30 125 14.80 3600.0 350 3.57 76% 3600.0 1137 13.89 6% 69.2 331 14.80 0%
CMLP_MR_057 300 15 125 18.40 3600.0 283 3.61 80% 3600.0 1640 16.81 9% 147.3 312 18.40 0%
CMLP_MR_058 300 15 125 21.25 3600.0 234 3.66 83% 3600.0 973 19.91 6% 277.2 455 21.25 0%
CMLP_MR_059 300 15 125 15.20 3600.0 277 3.53 77% 143.7 343 15.20 0% 125.2 291 15.20 0%
CMLP_MR_060 300 15 125 19.00 3600.0 238 3.56 81% 3600.0 413 17.76 7% 168.4 339 19.00 0%
CMLP_MR_061 300 30 125 18.40 3600.0 383 3.53 81% 3600.0 627 17.87 3% 182.0 350 18.40 0%
CMLP_MR_062 300 30 125 18.40 3600.0 201 2.54 86% 3600.0 1367 15.22 17% 260.1 436 18.40 0%
CMLP_MR_063 300 30 125 15.20 3600.0 156 2.54 83% 841.5 1720 15.20 0% 146.3 315 15.20 0%
CMLP_MR_064 300 30 125 14.60 3600.0 146 2.62 82% 1116.6 3578 14.60 0% 129.8 286 14.60 0%
CMLP_MR_065 400 15 125 20.00 3600.0 228 2.67 87% 195.5 552 20.00 0% 494.7 430 20.00 0%
CMLP_MR_066 400 15 125 26.00 3600.0 30 1.00 96% 3600.0 937 23.37 10% 849.6 594 26.00 0%
CMLP_MR_067 400 15 125 30.00 3600.0 139 2.47 92% 2496.3 3567 30.00 0% 658.3 510 30.00 0%
CMLP_MR_068 400 15 125 29.00 3600.0 193 2.52 91% 3600.0 1323 25.47 12% 751.2 548 29.00 0%
CMLP_MR_069 400 30 125 19.60 3600.0 205 2.26 88% 3600.0 977 18.89 4% 560.4 458 19.60 0%
CMLP_MR_070 400 30 125 26.00 3600.0 105 2.29 91% 3600.0 875 22.73 13% 897.2 608 26.00 0%
CMLP_MR_071 400 30 125 25.40 3600.0 123 1.87 93% 3600.0 1824 23.12 9% 701.2 528 25.40 0%
CMLP_MR_072 400 30 125 23.20 3600.0 141 2.06 91% 3600.0 750 22.28 4% 677.2 513 23.20 0%
CMLP_MR_073 500 15 125 32.60 3600.0 114 2.27 93% 3600.0 1001 26.39 19% 1745.6 664 32.60 0%
CMLP_MR_074 500 15 125 31.20 3600.0 128 2.24 93% 1930.2 1075 31.20 0% 1643.3 641 31.20 0%
CMLP_MR_075 500 15 125 49.00 3600.0 111 2.32 95% 3600.0 748 37.77 23% 3600.0 993 44.55 9%
CMLP_MR_076 500 15 125 41.00 3600.0 123 2.05 95% 3600.0 1327 37.81 8% 3600.0 995 40.35 2%
CMLP_MR_077 500 30 125 32.40 3600.0 138 2.32 93% 3600.0 2407 28.22 13% 2890.3 884 32.40 0%
CMLP_MR_078 500 30 125 31.20 3600.0 105 1.00 97% 3600.0 132 28.64 8% 1929.0 699 31.20 0%
CMLP_MR_079 500 30 125 40.00 3600.0 312 1.00 98% 3600.0 727 35.64 11% 3600.0 988 39.28 2%
CMLP_MR_080 500 30 125 41.00 3600.0 501 2.00 95% 3600.0 703 34.66 15% 3600.0 995 36.84 10%

# Optimal Solutions (% Optimals) 9 (11.25%) 52 (65%) 76 (95%)

Table 5.2 – Experimental results for CMLP-MR (Er = 0.8, Es = 1.0).
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Instance m n Rs Opt/BKS* CG+ILP2 CG+BBC CG+CP
Time # Iters Sol % Dev Time # Iters Sol % Time # Iters Sol % Dev

CMLP_MR_081 100 15 100 5.00 843.2 227 5.00 0% 56.8 96 5.00 0% 3.1 80 5.00 0%
CMLP_MR_082 100 15 100 4.00 229.7 216 4.00 0% 13.6 60 4.00 0% 2.4 59 4.00 0%
CMLP_MR_083 100 15 100 3.00 108.1 125 3.00 0% 52.0 75 3.00 0% 2.0 44 3.00 0%
CMLP_MR_084 100 15 100 4.00 168.8 184 4.00 0% 3.2 27 4.00 0% 2.8 71 4.00 0%
CMLP_MR_085 100 30 100 5.00 3600.0 273 3.50 30% 712.0 331 5.00 0% 5.4 134 5.00 0%
CMLP_MR_086 100 30 100 4.00 3600.0 25 1.01 75% 7.2 33 4.00 0% 3.1 78 4.00 0%
CMLP_MR_087 100 30 100 3.00 80.6 130 3.00 0% 13.2 38 3.00 0% 2.4 52 3.00 0%
CMLP_MR_088 100 30 100 4.00 3600.0 278 3.66 9% 29.9 32 4.00 0% 3.4 83 4.00 0%
CMLP_MR_089 200 15 100 8.00 351.9 65 8.00 0% 11.7 107 8.00 0% 18.8 147 8.00 0%
CMLP_MR_090 200 15 100 12.00 3600.0 163 9.85 18% 43.7 386 12.00 0% 46.8 274 12.00 0%
CMLP_MR_091 200 15 100 9.00 3600.0 1051 8.80 2% 13.3 139 9.00 0% 24.4 178 9.00 0%
CMLP_MR_092 200 15 100 12.00 3600.0 1050 9.12 24% 137.9 308 12.00 0% 36.4 235 12.00 0%
CMLP_MR_093 200 30 100 8.00 3600.0 379 7.26 9% 26.7 140 8.00 0% 22.9 168 8.00 0%
CMLP_MR_094 200 30 100 7.00 3600.0 1151 4.41 37% 4.9 82 7.00 0% 21.9 159 7.00 0%
CMLP_MR_095 200 30 100 9.00 3600.0 1038 6.80 24% 25.1 153 9.00 0% 28.8 198 9.00 0%
CMLP_MR_096 200 30 100 11.00 3600.0 964 7.92 28% 162.0 479 11.00 0% 37.1 235 11.00 0%
CMLP_MR_097 300 15 100 15.00 3600.0 644 3.10 79% 101.6 224 15.00 0% 142.6 322 15.00 0%
CMLP_MR_098 300 15 100 17.00 3600.0 559 2.59 85% 1753.4 753 17.00 0% 258.0 455 17.00 0%
CMLP_MR_099 300 15 100 12.00 3600.0 581 2.81 77% 30.7 158 12.00 0% 104.4 268 12.00 0%
CMLP_MR_100 300 15 100 16.00 3600.0 666 2.89 82% 316.6 1096 16.00 0% 185.6 376 16.00 0%
CMLP_MR_101 300 30 100 15.00 3600.0 614 2.94 80% 209.2 612 15.00 0% 219.0 410 15.00 0%
CMLP_MR_102 300 30 100 13.00 3600.0 659 2.88 78% 110.8 443 13.00 0% 186.8 379 13.00 0%
CMLP_MR_103 300 30 100 12.00 3600.0 700 3.35 72% 64.1 386 12.00 0% 117.5 289 12.00 0%
CMLP_MR_104 300 30 100 13.00 3600.0 660 2.94 77% 61.5 437 13.00 0% 153.8 337 13.00 0%
CMLP_MR_105 400 15 100 16.00 3600.0 467 2.29 86% 343.6 1595 16.00 0% 364.8 361 16.00 0%
CMLP_MR_106 400 15 100 18.00 3600.0 496 2.45 86% 111.1 722 18.00 0% 567.8 458 18.00 0%
CMLP_MR_107 400 15 100 22.00 3600.0 447 2.44 89% 98.0 1423 22.00 0% 957.9 507 22.00 0%
CMLP_MR_108 400 15 100 17.00 3600.0 473 2.55 85% 126.7 628 17.00 0% 586.9 373 17.00 0%
CMLP_MR_109 400 30 100 16.00 3600.0 475 2.39 85% 181.7 788 16.00 0% 692.3 412 16.00 0%
CMLP_MR_110 400 30 100 18.00 3600.0 502 2.49 86% 199.6 781 18.00 0% 942.4 511 18.00 0%
CMLP_MR_111 400 30 100 21.00 3600.0 493 2.44 88% 94.7 1202 21.00 0% 1162.0 560 21.00 0%
CMLP_MR_112 400 30 100 17.00 3600.0 479 2.36 86% 101.9 759 17.00 0% 863.9 492 17.00 0%
CMLP_MR_113 500 15 100 30.00 3600.0 378 2.05 93% 3600.0 3307 24.31 19% 3205.6 788 30.00 0%
CMLP_MR_114 500 15 100 27.00 3600.0 381 2.07 92% 385.6 1398 27.00 0% 2266.1 735 27.00 0%
CMLP_MR_115 500 15 100 31.00 3600.0 357 2.26 93% 414.3 2367 31.00 0% 2091.8 762 31.00 0%
CMLP_MR_116 500 15 100 28.00 3600.0 368 2.00 93% 235.7 1713 28.00 0% 1714.4 675 28.00 0%
CMLP_MR_117 500 30 100 23.00 3600.0 383 2.00 91% 317.2 992 23.00 0% 1501.8 627 23.00 0%
CMLP_MR_118 500 30 100 27.00 3600.0 368 2.00 93% 2151.2 3722 27.00 0% 2279.4 751 27.00 0%
CMLP_MR_119 500 30 100 27.00 3600.0 344 2.21 92% 1133.6 2758 27.00 0% 2207.4 707 27.00 0%
CMLP_MR_120 500 30 100 28.00 3600.0 323 2.15 92% 3600.0 4606 24.36 13% 2499.5 756 28.00 0%
CMLP_MR_121 100 15 125 6.00 3600.0 67 4.86 19% 132.8 90 6.00 0% 4.4 112 6.00 0%
CMLP_MR_122 100 15 125 4.00 57.2 95 4.00 0% 5.0 35 4.00 0% 2.3 55 4.00 0%
CMLP_MR_123 100 15 125 3.00 20.0 51 3.00 0% 7.8 32 3.00 0% 1.8 38 3.00 0%
CMLP_MR_124 100 15 125 6.00 3600.0 181 4.63 23% 240.5 164 6.00 0% 6.8 162 6.00 0%
CMLP_MR_125 100 30 125 6.00 3600.0 92 5.28 12% 186.7 120 6.00 0% 9.6 213 6.00 0%
CMLP_MR_126 100 30 125 4.00 118.0 113 4.00 0% 3.3 31 4.00 0% 2.4 57 4.00 0%
CMLP_MR_127 100 30 125 3.00 59.0 68 3.00 0% 18.7 34 3.00 0% 2.1 42 3.00 0%
CMLP_MR_128 100 30 125 6.00 3600.0 146 4.26 29% 3600.0 84 5.37 11% 120.5 551 6.00 0%
CMLP_MR_129 200 15 125 9.00 737.0 348 9.00 0% 21.2 472 9.00 0% 18.1 141 9.00 0%
CMLP_MR_130 200 15 125 16.00 3600.0 375 10.37 35% 2263.6 696 16.00 0% 60.2 316 16.00 0%
CMLP_MR_131 200 15 125 15.00 3600.0 354 9.34 38% 3600.0 783 14.03 6% 202.1 614 15.00 0%
CMLP_MR_132 200 15 125 12.00 3600.0 258 9.46 21% 194.3 256 12.00 0% 28.8 197 12.00 0%
CMLP_MR_133 200 30 125 9.00 3600.0 433 8.51 5% 5.7 360 9.00 0% 22.3 163 9.00 0%
CMLP_MR_134 200 30 125 11.00 3600.0 435 8.44 23% 10.6 963 11.00 0% 33.6 213 11.00 0%
CMLP_MR_135 200 30 125 15.00 3600.0 393 8.56 43% 3600.0 761 13.37 11% 3600.0 1249 14.72 2%
CMLP_MR_136 200 30 125 12.00 3600.0 3987 8.69 28% 3600.0 372 11.35 5% 34.2 218 12.00 0%
CMLP_MR_137 300 15 125 18.00 3600.0 793 3.90 78% 3600.0 1764 16.83 6% 152.9 333 18.00 0%
CMLP_MR_138 300 15 125 17.00 3600.0 604 4.76 72% 3600.0 1164 14.13 17% 185.1 366 17.00 0%
CMLP_MR_139 300 15 125 15.00 3600.0 772 4.25 72% 197.3 359 15.00 0% 200.0 309 15.00 0%
CMLP_MR_140 300 15 125 17.00 3600.0 1107 4.20 75% 3600.0 423 15.67 8% 218.7 329 17.00 0%
CMLP_MR_141 300 30 125 18.00 3600.0 915 4.09 77% 3600.0 464 15.67 13% 248.7 359 18.00 0%
CMLP_MR_142 300 30 125 17.00 3600.0 804 3.59 79% 3600.0 336 15.14 11% 332.0 437 17.00 0%
CMLP_MR_143 300 30 125 15.00 3600.0 1269 3.76 75% 32.5 472 15.00 0% 211.7 343 15.00 0%
CMLP_MR_144 300 30 125 14.00 3600.0 1187 3.74 73% 74.0 744 14.00 0% 158.2 305 14.00 0%
CMLP_MR_145 400 15 125 16.00 3600.0 931 2.82 82% 16.7 816 16.00 0% 329.8 322 16.00 0%
CMLP_MR_146 400 15 125 25.50 3600.0 733 3.23 87% 3600.0 688 21.34 16% 1387.9 722 25.50 0%
CMLP_MR_147 400 15 125 29.00 3600.0 704 3.04 90% 3600.0 3096 28.77 1% 700.4 508 29.00 0%
CMLP_MR_148 400 15 125 29.00 3600.0 546 2.67 91% 3600.0 3780 24.66 15% 1096.5 688 29.00 0%
CMLP_MR_149 400 30 125 16.00 3600.0 503 3.10 81% 11.1 1164 16.00 0% 354.1 329 16.00 0%
CMLP_MR_150 400 30 125 25.50 3600.0 550 3.48 86% 3600.0 1290 23.43 8% 1453.4 745 25.50 0%
CMLP_MR_151 400 30 125 25.00 3600.0 572 3.00 88% 122.5 768 25.00 0% 897.8 568 25.00 0%
CMLP_MR_152 400 30 125 23.00 3600.0 757 3.21 86% 3600.0 2576 22.51 2% 920.4 574 23.00 0%
CMLP_MR_153 500 15 125 30.00 3600.0 618 2.72 91% 3600.0 1791 26.14 13% 1824.6 648 30.00 0%
CMLP_MR_154 500 15 125 31.00 3600.0 529 3.57 88% 3600.0 834 28.85 7% 2335.2 719 31.00 0%
CMLP_MR_155 500 15 125 45.06* 3600.0 623 2.99 93% 3600.0 580 35.26 22% 3600.0 913 42.20 6%
CMLP_MR_156 500 15 125 41.00 3600.0 560 2.53 94% 3600.0 4216 32.99 20% 3600.0 1012 37.35 9%
CMLP_MR_157 500 30 125 30.00 3600.0 662 3.05 90% 3600.0 1773 26.30 12% 2237.7 711 30.00 0%
CMLP_MR_158 500 30 125 31.00 3600.0 468 2.40 92% 3600.0 1590 28.88 7% 2655.3 777 31.00 0%
CMLP_MR_159 500 30 125 40.00 3600.0 593 3.04 92% 3600.0 1009 34.60 14% 3600.0 1085 36.75 8%
CMLP_MR_160 500 30 125 37.83* 3600.0 549 3.20 92% 3600.0 720 36.95 2% 3600.0 995 35.66 6%

# Optimal Solutions (% Optimals) 11 (13.8%) 56 (70%) 75 (93.8%)

Table 5.3 – Experimental results for CMLP (Er = Es = 1.0).
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the instance leads to longer computational times. Hence, the solution process may get
stuck without any improvement until time limit is reached. In the case of CG+CP it
may be partially explained by a slower convergence of CG that leads to an increased
number of iterations. As a consequence, the method might be unable to find the optimal
solution within the time limit.

As previously mentioned, by limiting the number of active sensors in a partition it is
possible to decrease the number of CG iterations necessary to find an optimal solution,
nonetheless it might come at expenses of an increase on the average CPU time required
per iteration. Figures 5.3a and 5.3b depict this phenomenon and present the effect of the
acceleration procedure introduced in Section 4.1 combined with the BBC strategy. As
observed, the classical implementation of CG+BBC is prone to present some plateaus at
the beginning of the optimization process that ultimately lead to useless CG iterations
and an increase of the CPU time and the number of iterations required to achieve the
optimal solution. As observed, the proposed approach is able to reduce the required
number of iterations of CG, a problem that is especially evident when using CG+BBC.
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Figure 5.3 – Comparison of objective function evolution throughout CG for instance
CMLP_MR_001.

According to the experimental results, the performance CG+BBC might be affected
by the characteristics of the instances. As it might be expected, the CPU time required
to solve the problems is related with the number of available nodes in the network.
However, the impact of the increase in the sensing range seems to be bigger and leads
to higher computational times, probably as an effect of the increment in the density
of the graphs or the availability of sensing links to be established that may increase
the computational effort required to solve PS. On the other hand, the performance of
CG+CP is virtually neither affected by characteristics as the sensing or communication
range, nor for the characteristics of the energy consumption in sensors (bimodal vs.
multimodal). Nonetheless, an expected increase in CPU time is observd as the size of
the instances gets bigger.
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5.6 Conclusions

This chapter explores the use of exact approaches in order to maximize the lifetime
in wireless sensor networks operating under coverage and connectivity constraints. A
CG algorithm exploiting separately a Branch-and-Cut algorithm based on Benders’
decomposition and a constraint programming approach is proposed. The former is used
to take advantage of the structure of the network design problem arising in PS. The
latter is levered by dual cost profile to focus on propagation on the network.

An extensive set of experiments demonstrates that both algorithms outperform the
results obtained through the single utilization of an ILP solver throughout iterations
of the CG algorithm. The results indicate that the BBC and CP approaches can be
used efficiently to tackle the pricing subproblem and to reduce the computational time
required to solve CMLP-MR and CMLP. Moreover, these results are promising as they
might indicate that similar approaches based on CG can be used to maximize network
lifetime in WSN containing more sophisticated sensors with more capabilities than in
this chapter. Moreover, it indicates that CG can be used as an efficient method to
guarantee the optimality of the solutions found and to provide practitioners, maybe
considering distributed approaches, with an optimal upper bound to evaluate their
proposals.

Further research will consider specific features about strategies to improve the per-
formance of both methods when solving the pricing subproblem and its extension to
network design problems and energy usage optimization in wireless networks. Hybrid
approaches combining the proposed exact methods with (meta)heuristic approaches in
order to improve the efficiency of the proposed CG methods will be considered as well.
Finally, the extension of the method to consider variants of the problem in which par-
tial coverage of the targets is allowed (e.g., quality of service) and more sophisticated
energy consumption models for the sensors, e.g., considering the cost of establishing a
connection between nodes and targets, is a promising future research direction.



6
Partial coverage to extend the lifetime in wireless

multi-role sensor networks

This chapter studies the effect of partial coverage to extend the lifetime of wireless sensor
networks and introduces a hybrid exact solution strategy that efficiently maximizes net-
work lifetime. We consider a set of sensors used to provide coverage of discrete targets
and transfer the information to the sink node via multi-hop wireless communication.
An active sensor has one of the two roles: it is a source when it senses and transfer
data; it is a relay if it only transfers data. Network lifetime is extended through the use
of covers representing sensors role allocation and network topology. A hybrid column
generation is used to identify the optimal operation schedules and roles allocation that
maximize network lifetime. A constraint programming strategy is provided to iden-
tify profitable network configurations leading to extend network lifetime and to prove
optimality of the solutions found. Moreover, an evolutionary algorithm is proposed
to boost up the solution process and accelerate convergence. Extensive computational
results demonstrate the effectiveness of the proposed approach.

6.1 Introduction

Recent advances in microelectronic technologies have levered the capabilities offered by
wireless sensors and extended their adoption. These newly introduced characteristics
have allowed to exploit wireless sensors networks (WSN), made of hundreds to thousands
sensors, in many application domains [Biagioni and Bridges, 2002, Chen et al., 2013,
Kim et al., 2007, Werner-Allen et al., 2006]. Wireless sensors networks have been
successfully employed in applications where the use of traditional wired sensor networks
was neither practical nor feasible [Gaura et al., 2010b]. WSN can be used to monitor
remote, hostile or inaccessible areas through the collaboration of individual sensors that
store the information collected or transmit it to the final user via multi-hop wireless
communications [Keskin et al., 2014].

Wireless sensors are typically battery powered devices with limited computation,
communication and memory resources [Yu et al., 2009]. Battery limitations impose a
major concern regarding the application of WSN to realistic scenarios. If an interesting
phenomenon is scarcely covered by the sensor nodes, the time during which network can
provide coverage is limited by those sensors. In the same way, if connectivity to a sink (to
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collect information) is required, it is expected that sensors surrounding it will deplete
their energy at a fastest pace since they carry all the data collected by the sensors.
As a consequence, the isolation of the sink can appear due to the power exhaustion
of neighboring sensors (the Hotspot problem [Abdulla et al., 2012]) limiting network
lifetime. These phenomena stress the need for an efficient use of energy to control the
workload associated to each sensor with the objective of guaranteeing coverage while
extending network lifetime.

In some applications is not necessary to fully cover the interesting area or targets in
order to have a general idea of the system state [Li et al., 2011]. In that case, partial
coverage is beneficial to WSN lifetime [Chen et al., 2010, Wang and Kulkarni, 2006].
Raiconi and Gentili [Gentili and Raiconi, 2013] evaluate the effect of partial coverage
in wireless sensor networks in which connectivity is not required and demonstrate the
benefits in terms of network lifetime. Similarly, the results presented by Castaño et
al. [Castaño et al., 2014] demonstrate that, in connectivity constrained WSN, partially
covering the set of targets can significantly extend network lifetime especially when
lifetime is not bounded by the hotspot problem.

Current technology allows sensors to adopt different energy consumption profiles
upon the basis of the tasks they perform within the network. The use of sensors con-
suming energy at different rates has been successfully explored in the context of sensors
having adjustable sensing ranges demonstrating the effectiveness to extend networks
lifetime [Cardei et al., 2006, Cerulli et al., 2012, Dhawan et al., 2006, Lu et al., 2005,
Rossi et al., 2012b]. The present research considers a different approach in which con-
nectivity is enforced and sensors can adopt up to three different energy consumption
profiles [Zhao and Gurusamy, 2008]. Sensors might be used to monitor the interesting
phenomenon (or variables) and transmit the information to other sensors or to the sink
through multi-hop wireless communication. Moreover, and considering that redundant
coverage can lead to energy waste, sensors might be used only for transmission support-
ing other sensors that cannot reach the sink to redirect the collected information to this
one. Finally, sensors that are not necessary neither for sensing nor for transmission can
adopt an idle state in which the energy consumption is minimal.

Column generation has demonstrated to be an efficient strategy to solve coverage
and scheduling problems in WSN [Castaño et al., 2014, Gu et al., 2009c, Raiconi and
Gentili, 2011, Rossi et al., 2012b]. In this chapter column generation (CG) is adopted
to maximize the lifetime in connectivity constrained WSN used to provide coverage of
discrete targets. Previous approaches based on CG to solve WSN problems in which
partial coverage of those targets is allowed are extended to consider sensors that can
adopt different energy consumption profiles according to the tasks they perform. In
order to efficiently address the pricing subproblem (PS) and identify interesting cover
sets, a constraint programming based approach, and an evolutionary algorithm to solve
PS, and accelerate the convergence of CG, are proposed. Finally, it is demonstrated
that by hybridizing both approaches it is possible to improve the performance of the
method with the objective of obtaining optimal solutions.

This chapter is structured as follows: Section 6.2 introduces the maximum network
lifetime problem in wireless multi-role sensor networks with coverage and connectivity
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constraints and propose a mathematical model for it. In Section 6.3 the solution ap-
proach based on CG is introduced as well as the detailed description of the approaches
adopted to efficiently use CG to solve the problem. The experimental results and the
performance evaluation of the method is described in Section 6.4. Finally, conclusions
and future directions of research are proposed in Section 6.5.

6.2 Problem description and model

This section introduces the maximum network lifetime problem in WSN with coverage
and connectivity constraints and presents an overview of the algorithmic approaches
proposed to address related problems. Then, a mathematical description of the problem
is proposed and the characteristics of the problem are highlighted.

In densely deployed WSN, where more sensors than required to provide coverage are
available, it is possible to extend lifetime by activating sequentially subsets of sensors.
The general idea is to put a set of sensors in active mode (cover sets) and to schedule
subsets of active sensors over time while ensuring that coverage and connectivity to the
sink is respected at any moment [Cardei et al., 2005, Castaño et al., 2013, 2014, Lu et al.,
2005, Zorbas et al., 2010]. The same idea can be extended to WSN in which sensors
can adopt different consumption profiles by allocating them tasks within the network
throughout network lifetime at different time intervals guaranteeing that battery lifetime
of each sensor node is respected.

According to the nature of the covers used, two main approaches to extend network
lifetime in WSN can be devised: disjoint [Jia et al., 2008, Slijepcevic and Potkonjak,
2002] and non-disjoint [Cardei and Cardei, 2008b, Cardei et al., 2005, Castaño et al.,
2013, 2014]. Although both pursuit the same objective, typically they differ in the
way they are applied and the benefits and disadvantages offered by each. In the one
hand, by using disjoint subsets the objective is typically to maximize the number of
covers. Nonetheless, this can lead to shortest lifetimes and inefficient use of sensors
energy; in contrast, it offers robustness in the sense that each sensor belongs to at most
one subset and failures only affect the quality of coverage of a single set [Henna and
Erlebach, 2013]. In the second hand, non-disjoint subsets lead to longer lifetimes but
lacks in fault tolerance because a sensor that fails may participate in more than one
cover [Henna and Erlebach, 2013, Wang et al., 2009]. Nonetheless, the benefits obtained
by using non-disjoint subsets can be enough to permit the lack of some sensor nodes.

Non-disjoint approaches have been largely considered as strategies to maximize the
lifetime in WSN [Liu et al., 2011, 2007]. Yu Gu et al. [Gu et al., 2009c] propose a
solution method based on column generation to address a lifetime problem in WSN
and then demonstrate that, in general, the schedules of sensor nodes in target coverage
problems can be represented by using patterns (indicating the energy consumption rate
of each sensor) [Gu et al., 2011]. This latter conclusion lead to presume that CG is
an efficient strategy, and is flexible enough to consider different characteristics of the
network operation.

In this chapter a non-disjoint global approach to maximize the lifetime in WSN is
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adopted. The network is characterized by a set of sensors S = {s1, s2, . . . , sm} randomly
deployed to monitor a set of targets K = {k1, k2, . . . , kn} and to transfer sensing infor-
mation to the sink, denoted by S0. Each sensor can operate at three different energy
consumption profiles according to the task it performs in the network. A sensor can
be used to monitor the targets located within its sensing range Rs and transmit the
collected information directly to the sink or to other sensors located within its communi-
cation range Rc, in this case the sensor is called a source and consumes energy at a rate
Es. In addition to its own collected data, a source may also transfer information sent by
other sensors. A sensor might be used only to retransmit the information collected by
other sensors when they are not able to establish direct communication with the sink.
This situation is specially desirable when lifetime is limited by sensors neighboring the
sink, in this case the sensors are called relays and consume energy at a rate Er. Finally,
a sensor that is neither used for sensing nor for transmitting is called idle and consumes
energy at a lower energy consumption rate Ei. Typically Es > Er > Ei, however this
assumption is not necessary in our approach.

A graph G(K∪S ∪{S0},E) is used to represent all the possible connections sensor-
sensor, sensor-target and sensor-sink in the network. The set E is a set of edges where
e(u, v) ∈ E exists if: (i) u ∈ K, v ∈ S and u is located within the sensing range Rs

of v, (ii) u, v ∈ S and they are located within the communication range of each other
or (iii) if the sink S0 is located within the communication range of a sensor u ∈ S.
A partition Pj divides the set S into three non-overlapping sets Sjs (source nodes), Sjr
(relay nodes) and Sji (idle nodes). Kj ⊆ K identifies a subset of targets to be monitored
by the sensors belonging to Sjs .

Let Nj = {S0} ∪ Kj ∪ S\Sji be a set of nodes. A partition Pj is called valid if it
induces a tree G′ = G[Nj ] where G′ is the subgraph of G induced by Nj . G′ is such
that there exists a path to send the information obtained from each target kj ∈ Kj to
the sink, where |Kj | ≥ ⌈αK⌉. The values α ∈ [0, 1] denote the fraction of targets that
must be covered by a valid partition and α < 1 indicates that partial coverage of the
targets is allowed, i.e., it is not necessary to monitor the full set of targets.

In Figure 6.1a a wireless sensor network deployed to monitor 5 targets is illustrated.
The dotted lines indicate all the possible communication links that can be established be-
tween sensors or the coverage links that can be established between targets and sensors.
Partitions Pj = {Sji ,S

j
r ,S

j
s} of the wireless sensor network are represented in Figures

6.1b, 6.1c and 6.1d. Figures 6.1b and 6.1c are equivalent and represent two alternative
connectivity trees implicit in the partition Pj = {{s1, s2, s4, s5, s7}, {s8}, {s0, s3, s6}}.
As observed, the target κ5 is not covered; consequently, the fraction of coverage achieved
is α = 0.8, i.e., 80% of target coverage. Figure 6.1d represents one subtree induced by
the partition Pj = {{s0, s3, s4}, {s2, s5, s8}, {s1, s6, s7}} and reaches 100% of coverage.
As observed, the encoding of the tree structure is not necessary as it can be easily de-
rived from the structure of the partition and the only important aspect is to guarantee
the existence of such a tree rooted at the sink and spanning all or a subset of the target
nodes.

Let Ω denotes the set of all feasible partitions Pj , the maximum network lifetime
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problem with role allocation, partial coverage and connectivity constraints (α-CMLP-
MR) is to allocate the optimal time tj for these partitions to be used; so as to maximize
lifetime while respecting the battery’s capacity bsv of the sensors. In other words, it
consists in finding the optimal pairs (Pj , tj) that maximize lifetime and guarantees a
minimum level of coverage during network lifetime.

The binary parameter ysuℓj indicate that sensor su assumes the energy consumption
rate ℓ ∈ {Ei, Er, Es} in the partition Pj . Assuming that the set Ω is completely known,
as well as the values ysuℓj , it is possible to formulate the problem by using the following
linear programming model (RMP):

Model RMP : α-CMLP-MR

Maximize:
∑

j|Pj∈Ω

tj (6.1)

∑
j|Pj∈Ω

(EsysuEsj +ErysuErj +EiysuEij)tj ≤ bsu ∀ su ∈ S

(6.2)
tj ≥ 0 ∀ j|Pj ∈ Ω (6.3)

The objective of model (6.1-6.3) is to maximize network lifetime (Eq. 6.1) by using
the partitions Pj ∈ Ω. Constraints (Eq. 6.2) are used to guarantee that the initial
amount of energy bsv of each sensor is not exceeded. As expected, the time variables
tj , associated to the partitions, are continuous (Eq. 6.3).
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Figure 6.1 – A wireless sensor network providing full and partial coverage
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6.3 Solution approach

As the number of valid partitions that can be obtained from Ω grows exponentially with
the number of sensors in the network, the model (6.1-6.3) is defined over an exponential
set of variables, and it might be impracticable to fully enumerate the set Pj ∈ Ω.
Moreover, even if they were enumerated, it would be observed that, in the optimal
solution, only a few partitions are used for a non-zero time. As a consequence, a
strategy leading to generate only the partitions useful to extend network lifetime can
be efficiently adapted to solve α-CMLP-MR.

Column generation has been successfully applied to solve coverage and scheduling
problems in WSN [Castaño et al., 2013, 2014, Gentili and Raiconi, 2013, Gu et al., 2009b,
Raiconi and Gentili, 2011, Singh et al., 2013]. Previous research indicates that these
approaches are “flexible” and can consider different characteristics of the WSN operation.
By using this strategy, it is possible to maximize network lifetime by splitting the
problem into two: (i) A restricted master problem (RMP) and (ii) A pricing subproblem
(PS). The former is used to allocate the optimal time interval that valid partitions have
to be used. The latter is used to identify new interesting partitions, or allocation of
roles to the sensors, that satisfy the coverage and connectivity requirements and might
be used to further extend lifetime.

In the CG method, an initial solution is provided, i.e., an initial set of interesting
partitions, and is used as the basis to further improve network lifetime. In other words,
CG starts with a RMP based on a subset of partitions Ω′ ⊆ Ω Then, based on the
optimal solution for this RMP, it is possible to compute new partitions, columns for
RMP, based on the reduced cost criterion. The reduced cost criterion links the dual
variable πsu associated to each sensors’ battery constraint (Eq. 6.2) to the cost of using
a sensor in a new partition. Hence, a new profitable partition can be computed by
maximizing the function:

1−
∑

(ysuEsjEs + ysuErjEr + ysuEijEi)πsu (6.4)

Then, if a column with a positive reduced cost exists, indicating that it may have
potential for increasing the lifetime, the column is added to the set Ω′ (i.e., an additional
column in the model (6.1-6.3)) and the process starts again. Otherwise, the CG process
finishes. Furthermore, if an exact approach is used to solve PS, the optimality of the
current RMP solution can be proven.

Considering that the model (6.1-6.3) is linear and may be efficiently solved by state-
of-the-art solvers, leading to improve the network lifetime those interesting partitions
leading to longer network lifetime. With this purpose, the use of a constraint program-
ming approach to solve PS and identify interesting partitions is proposed. Additionally,
to accelerate CG and reduce the computational time required to solve the problem
through CG, an evolutionary algorithm (EA) is presented. Finally, it is shown that it
is worth providing a hybrid exact approach by combining the proposed methods into a
single framework that sequentially uses EA and CP, when EA is unable to find a new
interesting solution.
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6.3.1 A constraint programming model for the pricing subproblem

In this section, some definitions from constraint satisfaction problems (CSP) are briefly
introduced. Then, the variables and constraints used to model PS, and the search
strategy used to solve it are described. For a more complete review of the theory
behind CSP the reader may be referred to Rossi et al. [Rossi et al., 2006].

6.3.1.1 Constraint programming definitions

Constraint Satisfaction Problems are widely used to model many Artificial Intelligence
issues and combinatorial problems. Given a set of variables, a domain of possible values
for each variable, and a conjunction of constraints, where each constraint is a relation
defined over a subset of the variables and is used to limit the combination of values that
the variables can take, a Constraint Satisfaction Problem (CSP) is to find a consistent
assignment of values from the domains to the variables so that all the constraints are sat-
isfied simultaneously [Mackworth, 1977]. Formally defined, a CSP is a triplet (X ,D,C),
where X = {x1, x2, . . . , xn} is a set of variables, D = {D(x1), D(x2), . . . , D(xn)} is a set
of domains corresponding to the different values that can be assigned to the variables
X , and C is a set of constraints established between the variables X .

Definition 1 The domain of a variable x, denoted by D(x), is the set of values that
can be assigned to x. x and x are respectively the lower and upper bounds of D(x).

Definition 2 A constraint Ci ∈ C defined on the subset of m variables X (Ci) =
{xi1 , xi2 , . . . , xim} is a subset of D(xi1) × D(xi2) × . . . × D(xim). It determines the
m-tuples of values which can be assigned to variables xi1 , xi2 , . . . , xim .

Definition 3 A solution of a CSP is a set of assignments of values to variables,
{(x1, a1),(x2, a2), . . . , (xn, an)}, with i ∈ {1, . . . , n}, ai ∈ D(xi), that satisfies all con-
straints in C.

Classically, CSP manipulate integer values in integer domains for integer domain
variables; however, set and graph variables have been recently introduced [Dooms et al.,
2005, Régin, 2004]. This chapter considers two specific kinds of constraints. The first
one is related to the occurrence of values in integer domain variables. The second one
concerns the formation of trees, and is used for possible graph values in graph domain
variables based on two set variables.

Definition 4 A Global Cardinality Constraint is a constraint C on X , where
X = {x1, . . . , xn}, in which each integer value ai ∈ A, where A = {a1, . . . , ap}, is
associated to an integer domain variable Oi ∈ O, where O = {o1, . . . , op}, and T(C)
= {t such that t is a tuple on X (C), ∀ai ∈ A : oi ≤ #(ai) ≤ oi}. It is is denoted by
globalCardinality(X ,A,O).

It is possible to represent the domain D(x) of a set variable x in a compact fashion
by specifying two sets of elements [Gervet, 1997]: the elements that must belong to
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the set assigned to x (which we call the lower bound x) and the set of elements that
may belong to this set (the upper bound x). The domain itself has a lattice structure
corresponding to the partial order defined by set inclusion.

A graph can be seen as two sets V and E with an inherent constraint specifying that
E includes or is equal to V × V . The domain D(G) of a graph variable G is specified
by two graphs: a lower bound graph G and an upper bound graph G, such that the
domain is the set of all subgraphs of the upper bound which are supergraphs of the
lower bound. For a better understanding of graph variable, the reader may be referred
to section 3.10 in [Régin, 2011].

Definition 5 An anti-tree AT = (X,Y ) is a connected digraph where every node
v ∈ X has exactly one successor w ∈ X, one root r ∈ X with no successor and for each
node v ∈ X, there exists a path from v to r.

Definition 6 An anti-tree constraint is a constraint with an input graph variable
G = (V,E) that assumes that an anti-tree exists on G.

While solving the problem, filtering rules from the anti-tree constraint will remove
arcs from G and decisions that add arcs to G will be applied until the Graph Variable
is instantiated, i.e., when G = G

6.3.1.2 Constraint model

Now reconsider the graph G(N ,E), where N = K ∪ S ∪ {S0} as defined in Section 6.2.
An extra layer L = {L1, ..., Lq} of nodes is introduced, where q = ⌈α|K|⌉. To model the
PS problem as a CSP to find appropriate Pj , we introduce a directed graph variable
GV (NV,AV ) that is used to represent the underlying solution. GV (NV,AV ) is derived
from the graph G(N ,E) in a directed version (by adding one arc from u to v and one
from v to u when an edge e(u, v) ∈ E). NV is a subset of nodes activated in the
solution and AV is the subset of arcs used for connectivity. The set of nodes L ∪ {S0}
is mandatory and always belongs to NV .

Additionally, the following integer vectors variables are used:

• Succ of size |NV | where D(Succu) = {1, . . . , |NV |} represents the index of the
neighbor of node u (Succ is compound of successors from extra nodes in L,
successors from node targets K and successors from sensor nodes S and {S0},
Succ = SuccL ∪ SuccK ∪ SuccS ∪ SuccS0)

• DegK of size m where D(DegKu) = {0, . . . , n} represents the incoming degree
on node u in S from K

• DegS of size m where D(DegSu) = {0, . . . ,m} represent the incoming degree on
node u in S from S

Additionally a real variable vector Cost of size m is introduced, where D(Costu) =
{0, . . . , πu} is used to represent the dual variable value associated to node u in RMP.
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Finally a variable TotalCost sums up all the Cost variables. We fix the upper bound
of TotalCost to 1 to force the CSP to produce only profitable columns (see Eq. 6.4).
In order to solve the problem we can use the following constraint model:

Model CSP : Pricing Subproblem with Constraints

anti− tree(GV ) (6.5)

sumWeight(GV,Cost, TotalCost) (6.6)

DegK(u) > 0 ⇐⇒ Cost(u) = Esπu ∀ u ∈ S (6.7)

DegS(u) > 0 =⇒ Cost(u) ≥ Erπu ∀ u ∈ S (6.8)

DegS(u)+DegK(u) = 0 ⇐⇒ Cost(u) = Eiπu ∀ u ∈ S
(6.9)

globalCardinality(SuccS, S,DegS) (6.10)

globalCardinality(SuccK, S,DegK) (6.11)

channeling(GV, Succ) (6.12)

Constraint (6.5) enforces GV to be an anti-tree. In order to consider the filtering
rules associated, we use a similar algorithm to the one described by Lorca [Fages and
Lorca, 2011] and Unsworth [Prosser and Unsworth, 2006] where the number of trees is
fixed to be 1. Complexity of Generalized Arc Consistency (GAC) of such a constraint
is known to be enforced in O(|NV |+ |AV |).

The constraint (6.6) computes the overall sum of the costs of all the nodes involved
in S. It is referred as TotalCost, and is restricted to be less than or equal to 1 to ensure
that only columns that are profitable for RMP are generated. Only Bound Consistency
on TotalCost is necessary and the associated scalar complexity is linear in O(|S|).

The constraints (6.7-6.9) describe the three different energy consumption conditions
of a node, with associated rates Es, Er and Ei respectively. The remaining Constraints
(6.10-6.12) are associated to the computation of the cost for source and relay sensors.
In Constraint (6.12), Succ variables are derived from GV via a standard channeling
constraint used to maintain the domain of variable Succ equivalent to the neighbors
of nodes in GV (i.e., v ∈ D(Succu) ⇐⇒ v ∈ NV, e(u, v) ∈ AV ). Then, two Global
Cardinality Constraints are used to compute the number of occurrences for node u in
S from respectively the neighbors of S (6.10) and K (6.11) (i.e., incoming degree from
S and from K).

Constraints (6.5) and (6.6) could be aggregated in a single global node weighted
spanning tree constraint where GAC propagator can be developed in the spirit of what
have been done for the edge weighted spanning tree constraint in [Régin et al., 2010].
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6.3.1.3 Search strategy

The search adopted uses a standard max regret strategy on Cost variables, where the
regret is the difference between the smallest value (Eiπu) and the next value (Erπu) of
the variables. The biggest regret (and first in enumeration) occurs for the most penalized
nodes. Value assignments start from minimum value (i.e., trying to deactivate the
node). A reachability propagator inside the tree constraint ensures that nodes necessary
for keeping connectivity will not be removed between target to sink from the final
solution. Behavior is quite effective as the median length to find a new column is less
than the total number of nodes (i.e., propagation automatically fix last nodes and very
few backtracks occurs).

6.3.2 An evolutionary algorithm to boost up CG

The use of heuristic methods is intended to provide near optimal solutions for PS at a
lower computational cost than with exact methods. In this way, it is possible to approach
near-optimal solutions for RMP efficiently. In the context of WSN optimization, the
use of EA has been largely adopted as a strategy to extend the lifetime [Chen et al.,
2010, Jia et al., 2008, Lai et al., 2007, Ting and Liao, 2010]. However, most of these
approaches do not consider the global objective of maximizing network lifetime but are
used to maximize the number of disjoint subsets of sensors. Evolutionary algorithms
have been also efficiently combined with CG to solve difficult lifetime optimization
problems in WSN. In this chapter, we adopt an EA as a strategy to identify profitable
valid partitions based on the reduced cost criterion.

The first step in EAs is the creation of an initial population of solutions for the
problem, and then to have this population evolve along multiple generations. The idea
is to improve the solutions taking the best characteristics found in selected parents,
and keep this process running until a stopping criterion is reached and an appropriate
solution is obtained. This chapter considers the inclusion of an additional improvement
operator which is used to reduce the total energy consumed for a sensor subset while
maintaining the coverage and connectivity constraints. The use of such an operator is
intended to improve the quality of the solutions obtained through the proposed EA.
The general components of the proposed EA are presented below:

Chromosomes: By following the structure used to represent columns in the model
(6.1-6.3) and considering the fact that the cost associated to the network structure
is located on the nodes, it is proposed to represent the solutions by using a vector
Zj = [zs1 , zs2 , zs3 , . . . , zsm ] where zsu ∈ {Ei, Er, Es} indicates the energy consumption
rate of sensor su according to the partition P j . By using this representation, the
structure (and the coefficients) of the column can be easily derived by considering the
energy consumption rates associated to a sensor in a given partition Pj .

The example in Figure 6.2 can be used to illustrate the encoding. It represents
a valid partition providing full target coverage where Sjs = {s5, s7}, S

j
r = {s1, s3}

and Sji = {s2, s4, s6}. By considering the energy consumption rate associated to each
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operation mode, it is possible to represent this solution by using the chromosome Zj =
[Er, Ei, Er, Ei, Es, Ei, Es]. It can be seen that the structure of the induced tree is not
included in the encoding scheme; furthermore, different trees (with the same reduced
cost) can be obtained from a single partition.

κ1 κ2 κ3

s1 s2 s3

s4 s5 s6 s7

utS0

Figure 6.2 – Representation of a valid partition in a simple network.

Initial population: An initial population is generated in a random way by consid-
ering only valid partitions inducing a tree rooted at the sink. Previous to generate one
solution all sensors nodes are assumed to belong to the subset of idle sensors. Then, in
order to generate a random solution, a list of candidate nodes containing the sensors
within the communication range of the sink are first considered, and one of them is
randomly selected to operate as a source sensor or as a relay. Next, a new list of candi-
dates is created by considering the sensors in idle state that are in the neighborhood of
active sensors (or to the sink). Each time that a sensor is added to the group of Ssj , the
targets that can establish communication with it are added to the set Kj . The process
is repeated until |Kj | ≥ ⌈αK⌉.

Fitness: At each iteration of the EA, solutions are evaluated in terms of the objective
function that evaluates the reduced cost criterion. The maximization of reduced cost
criterion corresponds to the minimization of:

∑
su∈S

(EsysuEsj + ErysuErj + EiysuEij)πsu (6.13)

Then, the objective of the EA is to identify the network structure with minimal
cost.

Selection: In order to generate a new population, the use of a linear ranking selection
procedure is proposed [Baker, 1987]. It consists in allocating a selection probability
to the chromosomes based on their rankings within the population. The purpose of
this scheme is to increase diversity by permitting some medium-low quality solutions
to participate in the creation of a new offspring of child solutions obtained from the
parents. This is done to avoid the evolution to be focused in a small portion of the
solution space. Moreover, it can be used as an additional improvement to accelerate
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the convergence of the CG by returning a diverse set of columns, with active sensors
contributing to different constraints, at each iteration of the CG algorithm [Alfandari
et al., 2013, Castaño et al., 2014, Moungla et al., 2010].

Let F1 = [f(Z1), f(Z2), f(Z3), ...f(Z|P|)] be a vector containing the objective func-
tion of the solutions in the population and let |P| denote the size of the population.
Let ρi ∈ {1, 2 . . . |P|} be the ranking of the chromosome i within the population based
on the reduced cost criterion, where 0 is assigned to the best ranked solution. Then for
each element in the population, the probability of being selected is assigned by using
their rank. The probability Θi of selecting a parent i ∈ P can be computed as:

Θi = 2
|P| − (ρi − 1)

|P|(|P|+ 1)
(6.14)

And,

∑
i∈P

Θi = 1 (6.15)

Then the selection is obtained by performing a classical roulette wheel selection
within the elements of the population.

Crossover: The evolutionary algorithm generates iteratively new solutions to be in-
serted in the population. In order to generate a new population that will replace the
worst elements of the previous generation, the proposed genetic algorithm applies a
Bernoulli crossover strategy to each of the solutions that were selected through the se-
lection operator [Jong and Spears, 1992, Spears, 1991]. In this strategy a new pair of
solutions is generated by swapping the elements between the two parents a and b with a
probability given by Pa = Fita

Fita+Fitb
. As expected, the use of such an approach can lead

to infeasible solutions. As a consequence, the use of repairing procedures is intended to
allow new solutions to be included in the new generation provided they are not already
part of it.

Feasibility repair: After the crossover procedure between parent solutions is per-
formed, unfeasible child solutions could be obtained in the new offspring. Hence, new
solutions must be repaired to become valid partitions, columns, for model (6.1-6.3). In
order to do this, two repairing strategies are proposed to be used depending on the
kind of unfeasibility observed in the solution. First, a coverage repair is used when the
evaluated solution does not reach the required level of target coverage and additionally
source sensors are required. Second, a connectivity repairing procedure is proposed to
add some extra sensors to restore network connectivity.

In order to keep a diverse population, both procedures are designed in such a way
that the decisions taken to repair the solution are non-deterministic. Consequently,
similar (or even duplicate) solutions are not necessarily repaired in the same way and
the feasibility repair procedure can be seen as a sort of mutation procedure.

Algorithm 6.1 presents the repairing procedure. It takes the current level of coverage
as input (line 2) and iteratively activates as source some of the the sensors that are
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inactive or operating as relays (Sav = Sinactive ∪ Srelay). This process is repeated until
the required level of coverage is reached (line 5). The contribution of inactive and relay
sensors is evaluated by the ratio between activation cost and the additional coverage they
provide (lines 6-16). Then, this piece of information is used to calculate an activation
probability Psel(lines 18-20) that is used to randomly select the new sensor ssel that
will be used as a source (lines 21-28).

Algorithm 6.1: Coverage repairing procedure

1 Ss ← {su ∈ Z : zsu = Es}
2 Tunc ← {κi ∈ K : 6 ∃a(κi, su)∀su ∈ Ss}
3 Kj ← K \ Tunc

4 Sav ← S \ Ss
5 while |Kj | < ⌈αK⌉ do

6 for su ∈ Sav do

7 Covsu ← {κi ∈ Tunc : ∃e(κi, su)}
8 if |Covsu | > 0 & su ∈ Sr then

9 Indsu ←
πsu (Es−Er)

|Covsu |

10 else

11 if |Covsu | > 0 then

12 Indsu ←
πsuEs

|Covsu |

13 else

14 Sav ← Sav \ su
15 end

16 end

17 end

18 for su ∈ Sav do

19 P_selsu ← Assign_selection_probability(Indsu)
20 end

21 x← U [0, 1]
22 Pacc ← 0
23 while Pacc ≤ x do

24 Pacc = Pacc + P_selsu
25 if Pacc > x then

26 ssel ← su
27 end

28 end

29 Sav ← Sav \ ssel
30 for κi ∈ K| ∃e(κi, ssel) do

31 Tunc ← Tunc \ κi

32 Kj ← Kj ∪ κi

33 end

34 Ss ← Ss ∪ ssel
35 end

In a similar way, disconnected solutions are repaired by using a parameter-free pro-
cedure (Algorithm 6.2). As it never changes, the shortest path between two sensor
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nodes (measured as the number of hops required to send information from one to the
other) is calculated at the beginning of the CG process by using the Floyd-Warshall
algorithm [Floyd, 1962, Warshall, 1962] and it is never calculated again; however, it
is used each time that connectivity needs to be repaired. In the EA, when a solu-
tion that does not meet the connectivity requirements is found, the different connected
components CC are computed (line 2). For each pair of elements being in separated
components the distance is retrieved and used to allocate the probability of repairing
through the shortest path between the two nodes (lines 9-15). Then, a pair of sensors
su,sv is randomly selected, based on the probabilities computed (lines 16-23), and the
sensors in the path Pathsusv connecting them are activated as relay nodes (lines 24-27).
In order to evaluate if the current solution is already feasible, connected components
are calculated again (line 28). If more than one connected component is detected in the
current solution, the whole process is repeated until full connectivity is reached. The
process might be stopped as well if the required level of coverage is achieved by the
connected component containing the base station. In the latter case, sensors not in this
component must be removed.

Population improvement: Once two feasible solutions are obtained, a post-processing
is performed to improve them. As it could be expected, the application of crossover
and repairing procedures can lead to solutions consuming more energy than necessary.
Then, the proposed improvement procedure is intended to reduce the energy consump-
tion by decreasing the consumption rate associated to the source or relay sensors. The
proposed procedure applies a best-improvement strategy, and checks if each active sen-
sor can be moved to the set of idle sensors whilst keeping the solution feasible. If the
partition remains feasible, the procedure accepts this movement and continues the pro-
cess evaluating other sensors. Otherwise, it attempts to turn each source sensor into a
relay. The improvement process finishes when all the active sensors have undergone an
attempt for a lower power consumption role. In order to avoid premature convergence,
the improved solutions are added to the new offspring to replace the weakest members
only if they are not already part of it, i.e., no duplicated elements are allowed.

6.3.3 Hybrid CG+EA+CP approach to maximize network lifetime

Both the proposed CP and EA approaches used to solve PS have their pros and cons.
While the use of exact approaches to solve PS allows to guarantee that the solution
obtained through the use of CG is optimal, it might lack of efficiency in computing
interesting columns for PS and can be impractical in large scale applications. By con-
trast, although EA is expected to be more efficient in computing interesting columns,
it neither guarantees that these are optimal for PS nor allows to guarantee that the CG
process stops when it reaches the optimal solution.

In order to take advantage of the best features of both approaches, they are combined
into the CG framework. Our proposal is to apply both methods sequentially to solve
PS. First, EA is used to obtain new interesting columns in low computational time and
to return them to model (6.1-6.3) when they have an interesting reduced cost. If no
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Algorithm 6.2: Connectivity repairing procedure

1 Sav ← S \ Ss ∪ Sr
2 CC = {cc1, cc2 . . . ccn} ← Identify_Connected_Components(Ss,Sr)
3 for (su, sv|su ∈ cci, sv ∈ ccj , i 6= j) do

4 Pathsusv ← Shortest_Path(su, sv)
5 end

6 dmax ← max{|Pathsusv | : su ∈ cci, sv ∈ ccj , i 6= j}
7 dmin ← min{|Pathsusv | : su ∈ cci, sv ∈ ccj , i 6= j}
8 while |CC| > 1 do

9 for (su, sv|su ∈ cci, sv ∈ ccj , i 6= j) do

10 Indsusv ←
dmax−|Pathsusv |

dmax−dmin

11 end

12

13 for (su, sv|su ∈ cci, sv ∈ ccj , i 6= j) do

14 P_selsusv =
Indsusv∑

sl∈cci,sm∈ccj,i 6=j Indslsm

15 end

16 x← U [0, 1]
17 Pacc ← 0
18 while Pacc ≤ x do

19 Pacc = Pacc + P_selsusv
20 if Pacc > x then

21 Pathsel ← Pathsusv

22 end

23 end

24 for ssel ∈ Sav|ssel ∈ Pathsel do

25 Sav ← Sav \ ssel
26 Sr ← Sr ∪ ssel
27 end

28 CC ← Identify_Connected_Components(Ss,Sr)

29 end

interesting solution is found with this heuristic approach, EA is replaced as column
generator by an exact approach based on CP used to check if either the current solution
for model (6.1-6.3) is optimal or a new solution can be obtained. In the former case the
CG process stops and the solution is optimal. Otherwise, a new iteration is performed
and EA is used again to try to identify interesting columns for model (6.1-6.3).

6.4 Computational experiments

In order to evaluate the performance of the proposed approaches, experiments are car-
ried out on a set of 240 instances. The instances are characterized by a number of
sensors |S| in {100, 200, 300, 400, 500} and each instance is evaluated with a number of
targets |T | in {15, 30}. Both, sensors and targets are deployed in a 500 × 500 area,
sensor have a communication range Rc of 125 and a sensing range Rs in {100, 125}.
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The energy consumption rate associated to a sensor acting as a source is Es = 1, as
a relay is Er = 0.8 and idle is Ei = 0. Finally, three values for α ∈ {0.7, 0.85, 1.0}
are considered to denote the fraction of the set of targets that must be covered for a
valid partition. The experiments are performed on a Intel Xeon 2.8Ghz workstation
with 8GB of RAM. We use Gurobi 5.6 to solve RMP and Choco 3.2 to solve the PS
via constraint programming. If the proposed methods have not been able to find the
optimal solution of the problem within a time limit of 3600 second, the procedure stops
and the best solution is reported. At the first iteration, RMP is initialized with a single
column in which all sensors are operating at a maximum energy consumption rate (i.e.,
S0
s ← S).

Computational experiments indicate that the convergence of CG+EA might be af-
fected by the number of columns returned at each iteration of CG. In order to accelerate
the convergence of CG we return up to nmax columns at each iteration selected from the
population. In this way, it is possible to take advantage of some characteristics of EA,
as diversity, to improve convergence to a (near-)optimal solution [Moungla et al., 2010].
Figure 6.3 displays a boxplot indicating the reduction (%) on the number of iterations
obtained when different values of nmax are used compared to the case when a single
column is returned. As observed, the convergence is gradually improved when more
than a single column is returned to RMP; nonetheless, according to our experiments,
in general the difference in computational time is less noticeable when more than 20
columns are returned (see Figure 6.4). In this chapter we adopt this intensification
strategy by returning up to nmax = 20 at each iteration of CG.
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Figure 6.3 – Reduction of the number iterations (%) by returning several columns
throughout CG+EA+CP.

Figure 6.5 depicts the typical behavior observed for the evolution of the objective
function throughout CG+EA+CP iterations. The results seems to indicate that by
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Figure 6.4 – Reduction on the CPU time (%) by returning several columns throughout
CG+EA+CP.

returning several columns it is possible not only to accelerate the convergence towards
the optimal solutions but also to provide interesting suboptimal solutions in a low
number of iterations. In general, this reduction is also appreciated in the CPU time
required to compute such solutions. Hence, it might indicate that even if the proposed
approach is unable to find the optimal solution, it is still able to compute interesting
solutions.
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Figure 6.5 – Objective function evolution throughout CG iterations.
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We evaluate the proposed approaches in terms of their ability to compute an optimal
solution for α-CMLP-MR. Table 6.1 divides the analysis of the instances into groups
with similar characteristics to evaluate the performance of the proposed approaches
according to them. The columns with the label CG+CP indicate the results obtained
when only the CP is used to compute valid partitions to be included in RMP. In the
same way, the columns labeled CG+EA and CG+EA+CP display the results obtained
when only EA or EA and sequentially CP are used respectively. In the latter case
the approach indicates whether there exists a new interesting partition or the current
solution is optimal. As it could be observed, CG+CP is an efficient method useful
to compute a schedule that maximizes network lifetime. It is able to find the optimal
solution for 76% of the total set of instances. Indeed, this result is largely improved when
the analysis are limited to the instances that require 100% of coverage (α = 1), i.e.,
95% of the instances are solved to optimality within the time limit. The performance
is clearly reduced when partial coverage is allowed where the method achieves 65% and
40% of the optimal solutions for α = 0.7 and α = 0.85 respectively. This might be
partially explained by the increase in the size of the space search as a consequence of
the relaxation of the coverage requirements which leads to a bigger computational effort
at each CG iteration.

Computational experiments show that CG+CP approach is able to find the optimal
solution for about nearly 67 % of the whole set of instances. This result is improved
through CG+EA that is able to find better solutions than CG+CP and obtains the
optimal solutions for 80% of the instances in a lower computational time; however, it is
not able to prove that these solutions are optimal. Hence, CG+EA+CP might be con-
ceived as the best strategy to address α-CMLP-MR. By using this approach, the results
obtained by CG+CP and CG+EA are improved in terms of solution quality but most
importantly in terms of computational time. The combined effect of both approaches
allows to produce high quality solutions in a low time and allows to demonstrate that
solutions are optimal such that it is an exact solution strategy. As EA is a heuristic
approach, a standalone method based on it will probably get stuck in suboptimal solu-
tions. Consequently, the collaboration within the CG framework of EA and CP allows
to exchange easily between the two methods.

We evaluate the performance of CG+EA and CG+EA+CP against the standalone
application of the CG+CP approach to address pricing subproblem for the set of in-
stances demanding a 100% level of coverage (α = 1). Results indicate that both
CG+EA and CG+EA+CP are able to find all the optimal solutions for this set; simi-
larly, CG+CP is able to compute up to 97% of these solutions and the remaining 3%
of instances correspond to the instances with the largest number of sensor nodes.

Table 6.2 presents the average CPU time obtained with the proposed approaches.
The table discriminates between those instances for which the method was able to com-
pute the optimal solution within the time limit. According to the experiments, CG+EA
can be used to reduce the computational time required to approach optimal solutions
faster than CG+CP. Then, the reinforcement with the use of CP allows to guarantee
that the solution obtained for α-CMLP-MR is optimal. The computational experiments
seem to indicate indicate that CG+EA and CG+EA+CP might be used to compute ef-
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Instances α = 0.7 α = 0.85 α = 1
|S| |K| CG+CP CG+EA CG+EA+CP CG+CP CG+EA CG+EA+CP CG+CP CG+EA CG+EA+CP

100 15 6 7 7 2 6 6 8 8 8
30 5 6 6 3 4 4 8 8 8

200 15 6 7 7 4 5 5 8 8 8
30 5 7 7 3 5 5 8 8 8

300 15 8 8 8 6 8 8 8 8 8
30 8 8 8 5 8 8 8 8 8

400 15 6 6 6 4 6 6 8 8 8
30 5 6 6 3 5 6 8 8 8

500 15 2 3 3 2 2 2 6 8 8
30 2 3 3 0 2 2 6 8 8

Total 53 61 61 32 51 52 76 80 80

Table 6.1 – Number of optimal solutions computed by each method in the different
groups of instances

ficiently interesting solutions for the evaluated problem. It is observed that it computes
a higher number of optimal solutions in a lower computational time. Experimental
analyses indicate that when CG+EA cannot compute the optimal solution it may be
because of the two following reasons: (i) the EA is not able to compute an interesting
new column or (ii) the lifetime increases only marginally at each iteration and conver-
gence to the optimal solution is slow. In addition, the computational experiments using
the CP approach suggest that as CG approaches the optimal solution, the computa-
tional effort required to solve PS might become too big and, sometimes, the CG process
get stuck at a single iteration. As a consequence, even the single iteration required to
prove optimality may consume an important amount of time.

Finally, Table 6.3 compares the results in term of lifetime for the different groups
of instances. The results indicate that, adding more targets to a particular network
while maintaining reduced levels of coverage (e.g., α ∈ {0.7, 0.85}) do not necessarily
decreases the lifetime. It appears to be related with the fact that, having more targets,
it is possible to provide alternative network configurations that avoid the coverage of
the set of weakly covered targets that lead to lifetime shortages. As expected, the
computational results indicate that, by allowing lower levels of coverage, lifetime can
be largely extended. This phenomenon is appreciably notorious when network lifetime
is bounded by the less covered targets.

6.5 Conclusions and future work

In this chapter the maximum network lifetime problem in wireless sensor networks with
coverage and connectivity constraints is discussed. Sensors having up to three opera-
tion modes adopting different energy consumption profiles depending on the tasks they
perform in the network are considered. In order to solve the problem, an efficient exact
approach based on column generation is proposed. The method divides the problem
into two decisions. First, decisions related to the allocation of schedules for the op-
eration of each sensor node. Second decisions that guarantee that during lifetime the
schedule respects the coverage and connectivity constraints. Scheduling decisions are
taken by solving a linear program defined over an exponential number of variables that
can be efficiently solved by using column generation. Nonetheless, to efficiently identify
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Non-optimal Optimal

α |S| |K| CG+CP CG+EA CG+EA+CP CG+CP CG+EA CG+EA+CP

0.7 100 15 3600.0 82.2 3600.0 35.4 15.1 15.9
30 3600.0 213.0 3600.0 21.1 9.8 10.5

200 15 3600.0 441.4 3600.0 70.1 51.0 70.3
30 3600.0 576.3 3600.0 71.3 29.7 30.7

300 15 - - - 457.7 29.9 31.0
30 - - - 343.6 31.3 32.3

400 15 3601.6 1477.5 3600.0 768.0 52.7 54.0
30 3566.7 2687.5 3600.0 1003.3 149.4 151.0

500 15 3600.0 3600.0 3600.0 2600.5 243.0 244.7
30 3600.0 3600.0 3600.0 2857.4 346.3 348.3

0.85 100 15 3600.0 186.3 3600.0 7.1 29.6 30.2
30 3600.0 250 3600.0 10.1 69.1 69.8

200 15 3600.0 584.3 3600.0 44.3 63.9 65.2
30 3600.0 873.1 3600.0 298.1 59.8 60.6

300 15 3600.0 - - 296.8 67.8 68.9
30 3600.0 - - 446.5 174.3 175.6

400 15 3600.0 2204.5 3600.0 1302.0 471.0 472.3
30 3600.0 3600.0 3600.0 1027.1 533.7 534.8

500 15 3600.0 3600.0 3600.0 1714.2 163.3 165.0
30 3600.0 3600.0 3600.0 - 589.5 591.5

1.0 100 15 - - - 3.4 10.9 17.6
30 - - - 4.1 22.5 31.6

200 15 - - - 49.2 18.8 26.6
30 - - - 39.7 24.7 32.5

300 15 - - - 290.0 34.3 40.9
30 - - - 134.0 38.2 49.3

400 15 - - - 437.8 45.3 52.8
30 - - - 490.4 81.6 85.5

500 15 3600.0 - - 1279.8 186.9 197.3
30 3600.0 - - 1519.8 275.8 298.1

Table 6.2 – Comparison of computational time (s) required for the proposed approaches
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α |S| |K| CG+CP CG+EA CG+EA+CP

0.7 100 15 8.4 8.5 8.5
30 8.4 8.6 8.6

200 15 19.2 19.8 19.9
30 19.2 20.0 20.0

300 15 22.8 22.8 22.8
30 22.8 22.8 22.8

400 15 38.4 38.4 38.4
30 34.5 37.3 37.3

500 15 49.1 57.6 58.0
30 49.0 57.3 57.5

0.85 100 15 7.9 8.0 8.1
30 7.4 7.9 8.0

200 15 16.4 18.9 18.9
30 17.1 18.5 18.6

300 15 22.4 22.6 22.6
30 22.4 22.7 22.7

400 15 33.5 36.1 36.1
30 29.7 33.5 34.6

500 15 38.5 51.2 51.3
30 40.4 49.0 43.8

1.0 100 15 4.8 4.8 4.9
30 .6 4.6 4.6

200 15 12.6 12.6 12.6
30 10.7 10.7 10.7

300 15 17.3 17.3 17.5
30 15.0 15.2 15.0

400 15 22.6 22.6 22.6
30 21.0 21.0 21.0

500 15 33.2 33.7 33.7
30 30.7 31.2 31.2

Table 6.3 – Average network lifetime computed through the proposed approaches
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network partitions leading to extend the lifetime the use of specialized approaches are
devised. In this chapter the use of an Evolutionary Algorithm is proposed to approach
(near-) optimal solutions. Then, when it fails, a constraint programming approach is
used to confirm that solution is optimal or identify an additional interesting column.

The computational results suggest that the proposed approach is an efficient strategy
to compute (near-)optimal solutions for the problem. It is demonstrated that when full
coverage of the targets is necessary, the method presents an interesting performance
that makes it worth to solve the problem and outperforms other efficient approaches.
However, as expected, the performance decreases when partial coverage is allowed, yet
it is still able to compute competitive solutions for the problem.

Regarding future lines of research, we consider that the proposed method can be
further improved by using sophisticated integer programming and constraint program-
ming approaches taking advantage of the characteristics of the model. Additional studies
leading to overcome the convergence of the CG approach applied to WSN optimization
can be devised. In future research, a comprehensive model and solution approach able
to consider, in a single framework, different models concerning the energy consumption
an operational constraints of WSN will be studied.



7
General conclusions and future works

7.1 General remarks

This research is motivated by the energy efficient design of the operation in randomly de-
ployed Wireless Wensor Networks with constrained resources. Different characteristics
of the network operation are considered including several models for energy consump-
tion and sensors able to perform different tasks within the network. Special emphasis
is put on the connectivity issue which largely increases the complexity of the design
problems involved in the energy efficient design of WSN. Additionally, our research has
considered several problems in which partial coverage of discrete targets is allowed, so it
is possible to take advantage of this characteristic to improve network lifetime. Finally,
the coverage and connectivity constraints are considered in WSN with optional capa-
bilities, sensors using energy at different energy consumption rates, that can be used to
extend network lifetime.

7.1.1 Thesis summary

In this research it is shown that a general modeling strategy can be used to tackle
several problems related with the energy efficient design of WSN. The model, however,
is typically defined over an exponential set of variables that might prevent handling
even small size networks with a low number of sensors. Consequently, to address the
problem this work is mainly focused on the use of column generation (CG) as the
strategy adopted to address different versions of the problem. In this way, it is possible
o avoid the complete enumeration of all the variables but somehow enumerate only the
promising ones to improve the efficiency on the usage of the resources provided by the
sensors, specially their limited energy budget.

CG is seen as a general framework to optimize the use of energy in WSN that can
be easily adapted to include the different constraints imposed for the network operation
and sensors resources. Thus, the CG adopted easily represents the energy consumption
scheme for wireless sensor nodes, yet the pricing subproblem has to be modified to
consider any characteristic required and to provide columns representing the energy
consumption for each node at each specific configuration.

Two decisions are considered when using CG: timing decisions, and topology deci-
sions. The topology decisions involve identifying energy-efficient configurations of the
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network (including decisions of role within the network and routing) that can be used
to extend network lifetime, and the timing decisions which assign the operational time
for those interesting configurations. In this way, the use of CG implies that network
design problems are required to be solved iteratively to optimize the use of the energy.

To generate new columns, the CG approach adopted relies exclusively on the energy
consumed by the sensors and does not make any assumption on the structure of the area
or targets to be covered. This is an obvious consequence of the fact that communications
and coverage links are only virtually established through wireless signals and the energy
is consumed only in sensor nodes. Hence, the optimal timing must respect the battery
constraints of each individual node. Moreover, it can be extended to consider additional
sources of energy consumption by including additional characteristics in the pricing
subproblem used to define the structure of the network and the operation of the network
at any moment

7.1.2 Methodology and findings summary

The results obtained through classical implementations of the CG method, based en-
tirely on the use of MIP models solved through state-of-the-art solvers, show that it is
highly limited in scope. The experiments seem to indicate that CG cannot be easily
applied to solve problems of higher complexities including those in which connectivity
constraints must be enforced. Two main reasons were identified as the causes of this
poor performance. On the first hand, the pricing subproblem might be too hard to solve
and a big computational effort might be required to generate an interesting column to
be included in the restricted master problem. Consequently, the time required to solve
a problem up to proven optimality can be huge and CG might be unpractical. On the
second hand, the convergence of the method itself can be a problem. It was observed
that CG performance is particularly bad when it has to be used to consider problems
with partial coverage in which the solution space largely increases in size, and so the
number of feasible columns. Hence, the convergence of CG is affected.

Depending on the problem addressed, CG can present slow convergence arising from
different sources. In some cases CG presents the typical tail-off effect that imply that
it has problems to find the optimal solution of the problem when it is close to it. Thus,
the method keeps generating columns in the last iterations that improve the objective
function only marginally. In other cases, CG might present a heading-in effect and it
produces, for a number of iterations, irrelevant (or bad quality) columns that have a
limited effect on the evolution of the objective function and are highly unlikely to be
part of the optimal solution, e.g. columns having a lot of active sensors. In the problems
addressed in this work, this problem can be partially explained by the fact that those
columns are densely populated contributing to a lot of constraints, a characteristic that
is as undesirable as inefficient in terms of energy consumption.

This research explored different strategies to cope with the problems affecting the
performance of the CG used to optimize the energy usage in WSN. The effect of dual
variable stabilization and intensification strategies is evaluated to avoid the tail-off effect
as well as simple strategies that can be used to address the heading-in effect by avoiding
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the construction of highly populated columns. The numerical experiments indicate
that better performance of CG can be achieved by using each of these methods at
different levels. We observed that dual variable stabilization can be used to reduce the
number of iterations required to compute an optimal solution through CG. Moreover,
the results might signal that by providing several and diverse columns, stabilization is
indirectly obtained, and consequently, an improved CG convergence. In contrast, no
evidence indicates that providing initial solutions to initialize the CG brings significant
improvements.

Additionally, the performance of the CG can be improved by using efficient meth-
ods to address the pricing subproblem. In this case we considered two approaches: (i)
the use of specialized exact approaches able to tackle efficiently the pricing subprob-
lem, and (ii) the use of heuristic approaches to approximate quickly solutions for the
pricing subproblem and, consequently, interesting (near) optimal solution for the whole
problem. In the first case, the use of Constraint Programming and an efficient Benders
Decomposition approach were considered. In the latter, the use of metaheuristics is ex-
plored. It is used to solve the pricing subproblem and, additionally, to take advantage
and produce diverse columns to be returned to the master problem and contribute to
improve the performance of CG.

Computational results seems to indicate that CG can be efficiently combined with
exact and heuristic approaches; nevertheless, the method requires the use of advanced
strategies to deliver its full potential. The energy efficient design of wireless sensor
networks implicitly requires being able to address effectively a large variety of network
design problems. Thus, it is possible to take advantage of some advances developed in
this field to create interesting solution approaches. Nonetheless, some of the derived
pricing subproblems might not be neither too common nor deeply explored. Hence,
the development of new strategies to face them efficiently is required as they can be
computationally demanding as well. It was learned that the inner characteristics of the
derived network design problems can be exploited to solve the pricing subproblem and
to boost up the CG. Finally, it was observed that it is worth combining some of the
methods into a single approach that takes advantage of the diverse enhancements they
provide to CG.

Next the limitations of the current study are presented, such that they can be seen
as the starting point for future research. Moreover, some potential future work closely
related with the research presented throughout the manuscript is introduced and some
extensions to different domains as communication networks design.

7.2 Limitations of this study

Some strengths have been presented that indicate why the use of CG is an interesting
option should be considered in the optimization of the energy usage in WSN. However,
the present study and the technique itself present several limitations that might require
to be dealt with to improve the quality of the results found. In the following we highlight
some interesting problems that are still open issues in WSN energy-efficient design.
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Area coverage vs. Discrete coverage The proposed study does not consider di-
rectly area coverage. Some of the solution approaches proposed in this work might
be used in several problems in which it is required to satisfy area coverage either by
introducing some techniques to transform area coverage into target coverage or by ap-
proximating the area coverage using discrete points [Deng et al., 2012, Rebai et al.,
2014, Tan et al., 2013]. However, depending on the conditions on the coverage required,
it might be necessary either to do a big modification of the method to be adapted or
to develop another kind of solution approach for the pricing subproblem that in some
cases might imply to solve non-linear problems.

The effect of randomness In this research it is considered that wireless sensors
do not fail. However, although the failure rate might be low, it can be necessary to
deal with this characteristic of the sensor nodes in order to produce robust and reliable
WSN operations schedules. Moreover, it can be necessary to contemplate other sources
of randomness at the moment of design the WSN operations. If these characteristics
are not considered, the quality of the coverage provided can be affected and so does
the reliability of the information collected by the sensor nodes. This problem can be
partially managed by guaranteeing that survivable network structures are generated
when looking for an interesting network configuration through the pricing subproblem.
In this way, it is possible to prevent that a certain level of sensor failures affect largely
the coverage objective for which sensors are deployed. As a matter of example, this
problem can be partially tackled by considering networks structure that provide either
multiple coverage of the targets or guarantee that critical regions are surveyed by several
sensors at the same time [Singh et al., 2013].

Multi-purpose wireless sensor networks Throughout the manuscript our analysis
was completely focused on wireless sensor networks used to monitor a single phenomenon
or variable. Nonetheless, this is not always the case. Sensors might be provided with
multiple sensing units that can be used to monitor different variables either at the same
time or at different moments depending on the requirements. This characteristic was
not considered in our models; however, in certain cases it can be directly included in our
solution approaches by considering these variables as different targets to be monitored
and including the characteristics associated to the consumption in the models used to
solve the problems. Nonetheless, in order to guarantee that the approaches proposed
here can be extended to that case, further experimental analysis are required.

Non-homogeneous wireless sensor networks Our experimental analysis were en-
tirely based on the use of homogeneous sensor nodes. Although the general framework
used to address the problem, and based on CG, can be extended for those cases, they
have not been directly considered in this work. It can be necessary to perform further
analysis to include additional characteristics as different initial battery charges or sen-
sors with different sensing units. In some cases, large modifications are not needed and
it is enough by indicating which sensor is able to cover which target. Other cases may
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require slightly bigger modifications depending of the objective and the capabilities of
the WSN; however, an initial approach to solve a wide class of problems is provided in
this work.

Centralized vs. Decentralized approaches The CG method applied to solve the
problems addressed in this thesis correspond to a centralized solution approach that
is intended to be indicated to the sensors after knowing its location and the optimal
solutions. Nonetheless, in some cases, practitioners might prefer the use of distributed
approaches in which a global decision is not necessary but the operation of the network
is defined over decisions taken by the individual nodes that are part of the network. Our
approach cannot be easily extended to consider this case, still it can be used to evaluate
the performance of distributed approaches in metrics as the lifetime or the quality of
coverage provided during the network lifetime. In some cases, it can be possible to
establish communication with a distant PC; then, the problem can be solved far away
from the network, and the solution can be uploaded to the sensors.

7.3 Perspectives of research

As this study is limited, there exists yet a lot of work that can be done to improve
the quality of the analysis proposed and to provide a general method able to deal
with generalizations of the proposed methods. Some extensions can be derived almost
directly from the basic ideas involved in the proposed approaches. Nonetheless, other
cases might require additional considerations to be included. This is especially the case
when the use of heuristics is required, as a consequence of the fact that some of the
methods proposed are specifically designed to tackle the problems they were intended
to solve.

Moreover, it is possible to devise several related problems in different fields that may
deserve some attention over the basis of the approaches proposed in this work. Through-
out the manuscript we explored slightly interesting network design problems that can be
extrapolated to fields such as communication or energy transmission networks, pipeline
distribution systems, supply networks design, among others. We propose to evaluate
the performance of the techniques presented here in some of those problems. In this
way, it might be possible to produce solution approaches not only for the proposed
problems (derived as pricing subproblems) but also methods that can be exploited by
the CG to solve general versions of the problems addressed in this research.

It was already mentioned that to include all of the characteristics of the networks
and to solve the problems through CG it is required to develop efficient strategies
to solve node weighted and generalized versions of several network design problems.
In some cases the task might not be too complex; however, in most cases we face
highly combinatorial problems that may need a big computational effort to be solved
or that cannot be solved to proven optimality with current solution approaches. As
a consequence, the problems derived from the computational approach adopted have
opened the door to study several problems that in some cases have not received too much
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attention in previous research. In this section, we present several directions for future
research that either were indirectly considered throughout the research or will require
to be considered in order to extend the CG solution approach to a more general class of
WSN. Initial steps will be addressed towards extensions of the proposed approach such
that, gradually, it will be possible to provide a general approach. Some of the related
problems that will be addressed in our future research are described below.

Maximum lifetime and general role allocation in WSN The concept of roles
introduced in Chapters 5 and 6 can be further extended and generalized to WSN in
which sensors play different functions in the network. In this way, it can be possible to
consider the direction of a sensor in a wireless directional sensor network as a different
role to play that may or may not consume energy at a different rate. If sensors can
modify the size of the surveyed area, their communication or sensing ranges, monitor
different variables or combine several of these characteristics in a single device it can be
assumed that each function represents a different role. Whenever the connectivity issue
is also considered, it can be possible to extend the approaches previously described.
Thus, we can adopt and extend the previously proposed cutting-planes algorithm to
face the pricing subproblem. In this way, the CG algorithm previously described can
be directly applied for some of the problems. Moreover, solution approaches based on
greedy heuristics for generalizations of the Steiner tree problems in graphs have been
already developed. These approaches can be used as the basis to develop efficient heuris-
tics to tackle the pricing subproblems. As optimality is desired, it can be possible to
develop versions of the Benders Decomposition and cutting-planes algorithms explored
in this work and combine them with heuristic approaches to produce efficient exact
approaches.

Scarcely populated wireless sensor networks In certain applications the number
of sensors available to monitor a certain phenomenon is not too large and/or all the
sensors are required to be active all the time until network dies. If sensors are able
to modify the communication range, a typical approach to save energy in this case is
to reduce the maximum energy consumption rate for each sensor in such a way that
connectivity is still present. Nonetheless, it is still possible to use different network
configurations during the network lifetime with the purpose of extending network life-
time. In the former case, previous researches have led to interesting approximation
algorithms to approach solutions minimizing the total energy consumed and indirectly
the individual energy consumed by sensor nodes. Similar strategies can be adapted to
solve the weighted version of these problems that is derived from the adoption of the
CG approach. In this way, it can be possible to improve the efficiency in the usage of
energy in WSN and further extending the lifetime of the network.

Maximum number of disjoint set k-covers problem In order to extend lifetime,
some authors have proposed the use of disjoint subsets that provided a required level of
coverage (for example, covering more than k times each target). To solve this problem,
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it is necessary to use a different strategy; nonetheless, it can be based on branch and
price and cut which means that previously proposed approaches may still be useful at
every node of the branch and bound tree. In this way, branching strategies can be
combined with any solution method used to solve PS and to provide both new columns
and new bounds required for the adoption of branch and bound strategies.

Sink mobility and super capabilities The use of mobile sinks has been demon-
strated to be an interesting strategy to improve the lifetime in wireless sensor networks
and the efficiency in the use of sensors energy. Two possible cases are devised in this
work: a sensor node is the sink and is in charge of collecting and retransmit, using long
range communications, the information retrieved from other sensors on the network
(probably consuming energy at a fastest pace), or a mobile sink is available and can
move around to help the network use efficiently energy and tackle the hotspot problem.
In the former case, it is possible to extend some of the approaches proposed in this work
by considering that a sensor can assume this interesting super-role and is used according
to the characteristics of the sink, but considering that it may consume energy at a higher
rate. In the second case, and depending on the sinks possible locations or movements,
it can be possible to assume that this is a problem with multiple sinks constrained to
have only one active sink at the same time. Then, decomposition approaches can be
explored as strategies to find the optimal solution as it was indicated in this manuscript
or heuristic similar to the ones introduced in Chapter 4.

General network design problems It was mentioned in Chapters 4 and 5 that solv-
ing the associated pricing subproblems in which connectivity is considered was equiva-
lent to solve a Node-Weighted version of the minimum weight Steiner tree problem. This
problems is widely known for being harder to solve than its edge-weighted counterpart.
It was shown in this work that it is possible to solve efficiently those problems either by
using heuristic or exact approaches. A generalized version of the problem having both
weight on edges and on nodes can be devised as a new interesting problem that might
have significant applications on the design of communication or electric transmission
networks. Additionally, by providing efficient methods to solve this problem it can be
possible to consider general versions of the maximum lifetime problem in WSN in which
energy consumption is not only associated to the use of certain nodes but also to each
connection established.

As one can see, the potential extensions of WSN are numerous, and the limitations
are only one’s mind limits. As a final word, we still believe that there are plenty of
work to do in this area and enough work for several PhD. students that I would love to
supervise in the future.
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