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Résumé

La gestion de la mémoire pour les systèmes embarqués a un im-
pact significatif sur les performances et sur la consommation én-
ergétique de ces systèmes embarqués. Comme l’allocation mémoire
n’est pas une tâche simple, elle est souvent laissée au compila-
teur. Néanmoins, une allocation mémoire soigneusement optimisée
peut conduire à des économies substantielles en termes de la durée
d’exécution et de consommation d’énergie. Cette thèse présente
différentes versions du problème d’allocation mémoire, par difficulté
croissante. Le nombre de bancs mémoire, leur capacité, la taille et le
nombre d’accès des structures de données et les conflits entre struc-
tures de données à chaque intervalle de temps sont les principales
contraintes prises en compte dans ces problèmes. Pour chaque ver-
sion du problème, un programme linéaire en nombres entiers (PLNE)
est proposé pour la résoudre de manière exacte; ainsi que quelques
méta-heuristiques. Ces travaux ambitionnent également d’analyser
les modèles et les méthodes proposés, afin de mettre en évidence
ce qui fait le succès des méta-heuristiques dans ce domaine.

Abstract

Memory allocation in embedded systems is one of the main chal-
lenges that electronic designers have to face. This part, rather diffi-
cult to handle is often left to the compiler with which automatic rules
are applied. Nevertheless, a carefully tailored allocation of data to
memory banks may lead to great savings in terms of running time
and energy consumption. This thesis addresses various versions
of the memory allocation problem. At each version the problem’s
difficulty increases, i.e., the number of constraints increases. The
number of memory banks, bank capacities, sizes and number of ac-
cesses of data structures, and the conflicting data structures at each
time interval are the main constrains handled in the memory alloca-
tion problems. In this work we present an ILP formulation and some
metaheuristics implemented for each problem version. We also as-
sess our metaheuristics with the exact methods and other literature
metaheuristics with the aim of highlighting what makes the success
of metaheuristics for these problems.
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General Introduction

This thesis addresses four memory allocation problems. The next paragraphs present

the motivations of this work, the main contributions and the outline of this thesis.

Motivations

Embedded systems are strongly present in the contemporary society, they are supposed

to make our lives more comfortable. In the industry, embedded systems are used to

manage and control complex systems (e.g nuclear power plants, telecommunication,

flight control, etc.); they are also taking an important place in our daily activities (e.g.,

smartphones, security alarms, traffic lights, etc.).

The significant development in embedded systems is mainly due to advances in

nano-technology. These continuous advances have made possible the design of minia-

turized electronic chips, leading to drastically extend the features supported by embed-

ded systems. Smartphones that can surf the WEB and process HD images are a typical

example. In addition to market pressure, this context has favored the development of

Computer Assisted Design CAD software, which bring a deep change in the designers’

line of work. While technology offers more and more opportunities, the design of em-

bedded systems becomes more and more complex. Indeed, the design of an integrated

circuit, whose size is calculated in billions of transistors, thousands of memories, etc.,

requires the use of competitive computer tools. These tools have to solve optimization

problems to ensure a low cost in terms of area and time, and they must meet some

standards in electronics.

Currently, in the electronics industry, the problems are often addressed using either

ad-hoc methods based on the designer expertise or general methods (typically genetic

algorithms). But both solving methods do not work well in large scale industrial prob-

lems.

On the other hand, computer-aided design software like Gaut [1, 47] have been

developed to generate the architecture of a chip (circuit) from its specifications. While

the design process is significantly faster with these types of software, the generated

layouts are considered to be poor on power consumption and surface compared to

human expert designed circuits. This is a major drawback as embedded products have

to feature low-power consumption.

In the design of embedded systems, memory allocation and data assignment are

among the main challenges that electronic designers have to face. Indeed, they deeply

impact the main cost metrics (power consumption, performance and area) in electronic

devices [175]. Thus designers of embedded system have to carefully pay attention

to minimize memory requirements, improving memory throughput and limiting the

power consumption by the system’s memory. Electronic designers attempt to minimize

memory requirements with the aim of lowering the overall system costs.

Moreover, the need for optimization of the allocation of data structures is expected3
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to become even more stringent in the future, as embedded systems will run heavy com-

putations. As an example, some cell phones already support multithreading operating

systems.

For these reasons, we are interested in the allocation of data structures into memory

banks. This problem rather difficult to handle is often left to the compiler with which

automatic rules are applied. Nevertheless, an optimal allocation of data to memory

banks may lead to great savings in terms of running time and energy consumption.

As it has often been observed in microelectronics, this complex problem is poorly

or not modeled. The proposed solutions are based on a lower modeling level that often

only considers one objective at a time. Also, the optimization of methods is little (or

not) quantified, only the running time is available and assessed. Thus, the models and

data are not analyzed much.

In this work we model this problem and propose optimization methods from oper-

ations research for addressing it.

Thesis Contribution

In memory management and data assignment, there is an abundant literature on the

techniques for optimizing source code and for designing a good architecture for an ap-

plication. However, not much work aims at finding a good allocation of data structure

to memory banks. Hence, the first contribution of this thesis is the introduction of

four versions of memory allocation problems, which are either related to designing the

memory architecture or focused on the data structure assignment.

The second important contribution of this thesis is the introduction of three new

upper bounds on the chromatic number without making any assumption on the graph

structure. These uppers bounds are used to address our first memory allocation prob-

lem.

The third contribution is the design of exact mathematical models and metaheuris-

tic approaches to address these versions of the memory allocation problem. Addition-

ally, the proposed metaheuristics are compared with exact methods on a large set of

instances.

Finally, in order to achieve this work, we have taken some challenges between

Operations Research and Electronics. Thus, this thesis aims at contributing to reduce

the gap between these two fields and these two communities.

Outline

The problems addressed in this thesis are presented by increasing complexity with

the aim of smoothly introducing the reader with these problems, each version of the

memory allocation problem is separately developed in different chapters. This thesis is

organized as follows:
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• The first chapter describes the general context in which this work has been con-

ducted. We highlight the strong dependence of the contemporary society on

embedded systems. A state of the art of optimization techniques for memory

management and data assignment is presented. We discuss the benefits of using

operations research for electronic design.

• The second chapter presents the first version of the memory allocation problem.

The work presented in this chapter has been presented in details [154], and it is

under second revision for the journal Discrete Applied Mathematics.

• The third chapter deals with the second version of memory allocation problem.

It is the allocation of data structures into memory banks while making minimum

hypotheses on the targeted chip. The main characteristic in the memory architec-

ture is that the number of memory banks is fixed. The work about this problem

has been published as long article in Roadef 2010 [155].

• The fourth chapter addresses the general memory allocation problem. This prob-

lem is more realistic than the previous one, in addition to memory banks, an

external memory is considered in the target architecture. Moreover, more con-

straints on memory banks and data structures are considered. The work about

the general memory allocation problem has been published in Journal of Heuris-

tics [156].

• The fifth chapter deals with the last version of memory allocation problem. This

problem is concerned with dynamic memory allocation, it has a special emphasis

on time performance. A memory allocation must consider the requirement and

constraints at each time interval, i.e., it can be adjusted to the application needs

at each time interval. This problem has been presented at EVOCOP 2011 [158].

• The last chapter presents the general conclusion about this work, it discusses

results and provides ideas for future work.





1
Context

This chapter describes the general context in which this thesis has been conducted, how

our work takes its roots and how this research can be placed in the field of electronic

design.

In the first section of this chapter, we highlight the importance of embedded systems

nowadays. The second section stresses the relationship between memory management

and three relevant cost metrics (such as power consumption, area and performance) in

embedded systems. This explains the considerable amount of research carried out in

the field of memory management. Then, the following section presents a brief survey

of the state of the art in optimization techniques for memory management, and at the

same time, positions our work with respect to the aforementioned techniques. Finally,

operations research for electronic design is taken into consideration for examining the

mutual benefits of both disciplines and the main challenges exploiting operations re-

search methods to electronic problems.

1.1 Embedded systems

There are many definitions for embedded systems in the literature (for instance [13,

76, 91, 126]) but they all converge towards the same point: “An embedded system is a

minicomputer (microprocessor-based) system designed to control one specific function

or a range of functions; but, it is not designed to be programmed by the end user in the

same way that a Personal Computer (PC) is”.

A PC is built to be flexible and to meet a wide range of end user needs. Thus, the

user can change the functionality of the system by adding or replacing software, for

example: one minute the PC is a video game and the next one it can be used as a

video player. By contrast, embedded system were originally designed so that the end

user could make choices regarding to the different application options, but could not

change the functionality of the system by adding software. However, nowadays this

distinction is less and less relevant: for example: it is more frequent to find smart

phones where we can change their functionality by installing appropriate software. In

this manner, the breach between a PC and an embedded system is shorter today than

in the past. 7
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An embedded system can be a complete electronic device or a part of an application

or component within a larger system. This explains its wide range of applicability. Em-

bedded systems range from portable devices such as digital watches to large stationary

installations such as systems controlling nuclear power plants.

Indeed, depending on application, an embedded system can monitor temperature,

time, pressure, light, sound, movement or button sensitivity (like on Apple iPods).

We can find embedded systems helping us in every day common tasks, for example:

alarm clocks, smartphones, security alarms, TV remote controls, MP3 players, traffic

lights, etc. Not to mention modern cars and trucks that contain many embedded sys-

tems: one embedded system controls the anti-lock brakes, another monitors and con-

trols the vehicle’s emissions, and a third displays information in the dashboard [13].

Besides, embedded systems are present on real-time systems. The main character-

istic of this kinds of systems is timing constraints. A real-time system must be able

to make some calculations or decisions in a timely manner knowing that these impor-

tant calculations or activities have deadlines for completion [13]. Real-time systems

can be found in telecommunications, factory controllers, flight control and electronic

engines. Not forgetting, the Real-time Multi-dimensional Signal Processing (RMSP) do-

main which includes applications, like video and image processing, medical imaging,

artificial vision, real-time 3D rendering, advanced audio and speech coding recogni-

tion [33].

Contemporary society, or industrial civilization, is strongly dependent of embedded

systems. They are around us simplifying our tasks and pretending to make our life

more comfortable.

Main components of embedded systems

Generally, an embedded system is mainly composed of a processor, a memory, periph-

erals and software. Below, we give a brief explanation of these components.

• Processor: it should provide the processing power needed to perform the tasks

within the system. This main criterion for the processor seems obvious but it

frequently occurs that the tasks are either underestimated in terms of their size

and/or complexity or that creeping elegance1 expand the specification beyond

processor’s capability [76].

• Memory: it depends on how the software is designed, written and developed.

Memory is an important part of any embedded system design and has two es-

sential functions: it provides storage for the software that will be run, and it

provides storage for data, such as program variables, intermediate results, status

information and any other data created when the application runs [76].

1Creeping elegance is the tendency of programmers to disproportionately emphasize elegance in soft-
ware at the expense of other requirements such as functionality, shipping schedule, and usability.
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• Peripherals: they allow an embedded system to communicate with the outside

world. Sensors that measure the external environment are typical examples of

input peripherals [76].

• Software: it defines what an embedded system does and how well it does it.

For example, an embedded application can interpret information from external

sensors by adopting algorithms for modeling external environment. Software

encompasses the technology that adds value to the system.

In this work, we are interested in the management of embedded system memory.

Consequently, the other embedded system components are not addressed here. The

next section justifies this choice. .

1.2 Memory management for decreasing power consumption,

performance and area in embedded systems

Embedded systems are very cost-sensitive, in practice system designers realize the ap-

plications mainly based on “cost” measures, such as the number of components, per-

formance, pin count, power consumption, and the area of the custom components. In

the past years the main focus has been on area-efficient designs. In fact, most research

in digital electronics has focused on increasing the speed and integration of digital sys-

tems on a chip while keeping the silicon area as small as possible. As a consequence,

the design technology is powerful but power hungry. While focusing on speed and area,

power consumption has long been ignored [33].

However, this situation has changed in the last decade mainly due to the increasing

demand for handheld devices in the areas of communication (e.g., smartphones), com-

putation (e.g., personal digital assistants) and consumer electronics (e.g., multimedia

terminals and digital video cameras). All these portable systems require sophisticated

and power hungry algorithms for high bandwidth wireless communication, video com-

pression and decompression, handwriting recognition, speech processing, and so on.

Portable systems without low power design suffer of either a very short battery life or

an unreasonably heavy battery. This higher power consumption also means more costly

packaging, cooling equipment and lower reliability. The latter is a major problem for

many high performance applications; thus, power efficient design is a crucial point in

the design of a broad class of applications [33,140].

Lower power design requires optimizations at all levels of the design hierarchy, e.g.,

technology, device, circuit, logic, architecture, algorithm, and system level [36,140].

Memory design for multi-processor and embedded systems has always been a cru-

cial issue, because system-level performance strongly depends on memory organiza-

tion. Embedded systems are often designed under stringent energy consumption bud-

gets to limit heat generation and battery size. Because memory systems consume a
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significant amount of energy to store and to forward data, it is then imperative to

balance (trade-off) energy consumption and performance in memory design [112].

Real-Time Multidimensional Signal Processing RMSP domain and the network com-

ponent domain are typical examples of data-dominated applications2. For data-dominated

applications a very large part of the power consumption is due to data storage and data

transfer. Indeed, a lot of memory is needed to store the data processed; and, huge

amounts of data are transfered back and forth between the memories and data-paths3.

Also, the area cost is heavily impacted by memory organization [33].

Figure 1.1, taken from [33], shows that data transfers and memory access opera-

tions consume much more power than a data-path operation in both cases, hardware

and software implementations. In the context of a typical heterogeneous system archi-

tecture, which is illustrated in Figure 1.2 (taken from [33]), this architecture disposes

of custom hardware, programmable software and a distributed memory organization

that is frequently costly in terms of power and area. We can estimate that downloading

an operand from off-chip memory for a multiplication consumes around 33 times more

power than the multiplication itself for the hardware processor. Hence, in the case of

a multiplication with two factors where the result is stored in the off-chip memory, the

power consumption of transferring data is around 100 times more power consuming

than the actual computation.

Furthermore, studies presented in [31,72,121,124,163] confirm that data transfer

and storage dominates power consumption for data-dominated applications in hard-

ware and software implementations.

In the context of memory organization design, there are two strategies for minimiz-

ing power consumption in embedded systems. The first one is to reduce the energy

consumed in accessing memories. This takes a dominant fraction of the energy bud-

get of an embedded system for data-dominated applications. The second strategy is

to minimize the amount of energy consumed when information is exchanged between

the processor and the memory. It reduces the amount of required processor-to-memory

communication bandwidth [112].

1.3 State of the art in optimization techniques for memory

management and data assignment

It is clear that memory management has an impact on important cost metrics: area,

performance and power consumption. In fact, the processor cores begin to push the

limits of high performance, the gap between processor and memory widens and usually

becomes the bottleneck in achieving high performance. Hence, the designers of em-

2Data-dominated applications are called like this because they process enormous amounts of data
3Data-path is a collection of functional units, such as arithmetic logic units or multipliers, that perform

data processing operations. A functional unit is a part of a CPU (central processing unit) that performs
the operations and calculations called by the computer program.
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Figure 1.1: Dominance of transfer and storage over data-path operation both in hard-

ware and in software.

Figure 1.2: Typical heterogeneous embedded architecture.
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bedded systems have to carefully pay attention to minimizing memory requirements,

improving memory throughput and limiting the power consumption by the system’s

memory. Thus the designer’s attempt is to minimize memory requirements with the

aim of lowering overall system costs.

We distinguish three problems concerning memory management and data assign-

ment. The first one is software oriented and aims at optimizing application code source

regardless of the architecture; it is referred to as software optimization and it is pre-

sented in Section 1.3.1. In the second problem, the electronic designer searches for

the best architecture in terms of cost metrics for a specific embedded application. This

problem is described in Section 1.3.2. In the third problem, the designer is concerned

with binding the application data into memory in a fixed architecture so as to minimize

power consumption. This problem is presented in Section 1.3.3.

1.3.1 Software optimization

We present some global optimizations that are independent of the target architectural

platform; readers interested in more details about this are refereed to [131]. These

optimization techniques take the form of source-to-source code transformations. This

has a positive effect on the area consumption by reducing the amount of data transfers

and/or the amount of data to be stored. Software optimization often improve perfor-

mance, cost and power consumption, but not always. They are important in finding

best alternatives in superior levels of the embedded system design.

Code-rewriting techniques consist of loop and data-flow transformations with the

aim of reducing the required amount of data transfer and storage, and improve access

behavior [30]. The goal of global data-flow transformations is to reduce the number

of bottlenecks in the algorithm and remove access redundancy in the data-flow. This

consists in avoiding unnecessary copies of data, modifying computation order, shift-

ing of “delay lines” through the algorithm to reduce the storage requirements, and

recomputation issues to reduce the number of transfers and storage size [32]. Basi-

cally, global loop and control-flow transformations increase the locality and regularity

of the code’s accesses. This is clearly good for memory size (area) and memory accesses

(power) [63] but of course also for performance [118]. In addition, global loop and

control-flow transformations reduce the global life-times of the variables. This removes

system-level copy overhead in buffers and it enables storing data in smaller memories

closer to the data-paths [54,101].

The hierarchical memory organization is a memory optimization technique (see [20]

for a list of references). It reduces memory energy by exploiting the non-uniformities

in access frequencies to instructions and data [78]. This technique consists of placing

frequently accessed data into small energy-efficient memories, while rarely accessed

information is stored in large memories with high cost per access. The energy cost of

accessing and communicating with the small memories is much smaller than the one

required to fetch and store information into large memories [18,50].
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A good way for decreasing the memory traffic, and memory energy as well, is to

compress the information transmitted between two levels of memory hierarchy [112].

This technique consists in choosing the set of data elements to compress/decompress

and the time instants during execution at which these compressions or decompressions

should be performed [127]. The memory bottlenecks are mainly due to the increasing

code complexity of embedded applications and the exponential increase in the amount

of data to manipulate. Hence, reducing the memory-space occupancy of embedded

applications is very important. For this reason, designer and researchers have devised

techniques for improving the code density (code compression), in terms of speed, area

and energy [8]. Data compression techniques have been introduced in [15,16].

Ordering and bandwidth optimization guarantees that the real-time constraints are

presented with a minimal memory bandwidth related costs. Also, this determines

which data should be made simultaneously accessible in the memory architecture.

Moreover, storage-bandwidth optimization takes into account the effect on power

dissipation. The data which are dominant in terms of power consumption are split into

smaller pieces of data. Indeed, allocating more and smaller memories usually results in

less power consumption; but the use of this technique is limited by the additional costs

generated by routing overheads, extra design effort, and more extensive testing in the

design [152].

This work does not cover optimization techniques on source code transformation. It

is focused on optimization techniques on hardware and on data binding in an existing

memory architecture.

1.3.2 Hardware optimization

We now present some techniques for optimizing the memory architecture design of

embedded systems.

The goal of memory allocation and data assignment is to determine an optimal mem-

ory architecture for data structures of a specific application. This decides the memory

parameters, such as the number and the capacity of memories and the number of ports

in each memory. Different choices can lead to solutions with a very different cost,

which emphasize how important these choices are. The freedom of the memory ar-

chitecture is constrained by the requirements of the application. Allocating more or

less memories has an effect on the chip area and on the energy consumption of the

memory architecture. Large memories consume more energy per access than small

ones, because of longer word - and bit - lines. So the energy consumed by a single

large memory containing all the data is much larger than when the data is distributed

over several smaller memories. Moreover, the area of a single memory solution is often

higher when different arrays have different bit-widths [131].

For convenience and with the aim of producing sophisticated solutions memory

allocation and assignment is subdivided into two subproblems (a systematic technique

has been published for the two subproblems in [34,109,152]). The first one consists in
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fixing the number of memories and the type of each of them. The term “type” includes

the number of access ports of the memory, whether it is an on-chip or an off-chip

memory. The other subproblem decides in which of the allocated memories each of the

application’s array (data) will be stored. Hence, the dimensions of the memories are

determined by the characteristics of the data assigned to each memory and it is possible

to estimate the memory cost. The cost of memory architecture depends on the word-

length (bits) and the number of words of each memory, and the number of times each

of the memories is accessed. Using this cost estimation, it is possible to explore different

alternative assignment schemes and select the best one for implementation [33]. The

search space can be explored using either a greedy constructive heuristic or a full-

search branch and bound approach [33]. For small applications, branch and bound

method and integer linear programming find optimal solutions, but if the size of the

application gets larger, these algorithms take a huge computation time to generate an

optimal solution.

For one-port (write/read) memories, memory allocation and assignment problems

can be modeled as a vertex coloring problem [67]. In this conflict graph, a variable is

represented by a vertex, a memory is represented by a color, and an edge is present

between two conflicting variables. Thus the variable of the application are “colored”

with the memories to which they are assigned. Two variables in conflict cannot have

the same color [33]. This model is also used for assigning scalars to registers. With

multi-port memories, the conflict graph has to be extended with loops and hyperedges

and an ordinary coloring is not valid anymore.

The objective of In-place mapping optimization is to find the optimal placement

of the data inside the memories such that the required memory capacity is minimal

[55, 170]. The goal of this strategy is to reuse memory location as much as possible

and hence reduce the storage size requirements. This means that several data entities

can be stored at the same location at different times. There are two subproblems: the

intra-array storage and inter-array storage [33]. The intra-array storage refers to the

internal organization of an array in memory [111, 168]. The inter-array storage refers

to the relative position of different arrays in memory [110]. Balasa et al. [10] give a

tutorial overview on the existing techniques for the evaluation of the data memory size.

A data transfer and storage exploration methodology is a technique for simultaneous

optimization of memory architecture and access patterns. It has also been proposed

for the case of data-dominated applications (e.g., multimedia devices) and network

component applications (e. g.., Automated Teller Machine applications) [26, 31–33,

175]. The goal of this methodology is to determine an optimal execution order for

the data transfer and an optimal memory architecture for storing the data of a given

application. The steps in this methodology are decoupled and placed in a specific order,

which reduces the number of iterations between the steps and shortens the overall

design time. These steps are:

• global data-flow transformations,
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• global loop and control-flow transformations,

• data reuse decision,

• ordering and bandwidth optimization,

• memory allocation and assignment,

• in-place mapping.

The first three steps refer to architecture-independent optimizations, i.e. optimiza-

tion of the form of source-to-source code transformations. If these transformations

are not applied, the resulting memory allocation is very likely far from optimal. The

remaining stages consist of optimization techniques that address target memory archi-

tecture.

Memory partitioning has demonstrated very good potential for energy savings (in

[112] a survey of effective memory partitioning approaches is presented). The basic

idea of this method is to subdivide the address space into several smaller blocks and

to map these blocks to different physical memory banks that can be independently

enabled and disabled [60].

Incorporating scratchpad memory (SPM) [128, 130] in the memory architecture is

another very popular technique in memory management for reducing energy consump-

tion. A scratchpad is a high-speed internal memory used for temporary storage of cal-

culations, data, and other work in progress. There are many works on this topic, for

instance [6, 40, 59, 92, 132, 133, 141]. A SPM is a high speed internal memory used

to hold small items of data for rapid retrieval. In fact, both the cache and scratchpad

memory are usually used to store data, because accessing to the off-chip memory re-

quires a relatively longer time [129]. The memory is partitioned into data cache and

SPM to exploit data reusability of multimedia applications [150].

Methods on using SPMs for data accesses are either static or dynamic. Static meth-

ods [7, 12, 161, 171] determine which memory objects (data or instructions) may be

located in SPM at compilation time, and the decision is made during the execution of

the program. Static approaches generally use greedy strategies to determine which

variables to place in SPM, or formulate the problem as an integer linear programming

program (ILP) or a knapsack problem to find an optimal allocation. Recently in [82–87]

operation research techniques (e.g., tabu search, genetic and hybrid heuristic, etc) have

been proposed for this problem. Dynamic SPM allocation places data into the SPM, tak-

ing into account the latency variations across the different SPM lines [40,62,88,172].

In memory allocation for High-Level Synthesis the application addressed involves a

relatively small number of signals4. Thus, techniques for dealing with the memory allo-

cation are scalar-oriented and employ a scheduling phase ( [11,144,162]). Therefore,

the major goal is typically to minimize the number of registers for storing scalars. This

optimization problem is called register allocation [65].

4In literature, the term “signal” is often used to indicate an array as well



16 Context

ILP formulations [9, 144], line packing [81, 105], graph coloring [162], and clique

partitioning techniques [169] have been proposed for register allocation. One of the

first techniques, a graph coloring-based heuristic, is reported in [35]. It is based

upon the fact that minimizing the number of registers is equivalent to the graph col-

oring problem. A graph is constructed for illustrating this problem. Vertices repre-

sent variables, edges indicate the interference (conflict) between variables and each

color represents a different physical register. Many other variants of this coloring

problem for register allocation have been proposed (e.g., see [23, 98, 177]). More

and more metaheuristic methods are used to find good solutions to this problem (e.g.,

see [113,147,164]). General approaches have been proposed for this problem (e.g.,see

[51,74,99,134,136]).

We are interested in the optimization techniques for memory architecture involv-

ing one-port memories only. Consequently, the other techniques using multi-port or

scratchpad are not addressed in this work.

1.3.3 Data binding

This section presents some references for the data binding problem, which is to allocate

data structure from a given application, to a given memory architecture. Because of the

provided architecture, the constraints considered and the criterion to optimize, there is

a wide range on data binding problems.

First, we introduce some interesting works about the memory partitioning problem

for low energy. Next, we present the works which take into account the number and ca-

pacities of memory banks, and the number of accesses to variables. Finally, we discuss

other works that consider the aforementioned constraints and use an external memory.

These works have similarities with the last three versions of the memory allocation

problem addressed in Chapters 3, 4 and 5. A fixed number of memory banks is the

main feature in common. The two more complex versions of the memory allocation

problem consider the memory bank capacities, the number of accesses to variables and

the use of an external memory.

Memory partitioning problem for low energy

Section 1.3.1 introduced memory partitioning problem, which is a typical performance

oriented solution, and energy may be reduced only for some specific access patterns.

In contrast, the memory partitioning problem for low energy reduces the energy for

accessing memories [17]. The main characteristics of this problem are the fixed number

of memory banks and the ability of independently accessing the memory banks.

There are some techniques to address the memory partitioning problem for low

energy, and some different versions of this problem depending on the considered archi-

tecture.

In [90], a method for memory allocation and assignment is proposed using multi-

way partitioning, but the partitioning algorithm to resolve the conflicts in the conflict
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graph is not described. In [94], a min-cut partitioning algorithm, initially proposed

in [148], is used for memory allocation and assignment. To apply this algorithm, the

conflict graph is needed and the designer must set a number of partitions (i.e., the num-

ber of memory banks). Moreover, the min-cut algorithm tends to find minimum cuts in

the conflict graph, resolving minimum conflicts only. The conflict graph is modified so

as to maximize the cuts. Maximizing the cut results in resolving the maximum number

of conflicts in the conflict graph.

In [19], Benini et al. propose a recursive algorithm for the automatic partitioning of

on-chip memory into multiple banks that can be independently accessed. The partition-

ing is carried out according to the memory access profile of an embedded application,

and the algorithm is constrained to the maximum number of banks.

In [43], Cong et al. present a memory partitioning technique to improve through-

put and reduce energy consumption for a given throughput constraints and platform

requirement. This technique uses a branch and bound algorithm to search for the best

combination of partitions.

Sipkovà, in [151], addresses the problem of variable allocation to dual memory

bank, which is formulated as the max-cut problem on an interference graph. In an

interference graph, each variable is represented by a vertex, an edge between two

vertices indicates that they may be accessed in parallel, and that the corresponding

variables should be stored in separate memory banks. Thus, the goal is to partition the

interference graph in two sets in such a way that the potential parallelism is maximized,

i.e, the sum of the weights of all edges that connect the two sets is maximal. Several

approximating algorithms are proposed for this problem. Furthermore, [123] presents

an integer linear program and a partitioning algorithm based on coloring techniques

for the same problem.

Constraints on memory bank capacities and number of accesses to variables

The work presented in [149] takes into account memory bank capacities, sizes and

number of accesses to variables for addressing the problem of reducing the number of

simultaneously active memory banks, so that the other memory banks that are inactive

can be put to low power modes to reduce energy consumption. The considered archi-

tecture has multiple memory banks and various low-power operating modes for each

of these banks. This problem is modeled like a multi-way graph partitioning problem,

and well-known heuristics are used to address it [149].

A recent work that also considers the capacity constraints, sizes and number of

accesses is presented in [178]. This paper proposes an integer linear programming

model to optimize the performance and energy consumption of multi-module memo-

ries by solving variable assignment, instruction scheduling and operating mode setting

problems simultaneously. Thus, this model simultaneously addresses two problems:

instruction scheduling, and variable assignment. Two methods are presented for solv-

ing the proposed ILP model. The first one is an LP-relaxation to reduce the solution
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time, but it gives only lower bounds to the problem. The second method is a Variable

Neighborhood Search (VNS) which drastically reduces the computation time without

sacrificing much to the solution quality.

Some heuristics to solve a buffer allocation problem applicable to explicitly par-

allel architectures are proposed in [117]. This problem is related to the Multi-way

Constrained Partitioning problem. Here, each partition is a set of buffers accessed in

parallel and the number of buffers in each partition is less than or equal to the num-

ber of memory banks. The list of partitions is periodically executed. A set of memory

banks of a fixed capacity is given. Thus, the objective is to compute an assignment of

each buffer to a memory bank so as to minimize memory bank transfer overheads. All

buffers have to be assigned and the buffers in the same partition are assigned to distinct

memory banks.

Using external memory

In most cases, a processor requires one or more large external memories to store the

long-term data (mostly of the DRAM type). In the past, the presence of these external

memories in the architecture increased the total system power requirements. However

now, these memories improve the throughput, but they do not improve the latency

[125]. Some works that use an external memory are presented below.

Rajesh et al. [104] present a memory architecture exploration framework that in-

tegrates memory customization, logical to physical memory mapping and data layout.

For memory architecture exploration, a genetic algorithm approach is used, and for the

data layout problem, a heuristic method is proposed. This heuristic is used to solve

the data allocation problem for all memory architectures considered in the exploration

phase, which could be in several thousands. Hence, the heuristic must consider each

architecture (on-chip memory size, the number and size of each memory bank, the

number of memory ports per bank, the types of memory, scratchpad, RAM or cache) to

perform the data allocation.

This heuristic starts considering the critical data (i.e. the data which have high

access frequency) for designing an initial solution. Then, it backtracks to find changes

in the allocation of data which can improve the solution. These changes are performed

considering the data size, and the minimum allocation cost of data in the memory bank.

Hence, the first step to build the initial solution is to identify and place all the critical

data in the internal memory, the remaining data is placed in external memory. In the

second step, the algorithm tries to resolve as many conflicts as possible (self-conflicts

and parallel-conflicts) by using the different dual/single access memory banks. The

data which are on self-conflict are first allocated and then the data on critical parallel-

conflict. The metaheuristic first uses the dual-access memory bank to allocate data; the

single-access memory banks are used only when the all dual-access ones are full.

Corvino et al. [46] present a method to map data parallel applications into a spe-

cific hardware accelerator. Data parallel applications are executed in a synchronous
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architectural model. Initially, the data to be processed are stored in the external mem-

ory, and during the cycles of application the manipulated data can be stored in local

memories.

The general idea of the proposed method is to mask the times to transfer data with

the time to perform computations. A method based on an integer partition is used to

reduce the exploration space.

Most of the works presented in this section do not provide a mathematical model

and a comparison with an exact method. Moreover, their proposed approaches are

only tested on a single instance. In this work, we propose a formal mathematical

model for each version of the memory allocation problem. Additionally, the proposed

metaheuristics are compared with exact approaches on a large set of instances.

No version of memory allocation problem is totally concerned with the architecture,

constraints and/or the criterion to optimize the problems presented in this section.

1.4 Operations Research and Electronics

As a member of the CNRS GDR-RO working group “Problématiques d’optimisation dis-

crete en micro-électronique ” [4], this section is inspired from the discussions with the

members of that group [95,115,116].

In the last decades, researchers and practitioners of electronics have revealed needs

for further optimizations. Additionally, even “old” problems have become more chal-

lenging due to the larger instances and increasing architecture complexity.

On other hand, the complexity, size and novelty of problems encountered in micro-

electronics make this area a source of exciting and original optimization problems for

the community of Operations Research (OR). Indeed, the models and data are complex

and poorly formalized, and problems are often very challenging. Furthermore, the in-

tegration of more components on the circuit reveals new and/or large size problems to

model and to solve.

These are the reasons why a new discipline has appeared at the border of Opera-

tions Research and Electronics. This discipline is concerned with addressing electronic

problems using operations research methods. Isolated experiments have first been re-

ported, which explain both the heterogeneity in the electronic topics addressed, and

the great diversity in the operations research methods used to solve them. The follow-

ing paragraphs mention some examples of OR methods used for addressing electronics

problems.

The development of modern algorithms for the placement problem is one of the

oldest applications of OR to microelectronics. This problem consists in placing the ele-

ments of a circuit in the target area so that no elements overlap with each other, and

the total length of interconnections is minimized. The circuits may have billions of tran-

sistors, and five times more connections. A team in Bonn, led by Bernhard Korte and

Jens Vygen, works on this problem in collaboration with IBM. They develop combina-
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torial optimization methods [103], which are implemented in their solver called “Bonn

Tools” [25]. Futhermore, [37] summarizes the algorithms implemented for this prob-

lem, which are mainly based on simulated annealing, min-cut and analytical placement

basics.

Another well-known example of OR for electronics is the implementation of meta-

heuristics for the register allocation problem [23, 74, 98, 113, 134, 147, 164, 177]), as

mentioned in Section 1.3.2.

Advanced metaheuristics have been designed for High-Level Synthesis tools [48,

143,146,166,167]. They are considered to be efficient approaches, and some of them

have been implemented in the High Level Synthesis platform, Gaut [1].

Many metaheuristics have been developed for the management of scratchpad mem-

ories ( [82–87]), and management of System On-Chip ( [49,52,57,102]), as mentioned

in Section 1.3.2.

Some OR methods have been applied for evaluating Communication Processors

[145], for Very Large Scale Integration (VLSI) [135], for improving the performance

of ASICs chips [77], and for the memory architecture exploration [104,178].

1.4.1 Main challenges in applying operations research to electronics

There is not a single scientific object of interest in the activity of operations research

for electronics, and the operational researcher usually faces the following issues when

entering the electronics field.

• The first difficulty is with communication. Generally, electronic practitioners do

not have good knowledge of OR and vice-versa. Often electronic designers are

not interested in trying different methods that come from an unknown field of

science, because they rely on their experience and competences to tackle the

problems of their own field. Hence, at the beginning of a research project, elec-

tronic practitioners can be reluctant to work with an OR team and to communicate

the electronic problems and needs.

• The microelectronic culture is difficult to access because of wide electronic sub-

jects involved with microelectronics and a hermetic language employed by elec-

tronic practitioners. This language is related to technology and only numerous

interactions make it possible to understand some terms.

Similarly, for electronic practitioners, entering into the OR field requires an adap-

tation time. Hence, the electronic practitioners, that design the conception tools,

often develop their own heuristics, which are often considered poor by OR stan-

dards.

• The objectives of electronic industries and researchers are very different. The

complexity of problems, the variety of techniques and time constraints presented
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in the industry suggest a “greedy” approach, which does not always make it pos-

sible to understand the nature of theoretical issues. Furthermore, the notion of

the problem in the academic sense is often not known by the practitioners in the

industry. Moreover, the choice of the optimization methodologies may be influ-

enced by the application domain depending on whether or not the industrialists

want to develop and partially or totally implement the proposed solutions (i.e.,

heuristics versus algorithms). For these reasons, modeling the problem is crucial.

• Some technological difficulties may arise. The continuous development of minia-

turized chips changes the properties of electronic components. All this means

that the operations research models are applied to problems whose dimensions

are not necessarily known or even fixed. Thus the problems can easily change

over time. Hence, it is here more difficult to fix models than in other areas.

• Sometimes data is not easy to obtain. In the industry, information can be con-

fidential or accessing it may be longer due to a large hierarchy in the adminis-

tration. In some cases, there are no efficient tools to generate data. Also, for

technological reasons in component design, the typical dimension of instances

are often difficult to obtain.

• Appreciation/Enhancement. Another difficulty is presented in the publication of

results. Currently, there is no specialized journal dedicated to this kind of inter-

disciplinary work; and general OR or electronic journals do not easily accept these

kinds of papers. In particular, electronic practitioners find it difficult to accept OR

type of communications in their journals and conferences. On one hand, OR re-

searchers are not familiar with the applications, motivations and vocabulary used

in the electronic literature. On the other, it is not easy to explain and motivate

the electronic problems in the OR community; and thus it is hard to capture the

interest of an OR audience.





2
Unconstrained memory allocation problem

The chapter describes the first version of the memory allocation problem addressed in

this work. This version is related to hardware optimization techniques discussed in the

previous chapter (see Subsection 1.3.2). Hence, this version is focused on the memory

architecture design of an embedded system.

In short, the unconstrained memory allocation problem is equivalent to finding the

chromatic number of a conflict graph. In this graph a vertex symbolizes a data structure

(array), and an edge represents a conflict between two variables. A conflict arises when

two data structures are required at the same time.

In this work, we do not seek a memory allocation of data structures, we search

for the minimum number of memory banks needed by a given application. Therefore,

we do not search for a coloring, but we are interested in finding upper bounds on the

chromatic number. We introduce three new upper bounds on the chromatic number,

without making any assumption on the graph structure. The first one, ξ, is based on the

number of edges and vertices, and is applied to any connected component of the graph,

whereas ζ and η are based on the degree of the vertices in the graph. The computational

complexity of the three-bound computation is assessed. Theoretical and computational

comparisons are also made with five well-known bounds from the literature, which

demonstrate the superiority of the new upper bounds.

2.1 Introduction

The electronic designers want a trade-off between the memory architecture cost, i.e.,

the size and number of memory banks, and the energy consumption. The power con-

sumption is reduced as the size of a memory bank is decreased. The memory archi-

tecture is more expensive when the number of memory banks increases, because the

addressing and control logic are duplicated, and communication resources required to

transfer information increases [17]. Therefore, in the design of memory architecture it

is extremely important to find the minimum number of memory banks required by an

application. The minimum number of memory banks also helps to define a reasonable

size for them.

Thus, the purpose of this first version of the memory allocation problem is to pro-23
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vide a decision-aid to the design of an embedded system for a specific application. In-

deed, this problem is related to hardware optimization presented in Subsection 1.3.2;

and it shares common features with two problems discussed in the same section: the

memory allocation and assignment problem, and the register allocation problem. They

both aim at finding the minimum number of memory bank/registers, and they also

return the corresponding allocation of variables into memory banks/registers. The un-

constrained memory allocation problem though only searches for the minimum number

of memory banks needed in the target architecture of a given application.

The unconstrained memory allocation problem makes minimal hypotheses on the

target architecture. The application to be implemented (e.g. MPEG encoding, filtering or

any other signal processing algorithm) is provided as a C source code. A data structure

is defined as an array of scalars. We assume that the processor can access all its memory

banks simultaneously. Then, when two data structures, namely a and b, are required at

the same time for performing one or more operations of a given application, they can

be loaded/stored (read/write) at the same time provided that a and b are allocated to

two different memory banks. If they are allocated to the same memory bank, then they

must be loaded/stored sequentially, and more time is needed to access data. Hence,a and b are said to be conflicting if they must be accessed in parallel to execute the

instructions in the application.

A conflict is said to be open if its data structures are allocated to the same memory

bank, it is said to be closed otherwise.

The data structures related to a conflict can be involved in a same operation, or they

can be involved in different operations (see Section 2.4 for examples). Moreover, an

auto-conflict arises when a data structure is in conflict with itself. This case is present

when two individual elements of the same data structure are required at the same time,

for example a[i℄ = a[i+1℄.

Furthermore, a data structures can not be split and expand over different memory

banks. Also, it is possible that a data structure is not in conflict with any other data

structure, i.e., the application could have isolated data structures.

The access schedule produced from C source file decides how data structures are

accessed for performing the operations of a given application. It determines which

data structures are accessed at the same time (in parallel), i.e., which data structures

are in conflict. The access schedule also determines the order in which data structures

are accessed, i.e., the order how the conflicts appear.

In the electronic literature, it exists techniques for profiling the source code of em-

bedded applications aiming at the optimization of the access schedule. Subsection 1.3.1

mentions the most important techniques for optimizing the code and the schedule. It

must be stressed the importance of an optimal schedule in the memory allocation.

However, it is out of the scope of this work.

The unconstrained memory allocation problem can be stated as follows: for a given

application, we search for the minimum number of memory banks for which all no

auto-conflicts are closed. In fact an auto-conflict is always open, then it is not possible
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to find a solution without open conflicts.

The rest of this chapter is organized as follows: Section 2.2 presents a mathematical

formulation to this version of the memory allocation problem. Next, Section 2.3 shows

that addressing this problem is equivalent to finding the chromatic number of a conflict

graph. Section 2.4 presents an example of unconstrained memory allocation problem.

Section 2.5 introduces three new upper bounds on the chromatic number. Sections

2.6 and 5.5 assess the quality of three upper bounds, and Section 2.8 concludes this

chapter.

2.2 An ILP formulation for the unconstrained memory allo-

cation problem

The number of data structures is denoted by n. The number of conflicts is denoted by

o, and conflict k is modeled as the pair (k1, k2), where k1 and k2 are two conflicting

data structures.

In this ILP formulation, we use the number of data structures as an upper bound on

the number of memory banks.

The decision variables of the problem represent the allocation of data structures to

memory banks. These variables are modeled as a binary matrix X, where:

xi,j =







1, if data structure i is

mapped to memory bank j

0, otherwise

, ∀i, j ∈ {1, . . . , n} (2.1)

The vector of real nonnegative variables variables Z represents the memory bank

that are actually used.

zj =







1, if at least one data structure

is assigned to memory bank j

0, otherwise

, ∀j ∈ {1, . . . , n} (2.2)

The mixed integer program for that problem is the following:
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Minimize

n
∑

j=1

zj (2.3)

n
∑

j=1

xi,j = 1, ∀i ∈ {1, . . . , n} (2.4)

xk1,j + xk2,j ≤ 1, ∀k1 6= k2, ∀j ∈ {1, . . . , n},∀k ∈ {1, . . . , o} (2.5)

xi,j ≤ zj , ∀i, j ∈ {1, . . . , n} (2.6)

xi,j ∈ {0, 1}, ∀(i, j) ∈ {1, . . . , n}2 (2.7)

zj ≥ 0, ∀j ∈ {1, . . . , n} (2.8)

The cost function of the problem, Equation (2.3), minimizes the number of memory

banks used to store the data structures of the application.

Equation (2.4) enforces that each data structure is allocated to exactly one memory

bank. Equation (2.5) is used for ensuring that two data structures involved in a conflict

k are assigned to different memory banks; except for the case where a data structure

is conflicting with itself. Equation (2.6) sets zj to 1 if memory bank j is actually used.

Finally, xi,j is set as a binary variable, for all (i, j) and zj is nonnegative for all j (explicit

integrability enforcement is not required.

An optimal solution to the unconstrained memory allocation problem can be com-

puted by using a solver like GLPK [71] or Xpress-MP [61]. However, an optimal solution

cannot be obtained in a reasonable amount of time (more than one hour) for medium

size instances. Indeed, next section shows that this problem is equivalent to finding the

chromatic number of a conflict graph. As the chromatic number is NP-hard, so is the

unconstrained memory allocation problem.

2.3 Memory allocation and the chromatic number

The access schedule of a particular application can be represented as a conflict graph.

In next section, Figure 2.2 illustrates the conflict graph of a piece of code.

The conflict graph G = (X,U) for the unconstrained memory allocation problem is

defined as follows: each vertex x in X models a data structure (array of scalars) and

an edge u ∈ U models a conflict between two data structures. There are not multiple

edges, i.e., two different conflicts between two data structures. Each auto-conflict is

represented by a loop. We have an isolated vertex for each data structure not in conflict

with any other data structure.

We can formulate the unconstrained memory allocation problem using this con-

flict graph as follows: finding the minimum number of memory banks such that two

adjacent vertices are not allocated to the same memory bank.

In order to state the vertex coloring problem for our conflict graph, loops (auto-
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conflicts) and isolated vertices are removed. In this way, we have an undirected and

simple graph. The vertex coloring problem is to assign a color to every vertex in such a

way that two adjacent vertices do not have the same color, while minimizing the total

number of colors used.

The chromatic number of the conflict graph is the smallest number of colors needed

to color it. Consequently, memory banks can be modeled as colors; and addressing

the unconstrained memory allocation problem is equivalent to finding the chromatic

number of the conflict graph.

In the electronic chip CAD, the unconstrained memory allocation problem is solved

repeatedly. Therefore, it is important to quickly estimate the number of memory banks

required by the application. For these reasons, we are interested in upper bounds

on the chromatic number. Upper bounds are of particular interest for memory man-

agement and register allocation, because they enable to reduce the search space for

non-conflicting memory/register allocations.

In the following subsection, we introduce the main bounds on the chromatic num-

ber found in the literature.

Bounds on the chromatic number

We give some formal definitions about vertex coloring problem and the chromatic num-

ber. Also we introduce some notations.

Formally, a coloring of graph G = (X,U) is a function F : X → N
∗; where each

vertex in X is allocated an integer value that is called a color. A proper coloring satisfies

F (u) 6= F (v) for all (u, v) ∈ U [56,96]. A graph is said to be α-colorable if there exists

a coloring which uses, at most, α different colors. In that case, all the vertices colored

with the same color are said to be part of the same class.

The smallest number of colors involved in any proper coloring G is called the

chromatic number, it is denoted by χ(G). The problem of finding χ(G), as well as

a minimum coloring, is NP-hard and is still the focus of an intense research effort

[27,28,119,120].

We recall some elementary results on the vertex coloring problem and chromatic

number. A graph cannot be α-colorable if α < χ(G). The chromatic number equals

1, if and only if G is a totally disconnected graph, it is equal to |X| if G is complete,

and for the graphs that are exactly bipartite (including trees and forests) the chromatic

number is 2.

Regarding lower bounds, the chromatic number is greater than or equal to the

clique number denoted by ω(G), which is the size of the largest clique in the graph,

thus ω(G) ≤ χ(G). However, this bound is difficult to use in practice as finding the

clique number is NP-hard, and the Lovasz number is known to be a better lower

bound for χ(G) as it is “sandwiched” between the clique number and the chromatic

number [97]. Moreover, the Lovasz number can be calculated in polynomial time.

Let G be a non directed, simple graph, where n = |X| is the number of vertices,
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and m = |U | is the number of edges. The degree of vertex i is denoted by di for all

i ∈ {1, . . . , n}, and δ(G) is the highest degree in G. The following upper bounds on

χ(G) can be found in the literature (for example, in [107] there is a good summary

about upper bounds):

• χ(G) ≤ d = δ(G) + 1 [3,56].

• χ(G) ≤ l =

⌊

1 +
√
8m+ 1

2

⌋

[3,56].

• χ(G) ≤M = max
i∈X

min (di + 1, i), provided that d1 ≥ d2 ≥ · · · ≥ dn [174].

• χ(G) ≤ s = δ2(G) + 1, where δ2(G) is the largest degree that a vertex v can have

if v is adjacent to a vertex whose degree is at least as large as its own [159].

• χ(G) ≤ q =
⌈

r
r+1(δ(G) + 1)

⌉

, where r is the maximum number of vertices of the

same degree, each at least (δ(G) + 2)/2 [160].

There exists some upper bounds on the chromatic number for special classes of

graphs:

• χ(G) ≤ δ(G), for a connected, simple graph which is neither complete, nor has

an odd cycle.

• χ(G) ≤ 4, for any planar graph.

In Section 2.5, three new upper bounds on the chromatic number are proposed.

In Sections 2.6 and 5.5, the quality of these new bounds is compared with the upper

bounds mentioned in this section.

2.4 An illustrative example

For the sake of illustration of the unconstrained memory allocation problem, we present

an instance based on the LMS (Least Mean Square) dual-channel filter [21], which is

a well-known signal processing algorithm. This algorithm is written in C and is to be

implemented on a TI-C6201 target.

Figure 2.1 presents the source code and access schedule of this LMS dual-channel

filter. This schedule was generated by the compilation and code profiling tools of Soft-

Explorer [106] which is a software of the Lab-STICC laboratory [5].

The data structures are the arrays defined at line 10 of the C code, the constants

(lines 4 to 8) and integer variables (line 12) are not considered for the memory alloca-

tion.

The access schedule shows the data structures in conflict. In the schedule LD means

load/read a data structure, and ST means store/write in a data structure. In the sixth
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Figure 2.1: Code and access schedule of LMS dual-channel filter
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ordering, the processor must at the same time load data structure X1 and store in H11
the result of operation executed in line 22 of code source.

SoftExplorer separately compiles the code presented at each loop or condition in-

struction. The first four orderings correspond to the operations executed in for loops

of the main for loop (lines 16 19 25 and 28).

In this example, the most of conflicts are presented in the data structures involved

in the same operations. Only, the fifth and eighth conflicts involve data structures used

in different operations.

Moreover, the last two ordering are the auto-conflicts, it is due to the optimization

rules presented in the compiler g used by SoftExplorer. In the main for loop, data

structures X1 and X2 are present two times (see lines 22, 23, 31 and 32), so they are

considered only the first time when they appear in the loop. Thus, X1 and X2 are ignored

in the line 31 and 32 respectively, and data structures H21 and H22 are in conflict with

themselves.

Figure 2.2 presents the conflict graph from the access schedule. Each data structure

is represented by a vertex and each conflict in the schedule is represented by an edge.

The auto-conflicts (loops in the graph) are represented with a dotted line, because they

will be removed to state the vertex graph coloring problem. In this example, there are

not isolated vertices.

The chromatic number for the conflict graph without loops is two. Thus, it is only

necessary two memory banks to find a memory allocation where all non auto-conflicts

are closed. constraints

Figure 2.2: Access schedule and conflict graph of LMS dual-channel filter
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2.5 Three new upper bounds on the chromatic number

The following lemma is required for proving Theorem 1, which introduces the first

bound proposed.

Lemma 1. The following inequality holds for any connected, simple graph Gn = (V,E),

where mn = |E|.

χ(Gn) (χ(Gn)− 1)

2
+ n− χ(Gn) ≤ mn (2.9)

This inequality is referred to as Equation (2.9).

Proof. Lemma 1 is proved by recurrence on n.

First, it can be observed that Lemma 1 is obviously true for n = 2. Indeed, there

exists a unique connected, simple graph on two vertices, it has a single edge, and

χ(G2) = 2.

Second, we assume that Lemma 1 is valid for all graphs having at most n vertices.

We now prove than the inequality of Lemma 1 holds for any connected, simple graph

on n + 1 vertices. Let such a graph be denoted by Gn+1. It has mn+1 edges and its

chromatic number is χ(Gn+1).

Gn+1 can be seen as a connected, simple graph Gn plus an additional vertex de-

noted by n+1, and additional edges incident to this new vertex. The addition of vertex

n + 1 to Gn either leads to χ(Gn+1) = χ(Gn), or to χ(Gn+1) = χ(Gn) + 1. Indeed,

the introduction of a new vertex (along with its incident edges) to a graph leads to

increment the chromatic number by at most one.

• First case: χ(Gn+1) = χ(Gn)

Adding 1 to Equation (2.9) yields

χ(Gn+1) (χ(Gn+1)− 1)

2
+ n+ 1− χ(Gn+1) ≤ 1 +mn ≤ mn+1

We have 1 +mn ≤ mn+1 because at least one new edge is to be added to Gn for

building Gn+1: vertex n + 1 has to be connected to at least one edge in Gn for

Gn+1 to be connected.

• Second case: χ(Gn+1) = χ(Gn) + 1

A minimal coloring of Gn+1 can be obtained by keeping the minimal coloring of

Gn, and by assigning color χ(Gn+1) = χ(Gn)+1 to vertex n+1. Since this coloring

is minimal, there exists at least one edge between any pair of color classes [56].

In particular, this requirement for color χ(Gn+1) implies that the degree of vertex

n+ 1 is at least χ(Gn), hence mn + χ(Gn) ≤ mn+1.

Adding χ(Gn) to Equation (2.9) yields
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(

χ(Gn) (χ(Gn)− 1)

2
+ χ(Gn)

)

+ n− χ(Gn) ≤ mn + χ(Gn)

The quantity in parenthesis is equal to the sum of the integers in {1, . . . , χ(Gn)},
and since χ(Gn+1) = χ(Gn) + 1,

χ(Gn+1) (χ(Gn+1)− 1)

2
+ n− χ(Gn) ≤ mn + χ(Gn)

Finally, as n− χ(Gn) = n+ 1− χ(Gn+1) and mn + χ(Gn) ≤ mn+1,

χ(Gn+1) (χ(Gn+1)− 1)

2
+ n+ 1− χ(Gn+1) ≤ mn+1

Theorem 1. The following inequality holds for any connected, simple undirected graph G

χ(G) ≤ ξ,

with ξ =

⌊

3 +
√

9 + 8(m− n)

2

⌋

.

Proof. By Lemma 1, m can be lower bounded as follows:

χ(G)(χ(G) − 1)

2
+ n− χ(G) ≤ m

This inequality leads to the following second order polynomial in the variable χ(G):

χ(G)2 − 3χ(G) − 2(m− n) ≤ 0

Once solved, this inequality leads to:

χ(G) ≤
⌊

3 +
√

9 + 8(m− n)

2

⌋

Note that because all connected graphs have at least n−1 edges, then 8(m−n)+9 ≥
1 thus the square root is in R

+.

Remark 1. As this bound is only based on the number of the vertices and edges in the

graph, it yields the same value for all graphs having the same number of vertices and

edges. This bound computation requires O(1) operations.
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Theorem 2. For any simple, undirected graph G, χ(G) ≤ ζ, where ζ is the greatest

number of vertices with a degree greater than or equal to ζ − 1.

Theorem 3. For any simple, undirected graph G, χ(G) ≤ η, where η is the greatest

number of vertices with a degree greater than or equal to η that are adjacent to at least

η − 1 vertices, each of them with a degree larger than or equal to η − 1.

Before proving Theorems 2 and 3, some notations and definitions need to be stated.

It should be noticed that connectivity is not required for the last two bounds, which

involves more information on the graph topology than the first one.

The degree of saturation [24,96] of a vertex v ∈ X denoted by DS(v) is the number

of different colors of the vertices adjacent to v. For a minimum coloring of graph G,

DS(v) is in {1, . . . , χ(G) − 1} for all v ∈ X.

The following notations are used throughout this chapter.

• C = {1, . . . , χ(G)} is the minimum set of colors used in any valid coloring.

• A valid (or proper) coloring using exactly χ(G) colors is said to be a minimal

coloring.

• The neighborhood of vertex v denoted by N(v) is the set of all vertices u such

that edge (u, v) belongs to U . N(v) is also called the set of adjacent vertices to v.

The last two bounds are based on the degree of saturation of a vertex and on Lemma

2.

Lemma 2. Let F be a minimal coloring of G. For every color k in C, there exists at least

one vertex v colored with k, (i.e., F (v) = k), such that its degree of saturation is χ(G)− 1

and where v is adjacent to at least χ(G)− 1 vertices with a degree larger than or equal to

χ(G) − 1.

Proof of Lemma 2. We prove the lemma by contradiction. First, we show that for all k

in C there exists a vertex v, colored with k, such that DS(v) = χ(G) − 1. To do so,

we assume that there exists a color k in C such that any vertex v colored with k has a

degree of saturation that is strictly less than χ(G)− 1.

Then, it can be deduced that for all v ∈ X such that F (v) = k, there exists a color

c ∈ C\{k} such that there does not exist u ∈ N(v)/F (u) = c. Consequently, a new

valid coloring can be derived from the current one by setting F (v) = c. Indeed, v is

not connected to any vertex colored with c. This operation can be performed for any

vertex colored with k, leading to a valid coloring in which color k is never used. Hence,

this new coloring involves χ(G) − 1 colors, which is impossible by definition of the

chromatic number.

Second, we show that, for every k in C, there exists a vertex v colored with k,

whose degree of saturation is equal to χ(G) − 1, and such that v has at least χ(G) − 1

neighbors with degree larger than or equal to χ(G)−1. To do so, we assume that there
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exists a color k in C such that any vertex v colored with k having a degree of saturation

equal to χ(G)− 1 has strictly less than χ(G)− 1 neighbors with a degree larger than or

equal to χ(G) − 1.

Then, it can be deduced that for every vertex v colored with k and such that

DS(v) = χ(G) − 1, there exists one color c ∈ C\{k} such that the degree of any

vertex w ∈ V (v)/F (w) = c is strictly less than χ(G) − 1. Then, for each vertex

w ∈ V (v)/F (w) = c, there exists a color l ∈ C\{k, c} such that setting F (w) to l

yields a valid coloring. As a result, color c is no longer used in N(v), thus DS(v)

is no longer χ(G) − 1. This operation can be performed for any vertex v such that

F (v) = k/DS(v) = χ(G)−1, leading to a coloring in which there is no vertex v colored

with k and such that DS(v) = χ(G) − 1. It can then be deduced from the first part of

this proof that in such a situation, G can be colored with strictly less than χ(G) colors,

which is impossible.

Proof of Theorem 2. It can be deduced from Lemma 2 that there exists at least χ(G)

vertices in G, with a degree at least χ(G) − 1. Thus, ζ being the greatest number of

vertices with a degree greater than or equal to ζ − 1, the following inequality holds:

χ(G) ≤ ζ.

Remark 2. It can easily be seen that Algorithm 1, which returns ζ, has a computational

complexity of O (max{m,n log2(n)}), as it requires enumerating the m edges to compute

computing the degree of the vertices, n log2(n) operations to sort the vertices, and ζ ≤ n

iterations in the while loop.

Data: Graph G(X,U); where n← |X| and m← |U |.
Compute the degree, di of all vertices i in X;

Sort the vertices by non increasing degree;

ζ ← 0, stable← 0 and i← 0;

while stable = 0 and i ≤ n do

if di ≥ ζ then

ζ ← ζ + 1;

else

stable← 1;

end

i← i+ 1;

end

Algorithm 1: Computing ζ.

Proof of Theorem 3. It can be deduced from Lemma 2 that there exist at least χ(G)

vertices in G, which are adjacent to χ(G)−1 vertices with degrees larger than χ(G)−1.

Since η is the greatest number of vertices with a degree greater than or equal to η that
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are adjacent to at least η − 1 vertices, each of them with degree larger than or equal to

η − 1, then χ(G) ≤ η.

Remark 3. The proposed algorithm for computing η relies on the neighboring density.

The neighboring density of vertex i is denoted by ρi and is defined as follows: ρi is the

largest integer such that vertex i is adjacent to at least ρi vertices. Each of the latter has

a degree greater than or equal to ρi. Algorithm 2 computes the neighboring density of all

vertices. Then, η is computed by executing Algorithm 1, where di is replaced with ρi for

all i ∈ X and where ζ is replaced with η. The computational complexity for determin-

ing the neighboring density of all vertices is O (m log2(m)), as it requires m operations

to compute the degree, and 2m log2(2m) operations to sort 2m numbers (the sum of de-

gree of all vertices is 2m). Therefore, the computational complexity for computing η is

O (max{m log2(m), n log2(n)}).

Data: Graph G(X,U); where n← |X| and m← |U |.

Compute the degree of all vertices in X;

for i = 1 to n do
Create the array tab by sorting the degree of the di neighbors of vertex i in non increasing

order;

ρi ← 0, stable← 0, and j ← 0;

while stable = 0 and j ≤ di do

if tab[j℄ > ρi then

ρi ← ρi + 1;

else

stable← 1;

end

j ← j + 1;

end

end

Algorithm 2: Computing the neighboring density of all vertices.

2.6 Theoretical quality assessment of three upper bounds

The three bounds introduced in this chapter are compared theoretically to the five

upper bounds from the literature, which were mentioned in the introduction, namely

d, l,M, s and q.

Proposition 1. For any simple, undirected, connected graph

ξ ≤ l.

Proof. The number of edges in any simple undirected graph is less than or equal to



36 Unconstrained memory allocation problem

n(n− 1)/2, thus:

2m ≤ n2 − n

8m+ 1 ≤ 4n2 − 4n+ 1

8m+ 1 ≤ (2n − 1)2√
8m+ 1 ≤ 2n− 1

1− 2n ≤ −
√
8m+ 1

4− 8n ≤ −4
√
8m+ 1

Then, 8m+ 5 is added to the last inequality

9 + 8(m− n) ≤ (8m+ 1) + 4− 4
√
8m+ 1

√

9 + 8(m− n) ≤
√
8m+ 1− 2

3 +
√

9 + 8(m− n)

2
≤ 1 +

√
8m+ 1

2
⌊

3 +
√

9 + 8(m− n)

2

⌋

≤
⌊

1 +
√
8m+ 1

2

⌋

ξ ≤ l

Proposition 2. For any simple undirected graph

η ≤ ζ

Proof. This is obvious as the definition of ζ and η can be seen as the statement of

two maximization problems. Since the requirements (or constraints) on η are more

stringent than the requirements on ζ, the inequality η ≤ ζ holds.

Proposition 3. For any simple undirected graph

ζ ≤ d

Proof. Since δ(G) is the maximum degree in the graph, dv ≤ δ(G) for all v ∈ X. By

definition of ζ, there exists at least one vertex w with a degree greater than or equal to
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ζ − 1, then:

dw ≤ δ(G)

ζ − 1 ≤ δ(G)

ζ ≤ δ(G) + 1

ζ ≤ d

Proposition 4. For any simple undirected graph

ζ = M

Proof. First, it is recalled that by definition of ζ, there does not exist ζ + 1 vertices

with a degree larger than or equal to ζ (otherwise this would be conflicting with the

definition of ζ).

It is assumed without loss of generality that the vertices are indexed by non increas-

ing degree: d1 ≥ d2 ≥ · · · ≥ dn. Then it can be deduced that the vertices whose index

is in {ζ + 1, . . . , n} have a degree less than or equal to ζ − 1.

The vertex set X = {1, . . . , n} is split into two subsets: X = A ∪ B with A =

{1, . . . , ζ} and B = {ζ + 1, . . . , n}. In other words, A is the set of the ζ vertices of

highest degree, B is the set of the n− ζ vertices of lower degree.

For all i in X, we denote by mi the minimum between di + 1 and i (i.e., this makes

it possible to write M = max
i∈X

mi).

For all i ∈ X, i is either in A or in B:

• If i ∈ A, then vertex i is such that di ≥ ζ − 1, i.e. di + 1 ≥ ζ. Moreover, by

definition of A, i ≤ ζ. Consequently:

mi = i ≤ ζ ≤ di + 1 ∀i ∈ A

In particular, for i = ζ, mi = ζ, and by definition of M , ζ ≤M .

• If i ∈ B, then vertex i is such that di ≤ ζ − 1, i.e. di + 1 ≤ ζ. Moreover, by

definition of B, i ≥ ζ. Consequently:

mi = di + 1 ≤ ζ ≤ i ∀i ∈ B

Finally, the inequality mi ≤ ζ holds for all i ∈ {1, . . . , n} and by definition of M this

leads to M ≤ ζ.
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Remark 4. Computing M by using the formula M = max
i∈X

min (di + 1, i) provided in

[174] has a computational complexity of O (max{m,n log2 n}), as it requires computing

the degree of the vertices, and sorting them by non increasing degree. Although ζ and M

are defined differently, their computation requires the same order of arithmetic operations.

Proposition 5. For any simple undirected graph

η ≤ s

Proof. By definition of δ2(G), there does not exist two adjacent vertices i and j in X

such that di > δ2(G) and dj > δ2(G). Consequently, it is impossible to find a vertex

adjacent to at least δ2(G) + 1 vertices whose degrees are at least δ2(G) + 1. This shows

that η − 1 is less than or equal to δ2(G), i.e., η ≤ s.

Proposition 6. For any simple undirected graph

ζ ≤ q

Proof. We prove by contradiction that ζ ≤ q by using Proposition 4.

ζ = M = max
i∈X

min(di + 1, i)

We denote by A and B the two subsets of X: A = {1, . . . , ζ} and B = {ζ+1, . . . , n}.
As shown in the proof of Proposition 4:

i ≤ ζ ≤ di + 1 ∀i ∈ A

di + 1 ≤ ζ ≤ i ∀i ∈ B

We assume that ζ > q.

First, it is recalled that Stacho has proved in [160] that dq < q, i.e., dq+1 ≤ q. Then

ζ > q does not hold if q ∈ A.

Second, if q belongs to B it must satisfy ζ ≤ q which is conflicting with the hypoth-

esis ζ > q.

Consequently, this proves that ζ ≤ q.

2.7 Computational assessment of three upper bounds

The new bounds introduced in this chapter are compared to the five bounds of the

literature on the DIMACS instances [2] for vertex coloring. The detailed results are

shown in Table 2.1 for 136 instances. The first three columns of this table provide the

instance source at DIMACS, its name, the number of vertices and the number of edges.

The next eight columns show the upper bound on the number of colors provided by the

five bounds of the literature, and the three upper bounds introduced in this chapter.

The last three rows of Table 2.1 show the average value of each bound on the DIMACS
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instances, the before last row provides the average deviation to η over all the other

bounds (note that these figures are not computed on the average numbers of colors),

and the last row is the total amount of CPU time (in seconds) required for computing

each bound on an Intel Xeon processor system at 2.67 GHz and 8 Gbytes RAM. Algorithms

have been implemented in C++ and compiled with g 4.11 on a Linux system.

Table 2.1: Upper bounds on the chromatic number

Instances Known upper bounds New upper bounds

Sour. Name n\m d l M s q ξ ζ η

MYC myciel3 11 \20 6 6 5 4 6 6 5 4

MYC myciel4 23 \71 12 12 7 7 12 11 7 6

CAR 2-Insert._3 37 \72 10 12 5 5 6 10 5 5

CAR 1-FullIns_3 30 \100 12 14 9 12 12 13 9 7

CAR 3-Insert._3 56 \110 12 15 5 5 7 12 5 5

MIZ mug88_1 88 \146 5 17 5 5 6 12 5 4

MIZ mug88_25 88 \146 5 17 5 5 6 12 5 4

CAR 4-Insert._3 79 \156 14 18 5 5 8 14 5 5

SGB queen5_5 25 \160 17 18 13 13 17 18 13 13

MIZ mug100_25 100 \166 5 18 5 5 6 13 5 4

MIZ mug100_1 100 \166 5 18 5 5 6 13 5 4

CAR 2-FullIns_3 52 \201 16 20 12 16 16 18 12 8

MYC r125.1 125 \209 9 20 7 7 10 11 7 6

CAR 1-Insert._4 67 \232 23 22 9 9 16 19 9 7

MYC myciel5 47 \236 24 22 13 13 22 21 13 9

SGB jean 80 \254 37 23 12 14 19 20 12 11

SGB queen6_6 36 \290 20 24 16 16 20 24 16 16

SGB huck 74 \301 54 25 11 21 28 22 11 11

CAR 3-FullIns_3 80 \346 20 26 14 20 20 24 14 10

SGB miles250 128 \387 17 28 13 15 16 23 13 10

SGB david 87 \406 83 29 16 31 42 26 16 12

SGB queen7_7 49 \476 25 31 21 19 25 30 21 19

SGB anna 138 \493 72 31 15 51 37 28 15 12

CAR 4-FullIns_3 114 \541 24 33 16 24 24 30 16 12

CAR 2-Insert._4 149 \541 38 33 9 11 20 29 9 9

CAR 1-FullIns_4 93 \593 33 34 18 33 26 33 18 13

SGB games120 120 \638 14 36 13 14 15 33 13 11

SGB queen8_8 64 \728 28 38 24 22 28 37 24 22

DSJ dsjc125.1 125 \736 24 38 17 20 24 36 17 12

MYC myciel6 95 \755 48 39 21 25 44 37 21 14

CAR 5-FullIns_3 154 \792 28 40 18 28 29 37 18 14

MYC r250.1 250 \867 14 42 13 13 15 36 13 10

CAR 3-Insert._4 281 \1046 57 46 9 13 29 40 9 9

SGB queen9_9 81 \1056 33 46 27 25 33 45 27 25

SGB miles500 128 \1170 39 48 29 35 35 47 29 25

CAR 1-Insert._5 202 \1227 68 50 17 24 46 46 17 13

SGB queen8_12 96 \1368 33 52 31 30 33 51 31 27

SGB queen10_10 100 \1470 36 54 32 28 36 53 32 28

CAR 2-FullIns_4 212 \1621 56 57 24 56 51 54 24 16

SGB homer 561 \1628 100 57 25 56 51 47 25 18

CAR 4-Insert._4 475 \1795 80 60 9 15 41 52 9 9

SGB queen11_11 121 \1980 41 63 35 31 41 62 35 31

SGB miles750 128 \2113 65 65 42 55 57 64 42 37

MYC myciel7 191 \2360 96 69 35 49 88 67 35 23

Continued on next page
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Table 2.1 – continued from previous page

Instances Known upper bounds New upper bounds

Sour. Name n\m d l M s q ξ ζ η

SGB queen12_12 144 \2596 44 72 38 34 44 71 38 34

SGB miles1000 128 \3216 87 80 57 82 74 80 57 49

DSJ dsjc250.1 250 \3218 39 80 33 35 39 78 33 25

CAR 1-FullIns_5 282 \3247 96 81 36 96 73 78 36 23

SGB queen13_13 169 \3328 49 82 43 37 49 81 43 37

CAR 3-FullIns_4 405 \3524 85 84 28 85 72 80 28 20

REG zeroin_i3 206 \3540 141 84 41 38 119 83 41 32

REG zeroin_i2 211 \3541 141 84 41 38 119 83 41 32

DSJ dsjr500.1 500 \3555 26 84 23 26 27 79 23 18

MYC r125.5 125 \3838 100 88 61 70 85 87 61 52

REG mulsol_i2 188 \3885 157 88 53 34 139 87 53 33

DSJ dsjc125.5 125 \3891 76 88 63 72 72 88 63 57

REG mulsol_i3 184 \3916 158 89 54 34 140 87 54 33

REG mulsol_i1 197 \3925 122 89 65 82 111 87 65 51

CAR 2-Insert._5 597 \3936 150 89 20 39 76 83 20 17

REG mulsol_i4 185 \3946 159 89 54 34 140 88 54 33

REG mulsol_i5 186 \3973 160 89 55 34 141 88 55 33

REG zeroin_i1 211 \4100 112 91 54 95 104 89 54 51

HOS ash331GPIA 662 \4185 24 91 20 23 25 85 20 16

SGB queen14_14 196 \4186 52 92 46 40 52 90 46 40

SGB queen15_15 225 \5180 57 102 49 43 57 101 49 43

SGB miles1500 128 \5198 107 102 84 106 96 102 84 78

LEI le450_5a 450 \5714 43 107 34 35 44 104 34 25

LEI le450_5b 450 \5734 43 107 34 35 43 104 34 26

SGB queen16_16 256 \6320 60 112 54 46 60 111 54 46

CAR 1-Insert._6 607 \6337 203 113 33 69 136 108 33 25

CAR 4-FullIns_4 690 \6650 120 115 36 120 104 110 36 24

DSJ dsjc125.9 125 \6961 121 118 109 113 116 118 109 106

HOS will199GPIA 701 \7065 42 119 35 35 42 114 35 28

MYC r125.1c 125 \7501 125 122 116 116 123 122 116 116

HOS ash608GPIA 1216 \7844 21 125 20 20 22 116 20 16

LEI le450_15a 450 \8168 100 128 57 68 93 125 57 39

LEI le450_15b 450 \8169 95 128 56 72 88 125 56 39

LEI le450_25a 450 \8260 129 129 63 85 114 126 63 46

LEI le450_25b 450 \8263 112 129 60 80 99 126 60 43

REG fpsol2i3 425 \8688 347 132 53 68 299 130 53 35

REG fpsol2i2 451 \8691 347 132 53 68 299 129 53 35

CAR 3-Insert._5 1406 \9695 282 139 25 58 142 130 25 17

LEI le450_5d 450 \9757 69 140 52 53 68 137 52 41

LEI le450_5c 450 \9803 67 140 52 55 67 138 52 41

CAR 5-FullIns_4 1085 \11395 161 151 49 161 142 145 49 28

REG fpsol2i1 496 \11654 253 153 79 102 231 150 79 67

CAR 2-FullIns_5 852 \12201 216 156 56 216 193 152 56 31

DSJ dsjc500.1 500 \12458 69 158 59 61 69 156 59 47

HOS ash958GPIA 1916 \12506 25 158 21 22 26 147 21 17

REG inithx_i3 621 \13969 543 167 52 235 476 164 52 38

REG inithx_i2 645 \13979 542 167 52 235 476 164 52 38

MYC r1000.1 1000 \14378 50 170 41 47 51 165 41 34

SCH school1_nsh352 \14612 233 171 101 115 195 170 101 84

MYC r250.5 250 \14849 192 172 119 154 166 172 119 99

DSJ dsjc250.5 250 \15668 148 177 126 134 141 177 126 116

LEI le450_15c 450 \16680 140 183 93 129 133 181 93 70

LEI le450_15d 450 \16750 139 183 92 129 131 182 92 70

LEI le450_25c 450 \17343 180 186 101 128 163 185 101 76

Continued on next page
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Table 2.1 – continued from previous page

Instances Known upper bounds New upper bounds

Sour. Name n\m d l M s q ξ ζ η

LEI le450_25d 450 \17425 158 187 99 138 145 185 99 75

REG inithx_i1 864 \18707 503 193 74 239 441 190 74 57

SCH school1 385 \19095 283 195 117 172 213 194 117 98

CUL flat300_20_0300 \21375 161 207 144 148 155 206 144 135

CUL flat300_26_0300 \21633 159 208 146 152 154 208 146 136

CUL flat300_28_0300 \21695 163 208 146 157 158 208 146 136

GOM qg.order30 900 \26100 59 228 59 59 60 226 59 59

DSJ dsjc250.9 250 \27897 235 236 219 224 228 236 219 214

MYC r250.1c 250 \30227 250 246 238 242 246 246 238 236

CAR 3-FullIns_5 2030 \33751 410 260 79 410 343 253 79 40

KOS wap05a 905 \43081 229 294 147 200 213 291 147 106

KOS wap06a 947 \43571 231 295 147 200 211 293 147 105

DSJ dsjc1000.1 1000 \49629 128 315 112 112 127 313 112 93

DSJ dsjr500.5 500 \58862 389 343 234 282 347 343 234 197

GOM qg.order40 1600 \62400 79 353 79 79 80 350 79 79

DSJ dsjc500.5 500 \62624 287 354 251 260 277 353 251 236

HOS abb313GPIA 1557 \65390 188 362 123 119 184 358 123 94

CAR 4-FullIns_5 4146 \77305 696 393 96 696 598 384 96 48

KOS wap07a 1809 \103368 299 455 188 259 275 452 188 130

KOS wap08a 1870 \104176 309 456 189 272 293 453 189 129

KOS wap01a 2368 \110871 289 471 174 223 270 467 174 115

KOS wap02a 2464 \111742 295 473 175 222 280 469 175 116

DSJ dsjc500.9 500 \112437 472 474 443 450 461 474 443 437

DSJ dsjr500.1c 500 \121275 498 492 478 489 490 492 478 476

GOM qg.order60 3600 \212400 119 652 119 119 120 647 119 119

MYC r1000.5 1000 \238267 782 690 472 535 696 690 472 396

CUL flat1000_50 1000 \245000 521 700 492 503 511 700 492 474

CUL flat1000_60 1000 \245830 525 701 493 501 515 701 493 472

CUL flat1000_76 1000 \246708 533 702 494 501 523 702 494 474

DSJ dsjc1000.5 1000 \249826 552 707 501 518 538 706 501 475

KOS wap03a 4730 \286722 345 757 230 302 333 752 230 148

KOS wap04a 5231 \294902 352 768 238 307 341 762 238 149

LAT latinsquare10 900 \307350 684 784 684 684 685 784 684 684

DSJ dsjc1000.9 1000 \449449 925 948 888 912 910 948 888 877

MYC r1000.1c 1000 \485090 992 985 957 976 978 985 957 951

GOM qg.order100 10000 \990000 199 1407 199 199 200 1401 199 199

MYC c2000.5 2000 \999836 1075 1414 1000 1028 1054 1414 1000 962

MYC c4000.5 4000 \4000268 2124 2829 2002 2019 2093 2828 2002 1942

Average number of colors 186.1 218.5 122.2 147.5 171.2 215.9 122.2 108.9

Av. deviation to η (in %) −46.1 −58.3 −18.4 −29.4 −42.8 −56.6 −18.4 0.0

Total time (seconds) 0.2 0.0 0.3 2.1 0.3 3.8 0.9 14.0

Table 2.2 is displayed to assess the practical strength of Propositions 1 to 6. As each

proposition is of the form a ≤ b (except Proposition 4), the last column of Table 2.2

indicates by which amount bound a is better than bound b (the average improvement

is defined as the average value of (a−b)/b over all the instances, in percent). Naturally,

this amount is 0% in the particular case of Proposition 4 as it is an equality. It can be

seen that ξ does not provide a significant advantage over l in practice.
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Table 2.2: Computational assessment of Propositions 1 to 6 based on Table 2.1

Propositions Avg. improvement

Proposition 1 ξ ≤ l −4.56%
Proposition 2 η ≤ ζ −18.36%
Proposition 3 ζ ≤ d −35.99%
Proposition 4 ζ = M 0.00%
Proposition 5 η ≤ s −29.39%
Proposition 6 ζ ≤ q −32.02%

However, Propositions 2, 3, 5 and 6 are stronger as the improvement is larger than

18%. More specifically, the best bound proposed in this chapter outperforms the best

upper bound of the literature by more than 18% on average. Proving that M = ζ is

important for highlighting the reason for the practical superiority of η over M . Indeed,

η is based on the same principle as ζ, it focuses on the degrees of saturation of vertices.

The difference is that η goes one step further than ζ by considering the degree of

saturation of the neighbors of each vertices (i.e., the so-called neighboring density).

This additional requirement has a computational cost that is drastically larger than the

one required by computing ζ, but it provides a significant improvement in terms of the

upper bound quality.

2.8 Conclusion

In this chapter we have presented the first version of memory allocation problem. This

problem is equivalent to finding the chromatic number of the application’s conflict

graph. Three new upper bounds on the chromatic number have been introduced. The

proposed upper bounds do not make any assumption on the graph structure, they are

based on basic graph characteristics such as the number of vertices, edges and vertex

degrees.

The first upper bound, ξ, is based on the number of edges and vertices and only

requires connectivity, whereas the last ones, ζ and η, are based on the degree of the

vertices in the graph.

We have theoretically and computationally assessed our upper bounds with the ones

of the literature. It has been shown that ζ is equal to an existing bound, while being

computed in a very different way. Moreover, a series of inequalities has been proved,

showing that these new bounds outperform five of the most well-known upper bounds

from the literature. Computational experiments also have shown that the best bound

proposed, η, is significantly better than the five bounds of the literature, and highlight

the benefit of using the degree of saturation and its refined version (the neighboring

density) for producing competitive upper bounds for vertex coloring. Indeed, using

more information on graph topology appears to be a promising direction for future
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work.

The upper bounds on the chromatic number introduced in this chapter appear to

be both significantly better than the literature ones, and easily computable even for

large graphs. However, there exists sophisticated metaheuristics for the vertex color-

ing problem (see for example [41, 73, 79, 139, 176]), and advanced bounds (see for

instance [27,28,119,120]) that reach better results than ours. But computational time

for getting these results and the associated coloring is sometimes longer than 20 min-

utes, which is far too long for the electronic chip design CAD in which the problem

is solved. Indeed, memory allocation is only one part of the electronic chip design

process, which is split in a series of sequential steps. Furthermore, as many design vari-

ations may be considered, the memory allocation problem has to be solved repeatedly,

and CAD softwares are expected to be reactive enough to allow for ‘what if’ studies.

In conclusion, our bounds provide useful information for electronic designers. If the

number of memory banks is greater than the minimum over ξ, ζ, and η, then electronic

designers are guaranteed to find a memory allocation where all no auto-conflicts are

closed.

The first two upper bounds have been presented to the 2009 Cologne-Twente Work-

shop on Graphs and Combinatorial Optimization, see [154], and a paper introducing

the three new upper bounds published by Discrete Applied Mathematics in 2011 [157].





3
Memory allocation problem with constraint

on the number of memory banks

This chapter deals with the second version of the memory allocation problem addressed

in this thesis. This problem is related to the data binding problems introduced in

Subsection 1.3.3. Hence, the aim of this problem is allocating the data structures from

a given application, to a given memory architecture. The main characteristic in the

memory architecture is that the number of memory banks is fixed.

The memory allocation problem with constraint on the number of memory banks

is equivalent to the k-weighted graph coloring problem [29]. To address this problem,

we propose an ILP formulation and two metaheuristics based on both the tabu search

method and an evolutionary algorithm that have originally been proposed for the ver-

tex coloring problem. The proposed approaches are tested on a set of instances. The

results produced by these metaheuristics are encouraging, and they suggest that the

adaptation of methods from graph coloring is a promising way to address memory

allocation problems in embedded systems.

3.1 Introduction

In this chapter we introduce the memory allocation problem with constraint on the

number of memory banks. This problem is related to data binding problems presented

in the optimization techniques for memory management and data assignment in Sec-

tion 1.3. Unlike the previous problem, which is focused in the design of memory ar-

chitecture, in this problem the memory architecture is fixed. The purpose is to allocate

data structures from a given application to memory banks of a given memory architec-

ture.

In this version of the memory allocation problem, as in the memory partition prob-

lem for energy consumption (see Section 1.3.3), the number of memory banks in the

architecture is fixed. However, because of both different constraints considered and dif-

ferent objective functions to optimize, this version of the memory allocation problem

is not equivalent to any problem related to the memory partition problem for energy

consumption mentioned in Subsection 1.3.3.45
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The number of available memory banks is limited because of cost and technologi-

cal reasons. This is decided beforehand by the designer. Moreover, when the number

of banks increases both the communication resources required to transfer information

and control logic increase at the same time. Hence, finding an optimal memory alloca-

tion for data structures with constraint on the maximum number of memory banks is

extremely important [17].

For this problem, we keep the assumptions on the target architecture from the pre-

vious chapter; i.e., the processor is able to simultaneously access all its memory banks,

and the application to be implemented is provided as a C source code. Also, the data

structures involved in the application have to be mapped into memory banks.

A conflict between two data structures is the same as it is defined in Section 2.1.

Moreover, we consider that each conflict has a cost, which is expressed in milliseconds

(ms). This conflict cost is proportional to the number of times that the conflict ap-

pears in the application. Hence, the conflict’s statuses, open and closed, are defined as

follows:

• Closed conflict: Two data structures

are allocated to two different mem-

ory banks, as shown in Figure 3.1.

The conflict does not generate any

cost.

Figure 3.1: Closed conflict

• Open conflict: Two data structures

are together mapped in the same

memory bank, as shown in Figure

3.1. The conflict generates a cost dk.

Figure 3.2: Open conflict

In some cases, computing the conflict cost is not easy. Such a situation happens

when the number of iterations of a loop cannot be forecasted (as in conditional in-

struction if or while loop). In this case, code profiling tools can be used for assessing

conflict costs on a statistical basis [89,108].
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Figure 3.3 shows the access schedule and the cost conflicts for a piece of code. In

this example, the probabilities of executing instructions if and else are 0.1 and 0.9

respectively. Data structures b and  are accessed in parallel two times in the schedule.

Thus the estimated conflict cost between data structures b and  is the number of it-

eration in the for loop multiplied by the probability of if instruction plus the product

between the probability of else instruction and the number of iteration of its for loop,

i.e., 10 × 0.1 + 4 × 0.9 milliseconds. For the conflict between e and f, it is 4 × 0.9.

Consequently, forecasting the cost conflicts depends on the occurrence probability of

conditional instructions.

Figure 3.3: Cost conflict

This memory allocation problem, in addition to the fixed number of memory banks,

takes into account the conflict costs. This problem, referred to as memory allocation

with constraint on the number of memory banks, is stated as follows: for a given num-

ber of memory banks, we search for a memory allocation for data structures such that

the total conflict cost generated by open conflicts is minimized. Section 3.3 presents an

illustrative example, which helps to understand this problem better.

The compiler often handles the allocation of data structures into memory banks;

however, it does not produce optimal solutions. For this reason, Section 3.2 presents

an ILP formulation designed for this version of the memory allocation problem; and two

metaheuristics are proposed in Section 3.4, both are inspired of approaches designed

to address the vertex graph coloring problem. The exact and heuristic approaches are

compared in Section 3.5.

3.2 An ILP formulation for the memory allocation problem

with constraint on the number of memory banks

The number of data structures is denoted by n, the number of conflicts is denoted by

o, and a conflict k is modeled as the couple (k1, k2), where k1 and k2 are two data

structures.
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This problem considers a fixed number of memory banks denoted by m, and the

conflict costs associated with the conflicts, which are denoted by dk for all k ∈ {1, . . . , o}.
The particular cases of auto-conflicts and isolated data structures (discussed in Sec-

tion 2.2), are taken into account in this ILP formulation and in the metaheuristic ap-

proaches.

There are two sets of decision variables, the first one is defined by Equation (2.1),

it is the binary matrix X, where xi,j is set to 1 if data structure i is allocated to memory

bank j, for all i in {1, . . . , n} and for all j in {1, . . . ,m} (xi,j = 0 otherwise). The second

one is a vector of real nonnegative variables Y , which models the two conflict statuses,

thus:

yk =

{

1, if the conflict k is open

0, otherwise
, ∀k ∈ {1, . . . , o} (3.1)

Thus, the integer linear program for this version of memory allocation problem is

the following:

Minimize

o
∑

k=1

ykdk (3.2)

m
∑

j=1

xi,j = 1, ∀i ∈ {1, . . . , n} (3.3)

xk1,j + xk2,j ≤ 1 + yk, ∀k ∈ {1, . . . , o},∀j ∈ {1, . . . ,m} (3.4)

xi,j ∈ {0, 1}, ∀(i, j) ∈ {1, . . . , n} × {1, . . . ,m} (3.5)

yk ≥ 0, ∀k ∈ {1, . . . , o} (3.6)

Equation (3.2) is the cost function of a memory allocation of the data structures to

memory banks. It is equal to the total sum of open conflict costs.

The following constraints guarantee a feasible solution: Equation (3.3) is equivalent

to Equation (2.4), both ensure that each data structure is assigned to a single memory

bank. Equation (3.4), sets variable yk to its appropriate value. Note that yk is equal

to 1 if conflict k involves a data structure in conflict with itself (k1 = k2). Equation

(3.5), enforces integrability constraint on xi,j . Finally, Equation (3.6), sets yj as a

nonnegative variable for all j.

We suppose that the required information to formulate this problem is supplied by

the embedded system designer, more precisely by the code profiling tools applied to

the C source code of the application.

The number of memory banks describes the architecture of the chip, and the num-

ber of data structures describes the application, whereas the conflicts and their costs

carry information on both the architecture and the application.

This problem, without the auto-conflicts and loops, is equivalent to the k-weighted

graph coloring problem [29, 173] (this problem is also referred to as the generalized
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graph coloring problem in [100]). It consists in coloring the vertices of an undirected

weighted graph with at most k colors so as to minimize the sum of the weighted edges

having both their endpoints colored with the same color. In this problem, the vertices

represent data structures and each edge represents a conflict between a pair of data

structures.

The ILP formulation for memory allocation problem with capacity constraints on

memory banks can be addressed using a solver like GLPK [71] or Xpress-MP [61]. How-

ever, as shown by the computational tests in Section 3.5, an optimal solution cannot be

obtained in a reasonable amount of time for medium size instances.

Moreover, as the k-weighted graph coloring problem is NP-hard [93, 173], so is

this version of memory allocation problem.

These are the reasons why we propose two metaheuristics to address this problem

in Section 3.4.

Vredeveld et al. [173] tackle the k-weighted graph coloring problem using Local

Search. In Section 3.5, we compare the results reached by our metaheuristics, the ILP

model and Local Search.

3.3 An illustrative example

We take up again the example of Chapter 2, with the aim of illustrating the memory

allocation problem with the constraint on the number of memory banks.

In this example, the purpose is allocated the data structures of the LMS dual-channel

filter algorithm [21] to the available memory banks.

SoftExplorer [106] produces the information required from the source code C (see

Figure 2.1). To display data, SoftExplorer changes the name of data structures by

numbers. For this application, we have: H11= 1, H12= 2, H21= 3, H22= 4, X1= 5,X2= 6, y1= 7 and y2= 8.

There are two memory banks, and Table 3.1 presents conflicts and their costs pro-

duces by SoftExplorer.

Table 3.1: Conflicts and costs of LMS dual-channel filter.

Conflicts Cost (ms)

1 5 1047552

2 6 1047552

3 5 1046529

4 6 1046529

1 7 1023

2 8 1023

3 3 1023

4 4 1023
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SoftExplorer computes the conflict cost using the access schedule. For example,

conflict (1, 5) represents the conflict between data structures H11 and X1. These data

structures are accessed in parallel two times (ordering 1 and 6 in the schedule of Figure

2.2). Also, this conflict is in a double loop for, the first time when it appears (line 17

of Figure 2.1). Thus, the conflict cost is (L-1)2+ (L-1), where L-1= 1023 (defined in

line 4 of Figure 2.1) is the number of iteration in loops for.

A solution found by Xpress-MP is shown by Figure 3.4, where one can see the colored

conflict graph and the allocation of data structures to two memory banks. The numbers

on edges represent the conflict costs, and the loops are removed to state the k-weighted

graph coloring problem.

Figure 3.4: Optimal solution for the example for the memory allocation with constraint

on the number of memory banks.

The chromatic number of this conflict graph is equal to the number of available

memory bank, then all non auto-conflicts are closed. The total cost of this memory

allocation is the sum of the cost of the auto-conflicts, it is 2046 milliseconds.

3.4 Proposed metaheuristics

As the memory allocation problem with constraint on the number of memory banks

is equivalent to a graph coloring problem (k-weighted graph coloring problem), we

propose two metaheuristics based on coloring approaches. The first one is inspired

from TabuCol, which is a tabu search for the vertex coloring problem presented by

Hertz and Werra in [80]. The second one is a hybrid evolutionary algorithm based

on Evocol (Evolutionary Hybrid Algorithm for Graph Coloring), which is introduced by

Porumbel et al. in [138]. These proposed metaheuristics are described in more detail

in the following subsections.
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3.4.1 A tabu search procedure

The first metaheuristic implemented for this problem is called Tabu-Alloation. It is

based on the Tabucol algorithm which is a tabu search for vertex coloring problem.

The tabu search method [69] belongs to the local search methods. It relies on a

simple procedure: it iteratively moves from the current solution to another one in its

neighborhood [153]. The neighborhood of a solution depends on the characteristics

of the addressed problem. The local search procedures stop when a local optimum is

found. The tabu search escapes from the local optimum by prohibiting to move from

the current solution to a solution presented in the tabu list, it is the origin of method’s

name. In general, the tabu list stores the last visited solution, and it is updated in the

FIFO (First In First Out) principle.Tabu-Alloation is a tabu search method developed here for the memory alloca-

tion problem with constraint on the number of memory banks. The considered neigh-

borhood N (x) of a solution x is the set of solutions obtained from x by changing the

allocation of a single data structure. For example, in a solution x, the data structure i is

allocated to the memory bank j, so a possible neighbor solution x′ can be obtained by

moving i to another memory bank and keeping the same allocation for the remaining

data structures.

Thus, the tabu list contains the most recent moves of data structures. These moves

are denoted by the pair (i, j), which means that data structure i cannot be mapped to

memory bank j. We denote by NT the size of the tabu list, i.e., the maximum number

of prohibited moves.

The main characteristic of Tabu-Alloation is that the size of the tabu list is not

constant. Every N iterations, Tabu-Alloation randomly changes the size of the tabu

list. It uses the function NT = a + N × t, where a is a fixed integer number and t

is a random number between 0 and 2. This idea was inspired from Porumbel’s work

about vertex coloring problem [138]. This is also somehow related to Reactive Tabu

Search [14].

Algorithm 3 describes the general structure of Tabu-Alloation.

The data required by the algorithm are the number of data structures, the number

of memory banks, the conflicts between data structures and their respective costs, and

the two algorithm’s calibration parameters: the maximum number of iterations and the

size of the tabu list. The algorithm returns the best memory allocation found for the

data structures.Tabu-Alloation starts with a random initial solution i.e., data structures are ran-

domly assigned to memory banks. Initial solutions generated in this way are feasible,

because the capacity of memory banks is not taken into account in this version of mem-

ory allocation problem.

In the iterative phase, Algorithm 3 searches for the best solution in the neighbor-

hood of the current solution during the maximum number of iterations, Niter. How-

ever, the research can stop before if a solution without open conflict is found, because
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Input: n data structures, m memory banks, conflict costs, Niter number of

iterations and NT size of the tabu list.

Output: [Best]: the best memory allocation foundInitialization:
Choose an initial solution s;

Best← s;

Iter = 0;Iterative phase
while ((Iter ≤ Niter) or (cost(s) > 0)) do//cost(s): ost produed by the solution s

Generate s′ ∈ N (s), from s allocating data structure i to memory bank j such

that cost(s′) < cost(s′′), ∀s′′ ∈ N(s);
if ((i, j) is not tabu) then

s← s′;
Update the tabu list;

if cost(s) < cost(Best) then

Best← s;

end

end

Compute the size of tabu list NT ;

Iter ← Iter + 1.
end

Algorithm 3: Tabu-Alloation.
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such a solution is optimal.

At each iteration, Tabu-Alloation seeks for the neighboring solution with mini-

mum cost, no matters if it is worse than the current one.

To escape from local optima and to explore other regions of the search space, the

method does not permit to allocate a data structure i to its past memory bank j for NT

iterations, i.e., a new solution is accepted if the pair (i, j) is not in the tabu list.

The tabu list is updated on the FIFO principle whenever the current solution changes.

And the best solution Best is updated if the cost produced by the current solution is

less than the one of the best solution found so far.

3.4.2 A memetic algorithm

The second metaheuristic implemented for this problem is called Evo-Alloation. It

is inspired by an evolutionary hybrid algorithm for the vertex coloring problem.Evo-Alloation keeps the following characteristics from Evocol [138]: a multi-

parent crossover, the general way of crossing parents, and the variable size of tabu list.

In fact, Evo-Alloation recourses to Tabu-Alloation for improving offspring.

The main difference between Evo-Alloation and Evocol is the way of updating

population. Evo-Alloation considers the variance of the costs in the population to

control diversity in the population.Evo-Alloation is shown in Algorithm 4.

Input: n data structures, m number of memory bank, conflict and cost conflicts,

number of parents r involved and the number of offspring g produced at

each iteration.

Output: Best : the best solution found.Initialization
Generate a random population of d elements;Iterative phase
while the stopping criterion is not satisfied do

while g offspring are not produced do

Choose r parents (r > 2);

Cross parents to produce a new offspring s;

Apply Tabu-Alloation to new offspring s;

Accept or not the offspring s;

end

Update population with g offspring, and update Best.
end

Algorithm 4: Evo-Alloation.

To execute the algorithm, the number of data structures, the number of memory

banks and the two algorithm’s parameters: r, number of parents for the crossover and
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g, number of offspring produced at each iteration are required. The algorithm returns

the best solution found.

The algorithm starts generating an initial population at random. The general prin-

ciple of Evo-Alloation is to obtain g new offspring (new solution) by crossing r

different parents (i.e., r elements of the current population). The crossover selects in

each parent the best assignments of data structures to form an offspring. Each offspring

produced by this mean is improved using Tabu-Alloation.

Algorithm 5 describes the multi-parent crossover. For each memory bank, the

crossover chooses the allocations of data structures that minimize the conflict rate. The

conflict rate of a memory bank is the number of conflicts between its data structures,

divided by the number of data structures mapped to this memory bank. The selected

affectations are removed from each parent. Finally, to assign the remaining data struc-

ture, the algorithm chooses the memory bank which produces the minimum sum of

open conflicts.

Input: r parents.

Output: an offspring.

for j = 1, . . . ,m do

for each parent in 1, . . . , r do
Compute the conflict rate of memory bank j

end

Choose the parent with minimum conflict rate

Allocate its data structures to memory bank j to build the offspring

for Each parent in 1,. . . , r do
Remove the data structures assigned to offspring

end

end

Assign the remaining data structures to minimize the total cost.

Algorithm 5: Crossover-Evo-Alloation.Evo-Alloation produces an offspring if the distance to its parents is greater than

a fixed threshold. The distance between two solutions sa and sb is defined as the

minimum number of data structures that need to be moved from the first solution to

become equal to the second one. This definition is frequently used in graph coloring

[66].

At each iteration, Evo-Alloation improves the quality of the population by replac-

ing the g parents which have the highest cost with g offspring.

With the aim of ensuring diversity, Evo-Alloation considers the statistic variance

of solution costs. If this variance is less than the fixed threshold, then a new population

is randomly generated.

Thus, the population is updated with the offspring and with the variance criterion.

This way of updating the population is a trade-off between diversity and quality.
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3.5 Computational results and discussion

This section presents the instances used to the computational test, and the relevant

aspects about implementation of the proposed metaheuristics. Moreover, we present

the result produced by our algorithms, and we compares their results with ones of the

ILP model and the local search method.

Instances

We have used 17 instances to test our approaches. The instance mpeg2en is a real

electronic problem provides by Lab-STICC laboratory. No more real-life instances are

available for this problem, so we have tested our algorithms using a set of instances

originates from DIMACS [137], a well-known collection of graph coloring instances.

These instances have been enriched by generating edge costs at random so as to create

conflict costs. For this we have use the uniform law in the interval [1; 100]

Implementation

Our metaheuristics have been implemented in C++ and compiled with g 4.11. The

PC used is a 3 GHz Intel Pentium IV with and 1 gigabyte of RAM.

To execute Tabu-Alloation, we set the number of iterations Niter equals to

10000, the integer numbers a and N used in function to calculate the size of tabu

list (NT = a+N × t) are set to 50 and 10 respectively. We set this values based on our

computational tests.

The calibration parameters of Evo-Alloation have the same value as in Evocol

[138]: a population constituted of d = 15 elements, a crossover with three parents (r =

3), and the generation of three offspring (g = 3). The Tabu-Alloation embedded inEvo-Alloation is ran with Niter equals to 1000.

The acceptance threshold for the distance between two elements of the population

is R = 0, 1×n. We have fixed a threshold of 0.3 for the variance of the population, and

100 iterations as stopping criterion.

Results

To our best knowledge, there are no alternative approaches for this problem in the liter-

ature. The k-weighted graph coloring problem can be addressed by Local Search [173],

so we have tested the local search on instances of this memory allocation problem.

To this end, we have used LocalSolver 1.0 [58] which is a solver for combinatorial

optimization entirely based on local search. This solver addresses a combinatorial

optimization problem by performing autonomous moves which can be viewed as a

structured ejection chains applied to the hypergraph induced by boolean variables and

constraints [142]. Results of that method are also reported.
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Table 3.2 provides the best cost reached by the metaheuristics, the local search

solved with LocalSolver, and also by the ILP formulation solved by GLPK [71]. The CPU

time, in seconds, is provided for each method. The two first columns are the main

features of the instances: name, number of data structures, number of conflicts, and

number of memory banks. The instances are sorted in non-decreasing order of number

of conflicts. The last column shows for each instance, if the solution found by GLPK is

optimal or not, as we have set a time limit of one hour for each instance.

The last lines of Table 3.2 give a summary for each approach used in this exper-

iment, it is the number of optimal solutions, the number of best solutions and the

average CPU time.

Table 3.2: Results
Instances Tabu-Alloation Evo-Alloation Local Solver ILP

Name n\o\m cost time cost time cost time cost time optimalmyiel3 11 \20 \2 146 0.26 146 1.82 270 3600 146 0.03 yesmyiel4 23 \71 \3 69 0.52 69 2.47 92 3600 69 1.16 yesmug88_1 88 \146 \2 967 1.09 967 15.72 1570 3600 967 157.23 yesmug88_25 88 \146 \2 881 1.07 881 16.27 1163 3600 881 53.11 yesqueen5_5 25 \160 \3 974 0.73 974 3.68 1085 3600 974 492.38 yesmug100_1 100 \166 \2 1149 1.19 1129 26.79 1818 3600 1129 957.19 yesmug100_25 100 \166 \2 1142 1.24 1142 18.54 1598 3600 1142 562.00 yesr125.1 125 \209 \3 346 1.22 346 28.87 456 3600 425 3599.73 nompeg2en 180 \227 \2 32.09 1.60 32.09 3.20 38.3 3600 32.09 107.79 yesmyiel5 47 \236 \3 591 0.81 591 3.60 910 3600 591 3599.41 noqueen6_6 36 \290 \4 999 1.13 999 5.73 1133 3600 1253 3599.29 noqueen7_7 49 \476 \4 1896 1.46 1896 16.10 2405 3600 2430 3600.02 noqueen8_8 64 \728 \5 1617 2.06 1617 54.12 2206 3600 2443 3600.01 nomyiel6 95 \755 \2 9017 1.26 9017 18.52 9965 3600 9963 3600.43 nomyiel7 191 \2360 \4 2262 2.21 2262 55.93 3297 3600 4642 3607.71 nor125.5 125 \3838 \18 785 8.58 734 156.97 1394 3600 1668 3648.99 nor125.1 125 \7501 \23 2719 11.27 2685 135.24 4159 3600 - 3820.08 no

Number of optimal solutions 7 8 0 8

Number of best solutions 7 9 0 1

Av. CPU time 2.22 33.15 3600 2059.21

Discussion

The computational results show that Evo-Alloation reaches the optimal solution

when it is known, i.e., when the ILP can be solved to optimality within one hour. Obvi-

ously, Tabu-Alloation is faster than Evo-Alloation, because Tabu-Alloation is a

subprogram of Evo-Alloation. The local search has not reached the optimal solution

for any instance after one hour of computation.

When the optimal solution is not found after one hour of computation for the ILP,

the solution returned is worse than the solutions generated by the metaheuristics. Also,

note that GLPK has not found any integer solution for the instance r125.1 after one
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hour of computation.

3.6 Conclusion

In addition to the ILP formulation, this chapter has introduced two metaheuristics:Evo-Alloation based on an hybrid evolutionary algorithm and Tabu-Alloation
based on the tabu search method. These metaheuristics are inspired by the algorithms

for the vertex coloring problem, because this version of memory allocation problem can

be seen as the k-weighted graph coloring problem.

The best results are returned by Evo-Alloation, which has a rigorous control

of population diversity and a multi-parent crossover. The main difference betweenTabu-Alloation and a classical tabu search is the variable size of the tabu list.

Table 3.2 compares the results between metaheuristics and exact formulation solved

with Xpress-MP. The experimental results are encouraging and suggest that the solu-

tions found are of very good quality, even for larger instances for which the optimal

solution is unknown.

Finally, the results suggest that the methods from graph coloring can be successfully

extended to more complex memory allocation problems in embedded systems, which

is done in the sequel of this manuscript.

The work presented in this chapter has been published in the Proceedings of ROADEF

(Congrès de la société Française de Recherche Opérationelle est d’Aide à la Décision)

[155].





4
General memory allocation problem

This chapter addresses the third version of memory allocation problem. This problem is

related to the data binding problems described in the state of the art, Subsection 1.3.3.

The general objective is the allocation of the data structures from a specific application

to a given memory architecture. Compared to the problem of the previous chapter,

additional constraints on the memory banks and data structures are considered. More-

over, an external memory is now present in the target architecture.

The metaheuristics designed for the previous version of the memory allocation prob-

lem are not longer used for addressing the problem of this chapter, because they require

too much CPU time to return good solutions. This chapter introduces an exact approach

and a VNS-based metaheuristic to tackle the general memory allocation problem. Nu-

merical experiments are conducted on a set of instances, and statistical analysis is used

to assess the results. The proposed metaheuristic appears to be suitable for the elec-

tronic design needs of today and tomorrow.

4.1 Introduction

The general memory allocation problem, called MemExplorer, is introduced in this

chapter. This problem is focused on the allocation of the data structures from a given

application to a given memory architecture. MemExplorer is more realistic than the

previous version of memory allocation problem presented in Chapter 3. In addition to

memory banks, an external memory is considered in the target architecture. External

memories store the long-term data, and they improve the throughput of an embedded

system [125].

In this problem, the number of memory banks is fixed and the memory bank capac-

ities are limited. The sizes of data structures and the number of accesses to them are

both taken into account. Moreover, the time for accessing to the external memory is

also considered.

In the data binding problem presented in Subsection 1.3.3, we have mentioned

some works that consider the capacities of memory banks and the number of accesses to

data structures, and other works that use an external memory bank in the target archi-

tecture. Although MemExplorer has some similarities with the data binding problems,59
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it is not equivalent to any of them. This is mainly due to the fact that the architecture,

the constraints and the objective function are all different.

The same assumptions as in the previous version of memory allocation are consid-

ered in this problem. It is assumed that the application to be implemented (e.g. MPEG

encoding, filtering or any other signal processing algorithms) is provided as a C source

code, and the data structures involved have to be mapped into memory bank. And all

memory banks can be accessed simultaneously.

Hence, a conflict between two data structures is defined as in the previous chapters

2 and 3, and the cost of conflicts are also taken into account. A conflict is open when

its data structures are allocated to the same memory bank, so a cost is generated. A

conflict is closed when the conflicting data structures are mapped in different memory

banks, so non cost is generated.

Due to cost and technological reasons, the number and the capacity of memory

banks are limited; an external memory with unlimited capacity is then assumed to be

available for storing data (it models the mass memory storage).

The processor requires accessing to data structures in order to execute the opera-

tions (or instructions) of the application. The access time to data structure is expressed

in milliseconds (ms), and depends on its current allocation. If a data structure is al-

located to a memory bank, its total access time is equal to the number of time the

processor accesses it, because the transfer rate from a memory bank to the processor is

one millisecond (ms). If a data structure is allocated to the external memory, its access

time is equal to its number of accesses multiplied by p ms, because the transfer rate

from the external memory to to the processor is p ms.

Figure4.1 shows the memory architecture considered for this problem.

Figure 4.1: The memory architecture for MemExplorer

A good management of memory allocation allows decreasing the energy consump-
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tion. Indeed, electronic practitioners consider that to some extent, minimizing power

consumption is equivalent to minimizing the running time of an application on a given

architecture [39]. As a consequence, memory allocation must be such that loading

operations are performed in parallel as often as possible. With this aim, the general

memory allocation problem is stated as follows: for a given number of capacitated

memory banks and an external memory, we search for a memory allocation for data

structures such that the time spent accessing these data is minimized. Section 4.3

presents an instance of MemExplorer aimed at exemplifying this problem.

Electronics practitioners often left to the compiler the management of the data

structures into memory banks. Nevertheless, the solution found by the compiler is

often too far from the optimal memory allocation. In this work, we seek for better

alternatives to manage the general memory allocation problem. Hence, an integer lin-

ear program is designed for MemExplorer in the following section. In Section 4.4, we

introduce metaheuristics conceived for this problem. The results produced by the exact

method and heuristic approaches are presented, and statistically compared in Section

4.5.

4.2 ILP formulation for the general memory allocation prob-

lem

The number of memory banks is denoted by m. Memory bank m + 1 refers to the

external memory. The capacity of memory bank j is cj for all j ∈ {1, . . . ,m} (it is

recalled that the external memory is not subject to capacity constraint).

The number of data structures is denoted by n. The size of a data structure i is

denoted by si for all i ∈ {1, . . . , n}. Besides its size, each data structure i is also

characterized by the number of time that processor accesses it, it is denoted by ei for

all i ∈ {1, . . . , n}. ei represents the time required to access data structure i if it is

mapped to a memory bank. If a data structure i is mapped to the external memory its

access time is equal to p× ei.

Conflict k is associated with its conflict cost dk, for all k ∈ {1, . . . , o}, where o is the

number of conflicts.

Sizes and capacities are expressed in the same memory capacity unit, typically kilo-

byte (kB). Conflict costs and access time are expressed in the same time unit, typically

milliseconds.

The isolated data structures, and the case where a data structure is conflicting with

itself are both taken into account for the ILP formulation and for the proposed meta-

heuristics.

There are two sets of decision variables, the first one represents the allocation of

data structures to memory banks. These variables are modeled as a binary matrix X,
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where:

xi,j =







1, if data structure i is mapped

to memory bank j

0, otherwise

,
∀i ∈ {1, . . . , n},
∀j ∈ {1, . . . ,m+ 1} (4.1)

The second one is a vector of real nonnegative variables Y , which models the conflict

statuses; so variable yk associated with conflict k has two possible values:

yk =

{

1, if conflict k is closed

0, otherwise
, ∀k ∈ {1, . . . , o} (4.2)

The mixed integer program for the general memory allocation problem is the fol-

lowing:

Minimize

n
∑

i=1

m
∑

j=1

eixi,j + p

n
∑

i=1

eixi,m+1 −
o

∑

k=1

ykdk (4.3)

m+1
∑

j=1

xi,j = 1, ∀i ∈ {1, . . . , n} (4.4)

n
∑

i=1

xi,jsi ≤ cj , ∀j ∈ {1, . . . ,m} (4.5)

xk1,j + xk2,j ≤ 2− yk, ∀j ∈ {1, . . . ,m+ 1}, ∀k ∈ {1, . . . , o} (4.6)

xi,j ∈ {0, 1}, ∀(i, j) ∈ {1, . . . , n} × {1, . . . ,m} (4.7)

yk ≥ 0 ∀k ∈ {1, . . . , o} (4.8)

The cost function of the problem, Equation (4.3), is the total time spent access-

ing the data structures and storing them in the appropriate registers to perform the

required operations listed in the C file. It is expressed in milliseconds.

This cost function is the sum of three terms. The first one is the cost generated by

accessing to data structures into memory banks, whereas the second term is the cost

produced by accessing to data structures placed in the external memory. The last term

is the sum of the closed conflicts. Note that all conflict costs are involved in the sum

of the first two terms. The last term is negative, and thus, only the open conflicts are

presented in the objective function.

Since
∑n

i=1

∑m+1
j=1 eixi,j =

∑n
i=1 ei is a constant value, it is equivalent to minimize:

(p− 1)
n
∑

i=1

(

eixi,m+1

)

−
o

∑

k=1

ykdk (4.9)

Equation (4.4) enforces that each data structure is allocated either to a unique
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memory bank or to the external memory. Equation (4.5) is used for ensuring that the

total size of the data structures allocated to a memory bank does not exceed its capacity.

For any conflict k, variable yk must be set appropriately, this is enforced by Equations

(4.6). For an auto-conflict k, yk is equal to 1. Finally, xi,j is a binary variable, for all

(i, j), and yk is nonnegative for all k.

The number of memory banks with their capacities, the external memory and trans-

fer rate p ms describe the architecture of the chip. The number of data structures, their

size and access time describe the application, whereas the conflicts and their costs carry

information on both the architecture and the application.

Note that this problem is similar to the k-weighted graph coloring problem [29]

if memory banks are not subject to capacity constraints, or if their capacity is large

enough for holding all the data structures. Indeed, in that case the external memory is

no longer used and the size, as well as the access cost of data structures can be ignored.

An optimal solution to MemExplorer problem can be computed by using a solver

like GLPK [71] or Xpress-MP [61]. However, as shown by the computational tests in

Section 4.5, an optimal solution cannot be obtained in a reasonable amount of time for

medium size instances. Moreover, MemExplorer is NP-hard, because it generalizes the

k-weighted graph coloring problem [29].

In the following section, we propose a VNS-based metaheuristic for addressing this

problem. Vredeveld et al. in [173] address the k-weighted graph coloring problem by

Local Search Programming. We compare the results reached by ILP formulation, our

metaheuristic approaches, and Local Search Programming in Section 4.5. Moreover,

we use a statistical test to analyze the performance of these approaches.

4.3 An illustrative example

This is an instance produced from LMS (Least Mean Square) dual-channel filter [21]. It

exemplifying the general memory allocation problem. Table 4.1 present the informa-

tion yield from the compilation and code profiling of this signal processing algorithm.

To this end, we have used the software of Lab-STICC, SoftExplorer [106].

All data structures have the same size of 15700 kB. The memory architecture has

two memory banks with capacity of 47100 kB. Memory banks can only store three data

structures. On the target architecture, p is equal to 16 ms. Figure 4.2 shows the solution

found by solving the ILP formulation using the solver Xpress-MP. In this figure, a graph

is used for illustrating this solution.

In the optimal solution, the data structures which are least accessed are allocated

in the external memory. Thus, only auto-conflicts are open. The cost generated by this

solution is formed by:

Access time to memory banks:

n
∑

i=1

m
∑

j=1

(

eixi,j
)

= 8, 382, 462 ms
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Table 4.1: Conflicts and data structures of LMS dual-channel filter.

Conflicts Cost (ms) Data structures Number of access

1 5 1047552 1 1048575

2 6 1047552 2 1048575

3 5 1046529 3 1048575

4 6 1046529 4 1048575

1 7 1023 5 2094081

2 8 1023 6 2094081

3 3 1023 7 1023

4 4 1023 8 1023

Figure 4.2: An optimal solution for the example of MemExplorer.
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Access time to external memory: p

n
∑

i=1

(

eixi,m+1

)

= 32, 736 ms

Access time saved by closed conflicts:

o
∑

k=1

ykdk = 4, 190, 208 ms

Hence, the total cost of the optimal solution is 4, 224, 990 ms.

4.4 Proposed metaheuristics

In this section, we describe the design of the different metaheuristics used for address-

ing this problem. Before presenting the metaheuristics for MemExplorer, we present the

algorithms used for generating initial solutions, as well as two neighborhoods. Then,

a Tabu Search-based approach is introduced with the two neighborhoods for exploring

the solution space. At the end of this section, a Variable Neighborhood Search-based

approach hybridized with a Tabu Search-inspired method is also presented.

4.4.1 Generating initial solutions

Below, we present two ways for generating initial solutions. The first one generates

feasible solutions at random, and the second one builds solutions using a greedy algo-

rithm.

Random initial solutions

Algorithm 6 presents the procedure RandomMemex for generating random feasible initial

solutions. At each iteration, a data structure is allocated to a random memory bank (or

the external memory) provided that capacity constraints are satisfied.

Greedy initial solutionsGreedyMemex is a greedy algorithm for MemExplorer, this kind of algorithm makes

locally optimal choices at each stage in the hope of finding the global optimum [22,45].

Generally, greedy algorithms do not reach an optimal solution as they are trapped in

local optima, but they are easy to implement and can provide initial solutions to more

advanced approaches.GreedyMemex is described in pseudocode of Algorithm 7, where A is a permutation

of the set {1, . . . , n} that models data structures, used for generating different solutions.

Solution X∗ is the best allocation found by the algorithm, where (x∗i,j) variables have

the same meaning as in Equation (5.1), and f∗ = f(X∗). Matrix G is used to assess

the cost when data structures are moved to different memory banks or to the external

memory. More precisely, gi,j is the sum of all open conflict costs produced by assigning

data structure i to memory bank j. If data structure i is moved to external memory

(j = m + 1), gi,j is the sum of all open conflict costs multiplied by p plus its access
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Output: [X∗, f∗]Initialization:
Capacity used: uj ← 0, ∀j ∈ {1, . . . ,m+ 1}
Allocation: x∗ij ← 0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m+ 1}
f∗ ← 0Assignment:
for i← 1 to n do

repeat
Generate j at random in {1, . . . ,m+ 1}

until uj + si ≤ cj;
x∗i,j ← 1
uj ← uj + si
Compute gij , the cost generated from allocating the data i to memory bank j
f∗ ← f∗ + gij

end

Algorithm 6: Pseudo-code for RandomMemex
Input: A← {a1, . . . , an}
Output: [X∗, f∗]Initialization:
Capacity used: uj ← 0, ∀j ∈ {1, . . . ,m+ 1}
Allocation: x∗ij ← 0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m+ 1}
f∗ ← 0Assignment:
for i← 1 to n do

h∗ ←∞ // (auxiliary variable for the partial greedysolution)
for j=1 to m+1 do

if uj + sai < cj then
Compute gij , the cost for allocating data ai to memory bank j
if gij < h∗ then

b← j
h∗ ← gij

end

end

end

x∗ai,b ← 1
ub ← ub + sai
f∗ ← f∗ + h∗ //total ost of the solution

end

Algorithm 7: Pseudo-code for GreedyMemex
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time multiplied by (p− 1). The numerical value of gi,j depends on the current solution

because the open conflict cost depends on the allocation of the other data structures.

At each iteration, GreedyMemex completes a partial solution which is initially empty

by allocating the next data structure in A. The allocation for the current data structure

is performed by assigning it to the memory bank leading to the minimum local cost

denoted by h∗, provided that no memory bank capacity is exceeded. The considered

data structure is allocated to the external memory if no memory bank can hold it.

Allocation cost f∗ is returned when the all data structures have been allocated.GreedyMemex has a computational complexity of O(nm). Both algorithms require

very few computational efforts, but return solutions that may be far from optimality.

However, these procedures are not used as standalone algorithms, but as subroutines

called in Algorithm 8 for generating initial solutions for a Tabu search-based procedure.

Input: A
Output: [X∗, f∗]

if A← ∅ then
(X∗, f∗)←RandomMemex

else
(X∗, f∗)←GreedyMemex(A)

end

Algorithm 8: Pseudo-code for InitialMemex
4.4.2 A tabu search procedure

We introduce a tabu search method for MemExplorer in Algorithm 9, which is based

on TabuCol, an algorithm for graph coloring introduced in [80]. The main difference

with a classic tabu search is that the size of the tabu list is not constant over time. This

idea is introduced in [14] and also used in the work of Porumbel, Hao and Kuntz on

the graph coloring problem [138]. In TabuMemex, the size of the tabu list NT is set to

a +NTmax× t every NTmax iterations, where a is a fixed integer and t is a random

number in [0, 2].

A pair (i, j) means that data structure i is in memory bank j. A move is a trio

(i, h, j), this means that data structure i, which is currently in memory bank h, is to be

moved to memory bank j. As a consequence, if the move (i, h, j) is performed, then

the pair (i, h) is appended to the tabu list. Thus, the tabu list contains the pairs that

have been performed in the recent past and it is updated on the FIFO basis (First In

First Out).

The algorithm takes an initial solution X as input that can be returned by the pro-

cedure InitialMemex. Its behavior is controlled by some calibration parameters, such

as the number of iterations, Niter, and the number of iterations for changing the size

of the tabu list, NTmax. The result of this algorithm is the best allocation found X∗

and its cost f∗.
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Input: Initial solution X and number of neighborhood k
Output: [X∗, f∗]Initialization:
Capacity used uj ← 0 ∀j ∈ {1, . . . ,m}
NT ← NTmax
f∗ ←∞Iterative phase:
Iter ← 0
while Iter < Niter and f(X) > 0 do

[X ′, (i, h, j)] ← Explore-Neighborhood-Nk(X)
X ← X ′

if f(X ′) < f∗ then
f∗ ← f(X ′)
X∗ ← X ′

end

Update the tabu list with pairs (i, j) and (i, h)
Update the size of tabu list NT
Iter ← Iter + 1

end

Algorithm 9: Pseudo-code for TabuMemex
The iterative phase searches for the best solution in the neighborhood of the current

solution. The neighborhood exploration is performed by calling Explore-Neighborhood-
Nk(X) which calls the corresponding procedure with only one neighborhood used at a

time. Two neighborhoods, denoted by N0 and N1 are considered; they are introduced

in the next section. The fact that the new solution may be worse than the current

solution does not matter because each new solution allows unexplored regions to be

reached, and thus to escape local optima. This procedure is repeated for Niter itera-

tions, but the search stops if a solution without any open conflict, and for which the

external memory is not used is found. Indeed, such a solution is necessarily optimal

because the first and third terms of Equation (4.3) are zero because no conflict cost has

to be paid, and no data structure is in the external memory. Consequently, the objective

function assumes its absolute minimum value, the second term of Equation (4.3), and

so is optimal. A new solution is accepted as the best one if its total cost is less than the

current best solution.

This tabu search procedure will be used as a local search procedure in a VNS-based

algorithm introduced in Section 4.4.4.

4.4.3 Exploration of neighborhoods

In this section, we present two algorithms which explore two different neighborhoods

for MemExplorer. Both of them return the best allocation (X ′) found along with the
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corresponding move (i, h, j) performed from a given solution X. In these algorithms, a

move (i, h, j) is said to be non tabu if the pair (i, j) is not in the tabu list. The first one

explores a neighborhood which is generated by performing a feasible allocation change

of a single data structure, it is shown in Algorithm 10.

Input: X
Output: [X ′, (i, h, j)]
Find a non tabu min cost move (i, h, j), such that h 6= j and uj + si ≤ cj
Build the new solution X ′ as follows:

X ′ ← X
x′i,h ← 0
x′i,j ← 1
uj ← uj + si
uh ← uh − si

Algorithm 10: Pseudo-code for Explore-Neighborhood-N0

Algorithm 11 presents the Explore-Neighborhood-N1. It explores solutions that

are beyond N0 by allowing the creation of infeasible solutions before repairing them.

Input: X
Output: [X ′, (i, h, j)]First phase: onsidering a potentially infeasible move
Find a non tabu min cost move (i, h, j), such that h 6= j
Build the new solution X ′ as follows:

X ′ ← X
x′i,h ← 0
x′i,j ← 1
uj ← uj + si
uh ← uh − siSeond phase: repairing the solution

while uj > cj do
Find non tabu min cost move (l, j, b), such that l 6= i, j 6= b and ub + tl ≤ cb
Update solution X ′ as follows:

x′l,j ← 0
x′l,b ← 1
ub ← ub + sl
uj ← uj − sl

end

Algorithm 11: Pseudo-code for Explore-Neighborhood-N1

The first phase of Explore-Neighborhood-N1 performs a move that may make the

current solution X ′ infeasible by violating the capacity constraint of a memory bank.

However, this move is selected to minimize the cost of the new solution, and is not
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tabu. The second phase restores the solution by performing a series of reallocations

for satisfying capacity constraints, but also trying to generate the minimum allocation

cost. Then, it allows both feasible and infeasible regions to be visited successively. This

way of using a neighborhood is referred to as Strategic Oscillation in [69].

4.4.4 A Variable Neighborhood Search hybridize with a Tabu Search

Since both neighborhoods have their own utility (confirmed by preliminary tests), it

seems clear that they should be used together in a certain way. The general Variable

Neighborhood Search [122] scheme is probably the most appropriate method to prop-

erly deal with several neighborhoods.

Algorithm 12 presents the VNS-based algorithm for MemExplorer. The number of

neighborhoods is denoted by kmax, and the algorithm starts exploring N0 as N0 ⊂ N1.

Output: [X∗, f∗]Initialization:
Generate A
(X∗, f∗)←InitialMemex(A)
k ← 0Iterative phase:
i← 0
while i < Nrepet do// Make a new initial solution X from X∗

X ← 60% of X∗, complete the solution with GreedyMemex
Apply (X ′, f ′)←TabuMemex(X, k) using Explore-Neighborhood-Nk

if f ′ < f∗ then
X∗ ← X ′

f∗ ← f ′

i← 0
k ← 0

else

if k = kmax then
k ← 0

else
k ← k + 1

end

i← i+ 1.
end

end

Algorithm 12: Pseudo-code for Vns-Ts-MemExplorer
The maximum number of iteration is denoted by Nrepet. Vns-Ts-MemExplorer, at

each iteration, generates a solution X ′ at random from X. It copies the allocation of

60% of the data structures in the initial solution (the 60% of data structures is selected
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randomly), and the GreedyMemex is used for mapping the remaining 40% of unallocated

data structures for producing a complete solution X ′.

This VNS algorithm relies on two neighborhoods. N0 is the smallest neighbor-

hood, as it is restricted to feasible solutions only. If TabuMemex improves the cur-

rent solution, it keeps searching for new solutions in that neighborhood. Otherwise,

it does not accept the new solution and changes the neighborhood (i.e., by applyingExplore-Neighborhood-N1 to the current solution).

4.5 Computational results and discussion

This section presents the relevant aspects of implementation of the algorithms. It also

presents the information about the instances used to test our algorithms. Moreover, the

results reached by our algorithms are presented and compared with the ILP formulation

and the local search method.

Instances used

There are 43 instances for testing our algorithms, they are split into two sets of in-

stances. The first one is a collection of real instances provided by Lab-STICC labora-

tory [5] for electronic design purposes. These instances have been generated from

their source code using the profiling tools of SoftExplorer [106]. This set of instances

is called LBS.

The second set of instances originates from DIMACS [137], a well-known collection

of online graph coloring instances. The instances in DMC have been enriched by gener-

ating edge costs at random so as to create conflict costs, access times and sizes for data

structures, and also by generating a random number of memory banks with random

capacities. This second set of instances is called DMC.

Although real-life instances available today are relatively small, they will be larger

and larger in the future as market pressure and technology tend to integrate more and

more complex functionalities in embedded systems. Moreover, industrialist do not want

to provide data about their embedded applications. Thus, we tested our approaches on

current instances and on larger (but artificial) ones as well, for assessing their practical

use for forthcoming needs.

Implementation

Algorithms have been implemented in C++ and compiled with g 4.11 on a Intel

Pentium IV processor system at 3 GHz and 1 gigabyte RAM.

In our experiments, the size of the tabu list is set every NTmax = 50 iterations to

NT = 5 + NTmax × t, where t is a real number selected at random in the interval

[0, 2]. The maximum number of iterations has been set to Niter = 50000.
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For the initial solutions, we have used three different sorting procedures for per-

mutation A of data structures. Then, we have three GreedyMemex algorithms: in the

first one, A is not sorted. In the second one, A is sorted by decreasing order of the

maximum conflict cost involving each data structure and in the last one, A is sorted by

decreasing order of the sum of the conflict cost involving each data structure. Hence,

we have four initial solutions (random initial solutions and greedy solutions) and three

ways of mapping the 40% of solution X ′ in VNS algorithm.

However, other tests showed that the benefit of using different initial solutions and

different greedy algorithms to generate X ′ is not significant. In fact, this benefit is

visible only for the most difficult instances with a low value of 1.2% on average, and

for the other instances, VNS algorithm finds the same solutions, no matter the initial

solution or greedy algorithm.

Results

The k-weighted graph coloring problem can be addressed by Local Search Program-

ming [173]. Thus, we have tested the local search on instances of MemExplorer, with

the aim of comparing our algorithms with another heuristic approach. The result pro-

duced by the solver LocalSolver 1.0 [58] are also reported.

The ILP formulation solved by Xpress-MP. is used as a heuristic when the time limit

of one hour is reached: the best solution found so far is then returned by the solver. A

lower bound found by the solver was also calculated, but it was far too to low for being

useful.

The cost returned by Vns-Ts-MemExplorer is the best results obtained over all the

combinations of different initial solutions and different greedy algorithms for generat-

ing a solution X ′.

For a clear view of the difficulty, the instances have been sorted in non-decreasing

order of number of conflicts. In Table 4.2 the first three columns show the main fea-

tures of the instances (the source, the name, n: the number of data structures, o: the

number of conflicts and m: the number of memory banks). The next two columns re-

port the cost (in milliseconds) and CPU time (in seconds) of Vns-Ts-MemExplorer, the

two following columns show the cost and CPU time of Local Solver, and the last three

columns display the results of the ILP model: lower bound, cost and CPU time.

DiscussionVns-Ts-MemExplorer results are compared with Local Solver Programming and the ILP

formulation solved by Xpress-MP. Bold figures in Table 4.2 represent the best known

solutions over all methods. In the ILP columns, the cost with an asterisk has been

proved optimal by Xpress-MP. Vns-Ts-MemExplorer reaches the optimal solution for all

of the instances for which the optimal cost is known. The optimal solution is known for

88% of the real-electronic instances and for 31% of the DIMACS instances. Furthermore,
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Table 4.2: Vns-Ts-MemExplorer, Local Solver and ILP results
Instances Vns-Ts-MemExplorer Local Solver ILP

Set Name n\o\m Cost Time Cost Time L. bound Cost Time

LBS ompress 6 \6 \2 511232 0.09 511232 1.00 511232 511232* 0.03
LBS volterra 8 \6 \2 1 < 0.01 1 1.00 1 1* 0.33
LBS adpm 10 \7 \2 224 < 0.01 224 1.00 224 224* 0.08
LBS jpeg 11 \7 \2 641 0.2 641 1.00 641 641* 0.05
LBS lmsb 8 \7 \2 3140610 0.18 16745739 200 3140610 3140610* 0.50
LBS lmsbv 8 \8 \2 2046 < 0.01 2046 1.00 2046 2046* 0.03
LBS spetral 9 \8 \2 640 < 0.01 640 1.00 640 640* 0.03
LBS gsm 19 \17 \2 86132 0.34 86132 1.00 86132 86132* 0.06
LBS lp 15 \19 \2 790 0.42 790 200 790 790* 0.19
DMC myiel3 11 \20 \2 377 0.68 377 1.00 377 377* 0.17
LBS turboode 12 \22 \3 2294 0.43 2294 300 2294 2294* 0.34
LBS treillis 33 \61 \2 12.06 1.43 12.06 200 12.06 12.06* 0.28
LBS mpeg 68 \69 \2 786.5 0.88 786.5 1641 786.5 786.5* 0.36
DMC myiel4 23 \71 \3 2853 1.94 2930 1.00 2853 2853* 16.30
DMC mug88_1 88 \146 \2 1020 6.33 1379 3596 1020 1020* 31.23
DMC mug88_25 88 \146 \2 918 7.00 1263 3483 918 918* 13.71
DMC queen5_5 25 \160 \3 1338 2.47 8507 140 1338 1338* 1616
DMC mug100_1 100 \166 \2 2652 6.74 2788 2810 2652 2652* 2392
DMC mug100_25 100 \166 \2 2661 5.40 2791 1198 2661 2661* 1165
DMC r125.1 125 \209 \3 346 8.94 361 31.00 260.33 346 3600
LBS mpeg2en 127 \236 \2 32.09 7.21 39.2 6.00 32.09 32.09* 6.48
LBS mpeg2en2 180 \236 \2 32.09 8.93 36.3 892 32.09 32.09* 4.69
DMC myiel5 47 \236 \3 2990 4.56 3254 11 1420.54 3098 3600
DMC queen6_6 36 \290 \4 8656 14.63 9029 1940 4213.43 8871 3600
LBS mpeg2 191 \368 \2 61476.52 8.78 61480.1 740 61476.52 61476.52* 12.00
DMC queen7_7 49 \476 \4 13951 10.93 14414 10.00 4708.61 14972 3600
DMC queen8_8 64 \728 \5 15132 10.48 15389 7.00 482.77 17183 3600
LBS mpeg2x2 382 \736 \4 122831.26 0.05 122828.7 834 122826.97 122831.26 3600
DMC myiel6 95 \755 \2 9135 5.54 10532 2065 9135 9135* 1437
LBS ali 192 \960 \6 7951 248.45 7965 3600 4738.9 8009 3600
DMC myiel7 191 \2360 \4 3347 37.15 9001 269 6.17 5140 3600
DMC zeroin_i3 206 \3540 \15 707 26.80 757 2936 15 962 3600
DMC zeroin_i2 211 \3541 \15 575 51.67 878 1396 15 829 3600
DMC r125.5 125 \3838 \18 20502 36.67 47403 3572 61.33 85026 3600
DMC mulsol_i2 188 \3885 \16 1470 91.59 1255 3299 31.61 5722 3600
DMC mulsol_i1 197 \3925 \25 543 944.49 520 3183 30 543 3600
DMC mulsol_i4 185 \3946 \16 1149 30.19 1047 1325 30.19 1169 3600
DMC mulsol_i5 186 \3973 \16 730 53.17 2022 1383 15 1840 3600
DMC zeroin_i1 211 \4100 \25 716 50.07 497 2816 15 1050 3600
DMC r125.1 125 \7501 \23 91433 44.55 266463 3210 15 289868 3600
DMC fpsol2i3 425 \8688 \15 1921 52.50 2313 3571 19.29 3468 3600
DMC fpsol2i2 451 \8691 \15 1006 89.38 1813 3563 30 2059 3600
DMC inithx_i1 864\18707\27 739 204.28 1154 3590 15 2878 3600

Number of optimal sol. 23 11 23
Number of best sol. 38 16 24
Avg. impr. on ILP: 35.29% 24%
Avg. CPU time (s): 48.27 1349.44 1881.95
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of best solutions reported by our approach is 38, compared to 16 with Local Solver and

24 with the ILP model.

Indeed, on average the ILP cost is improved by 35.29% using the VNS algorithm,

whereas local search can either improve the cost by 24% or gets worse the cost by 71%.

CPU time comparison of Vns-Ts-MemExplorer and ILP shows that our algorithm remains

significantly faster than ILP in most cases. On average, the time spent by Xpress-MP is

1700 times longer than the time spent by VNS algorithm. When no optimal solution

is found with Xpress-MP, the lower bound on the objective value seems to be of poor

quality, as it is 37% more than the best solution found on average. This suggests that

after one hour of computation, the optimal solution would still require a very long time

to be found or to be proven. For the instances for which the optimal solution is not

known, the lower bound is often far from the best known solution. It is also important

to note that the ILP performs well on small size instances (up to 250 conflicts) since it

benefits from very performant advances in its code (like internal branch-and-cut, cut

pool generation and presolver).

Assessing TabuMemex

In the VNS, the search is intensified by using TabuMemex as a local search procedure in

the solution space. To assess the benefit of this strategy, we have tested our VNS with

a classic tabu search method (i.e., without changing the size of the tabu list), and we

have also tested TabuMemex with each neighborhood.

Table 4.3 shows the comparison between Vns-Ts-MemExplorer performances, a VNS

variant with the classical tabu search and the tabu search alone with each of the two

neighborhoods. The first two columns of Table 4.3 are the same as in Table 4.2, the

next four columns report the cost value of each variant of the approach.

The costs reached by the other variants of VNS are worse in most cases, in fact

the solution cost of Vns-Ts-MemExplorer with classic tabu search is on average 35%

higher than with TabuMemex; in addition the tabu searches with each neighborhood

(namely N0 and N1) are on average 56% and 21% worse than Vns-Ts-MemExplorer,

respectively. This shows the benefit of the joint use of different neighborhoods and an

advanced tabu search method.

4.6 Statistical analysis

In this section, we use a statistical test to identify differences in the performance of

heuristics. Additionally, we perform a Post-hoc paired analysis for comparing the per-

formance between two heuristic approaches. This allows for identifying the best ap-

proach.

We have used the Friedman test [64] to detect differences in the performance of

three heuristics (Vns-Ts-MemExplorer, local search, ILP formulation) using the results
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Table 4.3: Intensity of some local search variants

Instances Vns-Ts M. VNS with Tabu search neighborhood
Name n\o\m cost classic tabu N0 N1ompress 6 \6 \2 511232 511232 511232 511232volterra 8 \6 \2 1 1 1 1adpm 10 \7 \2 224 224 224 224jpeg 11 \7 \2 641 641 641 641lmsb 8 \7 \2 3140610 16745700 16745700 16745700lmsbv 8 \8 \2 2046 2046 2046 2046spetral 9 \8 \2 640 640 640 640gsm 19 \17 \2 86132 86132 86132 86132lp 15 \19 \2 790 790 790 790myiel3 11 \20 \2 377 2167 377 377turboode 12 \22 \3 2294 2294 2294 2294treillis 33 \61 \2 12.06 12.06 12.06 12.06mpeg 68 \69 \2 786.5 790.88 786.5 790.5myiel4 23 \71 \3 2853 2853 2877 2853mug88_1 88 \146 \2 1020 1068 1036 1020mug88_25 88 \146 \2 918 1095 918 950queen5_5 25 \160 \3 1338 1342 1342 1342mug100_1 100 \166 \2 2652 2735 2901 2662mug100_25 100 \166 \2 2661 2734 2661 2661r125.1 125 \209 \3 346 349 429 347mpeg2en 127 \236 \2 32.09 36.59 32.2 32.47mpeg2en2 180 \236 \2 32.09 38.48 32.2 33.22myiel5 47 \236 \3 2990 3033 3281 2990queen6_6 36 \290 \4 8656 8810 9257 8754mpeg2 191 \368 \2 61476.52 61480.2 61476.5 61479.3queen7_7 49 \476 \4 13951 14186 15120 14107queen8_8 64 \728 \5 15132 15480 15455 15360mpeg2x2 382 \736 \4 122831.26 122831.26 122831.26 122831.26myiel6 95 \755 \2 9135 9706 9135 9135ali 192 \960 \6 7951 8123 8053 8088myiel7 191 \2360 \4 3347 3741 4116 3548zeroin_i3 206 \3540 \15 707 754 2233 791zeroin_i2 211 \3541 \15 575 632 954 607r125.5 125 \3838 \18 20502 22735 22993 22609mulsol_i2 188 \3885 \16 1470 1779 3651 1480mulsol_i1 197 \3925 \25 543 755 955 792mulsol_i4 185 \3946 \16 1149 1085 1382 1197mulsol_i5 186 \3973 \16 730 800 3729 732zeroin_i1 211 \4100 \25 716 661 841 1516r125.1 125 \7501 \23 91433 94479 96528 94358fpsol2i3 425 \8688 \15 1921 1973 3125 2121fpsol2i2 451 \8691 \15 1006 1015 2184 1106inithx_i1 864 \18707 \27 739 820 1698 850

Avg. worsening: 35% 56% 21%
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presented in Table 4.2.

As the results over instances are mutually independent and costs as well as CPU

times can be ranked, we have applied the Friedman test for costs and CPU times. This

allows us to compare separately (univariate model [38]) the performance in terms of

solution quality and running time.

For each instance, the CPU times of the three approaches are ranked as follows. The

smallest CPU time is ranked 1, the largest one is ranked 3. If two CPU times are equal,

their rank is computed as the average of the two candidate ranks (i.e., if two CPU times

should be ranked 1 and 2, the rank is 1.5 for both). The same is performed for solution

objective value.

The number of instances is denoted by r, the number of compared metaheuristic is

denoted by q and the Friedman test statistic is denoted by Q, it is defined as follows:

Q =
(r − 1)(B2 − rq (q+1)2

4

A2 −B2)
(4.10)

where A2 is the total sum of squared ranks and B2 is the sum of squared Ri divided by

q. Ri is the sum of ranks of metaheuristics i for all i in {1, . . . , q}.
The null hypothesis suppose that for each instance the ranking of the metaheuristics

is equally likely. The null hypothesis is rejected at the level of significance α if Q is

greater than the 1−α quantile of the F(q1,q2)-distribution (Fisher-Snedecor distribution)

with q1 = q − 1 and q2 = (q − 1)(r − 1) degrees of freedom.

The test statistic Q is 21.86 for the running time, and 13.52 for the cost. Moreover,

the value for the F(2,84)-distribution with a significance level α = 0.01 is 4.90. Then, we

reject the null hypothesis for running time and cost at the level of significance α = 0.01.

We can conclude that there exists at least one metaheuristic whose performance is

different from at least one of the other metaheuristics. To know which metaheuristics

are really different, it is necessary to perform an appropriate post-hoc paired compar-

isons test.

Post-hoc paired comparisons

As the null hypothesis of Friedman test was rejected, we can use the following method

for knowing if two metaheuristics are different [44]. We say that two metaheuristics

are different if:

|Ri −Rj | >
√

2r(A2 −B2)

(r − 1)(q − 1)
t(1−α

2
,q2) (4.11)

where t(1−α
2
,q2) is the 1− α

2 quantile of the t-distribution with (r−1)(q−1) degrees

of freedom.

For α = 0.01, t(0.095,84)-distribution is 2.64; then, the left-hand side of equation

(4.11) for the running time is 20.06 and for the cost is 17.44. Table 4.4 summarizes
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the paired comparisons for the cost and running time. The bold values means the

metaheuristics are different.

Table 4.4: Paired comparisons for MemExplorer
Cost paired test Running time paired test

|Ri −Rj | ILP Local search |Ri −Rj | ILP Local searchVns-Ts-MemExplorer 26 32.5 Vns-Ts-MemExplorer 42 45

ILP - 6.5 ILP - 3

Critical value 17.44 Critical value 20.06

The post-hoc test shows that ILP and local search have the same performance in

terms of solution cost and CPU time, while Vns-Ts-MemExplorer is the best approach

in terms of solution cost and computational time.

4.7 Conclusion

In this chapter, an exact approach and a VNS-based metaheuristic are proposed for

addressing a memory allocation problem. Vns-Ts-MemExplorer takes advantage of

some features of tabu search methods initially developed for graph coloring, which

is efficient as relaxing capacity constraints on memory banks leads to the k-weighted

graph coloring problem. Vns-Ts-MemExplorer appears to be performing well because

of its reasonable CPU time for large instances, and because it returns an optimal memory

allocation for all instances for which the optimal cost is known. These results allow one

to hypothesize that the solutions found for the instances for which the optimal solution

is unknown are of good quality. The improvements over a classic tabu search approach,

like the implementation of a variable tabu list, have a significant impact on solution

quality. These features have TabuMemex exploring the search space efficiently.Vns-Ts-MemExplorer achieves encouraging results for addressing the MemExplorer

problem due to its well balanced (intensification/diversification) search. The search is

diversified by exploring the largest neighborhood when a local optimum is found, in

addition the local search method (TabuMemex) gives a more intensive search because

of the significant improvements over a classic tabu search procedure. Using methods

inspired by graph coloring problems can be successfully extended to more complex

allocation problems for embedded systems, thereby assessing the gains made by using

these methods to specific cases in terms of energy consumption. Moreover, it gives

promising perspectives for using metaheuristics in the field of electronic design.

Finally, if the exact approach is suitable for today’s applications, it is clearly not for

tomorrow’s needs. Indeed, the best solution returned by the solver is generally very

poor even after a long running time, and the quality of the lower bound is too bad for

being helpful at all. The proposed metaheuristics appear to be suitable for the needs

of today and tomorrow. The very modest CPU time compared to the exact method is

an additional asset for integrating them to CAD tools, letting designers test different
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options in a reasonable amount of time.

The work presented in this chapter has been published in the Journal of Heuristics

[156] in 2011.



5
Dynamic memory allocation problem

This chapter deals with the last version of memory allocation problem addressed in

this thesis. The objective is to allocate data structures from a given application, to

a given set of memory banBs. In this variant, the execution time is split into time

intervals. The memory allocation must consider the requirement and constraints at

each time interval. Hence, the memory allocation is not static, it can be adjusted since

the application needs for data structures may change at each time interval.

After proposing an ILP model, we introduce two iterative metaheuristics for ad-

dressing this problem. These metaheuristics aim at determining which data structure

should be stored in cache memory at each time interval in order to minimize realloca-

tion and conflict costs. These approaches take advantage of metaheuristics designed

for the previous memory allocation problem (see Chapter 3 and 4 ).

5.1 Introduction

The dynamic memory allocation problem, called MemExplorer-Dynamic, is presented in

this chapter. This problem has a special emphasis on time performance. The general

objective is to allocate data structures for a specific application to a given set of memory

banks.

This problem is related to the data binding problems (Subsection 1.3.3). For in-

stance, in the work presented in [117] a periodical set of data structures must be allo-

cated to memory banks; thus the objective is to minimize the transfer cost produced by

moving data structures between memory banks. Despite these similarities, there is no

equivalent problem to the dynamic memory allocation problem.

The main difference between MemExplorer and this dynamic version of the mem-

ory allocation problem, is that the execution time is split into T time intervals whose

durations may be different. Those durations are assumed to be given along with the ap-

plication. During each time interval, the application requires accessing a given subset

of its data structures for reading and/or writing.

Figure 5.1 shows the memory architecture for MemExplorer-Dynamic, which is sim-

ilar to the one of a TI-C6201 device. It is composed of memory banks and an external

memory. These memory banks have a limited capacity, and the capacity of external79
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memory is large enough to allocate all data structures. The size of the data structures

and the number of their accesses to them are both taken into account. Capacities of

memory banks and the size of data structures are expressed in kilobyte (kB).

Figure 5.1: Memory architecture for MemExplorer

The processor accesses the data structure to perform the instructions of the appli-

cation. As in MemExplorer, the access time of a data structure is its number of accesses

multiplied by the transfer rate from the processor to memory banks or external mem-

ory. As before, the transfer rate from the processor to a memory bank is one ms, and

the transfer time from processor to the external memory is p ms.

Initially (i.e., during time interval I0), all data structures are in the external memory

and memory banks are empty. The time required for moving a data structure from the

external memory to a memory bank (and vice-versa) is equals to the size of the data

structure multiplied by the transfer rate v milliseconds per kilobyte (ms/kB). The time

required for moving a data structure from a memory bank to another is the size of data

structure multiplied by the transfer time between memory banks, l ms/kB.

The memory management system is equipped with a DMA (Direct Memory Access)

controller that allows for a direct access to data structures. The time performances

of that controller are captured with the numerical values of v and l. Therefore, the

transfer times v and l are assumed to be less than the transfer time p.

The TI-C6201 device can access all its memory bank simultaneously, which allows

for parallel data loading. As in the previous chapters, two conflicting data structures,

namely a and b can be loaded in parallel, provided that a and b are allocated to two

different memory banks. If these data structures share the same memory bank, the

processor has to access them sequentially, which requires twice more time if a and b
have the same size.

Each conflict has a cost equals to the number of times that it appears in the applica-
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tion during the current time interval. This cost might be non-integer if the application

source code has been analyzed by a code-profiling software [89, 108] based on the

stochastic analysis of the branching probability of conditional instructions. This hap-

pens when an operation is executed within a while loop or after a conditional instruc-

tion like if or else if (see the example of the non-integer cost non-integer presented

in Chapter 3).

As before, a conflict between two data structures is said to be closed if both data

structures are allocated to two different memory banks. In any other case, the conflict

is said to be open.

Moreover, both particular cases, auto-conflicts and isolated data structures, are con-

sidered in this version of memory allocation problem.

The number of memory banks with their capacities, the external memory and its

transfer rate p, v and l describe the architecture of the chip. The number of time inter-

vals, the number of data structures, their size and access time describe the application,

whereas the conflicts and their costs carry information on both the architecture and the

application.

Contrarily to MemExplorer, where a static data structure allocation is searched for,

the problem addressed in this chapter is to find a dynamic memory allocation, i.e.,

the memory allocation of a data structure may vary over time. Roughly speaking, one

wants the right data structure to be present in the memory architecture at the right

time, while minimizing the efforts for updating memory mapping at each time interval.

MemExplorer-Dynamic is stated as follows: allocate a memory bank or the external

memory to any data structure of the application for each time interval, so as to mini-

mize the time spent accessing and moving data structures while satisfying the memory

banks’ capacity.

The rest of the chapter is organized as follows. Section 5.2 gives an integer linear

program formulation. Two iterative metaheuristics are then proposed for addressing

larger problem instances in Section 5.4. Computational results are then shown and

discussed in Section 5.5, and Section 5.7 concludes this chapter.

5.2 ILP formulation for dynamic memory allocation problem

Let n be the number of data structures in the application. The size of a data structure is

denoted by si, for all i in {1, . . . , n}. nt is the number of data structures that the appli-

cation has to access during the time interval It, for all t in {1 . . . , T}. At ⊂ {1, . . . , n}
denotes the set of data structures required in the time interval It for all t ∈ {1, . . . , T}.
Thus ei,t denotes the number of times that i ∈ At is accessed in the interval It. The

number of conflicts in It is denoted by ot, and dk,t is the cost of conflict (k, t) = (k1, k2)

during the time interval It for all k in {1, . . . , ot}, k1 and k2 in At, and t in {1, . . . , T}.
The allocation of data structures to memory banks (and to the external memory) for

each time interval are modeled as follows. For all (i, j, t) in {1, . . . , n}× {1, . . . ,m+1}×
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{1, . . . , T},

xi,j,t =







1, if and only if data structure i is mapped

to memory bank j during time interval It
0, otherwise

(5.1)

The statuses of conflicts are represented as follows. For all k in {1, . . . , ot} and

t ∈ {1, . . . , T},

yk,t =

{

1, if and only if conflict k is closed during time interval It
0, otherwise

(5.2)

The allocation change for a data structure is represented with the two following

sets of variables. For all i in {1, . . . , n} and t ∈ {1, . . . , T}, wi,t is set to one if and only

if the data structure i has been moved from a memory bank j 6= m + 1 at It−1 to a

different memory bank j′ 6= m + 1 during time interval It. For all i in {1, . . . , n} and

t ∈ {1, . . . , T}, w′

i,t is set to one if and only if the data structure i has been moved from

a memory bank j 6= m+1 at It−1 to the external memory, or if it has been moved from

the external memory at It−1 to a memory bank during time interval It.

The cost of executing operations in the application can be written as follows:

T
∑

t=1

[

∑

i∈At

m
∑

j=1

(

ei,t · xi,j,t

)

+ p
∑

i∈At

(

ei,t · xi,m+1,t

)

−
ot
∑

k=1

yk,t · dk,t
]

(5.3)

The first term in (5.3) is the access cost of all the data structures that are in a memory

bank, the second term is the access cost of all the data structures allocated to the

external memory, and the last one accounts for closed conflict cost.

The total cost of moving data structures between the intervals can be written as:

T
∑

t=1

[

nt
∑

i=1

si · (l · wi,t + v · w′

i,t)
]

(5.4)

The cost of a solution is the sum of these two costs. Since
∑

i∈At

∑m+1
j=1

(

ei,t ·xi,j,t
)

=
∑

i∈At

(

ei,t
)

is a constant term for all t in {1, . . . , T}. The cost function to minimize is
equivalent to:

f =

T
∑

t=1

[

(p− 1)
∑

i∈At

(

ei,t · xi,m+1,t

)

−
ot
∑

k=1

yk,t · dk,t +
∑

i∈At

si · (l · wi,t + v · w′

i,t)
]

(5.5)
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The ILP formulation of MemExplorer-Dynamic is then

Minimize f (5.6)
m+1
∑

j=1

xi,j,t = 1 ∀i ∈ {1, . . . , n}, ∀t ∈ {1, . . . , T } (5.7)

n
∑

i∈At

xi,j,tsi ≤ cj ∀j ∈ {1, . . . ,m}, ∀t ∈ {1, . . . , T } (5.8)

xk1,j,t + xk2,j,t ≤ 2− yk,t ∀k1, k2 ∈ At, ∀j ∈ {1, . . . ,m+ 1},
∀k ∈ {1, . . . , ot}, ∀t ∈ {1, . . . , T } (5.9)

xi,j,t−1 + xi,g,t ≤ 1 + wi,t ∀i ∈ {1, .., n},
∀j 6= g, (j, g) ∈ {1, ..,m}2, ∀t ∈ {1, .., T } (5.10)

xi,m+1,t−1 + xi,j,t ≤ 1 + w′

i,t ∀i ∈ {1, . . . , n},
∀j ∈ {1, . . . ,m}, ∀t ∈ {1, . . . , T } (5.11)

xi,j,t−1 + xi,m+1,t ≤ 1 + w′

i,t ∀i ∈ {1, . . . , n},
∀j ∈ {1, . . . ,m}, ∀t ∈ {1, . . . , T } (5.12)

xi,j,0 = 0 ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m} (5.13)

xi,m+1,0 = 1 ∀i ∈ {1, . . . , n} (5.14)

xi,j,t ∈ {0, 1} ∀i ∈ {1, . . . , n},
∀j ∈ {1, . . . ,m}, ∀t ∈ {1, . . . , T } (5.15)

wi,t ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀t ∈ {1, . . . , T } (5.16)

w′

i,t ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀t ∈ {1, . . . , T } (5.17)

yk,t ∈ {0, 1} ∀k ∈ {1, . . . , ot}, ∀t ∈ {1, . . . , T } (5.18)

Equation (5.7) enforces that any data structure is either allocated to a memory bank

or to the external memory. (5.8) states that the total size of the data structures allocated

to any memory bank must not exceed its capacity. For all conflicts (k, t) = (k1, k2), (5.9)

ensures that data structure yk,t is set appropriately. Equations (5.10) to (5.12) enforce

the same constraints for data structures wi,t and w′

i,t. The fact that initially, all the data

structures are in the external memory is enforced by (5.13) and (5.14). Finally, binary

requirements are enforced by (5.15) − (5.18).

This ILP formulation has been integrated in SoftExplorer. It can be solved for modest

size instances using an ILP solver like Xpress-MP [61]. Indeed, as MemExplorer is NP-

hard, and then is MemExplorer-Dynamic.

5.3 An illustrative example

For the sake of illustration, MemExplorer-Dynamic is solved on an instance originating

in the LMS (Least Mean Square) dual-channel filter [21] which is a well-known signal

processing algorithm. This algorithm is written in C and is to be implemented on a
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TI-C6201 target. On that target, p = 16 ms, and l = v = 1 ms/kB.

The compilation and code profiling of the C file yields an instance with eight data

structure having the same size of 15,700 kB; there are 2 memory banks whose capacity

is 31,400 kB. For each time interval, Table 5.2 displays the data structures required by

the application, the access time, the conflicts and their cost.

Table 5.1: Data about LMS dual-channel filter
Intervals Data structures Conflicts Cost Access time

t = 1, . . . , 5 {a1,t, . . . , ant,t} (ak1,t, ak2,t) dk,t eai,t,t

1 { 1, 5, 2, 6 } (1;5) 1,046,529 e1,1 = e2,1 =
(2;6) 1,046,529 e5,1 = e6,1 = 1,046,529

2 { 3, 4, 5, 6 } (3;5) 1,046,529 e3,2 = e5,2 =
(4;6) 1,046,529 e4,2 = e6,2 =1,046,529

3 { 1,5,7} (1;7) 1,023 e1,3 =2,046

(1;5) 1,023 e5,3 = e7,3 =1,023

4 { 2,6,8 } (2;6) 1,023 e2,4 =2,046

(2;8) 1,023 e6,4 = e8,4 =1,023

5 { 3,4 } (3;3) 2,046 e3,5 = e4,5 =2,046

(4;4) 2,046

An optimal solution found by Xpress-MP [61] is shown in Figure 5.2. All data struc-

Figure 5.2: An optimal solution for the example of MemExplorer-Dynamic.

tures are in the external memory in initial interval I0. In the first interval no conflict

is open, only the moving cost is produced. A memory bank can only store two data

structures. In the second time interval, data structures 1, 2, 3 and 4 are swapped for

avoiding to access data structure 3 and 4 from the external memory. Thus no open

conflict is produced, but a moving cost is generated. The memory allocation remains

the same for the third interval, so non moving cos is produced but the conflict between

data structures 1 and 7 is open. The optimal solution does not swap any data struc-

tures because they are used in the future intervals, in this way the future moving cost

is saved. In the fourth interval, data structures 5 and 2 are swapped, so no conflict

is open, a moving cost is produced and the access time of data structure 8 is longer
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(p × e8,4). For the last time interval the memory allocation remains the same, and the

cost of the auto-conflicts is generated.

The cost of this solution is 4, 413, 703 milliseconds. Table 5.2 shows how this cost is

dispatched. For each time interval, this tables displays: the time spent by accessing data

structures, the cost produced by moving data structures and the saved cost produced

by closed conflicts.

Table 5.2: Cost of the optimal solution for the example of MemExplorer-Dynamic
Time interval (t) 1 2 3 4 5 Sum

Access time 4,186,116 4,186,116 50,127 19,437 4,092 8,445,888

Closed conflicts 2,093,058 2,093,058 1,023 2,046 0 4,189,185

Moving cost 62,800 62,800 0 31,400 0 157,000

Total cost 2,155,858 2,155,858 49,104 48,791 4,092 4,413,703

For larger instances (i.e., with more data structures, more conflicts, more mem-

ory banks and more time intervals), the proposed ILP approach can no longer be

used. In the next section, two iterative metaheuristics are proposed for addressing

MemExplorer-Dynamic.

5.4 Iterative metaheuristic approaches

5.4.1 Long-term approach

This approach takes into account the application requirements for the current and fu-

ture time intervals. The Long-term approach relies on addressing the general memory

allocation (see Chapter 4). MemExplorer searches for a static memory allocation of

data structures that could remain valid from the current time interval to the end of

the last one. MemExplorer ignores the fact that the allocation of data structures can

change at each time interval.

The Long-term approach builds a solution iteratively, i.e., from time interval I1 to

time interval IT . At each time interval, it builds a preliminary solution called the parent

solution. The solution for the considered time interval is built as follows: the solution is

initialized to the parent solution. Then, the data structures that are not required until

the current time interval are allocated to the external memory.

At each time interval, the parent solution is selected among two candidate solutions.

The candidate solutions are the parent solutions for the previous interval, and the

solution to MemExplorer for the current interval. MemExplorer is addressed using a

Variable Neighborhood Search-based approach hybridized with a Tabu Search-inspired

method (see Chapter 4).

The total cost of both candidate solutions is then computed. This cost is the sum of

two sub-costs. The first sub-cost is the cost that we would pay if the candidate solution

were applied from the current time interval to the last one. The second sub-cost is the
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Input: for each time interval t ∈ {1, . . . , T} a set of data structures At, a set of

sizes of data structures St, a set of conflicts between data structures Kt

and a set of cost of conflicts Dt.

Output: X1, . . . ,XT memory allocations for each time interval and C the total

cost of the solution.//Initially all data strutures are in the external memory
X0(a) = m+ 1, for all a ∈ ∪Tα=1Aα

P0 ← X0

for t← 1 to T do//Updating data
A = ∪Tα=tAα, A′ = ∪tα=1Aα, E = ∪Tα=tEα, S = ∪Tα=tSα, S′ = ∪tα=1Sα,

K = ∪Tα=tKα, D = ∪Tα=tDα//Solving MemExplorer problem with urrent data
Mt ← MemExplorer(A,E, S,K,D)//Computing the total ost as the sum of two sub-osts
CMt

← Aess_Cost(Mt, A,E,K,D) + Change_Cost(Xt−1,Mt, A
′, S′)

CPt−1
← Aess_Cost(Pt−1, A,E,K,D) + Change_Cost(Xt−1, Pt−1, A

′, S′)//Choosing the parent solution
if CMt

< CPt−1
then

Pt ←Mt

else
Pt ← Pt−1

end//Making the solution at time interval t
Xt ← Pt

for a /∈ A′ do
Xt(a) = m+ 1

end//Computing the total ost of solution
C ← C+ Aess_Cost(Xt, At, Et,Kt,Dt) + Change_Cost(Xt−1,Xt, A

′, S′)
end

Algorithm 13: Long-term approach

cost to be paid for changing the memory mapping from the solution of the previous

time interval (which is known) to the candidate solution. Then, the candidate solution

associated with the minimum total cost is selected as the parent solution.

The Long-term approach is presented in Algorithm 13. A memory allocation is

denoted by X, X(a) = j means that data structure a is allocated to memory bank j.

The solution Xt is associated with time interval It for all t in {1, . . . , T}. The solution X0

consists in allocating all the data structures of the application to the external memory.

The parent solution is denoted by Pt for the time interval It. The algorithm builds

the solution Xt by initializing Xt to Pt, and the data structures that are not required

until time interval It are moved to the external memory.
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In the algorithm, Mt is the memory allocation found by solving the instance of

MemExplorer built from the data for the time interval It. Then, a new instance of

MemExplorer is solved at each iteration.

Algorithm 13 uses two functions to compute the total cost of a solution X. The first

sub-cost is computed by the function Aess_Cost(). That function returns the cost

produced by a memory allocation X for a specified instances (data) of Memexplorer.

The second sub-cost is computed by the function Change_Cost(X1,X2). It computes

the cost of changing solution X1 into solution X2.

At each time interval It the parent solution Pt is chosen between two candidate

Pt−1 and Mt. It is the one which produces the minimum total cost (comparing both the

total cost CPt−1
and CMt

).

At each iteration, Algorithm 13 updates the data and uses the same process to

generate the time interval solution Xt for all t in {1, . . . , t}.

5.4.2 Short-term approach

This approach relies on addressing a memory allocation subproblem called MemExplorer-

Prime. Given an initial memory allocation, this subproblem is to search for a memory

allocation of the data structures that should be valid from the current time interval.

This subproblem takes into account the cost for changing the solution of the previous

time interval.

Input: for each time interval t ∈ {1, . . . , T} a set of data structures At, a set of sizes of data

structures St, a set of conflicts between data structures Kt and a set of cost of conflicts Dt.

Output: X1, . . . , XT memory allocations for each time interval and C the total cost of the

solution.//Initially all data strutures are in the external memory
X0(a) = m+ 1, for all a ∈ ∪T

α=1Aα

for t← 1 to T do//Solve MemExplorer-Prime problem with urrent data
Xt ← MemExplorer-Prime(Xt−1 , At, Et, St, Kt, Dt)

end

Algorithm 14: Short-term approach

MemExplorer-Prime is addressed for all time intervals. The data of this subproblem

are the same as for MemExplorer. MemExplorer-Prime is stated as follows: for a given

initial memory allocation for data structures, number of capacitated memory banks

and an external memory, we search for a memory allocation such that the time spent

accessing data and the cost of changing allocation of these data are minimized. In this

chapter, MemExplorer-Prime is addressed using a Tabu Search method similar to the

one used by the Long-term approach.

The Short-term approach iteratively builds a solution for each time interval. Each

solution is computed by taking into account the conflicts and data structures involved

in the current time interval, and also by considering the allocation in the previous

time interval. The Short-term approach solves MemExplorer-Prime considering the

allocation of the data structures of the previous interval as an initial allocation.
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Algorithm 14 presents this approach. A solution X is defined as above, and it uses

a function MemExplorer-Prime() for solving an instance of the problem MemExplorer-

Prime where the initial solution is X0.

At each iteration, the algorithm updates the data and the solution produced byMemExplorer-Prime() is taken as the time interval solution.

5.5 Computational results and discussion

This section presents the results reached by the iterative approaches, which have been

implemented in C++ and compiled with g 4.11 in Linux OS 10.04. They have been

tested over two sets of instances on an Intel Pentium IV processor system at 3 GHz with

1 gigabyte RAM. The results produced by the iterative approaches are compared with

the ones of the ILP model and the local search method.

In practice, a software like SoftExplorer [106] can be used for collecting the data,

but the code profiling is out of the scope of this work. We have used 44 instances

to test our approaches. The instances of the set LBS are real life instances that come

from electronic design problems addressed in the Lab-STICC laboratory. The instances

of DMC come from DIMACS [137], a well-known collection of graph coloring instances.

The instances in DMC have been enriched by generating some edge costs at random to

represent conflicts, access costs and sizes for data structures, the number of memory

banks with random capacities, and by dividing the conflicts and data structures into

different time intervals.

For assessing the practical use of our approaches for forthcoming needs, we have

tested our approaches on larger artificial instances, because the real-life instances avail-

able today are relatively small. In the future the real-life instances will be larger and

larger because designers tend to integrate more and more complex functionalities in

embedded systems.

Results

For the experimental test, we have set the following values for transfer times: p = 16

(ms), and l = v = 1 (ms/kB) for all instances.

In Table 5.3, we compare the performances of the different approaches with the

local search produced by LocalSolver 1.0 [58] and with the ILP formulation solved by

Xpress-MP, that is used as a heuristic when the time limit of one hour is reached: the

best solution found so far is then returned by the solver.

We presented the instances sorted by non decreasing sizes (i.e., by the number

of conflicts and data structures). The first two columns of Table 5.3 show the main

features of the instances: name, number of data structures, conflicts, memory banks

and time intervals. The next two columns display the cost and the CPU time of Short-

term approach. For the Long-term approach we show the best costs and its time reached

in twelve runs, the standard deviation and the ratio between the standard deviation
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and average cost. For the local search the cost and CPU time are also displayed. The

following two columns report the cost and CPU time of the ILP approach. The column

“gap” reports the gap between the Long-term approach and the ILP. It is the difference

of costs of the Lon-term approach and the ILP divided by the cost of ILP. The last

columns indicates whether or not the solution returned by Xpress-MP is optimal.

Table 5.3: Cost and CPU time for MemExplorer-Dynamic
Instances Short-term Long-term Local Search ILP

Name n\o\m T cost (s) cost (s) stand-dev ratio cost (s) cost (s) gap opt.gsm_newdy 6\5\3 2 7,808 < 0.01 7,808 < 0.01 0.00 0.00 20,560 192 7,808 0.02 0.00 yesompressdy 6\6\3 3 571,968 < 0.01 342,592 < 0.01 59,284 0.17 351,040 189 342,592 0.22 0.00 yesvolterrady 8\6\3 2 192 < 0.01 178 < 0.01 0.00 0.00 180 150 178 0.06 0.00 yesjpegdy 11\7\3 4 4,466,800 < 0.01 4,466,800 0.01 0.00 0.00 4,466,800 150 4,466,800 0.16 0.00 yeslmsbvdy 8\8\3 3 4,323,294 < 0.01 4,323,294 < 0.01 1,352,052 0.31 4,347,870 150 4,323,294 0.11 0.00 yesadpmdy 10\8\3 3 49,120 < 0.01 44,192 0.01 0.00 0.00 50,648 150 44,192 0.11 0.00 yeslmsbdy 8\8\3 3 54,470,706 0.01 7,409,669 0.29 1,146,369 0.23 8,458,246 150 7,409,669 0.48 0.00 yeslmsbv01dy 8\8\3 4 4,399,847 < 0.01 4,350,640 < 0.01 388,819 0.09 4,402,865 150 4,350,640 0.38 0.00 yeslmsbvdyexp 8\8\3 4 5,511,967 0.01 4,367,024 < 0.01 1,787,414 0.41 4,381,362 150 4,367,024 0.27 0.00 yesspetraldy 9\8\3 3 44,912 < 0.01 15,476 0.01 4,393 0.25 15,472 150 15,472 0.27 0.00 yesgsmdy 19\18\3 5 1,355,420 < 0.01 1,355,404 0.01 0.00 0.00 1,355,390 150 1,355,390 0.69 0.00 yesgsmdyorr 19\18\3 5 494,134 < 0.01 494,118 0.04 0.00 0.00 494,118 150 494,118 0.77 0.00 yeslpdy 15\19\3 4 31,849 0.01 26,888 0.02 0.00 0.00 27159 150 26,888 0.32 0.00 yesmyiel3dy 11\20\3 4 6,947 < 0.01 3,890 0.01 457 0.11 4,156 150 3,792 1.44 0.03 yesturboodedy 12\22\4 4 3,835 < 0.01 3,246 0.13 158 0.05 3,801 150 3,195 23.09 0.02 yestreillisdy 33\61\3 6 1,867 < 0.01 1,806 0.03 1 0.00 1,806 150 1,806 1.56 0.00 yesmpegdy 68\69\3 8 11,108 < 0.01 10,630 0.13 110 0.01 11,334 300 10,614 6.21 0.00 yesmyiel4dy 23\71\4 7 16,277 < 0.01 8,847 0.94 121 0.01 10,580 150 8,611 3,600 0.03 nomug88_1dy 88\146\3 6 27,521 0.02 25,543 5.17 126 0.00 26,046 150 25,307 3,600 0.01 nomug88_25dy 88\146\3 6 24,641 0.16 24,310 5.87 178 0.01 25,333 150 24,181 1,197 0.01 yesqueen5_5dy 25\160\4 5 22,927 0.02 15,358 0.11 572 0.04 18683 150 15,522 3,600 −0.01 nomug100_1dy 100\166\3 7 30,677 0.23 30,488 5.80 253 0.01 31,237 150 29,852 3,600 0.02 nomug100_25dy 100\166\3 7 29,463 0.03 28,890 5.89 203 0.01 29,112 150 28,448 3,600 0.02 nor125.1dy 125\209\4 6 37,486 0.14 36,484 2.93 24 0.00 39,504 150 36,489 3,600 −0.00 nomyiel5dy 47\236\4 6 26,218 0.03 24,162 0.11 336 0.01 28,421 150 23,118 3,600 0.05 nompeg2en2dy 130\239\3 12 10,248 0.09 9,812 0.75 1 0.00 24,699 150 9,887 3,600 −0.01 noqueen6_6dy 36\290\5 10 31,710 0.04 23,489 0.35 219 0.01 30,499 150 24,678 3,600 −0.05 noqueen7_7dy 49\476\5 16 47,988 0.05 37,599 0.90 564 0.01 49,249 150 46,721 3,600 −0.20 noqueen8_8dy 64\728\6 24 73,091 0.13 54,214 2.10 195 0.00 76,322 150 86,270 3,600 −0.37 nomyiel6dy 95\755\3 11 70,133 0.16 65,716 11.21 670 0.01 68,573 150 61,831 3,600 0.06 noalidy 192\960\7 48 135,682 0.58 64,696 1.46 2,124 0.03 60,287 3,600 65,882 3,600 −0.02 nomyiel7dy 191\2360\5 24 176,921 0.42 163,676 215.93 2,026 0.01 219,037 3,600 276,542 3,600 −0.41 nozeroin_i3dy 206\3540\16 35 219,189 1.11 212,138 19.15 93 0.00 375,169 3,600 404,270 3,600 −0.48 nozeroin_i2dy 211\3541\16 35 215,950 1.16 210,464 19.74 72 0.00 357,260 3,600 368,212 3,600 −0.43 nor125.5dy 125\3838\19 38 379,162 1.12 238,443 561.98 1,297 0.01 382,624 3,600 430,900 3,600 −0.45 nomulsol_i2dy 188\3885\17 39 238,724 0.86 232,537 20.69 160 0.00 419,936 3,600 - - - nomulsol_i1dy 197\3925\26 39 229,157 1.51 222,410 21.11 19 0.00 - - - - - nomulsol_i4dy 185\3946\17 39 240,439 0.96 232,315 17.67 149 0.00 462,025 3,600 - - - nomulsol_i5dy 186\3973\17 40 243,237 0.98 236,332 19.24 171 0.00 418,533 3,600 - - - nozeroin_i1dy 211\4100\26 41 236,435 1.59 231,170 22.72 34 0.00 - - - - - nor125.1dy 125\7501\24 75 413,261 2.06 475,593 1,488 5,329 0.01 - - - - - nofpsol2i3dy 425\8688\16 87 528,049 2.50 516,549 189.39 398 0.00 - - - - - nofpsol2i2dy 451\8691\16 87 521,923 2.83 509,834 133.50 395 0.00 - - - - - noinithx_i1dy 864\18707\28 187 1,058,645 12.76 1,038,331 1,559 201 0.00 - - - - - no

Number of optimal solutions 3 14 6 18

Number of best solutions 4 33 6 24

Average CPU time and gap 0.72 98.5 816.21 1,783.80 −0.06

The optimal solution is known only for the smallest instances. Memory issues pre-

vented Xpress-MP and LocalSolver to address the nine largest instances. It is the same

case for LocalSolver, its memory prevents to address six of the largest instance.

Bold figures in the table are the best known solutions reported by each method.

When the optimal solution is known, only three instances resist to the Long-term ap-

proach with a gap of at most 3%. Over the 17 instances solved by Xpress-MP but without

guarantee of the optimal solution, the ILP method finds 6 best solutions whereas the
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Long-term approach improves 11 solutions, sometimes up to 48%.

The last three lines of the table summarize the results. The Short-term approach

finds 4 optimal solutions and the Long-term approach finds 14 out of the 18 known op-

timal solutions. The local search reaches 6 optimal solutions. The Long-term approach

is giving the largest number of best solutions with an average improvement of 6% over

the ILP method.

Discussion

The practical difficulty of an instance is related to its size (n, o), but it is not the only

factor. The ratio between the total capacity of memory bank and the sum of sizes of

data structures plays a role also. For example, instances mug88_1dy and mug88_25dy
have the same size but the performance of Xpress-MP for the ILP formulation is very

different.

In most cases, the proposed metaheuristic approaches are significantly faster than

Xpress-MP and LocalSolver, the Short-term approach being the fastest one. The Short-

term approach is useful when the cost of reallocating data structures is small compared

to conflicts costs. In such a case, it makes sense to focus on minimizing the cost of the

current time interval without taking future needs into account, since the most impor-

tant term in the total cost is due to open conflicts. The Long-term approach is useful

in the opposite situation (i.e., moving data structures is costly compared to conflict

costs). In that case, anticipating future needs makes sense as the solution is expected

to undergo very few modification over time. Table 5.3 shows that the architecture used

and the considered instances are such that the Long-term approach returns solution of

higher quality than the Short-tern approach (except for r125.1dy), and then emerges

as the best method for today’s electronic applications, as well as for future needs.

5.6 Statistical analysis

As in the previous chapter we use the Friedman test [64] to identify differences in the

performance of iterative approaches, local search and ILP solution. The Post-hoc paired

test is also performed to identify the best approach.

For this test we use the results presented in Table 5.3, because the results over

instances are mutually independent. Thus costs as well as CPU times can be ranked as

in the Chapter 4, and the Friedman test statistic is denoted by Q and it is defined as in

Equation 4.10.

The test statistic Q is 18.85 for the objective function, and 111.18 for the CPU time.

Moreover, the value for the F(3,102)-distribution with a significance level α = 0.01 is

3.98. Then, we reject the null hypothesis for cost and running time at the level of

significance α = 0.01.

Hence, we can conclude that there exists at least one metaheuristic whose perfor-

mance is different from at least one of the other metaheuristics.
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Post-hoc paired comparisons

We use the same Post-hoc test of Section 4.6 for comparing the performance between

two metaheuristics. Table 5.4 summarizes the paired comparisons for the cost and

running time using an α = 0.01, thus t(0.095,102)-distribution is 2.63, and the left-hand

side of equation (4.11) for the running time is 13.21 and for the cost is 21.26.

Table 5.4: Paired comparisons for MemExplorer-Dynamic
Cost paired test Running time paired test

|Ri −Rj | Short-term ILP Local search |Ri −Rj | Short-term ILP Local search

Long term 51 6 39 Long term 33.5 43.5 44

Short-term - 45 12 Short-term - 77 77.5

ILP - - 33 ILP - - 0.5

Critical value = 21.26 Critical value = 13.21

The post-hoc test shows that ILP and Long-term approach have the same perfor-

mance in terms of solution cost, but Long-term is better than ILP in terms of running

time. Long-term approach outperforms Local Search and Short-term approach. On

other hand, Short-term is the best approach in terms of running time and its perfor-

mance in terms of cost is equal to the one of Local Search. Finally, ILP and Local Search

have the same performance in terms of running time.

5.7 Conclusion

This chapter presents an exact approach and two iterative metaheuristics based on

the general memory allocation problem. Numerical results show that the Long-term

approach returns good results in a reasonable amount of time, which makes this ap-

proach appropriate for today and tomorrow needs. However, the Long-term approach

is outperformed by the Short-term approach on some instances, which suggests that

taking the future requirements by aggregating the data structures and conflicts of the

forthcoming time interval might not always be relevant. Indeed, the main drawback of

this approach is that it ignores the potential for updating the solution at each iteration.

The work introduced in this chapter has been presented in the European Conference

on Evolutionary Computation in Combinatorial Optimization (EVOCOP) [158].





6
General conclusions and future works

This chapter concludes this work. First we summarize the different versions of the

memory allocation problem, and we discuss the diversification and intensification of

metaheuristics designed for these versions. After, we present the main conclusions and

perspectives emerging from this work.

6.1 Summary of the memory allocation problem versions

In this thesis, we have introduced four versions of the memory allocation problem. The

general objective of these problems is either focused on the memory management or

the data assignment in embedded systems, because both have a significant impact in

the main cost metrics, such as cost, area, performance and power consumption. These

cost metrics are the main features taken into account by designers in industry and

customers, which require integrating more and more functionalities.

The first version of the memory allocation problem is concerned with the hardware

optimization, it is focused on the memory architecture (the memory architecture can

be composed by memory banks, an external memory, scratchpads, etc.) of the appli-

cation. The three remaining problems are related to the data binding, it searches for

an optimal memory allocation of data structures to a fixed memory architecture. Table

6.1 summarizes the main characteristics, constraints, and objective function of these

problems as well as metaheuristics designed for them.

All versions of the memory allocation problem are NP-hard problems. For each

version the number of constraints increases, and the objective function and the charac-

teristics of the memory allocation problem change. Thus, for each version the complex-

ity in the memory allocation problem increases. Differences between the first version

problem and the last two ones are noticeable.

The first problem searches for the minimum number of memory banks for which

all no auto-conflict are closed, this problem can be modeled as the vertex coloring

problem. In the second problem, the number of memory banks is fixed and we search

for an optimal memory allocation of data structures to memory banks to minimize the

cost produced by the open conflicts, this problem is equivalent to the k-weighted graph

coloring problem. In the third problem, in addition to a fixed number of memory banks93
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Table 6.1: Summary of the memory allocation problem versions

Problem version Objective Features Methods

• Hardware optimization

Unconstrained search for the minimum − all no auto-conflicts Upper bounds on χ
number of memory banks have to be closed ξ, ζ and η

• Data Binding. Allocating data structures to memory banks

Constraint on minimize the total − number of memory banks ILP

the number of cost of open conflicts fixed Local search

memory banks Tabu search

Evolutionary Alg.

General minimize the total time − # of memory banks fixed ILP

spent accessing data − capacitated memory banks Local search

structures − external memory (p ms) VNS. Tabu search

− sizes of data structures

− # of accesses to data struc.

Dynamic minimize the total time − time intervals

spent accessing and − # of memory banks fixed ILP

moving data structures − capacitated memory banks Local search

− external memory (p ms) Short-term

− transfer rates v and l Long-term

− sizes of data structures

− # of accesses to data struc.
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the capacity of memory banks is limited. The memory architecture has an external

memory, which has enough capacity to store all data structures, but the access to this

external memory is p ms slower than to memory banks. Moreover, the size of the data

structures and the number of accesses are taken into account. The main difference

between the last problem and the general one is that the time is split into time intervals.

Allocation of data structures can change at each time interval, so we must consider the

cost for moving them. Thus we search for a memory allocation for each time interval

to minimize the total time by accessing and moving data structures.

As the complexity of the version problems increases, we use more sophisticated

methods. These methods have reached good results. The following section analyses

these approaches in terms of intensification and diversification.

6.2 Intensification and diversification

For addressing the remaining three problem versions, we have proposed exact math-

ematical models and metaheuristic approaches. These metaheuristics are inspired by

the methods originally designed for the vertex coloring problems. In this subsection,

we examine the proposed approaches in terms of intensification and diversification.

Metaheuristics for memory allocation problem with constraint on the number of

memory banks

We have proposed two metaheuristics to tackle this problem. The first one is a tabu

search method called Tabu-Alloation, and the other one is an evolutionary algorithm

called Evo-Alloation.

Tabu-Allocation. The diversification in this method is due to the presence of the tabu

list and mainly to the dynamic size of this tabu list, it is relative to Reactive Tabu Search

[14]. This allows to explore new neighborhoods and escape from local optimum. For

example, using a static size of the tabu list, the instance mpeg2en reaches a cost of

33.22 ms, and using a dynamic size the method reaches a cost of 32.09 ms, i.e., the

method improves the solution by 3.4% by using a dynamic size of tabu list.

The method intensifies the search by accepting an enhanced solution as initial one,

thus its neighborhood is explored to find a better solution.

Evo-Allocation. Three motives guarantee the diversification in the population of this

approach. The first one is because the algorithm accepts an offspring (new solution) if

the distance to its parents is greater than a fixed threshold. The objective is to avoid

having too many solutions with similar characteristics. The second reason is the ran-

dom selection of several parents to the crossover, thus it allows to cross good and bad

parents to produce offsprings with new characteristics. The last reason is the criterion

of statistic variance of solution costs to update the population, this allows refreshing
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the population. For example, the method reaches the cost of 762 ms for the instancer125.5 without the statistic variance condition, and it reaches the cost of 734 ms with

this criterion, i.e., the solution is improved by 3.7% using the statistic variance for up-

dating the population.

The intensification of Evo-Alloation is due to three reasons. The first one is the

crossover function, as it takes the best allocations of data structures of each solution

to produce a new one, so the good characteristics of parents solutions are kept in the

population. The second one is the tabu search (with a dynamic size of tabu list) used

to improve the quality of offspring. The last reason is presented in the way of updating

the population which replace worse solutions by new ones.

Metaheuristic for general memory allocation problem

For this problem we have proposed a Variable Neighborhood Search-based approach

hybridized with a Tabu Search-inspired method, Vns-Ts-MemExplorer.

There are three main motives that assure the diversification in this method. The

current solution is perturbed, so this forces to explore new neighborhoods and to find

new good solutions. Other important subject to the diversification is the second neigh-

borhood N1, which allows the method to explore prohibited neighborhoods. Thus the

method explores neighborhoods beyond the usual ones, and it allows the method to

escape easily from local optimums. The last motive is the combination of the two

neighborhoods. This combination leads to a better cover of the search space. If we use

a single neighborhood, either N0 or N1, the objective value is on average degraded by

56% to 21% respectively.

The intensification is guaranteed by admitting enhanced solutions and by using the

tabu search with a dynamic size of tabu list to explore the neighborhoods, The charac-

teristics of intensification and diversification of this tabu search are also presented inVns-Ts-MemExplorer. If this approach uses a classic tabu search for the computational

test, the solution cost is degraded by 35% on average.

Approaches for dynamic memory allocation problem

Two approaches have been proposed for this problem. As the Long-term and the

Short-term approaches take advantage of metaheuristics designed for the previous

memory allocation problem, its diversification and intensification are inherited fromVns-Ts-MemExplorer.

6.3 Conclusions

We summarize the main results of this work.

Addressing the first memory allocation problem has allowed us to introduce three

new upper bounds on the chromatic number. These upper bounds do not make any
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assumption on the graph structure. From the theoretical and the computational as-

sessment, we have demonstrated the superiority of our bounds over the well-known

bounds from the literature.

These upper bounds are easily computable even for large graphs. Indeed, there

exists advanced bounds on the chromatic number, but they required a computational

time longer than 20 minutes. It is far too long for the electronic chip designers, which

must solve repeatedly the first version problem to do ‘what if’ studies.Evo-Alloation returns the best results for the second version of the memory allo-

cation problem. This is due to its rigorous control of population diversity and a multi-

parent crossover, as well as the variable size of the tabu list. Vns-Ts-MemExplorer
reaches excellent results for the general memory allocation problem due to its two

neighborhoods and the the local search method (TabuMemex). Long-term approach

achieves good results in a reasonable amount of time for the dynamic memory alloca-

tion problem. This is due to the approach taking into account the application require-

ments for the current and future time intervals.

We have shown that the results produced by our metaheuristics are better in terms

of objective function and running time than the ones returned by the ILP and local

search solvers. The success of metaheuristics designed for the memory allocation prob-

lems is due to their well balanced search in terms of intensification and diversification

The exact approach is suitable for today’s applications, it is clearly not for tomor-

row’s needs. The proposed metaheuristics appear to be suitable for the needs of today

and tomorrow. Moreover, the very modest CPU time compared to the exact method is

an additional asset for integrating them to CAD tools, letting designers test different

options in a reasonable amount of time.

The methods inspired by graph coloring problems can be successfully extended

to more complex allocation problems for embedded systems, thereby assessing the

gains made by using these methods to specific cases in terms of energy consumption.

Moreover, the approaches designed for the version of memory allocation give promising

perspectives for using metaheuristics in the field of electronic design. Thus, this shows

that Operations Research can bring significant contributions to Electronics.

6.4 Future works

The following theoretical and practical perspectives can be drawn from this work.

Theoretical perspectives

We can use more information on graph topology for producing competitive upper

bounds for the chromatic number. Indeed, we have proposed three upper bounds based

on the degree of saturation of vertices and on the number of vertices and edges. For

example, we might consider the graph density to generate new upper bounds.
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The general and dynamic memory allocation problems can be seen as a mix of the

vertex coloring and the bin packing problems. The bin packing problem consists in

packing a set of objects into a finite number of bins of limited capacity so as to mini-

mize the number of bins used. In the memory allocation problem the data structures

represent the objects and memory banks are the bins. Hence it could be interesting

to adapt algorithms dedicated to the bin packing problem to our memory allocation

problems.

A good perspective is the implementation of an algorithm based on the greedy

algorithm proposed by Dantzig [53] to solve the unbounded knapsack problem. The

knapsack problem is given a set of items, each with a weight and a value, determining

which items include in a knapsack such that the total weight is less than or equal to

a given limit and the total value of knapsack is maximized. The idea is to compute a

ratio for each data structure that is equal to the number of accesses divided by the size

of the data structure. Then, allocating the data structures sorted by decreasing ratio.

Thus, the small data structures which are accessed more often by the processor are

more likely to be allocated to memory banks, and the remaining data structures can be

allocated to the external memory. In this way the total access cost may be minimized.

Sometimes, the Long-term approach is outperformed by the Short-term one, be-

cause the Long-term approach ignores the potential for updating the solution at each

iteration. Consequently, future work should concentrate on a Mid-term approach to

combine the benefits of both approaches. The main idea is weighting the requirements

of each time interval, thus future requirements are less and less weighted as they are

far away from the current time interval. This allows to the Mid-term approach move

easily data structure at the time intervals taking into account the future needs of the

application. In this approach, the first step is determining the appropriate weight coef-

ficients at each time interval. Mid-term approach is similar to the Long-term, it builds

the interval solution from the parent solution, which is selected among two candidate

solutions. The first one is the parent solution for the previous interval, and the other

one is the solution found by MemExplorer solved with the weighted requirements to

the current interval to the last one. The solution associated with the minimum cost is

selected as the parent solution.

Based on the characteristics of previous algorithms, we might design a global ap-

proach for the dynamic memory allocation problem that builds a solution for all time

intervals, or implement other sophisticated metaheuristics. For example, the honey bee

algorithm [165], which is inspired by the behavior of a honey bee colony in nectar

collection; the ant colony algorithms [42], it is based on the behavior of ants seeking

a path between their colony and a source of food; the scatter search and path relink-

ing [68, 70], which are the evolutionary methods based on joining solution based on

generalized path constructions.

For the larger instances of the memory allocation problems, it is not possible to

solve the ILP with the current solvers. On the other hand the limit of metaheuristics

is that they do not guarantee optimal solutions. Thus, it seem a good idea to design



Future works 99

matheuristics [75, 114] to address these problems, because they combine metaheuris-

tics and mathematical programming techniques.

Practical perspectives

The success of our approaches gives promising perspectives for using metaheuristics in

the field of electronic design. For example, in the memory allocation problem with a

small granularity, data structures are split up in words and the objective is to allocate

them to memory banks so as that to minimize the total access time [33]. Another

interesting problem, where our approaches can be adapted, is the case of multi-port

memories, the conflict graph is to extend with loops and hyperedges [33]. Here, the

conflicts can be appear between two or more data structures.

These metaheuristics can be suitable for the register allocation problem, where the

goal is finding an allocation of scalars to registers which takes into account the con-

flicts between scalars and minimizes the number of registers. They can be adapted

to scratchpad optimization, for determining which instructions can be located in the

scrachtpad for a rapid access.

Our approaches might be successfully extended for the data binding problems an-

nounced in Chapter 1. For example, in the memory partition problem for low energy,

which consists in partitioning data structures into a fixed number of memory banks so

as to minimize the interferences between data structures. Also for the problems where

the capacity of memory banks is limited, and problems which use an external memory

to store data structures.
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