
HAL Id: tel-01094776
https://hal.science/tel-01094776

Submitted on 13 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Software Quality Assurance by means of Methodologies,
Measurements and Knowledge Management Issues

Káthia Marçal de Oliveira

To cite this version:
Káthia Marçal de Oliveira. Software Quality Assurance by means of Methodologies, Measurements
and Knowledge Management Issues. Computer Science [cs]. Université de Valenciennes et du Hainaut-
Cambrésis, 2014. �tel-01094776�

https://hal.science/tel-01094776
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

i

University of Valenciennes and Hainaut-Cambrésis

LAMIH CNRS UMR 8201

Habilitation à Diriger des Recherches - HDR

Káthia Marçal de Oliveira

Software Quality Assurance by means of

Methodologies, Measurements and

Knowledge Management Issues

HDR publicly defended in 30th June 2014

Committee

Reviewer (Rapporteurs in French):

• Pr. Gaelle Calvary, University of Grenoble, France
• Pr. Oscar Pastor Lopez, Universitat Politècnica de València, Spain
• Pr. Isabelle Wattiau, Conservatoire National de Arts et Métiers, Paris

Examiners (Examinateurs in French):

• Pr. Ana Regina Cavalcanti da Rocha, Federal University of Rio de Janeiro, Brazil
• Pr. Camille Rosenthal-Sabroux, University of Paris-Dauphine, France

Sponsors (Co-promoteurs in French):

• Pr. Mourad Abed, University of Valenciennes and Hainaut-Cambrésis, France
• Pr. Christophe Kolski, University of Valenciennes and Hainaut-Cambrésis, France

 ii

“Accept the fall

But do not feel down
Stand up, push the dust away

And start all over again”
From the original “Reconhece a queda e não desanima

Levanta, sacode a poeira
E dá a volta por cima”

 (Paulo Vanzolini)

“They did not know it was impossible, so they did it!”
(Mark Twain)

“No one I ever met was against quality, and
most of the management people I meet think, they are, in fact, managing it.

If that were true we would be living in a world bathed in prevention,
rather than on continually seeking cures and corrective actions.”

 (“Quality is free – if you understand it”, Philip Crosby)

 iii

Acknowledgements

So many people contributed to my career in so many ways that I could write pages and pages
of acknowledgments. Students, teachers, colleagues, family and friends without whom it
would be impossible to get here. My sincere thanks to all of them. However, I beg them all to
thank some people in particular. I am sure they will understand it.

First of all, I would like to thank Pr. Ana Regina Cavalcanti da Rocha. With her I learned
everything that I know: to perform research, to work in-group, to supervise students, to work
as a consultant in industry, and, mainly, I learned to love software quality assurance. If I am
here, it is because of her.

I would like also to thank Pr. Guilherme Horta Travassos that co-supervised my PhD thesis
and showed me that we need to take risks to go further.

My thanks to Kival Chaves Weber who always believed in me and invited me for the
definition and institutionalization of the Brazilian Stantard of Software Process Improvement
(MPS.BR). With this work I could really see software quality assurance in practice.

Thanks to Dr. Álvaro Rabelo Jr. that has showed me since my first research project that we
can go wherever we want if we work hard.

I would like to thank Pr. Claudio Chauke Nehme, the head of Computer Science Department
of Catholic University of Brasília. He supported me in all my initiatives during the eight years
I worked there. Thanks to this, we built the software quality area in the university with a
group of associate professors that worked not only in the academy but also in industry.

Arriving in France I had the chance to met people who also motivated me. People like Pr.
Thierry Marie Guerra that, without knowing my research domain, has always encouraged me
to move forward. His confidence made me believe it would be possible to continue my career
in France.

Thanks to Pr. Jean-Mark Jezequel who offered me the chance to know a new research domain
that was essential to get an associate professor position in France.

Special thanks to Pr. Christophe Kolski, that even before starting to work at the University of
Valenciennes, gave me the possibility to explain my ideas and motivated me to come to
LAMIH. Thanks for his carefully reading and correction of this document, for his ethics and
professional competence that serves as a guide to all his colleagues.

Thanks also to Pr. Mourad Abed for giving me the opportunity for a first doctorate co-
supervision, which resulted in a great evolution in my career.

Many thanks to Pr. Camille Sabroux-Rosenthal for believing and supporting all my ideas to
strengthen the area of quality evaluation of information systems in France. Moreover, she was
the first one to encourage me to do my HDR and to assure that it would be possible.

 iv

My sincere thanks to Pr. Rossana Andrade for giving me the opportunity to explore software
quality assurance for a new application domain. With this opportunity, she gave me oxygen
and motivation in the exact moment that I needed.

Undoubtedly, thank you very much to the professors Gaelle Calvary, Oscar Pastor and
Isabelle Wattiau for their precious time spent in reading this document and writing the
evaluation report.

Finally, I would like to thank some close friends who helped me put my pieces together when
I was feeling down. Who gave me their hands to stand up and helped me move on. Brazilian
and French, no difference, they taught me the true value of friendship. Big thanks to Carla
Valle-Klann, Claudia Gama, Elisângela Aguiar, Emmanuelle Grislin, Mirella Quadros,
Sophie Lepreux, Sylvia Estivie and, my “elder sister”, Veronique Delcroix.

 v

Software Quality Assurance by means of

Methodologies, Measurements and Knowledge

Management Issues

Káthia Marçal de Oliveira

Abstract:
Software quality assurance has emerged in the past years for the market and academia as a
better solution to achieve customer satisfaction. Organizations recognize that it is only by
offering better quality products that they can have an edge over their competitors and thus
they can ensure customer loyalty. In this context, researchers on software quality have
proposed methodologies, techniques and different approaches to support this activity and its
effective use in industry. This report presents a piece of research conducted in this direction.
Methodologies and measurements were defined and applied to support the assessment of
software processes and products for different types of systems (e.g. web applications,
information systems, ubiquitous systems, legacy systems). Knowledge management issues
were also explored for the organization of knowledge with ontologies; capture and
dissemination of lessons learned in projects to support software quality improvement. The
experience and results obtained with this research conducted to the definition of new research
perspectives. The first research perspective aims at defining new approaches for quality
evaluation based on measurements for interactive systems (in particular for the predictive
evaluation of usability and the quality evaluation of ubiquitous systems). The second one aims
at exploring knowledge management concepts for the benefit of the quality evaluation activity
itself, considering that software quality assurance is a knowledge-rich activity including
explicit documented knowledge in standards, quality measurements and techniques, as well as
tacit knowledge of each individual that participates in the quality evaluation process
(evaluators, users and other stakeholders). In this way, all this research contributes to the
introduction of practical software quality assurance procedures throughout the software
processes to enable their real adoption by organizations.

 vi

Content

Part I. Extended Curriculum Vitae

Overview .. 2

Teaching ... 5

Administrative Activities .. 6

Graduate Supervision .. 7

Research Projects .. 10

Scientific Expertise ... 11

Publications .. 13

Part II. Software Quality Assurance by means of Methodologies,

Measurements and Knowledge Management Issues

Chapter 1 Introduction .. 23
1.1 Context and Historical Research .. 23
1.2 Objective and Research Challenges ... 27
1.3 Report Organization ... 29

Chapter 2 Software Quality Assurance ... 31
2.1 Introduction .. 31
2.2 Basic Definitions .. 31
2.2.1 Software Quality ... 31
2.2.2 Software Quality Assurance .. 32
2.2.3 Measurement ... 33

2.3 Approaches for Measurement Definition and Collection ... 36
2.4 Standards and Models for Software Quality ... 38
2.5 The Role of Knowledge Management ... 40
2.5.1 Knowledge and Knowledge Management: Concepts and Application 41
2.5.2 Knowledge Capture and Dissemination ... 45
2.5.3 Knowledge Organization with Ontologies ... 48

2.6 Conclusion: Research Motivation ... 50

Chapter 3 Methodologies and Measurements for Software Quality Assurance ... 51
3.1 Introduction .. 51
3.2 Software Process Quality Assurance ... 51
3.2.1 Software Process Evaluation ... 52
3.2.2 Software Process Improvement .. 54
3.2.3 Return on Investment in Software Process Improvement ... 60

 vii

3.3 Software Product Quality Assurance .. 65
3.3.1 Quality Evaluation of Web Applications ... 65
3.3.2 Quality Evaluation of Legacy Systems ... 71
3.3.3 Quality Evaluation of Human‐Computer Interaction in Ubiquitous Systems 79
3.3.4 Evaluation of Information Density of Graphical User Interfaces 85
3.3.5 Quality Evaluation of Human‐Computer Interaction ... 92

3.4 Conclusion .. 95

Chapter 4 Applying Knowledge Management Issues for Software Quality

Assurance 97
4.1 Introduction .. 97
4.2 Knowledge Management Issues to Support Software Maintenance Process 98
4.2.1 Identifying and Formalizing the Knowledge Needed for Software Maintenance 98
4.2.2 Capturing Knowledge for Maintenance Using Ontologies .. 103

4.3 Capturing and Disseminating Knowledge with Experience Factory 109
4.4 Pro‐active Dissemination of Knowledge .. 110
4.5 Using Ontologies to Improve Usability of Personalized User Interfaces 114
4.6 Conclusion .. 124

Chapter 5 Synthesis and Research Perspectives .. 125
5.1 Introduction .. 125
5.2 Synthesis of Contributions ... 125
5.3 Research Perspectives ... 128
5.3.1 Predictive Usability Evaluation .. 129
5.3.2 Quality Evaluation of HCI in Ubiquitous Systems .. 136
5.3.3 Towards Knowledge Management of and for Software Quality Assurance 140

5.4 Conclusion .. 143

References .. 145

Appendix A. Defect Density Indicator ... 161

 viii

List of Figures

Figure 0.1. Chronological view of my career .. 2

Figure 1.1. Research workflow .. 27

Figure 1.2 Research Goal and Challenges ... 28

Figure 2.1. Quality definitions .. 32

Figure 2.2. Definitions related to software quality assurance ... 33

Figure 2.3. Measurement definitions .. 33

Figure 2.4. Key relationships in the measurement information model (ISO/IEC 15939,

2007) ... 35

Figure 2.5. Example of information model concepts for productivity (ISO/IEC 15939,

2007) ... 36

Figure 2.6. Approaches for measurement definition ... 36

Figure 2.7. Hierarchical structure of the GQM approach ... 37

Figure 2.8. Standards and models for software quality .. 38

Figure 2.9. Examples of measures for effectiveness ... 38

Figure 2.10. Example of guidelines for World Wide Web user interfaces 39

Figure 2.11. Stakeholder requirements Process (Activities and Tasks) 40

Figure 2.12. CMMI Maturity levels x Process Areas ... 41

Figure 2.13. Data, Information and Knowledge (adapted from Probst et al. (2000)) 42

Figure 2.14. Knowledge management definitions .. 43

Figure 2.15. Knowledge sharing according to Nonaka and Takeuchi (1995) 43

Figure 2.16. Creation and transfer of common knowledge (Dixon, 2002) 44

Figure 2.17. Quality Improvement Paradigm .. 45

Figure 2.18. Post‐mortem analysis phases ... 46

Figure 2.19. Learning history phases .. 47

Figure 2.20. Ontology definitions ... 48

Figure 2.21. Illustrative example of an ontology ... 49

Figure 3.1. Example of measures for software process evaluation defined with GQM 53

Figure 3.2. Examples of measures report ... 55

Figure 3.3. Steps for definition of a catalog of indicators

 (Monteiro and Oliveira, 2011) ... 57

Figure 3.4. Example of statements of the questionnaire to evaluate service quality 60

Figure 3.5. Research protocol (Ramos et al., 2013) ... 62

Figure 3.6. Elements for analysis of ROI in SPI ... 63

Figure 3.7. Strategy for the analysis of benefits in SPI (Ramos et al., 2013) 64

Figure 3.8. Methodology for definition of the techniques (Valentin et al., 2012) 70

Figure 3.9. Efficiency and effectiveness boxplots by techniques .. 72

Figure 3.10. Distribution graphs for S1 ... 77

Figure 3.11. Ubiquitous computing ... 80

Figure 3.12. Number of quality characteristics by study ... 81

Figure 3.13. UI 1 to get direction, UI 2 to choose preferences and UI3 to select related

services ... 87

Figure 3.14. Composition 1 {orderIndependance, meet}: in the same frame. 88

Figure 3.15. Composition 2 {interleaving, equals}: a) UI’1, b) UI’2 and c) UI’3 in tabs 89

Figure 3.16. Composition 3{enabling, covers}: a) UI’1, b) UI’2 and c) UI’3 in sequence .. 90

 ix

Figure 3.17. The proposed mapping model ... 93

Figure 3.18. Extract of indicator specification .. 94

Figure 4.1. Steps for identification of knowledge for software maintenance 98

Figure 4.2. Knowledge identification .. 99

Figure 4.3. Sub‐ontologies of the maintenance ontology (Anquetil et al., 2006) 100

Figure 4.4. Software system sub‐ontology (Anquetil et al., 2006) .. 101

Figure 4.5. Example of formalization of an axiom ... 102

Figure 4.6. ISO14764 maintenance process with the intermediary (1 and 2) and final (3)

PMAs (Anquetil et al., 2006) .. 105

Figure 4.7. Extract of the post‐analysis questionnaire .. 106

Figure 4.8. Captured knowledge about the software process execution 108

Figure 4.9. Mapping of the learning history process to Dixon’s knowledge cycle 112

Figure 4.10. Extract of a learning history (translated from Portuguese) 113

Figure 4.11. Examples of user interface personalization in a transportation system

(Oliveira et al., 2013) .. 115

Figure 4.12 The context model: user profile (Bacha et al., 2011a) 117

Figure 4.13. The transportation ontology global view (Oliveira et al., 2013) 118

Figure 4.14. Meta‐model for mapping context and ontology elements (Bacha et al.

2011a) ... 119

Figure 4.15. Mapping examples (Oliveira et al., 2013) .. 120

Figure 4.16. Example of a UI specification .. 121

Figure 4.17. Annotation of task model elements (Bacha et al., 2011d) 122

Figure 5.1. Predictive usability evaluation ... 130

Figure 5.2. Task model for the radio player (Molina et al., 2005) .. 134

Figure 5.3. Evaluation of UI design model x Final UI for input validity data 136

Figure 5.4. Overview of quality evaluation of HCI in ubiquitous systems 139

Figure 5.5. Tacit Knowledge transfer (Arduin, 2013) ... 142

 x

List of Tables

Table 3.1. Measures proposed for software process evaluation .. 53

Table 3.2. Indicators X Measures .. 58

Table 3.3. Accessibility evaluation measures .. 67

Table 3.4. Evaluation data of 10 users with visual disability ... 69

Table 3.5. Example of Verification Items ... 70

Table 3.6. Measures for assessing the documentation of the system 73

Table 3.7. Measures for assessing system source code .. 74

Table 3.8. Measure results ... 76

Table 3.9. Decision of impact in maintainers’ contracts ... 78

Table 3.10. Classification of the impact in the contract of the evaluated systems 78

Table 3.11. Characteristics for quality evaluation of HCI in ubiquitous systems 82

Table 3.12. Measures for context awareness .. 84

Table 3.13. the performed scenarios in our evaluation .. 85

Table 3.14. Results for the evaluation of context‐awareness ... 85

Table 3.15. Measures for information density .. 86

Table 3.16. Proposed measures applied to the three composed UI of the case study 91

Table 3.17. Examples of the mapping between qualitative and quantitative data 94

Table 4.1. Number of concepts used in two studies (Anquetil et al., 2003) 103

Table 4.2. The three maintenance PMAs and the types of knowledge they focus on 106

Table 4.3. Captured knowledge about the system: instantiated concepts from the

ontology ... 107

Table 4.4. Examples of lessons learned for software process estimation 110

Table 4.5. Cost of a knowledge cycle using learning history .. 113

Table 4.6. Using ontology properties in path finding .. 123

Table 5.1. Example of analysis of measures ... 132

Table 5.2. Some proposed measures ... 133

Table 5.3. Resuls of measures for the “Radio Player” .. 135

Table 5.4. Examples of measures and methods used for quality evaluation 138

 xi

Acronyms

AUI Abstract User Interface

CMMI Capability Maturity Model Integration

CMMI-DEV Capability Maturity Model Integration for Developers

CSUQ Computer System Usability Questionnaire

CTT Concur Task Tree

CUI Concrete User Interface

GQM Goal-Question Metric

HCI Human-Computer Interaction

MIT Model Inspection Technique for usability evaluation

MPS.BR Brazilian Software Process Improvement Standard (from Portuguese, Melhoria de
Processo do Software Brasileiro)

MR-MPS-SW Brazilian Software Process Improvement Reference Model (from Portuguese – Modelo
de Referência para Melhoria do Processo de Software)

PMA Post-Morten Analysis

QIP Quality Improvement Paradigm

QUIM Quality in Use Integrated Measurement

RFID Radio-Frequency Identification

ROI Return on Investment

SDE Software Development Environment

SERVQUAL Service Quality model

SLA Service Level Agreement

SPI Software Process Improvement

SPICE Software Process Improvement and Capability dEtermination

SQA Software Quality Assurance

SQuaRE Software product Quality Requirements and Evaluation

UI User Interface

UML Unified Modeling Language

WCAG Web Content Accessibility Guidelines

WIMP Windows, Icons, Menus and Pointing device

 1

Part I. Extended Curriculum Vitae

 2

Overview

I have a somewhat unusual career. I did my Masters in Computer Science from 1993 to
1995 in Brazil. As part of my studies for the Master degree, I have taken part in a research
project at the Cardiology Bahian Foundation in collaboration with the Federal University of
Rio de Janeiro (Universidade Federal do Rio de Janeiro - UFRJ). Parallel to the Master
studies, I have worked as a substitute teacher in some universities.

Following that, I did my Doctorate studies at the Federal University of Rio de Janeiro
(1995-1999). During this period, I spent a year at the University of Ottawa (Canada) under the
direction of Professor Stan Matwin to do research on the use of knowledge representation
methods in software engineering. After I finished my Doctorate degree in 1999, I continued to
work at the same university doing post-doctoral research for one year. In this time, I also co-
supervised two Masters students who worked on themes related to my Doctorate research.

After my post-doctoral at UFRJ I worked for eight years (2001-July 2009) for the Master
Programme of Knowledge Management and Information Technology of the Catholic
University of Brasilia, Brazil. This university does not have a Doctorate program, therefore all
my research, during this period, was carried out with master students. As part of my research I
supervised/co-supervised 21 master students, sometimes with researchers from different
domains, such as Psychologists. During this period, I have coordinated two research projects
funded by the National Brazilian Research Agency (CNPq - National Counsel of
Technological and Scientific Development)”.

For four years (2005-2008) I have participated in the scientific committee of the Brazilian
software quality standard (MPS.BR - Melhoria de Processo do Software Brasileiro), an
important experience where I could apply the research in practice in the industry.

My career in France started in December 2008 with a post-doctoral opportunity at the
University of Rennes - IRISA (12/2008 to 05/2009) in a project in model-driven engineering
domain, coordinated by Professor Jean-Marc Jezequel. I have been working at the University
of Valenciennes, Laboratory of Industrial and Human Automation Control, Mechanical
Engineering and Computer Science (LAMIH) since September 2009 in the DIM (Decision,
Interaction and Mobility) team where I have started to work in the Human-Computer
Interaction research domain.

Figure 0.1 summarizes my career with a chronological view (details will be presented in
next sections).

Figure 0.1. Chronological view of my career

 3

Education

1995-1999 D.Sc. in System Engineering and Computer Science

University: Federal University of Rio de Janeiro (Brazil)
Title: Model for the construction of Domain-Oriented Software Development
Environments
Advisors: Ana Regina Cavalcanti da Rocha
 Gulherme Horta Travassos
Summary:
During software development, one of the most critical activities for software
engineers is the correct description and identification of product requirements.
This activity involves understanding the problem, which is essential to allow
one to define a solution for it. To do this, it is important not only to understand
the tasks routinely performed which are part of the problem, but more
importantly to understand the domain in which the system will take place.
Believing that the use of domain knowledge during software development can
be very useful to support software development activities, I defined the concept
of "Domain-Oriented Software Development Environment" (DOSDE). This
kind of environment readies knowledge about a specific domain in a symbolic
representation (a domain ontology). It also considers a library of potential tasks
from the domain to support problem understanding. Domain-specific tools
support the use of this knowledge during a well-defined software process.

1993-1995 Master in System Engineering and Computer Science

University: Federal University of Rio de Janeiro (Brazil)
Title: Quality assurance of Expert Systems
Advisor: Ana Regina Cavalcanti da Rocha

1989-1993 B.Sc. in Computer Science

Federal University of Bahia, Salvador, BA, Brazil

Professional Experience

09/2009 - Current Associate professor

University of Valenciennes and Hainaut-Cambrésis, France

12/2008 - 05/2009 Post-doctoral INRIA

University of Rennes (IRISA), France
Subject: Transformation model with Kermeta (Faros project)
Responsible: Professor Jean-Marc Jezequel

02/2001 - 07/2009 Associate professor

Catholic University of Brasilia, Brazil

03/2005 - 12/2007 Scientific team member of the Brazilian Software Quality Standard

SOFTEX, Brazil

01/2000 – 12/2007 Consulting in Software Quality

 Brazilian enterprises

 4

01/2000 – 12/2000 Post–doctoral

Federal University of Rio de Janeiro, Brazil
Subject: Domain-oriented software development environment
Responsible: Ana Regina Cavalcanti da Rocha

09/1997-07/1998 Visiting scholar

University of Ottawa, Canada
Subject: Knowledge representation with ontologies
Responsible: Professor Stan Matwin

08/1995 - 02/ 1998 Substitute teacher

Catholic University of Bahia, Bahia, Brazil

05/1993 – 12/1993 Substitute teacher

Federal University of Bahia, Brazil

 5

Teaching

Institution Level Course Year CM TD TP EqTD

UFBA, Bahia,

Brazil

BSc. in Accounting
Introduction to

informatics*
1993 60 60

BSc. in Computer

Science
Software engineering*

1995 to

1997

240 240

UCB, Brasília,

Brazil *

BSc. in Computer

Science

Coding* 2001 272 272
Software Engineering

Fundamentals *
2001 to

2007
748 748

Software Quality* 2001 to

2007
748 748

Master in Knowledge

Management and

Information

Technology

Special topics in

Software Engineering*
2000 60 60

Software Quality 2001 to

2006

340 340

Methods and

techniques on software

engineering*

2003 to

2007

272 272

EPITECH,

Nantes, France
Education in

Informatics
Project supervision

2008
3 52 56.5

Project management 2 20 23

IUT UVHC,

Maubeuge,

France

DUT on Computer

Science - Initial

Formation

Software Quality

2009 to

2013

27 36,5 39 116
Introduction do UML

(Unified Modeling

Language)

30 48 90 183

Advanced UML 30 64 57 166
Monitoring and

training project
 9 9

DUT on Computer

Science – Learning

Formation
1

Software Quality

2009 to

2013

32 8 24 80
Introduction do UML

(Unified Modeling

Language)

40 20 51 131

Advanced UML - 18 18
Total of teaching hours (approximate) 3.466
* In Brazil, courses are not divided into CM (Cours Magistral), TD (Travail Dirigé), TP (Travail
Pratique).

1
 In French, Formation par Apprentissage

 6

Administrative Activities

2006 - 2007 Coordination of the group of associate professors who implanted the

Brazilian software quality standard (MPS.BR)

Institution: Catholic University of Brasília, Brazil
Activities: Responsible for making contact with companies, definition of
contracts, payment verification.

2001 - 2004 Coordination of the software engineering courses in the B.Sc.

Institution: Catholic University of Brasília, Brazil
Activities: Responsible for the distribution of teachers in the disciplines,
monitoring student progress and definition of concepts to acquire for each
discipline.

2003 Assistant director of the Master of Knowledge Management and

Information Technology

Institution: Catholic University of Brasília, Brazil
Activities: time schedule courses planning, scientific reporting for the master
evaluation by educational government agencies

2001-2002 Coordinator of the professional license in Software Engineering (L3)

Institution: Catholic University of Brasília, Brazil
Activities: Definition of course selection, contract management of teachers,
student progress monitoring, payment control, schedule course planning

1995 - 2000 Research assistant

Institution: Federal University of Rio de Janeiro, Brazil
Activities: Selection and recruitment of trainees in several research projects

 7

Graduate Supervision

Doctoral Co-Supervision (3)

• Firas Bacha2, Integration of content personalization in the design and generation of
interactive applications based on MDA, (Intégration de la personnalisation du
contenu dans la conception et la génération des applications interactives basée sur
une approche MDA), co-supervised with Pr. Mourad Abed (50%), University of
Valenciennes, France. (2009-2013) (Publications: 2 papers in international journals, 5
in international conference and 1 in national conference)

• Cristiane Soares Ramos, A strategy for analysing benefits of Software Process
Improvement programs (Uma estratégia para análise de benefícios em programas de
melhoria de processo de software), co-supervised with Pr. Ana Regina Cavalcanti da
Rocha (50%), Federal University of Rio de Janeiro, Brazil. (2011- on going).
(Publications: 2 papers in international conferences and 1 in national conference)

• Ahlem Assila, Conception of a tool for the Integration of Qualitative and Quantitative
Evaluation for HCI (Intégration de l’Évaluation Qualitative and Quanttative pour
Interaction Homme-Machine), co-supervised with Pr. Houcine Ezzedine (50%),
University of Valenciennes. (2013 - on going). (Publications: 3 papers in international
conferences)

Masters (Co) Supervision (28)

• Rainara Maia Santos. Quality Evaluation of Ubiquitous System by Measurements. Federal
University of Ceará, 2014. (co-supervided with Rossana Andrade) (Publications: 1 paper
in international conference)

• Natasha Malveira Costa Valentim, A Set of Reading Techniques for the Usability
Inspection in Design Models, Federal University of Amazonas (Brazil), 2013. (co-
supervided with Tayana Uchôa Conte) (Publications: 1 paper in national conference)

• Wagner Lindberg Baccarin Arnaut. Definition of an ontology for use in a service-oriented
architecture development time and independent of the implementation technology,
Catholic University of Brasilia (Brazil), 2008 (Publications: 1 paper in international
conference)

• Luis Felipe Salin Monteiro. Definition of a catalog of measures for performance analysis
of software processes, Catholic University of Brasilia (Brazil), 2008 (Publications: 1
paper in international journal)

• Rodrigo Duran Lima, Guidelines for the use of methods of investment assessment in the
context of legacy systems maintenance. Catholic University of Brasilia (Brazil), 2008.
(co-supervised with Nicolas Anquetil)

• André Luiz Pimentel Queiroz, Proactive assessment of the deterioration of information
systems through management measures, Catholic University of Brasilia (Brazil), 2008.
(Publications: 1 papers in national journal)

2
 Currently, Firas Bacha works as Eclipse modeling consultant at Thales Research and Technology, Paris, France.

 8

• Alexandre Henrique de Souza Cruz, Capture and Dissemination of Knowledge in
Software Projects, Catholic University of Brasilia (Brazil), 2007. (co-supervised with
Nicolas Anquetil) (Publications: 1 book, 1 paper in international conference)

• Rodrigo Pinheiro dos Santos, Construction and Validation of an Instrument for Analysis
of Quality of Service Companies Assessed at CMM/CMMI, Catholic University of
Brasilia (Brazil), 2007. (Publications: 1 paper in international journal)

• Sinésio Teles de Lima, Evaluation of the Accessibility of Web Sites by Software Metrics,
Catholic University of Brasilia (Brazil), 2007. (co-supervised with Fernanda Lima)
(Publications: 2 papers in international conferences)

• Anderson Itaborahy, Project Management Software based on Business Value. Catholic
University of Brasilia (Brazil), 2007. (co-supervised with Rildo Silva) (Publications: 1
paper in international conference)

• Mirian Cristiane Alves Brito, Integrating Instructional Material and Experience in a
Collaborative Environment Support Teaching in Scope Issue Areas in a Higher Education
Institution, Catholic University of Brasilia (Brazil), 2006. (co-supervised with Germana
Nóbrega) (Publications: 1 paper in international conference and 1 in national conference)

• Regina Teixeira Almeida, Lessons Learned and Perceived Climate for Learning in a
Software Factory, Catholic University of Brasilia (Brazil), 2006. (co-supervised with Julia
Pantoja)

• Ricardo Ajax Dias Kosloski, Continuous Improvement Effort Estimation for Software
Development: An Approach to Productivity, Catholic University of Brasilia (Brazil),
2005. (Publications: 1 paper in international conference and 1 in national conference)

• Kênia Pereira Batista Webster, Risks of Software Maintenance: Taxonomy and
Prioritization. Catholic University of Brasilia (Brazil), 2005. (co-supervised with Nicolas
Anquetil) (Publications: 1 paper in international conference and 1 in national conference)

• Sérgio Cozzetti Bertoldi de Souza, Essential Documentation: A Focus on Required
Documentation for Software Maintenance. Catholic University of Brasilia (Brazil), 2005.
(co-supervised with Nicolas Anquetil) (Publications: 1 paper in international conference
and 1 in national conference)

• Cristiane Soares Ramos, Quality Evaluation of Legacy Systems, Catholic University of
Brasilia (Brazil), 2004. (Publications: 1 paper in international conference and 1 in national
conference)

• Kleiber Damian de Souza, Capturing Knowledge in Software Maintenance, Catholic
University of Brasilia (Brazil), 2004. (co-supervised with Nicolas Anquetil) (Publications:
1 paper in international journal, 1 paper in international conference, 1 in national
conference)

• Edmeia Leonor Pereira de Andrade, Use Case Points and Function Points in managing
size estimation of software projects object-oriented, Catholic University of Brasilia
(Brazil), 2004. (Publications: 1 paper in national journal, 1 in national conference)

• Paulo Roberto Corrêa Leão, Organization of Knowledge Management Skills for
Information Technology Professionals, Catholic University of Brasilia (Brazil), 2004. (co-
supervised with Eduardo Moresi) (Publications: 1 paper in national conference)

• Fabiano Mariath D’Oliveira, Planning Approval in Software Testing: A Customer
Oriented Approach Catholic University of Brasilia (Brazil), 2003. (Publications: 1 paper
in national conference)

• Angelica Toffano Seidel Calazans, Size Measurement Systems for Data Mart, Catholic
University of Brasilia (Brazil), 2003. (Publications: 1 paper in international conference, 1
in national conference)

 9

• Marcio Greyck Batista Dias, Organization of Knowledge Used in Software Maintenance,
Catholic University of Brasilia (Brazil), 2003. (co-supervised with Nicolas Anquetil)
(Publications: 2 papers in international journal, 2 papers in international conference, 1
book chapter, 1 in national conference)

• Carla Pena, An Approach to the Quality Inspection Object-Oriented Projects, Catholic
University of Brasilia (Brazil), 2003. (co-supervised with Walcélio Melo)

• Fabio Zlot. Modeling Task Knowledge for Domain-Oriented Development Software
Environments. Federal University of Rio de Janeiro (Brazil), 2002. (co-supervised with
Ana Regina Cavalcanti da Rocha) (Publications: 1 paper in international journal, 1 paper
in international conference)

• Ana Mirtes Fouro. Supporting the Construction of Research Database in Domain-Oriented
Development Software Environments. Federal University of Rio de Janeiro (Brazil),
2002. (co-supervised with Ana Regina Cavalcanti da Rocha)

• Augusto Gomes. Software Processes Evaluation based on Measurements. Federal
University of Rio de Janeiro (Brazil), 2001. (co-supervised with Ana Regina Cavalcanti
da Rocha) (Publications: 1 paper in international conference, 1 in national conference)

• Catia Gallota. Neptune: A Domain-Oriented Development Software Environment for
Submarine Acoustic. Federal University of Rio de Janeiro (Brazil), 2000. (co-supervised
with Ana Regina Cavalcanti da Rocha) (Publications: 1 paper in international journal, 1
paper in international conference)

• Luis Filipe Machado. Model for Definition, Specialization and Instantiation of Process in
TABA Workstation. Federal University of Rio de Janeiro (Brazil), 2000. (co-supervised
with Ana Regina Cavalcanti da Rocha). (Publications: 1 paper in international conference,
3 in national conferences)

 10

Research Projects

Research Projects Coordination (3)

• A Measurement-based Approach for the Quality Evaluation of Human-Computer
Interaction in Ubiquitous Systems, CNRS-INRIA-FAP’s 2012 no 155673 – Brazil,
Septembre/2012- July/2014.
Participants: University of Valenciennes and Hainaut-Cambrésis, France

 Federal University of Ceará, Brazil

• A Model for Evaluating Accessibility of Web Sites, National Counsel of
Technological and Scientific Development (Conselho Nacional de Desenvolvimento
Científico e Tecnológico), MCT/CNPQ 15/2007 (Brazil), 2008-2009.
Participants: Catholic University of Brasília, Brazil
 University of Brasília, Brazil

• Knowledge Management in Software Engineering (Conselho Nacional de
Desenvolvimento Científico e Tecnológico), PDPG-TI CT-INFO CNPQ (Brazil),
2002 - 2005.
Participants: Catholic University of Brasília, Brazil
 Federal University of Espírito Santo, Brazil

Research Project Participation (3)

• Context-Awareness Testing for Ubiquitous Systems, Brazil National Counsel of
Technological and Scientific Development (Conselho Nacional de Desenvolvimento
Científico e Tecnológico), MCT/CNPQ 14/2013 (Brazil), 2014-2016.
Participants: Federal University of Rio de Janeiro, Brazil

Federal University of Ceará, Brazil
University of Valenciennes and Hainaut-Cambrésis, France

• Development of an Expert System for Cardiology, IBM Brazil-FINEP (Brazilian
Agence for Inovation), 1993-1997.
Participants: Federal University of Rio de Janeiro, Brazil

Foundation of Cardiology from Bahia, Brazil

• CardioEducar – an educational meta-environment for cardiology teaching, National
Counsel of Technological and Scientific Development (Conselho Nacional de
Desenvolvimento Científico e Tecnológico), 1999-2001.
Participants: Federal University of Rio de Janeiro, Brazil

Foundation of Cardiology from Bahia, Brazil

 11

Scientific Expertise

Reviewer of Journals (6)

• Expert System with Applications (Elsevier), 2014.
• Journal of Systems and Software (Elsevier), 2010, 2013.
• Journal of Software: Evolution and Process (Wiley), 2012, 2013.
• Engineering Applications of Artificial Intelligence (Elsevier), 2013, 2014.
• Ingénierie des Systèmes d'Information (Hermes), 2013.
• Journal of System Enginering Research and Development (Springer), 2013, 2014.

Invited Speaker for Tutorial in Conferences (3)

• Evaluating the Quality of Human-Computer Interaction: Facing new challenges, in
Software Quality Brazilian Symposium, June 2012 (in Portuguese)

• Software Measurement for Quality and Productive Improvement, in Software Quality
Brazilian Symposium, June 2005 (in Portuguese)

• Knowledge modeling in organizations with ontologies, in Software Engineering
Brazilian Symposium, June 2001 (in Portuguese)

Member of Conference Program Committees (11)

• INFORSID, INFormatique des ORganisations et Systèmes d'Information et de
Décision, 2010, 2011, 2012, 2013, 2014

• ACM CHI Conference on Human Factors in Computing Systems, Works-in-Progress,
2013, 2014

• International Conference on the Quality of Information and Communications
Tecnhology, Track on Evidence Based Software Quality Engineering, 2014

• International Conference on Internet and Web Applications and Services, 2014
• Conférence Francophone sur l'Interaction Homme-Machine, 2013, 2014
• International Conference on Advanced Logistics and Transport, 2013
• Human-Computer Interaction International, 2011, 2012.
• Simpósio Brasileiro de Qualidade de Software, 2001, 2002, 2003, 2004, 2005, 2006,

2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014
• International Conference Interfaces and Human-Computer Interaction, 2012, 2013,

2014
• XVIII Simpósio Brasileiro de Engenharia de Software 2002, 2003, 2004, 2008, 2009
• IADIS International Conference WWW/Internet. 2002, 2003, 2004
• International Software Metrics Symposium. 2003
• Jornada Ibero-Americana de Engenharia de Software e Engenharia de Conhecimento,

2002
• Ibero American Conference on Web Engineering. 2002
• Workshop on Software Quality, 2006, 2007, 2008, 2009.

 12

Member of Doctoral Committees (4)

• Mlle. Sarah AYAD, supervised by Pr. Isabelle Comyn-Wattiau and Mme. Samira Si-
Said Cherfi, (Title: Business Process Models Quality: Evaluation and Improvement),
Le Conservatoire National des Arts et Métiers, Paris, 2013.

• M. Pierre-Emmanuel Arduin, supervised by Pr. Camille Rosenthal-Sabroux, (Title:
Towards a commensurability metric of interpretation schemas), Paris-Dauphine
University, 2013.

• M. Quang-Minh Doan, supervised by Pr. Camille Rosenthal-Sabroux (Title:
Preservation of knowledge in small and medium-sized Vietnamese companies: model
and process), Paris-Dauphine University, 2012.

• M. Mariano Montoni, supervised by Pr. Ana Regina Cavalcanti da Rocha (Title: A
Research on the Critical Success Factors for Software Process Improvement
Initiatives), Federal University of Rio de Janeiro, 2010.

Member of selection committee for Associate Professor (2)

• Profile: Computer Science in Knowledge Management, Information Systems and
Social Network - Paris-Dauphine University, Paris, France, 2014.

• Profile: The position is concerned with the consideration of semantic in the process of
modeling and evolving computer software, MCF 1301 - University of Littoral, Côte
D’Opale, Calais, France, 2013.

Coordination and Participation in Network Research Groups (2)

• Coordinator of the research group from GDR-I3 – Information System Evaluation,
2011-2013 (for more details see §1.1, page 26).

• Member of the research group GDR-GPL – Expert-User Modeling, 2012-2013.

Conference Organization (general chair and program committee chair) (1)

• Brazilian Symposium on Software Quality, Brasília, Brazil, 2004 (350 participants, 1
international keynote, two national keynotes, three collocated workshops, 5 tutorials).

International Workshop Organization (2)

• Ontology in Action Workshop, co-located event with the International Knowledge
Engineering and Software Engineering Conference, Banff, Canada, 2004.

• Workshop on Software Quality, co-located event in the International Conference on
Software Engineering, Orlando, USA, 2002.

Research and Consulting in Software Quality

• Co-editor of the Software Process Improvement Brazilian Standard (MR-MPS-SW),
2007.

• Implantation and Certification of the Software Process Improvement Brazilian
Standard in enterprises, 2007-2008.

 13

Publications

Summary

International Journal Papers 8
National Journal Papers (Brazilian) 3
Editor of Journal Special Issue 1
Book 1
Book chapters 11
International conference papers 52
National conference papers 69
Doctoral dissertation 1

International Journal Papers (8)

Oliveira K.M., Bacha F., Mnasser H., Abed M. Transportation Ontology Definition and Application for the
Content Personalization of User Interfaces. Expert Systems with Applications, 40 (8), 2013, pp. 3145-3159.
[IF=2.203]

Monteiro L., Oliveira K.M. Defining a catalog of indicators to support process performance analysis. Journal of
Software Maintenance and Evolution: Research and Practice, vol 23, Issue 6, 2011, pp. 395–422. [IF=0.606]

Bacha F., Oliveira K., Abed M. Using Context Modeling and Domain Ontology in the Design of Personalized
User Interface. International Journal on Computer Science and Information Systems (IJCSIS), 6, ISSN 1646-
369, 2011, pp. 69-94.

Santos, R. P. Dos, Oliveira K. M. De, Silva, W. P. da., Evaluating the Service Quality of Software Providers
appraised in CMM/CMMI, Software Quality Journal, Springer Verlag, v. 17 (3), September 2009, pp. 283-
301. [IF=0.977]

Anquetil, N., Oliveira, K. M., Souza, K. D. , Dias, M. Software Maintenance Seen as a Knowledge Management
Issue. Information and Software Technology, v. 49 (5), 2007, pp. 515 - 529. [IF=1.692]

Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Gallota, C., Menezes, C. Domain-oriented software
development environment. Journal of Systems and Software, v. 172, 2004, pp.145-161. [IF=1.322]

Dias, M., Anquetil, N., Oliveira, K. M. Organizing the Knowledge Used in Software Maintenance. Journal of
Universal Computer Science, v. 9, 2003, pp. 641-658. [IF=0.76]

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M. Ximenes, A., Souza, A., Andrade, C., Onnis, D., Lobo, N., Ferreira,
N., Werneck, V. An Expert System for the Diagnosis of Acute Myocardial Infarction with EKG Analysis.
Artificial Intelligence in Medicine, v. 1, 1997, pp. 75-92. [IF=1.767]

National Journal Papers (3)

Queiroz, A., Anquetil, N. Oliveira, K.M. Avaliação pró-ativa da deterioração de sistemas de informação por
meio de medidas de gestão, Revista de Informática Téorica e Aplicada, v. 16, n. 1, 2009, pp. 45-68.

Souza, S. C. B., Anquetil, N., Oliveira, K. M. Which documentation for software maintenance? Journal of the
Brazilian Computer Society, v. 3, 2007, pp. 31-44.

Andrade, E. L. P. De, Oliveira, K. M. Aplicação de Pontos de Função e Pontos de Casos de Uso de Forma
Combinada no Processo de Gestão de Estimativa de Tamanho de Projetos de Software Orientados a Objetos.
IP. Informática Pública, v. 7, n. 1, 2005, pp.13-30.

 14

Editor of Journal Special Issue (1)

Oliveira K., Rosenthal-Sabroux C Numéro spécial Évaluation des Systèmes d'information, Ingénierie des
systèmes d'information (ISI), 18 (3), Hermes, Paris, ISBN 1633-1311, 2013.

Book (1)

Torres, A.H., Oliveira, K.M., Anquetil, N., Lucena, G. Historias de aprendizagem em projetos de software: da
teoria à prática. Editora Universa, Brasília, DF, Brasil, 2009.

Book Chapters (11)

Kolski, C., Labour, M., Lepreux, S., Oliveira, K. M. A Pedagogic Patterns Model approach to designing and
documenting educational good practice in HCI. Seffah, A., The Patterns of HCI Design and the HCI Design
of Patterns. Human Computer Interaction Series, Springer Verlag, 2014. (accepted for publication)

Bacha F., Oliveira K., Abed M. Context-Aware MDA Approach for Content Personalization in User Interface
Development. Diaz V.G., Lovelle J.M.C., Garcia-Bistelo B.C.P, Martinez O.S., Progressions and Innovations
in Model-Driven Software Engineering, IGI Global, 2013, pp. 88-105.

Oliveira, K. M., Villela, K., Rocha, A., Travassos, G.H. Use of Ontologies in Software Development
Environments. Ontologies for Software Engineering and Software Technology, ed. Heidelberg: Springer, v.
1, 2006, pp. 275-309.

Anquetil, N., Oliveira, K. M., Dias, M. Software Maintenance Ontology. Ontologies for Software Engineering
and Software Technology ed.Heildelberg: Springer, 2006, v. 1, pp. 153-173.

Rocha, A.R., Rabelo Jr, A., Monat, A., Oliveira, K. M., et. al. A construção de um Meta-ambiente Educacional
para Cardiologia. Internet e Educação a Distância, ed. Salvador: EDUFBA, 2002, pp. 337-371.

Rocha, A.R., Machado, L. F., Oliveira, K. M., Falbo, R. Automatização da Definição de Processos de Software.
Qualidade de Software: Teoria e Prática ed.: Prentice Hall, 2001.

Belchior, A., Oliveira, K. M., Cerqueira, A., Rocha, A. R. Definição de Requisitos de Qualidade de Software.
Qualidade de Software: Teoria e Prática ed.: Prentice Hall, 2001.

Rocha, A.R., Maidantchick, C., Oliveira, K. M., Travassos, G.H. Experiência em Definição, Uso e Melhoria de
Processos de Software. Qualidade de Software: Teoria e Prática ed.: Prentice Hall, 2001.

Oliveira, K. M., Rocha, A.R., Rabelo JR, Á. Qualidade de Software Médico. Qualidade de Software: Teoria e
Prática: Prentice Hall, 2001.

Oliveira, K. M., Lima, R., Rocha, A.R. Qualidade de Software Web. Qualidade de Software: Teoria e Prática
ed.Prentice Hall: Prentice Hall, 2001.

Oliveira, K. M., Werneck, V., Ximenes, A., Rocha, A.R. Gerência da Qualidade do Processo e do Produto em
Sistemas Especialistas: uma experiência bem sucedida. Qualidade de Software - Seleção de Textos, 1996, v.
1, pp. 23-43.

International Conference Papers (52)

Assila, A., Oliveira, K.M.; H.Ezzedine, K.M. Towards qualitative and quantitative data integration approach for
enhancing HCI quality evaluation, 16th International Conference on Human-Computer Interaction, Springer,
22-27, June 2014, Creta, Greece, June 2014. (accepted for publication)

Santos, R., Oliveira, K., Andrade, R., Santos, I., Lima, E. A Quality Model for Human-Computer Interaction
Evaluation in Ubiquitous Systems. 6th Latin American Conference on Human Computer Interaction, Lecture
Notes in Cumputer Science, n. 8278, Guanacaste, Costa Rica, December 2013, pp. 63-70.

Gabillon Y., Lepreux S., Oliveira K. Towards ergonomic User Interface composition: a study about information
density criterion. M. Kurosu, 15th International Conference on Human-Computer Interaction, HCI
International, Lecture Notes in Computer Science, Las Vegas, USA, July 2013, pp. 211-220.

Ramos, C., Oliveira, K. M., Rocha, A. Towards a strategy for analysing benefits of Software Process
Improvement programs. The 25th International Conference on Software Engineering and Knowledge
Engineering, Boston, USA, June 2013.

 15

Assila, A., Ezzedine, H., Oliveira, K., Bouhlel, M. Towards improving the subjective quality evaluation of
Human Computer Interfaces using a questionnaire tool. International Conference on Advanced Logistics and
Transport, Sousse, Tunisia, May 2013, pp. 275-283.

Bacha, F., Oliveira, K., Abed, M. Supporting models for the generation of personalized user interfaces with
UIML. Software Support for User Interface Description Language, UIDL'2011, Interact'2011 workshop,
Lisbon, Portugal, Septembre 2011.

Kolski, C., Uster, G., Robert, J., Oliveira, K., David, B. Interaction in mobility: the evaluation of interactive
systems used by travellers in transportation contexts. International Conference, HCI International, Lecture
Notes in Computer Science, n. 6763, Orlando, USA, July 2011, pp. 301-310.

Bacha, F., Abed, M., Oliveira, K. Providing Personalized Information in Transport Systems: A Model Driven
Architecture Approach. First IEEE International Conference on Mobility, Security and Logistics in
Transport, Hammamet, Tunisia, June 2011, pp. 452-459.

Bacha, F., Oliveira, K., Abed, M. A model driven architecture approach for user interface generation focused on
content personalization. Fifth IEEE International Conference on Research Challenges in Information Science,
Guadeloupe - French West Indies, France, May 2011, pp. 1-6.

Oliveira, K. New Research Challenges for User Interface Quality Evaluation. Conference Internationale
Francophone sur I'Interaction Homme-Machine, Luxembourg, Septembre 2010, pp. 145-148.

Bacha, F., Oliveira, K., Abed, M. Foundations of a Model Driven Engineering Approach for Human-Computer
Interface Focused on Content Personalization. The 11th IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design, and Evaluation of Human-Machine Systems, Valenciennes, France, Septembre 2010.

Mnasser, H., Oliveira K., Khemaja M., Abed M. Towards an Ontology-based Transportation System for User
Travel Planning. P. Borne, F.G. Filip, 12th LSS Symposium, Large Scale Systems: Theory and Applications,
Villeneuve D'Ascq, France, July 2010.

Mnasser, H., Khemaja, M., Oliveira, K., Abed, M. A public transportation ontology to support user travel
planning, 4th International Conference on Research Challenges in Information Systems, Nice, France, May
2010, pp. 127-186.

Arnaut, W., Oliveira, K. Lima, F. OWL-Soa: A Service Oriented Architecture Ontology Useful During
Development Time And Independent From Implementation Technology, 4th IEEE International Conference
on Research Challenges in Information Systems, Nice, France, May 2010, pp. 527-536.

Houda, M., Oliveira, K., Khemaja, M., Abed, M. Towards An Ontology-Based Transportation System for User
Travel Planning, IFAC LSS, July 2010.

Bacha, F, Oliveira, K., Abed, M. Foundations of a Model Driven Engineering Approach for Human-Computer
Interface Focused on Content Personalization, 11th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design,
and Evaluation of Human-Machine Systems, Valenciennes, France, 2010.

Lima, S., Lima, F., Oliveira, K. M. Evaluating the Accessibility of Websites to Define Indicators in Service
Level Agreements, 11th International Conference on Enterprise Information Systems, Milan, Italy, May
2009, pp. 858-869.

Itaborahy, A., Oliveira, K. M., Santos, R. Value-Based Software Project Management: a business perspective on
software projects, 10th International Conference on Enterprise Information Systems, Bracelona, Spain, June
2008, pp. 218-225.

Lima, S., Lima, F., Oliveira, K.M., Towards Metrics for Web Accessibility Evaluation. International Workshop
on Design & Evaluation of e-Government Applications and Services, Rio de Janeiro, Brazil, 2007.

Torres, A. H. S., Anquetil, N., Oliveira, K. M. Pro-active dissemination of knowledge with learning histories. 8th
International Workshop on Learning Software Organization, Rio de Janeiro, Brazil, September 2006, pp. 19-
27.

Rocha, A. R., Montoni, M., Santos, G., Oliveira, K. M., Natali, A., Mian, P., Conte, T., Mafra, S., Barreto, A.,
Barreto, A., Bianchi, F. Success Factors and Difficulties in Software Process Deployment Experiences based
on CMMI and MR-MPS.BR, International Workshop on Learning Software Organizations, Rio de Janeiro,
2006, pp. 77-87.

Brito, M. C. A., Nóbrega, G.M., Oliveira, K. M. Integrating instructional material and teaching experience into a
teachers’ collaborative learning environment. European Conference on Technology Enhanced Learning.
Lecture Notes in Cumputer Science, n. 4227, 2006, pp. 458-463.

Kosloski, R.A., Oliveira, K. M. An Experience Factory to Improve Software Development Effort Estimates. 6th
International Conference Product Focused Software Process Improvement, Lecture Notes in Computer
Science, n. 3597, Oulu, Finland, June 2005, pp. 560-573.

 16

Webster, K.P., Oliveira, K. M., Anquetil, N. A Risk Taxonomy Proposal for Software Maintenance. IEEE
International Conference on Software Maintenance, Budapest, Hungary, September 2005, pp. 453-461.

Souza, S.C.B., Anquetil, N., Oliveira, K. M.A Study of the Documentation Essential to Software Maintenance.
International Conference on Design of Communication (SIGDOC), 2005, Conventry, UK, September 2005,
pp. 68- 75.

Anquetil, N., Oliveira, K.M., Santos, A. Silva Jr., Pc., Araujo Jr., L., Vieira, S. Software Re-Documentation
Process and Tool. 17th Conference on Advanced Information Systems Engineering, CAISE Forum, Porto,
Portugal, June 2005, pp. 95-100.

Calazans, A.T.S., Oliveira, K. M., Santos, R. R. Adapting Function Point Analysis to Estimate Data Mart Size.
10th IEEE International Symposium on Software Metrics, Chicago, USA, September 2004, pp. 300-311.

Souza, K.D., Anquetil, N., Oliveira, K. M. Learning Software Maintenance Organizations. International
Workshop on Learning Software Organizations, Lecture Notes in Cumputer Science, n. 3096, Banff, Canada,
June 2004, pp. 67-77.

Ramos, C. S., Oliveira, K. M., Anquetil, N. Legacy Software Evaluation Model for Outsourced Maintainer. 8th
IEEE European Conference on Software Maintenance and Reengineering, Tampere, Finland, March 2004,
pp. 48-57.

Villela, K., Santos, G., Travassos, G.H.; Rocha, A.; Oliveira, K. CORDIS-FBC: An Enterprise Oriented
Software Development Environment. Learning Software Organization - WM 2003 – Professionelles
Wissensmanagement, Lecture Notes in Informatics, Lucerne, Switzerland, April 2003, pp. 91-96.

Anquetil, N., Oliveira, K. M., Dias, M., Ramal, M., Menezes, R. Knowledge for Software Maintenance.
Software Engineering and Knowledge Engineering, San Francisco, USA, July 2003, pp. 6-68.

Dias, M., Anquetil, N., Oliveira, K. M. Organizing the Knowledge used in Software Maintenance. Learning
Software Organization- Professionelles Wissensmanagement, Lecture Notes in Informatics, Lucerne,
Switzerland, April 2003, pp. 65-72.

Valle, C, Costa, V., Garcia, A. C., Montoni, M., Rocha, Ar, Oliveira, K. M., Rabelo, L., Rabelo Jr, A.
CardioMeeting: A Learning Environment to Support the Discussion of Scientific Papers in Cardiology.
World Conference on Educational Multimedia, Hypermedia and Telecomnucation, Denver, USA, June 2002,
pp. 573-577.

Zlot, F., Oliveira, K. M., Rocha, A. Modeling Task Knowledge to Support Software Development. Software
Engineering and Knowledge Engineering, Ischia, Italy, July 2002, pp. 35-42.

Villela, K., Oliveira, K. M., Travassos, G.H., Rocha, A. R. The Definition and Automated Support of Software
Processes, taking Domain Knowledge and Organizational Culture into Consideration. Workshop on Software
Quality - ICSE 2002, Orlando, USA, May 2002.

Zlot, F., Oliveira, K. M., Rocha, A. Using the Description of Tasks to Support Software Development. 15th
International Conference Software & Systems Engineering and their Applications, Paris, France, November
2002, pp. 1-8.

Villela, K., Zlot, F., Santos, G., Bonfim, C., Salvador, B., Oliveira, K. M., Travassos, G. H., Rocha, A. R.
Knowledge Management in Software development Environments. 14th International Conference Software &
Systems Engineering and their Applications, Paris, France, November 2001, pp. 1-8.

Oliveira, K. M., Ximenes, A., Matwin, S., Rocha, A.R. A Generic Architecture for Knowledge Acquisition
Tools in Cardiology. 5th Intelligent Data Analysis in Medicine and Pharmacology - Workshop at the 14th
European Conference on Artificial Intelligence, Berling, Germany, Augsut 2000, pp. 43 – 45.

Maidantchick, C., Oliveira, K. M., Vidal, H., Masiero, M. L. Applying Management Model and Ontology on a
Telecommunication Company. 13th International Conference Software & Systems Engineering and their
Applications, Paris, France, November 2000.

Rocha, C., Oliveira, K. M., Rocha, A.R., Montoni, M., Timbo, A., Sampaio, L. C., Rabelo Jr, A. CardioSurgery:
An Environment to Support Surgical Planning and Follow-up in Cardiology. WebNet - World Conference on
the WWW and Internet, San Antonio, USA, 2000, pp. 459-463.

Lima, R., Sampaio, F., Oliveira, K. M., Rocha, A.R. Evaluating Web Sites For an Educational Environment
Target For Cardiology. The 3rd European Software Measurement Conference - Federation of European
Software Metrics Associations, 2000.

Gomes, A., Machado, L. F., Oliveira, K. M., Rocha, A.R., Software Process Improvement Through
Measurement And Experts Judgement. The 3rd European Software Measurement Conference - (Federation
of European Software Metrics Associations), 2000.

 17

Machado, L. F., Oliveira, K. M., Rocha, A.R. Using Standards And Maturity Models For The Software Process
Definition. 4th International Software Quality Week Europe, Brussels, Belgium, November 2000.

Oliveira, K. M., Gallota, C., Menezes, C., Travassos, G.H, Rocha, A.R. Defining and Building Domain-Oriented
Software Development Environments. 12th International Conference Software & Systems Engineering and
their Applications, Paris, France, November 1999.

Oliveira, K. M., Menezes, C., Travassos, G.H, Rocha, A.R. Using Domain-Knowledge in Software Development
Environments. Software Engineering and Knowledge Engineering, Kaiserslautern, Germany, June 1999, pp.
180-187.

Oliveira, K. M., Rocha, A.R., Travassos, G.H., Matwin, S. Towards a Domain Oriented Software Development
Environment for Cardiology. 5th Doctorium Consortium CAISE, Pisa, Italy, June 1998.

Werneck, V., Oliveira, K. M., Rabelo Jr, A., Rocha, A.R. A Software Development Process for Expert Systems.
10th International Symposium on Methodologies for Intelligent Systems, Charlotte, USA, 1997, pp. 1-10.

Rabelo Jr, A., Rocha, A.R., Souza, A., Ximenes, A., Onnis, D., Oliveira, K. M., Olivaes, I., Lobo, N., Ferreira,
N., Werneck, V. The Validation of an Expert System for Diagnosis of Acute Myocardial Infarction. Artificial
Intelligence in Medicine, Lecture Notes in Artificial Intelligence, 1997, pp. 243-246.

Werneck, V., Oliveira, K. M., Rocha, A.R., Rabelo Jr, A., Souza, A., Lobo, N., Ximenes, A. A Software Process
Based on ISO 9000-3 used for developing an Expert System in Cardiology. 2nd Medical Engineering Week
of the World, Taipei, China, May 1996.

Oliveira, K. M., Rabelo Jr, A., Rocha, A.R., Souza, A., Ximenes, A., Andrade, C., Asanome, C., Onnis, D.,
Olivaes, I., Lobo, N., Ferreira, N., Werneck, V. An Experience of Software Quality Assurance for an Expert
System in Cardiology. 2nd Medical Engineering Week of the World, Taipei, China, May 1996.

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M., Werneck, V., Souza, A., Ximenes, A., Werther Filho, J., Lobo, N.
An Expert System for Diagnosis of Acute Myocardial Infarction. ACM Symposium on Applied Computing
(SAC), Nashville, Tennessee, February 1995, pp. 96-100.

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M., Werneck, V., Souza, A., Ximenes, A., Lobo, N., Olivaes, I. An
Expert System for Diagnosis of Acute Myocardial Infarction: Software Quality Assurance Procedures.
European Symposium on Validation and Verification of Knowledge Based Systems, Chambéry, June 1995,
pp. 117-127.

National Conference Papers (69)

Dupuy-Chessa, S., Oliveira, K.M, Si-Said Cherfi, S. Qualité des modèles : retour d’expériences.
INFORSID’2014, INFormatique des ORganisations et Systèmes d'Information et de Décision, Lyon, France,
May 2014. (accepted for publication).

Ramos, C., Oliveira, K. M., Rocha, A. Uma Abordagem para Análise de Retorno sobre Investimentos em
Programas de Melhoria de Processos de Software. WAMPS, Workshop Anual do MPS.BR, Campinas,
Brazil, October 2012, pp. 43-54.

Valentim, N.M.C., Oliveira K., Conte, T. Definindo uma abordagem para inspeção de usabilidade em modelos
de projeto por meio de experimentação. IHC '12, Proceedings of the 11th Brazilian Symposium on Human
Factors in Computing Systems, Cuiaba, Brazil, Novembre 2012, pp. 165-174.

Oliveira K., Thion V., Dupuy-Chessa S., Gervais M., Si-Said Cherfi S., Kolski C. Limites de l'évaluation d'un
système d'information : une analyse fondée sur l'expérience pratique. INFORSID, INFormatique des
ORganisations et Systèmes d'Information et de Décision, Montpellier, France, May 2012, pp. 411-427.

Kolski, C., Uster, G., Robert, J., Oliveira, K., David, B. Interaction in mobility: the evaluation of interactive
systems used by travellers in transportation contexts. International Conference, HCI International, Lecture
Notes in Computer Science, n. 6763, Orlando, USA, July 2011, pp. 301-310.

Bacha F., Oliveira K., Abed M. Transformation des modèles de BPMN vers UIML. Actes des 7èmes Journées
sur l'Ingénierie Dirigée par les Modèles, Lille, June 2011, pp. 77-83.

Anquetil, N., Vizcaino, A., Oliveira, K. M., Piattini, M. Asynchronous Merging of Software Ontologies: an
Experience. Jornadas Iberoamericanas de Ingeniería del Software e Ingeniería del Conocimiento, Lima, Peru,
February 2007, pp. 99-106.

Lima, S. T., Lima, F., Oliveira, K. M. Avaliação da Acessibilidade de Sitios Web por meio de Métricas de
Software. Simpósio Brasileiro de Qualidade de Software, Porto de Galinhas, Brazil, 2007, pp. 95-109.

Santos, R. P., Oliveira, K. M., Silva, W. P. Percepção dos Clientes sobre a Qualidade do Serviço de Provedores
Formalmente Avaliados nos Modelos CMM/CMMI. Simpósio Brasileiro de Qualidade de Software,
Fortaleza, Brazil, Junho 2007, pp. 203-217.

 18

Crispim, E., Calixto, I., Brito, M., Nóbrega, G.M., Oliveira, K. M. Um ambiente Web para a captura de
experiência docente baseado em Objetos de Aprendizagem e na colaboração: da concepção à prototipagem
VIII Simpósio Brasileiro de Informática na Educação, Sào Paulo, Brazil, 2007, pp. 318-327.

Porto, D., Souza, L., Martinez, M., Anquetil, N., Oliveira, K. M. Avaliação da Confiabilidade de um Software
utilizando Aspectos. V Simpósio Brasileiro de Qualidade de Software, Vila Velha, Brazil, June 2006, pp.
334-342.

Macedo, C. C., Lima, S., Rocha, A.R., Natali, A.C., Oliveira, K. M., Mian, P., Barreto, A., Barreto, A., Santos,
G., Conte, T. Implantação de Melhoria de Processos de Software no Tribunal Superior Eleitoral. V Simpósio
Brasileiro de Qualidade de Software, Vila Velha, Brazil, June 2006, pp. 351-358.

Nery, A., Bandeira, L., Lima, F., Oliveira, K. M. Qualidade de Software aplicada à navegabilidade na Web.
Simpósio Brasileiro de Sistemas Multimídia e Web, Natal, Brazil, November 2006.

Kosloski, R.A.D., Oliveira, K. M. Melhoria Contínua de Estimativa de Esforço para o Desenvolvimento de
Software: Uma Abordagem sobre Produtividade. V Simpósio Brasileiro de Qualidade de Software, Vila
Velha, Brazil, June 2006, pp. 409-423.

Itaborahy, A., Radis, E., Longhi, F., Oliveira, K. M., Figueiredo, R. Aplicação do método SCAMPI para
avaliação do processode gerenciamento de projetos de software numa instituiçãofinanceira. VII Simposio
Internacional de Melhoria de Processo de Software, São Paulo, Brazil, November 2005, pp.1-26.

Ramos, C.S., Oliveira, K. M., Anquetil, N. Avaliação de Sistemas Legados. IV Simpósio Brasileiro de
Qualidade de Software, Porto Alegre, Brazil, June 2005, pp. 139-144.

Brito, M., Nóbrega, G.M., Oliveira, K. M. Capturando experiência docente para guiar o design instrucional
colaborativo e contínuo. XVI Simpósio Brasileiro de Informática na Educação, Juiz de Fora, Brazil, 2005,
pp. 147-157.

Duran, R., Marinho, M., Figueiredo, R., Oliveira, K. M. Institucionalização da Gerência de Configuração no
Desenvolvimento de Software de uma Organização. VII Simposio Internacional de Melhoria de Processo de
Software, São Paulo, Brazil, Novembro 2005, pp. 60-85.

Sousa, M., Sândi, V.T., Oliveira, K. M., Figueiredo, R. Processo de Aquisição de Produtos e Serviços de
Softwarepara uma Instituição Bancária. VII Simposio Internacional de Melhoria de Processo de Software,
São Paulo, Brazil, November 2005, pp. 37-53.

Webster, K., Anquetil, N., Oliveira, K. M. Taxonomia de Riscos para Manutenção de Software. IV Simpósio
Brasileiro de Qualidade de Software, Porto Alegre, Brazil, Junho 2005, pp. 119-134.

Leão, P.R., Oliveira, K. M., Moresi, E. Ontologia para gestão de competências dos profissionais em Tecnologia
da Informação. IV Jornadas Iberoamericanas en Engenieria del Softfware e Ingenieria del Conocimento,
Madrid, Spain, 2004, v. 2, pp. 651-655.

Webster, K., Oliveira, K. M., Anquetil, N., Figueiredo, R. Priorização de riscos para manutenção de software. IV
Jornadas Iberoamericanas en Engenieria del Softfware e Ingenieria del Conocimento, Madrid, Spain, 2004,
pp. 647-660.

Nascimento, A. A., Knoth, C. R., Fagundes, J. S., Figueiredo, R., Oliveira, K. M. Aplicações de Práticas
Selecionadas do Nível 2 do Modelo eSCM-SP v2 em um Órgão da Administração Pública Federal Brasileira.
5th Conference for Quality in Information and Communications Tecnhology, Porto, Portugal, October 2004,
pp.153-159.

Santos, R. P., Souza, S. M., Lima, S. T., Oliveira, K. M., Figueiredo, R., Knoth, C. R. Definição de SLA para
Processos de Testes de Software - Um estudo de caso em unidade de teste de integração de sistemas. 5th
Conference for Quality in Information and Communications Tecnhology, Porto, Portugal, October 2004, pp.
127-134.

Souza, S. C. B., Neves, W. C. G., Oliveira, K. M., Anquetil, N., Figueiredo, R. Investigação da documentação de
maior importância para manutenção de software. IV Jornadas Iberoamericanas en Engenieria del Softfware e
Ingenieria del Conocimento, Madrid, Spain, 2004, pp. 217-230

Weber, K.C., Rocha, A. R., Rouiller, A. C., Alves, A., Crespo, A., Goncalves, A., Paret, B., Vargas, C.,
Salviano, C., Oliveira, K. M. Uma Estratégia para Melhoria de Processo de Software nas Empresas
Brasileiras. 5th Conference for Quality in Information and Communications, Porto, Portugal, October 2004,
pp. 73-78.

Galotta, C., Oliveira, K. M., Rocha, A.R. Apoio à Interação entre Processos de Negócio e de Software através de
Gerência de Conhecimento. III Simpósio Brasileiro de Qualidade de Software, Brasília, Brazil, Junho 2004,
pp. 117-130.

 19

Silva Neto, N., Ramos, F., Oliveira, K. M., Figueiredo, A. Avaliação da Melhoria da Qualidade de Vida no
Trabalho com a Implantação do Nível 2 do Modelo SW-CMM. III Simpósio Brasileiro de Qualidade de
Software, Brasília, Brazil, Junho 2004, pp. 94-101.

Souza, K.D., Anquetil, N., Oliveira, K. M. Captura de conhecimento durante a manutenção de software. II
Workshop de Tecnologia da Informação e Gerência do Conhecimento, Brasília, Brazil, Junho 2004, pp. 1-10.

Ramos, C. S., Oliveira, K. M., Anquetil, N. Conhecendo Sistemas Legados através de Métricas de Software. III
Simpósio Brasileiro de Qualidade de Software, Brasília, Brazil, Junho 2004, pp. 328-342.

Corrêa, G., Figueiredo, R., Oliveira, K. M., Araújo, J. Diretrizes para a Melhoria da Gerência e Desenvolvimento
de Requisitos em uma Empresa de Software. Simpósio Internacional de Melhoriade Processos de Software,
São Paulo, Brasil, Novembro 2004, pp. 95-106.

Calazans, A.T.S., Oliveira, K. M., Santos, R. Medição de Tamanho para Sistemas de Data Mart. III Simpósio
Brasileiro de Qualidade de Software, Brasília, Brazil, June 2004, pp. 384-398.

Oliveira, K. M., Leão, P.R., Moresi, E. Ontologia de Competências Profissionais em Tecnologia da Informação.
II Workshop de Tecnologia da Informação e Gerência do Conhecimento, Brasília, Brazil, Junho 2004, pp.1-
10.

Weber, K.C., Rocha, A. R., Rouiller, A. C., Alves, A., Crespo, A., Goncalves, A., Paret, B., Vargas, C.,
Salviano, C., Oliveira, K. M. Uma Estratégia para Melhoria de Processo de Software nas Empresas
Brasileiras. 5th Conference for Quality in Information and Communications, 2004, pp.73-78.

Andrade, E.L.P., Oliveira, K. M. Uso Combinado de Análise de Pontos de Função e POntos de Caso de Uso na
Gestão de Estimativa de Tamanho de Projetos de Software Orientado a Objetos. III Simpósio Brasileiro de
Qualidade de Software, Brasilia, Brazil, June 2004, pp. 234-248.

Souza, K.D., Oliveira, K. M., Anquetil, N. Aplicação do GQM para Avaliação de Processo de Manutenção de
Software. III Jornadas Iberoamericana de Ingenieria del Software e Ingenieria del Conocimento, 2003, pp.
65-74.

Andrade, E.L.P., Calazans, A.T.S., Oliveira, K. M., Figueiredo, A. Avaliação do processo de atendimento de
demandas de produtos de software da Embrapa. Simpósio Brasileiro de Qualidade de Software, 2003, pp. 92-
99.

Calazans, A.T.S, Oliveira, K. M., Ribeiro, R. Dimensionando Data Marts: Uma Adequação de uma Métrica
Funcional. Simpósio Brasileiro de Qualidade de Software, Fortaleza, Brazil, Junho 2003, pp. 189-202.

D’Oliveira, F.M., Oliveira, K. M., Figueiredo, Adelaide. Priorização de Testes de Software: Uma abordagem
orientada ao cliente. Simpósio Brasileiro de Qualidade de Software, Fortaleza, Brazil, 2003, pp. 218-232.

Dias, M., Oliveira, K. M., Anquetil, N. Organização do Conhecimento Utilizado na Manutenção de Software.
XXIX Conferencia Latinoamericana de Informática, La Paz, Bolívia, September 2003.

Anquetil, N., Oliveira, K. M. Processo de Redocumentação: Uma necessidade. Simpósio Brasileiro de Qualidade
de Software, Gramado, Brazil, June 2002, pp. 30-43.

Carazza, A., Mello, W., Oliveira, K. M. Avaliação da Qualidade de Software: um estudo de caso. Workshop de
Qualidade, Rio de Janeiro, Brazil, June 2001, pp.183–188.

Oliveira, K. M., Garcia, A. C., Valle, C., Montoni, M., Costa, V., Moraes, T., Rabelo Jr, A., Rocha, A.
CardioMeeting: Um Ambiente para Discussão de Artigos em Cardiologia. 30a Jornadas Argentinas de
Informática e Investigación Operativa - Simpósio Argentino de Informática y Salud - SADIO, Buenos Aires,
Argentina, 2001, pp. 71-75.

Gomes, A., Oliveira, K. M., Rocha, A.R. Métricas para Medição e Melhoria de Processos de Software. 4o
Encontro de Qualidade nas Tecnologias de Informação e Comunicações, 2001, Lisboa, Portugal, March
2001, pp. 71- 78.

Rocha, A.R., Oliveira, K. M., Rabelo Jr, A. Qualidade de Software Médico. 30o Jornadas Argentinas de
Informática e Investigación Operativa - Simpósio Argentino de Informática y Salud, Buenos Aires,
Argentina, 2001, pp.76-86.

Gomes, A., Oliveira, K. M., Rocha, A.R., Avaliação de Processos de Software baseada em Medições. XV
Simposio Brasileiro de Engenharia de Software, Rio de Janeiro, RJ, October 2001, pp. 84-99.

Gomes, A., Mafra, S., Oliveira, K. M., Rocha, A.R., Avaliação de Processos de Software na Estação TABA. XV
Simposio Brasileiro de Engenharia de Software, Rio de Janeiro, Brazil, October 2001, pp. 344-350.

Villela, K., Oliveira, K. M., Santos, G., Mafra, S., Travassos, G. H., Rocha, A.R., CORDIS-FBC: um Ambiente
de Desenvolvimento de Software para Cardiologia. Workshop de Informática Médica, Rio de Janeiro, Brazil,
October 2001, pp.1-5.

 20

Villela, K., Santos, G., Gallota, C., Miranda, R., Negrão, R., Farias, L., Zlot, Fabio, Barcelos, M., Salvador, B.,
Oliveira, K. M., Travassos, G.H., Rocha, A.R. Estendendo a Estação TABA para criação de Ambientes de
Desenvolvimento de Software Orientados a Organização. XV Simposio Brasileiro de Engenharia de
Software, Rio de Janeiro, Brazil, October 2001, pp. 332-337.

Oliveira, K. M., Santos, G., Zlot, F., Guedes, G., Gallota, Catia, Cerqueira, A., Machado, L. F., Lima, K.,
Rapchan, F., Falbo, Ricardo, Travassos, G. H., Rocha, A.R.. Construção de Ambientes de Desenvolvimento
de Software Orientados a Domínio na Estação TABA. Terceiro Workshop Ibero-americano de Engenharia de
Requisitos e Ambientes de Software, 2000.

Machado, L. F., Oliveira, K. M., Rocha, A.R. Modelo para Definição de Processos de Software baseado na
ISO/IEC12207, em Modelos de Maturidade e Características do Projeto. Terceiro Workshop Ibero-americano
de Engenharia de Requisitos e Ambientes de Software, Cancun, Mexico, April 2000, pp.73-84.

Oliveira, K. M., Travassos, G.H., Rocha, A.R. A Estação TABA e Ambientes de Desenvolvimento de Software
Orientados a Domínio. XIV Simposio Brasileiro de Engenharia de Software, João Pessoa, Brazil, October
2000, pp. 343-346.

Oliveira, K. M., Rocha, A.R., Rocha, A. R. Ambiente de Desenvolvimento de Software Orientado a Domínio.
Simposio Brasileiro de Engenharia de Software, João Pessoa, Brazil, October 2000, pp. 275-290.

Oliveira, K. M., Travassos, G.H., Rocha, A.R. CORDIS: um Ambiente de Desenvolvimento de Software
Orientado ao Domínio de Cardiologia. Congresso Brasileiro de Informática em Saúde, São Paulo, Brazil,
October 2000.

Machado, L. F., Santos, G., Oliveira, K. M., Rocha, A.R. Def-Pro: Apoio automatizado para Definição de
Processos de Software. Caderno de Ferramentas - XIV Simposio Brasileiro de Engenharia de Software, João
Pessoa, Brazil, October 2000, pp. 359-362.

Machado, L. F., Oliveira, K. M., Rocha, A.R. Def-Pro: uma Ferramenta para Apoiar a Definição de Processo
Padrão. XI Conferencia Internacional de Tecnologia de Software, 2000, pp. 165-179.

Gomes, A., Oliveira, K. M., Machado, L. F., Rocha, A.R. Medição e Melhoria de Processos de Software.
Workshop de Qualidade de Software, João Pessoa, Brazil, October 2000, pp. 306-316.

Oliveira, K. M., Menezes, C., Travassos, G., Rocha, A.R. CORDIS: Assistência Automatizada no
Desenvolvimento de Software em Cardiologia. 28 Jornadas Argentinas de Informática e Investigación
Operativa, Buenos Aires, Brazil, 1999, pp. 38-48.

Cerqueira, A., Oliveira, K. M., Rocha, A.R., Apoio Automatizado para a Definição de Requisitos de Qualidade
de Software. Workshop Qualidade de Software - XIII Simpósio Brasileiro de Engenharia de Software,
Florianópolis, Brazil, October1999.

Oliveira, K. M., Rocha, A.R., Travassos, G.H., O uso da Teoria do Domínio no Processo de Desenvolvimento de
Software. X Conferencia Internacional de Tecnologia de Software, Curitiba, Brazil, 1999, pp. 223-235.

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M., Onnis, D., Ferreira, N., Lobo, N., Souza, A., Ximenes, A. Validação
de Sistemas Especialistas com Casos Reais. Workshop de Qualidade de Software, São Carlos, São Paulo,
October 1996, pp. 21-25.

Oliveira, K. M., Rocha, A.R., Rabelo Jr, A. Verificação e Validação de Sistemas Especialistas. XXI Conferencia
Latinoamericana de Informática, 1995, pp.351-362.

Oliveira, K. M., Asanome, C., Rabelo Jr, A., Rocha, A.R., Avaliação da Confiabilidade de um Sistema
Especialista para Diagnóstico de Infarto Agudo do Miocardio. Workshop de Qualidade de Software, Recifie,
Brazil, October 1995, pp. 127-131.

Werneck, V., Oliveira, K. M., Rabelo Jr, A., Rocha, A.R. Definition, evaluation and improvement of a software
process based on ISO 9000/3: The experience with an expert system for diagnosis of acute myocardial
infarction. II International Congress on Information Engineering, 1995, pp. 324-333.

Rabelo Jr, A., Rocha, A.R., Souza, A., Oliveira, K. M. Testing an Expert System for Diagnosis of Acute
Myocardial Infarction. II International Congress on Information Engineering, 1995, pp. 146-154.

Oliveira, K. M., Werneck, V., Rocha, A.R. Avaliação da Qualidade de Sistemas Especialistas. Workshop de
Qualidade de Software, , Curitiba, Brazil, October 1994, pp. 7-9.

Oliveira, K. M., Werneck, V., Rocha, A.R.. Definição dos Requisitos de Qualidade de um Sistema Especialista
em Cardiologia. Congresso Brasileiro de Informática em Saúde, Porto Alegre, Brazil, 1994, pp. 141-145.

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M., Werneck, V., Souza, Agnaldo, Ximenes, Antonio, Lobo, Nelson,
Olivaes, Ivan Experiência na Definição, Uso e Avaliação do Processo de Desenvolvimento de Sistemas
Especialistas em Cardiologia. Workshop de Qualidade de Software, Curitiba, Brazil, October 1994, pp. 37-
39.

 21

Werneck, V., Oliveira, K. M., Rocha, A.R. Uma Experiência na Definição do Processo de Desenvolvimento de
Sistemas Especialistas em Cardiologia. Congresso Brasileiro de Informática em Saúde, Porto Alegre, Brazil,
1994, pp. 146-150.

Doctoral Dissertation (1)

Oliveira, K. M., Model for the construction of Domain-Oriented Software Development Environments, Doctoral
Thesis, Federal University of Rio de Janeiro, October 1999.

 22

Part II. Software Quality Assurance by

means of Methodologies, Measurements

and Knowledge Management Issues

23

Chapter 1 Introduction

1.1 Context and Historical Research

Since the so-called software crisis of 1960s, 1970s and 1980s, the need of software quality
assurance (SQA) has emerged and has expanded over the years with several methodologies,
techniques and standards. SQA is defined by IEEE standard (1990) as “a planned and
systematic pattern of all actions necessary to provide adequate confidence that an item or
product conforms to established technical requirements” and “a set of activities designed to
evaluate the process by which the products are developed or manufactured”. From this first
definition, research in the software quality domain expanded encompassing preoccupation
with how to ensure quality of processes and software products generated in these processes.
Standards and models for software process improvement have been defined (Software Process
Improvement and Capability dEtermination- SPICE (EMAM et al., 1998), ISO/IEC 12207
(2008), ISO/IEC 15504-2 (2003), Capability Maturity Model Integration - CMMI (SEI,
2010), and Brazilian Software Process Improvement (SOFTEX, 2012; Montoni et al. 2009)
and have been increasingly applied in practice in the industry3. Quality of software products
had to evolve with the introduction of new design methodologies (from structured to object-
oriented design paradigms) and the emergence of new technologies (from personal computers
to advanced technologies - for example, mobile and tablets). Software systems began to be
everywhere supporting everyday activities and quality assurance of these systems has become
crucial to ensure their real adoption by the users. This context implies the need of particular
specifications not only for the different technologies but also for each application domain
(e.g. health services, finance, insurance, education and transportation).

My personnel experience with SQA started in 1993 when I was designated to perform
quality assurance of an expert system for the cardiology domain. This was a rich experience
during my master degree that allowed me to not only learn how to define SQA procedures but
also to really execute them. This experience has guided my career, in the Master and
Doctorate research, and working as a professional (see Part I, section Overview).

In this section, I will present the context of software quality area intertwining with the
research I have carried out throughout my career.

Masters in System Engineering and Computer Science

During my masters, I have worked on the definition and quality evaluation of software
products using quality criteria and measures in a large project that aimed to develop an expert
system for the cardiology domain. At that time, although evaluation techniques (e.g.
walkthrough, inspections and code review) had already been proposed, the practice of SQA
was focused on testing activities in the final code. In this project, we defined a set of quality

3
 Since 2006, more than 7,800 CMMI have been reported to CMMI institute from over 40 countries (see

http://cmmiinstitute.com/resource/process-maturity-profiles/). In Brazil, there are more than 500 officially

appraisals on the national standard (MPS.BR) created in 2005 (see http://www.softex.br/mpsbr/).

Chapter 1 ‐ Introduction

 24

characteristics specific for expert systems (Rabelo et al., 1997; Oliveira et al., 1996)
4 and we

used phased inspections (Knight and Myers, 1993) to assure the quality of the system
throughout the software development process. Phased inspection defines that the same
software product should be evaluated by different evaluators (in our case, technical team,
managers and cardiologists) in different phases of the software development life cycle,
considering different quality criteria. The inspection procedures were integrated in a software
process specifically defined for the development of knowledge-based systems (Werneck et

al., 1997). Thanks to the SQA procedures, the first version of the system was concluded with
a high-level of reliability (Rabelo et al., 1997).

With this experience I realized that quality evaluation by measurements was a large
research field. Quality evaluation of software products based on specific quality
characteristics and measures have been a recurrent challenge. Several papers have been
published for different technologies – e.g. object-oriented software systems (Orenyi et al.,
2012; Briand et al., 1999; Harrison et al., 1998), web systems (Kallepalli and Tian, 2001;
Olsina and Rossi, 2002), and embedded systems (Mayr et al., 2012) applied to several
application domains. For some years, many papers proposed measures to evaluate software
quality. The application of these measures in real projects became a need in order to validate
them and to confirm their utility. So far, several difficulties emerged and they prevent
software developers/evaluators to perform adequate validation of these measures. Some of
these difficults are finding real projects to apply the evaluation procedures and qualified
people to analyze and interpret the results to assure the quality of the software products.
Measures were also defined for software process evaluation and improvement (SPI) (e.g.
Monteiro and Oliveira, 2011; Wang and Li, 2005; Gomes et al., 2000; Khoshgoftaar et al.,
1998) and to support project planning by the effort and cost estimation (e.g. De Marcos et al.,
2012; Kosloski and Oliveira, 2005; Calazans et al., 2004a). In parallel to this, the
dissemination of the empirical software engineering domain (Kitchenham et al., 2002)
brought a need of formalization of experiments. On the one hand it makes the experiments
more credible, on the other hand it requires formal exigencies to follow (e.g. the formalization
of the hypothesis, correct definition of subjects, treats of validity, etc.).

Doctorate in System Engineering and Computer Science

The expert system project revealed to me another important issue: the importance of
knowledge domain for the software development. After a year working full time with
cardiologists, I had got some knowledge about the cardiology domain used in information
system development. As a consequence, I was often called to participate in the requirements
elicitation and quality evaluation sessions of new projects in the cardiology hospital. Based on
this finding and the experience with knowledge representation in the expert system
development, I started to investigate how to organize the domain knowledge in a way that
could support the software engineers in the software development and SQA activities. This
investigation allowed me to extend the classical Software Development Environments (or
Software Engineering Environments) to Domain-Oriented Software Development
Environments (Oliveira et al., 1999a, 2004).

Software Development Environment (SDE) is a computational system that provides
support for the construction, management and maintenance of a software product (Brown et
al., 1992). An SDE consists of a repository that stores all the information related to the
software project throughout its life cycle, and a set of tools that supports the technical and

4
 In this document, references in bold means that I am one of the authors.

Chapter 1 ‐ Introduction

 25

managerial activities involved. DOSDE was defined to be a new class of SDE with two
additional features: representing domain-knowledge and using this knowledge during
software development. To represent the knowledge, we used domain ontologies (Gruber,
1995). To use it during the software development, specific domain activities were introduced
in the traditional software processes to support the requirements elicitation, software design
and quality evaluation (Oliveira et al., 2004). Domain-oriented SDE was later on extended to
the conception of Enterprise-oriented SDE (Oliveira et al., 2006) that includes also the
organizational knowledge to support knowledge management for software engineering.

In this context, the software quality community has largely explored knowledge
management concepts. For instance, ontologies have been defined to organize the knowledge
of software quality itself (e.g. Henderson-Sellers, 2014; Barcelos et al., 2010; Kayed et al.,
2009); to improve the quality of business process models (Cherfi et al., 2013); to facilitate
standards-based Business-to-Business interoperability (Heravi et al., 2014). Moreover,
techniques for lessons learned capture and organization have been defined, applied and
integrated in the software process (Cristal and Reis, 2006; Viravan, 1997); models and
architectures for knowledge management have been proposed (Ji, 2011; Kim et al., 2005). In
particular, I explored the use of experience factories (Basili et al., 1994b), a knowledge
management infrastructure largely used in software engineering, for the educational (Brito et

al., 2005, 2006) and software engineering domains (Kosloski and Oliveira, 2005), and the
capture and organization of lessons learned in software projects. Those experiences showed
that much knowledge about the software quality activity itself must be captured, organized
and shared to assist software designers in quality assurance activities.

Working as an associate professor

I spent a year (2000) in a post-doctoral position at the Federal University of Rio de Janeiro
working on software quality procedures definition in the development of an educational meta-
environment for cardiology (Rocha et al., 2000, Lima et al., 2000). I also co-supervised four
master students in the domain of knowledge representation with ontologies (Zlot et al., 2002)
and quality evaluation of software process (Gomes et al., 2001a, 2001b, 2000; Machado et

al., 2000a, 2000b, Oliveira et al., 1999b).

From 2001 and 2009, I joined the Master Program of the Catholic University of Brasilia in
Brazil. I supervised several master students investigating:

• The use of measurements and quality assurance procedures (Monteiro and Oliveira,

2011; Santos et al., 2004, 2007, 2009; Queiroz et al., 2009; Andrade et al., 2004,

2005; Lima et al., 2007, 2009; Porto et al., 2006; Macedo et al., 2006; Nery et al.,

2006; Kosloski and Oliveira, 2005, 2006; Calazans et al., 2004a, 2004b; Ramos et

al., 2004, 2005; Itaborahy et al., 2005, 2008; Souza et al., 2003, 2005, 2007; Duran

et al., 2005Nascimento et al., 2004; Weber et al., 2004; Corrêa et al., 2004; Sousa

et al., 2005; D’Oliveira et al., 2003, Dias et al., 2003, Carazza et al., 2001);
• Knowledge management issues in search of software quality assurance (Anquetil et

al., 2006, 2007; Torres et al., 2006, 2009; Arnaut et al., 2010; Brito et al., 2005,

2006; Crispim et al., 2007; Kosloski and Oliveira, 2005, 2006; Souza et al., 2004,

Oliveira et al., 2004; Leão, 2004).

During this period I also worked as a consultant in software quality assurance in Brazilian
enterprises. I worked in the definition (SOFTEX, 2006), training and institutionalization of
the Brazilian quality standard “MPS.BR”. Nowadays, this standard is largely used in the
Brazilian industry with more than five hundreds enterprises officially appraised.

Chapter 1 ‐ Introduction

 26

In December 2008, I started a second post-doctoral research, which lasted for six months at
the University of Rennes. This was an opportunity to return to the basics of my Doctorate
research on modeling (and meta-modeling) in different application domains. Since September
2009, as an associate professor at the University of Valenciennes, LAMIH, I continue
working with software quality assurance, but focused on the evaluation of interactive systems,
and in particular in the Human-Computer Interaction (HCI) domain, one of the main themes
of the LAMIH laboratory. I co-supervised a master student for the definition of a domain
ontology for the transportation domain (Mnasser et al., 2010); followed by a Doctoral student
about the use of this domain ontology for the personalization of Human-Computer interfaces
(Bacha et al., 2011a, 2011b, 2011c, 2011d, 2010, 2013; Oliveira et al., 2013). I also started
to explore quality evaluation issues of interactive systems (Gabillon et al., 2013; Santos et

al., 2013; Valentin et al., 2012; Kolski et al., 2011; Oliveira et al., 2012; Kolski et al.,

2012; Oliveira, 2010). Currently, I am co-supervising two theses on the domain of
measurements: one about HCI assessment (Assila et al., 2013, 2014) and the other about
return on investment for software process improvement5 (Ramos et al., 2012, 2013).

During two years, from October 2011 and December 2013, I have coordinated a research
group in France about Information System Evaluation. Eighteen professionals (full professors,
associate professors, and doctoral students) from nine laboratories from France discussed
different challenges and the research being performed in the subject. Several papers (Dupuy-

Chessa et al, 2014; Arduin et al, 2012, 2013; Oliveira et al., 2012; Kolski et al., 2012) and a
special issue in a national journal (Oliveira and Rosenthal-Sabroux, 2013) were produced
by the group.

Nowadays, the research on software quality assurance continues to explore the use of
measurements. On the one hand, some researchers look, for instance, for the application of
measures in small companies (e.g. Pino et al., 2010, Sulayman et al., 2012), the integration to
the business process (Delgado et al., 2014) and the investigation on quality characteristics and
success factors of software process improvement (Kroeger et al., 2014, Ianzen et al., 2013).
On the other hand, quality assurance for software systems has to be continually adapted to the
modern technologies. The improvement in computational device miniaturization and in
wireless communication has enabled relevant advances in new technologies, such as smart
mobiles (e.g. Pranata et al., 2013; Marinho et al., 2013) and ubiquitous (e.g. Santos et al.,
2013; Traue and Kobayashi, 2011) systems development. Efforts in these new technologies
expanded the place where the software system is used, and the classical mode of interaction
beyond the desktop computers. Now one can use systems in everyday spaces changing the
focus of interest from computer technology to the users and their needs. In this context, HCI
issues became an area even more important than previously, where the main goal of software
developers is to make computer systems really useful in the different situations encountered
in the real world (Tang et al., 2011).

Figure 1.1 summarizes my research since the first work on quality evaluation of expert
systems (in 1993) to my main actual interests; that is, quality evaluation of interactive
systems, with particular interest on HCI issues, and knowledge management for SQA. In this
figure it is highlighted the research on quality of software products, quality of software
process, knowledge management, and my current interests.

5
 This thesis is a co-supervision in Federal University of Rio de Janeiro, Brazil.

Chapter 1 ‐ Introduction

 27

Figure 1.1. Research workflow

1.2 Objective and Research Challenges

Considering the context and historical research presented in the previous section, my
research goal is:

To define, use and incorporate methodologies, measurements and knowledge

management issues for the quality assurance throughout the software processes

to enable their real adoption by organizations.

To address this goal some research challenges are identified. These challenges were
collectively identified in a research group about quality evaluation of information system,
which I coordinated in France during the last almost three years. Eighteen researchers from
nine French laboratories participated in this group and the final result of these challenges was
published in a collective paper from INFORSID (2012). I summarize these challenges in four
primary concerns (Figure 1.2):

i) Definition of quality measures and their interdependencies

To produce software, different processes (business, development, organizational, etc.) are
used and generate different types of deliverables (models, architecture, user interface, code,
etc.) with different languages. SQA involves assessing all of these objects (deliverables and
process) considering their own characteristics and, therefore, requires specific measures (for
functionality, usability, security, etc.) according to the interests of stakeholders (analysts, end
users, managers, etc.). In this context, the definition of thresholds is particularly difficult
because they vary according to the needs that are often difficult to identify. Furthermore,
these measures are implicitly linked, since they evaluate the same object from different
angles. The identification of this interdependence has a direct impact on the analysis and
interpretation of measured values in an evaluation.

Chapter 1 ‐ Introduction

 28

Figure 1.2 Research Goal and Challenges

The definition of measures is not sufficient for evaluation. Great difficulty lies also on the
analysis and interpretation of the measured results. Appropriate methods for collecting and
analyzing the measured results must be defined. Several evaluation methods exist, but they
need to be applied and, possibly, adapted for different types of software products and domain
applications.

This challenge is even more pronounced for the Human-Computer Interaction (HCI) field.
With the diversity of computer platforms (PC, PDA, smartphones, tablets, etc.), devices (e.g.
mouse, laser point, 3D pointer), and modes of interaction (e.g. text, video, image, speech,
touch screen), the quality assessment procedures must consider not only technical issues of
computer science, but also human aspects, such as ergonomic and psychological issues about
the interaction between users and interactive systems.

ii) Empirical experimentation for SQA

In order for results of case studies to be valid, they must be generalizable to other projects
contexts, which are different from those to which the evaluation was carried out. In this case,
empirical experiments must be implemented using quantitative and/or qualitative approaches.
These experimentations generate a lot of data, images, statistics, text, graphics or videos. In
some cases, the analysis and interpretation of these results require a collaborative effort of
different professionals. For instance, for the HCI field, psychologists, ergonomics
professionals and computer scientists should work together in the definition of the
experimental protocols, analysis and interpretation of the results.

Chapter 1 ‐ Introduction

 29

iii) Implementation of continuous software process improvement

To remain competitive, organizations must constantly improve the quality of their services
and systems, reducing costs and production time, to get a better customer satisfaction and
users. For this reason a program of quality continuous improvement should be established.
This involve not only the definition of software processes, but also the evaluation and
continual improvement of the software process and products.

With the wide use of interactive systems, concerns with continuous evaluation of HCI
issues interaction from the initial stages of the software process becomes even more evident
and require the actual integration of specific procedures in software process improvement
models.

iv) Definition and use of knowledge management issues for SQA

Considering that SQA is a knowledge-intense activity, it is essential to investigate how to
use knowledge management principles not only to support the SQA activities but also to
manage the knowledge of the SQA activity itself; for example, exploring which knowledge of
the evaluator can be used to support the SQA activity. This is particular important for HCI
field, where different research areas are complementary. Investigating the knowledge used by
the people of these areas can be a real advantage for the definition and implementation of
procedures to ensure the quality of user interfaces.

1.3 Report Organization

This document is organized in four chapters besides this introduction.

Chapter 2 presents briefly the basic concepts of software quality assurance, exploring
definition of measures, methodologies and the role of knowledge management in the context
of software quality. The goal of this chapter is not to provide a state of the art about the
subject, but to introduce the main concepts that will be used in the following chapters.

Chapters 3 and 4 present the research I have been working on in the area of software
quality assurance since the conclusion of my Doctor degree. Although the research of my
Masters and of my Doctoral degrees have had great importance in my professional work, they
are not described in this report. Here, I focused on the research performed as an associate
professor at the different universities6.

Chapter 3 presents my research regarding software quality assurance practices considering
the use of measurements and methodologies. This research addresses the three first challenges
presented in the previous section.

Chapter 4 presents the use of knowledge and some knowledge management practices in the
context of software quality assurance. This research seeks to answer the fourth challenge
presented in the previous section.

Chapter 5 presents my conclusions summarizing the main contributions in the domain and
research perspectives.

6
 University of Valenciennes and Hainaut-Cambrésis (09/2009 - current), Catholic University of Brasilia (2001-
08/2009), Federal University of Rio de Janeiro (as a researcher, 10/1999-2000).

Chapter 1 ‐ Introduction

 30

31

Chapter 2 Software Quality

Assurance

2.1 Introduction

Software quality assurance is a very broad domain. A lot of methodologies, techniques,
standards exist to support all the activities necessary to ensure the quality of software
processes and products. The goal of this chapter is to introduce the main concepts of the
domain and briefly describe some important approaches that were used in the research that
will be presented in the next chapters.

This chapter starts with basic definitions about software quality, software quality assurance
and measurements (section 2.2). Then, some approaches for measurement definition (section
2.3), standards and models for software quality are presented (section 2.4). Section 2.5
describes some concepts of knowledge management, models, and techniques for capturing,
disseminating and organizing the knowledge. Finally, section 2.6 concludes the chapter by
stating general questions that guided my research on this domain.

2.2 Basic Definitions

2.2.1 Software Quality

Several definitions can be found about quality in the context of software. Figure 2.1
presents definitions found in quality standards.

Some important aspects can be observed in these definitions. The first one is related to the
object for which we qualify: a system, component or process (definition 1), or a set of
programs, procedures, documentation and data (definition 4). To summarize, we can say that
the object under consideration can be a product or a process. A product is a “result of a
process” (ISO9000: 2000, 2000). It “includes intermediate products, and products intended
for users such as developers and maintainers” (ISO/IEC 12207, 2008). Therefore, it can be the
system, a component, a set of programs, documentation, data, or anything produced by the
process or activities in the process with the goal of software production or maintenance. A
process, in turn, is defined as “a set of interrelated or interacting activities that transforms
inputs into outputs” (ISO 9000:2000, 2000). Thus, in this document, when we say software
quality, it means quality of software process and quality of software product.

A second important aspect is about the conformance to what, in the definitions. It is
considered the conformance to requirements (definitions 1 and 3); and to needs or
expectations (definitions 2 and 4). These definitions reinforce what was defended by Crosby
(1979) when he defined that quality “means conformance to requirements”; and, also by Juran
(1990) when he defined that quality “means those features of products which meet customer
needs and thereby provide product satisfaction”. ISO/IEC 25000 (2005) defines requirement
as “the expression of a perceived need that something be accomplished or realized”, that may

Chapter 2 ‐ Software Quality Assurance

 32

be specified as a part of a contract, or by the development organization when a product is
developed for unspecified users. In summary, the quality should be conforming to
requirements that represent the users needs and expectations; thus, quality implies
user/customer satisfaction.

 Figure 2.1. Quality definitions

The last important aspect is related to the inherent characteristics (definition 3). According
to ISO/IEC 9000:2000 (2000), inherent characteristics are characteristics that are a natural
part of something and cannot be separated from it. It opposes the term inherent to assigned
and defines inherent as existing in something, especially as a permanent characteristic. There
are many types of characteristics, such as: sensory (e.g. smell, touch, visual appearance),
behavioral (e.g. courtesy, truthfulness), related to time (e.g. promptness, reliability,
availability) and ergonomic characteristics (e.g. characteristics related to psychology of
persons). A quality characteristic is an inherit characteristic of a product, a process or a
system related to a requirement. Some standards proposed set of characteristics as a
framework for specifying quality requirements and evaluating criteria (see § 2.4).

2.2.2 Software Quality Assurance

Three distinct concepts are important when defining software quality assurance (Figure
2.2): quality assurance (ISO 9000:2000), software quality assurance (SQA) (IEEE, 1990) and
quality control (IEEE, 1990).

Galin (2003) extends IEEE definitions defending that SQA should not be limited to the
development process, but should be extended to cover the long years subsequent to product
delivery, that is, its maintenance. He considers also that SQA actions should not be limited to
the technical aspects of the functional requirements, but should include also activities that
deal with scheduling and the budgeting since undesirable results can be expected with project
that are in budgetary and time constraints.

Quality assurance should be contrasted with quality control. According to Galin (2003)
quality control activities take place when the product is completed and quality assurance aims
to prevent the causes of errors, and detect and correct them early in the development process.

1

• The degree to which a system, component or process meets specihic
requirements (IEEE, 1990)

2

• The degree to which a system, component or process meets customer or
user needs or expectations (IEEE, 1990)

3

• The degree to which a set of inherent characteristics fulhills requirements
(ISO9000: 2000, 2000)

4

• The capability of a software product to satisfy stated and implied needs
when used under specihied condition (ISO/IEC 25000, 2005)

Chapter 2 ‐ Software Quality Assurance

 33

In other words, quality assurance is a set of activities for ensuring quality in the processes by
which products are developed. Quality control is a set of activities for ensuring quality of
products. The activities focus on identifying defects in the all generated products. Quality
control activities are only a part of the total range of quality assurance activities (Galin, 2003).

Figure 2.2. Definitions related to software quality assurance

2.2.3 Measurement

Figure 2.3 presents two classical definitions of measurement. In the definition 1, Fenton
and Pfleeger (1997) sets that an entity is an object (such as a person, a model or a room) or an
event (such as a journey or the testing phase of a software project). ISO/IEC 15939 (2007)
summarizes that an entity is an object (a process, product, project or resource) that is
characterized by measuring its attributes. An attribute is a property of an entity (such as, the
color of a room, the cost of a journey or the elapsed time of the test phase). The attributes are
often defined using numbers and symbols (such as a number of euros for the cost, or the
different labels for colors). Thus, we measure attributes of things by using specific
measurement methods.

Figure 2.3. Measurement definitions

Quality assurance

(ISO 9000, 2000)

A set of activities
whose purpose is to
demonstrate that an
entity meets all

quality requirements

Software Quality
Assurance

(IEEE, 1990)

A planned and systematic
pattern of all actions
necessary to provide

adequate conhidence that
an item or product

conforms to established
technical requirements

A set of activities designed
to evaluate the process by
which the products are

developed or manufactured

Quality control

(IEEE, 1990)

A set of activities
designed to evaluate

the quality of
developed or
manufactured
products

A set of activities or
techniques

whose purpose is to
ensure that all quality
requirements are

being met

1

• The process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe
them according to clearly dehined rules (Fenton and Phleeger,
1997)

2

•  Set of operations having the object of determining a value of a
measure ISO/IEC 15939 (2007)

Chapter 2 ‐ Software Quality Assurance

 34

ISO/IEC 15939 (2007) organizes all these concepts associated to the measurement process
in an information model (Figure 2.4).

In Figure 2.4, a measurement process is driven by information needs, which are “insights
necessary to manage objectives, goals risks and problems”, for instance: evaluate
effectiveness of the software development, determine if the personnel resources are adequate
to meet project commitments, or evaluate the reliability of the product. To address the
information needs, it is defined indicators, a measure defined using derived and base
measures and that is the basis for analysis and decision-making. A model supports the
analysis of the evaluation combining one or more base and/or derived measures with
associated decision criteria (thresholds or targets used to determine the need for action or
further investigation, or to describe the level of confidence in a given result). The analysis
model is based on an understanding of, or assumptions about, the expected relationship
between the component measures and/or their behavior over time. Derived measures are
measures defined as function of two or more values of base measures. Base measures are
independent measures defined in terms of an attribute (of an entity) and the method for
quantifying it. These methods in turn can be of two types: subjective, when the quantification
of an attribute involves human judgment; or, objective, when the quantification is based on
numerical rules such as counting, performed manually or with automated tools. Finally, one
of the following scales is associated to the measurement (ISO/IEC 9126, 2001):

• Nominal - the measurement values are categorical. For example, the classification of
defects by their type does not imply order among the categories;

• Ordinal - the measurement values are rankings. For example, the assignment of
defects to a severity level is a ranking;

• Interval - the measurement values have equal distances corresponding to equal
quantities of the attribute. For example, cyclomatic complexity has the minimum
value of one, but each increment represents an additional path. The value of zero is not
possible;

• Ratio - the measurement values have equal distances corresponding to equal quantities
of the attribute where the value of zero corresponds to none of the attribute. For
example, the size in terms of the number of requirements is a ratio scale because the
value of zero corresponds to no requirements and each additional requirement defined
represents an equal incremental quantity.

Measures using nominal or ordinal scales produce qualitative data, and measures using
interval and ratio scales produce quantitative data (ISO/IEC 25000, 2005).

Figure 2.5 shows an example of the measurement information model. In this example, the
information need is to estimate productivity of future project. To that end, an indicator with
the average productivity for each project is proposed. The productivity is computed based on
the lines of code per expended hour of effort. The analysis model is done based on the
deviation of productivity values.

Chapter 2 ‐ Software Quality Assurance

 35

Figure 2.4. Key relationships in the measurement information model (ISO/IEC 15939, 2007)

Chapter 2 ‐ Software Quality Assurance

 36

Information Need Estimate productivity of future project
Measurable concept Project productivity
Relevant Entities 1. Code produced by past projects

2. Effort expended by past projects
Attributes 1. C++ language statements (in code)

2. Timecard entries (recording effort)
Base Measures 1. Project X Lines of Code

2. Project X Hours of Effort
Measurement Method 1. Count semicolons in Project X code

2. Add timecard entries together for Project X
Type of Measurement Method 1. Objective

2. Objective
Scale 1. Integers from zero to infinity

2. Real numbers from zero to infinity
Type of Scale 1. Ratio

2. Ratio
Unit of Measurement 1. Line

2. Hour
Derived Measure Project X Productivity
Measurement Function Divide Project X Lines of Code by Project X Hours of Effort
Indicator Average productivity
(Analysis) Model Compute mean and standard deviation of all project productivity

values
Decision Criteria Computed confidence limits based on the standard deviation

indicate the likelihood that an actual result close to the average

productivity will be achieved. Very wide confidence limits

suggest a potentially large departure and the need for contingency

planning to deal with this outcome.

Figure 2.5. Example of information model concepts for productivity (ISO/IEC 15939, 2007)

2.3 Approaches for Measurement Definition and Collection

During the last years, several approaches have been proposed for the definition of
measures (Figure 2.6), for instance: Balanced Scorecard (Kaplan and Norton, 1992), Goal-
Question-Metric (GQM) (Basili et al., 1994a); the Goal-Question-Indicator-Metric (Park et
al., 1996), Software Quality Measure (DOT, 1991), Practical Software Measurement
(McGarry et al., 2002) and ISO/IEC 15939 (2007). GQM is one of the most known and
largely used in literature (see, for example, several case studies described in (Solingen et al.,
1999) and the one I have worked since 2000.

Figure 2.6. Approaches for measurement definition

Chapter 2 ‐ Software Quality Assurance

 37

The GQM helps identifying the metrics7 (measures) required and the reasons why the data
are being collected. The main idea of GQM is that measurement should be goal-oriented. It is
a top-down methodology (Solingen et al., 1999) (Figure 2.7) starting with the definition of an
explicit measurement goal that is refined in several questions that break down the goal into its
major components. Then, each question is refined into metrics that, when measured, will
provide information to answer the questions. By answering the questions, we will be able to
analyze if the goal has being attained. A metric can be used to answer several questions.

Figure 2.7. Hierarchical structure of the GQM approach

To collect the measures defined in a project, automated tools can be developed or
subjective evaluation methods can be applied. Evaluation methods, defined to find defects in
documents or errors in software programs, are usually successfully used to collect the data for
the measures. Some of the evaluation methods that are commonly used are:

• Software inspection (Fagan, 1986) - it defines a process as a certain activity with a
pre-specified entry and exit criteria. Verification checklists are usually used to support
finding defects. Inspections can be used to validate if the output of the process
complies with the exit criteria specified for the process;

• Phased-inspection (Knight and Myers, 1993) – it examines the product (requirements
specifications, design, etc.) in a series of small inspections named phases. Each phase
is designed to ascertain whether the product possesses some desirable properties (or
criteria). It allows individual and group inspections in the same product considering
different criteria, being performed in a rigorous and systematic way;

• Reading-techniques (Travassos et al., 1999) – it provides a set of guidelines that are
used to examine (by “reading”) a given software artifact and identify defects. One can
write guidelines looking for the specific information necessary for the defined
measures;

• Software testing (Myers, 2004) - it is the process of executing a program or software
application with the intent of finding errors. Software testing methods are traditionally
divided into white-box testing (tests internal structures of a program) and black box
testing (examines functionality without any knowledge of internal implementation).

7
 The term “metric” is used in GQM with the same meaning of the definition of measurement by ISO/IEC 15939

(2007). In fact, actually, this term is not used anymore, being replaced by the terms measurement and measure.

However this term is still vey popular and well known.

Chapter 2 ‐ Software Quality Assurance

 38

2.4 Standards and Models for Software Quality

Many models and standards for quality assurance can be found in the literature. Some of
them are largely used in industry; others work as essential references for the practice of
software quality. In general, those standards and models focus either on the quality of the
software products or software processes (Figure 2.8).

Figure 2.8. Standards and models for software quality

For software products, the proposal specifies guidelines, criteria and measures to evaluate
a generic or a specific software product. For the first case, the actual standard is the SQuaRE
(Software product Quality Requirements and Evaluation) (ISO/IEC 25000, 2005)8. It defines
a set of quality characteristics (which are further subdivided into sub-characteristics) that are
measured internally, externally or when a product is used in a specific context. Figure 2.9
shows some examples of measures defined for the effectiveness characteristic (ISO/IEC
25022, 2012).

Effectiveness
The accuracy and completeness with which users achieved specified goals
Note: It does not take account of how the goals were achieved, only the

extent with they were achieved

Measures

Task completion

X=A/B
A=number of tasks completed
B=total number of tasks attempted

Task

effectiveness

{X=1-ΣAi | X > 0}
Ai=proportional value of each missing or incorrect component in the task

output (maximum value=1)
Error frequency

X=A/B
A=number of errors made by the user
B=number of tasks

Figure 2.9. Examples of measures for effectiveness

An important example of specific software product quality standards is the 9241 series, a
multi-part standard covering ergonomics of human-computer interaction. They provide
guidelines for different types of interaction (e.g. textual, tactile, organic, haptic) and computer
systems, for instance: software accessibility (ISO 9241-171, 2008), World Wide Web user
interfaces (ISO/IEC 9241-151, 2008), and tactile and haptic interaction (ISO/IEC 9241-920,

8
 ISO/IEC 25000 is a new standard that integrates the predecessors ISO/IEC 9126 (2001) and ISO/IEC 14598

(1999).

Chapter 2 ‐ Software Quality Assurance

 39

2009). Figure 2.10 shows some examples of guidance on navigation for World Wide Web
user interfaces (ISO/IEC 9241-151, 2008).

General guidance on navigation

Making navigation self-
descriptive

Navigation should be designed to help users understand where they are, where

they have been and where they can go next.
Showing users where they

are
Each presentation segment (page or window) should provide the user with a

clear and sufficient indication of where he or she is in the navigation structure

and of the current segment position with respect to the overall structure.

Supporting different

navigation behaviors
Users can exhibit different navigation behaviors depending upon their goals.

They might know what they are searching for or might simply follow links that

appear to lead to useful or interesting information. When designing navigation

structures, the different user goals and navigation strategies should be

considered by analyzing the different behaviors that users are likely to exhibit

and by allocating priorities to them.
Offering alternative access

paths
Alternative access paths for navigating to a specific unit of content should be

offered to support different navigation strategies.
Minimizing navigation

effort
The number of navigation steps needed to reach a certain piece of content

should be minimized as long as different mental models, navigation strategies

and tasks of the user are taken into account.

Figure 2.10. Example of guidelines for World Wide Web user interfaces

For software process, the proposals establish guidelines to support software process
definition (ISO/IEC 12207,2008), evaluation (ISO/IEC 15504-1, 2004) and improvement (e.g.
CMMI (Capability Maturity Model Integration) (SEI, 2010) and Brazilian Software Process
Improvement Reference Model (SOFTEX, 2012). These three tasks should be continually
executed to ensure the effectiveness of software process in the enterprises.

ISO/IEC 12207 (2008) provides a defined set of processes to facilitate communication
among acquirers, suppliers and other stakeholders in the life cycle of a software product. It
contains processes (its purpose and outcomes), activities, and tasks to be applied during the
acquisition of a software product or service and during the supply, development, operation,
maintenance and disposal of software products. Figure 2.11 presents, as an example, the
activities and tasks described for the stakeholder requirements process in ISO/IEC 12207.

ISO/IEC 15504 (ISO/IEC 15504-1, 2004) provides a framework to be applicable across all
organizations, and for conducting assessments using a variety of methods, techniques and
tools. This framework:

• facilitates self-assessment;
• provides a basis for use in process improvement and capability determination9;
• takes into account the context in which the assessed process is implemented;
• produces a process rating;
• addresses the ability of the process to achieve its purpose;
• is appropriate across all application domains and sizes of organization;
• may provide an objective benchmark between organizations.

9
 ISO/IEC 15504 is used, for example, for the Brazilian software process improvement standard (SOFTEX,

2012)

Chapter 2 ‐ Software Quality Assurance

 40

Figure 2.11. Stakeholder requirements Process (Activities and Tasks)

Capability Maturity Model Integration (CMMI) (SEI, 2010) is a software process
improvement (SPI) approach that provides organizations with the essential elements of
effective processes. The core element of CMMI is the process areas. A process area is a
cluster of related practices in an area that, when implemented collectively, satisfies a set of
goals considered as important for making significant improvement in that area. CMMI for
Development (CMMI-DEV) version 1.3 consists of 22 process areas. The CMMI-DEV comes
with two different representations - staged and continuous. The staged representation (Figure
2.12) offers a systematic, structured way to software process improvement one step at time. It
groups process areas into five maturity levels used for an appraisal. Achieving each stage (i.e.,
maturity level) ensures that an adequate software process improvement has been laid as a
foundation for the next maturity level and allows for lasting, incremental improvement. The
continuous representation offers a flexible approach to process improvement by allowing the
organization to improve the performance of a single process area (e.g. Requirements
Management). It can work on several areas that are closely aligned to the organization
business objectives.

2.5 The Role of Knowledge Management

Knowledge management came out as a reaction to the recognition that employees in an
organization gather, as part of their daily activities, knowledge that is valuable to the
organization. The typical image, cited by Basili et al. (2001), is that knowledge has legs and
walks home every day. Knowledge management concept emerged in mid-1980s and rapidly
increased since 1990s. In software engineering, it works toward software process
improvement (Rus and Lindivall, 2002) by explicitly and systematically addressing the
management of organizational knowledge tying together daily production activities,
improvement activities, and business goals, thereby supporting the establishment of a learning
organization. Rus and Lindvall (2002) affirm that other software process improvement
approaches, such as CMMI (see previous section), might suggest that knowledge should be
managed, but do not explicitly state what knowledge needs to be managed and how, when,
where or by and for whom.

Stakeholder
identi_ication

• Indentifyng
individual
stakeholders
or
stakeholder
classes

Requirements
identi_ication

• Eliciting
stakeholder
requirements
• Dehining the
constraints
on a system
solution

• Dehining
activities

• Intentifying
human‐
computer
interaction
requirements
• Identifying
quality
requirements

Requirements
evaluation

• Analysing
the elicited
requirements

Requirements
agreement

• Resolving
requirements
problems
• Feedback the
analysed
requirement
to
stakeholers
• Veryhing
requirements
with
stakeholders

Requirement
recording

• Recording
requirements

• Maintaining
requirements
traceability

Chapter 2 ‐ Software Quality Assurance

 41

Figure 2.12. CMMI Maturity levels x Process Areas

Several purposes, approaches and empirical studies have been published in the last years
(Tiwana, 2000; Dingsøyr and Conradi, 2002; Aurum et al., 2003; Bjørnson and Dingsøyr,
2008). In general, these publications tried to particularize the traditional methodologies,
techniques and approaches of knowledge management for software engineering domain with
the goal of obtaining better quality and productivity. Consequently, practices of knowledge
management for software engineering start to be integrated in enterprises. In a large
systematic literature review on the topic, for example, seven hundred and sixty-two articles
were identified, of which 68 were studies in an industry context (Bjørnson and Dingsøyr
2008).

In the following sections we start with a general view of knowledge and knowledge
management, briefly quoting what exists in terms of knowledge management for software
engineering towards software quality. Thus, we present experience factory, a knowledge
management approach specific for this domain; and some techniques for organization, capture
and dissemination of knowledge.

2.5.1 Knowledge and Knowledge Management: Concepts and Application

The definition of knowledge is normally built bottom-up from data, to information and
then knowledge (Figure 2.13) (see, for example, (Rus and Lindival, 2002, Probst et al.,
2000)). Data are raw facts, for example: 1.36. Information is data in context; it is organized to
make the data useful for end users who perform tasks and make decisions; for instance, saying
that 1.36 is the exchange rate between the US dollar and the euro currency. Knowledge
requires understanding of the information. It is a net of information based on one’s particular
experience, for example one’s knowledge of the currency exchange mechanisms. “Knowledge
is a fluid mix of framed experience, values, contextual information, expert insight and
grounded intuition […]. It originates and is applied in the minds of knowers” (Davenport and
Prusak, 1998).

Two types of knowledge are commonly defined: explicit and tacit. Explicit knowledge is
knowledge that can be captured and organized in a form that allows its distribution (for
example, reports, a book). Tacit knowledge means knowledge that a human is not able to

Chapter 2 ‐ Software Quality Assurance

 42

express explicitly, but is guiding the behavior of the human (Lindval at al., 2001). Tacit
knowledge is particular to each individual and difficult to share, as one is usually not even
aware of all one knows (Anquetil et al., 2006). Moreover, Grundstein (2012) adds two
aspects:

• Knowledge is not an object - it is in the interaction between an interpretative
framework (in the head in an individual or integrated in an artifact) and data. Indeed,
the knowledge arising from the interpretation by an individual of information,
meaning that takes information may differ from one individual to another (Arduin et
al., 2012);

• Knowledge is linked to action - knowledge is created by the action of individuals,
taking into account the context and the situation (which includes other people and
artifacts).

Figure 2.13. Data, Information and Knowledge (adapted from Probst et al. (2000))

Knowledge management is usually defined in terms of the activities that comprise it, as
shown in Figure 2.14. Different models describe knowledge management activities. Some
examples are: the proposals of Nonaka and Takeuchi (1995), Probst et al. (2000), Dixon
(2002) and Grundstein (2012).

The model proposed by Nonaka and Takeuchi (1995) is one of the most referenced for
knowledge management. It demonstrates the ability of an organization to create new
knowledge continuously by successive conversions between tacit and explicit knowledge. It is
called SECI (socialization, externalization, combination and internalization) model that is
defined as follows (Figure 2.15):

• Socialization - is the process of sharing knowledge doing things, knowledge is not
made explicit, but rather a knower shows to one who does not know, how to do things.
It is the conversion of tacit knowledge into another tacit knowledge;

Chapter 2 ‐ Software Quality Assurance

 43

• Externalization - is the process of explicating what one knows. Through
externalization, a knower may express (e.g. writing a manual) what he knows and this
knowledge may then be circulated among a large group or across time;

• Combination - is the process of combining various sources of explicit knowledge to
create a new one, as one would do in a literature survey;

• Internalization - is the process by which one makes some explicit knowledge one’s
own, by integrating it to one’s own net of information.

Figure 2.14. Knowledge management definitions

Figure 2.15. Knowledge sharing according to Nonaka and Takeuchi (1995)

The model proposed by Probst et al. (2000, p. 2-3) consists of core and additional
processes. Core processes consider (i) the identification of knowledge, (ii) external
knowledge acquisition, (iii) the development of knowledge, (iv) the sharing and dissemination
of knowledge, (v) the use of knowledge, and (vi) the retention of knowledge that builds
organizational memory. Additional processes use these six processes in the strategic goals of
the organization, by assessing the knowledge to measure and monitor its implementation and
guide the knowledge management goals.

Dixon (2002) proposes a process where the knowledge is captured and transferred in
continual cycle (Figure 2.16). First, a team performs a task, reaching a given result
(satisfactory or not). From this, the team must pause and reflect on what happened and its
actions contribute to the result obtained. After this activity, the team has captured and
expressed new knowledge (how the action “created” the result) and is in a better position to
perform a new, similar, task. That means the team translate its experience into knowledge, by

1

• Knowledge management is a specihic activity of the organization that aims to
use the knowledge to achieve their strategic objectives (Lehaney et al, 2004)

2

• Knowledge management enables the creation, communication, and
application of knowledge of all kinds to achieve business goals (Tiwana, 2000)

3

• Knowledge management is a method that simplihies the process of sharing,
distributing, creating, capturing and understanding of a company’s knowledge
(Davenport and Prusak,1998)

Chapter 2 ‐ Software Quality Assurance

 44

gathering existing knowledge in the minds of stakeholders in a common understanding, what
Dixon named common knowledge. But the knowledge also needs to be transferred to other
members of the organization. For this, a knowledge transfer system must be selected, the
knowledge must be expressed in a form that will allow its transfer (e.g. in a list of “lessons
learned”) and, finally, it must be transferred to another team that will integrate it and will be
able to use it to perform its tasks. A knowledge transfer10 system suitable for the type of
knowledge is, thus, selected. Finally, knowledge is translated into a usable form and the team
that receives the knowledge adapts it to its problem.

Figure 2.16. Creation and transfer of common knowledge (Dixon, 2002)

Finally, Grundstein (2012) defines a set of what he calls generic knowledge management
processes; they are: (i) locating knowledge management process, that deals with the location
of explicit and tacit knowledge; (ii) preserving process deals with the retention of knowledge
and skills; (iii) enhancing process that deals with the benefit of knowledge and skills; and, (iv)
actualizing process that deals with the actualization of knowledge and skills.

2.5.1.1 Experience Factory

Experience factory (Basilli et al., 1994b, 2001) is a technical and social knowledge
management infrastructure largely used in software engineering that aims to reuse life cycle
experience, processes and products. Experience is collected from software development
projects, and are packaged and stored in an experience base. This infrastructure is supported
by two major concepts: a concept of evolution - the Quality Improvement Paradigm (QIP),
and a concept of measurement and control - the Goal-Question-Metric (presented in 2.3).

QIP emphasizes the continuous improvement by learning from experience, both at the
level of projects and at the level of organizations. It consists of the following steps:

10

 Dixon developed five categories of knowledge transfer: (i) serial transfer applies to a team that does a task

and than the same team repeats the task in a new context; (ii) near transfer involves transferring knowledge

from a source team to a receiving team that is doing a similar task in a similar context but in a different

location; (iii) far transfer involves transferring knowledge from a source team to a receiving team when

knowledge is about a non routine task; (iv) strategic transfer involves transferring very complex knowledge

from one team to another in cases where the teams may be separated by both time and space; and (v) expert

transfer involves transferring explicit knowledge about a task that may be done infrequently.

Chapter 2 ‐ Software Quality Assurance

 45

• Characterize - understand the environment based on available models, data, etc. This
characterization requires that we classify the current project with respect to a variety
of characteristics to isolate a class of projects with characteristics similar to the project
being developed;

• Set goals - on the basis of the initial characterization, we set quantifiable goals for
success and improvement (use of GQM);

• Choose Process - on the basis of the characterization and of the goals, we choose the
appropriate process to improve;

• Execute – we execute the process constructing the products and providing project
feedback based upon the data on goal achievement that are being collected;

• Analyze - at the end of each specific project, analyze the data and the information
gathered to evaluate the current practices, identify problems, record findings, and
make recommendations for future projects improvement;

• Package - consolidate the experience gained in the form of new, or updated and
refined, models and other forms of structured knowledge gained from the projects, and
store it in an experience base so it is available for future projects.

Figure 2.17. Quality Improvement Paradigm

Some examples of experience packages are (Dingsøyr and Conradi, 2002):

• Product packages - information about the life cycle of a product, information on how
to reuse it and lessons learned from reuse;

• Process packages - information on how to execute a life cycle process, and how to
reuse it;

• Relationship packages - used for analysis and forecasts (e.g. cost and defect models).
• Tool packages - instructions for use of a tool and experience with it.

2.5.2 Knowledge Capture and Dissemination

A well-known knowledge management technique for knowledge capture is the
Postmortem Analysis (PMA). Another technique that comes from social science is Learning
History, which is used not only to capture the knowledge but also to disseminate it. Both
techniques are briefly presented in this section.

Chapter 2 ‐ Software Quality Assurance

 46

2.5.2.1 Post-Morten Analysis

PMA, also called project review or project retrospective, simply consists in “[gathering] all
participants from a project that is ongoing or just finished and ask them to identify which
aspects of the project worked well and should be repeated, which worked badly and should be
avoided, and what was merely ‘OK’ but leaves room for improvement” (Stålhane et al.,
2001). In Nonaka’s framework for knowledge management (see section 2.5.1), PMA is a tool
to externalize knowledge.

PMA is mainly viewed as a software process improvement tool. According to Stålhane et
al. (2003) it is an obvious way to improve a software development process. Other authors
(Birk et al., 2002; Dingsøyr et al., 2001; Rising et al., 1999; Yourdon, 2001) assume the same
point of view, either explicitly or implicitly.

The term post-mortem implies that the analysis is done after the end of a project, although,
as recognized by Stålhane in the preceding quote (Stålhane et al., 2003), it may also be
performed during a project, after a significant mark has been reached.

A PMA may be more or less structured, and focused or “catch all”. One of the great
advantages of the technique is its flexibility. It may be applied on a small scale with little
resources (e.g. a 2 h meeting with all the members of a small project team, plus one hour from
the project manager to formalize the results). Depending on the number of participants in the
PMA, it may use different levels of structuring, from a relatively informal meeting where
people simply gather and discuss the project, to a more formal process.

In general, PMA process comprises three phases (Birk et al., 2002) (Figure 2.18):

• Preparation - seeks to identify the history of the project to better understand what has
happened. The available project documents are reviewed and the goal for APM is set;

• Data collection – the stakeholders have a group discussion for collecting experiences.
Both negative aspects, such as activities to be avoided in the future, and project’s
successful aspects, such as recommended practices should be collected;

• Analysis – where the positive and negative aspects identified previously are discussed.
It is analyzed the causes of success or failure and defined what can be done to improve
that wherein they are deficient, or what should be done to repeat in future projects
what happened in a positive way. Data collection and analysis can be performed in the
same session.

Figure 2.18. Post-mortem analysis phases

It is important to remember that post-mortem analysis is not sufficient to form a complete
politic of knowledge management (such as Experience Factory). It is mainly a useful tool to
elicit the knowledge, i.e. to discover the relevant pieces of experience obtained from a project.
Other important steps as packaging of the knowledge, or disseminating it, are not considered
by the PMA.

Preparation
Data

collection
Analysis

Chapter 2 ‐ Software Quality Assurance

 47

2.5.2.2 Learning History

Learning History is a technique that aims at capturing not only the results of a project of
interest, but the mental processes, feelings or opinions of the project’s members (Senge et al.,
1999, p. 531). It is a technique for capturing and disseminating knowledge from the various
perspectives of the participants of the project. A learning history is the story of the events as
told by the people who participated in it. It should present the points of view of all the
participants including contradictions and conflicting views. Its goal is not to reach a final
verdict or lesson from the event but to present the facts as they were perceived by the
participants, allowing the reader to build his-her own understanding and learn from it (Kleiner
and Roth, 1995).

Basically a learning history is a two-column document where the right column presents the
story as told by the participants and the left column presents comments and analyses made by
the historian (the person who writes the history). The story is organized in sections (or
chapters) presenting the various notable results of the project covered.

Kleiner and Roth (1995) propose a process for the construction and use of learning history
(Figure 2.19) composed of the following phases:

• Planning, where the scope of the project is defined and its “notable results” —that
justify the need for knowledge transfer— identified;

• Reflective research, where the stories are collected interviewing the relevant persons;
• Distillation, where the relevant topics are selected by the historian to be, later, refined

in a form suitable for reading;
• Writing, where the document is created;
• Validation, where the document is validated by the people who told the stories;
• Dissemination, where a receiving team reads the story, discusses it and tries to relate it

to its experience to build its own knowledge. Finally, there is a possible publication of
the story for a larger public.

Figure 2.19. Learning history phases

Some interesting characteristics of learning history are (Kleiner and Roth, 1995; Bradbury
and Mainemelis, 2001):

• It includes much more than the mere facts of the project, by telling their stories,
people include their opinions, sentiments, belief in the tale;

• Contradictory opinions may (and should) appear, presenting all the points of view and
giving room for the interpretation of the events and results in their broader context;

• The “knowledge” embodied in the story is not explicited (e.g. as in best practices or
lessons learned), but the participants in the dissemination must construct it from the
story and from their own experience and discussion;

• Learning histories are mainly presented for large projects resulting in entire books.

Planning
Re_lexive
research

Distillation Writing Validation
Dissemi‐
nation

Publica‐
tion

Chapter 2 ‐ Software Quality Assurance

 48

2.5.3 Knowledge Organization with Ontologies

One important aspect of knowledge management is to preserve the knowledge externalized
during the process. Even that when organized it becomes an object, it will be useful for future
projects to allow learning, new interpretation and generation of new tacit knowledge. The
knowledge captured can be organized on different ways: as lessons learned, diagrams,
packages of experiences with their context (see sections 2.5.1.1 and 2.5.2.1), histories (see
section 2.5.2.2), and also on ontologies. Ontologies have been largely used to represent
knowledge thanks to its capacity of representing concepts in an unambiguous way, using
formal languages that enable reasoning.

Several definitions of ontology can be found in the literature. Two of them are presented in
Figure 2.20. The first definition (Gruber, 1995) sets that it should be an explicit specification,
that means to be formal in a way that hamper consensus, enables reasoning and avoid
misunderstanding. The second one details the components of an ontology. Basically, an
ontology consists of concepts and relations, their definitions, properties and constraints
expressed by axioms (Chandrasekaran et al., 1999). Figure 2.21 presents an illustrative
example of ontology to represent the concepts, relation, property and axioms for a family.

Figure 2.20. Ontology definitions

According to Guarino (1998) there are different kinds of ontologies:

• Top-level ontologies - that describe very general concepts like space, time, matter,
event, etc.;

• Domain ontologies - that describe the vocabulary related to a generic domain (such as
medicine, or transportation);

• Task ontologies - that describe generic tasks or activities (like diagnosis or selling);
• Application ontologies - that describe concepts depending on a particular domain and

task. Application ontologies are specializations of both the domain and task
ontologies.

Ontologies may serve to various purposes in the context of knowledge management
(Anquetil et al., 2007):

• Reference on a domain - explicit knowledge serves as a reference to which people,
looking for detailed information on the domain modeled, may use;

• Classification framework - the concepts explicited in an ontology are a good way to
categorize information on the domain modeled. Indication of synonyms in the

1

•  An explicit specihication of a conceptualization (Gruber, 1993)

2

•  Domain theories that specify a domain‐specihic vocabulary of entities, classes,
propreties, predicates, and functions, and a set of relathionships that necessaraly
hold among those vocabulary items. (Fikes and Farquhar, 1999)

Chapter 2 ‐ Software Quality Assurance

 49

ontology helps avoiding duplicate classification. Other relations among the concepts
of the ontology help one browsing it and finding an information one is looking for;

• Interlingua - tools and/or experts wishing to share information on the domain
modeled, may use the ontology as a common base to resolve differing terminologies.

Ontologies have been largely used for knowledge management related to SQA activities, in
particular, to software process improvement. For instance, ontologies were developed to
organize the knowledge about software quality (e.g. Henderson-Sellers, 2014; Kayed et al.,
2009; Bertoa et al., 2006; Barcellos et al., 2010) and software process (e.g. Palomäki and
Keto, 2006; Wongthongtham et al., 2006); and as the main support in knowledge
management systems (e.g. Al Balushi et al., 2013; Surrephong et al., 2008). For my doctorate,
I used domain ontologies to improve the traditional software process by including a domain
specific activity (Oliveira, 1999). This activity supports the software developers in the
requirements elicitation, system modeling and database design with the use of domain and
task ontologies (Oliveira et al., 2004).

Figure 2.21. Illustrative example of an ontology11

11

 Extract of the ontology about family relationships available in the Protégé ontology library

(http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library). (Accessed April 10, 2014)

Chapter 2 ‐ Software Quality Assurance

 50

2.6 Conclusion: Research Motivation

This chapter presented an overview of the main concepts related to software quality
assurance and knowledge management. In summary, the literature proposes a set of standards
and methodologies (not limited to the ones presented in this chapter), as well as the need of
measurements to ensure the quality of software process and products. Moreover, with the
emergence of knowledge management concerns in the last years of the 20th century, the
software engineering community started to apply them in order to improve quality and
productivity in software production. Aware of these concepts and the challenges presented in
Chapter 1 (§ 1.2), it is possible to identify two main questions that motivated my research:

• How to perform quality assurance for software processes and products (considering its
variety of technologies and types) in a way that could be really applicable and useful
in the practice of the industry?

• How to apply knowledge management issues in order to improve the quality of
software processes and products?

Chapters 3 and 4 present, respectively, the research performed to answer each one of these
questions.

51

Chapter 3

Methodologies and Measurements for

Software Quality Assurance

3.1 Introduction

As presented in Chapter 1, we can divide software quality into two main concerns: quality
of software process and quality of software products. Methods, techniques, measures and
tools have been developed during the last years to support the activities necessary to address
both concerns.

In general, the research about the quality of software process deals with issues related to
the definition, evaluation and improvement of software process. Standards were defined for
the definition (ISO/IEC 12207, 2008) and evaluation of software process (ISO/IEC 15504-2,
2003, ISO/IEC 15504-3, 2004). Maturity models (e.g. SEI, 2010) also present a structure for
software process implantation and improvement in organizations. These maturity models
establish the software engineering practices to be institutionalized in an organization. Section
3.2 presents the main investigations we performed on this topic that comprises the evaluation
and improvement of software process.

The research of quality of software product is usually related to the evaluation of the
different software products produced during a software process (e.g. requirements
specification, design model, code, user interface, etc.). Guidelines, standards (see Chapter 1, §
2.4) and measures defined using appropriated methods (see Chapter 1, § 2.3) are usually used
in these evaluations. Section 3.2.3 presents some of the main studies on quality evaluation of
different software products by using software measures.

Section 3.3.5 concludes this chapter with a summarization of our contributions and a
discussion on limitations of software quality evaluation identified by performing the research
presented in this chapter.

3.2 Software Process Quality Assurance

As presented in Chapter 1 (§ 2.2.1), the research on software process quality includes its
definition, evaluation and improvement.

The definition of software process was the main motivation for the research at the end of
the last century (and beginning of my professional activity). With the proliferation of web
application systems and the use of new technologies (e.g. mobiles), the state of practice in
industry has revealed the need of definition of specific software process adequate for the
development of each kind (e.g. object-oriented systems, web systems, critical systems) and
size of software system to be developed in an organization. Moreover, the software process
defined for each project should follow a standard software process to organize and discipline

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 52

the software development, determine the fundamental activities that shall be present in any
defined process, and assure common understanding of all stakeholders.

Eman et al. (1998) defined a standard process as the basic process, guiding the
establishment of a common process in the organization. A standard process defines a single
structure to be followed by all the teams involved in a software project independently from
the software characteristics to be developed. However, the effectiveness of defined processes
depends on their adequacy to the characteristics of the organization, of the software system to
be developed, and of the project. With this on mind, our first research proposed an approach
for the definition a software process for a project based on standard software and maturity
models (Machado et al., 2000a). This approach included: (i) definition of a standard process,
(ii) specialization of a standard process considering the type of software and to the
development paradigm to be adopted, and (iii) instantiation for projects considering their
specific characteristics (size, team, life cycle model, etc.).

This approach was later generalized to be used for the definition and institutionalization of
different software processes in an organization, for instance: for configuration management
(Duran et al., 2005), requirement development (Corrêa et al., 2004) and software acquisition
(Sousa et al., 2005).

With the dissemination and use of software processes in industry, the importance of their
evaluation and, as consequence, their improvement has emerged. In this section, we present a
piece of research done to tackle these aspects.

3.2.1 Software Process Evaluation

Once the software process is defined and institutionalized in an organization it is important
to evaluate it to allow its improvement. To do so we defined a set of measures, integrated
them into the software process and applied them to real cases in industry (Gomes et al., 2000,

2001a, 2001b; Souza et al., 2003).

For the definition of measures, we used the Goal-Question Metric (GQM) approach (see
Chapter 1, § 2.3). To define the measurement goals, we conducted interviews with software
project managers in industry to find out the main problems with the software projects. Several
problems were cited, but three stood out as being the most relevant: the lack of accuracy of
project estimates, the low quality observed in the products released for use, and the high cost
involved in software development. Three objectives were then defined for the measurement
program:

• to improve the accuracy of project estimates;
• to increase the quality of products released for use; and,
• to reduce the final cost of projects.

Once the objectives are defined, they must be used to guide the definition of questions to
be answered in order to examine whether the targets were achieved properly. Figure 3.1
shows, as an example, the definition of measures using GQM for the first objective. Similarly,
measures were defined for the other two objectives. At the end, we obtained a set of 21
measures (Table 3.1).

Moreover, we argue that the experience of the project team can also explain possible
problems encountered during the project. Productivity, number of errors, time and spent effort
are some of the information that may be influenced by the team’s capacity. Therefore, we had
included in the original set of measures the following information related to the experience of
the team: experience in programming language, in the application domain, tools, method and
development process; type of training in software engineering; total experience time.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 53

Goal 1:
To analyze project estimates
With the purpose of improving
With respect to accuracy
From the viewpoint of project managers

Question 1: How accurate is the schedule estimates of project?

Measure 1.1) Accuracy of schedule estimate of entire project = real time of the entire project
 estimated time for the project

 Measure 1.2) Accuracy of schedule estimate by software process activity = real time of an activity
 estimated time for the activity

Question 2: How accurate is the effort estimates of project?
 Measure 2.1) Accuracy of effort estimate in the entire project = real effort of the entire project

 estimated effort for the project
 Measure 2.2) Accuracy effort estimate by software process activity = real effort of an activity

 estimated effort for the activity

Figure 3.1. Example of measures for software process evaluation defined with GQM

Table 3.1. Measures proposed for software process evaluation

Category Measures
Schedule Total project time

Time in the analysis, design, coding, unit tests performed by analysts, system and
acceptance tests
Time spent in review meetings
Time in rework.

Accuracy of schedule
estimates

Accuracy of schedule estimate of entire project
Accuracy of schedule estimate to the analysis, design, coding, unit tests performed
by analysts, system and acceptance tests.

Effort Total effort in the entire project
Effort in the analysis, design, coding, unit tests performed by analysts, system and
acceptance tests.
Effort in review meetings
Effort in re-reviews (new review meetings carried out due to the non approval of
the product at former meetings)
Effort in reworks.

Accuracy of effort
estimates

Accuracy of effort estimate in the entire project
Accuracy of effort estimate to the analysis, design, coding, unit tests performed by
analysts, system and acceptance tests.

Size Number of lines of code.

Number of errors Number of errors in the requirements specification and in the design of the system
found in review meetings; errors in coding found in the unit tests performed by
analysts.

Number of
modifications

Number of modifications of the requirements specification, design and coding after
their approval.

Defect density Number of errors added to the modification number in relation of the size of the
system.

Personnel turnover Percentage of people, who have joined, left or changed functions during the
project.

Productivity Number of lines of code produced by effort unit.

Software
deterioration

Relationship between the efforts spent to correct problems found after the release
of the system for the user compared to the effort spent before release for the user.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 54

For a better interpretation of the results, operational definitions of the measures should be
elaborated by minimizing ambiguities and homogenizing the understanding of the usage of
each measure. For example, all measures of time in Figure 3.1 involved the number of days
from the date of commencement of work (of an activity or the entire project) to the date of its
closure. For effort we set that it would be measured in man-hours; one man-hour being equal
to one-hour time employed by a member of the project team. Thus, effort is the sum of the
total number of hours used by all team members in the execution of an activity.

The process of measurement collection should be incorporated to the defined process itself,
using documents already generated by the team. Some examples in this context are important
milestones in the project follow-up documentation, the definition of the number of errors on
inspection meetings and control of time spent on development activities. In defining
collection methods as part of the development process, we have obtained the different
measures results during the practice of software process activities without generating new
workload for the team.

Those measures were applied in several enterprises in Brazil. One case of application was
performed for a large project about cost planning and budget. The measures were collected
and analyzed in a final meeting with the project managers. Figure 3.2 shows the report of the
base measures (real time, estimated time, real effort and estimate effort for each activity of the
software process, see Figure 3.1) collected for one of the system’s module. For this analysis,
it is important to be aware that the measures are inter-correlated; that means, one measure
could impact the result of the other measure and, therefore, should be analyzed in group.
From the analysis of all measures, it was concluded that the main problems of this project
were: the establishment of project estimates without using any formal method or historical
basis since it was made an ad hoc estimation based on the manager experience; a high staff
turnover resulting in a decrease of team performance; and the lack of experience of the project
team. It was also possible to identify the process activities with more problems to make
corrective actions. Gomes et al. (2000, 2001a) present in more details this study.

We also defined and applied measures in a large enterprise with the goal of verify the
adherence of the defined software maintenance process (i.e., the team was really following the
planned activities) and the general quality of the artifacts (Souza et al., 2003). The measures
were: density of task execution, percentage of time accuracy, accuracy of effort, frequency of
errors detected by the customer, average of requirements errors, average of project design
errors, average of source code errors, percentage of delivered requests, and customer
satisfaction.

3.2.2 Software Process Improvement

Evaluate software process execution allows to identify problems (e.g. high estimates
errors, low personnel experience, high turnover) and bottlenecks (e.g. activities with low
accuracy of estimates, activities with high rework) in the software process making possible its
correction for a next project. However, to achieve high-level maturity in software process
improvement (SPI), organizations must be able to manage their projects quantitatively by (i)
establishing and maintaining a quantitative understanding of the performance of their standard
processes; and (ii) providing process performance data, baselines, and models to
quantitatively manage the organization’s projects (SEI, 2010). Defining all of these aspects is
neither customary nor automatic for most software managers.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 55

Figure 3.2. Examples of measures report

Quantitative understanding of process performance analysis varies for each organization,
depending on the performance measures collected during the execution of software projects
(Chrissis et al., 2011). Establishing this historical repository is a current challenge for all
organizations involved with SPI. Suitable measures should be clearly defined at the beginning
of SPI programs. Yet organizations rarely have the experience to define these measures and
cannot always predict which processes will be required to perform process performance
analysis. Although SPI models call for early implementation of measures in SPI programs,
managers often realize the significance and complexity of those measures only when reaching
the high levels of the maturity models. Moreover, some authors (Hall and Fenton, 1997;
Agresti, 2006; Berander and Johnson, 2006) argue that several measurement programs in
organizations fail because they define too many measures that are not actually implemented
and analyzed in decision-making.

With the aim of helping organizations define the measures that can be effectively used in
organizational process performance analysis, we conducted a broad search of the literature in
order to define a catalog of measures organized by indicators. The idea was that this catalog

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 56

could be useful for several analyses of software process performance (such as requirements
development, verification, and validation).

To define the catalog (Monteiro and Oliveira, 2011) we decided to use measures that
have been defined and implemented in organizations as proposed by different authors. As
presented in Figure 3.3, we first conducted a broad literature review to identify existing
measures for process performance analyses; then, we analyzed those measures and selected
the most relevant ones to compose the indicators to be specified.

Out of more than 500 papers found in the literature review on the subject of software
process measurement (step 1 in Figure 3.3), 32 were considered relevant. These cited 869
performance measures used in organizations. Nevertheless, there were redundancies among
them: for example, percentage of rework time, rework ratio, and rework were listed as
different measures. An analysis of all of the measures was performed in the next four steps.

To start the analysis (step 2), we decided to classify each measure according to its main
goal in different categories: time, effort, cost, scope, productivity and quality. Next, measures
in the same category were analyzed according to name, description and formula (step 3).
Analyzing all of the similarities among the 869 measures, we ended up with 584 distinct
measures.

These 584 measures were mapped with the CMMI-DEV process areas (step 4) to allow the
choice of measures considering the specific software process to be improved. In this analysis,
some measures were mapped with all of the process areas, others only with specific ones. For
example, the measures of cost performance index, effort, and productivity are applicable to all
of the CMMI-DEV process areas; therefore they were mapped with all of the process areas.
On the other hand, we can cite, for example, requirement volatility and delivery defect density
measures that were mapped with specific process areas.

In the end, 345 measures were related to the engineering process areas12. With the goal of
producing a practical catalog as a generic framework of measures, we decided to reduce the
scope of measures by selecting those that were cited more frequently in the literature (step 5),
settling on measures that were referenced by three or more authors in different publications.
Thus 48 of the total 345 measures were ultimately selected. These were further evaluated for
goal crossover, that is, to identify whether different measures shared the same application
goal. With this analysis, we eliminated additional measures. For example, we eliminated
“requirements stability” (with four references) because it had the same goal as “requirements
volatility” (with five references). These measures are based on the percentage of requirements
changed (“requirements volatility”), or not changed (“requirements stability”) in relation to
the total requirements of the project. Despite the differences in the methods of calculation, the
two measures assess the same process areas in relation to changes in project scope, thus the
measure with the greatest number of literature citations was the one chosen to be maintained
in the catalog. The final set of measures is presented in the two last columns of Table 3.2. The
complete description of these measures can be found in (Monteiro and Oliveira, 2011).

During the execution of steps 3, 4, and 5 of the research, in which the measures were
examined individually, we reviewed the list of measures, possibly changing the classifications
made in previous steps.

To specify the catalog, we adapted the documentation from (McGarry et al., 2002). The
decision criteria and indicator interpretation in this documentation was completed with a
focus on process performance analysis. In (McGarry et al., 2002) measures are described

12

 The engineering process areas are: requirements management, requirements development, product integration,

technical solution, verification, and validation.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 57

according to their indicators. Thus, we looked for correlations among all of the measures (step
6). The idea was to group the correlated measures into unique indicators for better
quantitative management of processes. Therefore, all measures were specified in the indicator
specification.

Figure 3.3. Steps for definition of a catalog of indicators (Monteiro and Oliveira, 2011)

Each specified indicator uses one or more derived measures, and those measures in turn
use one or more base measures. Therefore, some base measures can be specified in different
indicators. For each indicator we also determined which control chart to use (step 7).

Table 3.2 presents the indicators and their related measures. We note that some measures
are specialized in several measures, for instance number of defects is specialized in number of
internal test defects, number of internal peer review defects, number of external test defects,
number of external peer review defects.

In step 8, we specified each indicator. Appendix A presents a complete specification of the
Defect Density indicator. Another indicator specification and a complete description of this
study can be found in (Monteiro and Oliveira, 2011).

Finally, believing that SPI has a great importance for the final perception of quality by
customers, we performed in 2008 a formal evaluation of customer perception of the service
quality offered by the software providers (companies that develop software for other
companies) appraised in CMM/CMMI (Santos and Oliveira, 2009, 2007). The study was
formally planned considering the experimental software engineering principles defined by
(Wholin et al., 2000), from the clear and formal definition of our goal to the verification of
the validity of the results. Based on the work of Parasuraman et al. (1988), where the
perceived service quality is defined as the difference between the perception (P) and the
expectation (E) of customers, we set the following hypotheses:

• H_1: Customers’ perception of the service quality does not correspond to their
expectation. In other words, customers’ perception is inferior to their expectation;

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 58

• H_2: Customers and prospective customers have high expectations with regard to the
service quality of software providers appraised in CMM/CMMI.

Table 3.2. Indicators X Measures

Indicator Base Measures Derived Measures

Earned Value Planned value
Earned value
Actual cost
Budget at completion

Cost performance index
Schedule performance index
Cost variance
Percentage of cost variance (CV%)

Estimate at completion
Estimate to complete
Variance at completion

Test Coverage Size of the software tested:
Source lines of code, or
Number of function points, or
Number of requirements
Total size of the software product:
Source lines of code, or
Number of function points, or
Number of requirements

Test coverage

Cost of Quality Cost of conformance
Cost of quality control
Cost of quality assurance
Cost of nonconformance
Cost of rework
Cost of warranty work
Cost of waste and loss of reputation
Actual cost

Cost of quality
Percentage cost of quality

Defect Density Number of defects
Total number of defects
Number of defects by type
Source lines of code
Number of function points
Number of requirements
Document page count

Defect density
Total defect density
Defect density by type

Peer Review and Test

Efficiency
Number of defects
Number of internal test defects
Number of internal peer review defects
Number of external test defects
Number of external peer review defects

Test efficiency
Peer review efficiency

Scope Changes Number of changes
Source lines of code
Number of requirements
Number of changed requirements
Total number of requirements
Number of function points

Change rate
Requirements volatility

Cycle Time Cycle time
Source lines of code
Number of function points
Number of requirements

Cycle time relative to project size

Mean Time to Failure Mean time to failure

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 59

Table 3.2 (cont.) Indicators X Measures

Indicator Base Measures Derived Measures

Productivity Effort
Source lines of code
Number of function points
Number of requirements
Schedule

Productivity
Delivery rate

Reuse of Code Source lines of code Reuse of code
Defect Removal Rate Number of defects

Number of open defects
Number of closed defects

Defect removal rate

Rework Rework effort
Total rework effort
Rework effort by discipline
Effort
Total project effort

Rework
Total rework
Rework by discipline

Effort Variance Effort
Planned effort
Actual effort

Effort variance
Total effort variance

Effort variance by discipline

Schedule Variance Schedule
Planned schedule
Actual schedule

Schedule variance
Total schedule variance

Schedule variance by discipline

Size Variance Source lines of code
Number of function points
Number of requirements

Size variance

Two service quality assessment questionnaires were created based on the SERVQUAL
(Service Quality) model (Parasuraman et al., 1988) with statements to evaluate the
expectation and perception of the respondents (see an example of the statements in Figure
3.4). The first questionnaire was defined for respondents who had never been customers of the
software providers appraised in CMM/CMMI; that is, they did not use the service of these
providers but they were familiar with the model and could contract one of the providers in the
future (prospective customers). The second questionnaire was defined for respondents who
had already been customers of software providers appraised in the models. The aim of the
noncustomers’ questionnaire was merely to identify the expectations of prospective customers
about the software providers appraised in CMM/CMMI. Accordingly, it included only the
expectation statements of the questionnaire. The customers’ questionnaire, in contrast, aimed
at assessing the perceived service quality (Perception – Expectation) and included the entire
questionnaire.

The questionnaires were made electronically available for the 192 respondents from public
and private institutions. We obtained 78 responses to the noncustomer questionnaire and 42 to
the questionnaire directed to customers of software providers appraised in the CMMI. Internal
consistency is proved through Cronbach's alpha superior to 0.9 and threats of validity were
verified.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 60

Figure 3.4. Example of statements of the questionnaire to evaluate service quality

This study confirmed that: the customers have a perception of the service quality offered
by a CMM/CMMI provider significantly inferior to their expectations; and, the customers and
prospective customers have very high expectations of a service offered by a CMM/CMMI
providers. In summary, this study has identified some important results for the software
industry:

• Customers and prospective customers have similar assessments concerning their
expectations, which suggests that the level of demand does not increase when an
individual becomes a customer;

• Customers and prospective customers have high expectations concerning service
providers, especially in the requirement and project management, and in technical
activities, such as technical solution and project integration;

• Perception of customers concerning the services rendered shows a misalignment with
regard to expectations, especially on giving information about service completion
times.

A detailed description of this empirical study can be found in (Santos and Oliveira,

2009).

3.2.3 Return on Investment in Software Process Improvement

Despite the fact that SPI is widely explored in the literature, the lack of evidence about the
return on investment (ROI) in SPI is still one of the major reasons that impedes the
organizations to implement it (Peixoto et al., 2010; Galinac, 2009; Khurshid et al., 2009). In
fact, several approaches have been proposed to support the return on investment (ROI) of SPI
(see, for instance (Rico, 2004; Eman, 1998)). The main feature of these approaches is the
focus on economic aspects. Nevertheless, several authors (e.g. Unterkalmsteiner et al., 2012;

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 61

Campo, 2012; Ferreira et al., 2008, Asato et al., 2009; Lazić and Mastorakis, 2010) defend
that the ROI of an improvement program can also be measured by the other benefits (than
economics) achieved by the organization such as, productivity and customer satisfaction).
Therefore, it is necessary to investigate these benefits and to define how they can be
characterized, measured and considered for the return on investment in SPI.

Based on this need, we performed a systematic mapping review (Kitchenham and Charters,
2007) (§ 3.2.3.1) to identify what is been considered in the definition and application of ROI
for SPI programs; and we defined a strategy for the analysis of benefits of SPI programs (§
3.2.3.2).

3.2.3.1 Systematic mapping study about ROI

Systematic mapping is an empirical methodology that provides a wide overview of a
research area to establish if research evidence exists on a topic (Kitchenham and Charters,
2007)

Figure 3.5 presents the review protocol defined for this systematic mapping, specifying:
the research question(s) being addressed, the methods that will be used to perform the review,
the search strategy with the keyword strings and sources used, and the explicit inclusion and
exclusion criteria to assess each potential study.

We applied the search string in all digital libraries in November 2012. The search was
done in titles, abstracts and keyword. We got at the end 338 papers. By reading the abstracts
of all papers and applying the three first inclusion criteria, we selected 112 papers for the full
text analysis. From this group, 13 were eliminated by the criteria 5. After the full text reading,
28 papers were selected considering the criteria 2, 3 and 4. After performing the paper
analysis, we extracted the data answering each one of the secondary questions to be used in
the reporting the review phase.

Figure 3.6 presents the results for Q1 (methods), Q2 (benefits related to measures and
intangible benefits) and Q3 (reported result elements) identified in the 28 papers.

Moreover, this study showed to us that (Ramos et al., 2013):

• No proposition was used in practice or validated with some kind of experimentation;
• From 9 papers (32%) that present methods, only 5 (17%) presents description of some

application in practice;
• Only 10 papers (35%) show some result of the ROI with some application and 2 (7%)

presents some proposition in this subject. These two papers present a methodology to
compute the cost saving and the ROI of a SPI program (McGibbon and Nicholls,
2002), and the results of the use of a framework (Scott et al., 2001) to the
implementation of SPI in small and media enterprises.

Based on the results of this systematic mapping, we identified the need of defining a
strategy lighter for the definition of return on investment in SPI that does not use only
economic aspects, but that shows the benefits that an organization can reach with those
programs aligned to their previous expectations.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 62

Figure 3.5. Research protocol (Ramos et al., 2013)

Quality focus: Identify the elements that are used to analyze the return on
investment in SPI programs.

Main research question: "What are the elements used to analyze the return on
investment in software process improvement?".

Secondary research questions:

Q1. What methods, processes and tools are used to analyze the return on
investment in SPI programs?

Q2. What measures and other elements are used for analysis of return on
investment in SPI programs?

Q3. What return on investment in SPI programs that organizations have reported?

Population: Published papers about ROI in SPI

Sources selection: SCOPUS, ACM and IEEE

Keywords and synonyms:

Software process

Return on investment= ROI, investment analysis, money, profit, engineering
economics, investment.

Improvement = SPI
CMMI = CMM, CMMI-DEV1
MR-MPS = MPS, MPS.Br
Maturity level = Capability level

Search string:

(“return on investment” OR roi OR “investment analysis” OR money OR profit
OR "engineering economics" OR investment) AND ((("software process" AND
improvement) OR SPI) OR (cmm OR "CMMI-DEV" OR CMMI OR "MR-MPS"
OR MPS OR "MPS.Br" OR "maturity level" OR "capability level"))

Inclusion (IC) and exclusion (EC) criteria:

1. IC - Papers should be written in English;
2. IC – Papers that present approaches about analysis of ROI or benefits in SPI
even that are not based on maturity models.
3. IC – Papers that present some kind of study about methods, tools, process,
measures or any other item applied for the analysis of ROI or benefits in SPI;
4. EC – Papers that present methods, tools, process, measures that are not related
with SPI.
5. EC - Papers not available on the internet.
Intervention: studies involving return on investment in SPI.
Data extraction: methods, tools, process, measures or any other item used for the
analysis of ROI or benefits in SPI.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 63

Figure 3.6. Elements for analysis of ROI in SPI

3.2.3.2 A Light Strategy for The Analysis of Benefits of SPI Programs

A SPI program should be aligned to the business goals of the organization. However, it is
very common, that organizations start SPI programs without first defining what are their
expectations of benefit and quantifying the expected values for these benefits. Moreover,
often, organizations do not assess later whether expectations were actually met.

We proposed a strategy to support consultants and process improvement teams working in
organizations. Figure 3.7 shows the general view of this strategy that is composed of four
main phases explained below.

Identify expected benefits

In this phase the organization’s expectation for the institutionalization of a SPI program is
identified considering potential benefits of a SPI program. Different stakeholders (technical
team, managers, etc.) should participate in this activity since the expectation of benefits is a
key element in this strategy. Thus, an analysis should be performed to align expectations of
benefits to the organization's business goals, and to verify the feasibility of achieving those
benefits considering the expectation of the benefits and the software process practices that
will be implemented in the organization.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 64

Figure 3.7. Strategy for the analysis of benefits in SPI (Ramos et al., 2013)

To support this activity, we are defining a set of potential benefits of SPI programs based
on the results of the systematic mapping previously presented. These potential benefits are
associated with practices (from CMMI-DEV) or expected outcomes (from MR-MPS-SW). In
this way, it is possible to identify what should be incorporated into the standard software
process of the organization to enhance the achievement of expected benefits. This mapping
between benefits and practices/outcomes also allows evaluating if the expectation of benefits
identified is feasible considering the maturity level it will be implemented in the organization.

Identify set of measures

This phase aims at supporting the identification of measures that should be collected to
monitor the benefits obtained by the SPI program. The measures must be incorporated into
the organization measurement plan that is required since the first maturity levels of the SPI
models. These measures must be consistent with the expectations of benefits established in
the previous activity.

To support this activity, we are mapping a set of measures that can be used to support the
measurement of the potential benefits and costs of the improvement program. We are using
the study presented in previous section (Monteiro and Oliveira, 2011) where we defined a
set of indicators with their software process measures.

Define and institutionalize the process

This phase corresponds to the traditional activity of defining the standard software process
for the organization as required in the maturity models. The outcome of this phase is the
complete institutionalization of the standard software process that means its real use in the
software projects development.

It is important to highlight here that the measures and indicators defined in the previous
phases are correlated with process areas (from CMMI-DEV) as defined in (Monteiro and

Oliveira, 2011). In this way, by defining the standard software process, we know which
measures we can use to evaluate the benefits.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 65

Monitor and assess the expected benefits

In this phase, the expected benefits are continually evaluated based on the measures
defined in the phase 2. Reports of indicators and measures supports the analysis of benefits
being obtained with the SPI programs.

This approach is under development as a Doctoral research in co-supervision in Federal
University of Rio de Janeiro. Preliminary results of this research can be found in (Ramos et

al., 2012, 2013).

3.3 Software Product Quality Assurance

The quality of software product (software requirements, design models, source code, final
software system) concerns the assessment according to one or several quality characteristics.
It is common that the quality of a software product is multidimensional because it depends of:
the software product under evaluation, the point of view of the evaluator (for example, users
are interested in some aspect different than a project manager or a software engineer), and the
quality characteristic to be addressed (for example, those presented in ISO/IEC 25000 (see
Chapter 1, § 2.4). In this section, we present some experiences on the quality evaluation of
software products.

3.3.1 Quality Evaluation of Web Applications

With the advent of the web in the late 20th century, we were surprised by a large number
of Internet applications, from simple informational sites to complete online applications. With
the facility to provide these web applications, it is crucial to ensure the suitable quality for
their adoption.

Our first work on this direction was an evaluation of educational web sites for cardiology
(Lima et al., 2000). The goal was to select credible and good web sites that could support the
students learning. An evaluation questionnaire was defined based on quality characteristics
from the literature and standards (see Chapter 1, § 2.4). In this way, the final selection of web
sites was justified by the quality assessment performed. In this section, we present two other
studies: one for the evaluation of accessibility of web applications; and, the other one for the
definition of a technique that ensures the usability of web application throughout the software
development.

3.3.1.1 Evaluation of the Accessibility of Web Sites

Accessibility is defined by ISO 9241 (ISO 9241-171, 2008) as the usability of a product,
service environment, or facility by people with the widest range of capabilities. ISO 9241
emphasizes also that accessibility aims to achieve levels of effectiveness, efficiency and
satisfaction that are as high as possible considering particular attention to the full range of
capabilities within the user population. The World Wide Web consortium defines web
accessibility as the degree to which people with visual, auditory, physical, speech, cognitive,
or neurological disabilities can perceive, understand, navigate, and interact with the Web
(Henry, 2005). Accessibility gained large attention in the research community and specific
standards and guidelines were developed. One of the most known, the Web Content
Accessibility Guidelines (WCAG) was in its first version composed of 14 general guidelines
organized into checkpoints that address specific aspects of accessibility. Each checkpoint is
rated according to the criticality of implementation of the accessible content (that is, when a
content developer must [priority 1] or should [priority 2] satisfy the checkpoint; or when s/he
may address the checkpoint [priority 3]). In WCAG version 2.0, checkpoints and priorities are
referenced as success criteria and conformance level, respectively. It also defines four basic

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 66

principles: the content must be perceivable, the interface components must be operable, the
content and controls must be understandable, and the content must be sufficiently robust to
interact with the user. Each principle contains general guidelines that are organized into
conformance levels and success criteria (Caldwell et al., 2008).

Motivated by Decree 5,296 from Brazil, which makes compliancy to the rules of Web
accessibility and efficiency mandatory for Brazilian government websites, we performed a
research for the definition and application of measures to evaluate accessibility (Lima et al.,

2009). We used the Goal-Question Metric (GQM) approach (see Chapter 1, § 2.3) to define
the measurements considering the accessibility principles of the WCAG (Table 3.3).
Objective methods (based on numerical rules) and subjective methods (based on user opinion)
(ISO/IEC 15939, 2002) were used to collect the measurements. The objective measurements
were done with tools that collect data concerning real and potential violations, as well as the
principles of accessibility (resulting in measurements M2, M7, and M9).

The subjective measurements were registered in a protocol based on participant
observation method (Melo et al., 2004) consisting of evaluation sessions with users with
visual disability. In this method, the observer interacts with the user to provide him/her with
basic information and an accurate understanding of the objective for each task, thereby
establishing a dialogue for registering difficulties and strategies adopted by the user during
task execution. After completion of the sessions, the perception of users with regard to the
accessibility of the site was registered (measurements M1, M3, M4, M5, M6, M8, and M11)
along with the time spent to complete each task (M10).

Finally, to complete the evaluation one must:
• Choose a tool that supports the Web navigator in use, allowing evaluation of single

pages in a specific Web domain (intra-domain analysis) and multilevel evaluation of
each site;

• Choose a website that is considered to have the broadest array of services and that is
most relevant and interesting to users participating in this study;

• Choose tasks relative to the evaluation of each site;
• Plan sessions of evaluation with respect to user choice; where to perform the

evaluation; configuration of the necessary resources for the evaluation (including
technologies for assistance); scheduling and definition of time necessary for each
evaluation;

• Execute evaluation sessions;
• Collect and analyze the data using the protocol and the chosen tool.

The initial application of this approach was in the context of government sites for the
definition of Service Levels Agreements (SLA). Service level agreements (SLAs) are formal
agreements that aim to establish quality standards for services rendered by providers to their
clients (Muller, 1999). In general, an SLA contains a service catalog, that establishes
measurable attributes of the characteristics of the services, and the steps needed to confirm
whether the expected service level was achieved in each service rendered (OGC, 2001).

We followed all the steps presented previously. A detailed description of all those steps
and results can be found in (Lima et al., 2009). Three websites that render government
services (Secretary of the Internal Revenue, Social Security, Brazilian Institute of Geography
and Statistics) were evaluated. To minimize the evaluation time, only one task was chosen for
each site, as follows:

• T1 - consult an individual income tax return;
• T2 - register for Social Security;
• T3 - contact the Brazilian Institute of Geography and Statistics.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 67

Table 3.3. Accessibility evaluation measures

Goal:
To analyze content on websites,
with the purpose of evaluation
with respect to accessibility
From the viewpoint of the user with visual disabilities (in order to limit the scope).
Question Measure Description

Q1. What is the degree of

perception of the content

of the websites evaluated?

M1. Degree of perception of

content.
Measures the user’s perception regarding

Web content read by a software screen

reader (Jaws, Virtual Vision etc.).
M2. Number of violations of the

Perception principle.
Measures the number of violations found

on Web pages pertaining to a task and

related to items in WCAG 1.0.
Q2. What is the degree of

operability of the content

of the websites evaluated?

M3. Degree of operation of content

with use of the keyboard.
Measures user perception regarding the

operation of Web content with the use of a

keyboard or directional instrument

(mouse).
M4. Degree of operation of content

in relation to the time of execution.
Measures user perception regarding the

time spent during interaction with Web

content.
M5. Degree of operation of content

in relation to the complexity of the

navigation.

Measures user perception regarding the

complexity of navigating during an

interaction with Web content.
M6. Degree of operation of content

in relation to the existence of

anchors.

Measures user perception regarding the

ease with which users are able to find

anchors during the interaction with Web

content.
M7. Number of violations of the

Operation principle for the task.
Measures the number of violations found

on Web pages related to the items that

compose the Operation principle.
Q3. What is the degree of

understanding of the

content of the websites

evaluated?

M8. Degree of Understanding. Measures user perception with regard to

understanding of Web content during the

execution of a task.

M9. Number of violations of the

Understanding principle for the

task.

Measures the number of violations found

on Web pages related to items that

compose the Understanding principle.
Q4. What is the degree of

productivity of the users

during their interaction on

the Web?

M10. Time of execution of the task Measures the time spent by the user to

execute a task.

Q5. What is the degree of

satisfaction of the users

when executing tasks?

M11. Degree of satisfaction in the

context of accessibility
Measures the degree of user satisfaction in

relation to the interaction with Web content

in the context of accessibility.

Ten users with different levels of visual disability and experience using the Web
participated as volunteers in the evaluations. The average time for each session was two and a
half hours. Table 3.4 shows evaluation data of users regarding the items for each question.
This table presents the average value calculated, considering the evaluation of the ten users
and the average value for the question. All the users managed to complete tasks T2 and T3,
but just one completed task T1. Therefore, the measure considered only the time of execution
for this user. Some of our conclusions from the measurement analysis are:

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 68

• Users, in general, obtained a high degree of perception of the content of tasks T2 and
T3;

• All content operation tasks can be considered to be in the satisfactory range, with the
exception of task T1, which only one user completed and obtained a degree of
operation of content below the one recorded for the other tasks;

• The higher the level of content operation, the lower the number of violations found for
this principle per task;

• The higher the levels of comprehension of task content, the lower the quantity of
violations found for that principle;

• User satisfaction was affected by the number of principle violations; that is, the higher
the rate of violations, the lower the level (degree) of user satisfaction;

• In contrast, the degree of user satisfaction has a direct relation to the measure of
execution time.

These measures were then used to define the measurable attributes of the service catalog
(Lima et al., 2007, 2009).

3.3.1.2 Defining an Inspection Approach for Usability Evaluation based on

Experimentation

In recent years, the researchers have increasingly defended the idea of ensuring a good
level of usability in the early stages of the development process, the so-called "Early
Usability" (Panach et al., 2013; Molina and Toval, 2009). The idea is to evaluate the usability
through inspection of models used in the design of applications, such as, UML diagrams
(Unified Modeling Language) and interface mockups. However, these approaches have been
developed independently for specific models. Considering the importance of the inspection of
classical artifacts from software engineering and human-computer interaction (HCI) areas, we
proposed a set of techniques for usability evaluation of design models called MIT (Model
Inspection Technique for usability evaluation) (Valentin et al., 2012), to increase the
possibility of detecting defects.

To define these techniques, we consider three basic premises: using the positive aspects of
some existing proposals for usability evaluation; using reading techniques because they guide
the evaluators to better carry out inspections (Travassos et al., 1999); performing formal
experimentation to better define and evaluate the techniques. Following our methodology
(Figure 3.8), we first conducted a systematic review of the literature (Kitchenham et al.,
2010). This literature review assisted in the identification and analysis of issues not covered
by existing techniques, providing the basis for the definition of our techniques. After that, we
defined an initial proposal of the techniques. Then, we performed an experimental study,
which aims to evaluate the feasibility of using the proposed techniques, and helped us to
improve the proposed set of techniques. New feasibility studies can also be targeted.

The systematic mapping looked for journal and conferences papers published between
2000 and 2010 in three digital libraries (IEEE Xplore library, ACM and Scopus), containing
technical or usability inspection methods in design models. As a result nine techniques were
found: four of them support usability inspection in design models; and five propose models
that predict usability. From the four techniques for usability inspection, three require specific
computational support for their implementation that restricts the adoption of these techniques
only for organizations with access to the specific tool. Although the restrictions on their use
three techniques found in systematic mapping contributed to the definition of our proposal,
they are: Hornbæk et al.’s (2007) proposition for evaluation of usability in Use Case
diagrams, Luna et al.’s (2010) proposition for usability test planning based on mockups and

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 69

interaction diagrams, and Atterer’s (2005) proposition for activity diagram design considering
usability aspects.

Table 3.4. Evaluation data of 10 users with visual disability

Task Question Measure Measure Average

T1

Q1 (Perceivable)
M1 2.90
M2 Real violations = 23

Potential violations = 151

Q2 (Operable)

M3 5.40
M4 2.30
M5 5.00
M6 5.20
M7 Real violations = 2

Potential violations = 69

Q3 (Understandable)
M8 3.30
M9 Real violations = 5

Potential violations = 36
Q4 (Productivity) M10 7
Q5 (Satisfactory) M11 1.00

T2

Q1 (Perceivable)
M1 5.50

M2 Real violations = 59
Potential violations = 445

Q2 (Operable)

M3 5.80
M4 5.10
M5 5.80
M6 6.00
M7 Real violations = 0

Potential violations = 58

Q3 (Understandable)
M8 5.60
M9 Real violations = 4

Potential violations = 19
Q4 (Productivity) M10 10.8
Q5 (Satisfactory) M11 5.60

T3

Q1 (Perceivable)
M1 6.00
M2 Real violations = 22

Potential violations = 59

Q2 (Operable)

M3 6.20
M4 5.80
M5 6.00
M6 5.20
M7 Real violations = 0

Potential violations = 53

Q3 (Understandable)
M8 3.30
M9 Real violations = 0

Potential violations = 38
Q4 (Productivity) M10 8
Q5 (Satisfactory) M11 1.00

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 70

Figure 3.8. Methodology for definition of the techniques (Valentin et al., 2012)

Based on these propositions and the Nielsen’s heuristics (Nielsen, 1993), we defined three
reading techniques. According to Travassos et al. (1999), reading techniques are a specific
type of inspection technique, which contains a series of individual steps for the analysis of a
software product, in order to achieve understanding required for a specific task. The goal is to
increase the effectiveness of inspections providing guidelines that can be used by reviewers to
analyze a given software artifact and identify defects. Thus, the proposed techniques have a
set of instructions that guides the inspector during the evaluation of usability. Three reading
techniques were defined to evaluate different artifacts based on a set of usability verification
items: 21 verification items to evaluate Use Cases; 32 to evaluate mockups; and, 13 to
evaluate activity diagrams. The verification items were organized according to Nielsen’s
heuristics. Table 3.5 shows examples of verification items for mockup evaluation.

The planning feasibility study was done to evaluate the set of techniques in relation to
heuristic evaluation (Nielsen, 1994) since this technique was used as the basis for their
definition. To perform this assessment, two quantitative indicators were defined: efficiency
(ratio between the number of defects detected and the time spent on inspection) and
effectiveness (ratio between the number of defects detected and the total existing defects).

Table 3.5. Example of Verification Items

MIT-2A. Visibility of System Status

MIT-2A1
Check for any textual information in the Mockups that informs where

the user is in a specific moment while using the system.

MIT-2A2
Check for any informational text or message that tells the user what

was done after data persistence. For example, when there are update

or deletion of some date, a text message should be displayed.

The study was performed with 16 students from a computer science course. They were
divided into two groups: one that used heuristic evaluation and the other our reading
techniques. They evaluated one use case, two mockups and one activity diagram from a real
system. Specific training was performed for both groups. They worked in different rooms and
had a moderator who conducted the evaluation. In general, the results showed that the reading

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 71

techniques helped to detect more defects than using heuristic evaluation. However, the
difference between the number of defects found in the evaluation of mockups by the groups is
not statistically significant.

To compare the efficiency and effectiveness of both samples, we used boxplots and
nonparametric Mann-Whitney test. For statistical analysis, we used the SPSS software with α
= 0.10.

Figure 3.9 presents the boxplots that compares both techniques. Analyzing these boxplots
we note that:

• The median group for the reading technique for use cases is higher than the median
group for heuristic evaluation. Furthermore, when comparing the two samples using
the Mann-Whitney test, significant differences were found between the two groups
(p=0.0541 for efficiency, p=0.0012 for effectiveness). These results suggest that the
reading technique was more efficient and more effective than the heuristic evaluation
to inspect the usability of the use case;

• The median of group for heuristic evaluation for mockups is slightly higher than the
median for he reading technique. By comparing the two samples using the Mann-
Whitney test, there was no significant difference between the two groups (p=0.8665
for efficiency and p=0.5358 for effectiveness). These results suggest that the reading
technique and heuristic evaluation provided similar efficiency and effectiveness when
used to inspect mockups;

• The median of Group 3 MIT is higher than the median Group HA. This shows that the
group of inspectors who used the MIT 3 achieved a performance slightly higher than
the group that used the heuristic evaluation. By comparing the two samples using the
Mann-Whitney test, significant differences were found between the two groups (p=
0.0022) for efficiency and p=0.0721 for effectiveness). These results suggest that MIT
3 has greater efficiency and efficacy than heuristic evaluation when used to inspect
activity diagrams.

We also analyzed the evaluators’ comments in the feedback forms. In general, the
comments related problems with the ambiguity of some heuristics, the large number of
heuristics to be verified and the difficulty for understanding and applying some heuristics.
Based on the evaluation and the comments, improvements were performed and a new version
of the techniques developed.

A detailed description of this study is presented in (Valentin et al., 2012).

3.3.2 Quality Evaluation of Legacy Systems

Since the early 90s (Abran and Nguyenkim, 1991; Harrison and Cook, 1990), it is
recognized that software maintenance activity is consuming most of the financial, human and
technological resources in an organization, representing about 80% of the cost of
development. To deal with this problem, organizations routinely subcontract the maintenance
of their software assets to specialized companies, that is to say, outsourced maintainers.

A great challenge for outsourced maintainer is to rapidly evaluate the quality of the
systems they will have to maintain so as to accurately estimate the amount of required work.
To answer these concerns, we developed a framework of measures to evaluate the complexity
of a legacy software system and helps outsourcing maintainers to define their contracts
(Ramos et al., 2004, 2005). For that purpose, we also used Goal-Question-Metric (presented
in Chapter 1, § 2.3).

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 72

U
se

 c
as

es

M
oc

ku
ps

A
ct

iv
it

y
di

ag
ra

m

Figure 3.9. Efficiency and effectiveness boxplots by techniques

We defined two measurement goals: assessing the documentation of the system, and
assessing its source code. For each goal we defined measurable questions and measures to
evaluate them. An important requisite of the measurement plan was that it should not be long
to collect the measures, giving preference to automated measures when possible. The reason
is that the outsourced maintainer may not spend days or weeks studying a system it may not
be contracted to maintain.

Our main interest on this research refers to legacy software. According to Brooke and
Ramage (2001), legacy software is perceived by the business to be critical to its operations,

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 73

and yet difficult to modify involving high costs in terms of time, skill, etc. It is often
described as being any of all of the following (Warren and Ransom, 2002; Brooke and
Ramage, 2001; Comella-Dorda et al., 2000; Bennett et al., 1999): large, old, coded with old
languages, without documentation (or not updated one), with degraded infrastructure, heavily
modified and difficult to maintain. Independently of these characteristics, the system works
and owners see no reason to discard it.

To define the measures for the first goal (Table 3.6), we focused on old systems coded and
documented with “old-fashioned” languages and methodologies since they exist in a large
number. For instance, 60% to 70% of all software in the world are coded in COBOL, and that
is tending to grow over time: the number of lines of COBOL code increases by 5 billion new
lines each year, and 15% of new systems will still be written in COBOL (Searcord et al.,
2003). Considering that the possible method to document those systems was structured
analysis method, we chose to evaluate: context diagram, data flow diagram, data model and
requirements specification. Each measure was defined using a specific type of scale. Some
metrics had been defined from the discussion between GQM team members and others were
selected from the literature.

Table 3.6. Measures for assessing the documentation of the system

Goal 1:
To analyze the system documentation
for the purpose of assessing
with respect to completeness, consistency and facility to understand
from the viewpoints of analysts and programmers
in the context of the outsourced maintainer
Question Measures

Q1. To what extent is the

system documented?

M1.1.1. Percentage of elements (external entities and data flows) from the

context diagram that are documented
M1.1.2. Percentage of elements (external entities, data flows, processes and

repositories) from the DFD diagram (preferably level 1) that are documented
M1.1.3. Percentage of elements (tables, columns and domains) from the data

model, which are documented
M1.1.4. Detail level of requirements documentation
M1.1.5. Percentage of functional requirements documented in the requirements

specification that is described
M1.1.6. Percentage of functional requirements that has description of business

rules
Q2. How easy is the

documentation to be

understood by the

maintainers?

M1.2.1. Ease of understanding the context diagram
M1.2.2. Ease of understanding the DFD (preferably level 1)
M1.2.3. Ease of understanding the data dictionary of the data model
M1.2.4. Ease of understanding the functional requirements specification

Q3. To what extent is the

documentation consistent?

M1.3.1. Percentage of integrations with other systems described in the

requirements specification that are consistent with the context diagram
M1.3.2. Percentage of integrations with other systems described in the

requirements specification that are consistent with the DFD (preferably level 1)
M1.3.3. Percentage of elements of the data model (tables, columns and domains)

that are consistent with the database.
M1.3.4. Percentage of all external entities represented in the DFD (preferably

level 1) that are represented in the diagram context

To define the measures for the second goal (Table 3.7), a comprehensive review of the
literature about software system complexity was performed. Accordingly, maintenance
complexity is related to the difficulty to understand/maintain a system considering the number

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 74

of lines of code (total and per program/module), number of tables used by the software system
itself or by other software systems), number of page-screens to be manipulated, number of
technologies languages/platforms) involved, degree of coupling between the programs and the
complexity of the code itself.

Table 3.7. Measures for assessing system source code

Goal 2:
To analyze the system source code
for the purpose of assessing
with respect to the complexity to understand and modify it
from the viewpoints of analysts and programmers
in the context of the outsourced maintainer.
Question Measures

Q1. What is the size of the

system?

M2.1.1. Size of the system in LoC (physical lines in the file)
M2.1.2. Average number of LoC per program
M2.1.3. Distribution of LoC per program
M2.1.4. Number of tables used (read/update) from the system itself
M2.1.5. Number of tables used (read/update) from other systems
M2.1.6. Number of LoC per module
M2.1.7. Distribution of LoC per module
M2.1.8. Number of programs
M2.1.9. Average number of programs per module
M2.1.10. Number of screens
M2.1.11. Number of programs for each programming language used

Q2. What is the level of

internal transaction in the

system?

M2.2.1. Average number of tables from the system accessed in input mode
M2.2.2. Average number of tables from the system accessed in output mode
M2.2.3. Average fan-out13

 per program
M2.2.4. Distribution fan-out per program

Q3. What is the complexity

of the code?

Reuse of measure M2.2.3 - Average fan-out per program
M2.3.1. Distribution of cyclomatic complexity per program
M2.3.2. Average cyclomatic complexity per program
M2.3.3. Distribution of indirections by program
M2.3.4. Average number of indirections per program.
M2.3.5. Percent of LoC with comments
M2.3.6. Distribution of comment lines per program
M2.3.7. Average number of libraries used per program
M2.3.8. Average number of nested IF's programs
M2.3.9. Number of programming languages
M2.3.10. Distribution of programs by programming language
M2.3.11. Intermodular and intramodular complexity
M2.3.12. Distribution of Halstead effort metric per program
M2.3.13. Distribution of Maintainability Index* per program

Q4. What is the complexity

of the user interface?
Reuse of measure M2.1.10
M2.4.1. Distribution of screens per program
M2.4.2. Distribution of screens fields per program
M2.4.3. Average number of fields per screen

Q5. What is the complexity

of the interface with other

systems?

Reuse of measure M2.1.5.
M2.5.1. Number of tables read from another system
M2.5.2. Number of updated tables from another system
M2.5.3. Distribution of tables accessed from other systems by program

* Maintainability index is proposed by (Pearse and Oman, 1995)

13

 Number of programs that is called by a given program

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 75

These measures were applied to evaluate legacy systems maintained by a large outsourced
maintainer organization from Brazil. This organization has more than 85 systems in
maintenance of various sizes and programmed using different programming languages. We
chose to work initially with Cobol source code, as it is one of the languages most used in
legacy software systems. For this study, we selected 10 software systems entirely or partly
developed in Cobol.

Three software analysts evaluated the software documentation. They did not have any
knowledge about the systems and had no contact with users or with the maintenance staff.
Therefore, they focused only on the available documents. They spent about one hour on the
document examination. Then, they responded to some questions elaborated to answer each
one of the measures. To carry out the data collection for the second goal, we implemented a
tool using Cobol and SQL parsers written in JavaCC. The tool reads the source code of
programs written in Cobol and generates reports with the measures obtained. Nevertheless,
the measures for the question 4 were not collected.

Table 3.8 presents the results for the measures.

We note about the quality of documentation (goal 1) that:

• For question 1 (system documentation level), when the systems have design diagrams
(S1, S2, S5, S6, S7, S8, and S9) they do not have description of their elements
(attributes, external entities, repositories, etc.). However, nine of the systems (except
S10) have a good level of requirement specification; and, five of them (S1, S5, S7, S8
and S9) have all the functional requirements described;

• For question 2 (easiness of documentation understanding), with the exception of S8,
the diagrams, when present, were possible to be understood). However, the level of
understanding of the specification was considered as acceptable only for five systems.
M1.2.3 was not evaluated because the diagrams do not have description of the
elements, considered as essential by the evaluators;

• For question 3 (documentation consistency), only S1 had a good level of consistency
between diagrams and specification; the others, when described, do not present
consistency. Only the systems S1, S2 and S7 had a high level of consistency between
the context diagram and DFD. M1.1.3 was not collected because we do not have
access to the database scripts.

We note about the quality of code (goal 2) that:

• For questions 1 (size of the system), bigger systems have more programs (M2.1.1 and
M2.1.8), and the number of accessed tables (from 2 to 85) from the system itself is
larger than the number of accessed tables (from 5 to 12) from other systems; that
means they have low level of interaction with other systems;

• For question 2, in general, the level of tables read and updated as well as the fan-out of
programs are low;

• For question 3, in general, the systems are considered as complex, even that there
were not a lot of indirections (goto), and poorly documented;

• For question 5, all systems have a little level of interaction with other systems.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 76

Table 3.8. Measure results

Measures S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

G
o

a
l

1

Q
1

M1.1.1 0% 0% - - 0% 0% 0% 0% - -
M1.1.2 0% 0% - - 0% 0% 0% 0% - -
M1.1.3 - - - - - - - 0% 0% -
M1.1.4 3 - 1 - 2 0 2 2 3 -
M1.1.5 100% - 50% - 100% 100% 100% 74% 100% -
M1.1.6 100% - 100% - 100% 0% 98% 38% 100% -

Q
2

M1.2.1 2 2 - - 2 2 2 1 - -
M1.2.2 2 2 - - 3 2 2 1 - -
M1.2.3 - - - - - - - - - -
M1.2.4 1 - 2 - 3 0 2 2 3 -

Q
3

M1.3.1

83% - 0% - - - 0% - 0% -

M1.3.2 83% - 0% - - - 0% - 0% -
M1.3.3 - - - - - - - - - -
M1.3.4 100% 100% - - 33% 42% 100% - 0% -

G
o

a
l

2

Q
1

M2.1.1 110,817 135,686 49,646 77,650 62,276 100,236 14,528 99,517 153.395 2,781
M2.1.2 1,131 590 814 388 490 964 2,075 630 1.322 348
M2.1.4 41 67 2 85 37 32 7 74 48 7
M2.1.5 12 1 0 1 10 5 0 1 0 0
M2.1.6 1,131 590 814 388 490 964 2,075 630 1.322 348
M2.1.8 98 230 61 200 127 104 7 158 116 8
M2.1.9 98 230 61 200 127 104 7 158 116 8

Q
2

M2.2.1 3.26 1.77 0.06 2.34 1.45 1.47 3 3.65 3,68 0.62
M2.2.2 0.83 0.75 0.03 0.56 0.41 0.26 0.14 1.05 1,01 0.87
M2.2.3 2.07 3.2 0.93 0 0.007 2.83 7 0 4,71 0

Q
3

M2.3.2 32.74 24.26 57.95 15.74 23.78 47.52 45.28 40.80 39,06 8.25
M2.3.4 0.33 0.10 0.95 0.0787 0.18 0.45 6.46 0.25 0,33 1,03
M2.3.5 15.31% 14.57% 16.00% 14.41% 16.61% 21.58% 15.14% 16.26% 15.63% 25.85%
M2.3.8 4.72 3.32 10.19 0.98 2.80 8.65 8 5,5 2,79 0,375
M2.2.3 2.07 3.2 0.93 0 0.007 2.83 7 0 4,71 0
M2.3.11 8.05 17.2 4.37 0 0.007 68.14 211.28 0 25,35 0

Q 4
 Not collected

Q
5

 M2.5.1 12 1 0 1 6 5 0 1 0 0
M2.5.2 6 0 0 0 5 0 0 0 0 0

Some measures require the generation of distribution graphs. To decrease the number of
necessary graphics and facilitate their interpretation, these measures were organized into three
groups: (a) lines of code and comment lines in order to assess the relationship between the
percentage of reviews and the size of programs, (b) Halstead, cyclomatic complexity and
maintainability index, the three metrics of distribution that are more related to the complexity
of the programs, and finally, the (c) fan-out and number of indirections (goto). Distribution
graphs were produced for each group of measures. For instance, Figure 3.10 shows the three
distribution graphs generated for system 1, for which we conclude that:

• The amount of comment lines grows slowly compared to the growth of number of
lines of program code;

Legend:
• M1.2.1, M1.2.2, M1.2.3, M1.2.4: 0=Insufficient, 1=Difficult to understand,

2= Understandable, 3=Easy to understand

• M1.1.4: 0= Insufficient, 1=Little detailed, 2=Detailed, 3=Well detailed

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 77

• Two of the complexity measures (cyclomatic complexity and Halstead effort) have
consistency, that is, when the values for cyclomatic complexity increases the Halstead
effort also increases;

• In general, it has a low level of indirections (goto) but some programs have high
values of fan-out (i.e., it calls a lot of other programs) considering that the value 7 is
indicated as the maximum accepted by Page-Jones (1988).

(a) LOC and commented LOC distribution

(b) Complexity distribution

(c) Fan-out and goto distribution

Figure 3.10. Distribution graphs for S1

After collecting all the measures, they were organized in a same document for each one of
the system. The documentation and measures were analyzed in a feedback meeting with five
experts in maintenance (2 academic experts and 3 from industry). After a discussion about the
results of each system, the experts classified the documentation and the system code in a 3-
point Likert scale (low, moderate, high) by analyzing all measures.

Finally, to define the impact of the quality of the system in the contracts, we proposed a
combination of the classifications presented in Table 3.9 (for example, low quality of
documentation and high complexity of the system code imply a high impact in the contract).

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 78

Table 3.10 presents the final classification of the systems impact in maintenance
subcontracting. For instance, S1 has a moderate impact because the code has moderate
complexity despite a good documentation.

Table 3.9. Decision of impact in maintainers’ contracts

 (e.g. Documentation= low quality and System code=high complexty  high impact in the contracts)

System code

Documentation
High complexity Moderate complexity Low Complexity

High quality Moderate Moderate Low
Moderate quality High Moderate Moderate
Low quality High High Moderate

Table 3.10. Classification of the impact in the contract of the evaluated systems

System Documentation System code Impact

S1 High quality Moderate complexity Moderate
S2 Low quality Moderate complexity High
S3 Low quality Low complexity Low
S4 Low quality Moderate complexity High
S5 High quality Moderate complexity Moderate
S6 Moderate quality Moderate complexity Moderate
S7 High quality High complexity Moderate
S8 Moderate quality Moderate complexity Moderate
S9 Moderate quality Moderate complexity Moderate
S10 Low quality Low complexity Moderate

When maintenance becomes more frequent and more expensive, decisions regarding
continued investments in the maintenance of a system, or its replacement, take place. Several
methods for decision support on the modernization of systems have been proposed (Sneed,
1995; Ransom et al., 1998; Visaggio, 2000; De Lucia et al., 2001; Aversano et al., 2004). The
modernization strategies proposed in these methods, such as reengineering, replacement or re-
implementation are typically used when you already have the perception that some action
must be performed to modernize a system. Therefore, it is a reactive way of dealing with the
problem (Koskinen et al., 2005). It would be important to detect the problem as early as
possible to take preventive actions.

The importance of proactive methods in decision support systems on modernization stands
before the current levels of use and relevance of these assets in organizations. This proactivity
is achieved through the early detection of deterioration of the software systems, optimizing
the use of these resources and the possibility of dealing with problems in its early stages. To
detect possible deviations, periodic evaluations of technical, operational and functional
performance of software systems should be performed. Based on these evaluations, the
manager can better plan corrective actions. Jermacovics et al. (2007) define software
deterioration as a piece of software that ages while it is being maintained, as consequence
maintenance becomes more and more difficult. According to Harris and McRory (2006),
continuous maintenance can lead the software system to degradation of its technical quality
and its value for the organization.

Based on this scenery, we developed an approach for continuous monitoring of the
software system based on management measures for the early identification of deterioration
(Queiroz et al., 2009). This approach support managers to carry out preventive actions with

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 79

the possibility of treating problems in early stages, before the adoption of the modernization
strategies proposed in the traditional methods. Similarly, for definition of the measures we
used GQM.

From a large literature review about maintainability where we found 125 different
measures and managers interview, we end up with 12 measures that fitted our proposal, that
is, measures that focus on software deterioration and consider the managers point of view,
that could be evaluated over a period of continuous operation of the system (therefore, they
should be automated measures), and that are simple and feasible of determination with respect
to the cost and frequency of evaluation. The 12 measures that met all criteria were: failure
volume, backlog size, effort per demand, productivity, corrections cycle efficiency,
maintenance cost, mean time between failures and response time of the system, average cost
per demand, budget participation percentage, number of new demands, and level of use of
hardware.

To allow analysis of the deterioration, it was necessary to define decision criteria for
determining the need for action or further investigation. The decision criteria are represented
by the historical values of the measures over the operation of the system. Specifically, for
measurements computed annually, we used the values calculated in the previous year as a
decision criterion for the identification of deterioration. Thus, the measures indicate
deterioration of the system if the calculated values in the current year are higher or worse than
the historical values calculated.

This approach was applied to assess the deterioration of three software systems from a
large organization from Brazil. The results showed that the measures are feasible to use in
practice and that they really supports the system deterioration monitoring. More information
about this study can be found in (Queiroz et al., 2009).

3.3.3 Quality Evaluation of Human-Computer Interaction in Ubiquitous Systems

Ubiquitous Computing is a new computing paradigm, announced by Mark Weiser in 1991
(Weiser, 1991), that proposes the adoption of computational devices in various sizes, shapes
and functions to support daily activities of users. These systems will be everywhere around
users, connected to each other, and providing services which have to be as natural as possible
(Figure 3.11). To achieve this, the applications are embedded in everyday objects and capable
of monitoring user behavior and environment (Rocha et al., 2012).

In ubiquitous computing, the interaction between the user and the system is of utmost
importance and the quality of this interaction has a direct impact on the use and adoption of
the system. Human-Computer Interaction (HCI) issues are, therefore, on top of the
researcher’s attention. These issues are even more relevant if we consider the diversity of
existing technologies (e.g. smartphones, tablets) using different types of interaction (e.g.
audio, video, text, image) between user and computer devices. The interfaces should be
adapted to different technologies, considering different contexts in transparent and intuitive
ways for the end user. To properly carry out a quality evaluation of the HCI in ubiquitous
systems, it is essential to know which quality characteristics and measures should be
considered for this specific type of application.

With the goal of identifying those quality characteristics, we performed a large literature
review using a systematic mapping study (Santos, 2014). Using this methodology, we found
868 different papers pertinent to the subject. By reading all abstracts, we selected 119 papers.
With a deep reading of all papers, we selected 32 of these papers that discussed some quality
aspect specific to the HCI in ubiquitous systems (Abi-Char et al., 2010; Cappiello et al.,
2009; Chang and Lin, 2011; Damián-Reyes et al., 2011; de Moor et al., 2010; Evers et al.,

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 80

2010; Haapalainen et al., 2010; Iqbal et al., 2005; Jafari et al., 2010; Jia et al., 2009a; Kemp
et al., 2008; Kim et al., 2008; Ko et al., 2010; Kourouthanassis et al., 2008; Kryvinska et al.,
2011; Lee and Yun, 2012; Lee et al., 2008; Liampotis et al., 2009; Ranganathan et al., 2005;
Ross and Burnett, 2001; Rubio and Bozo, 2007; Schalkwyk et al., 2010; Scholtz and
Consolvo, 2004; Sousa et al., 2011; Sun and Denko, 2008; Thompson and Azvine, 2004;
Toch, 2011; Wagner et al., 2012; Waibel et al., 2010; Warnock, 2011; Weihong-Guo et al.,
2008; Wu and Fu, 2012; Zhang et al., 2006).

Figure 3.11. Ubiquitous computing14

From those 32 papers, we extracted quality characteristics and issues presented in the
papers as important to be considered in an HCI evaluation of a ubiquitous system but not
formally defined as a quality characteristic. We consider them all as characteristic in our
analysis. For this analysis, we identified only characteristics that impact on user interaction
with the ubiquitous system. We found 134 quality characteristics. Figure 3.12 show the
distribution of quality characteristics in the studies that present most quality characteristics.

14

 source: http://www.internationalnews.fr/article-31818821.html (Accessed March 24, 2014)

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 81

Figure 3.12. Number of quality characteristics by study

Some limitations identified in those studies are:

• Some papers propose only a list of quality characteristics, but without a clear
definition of them (Kim et al., 2008; Souza et al., 2011; Zhang et al., 2006);

• When the definition is provided, we found papers that use different names for the
same characteristic; for example, Kim et al. (2008) define transparency, while
Kourouthanassis et al. (2008) define it as diffusion; Lee and Yun (2012) define
context-awareness as context support, while Kim et al. (2008) define it as adaptability
and Scholtz and Consolvo (2004) as adaptability;

• Some papers have no new characteristic specific for HCI of ubiquitous system, but use
only the traditional one such as usability (Ross and Burnett, 2001; Abi-Char et al.,
2010, Cappiello et al., 2009);

• Some papers propose new characteristics specific for ubiquitous systems (e.g. context-
awareness, transparency), but do not apply them for quality evaluations
(Kourouthanassis et al., 2008; Kim et al., 2008).

Thus, it was necessary to perform an analysis of all definitions to obtain a final set of
quality characteristics. This analysis was performed in three steps, as follows:

i) One researcher read all papers and identified characteristics and their synonyms, and
produced a document;

ii) This document was peer reviewed (two other researched performed the review by
examining the definitions and the papers in case of doubt). For the peer review, the
researchers identified if they agreed or not with the synonym identification. If they
disagreed, they should write down some justification and propose a new organization;

iii) A meeting was performed for the final consensus.

At the end we got 27 characteristics presented in Table 3.11.

.

6

14

7

7

9

17

6

5

8

0 2 4 6 8 10 12 14 16 18

(Wu and Fu., 2012)

(Sousa et al., 2011)

(Kim et al. 2008)

(Lee et al. 2008)

(Scholtz and Consolvo 2004)

(Kemp et al. 2008)

(Chang and Lin 2011)

(De Moor et al. 2010)

(Ko et al. 2010)

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 82

Table 3.11. Characteristics for quality evaluation of HCI in ubiquitous systems

Characteristic Definition

Acceptability It refers to the desire to use an application and utilization frequency.
Availability It is the system’s capability to provide users with continuous access to information

resources anywhere and anytime.
Calmness It refers to the new technology that prevents humans from feeling overwhelmed by

information.
Context-Awareness The ability to perceive contextual information with respect to system users, system and

environment and proactively and dynamically adapt its functionality.
Device Capability It refers to properties of the device where the application will run: screen size, color

depth, battery life.
Ease of Use The system should be easy to use for the target user group
Effectiveness The accuracy and completeness with which users achieve certain goals
Efficiency The relation between the accuracy and completeness with which users achieve certain

goals and the resources expended in achieving them
Familiarity User interactions with the system should improve the quality of their work. The user

should be treated with respect.
Focus The ability to keep the user's attention to their main activity and not on the system and

the technology involved.
Interconnectivity Ability of sharing into the interconnected network
Mobility Ability to provide users with continuous access to resources and information,

regardless of their location within the limits of the system.
Network Capability It refers to information network infrastructure: signal strength, delay, jitter.
Predictability Ability to predict the result of running the system from past experiences
Privacy The ability to maintain information and private data.
Reliability The ability to maintain a particular level of performance when used under specific

software conditions.
Robustness Degree to which a system or component can function correctly in the presence of

invalid inputs or stressful environmental conditions
Safety The level of risk of harm to people, business, software, property or the environment in

a specified context of use
Scalability Ability to provide services to few or a large number of users
Security The protection of transport and storage of information and security controls about who

can access, use and/or modify context information.
Simplicity The user interface and the instructions are simple
Transparency The integration of a system into the user environment. It is the extension which the

system consists of hidden components in the physical space and interaction is

performed through natural interfaces
Trust It is the users’ belief that the system uses their data properly and not cause any harm. It

involves issues of privacy and control.
Usability The ability of the software to be understood, learned, used and attractive to the user,

when used under specified conditions
User satisfaction The degree of user acceptance and how the system is attractive for the user
Utility Ability to provide value to the user. The application should provide assistance to the

user that previously was not available.

We note that there are characteristics that are clearly sub-characteristics from others, for
instance: ease of use, efficiency, effectiveness, users’ satisfaction, simplicity and familiarity
characteristics are clearly components of usability; security and privacy can be encapsulated
in trust.

It is also important to note the difference from utility and usability. Utility, according to
Nielsen (1993), refers to the system being able to do what is necessary for the user, and
usability with regard to how well users can perform the functionality of a system. They all
impact the acceptability of the system by the user.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 83

Many of these characteristics are presented in international standards like SQUARE (ISO
/IEC 25000, 2005) and ISO 9241 (ISO 9241-11,1998), for example, usability, reliability,
efficiency and effectiveness. They usually can be used to evaluate any type of product.
Moreover, some characteristics are not defined in these standards, and yet they are likely
particular for the user interaction with ubiquitous systems (e.g. context-awareness,
transparency, focus and calmness).

Measures to evaluate those characteristics are not well defined in the papers. Usually there
is a general description, but no definition about their measurement compute, collect and
interpretation procedures. Therefore, we started to define and to evaluate measures for each
one of those quality characteristics. We began by defining measures for context-awareness,
transparence, mobility, focus and calmness because we considered these characteristics as
being the most specific for ubiquitous system.

To define the questions and measures, we used GQM. Table 3.12 shows, for instance, the
measures defined for context-awareness. To that end, we had to analyze the meaning of being
context-aware. Abowd et al. (1999) define context-awareness when a system uses context
information to provide relevant services to the user. This context can include any information
used to characterize the situation of an entity, which is a person, place, or object considered
relevant to the interaction, including the user and application themselves. Some aspects of
context-awareness directly impact HCI quality and, therefore, they need to be evaluated. One
aspect is the adaptation correctness, which means the system adapts correctly with regard to
the services and information provided. Some factors that can influence this correctness are:
the context correctness, as if the context is wrong, the adaptation will be likely be wrong too;
and the context changing frequency, as if the changes occur quite often, the adaptation may
not take place before another change occurs (Cheng et al., 2009).

Another aspect is the time taken to adapt, since the information and/or services should be
delivered in a reasonable time to the user. Based on this analysis, we defined the questions
and measures presented in Table 3.12. We note that to calculate Adaptation Correctness and
Context Correctness measures, we should identify which adaptations the ubiquitous system
proposes to do (for example, adaptation for different devices) and also which context
information they use for these adaptations (for example, the screen resolution context
information to adapt the application behavior in different devices). The resulting measures
will be the average from the individual adaptation and context correctness. The interpretation
values are an initial proposition, based on our own experiences and (Cheng et al., 2009). They
will be refined after concluding more case studies.

Those measure were applied (Santos et al., 2013) for the evaluation of a mobile and
context-aware application called GREat Tour (Marinho et al., 2013). This application runs on
the visitor’s mobile device and provides information about the laboratory’s rooms that this
user is visiting, using texts, images and videos.

To collect the measures presented in Table 3.12, we first identified the context information
and adaptations considered by GREat Tour. It presents two adaptations (N=2) and two
context information (M=2). The first adaptation is the laboratory map view according to
user’s location. To this purpose, the system identifies the room through the user’s mobile
device that reads the QR Code installed in all the doors of the laboratory’s rooms. With this
input, GREat Tour updates the user’s map. The second adaptation is about showing media
according to the device battery level. When the battery level is low (0-9%), only text appears,
when it is medium (10-20%), texts and images are displayed and when it is high (21-100%),
text, images and videos are displayed. Thus, the Adaptation Correctness measure takes into
account the laboratory map view (i=1) and the media view (i=2) as adaptations. The Context

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 84

Correctness measure takes into account user’s location through QR Codes (j =1) and battery
level (j =2) as context information. The Context Frequency takes into account changes in
location (F) and the Adaptation Time, the time required to show the new map to the user (T).

Table 3.12. Measures for context awareness

Goal:
To analyze ubiquitous systems
for the purpose of evaluating
with respect to the context-awareness
from the viewpoints of final users
Question Measures

Q1. What is the

adaptation correctness

degree?

M1.1. Adaptation correctness

N=Number of adaptations
Ai=Number of correctly performed adaptations i
Bi= Number of performed adaptations i

M1.2. Context correctness

M=Number of different context information
Aj=Number of correct collected context information j
Aj=Number of collected context information j

M1.3. Context frequency F=Frequency of changing
Q2. What is the

adaptation average

time?

M2.1. Adaptation time T= The time taken to adapt

The data needed to compute the measures were collected both automatically and manually.
Automatic data were recorded in logs that contain: the URL of map presented according to
QR Code captured, the time taken to show the map after the capture of the QR Code, the
exact time (hour, minute, second and millisecond) when the context information was collected
to calculate the context changing, the device battery level and the media presented with this
value. Qualitative data were collected in forms filled in by evaluators that followed users
during the tours, observing if the application worked correctly, in other words, identifying if
the system performed a correct adaptation with correct information.

Twelve users participated in the evaluation. All of them had experience with context-
awareness mobile application and were from computer science domain. Their tasks were
divided into three laboratory tours, with each tour consisted of three rooms to be visited.

The visit consisted of updating the user map and viewing all the available information.
Each tour was done with a device in different battery charge levels making possible to
evaluate the different types of adaptation. The twelve users were equally divided in three
groups to execute the test with different sequences of battery level, as presented in Table 3.13.

The final result was calculated by the average of all users tours. The result is shown in
Table 3.14. The measures about correctness had high results; only one of them was not equal
to 100% (Adaptation Correctness). This happened because with adaptation i=1, the wrong
map was displayed. We investigated this result and identified that the instability of the
wireless network was a possible cause for this adaptation problem. The Context Frequency
measure was low, because the result was in minutes, that is to say, it takes about one minute
for a context change to happen. If changes occur frequently, the adaptation may not take place
before another change occurs, influencing measures of adaptation correctness. The Adaptation

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 85

Time was short (milliseconds). It is interesting to note that this result was inferior than the
Context Frequency, favoring adaptation correctness.

Table 3.13. the performed scenarios in our evaluation

Tour Visited Rooms
Group 1 Group 2 Group 3
Battery Level

1 Seminars Room Library High

Low Medium Administrative

Room 1

High Low Medium

2 Prototyping Room Software R&D

Lab 1
Medium High Low

Medium High Low

3 Kitchen Administrative Room 2
Research Lab

Low Medium High

Table 3.14. Results for the evaluation of context-awareness

Measures Results Interpretation

M1.1. Adaptation Correctness when i=1, 96%
when i=2, 100%

98%
High Correctness

M1.2. Context Correctness when j=1, 100%
when j=2, 100%

100%
High Correctness

M1.3. Context Frequency 00:01:37 Low Frequency
M2.1. Adaptation Time 539 ms Short Time

Based on the collected results, we can see that the high degree of correctness and low
adaptation time provide to the GREat Tour application a good HCI regarding context-
awareness measures.

The study described in this section is a long-term project in partnership between Federal
University of Ceará (Brazil) and University of Valenciennes. This first case study can be
found in (Santos et al., 2013). Two other case studies are described in (Santos, 2014).

3.3.4 Evaluation of Information Density of Graphical User Interfaces

One new way to design interactive systems is to automatically compose them from existing
systems. An interactive system encompasses a functional core (FC) and a user interface (UI).
In consequence, to compose an interactive system, it is necessary to compose FC and UI.
Many studies of the software engineering community focus on design or runtime composition
of FC through components (Szyperski et al., 2002) or services (Papazoglou, 2003). However,
providing UI of good quality is essential to make the composed system acceptable to the
users. To address this need, the HCI community has studied how to compose UI at different
levels of granularity (see for example, UI generation (Myers, 2009), adaptive UI (Tan et al.,
2004), Mashups (Lin et al., 2009), UI composition (Gabillon et al., 2011; Lepreux et al.,
2010; Lepreux et al., 2006; Pinna-Dery et al., 2003). Several options of UI composition are
available in these works. The main challenge is how to choose the best composition option in
order to provide UI of good quality. We propose to address this challenge by defining
measures to evaluate automatically the quality of composed UI (Gabillon et al., 2013). Note
that we mean by UI, a WIMP15 graphical UI composed from existing known components.

15

 Windows, Icons, Menus and Pointing device.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 86

Several quality models for usability have also been proposed, such as the most cited
proposed by Nielsen (1993), the standard ISO 9241-11 (1998) and the consolidated model
called QUIM (Quality in Use Integrated Measurement) (Seffah et al., 2006). Guidelines and
ergonomic criteria for usability evaluation were also proposed. For example, Vanderdonkt
(1994) proposed 3.700 rules to evaluate ergonomic aspects for user interfaces. Scapin and
Bastien (1997) proposed a set of criteria (guidance, workload, explicit control, adaptability,
error management, consistency, significance of codes, and compatibility) sub-criteria and
recommendations for UI development that has been largely used by several researchers.

To evaluate automatically UI, we need to define objective measures and perform
quantitative evaluation. In this way, we decide to perform the automatic evaluation of the
composed UI by using the ergonomic criteria proposed by Scapin and Bastien (1997). Our
first study was focused on the information density criterion. Information density concerns the
users’ workload from a perceptual and cognitive point of view with regard to the whole set of
information presented to the users rather than each individual element or item. Therefore, it is
an important criterion since it is directly worried about the user point of view. In addition, this
criteria can be based on objective and digital information, such as screen size or the number
of labels, which facilitates the automatic evaluation Finally, information density has a great
influence on other criteria (for example legibility or prompting).

Our approach is to define objective measures, that is, measures that can be calculated
automatically before UI composition and are independent of the subjective evaluation of a
designer. Proposed measures are shown in Table 3.15. Measures 1 and 2 are based on criteria
of Scapin and Bastien. Measures 3 to 9 are basic measures for the calculation of other
measures (derived measures). Measures 6, 10, 11, and 12 are defined based on QUIM.

Table 3.15. Measures for information density

Measure Definition/formula

M1. Memorizing rate (Number of data that must be stored from one page-
screen to the other) / Total number of data

M2. Mental calculus rate (Number of data that require calculation of the user

when it could be done automatically) / Total number

of data
M3. Number of inputs Number of fields where the user must enter a value

(e.g. text field, list)
M4. Number of outputs Number of fields where the software displays a value

(e.g. resulting information as a result of user input).
M5.Number of labels Number of entire labels, i.e., the complete sentence

and not every word.
M6. Number of buttons/ icons Number of buttons and/or icons with its label
M7. Number of pictures Number of pictures used
M8. Number of screens Number of screens used to perform user task
M9. Size of the screen Size of each screen used to perform user task
M10. Density rate (Nb inputs + Nb outputs + Nb labels + Nb

buttons/icons + Nb pictures) / Nb screens
M11. Global density Used space / total space
M12. Uniformity It indicates how the visual elements of the user

interface are placed evenly between page-screens. It
corresponds to standard deviation of densities of each

screen.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 87

We performed a case study as an illustrative example for the application of those measures.
Consider the following scenario: Yoann lives in Valenciennes. Its main objective is to find a
travel that could be viewed on a map. Options are needed to drive research and others are
selectable by Yoann for booking the travel he wishes (locomotion, number of people, etc.).
The system should be able to advise if he wants to access a service (doctor, hotel, etc.).

These UI allow Yoann to get direction of his travel (UI1, Figure 3.13a), choose preferences
as the number of passengers, etc. (UI2, Figure 3.13b), and select related services as doctor,
bakery, etc. (UI3, Figure 3.13c). We suppose that the UI of travel planning system useful to
Yoann can be composed from these three existing UI with three different composition
operators. The first operator composes UIs in the same frame (Figure 3.14). The second and
the third operator compose UIs respectively in tabs (Figure 3.15), and in sequence (Figure
3.16).

(a) UI1

 (b) UI2

(c) UI3

Figure 3.13. UI 1 to get direction, UI 2 to choose preferences and UI3 to select related
services

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 88

For the designer at design time or for an adaptive system at runtime, it is an important
issue to choose the best composition to produce the UI for the travel planning system. To
address user needs (find a travel), using these composition operators and the evaluation of
measures, we evaluate the three potential composed UIs and choose the best one considering
the information density criterion.

From the three UI to be composed, three operators of composition have been applied
considering the spatial and temporal relationships. The first composition is computed by the
operators {orderIndependance, meet} with an option for the vertical placement of components
(corresponding to the union operator (Lepreux et al., 2006; Pinna-Dery et al., 2003)). With
these operators, all information are made in a single screen, duplicate information (in this
example: today’s date) were placed only once (Figure 3.14). The second composition is
computed by the operators {interleaving, equals}. It provides tabs composed of three screens
corresponding to the initial UI (Figure 3.15). The third composed UI {enabling, covers}
provides a sequence of three UI components (Figure 3.16). Note that the final composite UI is
generated according to selected operators with the tool composition called COMPOSE
(Gabillon et al., 2011) that composes UI dynamically.

Figure 3.14. Composition 1 {orderIndependance, meet}: in the same frame.

We applied the proposed measures to these three compositions to compare their quality
according to the information density criterion.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 89

Figure 3.15. Composition 2 {interleaving, equals}: a) UI’1, b) UI’2 and c) UI’3 in tabs

Screen for the first tab

Screen for the second tab

Screen for the third tab

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 90

Figure 3.16. Composition 3{enabling, covers}: a) UI’1, b) UI’2 and c) UI’3 in sequence

Table 3.16 presents the results of measurements for the three possible compositions. In the
first interface composed (Figure 3.14), we observe that since it has a lot of information, we
must consider the need for navigation on the screen (vertical scrolling). So, there are two
main ways to measure this composed UI: considering (1) the number of information visible
for each navigation, or (2) all information on a screen. Since it is difficult to anticipate the
number of required navigation and their results, we chose the second way, that is, measures

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 91

are performed for all information available on a screen. As consequence, in Figure 3.15, we
considered a single screen: local density corresponds to the global density (there are no
measures of intermediate screens like the other compositions). For the other two
compositions, measures of each screen are computed (thus three UI to measure for each
composition) and then for the composed one (the sum for the base measures and the average
for the derived ones). Thus, global measures correspond to meaningful measures for the user
task (find a travel).

Table 3.16. Proposed measures applied to the three composed UI of the case study

M. Comp.1
Composition 2 Composition 3
UI1’ UI2’ UI3’ Global task UI1’ UI2’ UI3’ Global task

M1 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0
M3 26 10 6 10 26 10 6 10 26
M4 2 2 0 0 2 2 0 0 2
M5 29 13+3=16 7+3=10 11+3=14 28 13 7 11 31
M6 2 2 2 2 6 2 2+1= 3 2+1= 3 8
M7 0 0 0 0 0 0 0 0 0
M8 1 1 1 1 3 1 1 1 3
M9 521954 265468 265468 265468 796404 159960 102400 265468 527828
M10 59 28 16 24 58/3=19,3 27 15 21 67/3=22,3
M11 18,28 13,47 8,27 17,78 13,17 22,26 23,25 18,48 20,58
M12 4,76 2,52

As the result of our case study, we identified that the composition 2 is the best one because
it has the lowest global density percentage (composition 2=13.17%, composition 1 = 18.28%
and composition 3= 20.58). However, this finding is not completely generalizable, because it
depends on the number of UI to be composed. Indeed, we note that in the case where the
number of UIs is important, the number of labels will be more important and will involve an
increase of the corresponding measure; then, it will not impact the other compositions (that
means, the stability of the other measures). Composition 1 does not add information (label or
button), it just increases the size of the screen. Composition 3 does not increase the need of
information except for the navigation buttons (next and previous).

Note that the measurement of information density of the composition 1 gives a good result
in placing all information on the same screen that is enlarged according to the number of
information. Adapting the screen size is proportional to the amount of information preserves
the measure of this criterion. However, it generates increased perceptive users’ workload
(criterion not studied here). We remember that information density criterion is one of 8
criteria proposed by Scapin and Bastien (1997). These criteria are interrelated; an individual
one cannot allow the choice of the best composition in absolute.

Concerning the composition 1, as we said earlier, we have chosen to consider all the
information on the total size of the screen. The user should navigate to access all the
information and it could be interesting to consider subsets of information and a number of
different screens. We justified this choice by the fact that it is difficult to know automatically
which is the number of navigations and related information. However, a study on this issue
would be interesting to measure the global density of the composition.

Measurement of uniformity allows knowing the standard deviation between the densities
of individual screens. This can be noted in the composition 2, where the density is lowest
because the three screens provided and presented in tabs have the same size. This final size is

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 92

the size of the largest initial UI to be composed. Thus, the global density measurement of
UI’1 and UI’2, and composed UI are decreased. While in the composition 3, screen sizes are
independent and thus the densities remain close to initial densities.

Moreover, we do not want to remove measures 1, 2 and 7 because they seem important for
this criterion, even they were not completely illustrated by the case study. Other examples
could be analyzed involving this information to conclude on their impact on information
density. A better detail of this study can be found in (Gabillon et al., 2013).

It is important to emphasize that we are aware that criteria are interrelated and should not
be evaluated only individually. Therefore, we are now working on the definition of measures
for other ergonomic criteria.

3.3.5 Quality Evaluation of Human-Computer Interaction

Several method, tools and quality models have been proposed over the years for user
interface evaluation. Holzinger (2005) summarized the methods in two categories: inspection
methods (without end users) and test methods (with end users). Inspection methods include
for instance: heuristic evaluation (Nielsen, 1993), cognitive walkthrough (Polson et al., 1992;
Mahatody et al., 2010), and action analysis (Card et al., 1983). Some of the most common test
methods are (Dumas and Fox, 2009; Holzinger, 2005): thinking aloud, field observation, and
questionnaires. All these methods generate qualitative and/or quantitative data (see Chapter 2,
§ 2.2.3) that are usually presented individually requiring an effort of the evaluator to analyze
them in an integrated way. For instance, we can have as a result of a questionnaire that the
users found the evaluated system “not very simple” to use (selected from an ordinal scale);
and in the effort spent to execute the tasks; both results presented separately. We argue that
both data are complementary for the analysis of the HCI quality and integrating both results in
a single view can facilitate the decision-making.

To that end we start a research that proposes the use of indicators concepts defined by the
ISO 15939 standard (see Chapter 2, § 2.2.3) for providing a basis for decision-making in HCI
evaluation. Qualitative and quantitative data are respectively extracted from highly cited HCI
quality questionnaires and from existing tools.

Before specifying indicators we had to identify which quality and quantitative data could
be coherently integrated. Therefore, we carried out a deep study for defining a mapping that
combines qualitative with quantitative data based on the evaluated quality criteria. These
criteria are related to both ergonomic and functional aspects of interactive systems. We
adapted respectively Bastien and Scapin ergonomic criteria to evaluate the user interface

ergonomic quality (Scapin and Bastien, 1997), and the ISO/IEC 9241-11 (1998) criteria to
evaluate functional aspects of interactive systems. This mapping model allows specifying the
required attributes for the construction of each indicator. It links each qualitative data with the
appropriate quantitative data in a complementary manner. Figure 3.17 depicts the proposed
mapping model.

As the proposed mapping integrates and synthesizes the data issued from different
evaluation tools, it exploits different tools that have been developed to facilitate and to
automate a variety of quality evaluation aspects (i.e. the functional and ergonomic aspects).

The tools related to the qualitative data are the classical questionnaires of users’

satisfaction. Based on a broad literature review, we have selected the CSUQ (Computer

System Usability Questionnaire) questionnaire (Lewis, 1995) among 23 of the most known
and the most validated tools. The choice of CSUQ compared to the other questionnaires is due
to the fact that it is a successful record of practical and academic applications in its original

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 93

version supporting an applicability in usability evaluation of computer systems in various
areas as well as in research into the measurement of the construct of usability (Erdinc and
Lewis, 2013; Assila et al., 2014). We used as qualitative data some items of CSUQ.

Figure 3.17. The proposed mapping model

To perform a quantitative evaluation, we chose two tools respectively related to the
functional and ergonomic aspects of interactive systems interfaces. These tools are:

• EISEval electronic informer (Environment for Interactive System Evaluation) (Tran et
al, 2013) - it is a generic and configurable electronic informer used for agent-based
interactive systems evaluation. It automatically captures and analyses HCI information
such as user actions and their consequences on the interactive system. It generates
different attributes such as the rate of completion of correct task, time of task
execution, etc.;

• The ergonomic guidelines inspector (Charfi et al., 2014) - it aids for ergonomic
quality evaluation of interactive systems. It evaluates the ergonomic consistency of a
HCI according to ergonomic guidelines in order to detect the ergonomic
inconsistencies. It is based on different graphical components attributes such as the
writing size, the writing color, the informational density, etc. After parsing the
interface graphical controls attributes, it provides the evaluator with a set of
ergonomic recommendations and inconsistencies.

Table 3.17 illustrates some examples of the obtained mapping results of qualitative (items
from CSUQ) and quantitative data (from EISEval) extracted from the specified evaluation
tools.

Based on the measurement information model described in Chapter 2 (§ 2.2.3), we are
defining several indicators. In this work, each indicator is composed of two measures that
produce qualitative and quantitative data, previously defined in the mapping. Figure 3.18
shows an extract of the specification of an indicator with their related measures. For each
indicator, a specific analysis model is being defined to support the decision-making as defined
by ISO/IEC 15939 (2007) (see Chapter 2, § 2.2.3). To that end, several experimentations will
be performed.

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 94

This research is under development as a doctorate at the University of Valenciennes.
Preliminary results can be found in Assila et al. (2013, 2014).

Table 3.17. Examples of the mapping between qualitative and quantitative data

Quality criteria

The mapped data
Qualitative data
Item from CSUQ questionnaire
(1) Strongly agree -- (7) Strongly disagree

Quantitative data
Data from EISEval

Effectiveness:
ISO 9241-11 criterion

It is simple to use this system

The rate of completion of each

task

Efficiency:
ISO 9241-11 criterion

I am able to complete my work quickly

using this system

The rate of completion of each

task
Execution time of each task

Informational density:
Bastien and Scapin

criterion

It is easy to find the information I needed

Informational density per

interface
Images density
Components dimensions
Objects density

Guidance (readability):
Bastien and Scapin

criteria

The information provided with this system

is clear

Writing font
Writing size
Writing color

Information

Need
Judge the quality of an HCI relatively to the effectiveness quality criterion

Attributes
Tasks to be realized for a session
It is simple to use this system (Strongly agree 1 2 3 4 5 6 7 Strongly disagree)

Base Measures

The value of the completion of each task for a session
The tasks number to be executed
The question response (Resp)
The users number

Measurement

Method

It is a quantitative measure extracted from the EISEval tool. It is a Boolean measure

that can be equal either 0 or 1.
It is a quantitative measure extracted from the EISEval tool
It is a qualitative measure that quantified the user response using CSUQ questionnaire
It is a quantitative measure that indicates the number of users involved in the

evaluation
Derived

Measures

The rate of completion of correct tasks per user (RTT)
The rate of users responses per question (Rresp)

Measurement

Functions

Divided the sum of the value of the completion of each task for a session per user by

the total tasks number to be executed
For each question, calculate the number of users who chose the same response and

divided it by total users

Indicator
Effectiveness of correct completion of tasks in a HCI. This indicator combines two

measures (the RTT derived measure and the Resp base measure).

Figure 3.18. Extract of indicator specification

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 95

3.4 Conclusion

This chapter has presented several works performed in search of quality of software
product and process. In the context of software process, our main contribution is related to the
exploitation of the whole software process quality cycle, from its definition to its
improvement. Our approach for software process definition presented previously was later
largely used in several companies in Brazil. We can quote, therefore, the following main
contributions:

• Definition of procedures about how to define a standard software process and how to
instantiate it to be used in a specific project. These procedures take into account that
before instantiating to a project we can specialize the software process considering the
type of software and software development paradigm (object-oriented software, web,
etc.);

• The definition of measures for software process evaluation applied in practice;
• The large study of measures for software process evaluation and improvement. This

study investigate more than 500 measures published in literature and synthetize them
into a set of the most used and applied measures (15 base measures and 37 derived
measures);

• The definition of a catalog of 15 indicators with a detailed specification for the
application, evaluation and interpretation of the results to support process performance
analyses.

Regarding the quality of software products, our research explored mainly the definition
and application of quality software measures for different types of software (web systems,
legacy systems and ubiquitous systems). To that end, the Goal-Question-Metric method was
used in different contexts. GQM proved to be a suitable methodological approach, easy to use
and useful for defining and interpreting outcome measures. Our main contribution was to
attest that the definition and use of measurements is not only feasible but also that
measurements are a real and good support for decision-making. In all studies the use of
measures support some kind of decision, from the simple selection of web sites for education
training, till the decision support for maintenance sub-contracting or the dynamic selection of
UI composition. We can quote, therefore, some specific contributions:

• The definition and application of an approach to evaluate legacy systems to better
define the contracts;

• The definition and application of an approach for monitoring the deterioration of
information systems;

• The definition of an approach based on measurement to support the choice among
different user interfaces compositions while composing services;

• The evaluation based on measurements for different kinds of applications (web-based
systems, ubiquitous systems, information systems).

Nevertheless, those experiences also reveled some difficulties and limitations related to
software quality as follows (Oliveira et al., 2012):

• Large number of measures of process – in (Monteiro and Oliveira, 2011) more than
500 different measures for software processes were identified. We also find a lot of
papers and measures propositions while defining measures for the evaluation of the
different quality products. Choosing the right measure(s) in each situation is not an
easy task;

• Difficulty and complexity of experimental protocols definition for performing
experimentation - experimental protocols are generally complex and difficult to

Chapter 3 ‐ Methodologies and Measurements for Software Quality Assurance

 96

define: how many participants are necessary? What should their profile be? What
tasks should they perform for an evaluation? How to limit bias? etc.;

• Unavailability of professionals – once the protocol is defined, the measures should be
collected for the quality evaluation. Thus, we need to juggle with the availability of
personnel and costs for its realization. For a valid experiment, all bias should be
avoided. However, the unavailability of professionals and the difficulty to involve
them in experiments and collect their evaluation, lead usually to carry out the
experiments in "laboratory", with students whose instructors are those who have
proposed the approaches to validate, which results therefore in several limitations of
the study;

• Interdependency of quality characteristics - the characteristics/measures of quality are
usually interdependent. A classic example concerns the dimensions of completeness
and readability. The more complete (detailed) is a process description, the more, in
general, complex it is, which often leads to degrade its readability. These
dependencies are problematic for the interpretation of results (you have to understand
what measures are interrelated and why) and the choice of improvement actions to be
taken (an improvement action to improve a measure should not lead to in degrade
another one); and,

• Difficulty for collecting and interpreting measurements - collection procedures must
be integrated into the software process. If the measures are computed in an automatic
way or if the organization uses some kind of process management support tool, this
integration is easier and more reliable than when the measures are collected by manual
activities (e.g. in paper forms of inspection meetings). Moreover, historical data are
needed so that the measures are valid and really useful. Finally, once they are
collected, their interpretation often depends on an experts’ analysis. Our experience
shows that the results are often approximate and the thresholds are not enough,
because the context of the project (size, team development, culture, pressure
calendars, etc.) has a strong influence for the final interpretation.

Those difficulties and limitations open new research perspectives that will be presented in
the last chapter of this document.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 97

Chapter 4 Applying Knowledge

Management Issues for Software

Quality Assurance

4.1 Introduction

In the previous chapter several works about software quality assurance were presented. All
of them were enriched by practical case studies performed, usually, in industrial contexts.
These works deal with the definition and application of measurements and the use of
methods. They can be summarized considering three main aspects:

• Quality evaluation of software process (with measures to evaluate software process
and perform process performance analysis);

• Maintainability evaluation of legacy systems;
• Quality evaluation of software products with regard to several aspects related to

usability (i.e., accessibility of web applications; context-awareness of ubiquitous
systems since it impacts on the human-computer interaction, and information density
of user interfaces);

The previous experience with the expert system development (from 1994 to 1996), my
doctoral research and the emergence of the knowledge management discipline, motivated me
to work about how to use knowledge management principles to get better quality of software
product and process. Continuing in the same direction of the research presented in the
previous chapter, we focused on the three aspects mentioned previously: quality of software
process, maintainability and usability of software systems.

As stated in chapter 2, software process maturity models defend that it is necessary for
software process improvement, to capture lessons learned in the projects to better plan new
projects, and therefore, get better process. To address this need, knowledge management
issues have been largely used (see for example, the literature review by Bjørnsonand
Dingsøyr (2008), and the research on process asset libraries of Garcia et al. (2011)).
Following this trend, we used two knowledge management techniques (post-mortem analysis
and learning history introduced in Chapter 1, § 2.5) to capture lessons learned in software
projects with the goal of improving the software process.

According to ISO/IEC 25023 (2011), to evaluate maintainability implies “to measure the
degree of effectiveness and efficiency with which a product system can be modified by
intended maintainers”. Believing that the more we know about the maintenance being done,
better effectiveness and efficiency will be achieved, we performed a research to identify
which knowledge is needed for software maintenance. After that, we organized this
knowledge in a domain ontology to support knowledge capture in future maintenance
projects.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 98

Finally, we have investigated how to use the domain knowledge to provide content
personalization of user interface for a better efficiency and user satisfaction. This goal goes
towards what is expected for usability evaluation, defined as the “degree to which a product
or system can be used by specified user to achieve the specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” (ISO/IEC 25023, 2011).

Next sections present these different works where we explored practices from knowledge
management domain in search of software quality. We chose to present these works
chronologically, which means, in the order we developed them. In this way, section 4.2
presents the research to support software maintenance considering the organization of
knowledge and the capture of knowledge in maintenance projects. Then, section 4.3 presents
an approach for capture and dissemination of knowledge in software projects. Finally, in
section 4.4, we present our later research of using knowledge to support the design of
personalized user interface in order to obtain better usability. We conclude this chapter (4.5)
with a discussion about our contributions and new research challenges.

4.2 Knowledge Management Issues to Support Software Maintenance Process

Software maintenance is a knowledge intensive activity. Maintainers need knowledge of
the application domain, of the organization using the software, of past and present software
engineering practices, of different programming languages (in their different versions),
programming skills, etc. Concurrently to this knowledge need, a recurring problem of
software maintenance is the lack of system documentation. Studies report that 40% to 60% of
the software maintenance effort is devoted to understanding the system (Pfleeger, 2001, p.
475; Pigoski, 1996, p.35). This scenery motivated us to investigate which knowledge could be
useful for software maintenance and we organized it in an ontology (§ 4.2.1). This ontology
was later used to support knowledge capture of software maintenance (§ 4.2.2).

4.2.1 Identifying and Formalizing the Knowledge Needed for Software Maintenance

To achieve our goal of identifying what knowledge is used in software maintenance, we
defined a process composed of three steps (Figure 4.1).

Figure 4.1. Steps for identification of knowledge for software maintenance

The first step was to observe software maintainers in their daily activities to get a first idea
of what knowledge they use. In this pilot study, we tried to observe the software engineers
with as little preconception as possible. Knowledge domains were not predefined but
extracted from the results of the study. In the second step we formally modeled the knowledge
needed for software maintenance using this pilot study, our experience and a literature review
in a domain ontology (see Chapter 1, § 2.5.3). In the third step we validated this ontology
with some field research to identify if the knowledge is really useful for maintenance. In this
section, we present these steps.

1. Perform
Pilot study

•  Initial
knowledge
domains

2. Knowledge
organization

• Ontology for
software
maintenance

3. Knowledge
validation

• Useful
knowledge
for software
maintenance

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 99

In the pilot study (Figure 4.1 - step 1), we observed software engineers performing
maintenance. We studied six software engineers in two different organizations (a bank and a
public administration) during 13 sessions of 75 minutes on average. The sessions followed a
protocol called think-aloud (Lethbridge et al., 1996) where the maintainers were asked to say
everything they did and why they did it. These sessions were recorded and later transcribed on
paper to be analyzed. During the analysis, we tried to identify the kind of knowledge, which
we called knowledge atoms that the software engineers were using at each moment. For
example, from the session description presented in Figure 4.2, we concluded that: to perform
the descriptions from 1 to 5 the maintainer knows the development environment s-he is
working with; to know which method to modify (description 4) and what to remove
(description 5) means the maintainer had some previous knowledge of the application
implementation (i.e., the software system); and finally to start to write new code (description
6) means the maintainer knows the programming language. The “knowledge atoms” were
then categorized in general knowledge domains.

Figure 4.2. Knowledge identification

From the study of the 13 sessions we extracted the following domains of knowledge:

• Computer science knowledge - knowledge that typical software engineer would have;
such as, knowledge about programming, about a specific programming language,
software development/debugging, and design techniques;

• Business knowledge - knowledge that a typical member of the organization (not
limited to computer scientist) would have; such as, about the application
functionalities, the production environment of the system implementation, the problem
of being analyzed for maintenance, and the organization itself;

• General knowledge - common sense knowledge that “anyone” could have; such as
knowledge of foreign languages, web browser and email.

As already mentioned, we tried to start this pilot study with as little preconceptions as
possible, and this classification was established bottom-up, grouping together knowledge
items that were found in the sessions analyzed.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 100

After this pilot study, we started a more formal approach. Based on the concepts identified
in the pilot study, a literature review, and our own experience, we defined an ontology of the
knowledge needed during maintenance (Figure 4.1 - step 2).

We started the ontology construction by looking for motivating scenarios where the
knowledge captured would be useful. Some of those scenarios are: deciding who is the best
maintainer to allocate to a modification request based on her-his experience of the technology
and the system considered; learning about a system the maintainer will modify (which are its
documents and components and where to find them); defining the software maintenance
activities to be followed in a specific software maintenance, and also the resources necessary
to perform those activities.

These scenarios induced us to organize the knowledge around five different aspects:
knowledge about the Software System itself (also identified in the pilot study); knowledge
about the maintainer’s skills, that is Computer Science Skills (related to the computer science
and general knowledge of the pilot study); knowledge about the maintenance activity, that is
the Modification Process (not identified in the pilot study); knowledge about the
Organizational Structure (related to the business knowledge domain of the pilot study); and
knowledge about the Application Domain (related to the business knowledge domain of the
pilot study). Each of these aspects was described in a sub-ontology. Figure 4.3 illustrates how
the sub-ontologies combined in the general ontology. For each of the sub-ontologies we
defined “competency questions”, captured the necessary concepts to answer these questions,
established relationships among the concepts, described the concepts in a glossary and
validated them with experts.

Figure 4.3. Sub-ontologies of the maintenance ontology (Anquetil et al., 2006)

We will not give a detailed description of the whole ontology here (see (Anquetil et al.,

2006) for a complete definition), but we will focus on the Software system sub-ontology
(Figure 4.4). The System sub-ontology is one of two sub-ontologies corresponding to the
more computer science oriented knowledge. Knowledge about the system is also intuitively
fundamental to software maintenance.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 101

Figure 4.4. Software system sub-ontology (Anquetil et al., 2006)

The competency questions for the System sub-ontology are:

• What are the artifacts of a software system?
• How do they relate to each other?
• Which technologies are used by a software system?
• Where is the system installed?
• Who are the software system users?
• Which functionalities from the application domain are considered by the software

system?

Answering these questions led to a decomposition of the software system in artifacts, a
taxonomy of these artifacts and the identification of the hardware where the system is
installed, its users and the technologies that was used in its development.

The artifacts of a system can generally be decomposed in documentation and software
components. Briand et al. (1994) considers three kinds of documentation:

• Work product, describing the system itself (i.e., software requirement specification,
software design specification, and software product specification);

• Process documents, used to conduct software development and maintenance (i.e.,
software development plan, quality assurance plan, test plan, and configuration
management plan);

• Support documents, helping to operate the system (i.e., user manual, operator manual,
software maintenance manual, firmware support manual).

Considering that the software design specification proposed by Briand et al. (1994) should
represent the behavior and structure of the system and that we can have different abstraction
models, we refined the software design specification in logic and physical models.

Software components represent all the coded artifacts that compose the software program
itself. Booch (2000) classify them in:

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 102

• Execution components, generated for the software execution;
• Deployment components, composing the executable program;
• Work product components, which are the source code, the data, and anything from

which the deployment components are generated.

All those artifacts are, in some way, related one to the other. For example, a requirement is
related to design specifications, which are related to deployment components. We call the first
kind of relation realization, relating two artifacts of different abstraction levels. The second
one is a correlation of artifacts at the same abstraction level. To express those constraints we
defined a set of axioms (Figure 4.5 illustrates this one). In total we defined 21 axioms for the
system sub-ontology and 53 for the whole ontology.

Figure 4.5. Example of formalization of an axiom

Other relations in this sub-ontology are: the software system is installed on some hardware,
the user interacts with the software system, and finally, the software specification describes
the domain tasks to be implemented (or functionalities).

In the last step (Figure 4.1 - step 3), we were interested in verifying if the knowledge
organized in the ontology would be really useful for software maintenance. To do so, we
instantiated the ontology with data from a real project; and, we performed observational
studies with maintainers.

The ontology instantiation was performed from the documentation of a real software
system. This documentation came from the development of the system as well as from past
maintenances. As a result, 74% of the ontology concepts were instantiated. We consider this
result acceptable since the other concepts were not specific for that project.

For the observational study, we realized two experiments:

i) Observing maintainers with the think-aloud protocol, as in the pilot study;

ii) Presenting the instantiated knowledge for a software system before the maintenance
activity and then asking the software engineers what knowledge was used.

The think-aloud experiment (i) followed basically the same procedure as in the pilot study:
the maintainers explained everything they were doing while maintaining a system, the
sessions were taped, the tapes were transcribed, and finally, we identified and classified the
knowledge atoms. The only difference from the pilot study was that this last step was based
on the ontology. Two maintainers participated in this experiment, doing five sessions for a
total of 132 minutes (26 minutes per session on average).

In the second experiment (ii), the ontology was presented and explained to the software
maintainers and they were asked to fill in, every day, a questionnaire on the concepts they
used. This form consisted of all the concepts we had instantiated previously and the list of
their instances (as we identified them). The maintainers were simply asked to tick the
instances they had used during the day. They could not add new instances. The experiment

(∀ a1,a2) (correlation(a1,a2) ∧ requirementspec(a1) → requirementspec(a2))

(∀ a1,a2) (realization(a1,a2) ∧ requirementspec(a1) → ¬ requirementspec(a2))

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 103

was done with three maintainers and one manager. They filled 17 forms in 11 different days
over a period of 10 weeks.

The results of these two experiments are given in Table 4.1. One may observe that there
are a lot less concepts used in the first one than in the second. One reason for this is that there
were fewer sessions in the first experiment and they were mostly short punctual maintenance
(average of 26 minutes compared, for example, with the 75 minutes per session in the pilot
study).

All the concepts detected in the first experiment were also found in the second one, it did
not bring in any new instances. However, six concepts previously instantiated were not found
here:

• Analysis Technique and Requirement Specification Technique (Skills sub-ontology)
were not used because the maintenance operations were relatively simple and
restricted to small modification to the source code. Therefore, no high level analysis
was required;

• For the same reason, the Requirement Specifications (System sub-ontology) was
neither studied nor modified;

• The creation, modification and distribution of all Support Documentation (including
User Manual and Operation Manual, the three of them being in the System ontology)
were under the responsibility of another unit; therefore the software engineers we
studied did not know about them or use them.

Table 4.1. Number of concepts used in two studies (Anquetil et al., 2003)

 Ontology Think-aloud Questionnaire
 # # % # %

Computer science Skill 38 15 39% 26 68%
Application domain 4 1 25% 2 50%
Modification process 30 16 53% 23 77%
Software System 23 9 39% 13 57%
Organizational

Structure
3 2 67% 3 100%

Total 98 43 44% 67 68%

Details of each part of this research can be found in several publications (Anquetil et al.,

2007; Anquetil et al., 2006; Anquetil et al., 2003; Dias et al., 2003).

4.2.2 Capturing Knowledge for Maintenance Using Ontologies

We argue that software maintenance is a knowledge intensive activity. As presented in the
previous section, different kinds of knowledge are required for performing a maintenance.
One could argue that software development suffers from the same knowledge needs, however
these needs are more difficult to be answered during maintenance. For example, it is not
uncommon in software maintenance to have a very vague knowledge of what were the exact
requirements for the system, whereas during software development, one is expected to have
access to the requirements relatively easily. For example, in the study presented in chapter 3
(§ 3.2.1) we noted that the documentation of the ten systems, if any, was outdated and
incomplete. Besides this, it is common that the maintenance is done by people that do not
develop the system. According to Pigoski (1996) 40% to 60% of the software maintenance
effort is devoted to understanding the maintained system. For this reason, we decided to
perform knowledge capture in software maintenance project not only for gathering lessons

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 104

learned to improve the software process (which is the traditional use in software engineering),
but also to discover knowledge about the software system itself to help in future
maintenances.

To address this problem we adapted Post-Mortem Analysis (PMA) (presented in Chapter
1, § 2.5.2.1), a knowledge externalization tool usually used for software process improvement
at the end of software projects.

Thus, to adapt PMA as an externalization technique in maintenance projects, we need to
define how to uncover not only knowledge on the maintenance process (e.g. how it was
executed, what tools or techniques worked better), but also to register knowledge on the
system maintained (e.g. how subsystems are organized, or what components implement a
given requirement). This section presents how we adapted PMA and its application in project
from industry.

4.2.2.1 PMA for software maintenance

To define this new PMA approach, we had to consider three important aspects (Anquetil

et al., 2006; Souza et al., 2004):

i) When to insert PMA during the execution of a typical maintenance process;

ii) What knowledge we should look for;

iii) How to extract this knowledge from the software maintainers.

To address the first aspect ((i) when to insert PMA during the execution of a typical
maintenance process), we had to have in mind that software maintenance projects may be of
widely varying size, they may be short in the correction of a localized error, or very long in
the implementation of a new complex functionality, or correction of a very diluted problem.
For small projects, one may easily conduct a PMA at the end of the project without the risk of
loosing (forgetting) important information, but for larger projects, it is best to conduct several
PMAs during the project (as proposed by Yourdon (2001)) so as to capture important
knowledge before it becomes so internalized in the participants’ mental models that they
cannot clearly remember the details.

To identify the points, in a software maintenance project, where we could perform PMA,
we used the ISO/IEC 14764 (1999) maintenance process that is composed of the following
phases: process implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration, and software retirement.
Modification implementation is, usually, the longest phase, including tasks to implement the
modification such as requirements analysis, architectural design, detailed design, coding, and
testing. Therefore, we set three points to perform PMAs (see Figure 4.6):

• After the analysis of the modification, which includes the first two activities (Process
implementation, Problem and modification analysis) and the initial task of the third
activity (Modification implementation: requirement analysis);

• After the implementation of the modification, which includes the rest of the third
activity (Modification implementation);

• At the end of the project in order to review all its aspects and the most recent activities
not yet considered in the intermediary PMAs.

To address the second aspect ((ii) what knowledge we should look for)), we identify that
depending on the specific scope of each PMAs, we may hope to explicit different kinds of
knowledge. For example, information on the testing techniques used will be best discovered
during the second PMA (post-implementation) just after the tests have been performed. We

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 105

recall that we wished not only to discover lessons learned from the execution of process
activities but also to discover new knowledge learned on the system, its application domain,
or other issues not related to the maintenance process.

 Figure 4.6. ISO14764 maintenance process with the intermediary (1 and 2) and final (3)
PMAs (Anquetil et al., 2006)

To identify what information we could hope to discover in each PMA, we mapped the
concepts defined in our ontology for software maintenance (presented in § 4.2.1) to the
particular tasks reviewed in each PMAs. For example, the first PMA (post-analysis) occurs
after the following activities: the process implementation activity, modification request
analysis activity, and the requirements analysis task from the modification request
implementation activity. Let’s take as an example the first activity: process implementation.

In the process implementation activity, the only task typically performed for each new
maintenance project is to develop plans and procedures for conducting the activities of the
project based on the modification request. To execute process implementation tasks the
project manager usually takes into account his/her experience from previous projects with a
similar domain, size, and team. Therefore, the type of knowledge related to this activity is
about the process execution, what maintenance activities are needed and may be what specific
technology will be required (concepts from the software maintenance ontology). This implies
that the first PMA should look for this particular type of knowledge, named details on the
modification request (see Table 4.2). We did the same analysis for all tasks reviewed in each
PMA. We arrived to the set of type of knowledge for each PMA presented in Table 4.2.

Finally, to address the third aspect ((iii) how to extract this knowledge from the software
engineers), we elaborated the questionnaires that should be distributed among the software
engineers that will participate in the PMA session. The questionnaires are composed of one or
more questions for each type of knowledge identified for that PMA. Questions are designed to
instantiate the concepts defined in our ontology.

Figure 4.7 shows some questions from the PMA post-analysis questionnaire. In this
example, application domain questions are intended to instantiate the Application domain

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 106

sub-ontology concepts. There are two possible uses of the questionnaire. First, it may be used
only to revive the memory of the PMA participants on the various types of knowledge sought.
Second, the answers to the questionnaires are used to help the facilitator to focus the PMA
session on the topics that appear most likely to bring new knowledge.

Table 4.2. The three maintenance PMAs and the types of knowledge they focus on

PMA Type of knowledge

(1) Post-analysis Details on the modification request
Organizational structure using the software
Options for implementing the modification
Effort estimation for the modification
Negotiation of time frame to do the modification
Documents modified
Requirement elicitation technique used
Tools used
Application domain
Details on the requirements

(2) Post-implementation Programming languages and tools used
Programming techniques used
Software components modified
Systems interrelationship
Analysis/design inconsistencies
Re-engineering opportunities detected
Artifacts traceability
Database design
Design patterns used
Testing technique used
Process and support documentation modified

(3) Final Negotiations with other technological departments

Modification monitoring
Maintenance process

Figure 4.7. Extract of the post-analysis questionnaire

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 107

4.2.2.2 Applications in industry

This approach of PMA for maintenance was applied to six maintenance projects from a
public organization in Brazil: four small maintenance projects (about 1 man/week work), and
two larger projects (more than two months). The methodology was tested on a specific group
of 15 people, responsible for the maintenance of 7 legacy software systems.

During and after each project, questionnaires were distributed to the maintainers to revive
the important points of the projects in the mind of the participants and help them focus on the
topics of interest. For the small maintenance projects the PMAs facilitator met each
maintainer to interview him/her. For the two large maintenance projects with more
maintainers involved (more than 10 in our experiments), half-day meeting sessions were
organized to capture positive and negative points about the maintenance (the lessons learned).

In Table 4.3, we present an overview of the number of concepts that could be instantiated
during the PMAs; that means the knowledge acquired about the software systems. We note
that:

• From the 23 concepts in the Software System sub-ontology, 11 were instantiated with
many instances (80), which means that at least one concrete example of these concepts
was mentioned during the PMAs as something that was learned and worthy of
remembering;

• Because of the typical conditions of legacy software systems (foremost the lack of
system documentation), many concepts from the Software System sub-ontology could
not be instantiated. This is the case of many document sub-concepts (there are 16 in
the sub-ontology);

• The Process sub-ontology is the one that was the most instantiated, in number of
concepts (21) and number of instances (135);

• All concepts from Application Domain and the Organizational Structure sub-
ontologies were instantiated and, more importantly, many instances were found,
especially in the case of the application domain sub-ontology (68 instances). This is a
good result since application domain knowledge is considered very important by some
authors (e.g. Biggerstaff et al., 2002);

• Very few concepts were instantiated for the Computer Science Skills sub-ontology. It
is natural that experienced software engineers discover less new knowledge about
computer science techniques or CASE tools, and we do not see this as a problem with
our approach. Computer science skills are considered background knowledge that all
software engineers should have.

Table 4.3. Captured knowledge about the system: instantiated concepts from the ontology

Sub-ontologies Number of concepts Instantiated concepts Number of instances

Software System 23 11 80

Modification Process 30 21 135

Computer science skills 38 05 09

Organizational structure 03 03 22

Application domain 04 04 68

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 108

Some examples of instances captured with the PMA are:

• Business knowledge instantiated as concepts in the Application Domain sub-ontology.
For example, for one of the system that deals with monitoring of government
educational projects, some of the instantiated concepts were about the publication and
execution of agreements, and extension of the expiry date, including business rules of
how to perform these extensions;

• Update of some use cases in all maintenance projects (in Software System sub-
ontology);

• Technical details of implemented components (in Software System sub-ontology). For
example, for the same system of monitoring of government educational projects, some
tables in the database (example, the one with data about project date estimates) was
described and all their components (code source, files, specification) were associated
in the same component;

• Identification of who asked the modification, who participated in the maintenance of a
specific requirement, and which requirements were changed (in Modification Process
sub-ontology).

Figure 4.8 presents some examples of lessons learned, that is, the knowledge acquired
about the maintenance process.

Figure 4.8. Captured knowledge about the software process execution

As a result of those experiences, the organization made some improvement, such as:

• Redefinition of people roles in the project teams;
• Increase the involvement of some internal areas;
• Correction of the reference documents used by technicians;
• Improving the process for approving applications;
• Conducting trainings to correct deficiencies;
• Reorganization of the teams’ responsibilities.

Lessons learned

In emergency and complex situations, the choice and allocation of more experienced

people on projects are critical to the achievement of the maintenance in the expected

time.

A database of reliable tests in the development environment can significantly reduce

the time to perform the tests in critical applications.

Changes in business rules by users during the implementation activity may result in

significantly delay in delivery of the final product.

The involvement of supporting staff (e.g. from data management) in the

maintenance, and not only of the maintainers, can be quite useful in preparation of

procedures, database design and data conferences on the charges of applications.

The use of dynamic objects (such as lists), to the detriment of other static (such as

arrays), streamlines the programming and execution of the application.

The lack of requirements’ definition by the users causes delays in the execution

of the process activities and in the delivery of system versions.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 109

More details of this study can be found in (Anquetil et al., 2006, Souza et al., 2004).

4.3 Capturing and Disseminating Knowledge with Experience Factory

It is well known that to produce good software systems using the adequate resources and
cost is a difficult task. Appropriate effort estimate is an important part of this task. It is
particularly important to the organizations, because too high an estimate may result in loosing
a contract to a competitor, whereas too low an estimate could result in a loss for the
organization (Agarwal et al., 2001).

With the need of providing better estimates for each new software development project and
inspired by the idea of continuous improvement with a knowledge management infra-
structure of experience factories (see Chapter 1, § 2.5.1.1), we worked on the definition and
use of an experience factory for software effort estimation (Kosloski and Oliveira, 2005). To
define this experience factory we had to attend each one of the steps of the Quality
Improvement Paradigm (described in Chapter 1, § 2.5.1.1), as follows:

i) Characterize – based on the literature, we identified thirty-three characteristics that
could impact the efforts estimates and, therefore, would be useful to characterize the
projects. Some examples of the characteristics are: application type, software
complexity, business type, programming language, and development team size;

ii) Set goals – we used Goal-Question Metric to define measures with the goal of
improving the accuracy of effort estimates. Some of the measures are: estimated size
error, initial and final productivity, schedule estimation constraint;

iii) Choose process – we defined a software effort estimate process based on (Agarwal et
al., 2001; PSM, 2002);

iv) Execute – we applied the approach to seven projects of a large organization in Brazil;
v) Analyze – we analyzed the results of each project and captured lessons learned;

vi) Package – we extended the organization’s effort estimation tool including an
experience base that registers the projects with their thirty three characteristics and the
captured lessons learned.

We will not present here these steps in detail, since a significant part for the experience
factory definition is the three first steps for the definition of how to characterize and define
the measurements for improvement. These steps were supported by the literature review and
the Goal-Question Metric approach that was largely exemplified in Chapter 1. These steps are
described in (Kosloski and Oliveira, 2005, 2006).

Nevertheless, we would like to detail the analysis phase with regard to the capture of
lessons learned (the interest of this chapter). After the execution of each project, a session
meeting with development team, estimators and managers was conducted to analyze the main
problems with the project estimation and identify lessons learned. These meetings took
around of two hours and were supported by all the documentation of the project (the thirty
three characteristics) and the collected measures. Based on this documentation the participants
discussed and defined lessons learned and recommendations. After that each lesson learned
was registered in the experience based and classified in one of the following types:

• Initial - lesson learned identified as a trend and for which there are already some case
studies, but still need further confirmations;

• Defined - lesson learned identified as a trend and for which there are several case
studies, that confirmed the observed trend;

• Generalized - lesson learned identified in a lot of case studies, and institutionalized as
a best practice in the organization.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 110

One important aspect is the definition of the number of case studies necessary to define a
lesson learned in an organization. This decision is particular for each organization. In the
organization we performed the case study, it was defined the need of more than five projects
to classify a lesson learned as defined and more than fifteen to classify as generalized.

Table 4.4 presents some examples of lessons learned captured after the execution of the
seven projects. It shows also the recommendations defined for each lesson learned. All these
lessons learned were classified as initial since they were observed in less than five of the
seven projects.

Table 4.4. Examples of lessons learned for software process estimation

Lessons learned Recommendation

Greater experience on requirements definition
tends to generate more stable functional scopes
for the software, providing more precise
estimates of size.

Choose software engineers expert on the
business goal

Higher levels of reuse tend to improve the
productivity of software development

Try as much as possible to reuse from other
similar solutions already developed.

Most experienced development teams tend to
perform better productivity in software
development.

It is important to balance technical and
business handled by the organization in
order to homogenize the team's experience
and optimize the productivity of software
development.

The programming language influences the
productivity of software development

Evaluate the productivity of similar
systems developed in the same
programming language to extract values of
productivity in new effort estimates.

The rate of turnover of development team
affects the productivity of development so that
higher rates of turnover tend to result in lower
productivity.

Avoid high turnover of people on the
development team

The speed of establishing estimates influences
the accuracy of the results, that is, faster
estimates tend to give less accurate results.

Verify similar projects with their speed
estimates and associated errors, in order to
identify an appropriate speed to the new
project to be estimated. The time limit for
estimating should be established taking into
account this information along with the
number of experts available to estimate.

4.4 Pro-active Dissemination of Knowledge

In the previous section we presented two approaches of capturing and dissemination of
knowledge in software organizations with the use of post-morten analysis (§ 4.2.2.1) and
experience factory (§ 4.3).

From our own experience, we identified some problems with these techniques: experience
factory requires a sizeable investment (in time, people, or process) being more suitable to
larger organizations; both techniques focus on explicit knowledge (e.g. in the form of lessons
learned or guidelines); and they require the users to “pull” (look for) the knowledge from a
repository. That means the software engineer should “pull” the specific lesson learned,
guidelines or best practice when s-he needs.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 111

Based on these findings, we proposed an approach adapted to small and medium
organizations (Torres et al., 2006). It is based on the Dixon’s process proposition (2000) (see
Chapter 1, § 2.5) for pro-active knowledge dissemination and it uses the Learning History
(see Chapter 1, § 2.5.2.2) that allows richer knowledge transfer. Proactive approach means for
us that the knowledge is “pushed” to the members of the organization instead of being
“pulled” by them when need arises. However, push knowledge does not exclude the
possibility of pulling knowledge when needed.

In the process proposed by Dixon (2000) (Chapter 1, Figure 2.16), one of the steps of the
knowledge cycle is the selection of a transfer system. Given the characteristics of software
projects and their executing team (each project is unique, transfer is from one team to another
team doing a similar, non-routine, task in different contexts), we chose to work with the so
called “far transfer” system (Chapter 1, § 2.5.1). The far transfer system targets transfer of
tacit knowledge between two teams performing similar non-routine tasks in differing
contexts.

Figure 4.9 illustrates how we mapped the learning history process (presented in Chapter 1,
Figure 2.19) to Dixon’s process (Chapter 1, Figure 2.16). Concretely, our proposal is the
following:

i) A team realizes a software project (e.g. development of a new system);
ii) Some significant result is obtained that justifies preserving the knowledge gained;

iii) interviews of the relevant project members are planned and conducted, this
corresponds to Dixon’s activity where the team reflects on the relation between its
actions and the results, it is also the 1st and 2nd steps in the learning history process
(planning and reflexive research);

iv) Knowledge is converted in a form suitable for dissemination in the next 3 steps of the
learning history process (distillation, writing and validation);

v) At the beginning of a new project by another team, the story is recovered (and the
receiving team adapts the knowledge to its own necessities during a dissemination
meeting (see below);

vi) The history may eventually be published so that it is available to other teams on a
repository (for “pulling” knowledge).

To complete the description of our proposal, we need to explain how the dissemination
occurs: before starting a new project, a learning history of interest is selected from a
repository and presented and discussed within the receiving team. For this, one must first find
a story of interest, usually registered in a repository, for a given team and project, and second,
concretely use it for knowledge dissemination.

The dissemination is done in a workshop (meeting) structured as follows. First, a week in
advance, all members of the receiving team receive a copy of the learning history and some
instruction on how to prepare themselves for the dissemination meeting: the story will be
discussed during the meeting and, as such, they should read it beforehand and analyze the
historian comments; they should write down questions, reactions, comments in the story; they
must compare the setting of the project described with their experience; and, finally, they may
not discuss the story between them before the meeting as such discussion should happen with
all members present.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 112

Figure 4.9. Mapping of the learning history process to Dixon’s knowledge cycle

The meeting in itself includes two parts. First, the story is discussed to check whether there
are comments or questions about it and what is understood about it. Second, the receiving
team adapts the knowledge (contained in the story) to its own necessities by answering the
following questions:

• What is similar between the project described in the story and the project about to
start?

• What good result could be replicated or what mistake should be avoided?
• How the story may impact this project?

As a case study, we created a first learning history from a project and realized a
dissemination workshop to another team about to start a similar project. The particular project
of the case study was selected because: it was an innovative project (it used a new process and
the team was mostly freshly hired); it was expected to be the first of a series of others
occurring in similar conditions; it was rich in notable results (both positive and negative); we
had easy access to its participants; and we knew well the project in itself (although none of us
participated in it). This project lasted 7 months and involved 2 business analysts, the head of
the department, one project manager, 2 (internal) clients, and some users consulted when
more details were needed on some particular area.

We conducted five interviews (1 manager, 2 clients, 2 business analysts) for a total of 3
hours of interview. The cost of the total case study is summarized in Table 4.5 and was
judged acceptable given the size of the project. A small part of the resulting story (which has
20 pages) is presented in Figure 4.10. The dissemination was conducted in a 3 hours meeting
with a team of 5 persons, about to start a project in similar conditions. The project manager
(of the new project) was the moderator during the dissemination meeting. The overhead of the
initiative is very small, about 1 week (39 man/hour) to build the history for a 7 months project
with five interviewed of the first team (the actual team was larger than that), and 18
man/hours for the dissemination for the new project (the dissemination is not dependent on
the length of the new project, but on the size of the new team).

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 113

Table 4.5. Cost of a knowledge cycle using learning history

Beginning of all: Information
The [organization] produces information on agribusiness and supply chain. Produced

indicators were treated by different departments, historically with communication

problems. As a result, each department created its own reports with redundant

information and differing formats (from the other). The project aims at correcting this

problem.

System’s

goals:

Organize

and make

accessible

information

in order to

fulfill the

strategic

goals of the

organization

SUPER-INTENDANT: Based on the [organization]’s strategic

planning, some goals were defined, which were exactly that the

[organization] would become a reference in terms of providing

information and knowledge in the agricultural supply chain sector.

So, to actually fulfill this goal, an internal reorganization was needed.

This is where agribusiness and supply chain fits, and also the reason

why it was set as a priority.
MANAGER: In the 90’s, we developed a system for pricing, that is

now called “agripricing”. Later new tools appeared on the market, the

[organization] went from mainframe to client/server, and we would

always talk about the necessity to have a project where we could map

all the information on the agribusiness, not only prices.

Figure 4.10. Extract of a learning history (translated from Portuguese)

The meeting was evaluated very positively by the participants, one of them actually
proposed that the organization should generalize this kind of proactive knowledge
dissemination action (he did not know the details of the research and that this was our goal
from the very beginning). Another evaluation showed that some conditions necessary to
learning were actually fulfilled. These conditions are (von Krogh et al., 2000): mutual trust,
positive empathy, assistance access, kind judgment, and courage. We found that three of these
conditions were fulfilled, and that we lacked data to reach any conclusion in two. We evaluate
that this lack of data was due to the first part of the meeting (understanding of the story)
having taken too much time. During this part, little knowledge is actually created. The second
part (adaptation of the story to the team’s reality) had to be interrupted before it was actually
completed. This is something that we plan to correct in the next dissemination meeting.

Although we still lacked one small part of the model (indexation of the stories and retrieval
from a repository), this first experiment showed that the capture and dissemination of the
knowledge actually happen at a relatively low cost.

A second learning history and its dissemination can be found in (Torres et al., 2009). This
book also presents an analysis of the presented history using the document of learning history
itself.

Activities Duration Participants Total (man/hour)

Planning 1 h Historian 1 h
Interviews 3 h Historian & team members 6 h
Story transcription 12 h Secretary 12 h
Document

conception
20 h Historian 20 h

Story reading 1 h New team 4 h
Dissemination

workshop
3 h

Knowledge manager & new

team
18 h

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 114

4.5 Using Ontologies to Improve Usability of Personalized User Interfaces

Usability is one of the quality characteristics more explored in literature since it has been
studied by two research communities: software engineering and human-computer interaction.
Several standards, quality models, tools and methods have been proposed to support the
usability quality assurance – see, for example (Sears and Jacko, 2009) for a large discussion
about methods and tools for usability evaluation; and (Seffah et al., 2006) about quality
models and measurements. Usability is defined as the extent to which a product can be used
by specified users to achieve specific goals with effectiveness (the accuracy and completeness
with which users achieve specified goals), efficiency (the resources expended in relation to
the accuracy and completeness with which users achieve goals) and satisfaction (the comfort
and acceptability of use) in a specified context of use (ISO 9241-11, 1998).

Recognizing that ensuring the usability cannot be postponed and only evaluated when the
final user interface is developed, various methods and approaches have been proposed to
introduce usability issues throughout the development of an interactive system (some
examples can be found in: Abrahão and Insfran, 2006; Sears and Jacko, 2009; Anderson et
al., 2001; Fink and Obendorf, 2008). In this context, issues related to personalization emerge
in search of enhance the usability of interactive systems (e.g. Vora and Bojewar, 2011;
Vuljanic et al., 2010; Glavinic et al., 2008; Kumari et al., 2012).

Personalization has been defined as:

• “the ability to provide content and services that are tailored to individuals based on
knowledge about their preferences and behavior” (Hagen et al., 1999);

• “Delivering to a group of individuals, relevant information that is retrieved,
transformed, and/or deduced from information sources” (Won, 2002);

• “adaptation towards a named user for which an internal and individual model is
needed” (Garía-Barrios et al.; 2005);

• “the dynamic adaptation of the interface to the profile” (Simonin and Carbonell,
2006).

In general, personalization deals with the ability of adapting a user interface (UI)
considering some information related to this user. Personalization can take many features into
account and can be applied to many levels (Kobsa, 2001; Chevalier and Julien, 2003), as
follows: personalization of the presentation (containers), that aims to adapt the style and
format of interaction interface components (e.g. buttons, text fields) based on the user needs
and context; personalization of the structure, applied to the links between a website’s pages;
personalization of functionalities, to make available only the functions necessary for a
specific user to answer a task by automatically adapting the system; personalization of the
navigation, that guides the user to the right information, by avoiding irrelevant pages; and
personalization of the content that works on the selection and adaptation of the input/output
information, according to the user, his/her preferences and context.

Figure 4.11 illustrates examples of the personalization of the content and containers of a
travel planning system (Oliveira et al., 2013). For instance, the adaptation of the size of
interface elements, such as fonts and widgets, represents a personalization of the container
presentation based on the specific platform/device (i.e., iPhone) used by the user. Information
about the departure city and departure date (Figure 4.11(a)) are examples of personalization of
content. Departure city is automatically filled based on the user’s current location. Departure
date is the current day. Another example of personalization of content is presented in Figure
4.11(b). In this example, the user is unable to walk; thus, the system will propose direct

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 115

itineraries with a reduced price, according to his/her age, or indirect itineraries with the
connection in the same train station.

(a)

 (b)

Figure 4.11. Examples of user interface personalization in a transportation system
(Oliveira et al., 2013)

Analyzing the types of customization, we realize that the personalization of content can
directly impact on usability by improving efficiency (thanks to the auto-fill form of
information that the system already knows, and therefore allows the user to save time in
performing the activities) and user satisfaction (the user feels that the system helps in his/her
activity). Thus, we decided to investigate how to develop interactive systems providing
content personalization.

To address this idea, we explicitly define a context model to capture all relevant
information related to the user (Bacha et al., 2011a). This context model is generic and it can
be used in the design of any user interface. To adapt such model to a specific application
domain, we propose that the context model concepts are mapped to the concepts of an
ontology that captures the knowledge of an application domain. In this way, it is possible to
indicate which specific application domain information should be provided as input/output in
the user interface based on the context.

Furthermore, we noted that we should work even during design time and should consider
that an interactive system can be developed to run into several platforms (e.g. tablets, desktop,

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 116

mobile phones) and medias (e.g. audio, video, image, text), therefore, being necessary to
adapt its UI. Model-driven architecture (MDA) (OMG, 2003) has been shown to be an
appropriate approach for the design and code of the software system and their UI to address
those challenges since we could specify the personalization issues in high-level of abstraction
independent of the platform and it would be applied in the final application. In MDA, models
play a more direct role in software production, manipulation and transformation by machines.
UI can be specified with a high level of abstraction, and the final UI are transformed for
different platforms. We, therefore, embed the context model and the domain ontology in a
MDA framework to allow semi-automatic generation of personalized user interfaces (Bacha,
2013).

 In this section, we detail how the ontology is applied to make possible to perform content
personalization. Details about the UI generation using MDA can be found in several papers
(Bacha et al., 2011a, 2011b, 2011c, 2010). We applied this approach in two application
domains: transportation (Oliveira et al. 2013; Bacha et al., 2011a, 2011d) and medical
domain (Bacha et al., 2013, 2011b). In this section, we will use the transportation domain to
illustrate the proposition.

4.5.1.1 Context Model Definition

Our first step for performing content personalization was the definition of the context
model. In general, the research in UI design considers the context is composed of three
classes of entities (Calvary et al., 2003): the system’s user profile; the platform (i.e., hardware
and software), which is used for interacting with the system; and the physical environment in
which the interaction takes place.

To define the information about those elements, we have done a literature review (Bacha

et al., 2011a). Although eighteen context model propositions were found, none of them was
considered complete. Some propositions considered only one of the context dimensions: user,
platform or environment. Others were particular for a specific domain (e.g. smart phones, e-
commerce) and/or not detailed enough. Thus, we decided to integrate the main information
from all propositions in a context model covering the three parts (i.e., the user profile,
platform and environment). We noted that some information about user (like his/her
preferences, abilities and activities) should be particularized to each domain for a better
definition of the context, and other (like demographic and contact information of the user, and
all information about the environment and platform) is generic to any domain. Therefore, the
context model was defined with some classes that should be instantiable for particular
domains and others generic being applicable to any domain. Figure 4.12 presents the part of
the user profile context model for the transportation domain. The complete context model can
be found in (Bacha et al. 2011; Oliveira et al., 2013).

The user profile model is divided it into five major parts, specifying the user when
interacting with the final interface: Contact information, which contains personal data;
Demographic information, which contains basic and unchanged user data; Preference, which
describes user interests and preferences; User State, which describes the physiological user
state and user activity; and Ability and Proficiency, which specifies the user skills and
abilities.

Once a context model is specified, the next question to address is how it could be used in a
specific application domain. For example, with respect to Figure 28, how can we set that
“departure” is the city where the user is at the time of using the system or that, for the
proposed itineraries, we should consider the age and the ability of the user? To address this

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 117

problem we propose to map the context related concepts to the specific concepts of the
application domain.

Figure 4.12 The context model: user profile (Bacha et al., 2011a)

4.5.1.2 Mapping Context Model and Domain Ontology

To establish the mappings we assume that the vocabulary of an application domain is
defined in a domain ontology. We chose to work with ontologies since our previous
experience (Oliveira et al., 2006; Anquetil et al., 2006; Oliveira et al., 2004; Leão et al.,

2004; Oliveira et al., 1999a, 1999b; Maidantchick et al., 2000) showed us that ontology is
very useful to organized the knowledge of an application domain independently of a
particular software system and of how it will be used in the development of that system.
Therefore, the ontology can be applied in the development of various applications of the same
domain.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 118

Figure 4.13 shows the top-level transportation ontology we developed for the application
of this approach in the transportation domain.

Figure 4.13. The transportation ontology global view (Oliveira et al., 2013)

The transportation ontology was formalized in OWL1.0 and Protégé16. A detailed
description of this ontology can be found in (Mnasser et al., 2010; Oliveira et al., 2013).

Considering the elements of a domain ontology (i.e., concepts, properties, relationships,
and axioms) and those of a context model (i.e., concepts, attributes and relationships), we
propose a meta-model (see Figure 4.14) that sets a mapping between any element from a
context model and any element from a domain ontology, except for the constraints. The
constraints express rules that are used with the mappings for the personalization. Such meta-
model exploits three types of mappings:

• Direct mapping, when some information of the domain is directly associated with the
information modeled in the context in that they have the same meaning. For example,

16

 Available at http://protege.stanford.edu (Accessed April 10, 2014)

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 119

any information to identify the user in the domain ontology is directly associated with
the name of the user in the context. The departure city name in Figure 4.11(a) is
another example of direct mapping. To define a direct mapping the designer just look
in the domain ontology if there is any information that is the same as some
information defined in the context model;

• Indicative mapping - when some information of the context indicates the presence or
absence of some information in the domain. For example, the information about a user
interest, such as s-he practices cycling as sport, can indicate the kind of book s-he can
be interested in a domain of bookstores. The preferred transportation mode in Figure
4.11(a) is also an example of indicative mapping. To define an indicative mapping the
designer should verify for each context element defined as a Boolean attribute if there
is some concept in the domain that represents that context element;

• Indirect mapping - when some information of the domain ontology is influenced by
some information in the context model. For example, the price of travelling for seniors
or students is indirectly associated with demographic information about age that will
influence the search for prices. The proposed itineraries in Figure 4.11(b) are another
example of indirect mapping where the itineraries are indirectly associated with the
age and abilities of the user. To define an indirect mapping the designer should verify
if there is any information in the domain ontology that could vary depending on some
personal information modeled in the context.

Note that in Figure 4.14 any element of an ontology (concepts or attributes) can be mapped
onto any element of the context of use (concepts or attributes). For each mapping, the type
(direct, indicative or indirect) should be set. Note also that we can have domain concepts
without any mapping, or with more than one mapping.

Figure 4.15 shows some of the mapping examples from our transportation ontology and
the context model elements.

Figure 4.14. Meta-model for mapping context and ontology elements (Bacha et al. 2011a)

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 120

Figure 4.15. Mapping examples (Oliveira et al., 2013)

4.5.1.3 Application: Using Domain Ontology for Content Personalization of User

Interface

With all the mappings defined, while the UI designer specifies the UI using the domain
vocabulary represented in the ontology, s-he is also embedding the context information that
should be presented in the final UI at the runtime. To do so, our MDA approach uses the
mappings, ontology concepts and axioms to pre-define the functions and the information that
should be retrieved from the context and the domain ontology. To better explain this, we
suppose we need to develop a system for planning a journey. In this scenario, the user
connects to the system to be identified. Thus, all information about the user’s context is
already registered. Next, the system shows the form with the required information (e.g.
departure city, destination city, dates, and user preferences of transport mode) and, then, the
result of the user’s query. Figure 4.11 shows an example of UI for this system. Generating
personalized UI means dynamically generating a UI for the platform, which the user is using
the system with all the user information and the domain already filled in the correct input
fields. Figure 4.16 shows the UI specification (high-level specification in a MDA structure,
i.e., so called computation-independent model) related to this part of the process.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 121

Figure 4.16. Example of a UI specification

As shown in Figure 4.17, each element in the specification is defined by a ID, its type (i.e.,
“user task” if the element represents an user interaction; “system task” if the element
represents the result of an execution of the system functionalities; or “subprocess” if the
element will be decomposed in other elements until the elementary elements that represent the
“user task” and the “system task”), the kind of interaction element is presented (e.g. the field,
“DepartureCity”, will be presented in a field that should be filled in manually by the user), the
domain vocabulary related to this field (i.e., the ontology concept associated), and the kind of
mapping, if applicable.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 122

Figure 4.17. Annotation of task model elements (Bacha et al., 2011d)

To provide content personalization, the departure city and user preferences for the
transport mode should be already filled in by the system. Although the user can change this
information, the system should provide the form with all content collected based on
information collected from the context. The results of the query should also consider the
domain knowledge and the context. In this example, the user is unable to walk. So, the system
should propose direct itineraries with a reduced price, according to the user’s age. In case of
indirect itineraries, the system should propose only protected journey patterns containing
shelters since it is raining, information being obtained from the context. After defining the
annotated UI task specification, the designer can launch the MDA transformation process (see
(Bacha et al., 2011b) for details about the transformation rules). The specification of the low-
levels in the MDA structure was written in UIML (User Interface Markup Language) (Helms
et al., 2009), a general language for describing UI that facilitates the work with dynamic
information. In this transformation, the content personalization of the UI is done by two
methods (Doucet et al., 2004; Ioannidis and Koutrika, 2005; Abbas, 2008): auto-fill forms
and query enrichments.

Auto-fill forms are performed for all the fields to which we defined the direct or indicative
mapping in the UI task model (Figure 4.16 and Figure 4.17). To that end, we search for what
concept from the transportation ontology was used and what context element it was mapped
with. For direct mapping, the UIML property that contains the content (g:text) will be filled in

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 123

automatically by the value taken from the instance of the context model by invoking a method
that has as parameter the name of the ontology element that is related to the task.

In the same way, it is verified the information related to the concept of the ontology, which
had an indicative mapping. In order to decide the selection of the concerned element, the
value of the context element (i.e., true/false) is verified in the condition part in the UIML
code, for the pre-selection of the right alternative.

For an indirect mapping, the transformation generates a call type statement from UIML. It
represents a method that is coded by the software designer to search the required information
based on the given parameters. This method is equivalent to a searching query, in which the
DomainElementName annotation attribute presents the searched element and the method’s
first argument, and the InferenceCriteria presents the parameters to take into account when
searching them. Since we were interested in providing personalized content to the user, this
query was enriched by including automatically other context elements during the search
process. We used the ontology relationships and axioms for this enrichment. The idea is to
exploit the ontology classes that implement an indirect mapping, which the designer has not
explicitly specified as inference criteria in the UI design. Assuming that the
DomainElementName is named "A" and that “B” belongs to its InferenceCriteria, each
ontology class that has an indirect mapping and that is connected, threw a functional
relationship, to a class on the path from “A” to “B” will be integrated among the
InferenceCriteria. To that end, the properties of the concepts are explored. As a result, it will
enrich the query.

Table 4.6 shows an example of the use of ontology properties for the query enrichment.
Details of the UIML code generation by transformation can be found in (Oliveira et al.,

2013).

Table 4.6. Using ontology properties in path finding

Relationship

characteristic

Definition How to be used

Functional Property

If a property, P, is tagged as

functional, then for all class C,

C’, and C’’:
P(C,C’) and P(C,C’’) implies

C’ = C’’. In other words If a

property is functional, for a

given individual, there can be

at most one individual that is

related to the individual via

the property.

Assuming that “B” is an InferenceCriteria for

searching “A”. Each ontology class that has an

indirect mapping and that is connected threw a

functional relationship, to a class that belongs to the

path from A to B, will be integrated among the

InferenceCriteria since this class is considered

strongly pertinent for searching “A”. A class related

with a functional property means that there is at

most one instance that is related to the other class,

therefore, it restricts the search.

As previously mentioned, we also applied this approach to the medical domain, in
particular for medicine recommendation (Bacha et al., 2013).

We confirm with the two case studies (for transportation and for medical domain) that a
domain ontology is very useful in the process of personalization since the design time. The
ontology was used to automatically identify the information to perform query enrichment and
auto-fill forms to the runtime when the inference rules can be integrated in traditional
methods to provide the required result of the software application. However, in order to be
better applied, support tools should be developed to help the software designers to use this
approach.

Chapter 4 ‐ Applying Knowledge Management Issues for Software Quality Assurance

 124

This research was subject of different publications (Bacha, 2013; Oliveira et al., 2013,

Bacha et al., 2011a, 2011b, 2011c, 2011d, 2010).

4.6 Conclusion

This chapter has presented some works that use knowledge management practices in order
to provide better quality for software process and products. From these works, we can quote
in general the following main contributions:

• Definition of an approach to improve software maintenance and software maintenance
process using domain ontologies;

• Adaptation of PMA for the context of software maintenance projects. For our
knowledge this technique was more applied to software development projects than for
maintenance. It was concerned only with the knowledge acquired in the project and
not about the software system itself like we defined for software maintenance;

• Definition of an approach for proactive knowledge dissemination in software projects
adapted for small and medium organization. This approach combines learning
histories (technique usually used in context different than software) with the
knowledge cycle proposed by Dixon (2000);

• Definition of and experience factory for effort estimation;
• Definition of a MDA approach based on ontologies for content personalization of user

interface aiming to improve the usability of interactive systems.

Based on the learning experience of applying knowledge management practices and also
the experience and knowledge about software quality assurance presented in the previous
chapter, we concluded that the software quality assurance is a knowledge-rich activity
including explicit documented knowledge in standards, quality measures and techniques as
well as tacit knowledge of each individual that participates in the quality evaluation process
(evaluators, users and all stakeholders in the process). These people are carriers of knowledge
and this knowledge directly affects the process of quality assessment. We believe it is
important to identify this knowledge and analyze how to take advantage of it while
performing software quality assurance. This belief brings the following questions:

• What explicit knowledge is used and shared in every moment?
• How to integrate the process of using tacit knowledge in the software quality

assurance process?
• How to transfer and maintain this knowledge to be useful for future quality

evaluation?

Research perspectives to answer those questions are presented in the next chapter.

125

Chapter 5 Synthesis and Research

Perspectives

5.1 Introduction

Software quality assurance is gaining wide importance in the current market that seeks
better customer satisfaction. Organizations recognize that it is only by offering better quality
products that they will have an edge over their competitors and thus they can ensure customer
loyalty. In this context, the research on software quality has proposed methodologies,
techniques and different approaches to support this activity and its effective use in industry.

Precisely, this report has presented the research that I have conducted in that direction.
Since my master degree (1993), I have been working in research of software quality
assurance. I explored in theory and in practice, evaluation methods, measurements and
knowledge management procedures. In the next section (§ 5.2) I present a synthesis of my
contributions analyzing what was done and what is still to be done. Based on this analysis, I
propose some research perspectives that I plan to work on (§ 5.3).

5.2 Synthesis of Contributions

To summarize my contribution to the domain of software quality assurance, I come back to
the four challenges presented in Chapter 1 (§ 1.2). For each challenge, I recap the research
performed to address it, examine the results objectively, and propose some possible further
investigation.

Challenge 1. Definition of quality measures and their interdependencies

I have worked on the definition and application of measures for different types of software
systems and software artifacts, as follows:

• Expert system – measures for evaluating expert system quality were defined and
applied in practice for the different artifacts produced in the software development
(software requirements, models and final product) (Rabelo et al., 1997);

• Web application – qualitative and quantitative measures were defined and applied to
ensure the quality of web sites (Lima et al., 2000) and web application (Lima et al.,

2009; Valentin et al., 2012);
• Legacy systems – technical (Ramos et al., 2004, 2005) and managerial (Queiroz et

al., 2009) measures were defined and applied in large legacy systems from industry
supporting the managers’ decision-making;

• Ubiquitous systems – a large review about what should be explored in this new
domain was performed and measures were defined and applied (Santos et al., 2013;

Santos, 2014);
• Human-computer interaction (HCI) – measures for the well-known criteria used by the

HCI community were defined and applied, showing that quantitative values can

 Chapter 5 ‐ Synthesis and Research Perspectives

 126

support qualitative values defined by the subjective evaluations (Gabillon et al., 2013;

Oliveira, 2010);
• Software process – measures for software process evaluation were defined and applied

in real projects (Gomes et al. 2000; Sousa et al., 2003). Indicators were also defined
integrating a set of measures to support process performance analysis (Monteiro and

Oliveira, 2011).

However, although I recognize that measures are interdependent and that the result of a
measure impacts on others, I did not specifically explore these interdependences. In all
research I performed, this analysis was executed by looking at the results of the assessment
for each one of the software artifacts under evaluation.

For all studies performed for the definition and application of measures, specific methods
for software quality assurance were explored as follows:

• Adaptation of phased inspections to the evaluation of expert system specifications and
final code (Rabelo et al., 1997)17;

• Use of walkthrough in the evaluation of legacy systems specifications and design
models (Ramos et al., 2004, 2005).

• Combination of existing methodologies for the definition of reading based techniques
to be used in the evaluation of usability in early stages of software development
(Valentin et al., 2012);

• Definition of an approach for software testing planning by establishing the quality
characteristics and software testing techniques to be used (D’Oliveira et al., 2003)10.
We also used testing techniques for the formal evaluation of expert system and
ubiquitous systems (Santos et al., 2013; Rabelo et al., 1997).

Finally, in all practical applications I performed SQA, the presence of an expert for the
final judgment was required. Even when we had a threshold well established (Ramos et al.,

2004, 2005; Queiroz et al., 2009) the qualitative analysis of the quantitative data was
required. I do believe that we need historical data for a better support in the analysis and
interpretation of the results. Suggestions for analysis and interpretation can be drawn based on
previous results of similar projects in similar contexts. Another idea would be to investigate
knowledge management issues to support SQA. These ideas are presented as research
perspectives in the next sections (see § 5.3.1 and § 5.3.2).

Challenge 2. Definition of experimental protocols for the SQA

All the case studies I performed were in the context of specific projects as proof of
concept. I recognize the importance of doing formal experimentation for the generality of the
results. I worked on two evaluations with formal definition of experimental protocols and
statistical analysis of the results (Valentin et al., 2012; Santos and Oliveira, 2009). Those
studies showed me that despite the difficult to perform formal experimentation, we have much
more confidence in the results. Therefore, much more should be done in this direction. A
relevant idea proposed by (Sayeb et al., 2012) is to define patterns of experimental protocols.

17

 For reason of space, this research was not presented in this document.

 Chapter 5 ‐ Synthesis and Research Perspectives

 127

Challenge 3. Implementation of continuous software process improvement

In the previous chapters, I presented my experience of the definition, evaluation and
improvement of software process, as follows:

• Definition of software processes for specific domains and considering standard
software processes (Machado et al., 2000; Villela et al., 2002; Macedo et al., 2006);

• Definition of a measurements (Gomes et al., 2000; Weber et al., 2004) and a catalog
of indicators (Monteiro and Oliveira, 2011) for the evaluation and improvement of
software process;

• Adaptation of project reviews approaches to collect lessons learned for continuous
software process improvement (Anquetil et al., 2006; Torres et al., 2006, 2009).
Nevertheless, the cycle of quality improvement was not completed being necessary the
improvement of the software processes based on the identified issues and performing
their re-evaluation.

Such research experience was essential for my participation in the definition of the
Brazilian Improvement Software Process Standard (MPS.BR). I worked with the technical
team that defined the standard and institutionalized it in the Brazilian enterprises. I was one of
the editors of the second version of the standard in 2007, being responsible for the revision
and integration of modifications required by the consultants who implemented the model.
Currently, more than 500 appraisals were performed in this standard. MPS.BR has become
the most important model of software process improvement in Brazil.

Challenge 4. Definition and use of knowledge management procedures for SQA

Chapter 4 presented my experience on applying knowledge management issues for
organization, capture, dissemination and use of knowledge to support quality assurance,
summarized as follows:

• Knowledge organization using domain ontologies to produce software with better
usability (Oliveira et al., 2013; Bacha et al., 2013) and support the maintenance of
legacy systems (Anquetil et al. 2006, 2007);

• Knowledge capture and dissemination with post-mortem (Anquetil et al., 2006) and
learning history (Torres et al., 2006, 2009) techniques providing a way of producing
better products and improving software process activities based on lessons learned
from the past projects (for software development and maintenance);

• Definition and implementation of a knowledge management structure to support the
improvement based on past experiences with the development of an experience
factory for continuous software effort estimation (Kosloski and Oliveira, 2005).

Moreover, in my Doctorate research, not presented in this document, I defined how to use
domain knowledge (formalized with ontologies) to support activities of the software
development improving the traditional software processes (Oliveira et al., 1999a; Oliveira et

al., 2004).

All the research I did on this topic was focused to support the SQA activities defining and
applying propositions to identify problems to allow the improvement of the quality of
software products and processes. However, I did not explore how to use knowledge
management issues to manage the knowledge of the SQA activity itself. I argue that SQA is a
knowledge intensive activity performed by individuals that have their own knowledge and
experience, which can impact in the quality evaluation results. Based on this belief, I propose
a research perspective in this direction (see § 5.3.3).

 Chapter 5 ‐ Synthesis and Research Perspectives

 128

All those challenges were intensively discussed in the context of a French research action I
coordinated during two years. Several researchers from nine laboratories participated in the
meetings. Besides the rich discussions we had, we also produced several papers (Dupuy-

Chessa et al, 2014; Arduin et al, 2012, 2013; Oliveira et al., 2012; Kolski et al., 2012), a
special issue in a national journal (Oliveira and Rosenthal-Sabroux, 2013) and the
definition of the new frontiers for information system evaluation in a collective paper from
the French computer science community (INFORSID, 2012).

5.3 Research Perspectives

Two main concerns guide my research perspectives: quality evaluation based on
measurements for interactive systems, and knowledge management of software quality
assurance activity.

The first concern is related to the use of measurements for the continuous evaluation of
software products. Being integrated in the research group of DIM (Decision, Interaction and
Mobility) of the LAMIH research laboratory since 2009, I planned to explore this issue for the
evaluation of human-computer interaction (HCI).

When talking about quality of HCI, one relates it directly to the usability evaluation. A
wide variety of studies and projects have demonstrated that a commitment to usability and
user’s needs in the early design phases may have an impact on different areas such as user
satisfaction, performance, safety as well as commercial viability (see, for example Mayhew
(1999)). However, the evaluation methods in the context of HCI usually require either a fully
functional prototype that end users can play with or an early prototype that only the evaluator
can present to the end users or use in an inspection-based evaluation. The tests are most often
conducted after the development and deployment of the interactive software. They also
require specific usability labs, which may result in significant maintenance costs.
Furthermore, with the diversity of computing platforms, interaction devices and styles, the
(semi) automatic generation of user interface (UI) from design models has also seen
significant progress. Different UI design models have been proposed to support the derivation
of a concrete UI from a high level abstraction of the UI (model). A derivation consists to
transform UI models at different level of abstraction (see for example, Vanderdonkt, 2005;
Brossard et al., 2011; Sottet et al., 2007). The question addressed is, can we – software
developers, usability expert, HCI designer - predict usability from these early UI design
artifacts and models?; in other words, can we define predictive measures to evaluate usability
in the early design stages and without a fully functional prototype? My first research
perspective aims to answer these questions with the definition of an approach for predictive
usability evaluation (§ 5.3.1).

In a previous study (Santos et al., 2013) (see § 3.3.3) we concluded that issues related to
quality evaluation of HCI in ubiquitous systems are broader than usability aspects. We
identified a set of quality characteristics and we started to define some measures. By applying
these measures in the evaluation of three systems, we noted that formal procedures about how
to evaluate the quality of HCI of this type of systems should be defined. Moreover, we noted
that the use of measures was really helpful for the identification of UI problems and therefore
the definition of improvement actions. We plan therefore to continue the research on quality
evaluation of HCI by defining measures for all quality characteristics proposed in section
3.3.3, looking for their correlation, and defining a methodology for quality evaluation of HCI
in ubiquitous systems based on measurements (see § 5.3.2).

Finally, the second concern is related to the software quality assurance activity itself. That
means to investigate what is the tacit and explicit knowledge behind a quality evaluation. To

 Chapter 5 ‐ Synthesis and Research Perspectives

 129

that end, I intend to come back to the basis of knowledge management issues and to explore
the idea that considers knowledge not as an object but the result of a process (see § 5.3.3).

5.3.1 Predictive Usability Evaluation

During the last two decades, usability evaluation has been intensively treated by HCI
researchers and usability professionals. A large number of usability evaluation methods and
models have been proposed (Albert et al., 2010; Cockton et al., 2009; Abran et al., 2003). An
exhaustive account of these methods can be found in (Ivory et al., 2001). Several models and
standards have been established to measure usability as a quality construct. Mainly these
models break down usability into measurable attributes. They also provide a list of measures
that are generally in conjunction with usability evaluation methods to qualitatively and
quantitatively estimate usability attributes ISO 9241-11 (1998) and ISO/IEC 25023 (2011).
Building on or contributing to these standards and usability evaluation methods, several
European projects suggested specific frameworks to measure usability; representative
examples include SUMI (Software Usability Measurement Inventory) and MUSiC (Metrics
for Usability Standards in Computing) developed by the Human Factors Research Group,
University College, Cork. Trying to integrate different models in a same structure from a
literature review, Seffah et al. (2006) proposed a consolidated model, named QUIM (Quality
in Use Integrated Measurement). QUIM is a unifying model that assesses usability by using
12 factors, 29 criteria and more that 120 measures. Another significant research is the Single
Usability Measure suggested to standardize usability measure into a single global score
(Sauro and Kindlund, 2005). Moreover, guidelines and ergonomic criteria for usability
evaluation were also proposed (e.g. Scapin and Bastien, 1997; and, Vanderdonkt, 1994).

However, most of those projects do not address explicitly usability prediction from early
UI design models. This is because the calculation of the proposed measures in these projects
requires a fully functional prototype. Among the few initiatives, one can mention, the
European action COST294 that highlighted the need for theoretical frameworks defining the
nature of interaction quality. This includes techniques and measures for the evaluation of the
interaction quality during design. Another initiative is the proposition of Panach et al. (2013)
to represent usability features related to functionality abstractly in a conceptual model, and
than to carry out automaticaly their implementation. To that end, they proposed a method to
define the functional usability features (e.g. feedback support, user input error prevention, go
back) in a model-driven approach using what they call conceptual primtives. This method
includes the indentificaion of usability mecanisms, changes in conceptual models and in the
compilers. Measures are also proposed for early usability evaluation considering these
conceptual primitives (Panach et al. 2011). To interpret the result of the measures, they assign
categorical values (e.g. very good, good, bad) for range of numerical values based on
guidelines in the literature. However, the classification of measure results into categories still
remains intuitive and is not correlated with the end user view. Considering this scenery, we
plan to work on a definition of a framework for predictive usability evaluation from early
design models based on measures, that can be interpreteds using the perception of the users
about the usability of final user interfaces. No extra effort is required in the UI design to allow
the quality evaluation.

Next sections present some ideas about how to perform predictive usability evaluation and
a preliminary investigation on this direction.

 Chapter 5 ‐ Synthesis and Research Perspectives

 130

5.3.1.1 Definition of an Approach for Predictive Usability Evaluation

The context we envision is that UI designers can, during UI modeling and early design
phases, apply the specific measures related to that model and have some indication of the
level of usability of the final UI using pre-defined correlations. The new UI being developed
and evaluated can later also have its measures integrated in the historical base of evaluations,
thus improving the correlations.

To that end, we have planned to define a framework that consists of a set of measures
applicable to different UI design models from a high abstraction level to a concrete level, that
is the implementation (Oliveira, 2010). The prediction of usability and the analysis of
measures results are based on the possible correlations between predictive usability measures
(on the design artifacts) and the results of usability tests performed by users (on the final UI).
The correlations will be defined with several empirical studies.

Figure 5.1 portrays the proposed predictive usability prediction approach as well as the
way it can supplement inspection-based evaluations. Predictive usability evaluations are
performed on various design models using usability predictive measures. The predictive
usability evaluation uses a database including the correlations gathered from previous
empirical experiments. Each experiment defines and refines continuously the correlations
between the results of usability measures collected from early UI design models and the
results of inspection-based evaluations made on the final UI. A predictive usability analyzer
tool (PredictUse Analyzer) will support the measures collection and calculation as well as the
usability prediction that uses the database.

Figure 5.1. Predictive usability evaluation

To address this goal, I plan the following research studies:

• Selection of usability criteria from literature that will be used for predictive usability
evaluation. Moreover, selection of the design models to be evaluated and then identify
which criteria can be evaluated for each design model. We are aware that not all
criteria can be evaluated for all UI design models;

 Chapter 5 ‐ Synthesis and Research Perspectives

 131

• Definition of which usability evaluation method (survey, model based method,
inspection based method and usability tests (see Sears and Jacko, 2009)) should be
used for each criteria and each UI design model;

• Definition of formal experimentation protocols to be used in a context of evaluation of
software products. These protocols should be defined in a way that they could be
specialized considering the specific products (UI design model and final user
interface) under evaluation;

• Realization of several empirical studies to collect measures and establish the measures
correlations;

• Use of statistical methods to identify correlations between measures from high-level
of abstraction to low-level. These correlations will be useful later to define the
thresholds to support decision-making in future projects;

• Definition of interdependences between the proposed measures to evaluate specific
products and, definition of procedures to support the analysis of the results. At the
beginning, interview with experts and literature review can be used. Nevertheless,
with data resulting from software evaluation I plan to use ground theory (Strauss and
Corbin, 1998) to formally define a theory about this interdependences. Grounded
theory method is a systematic methodology in the social sciences involving the
discovery of theory through the analysis of data.

I have started to explore this idea with a colleague in an introduction course of HCI in the
two-years formation in Computer Science at the University of Valenciennes. The results are
presented in next section.

5.3.1.2 A preliminary investigation

We had surveyed different quality models that propose a list of measures. Our starting
point was the QUIM model (Seffah et al., 2006) since it is defined considering several quality
models and it organizes a set of usability measures. While investigating those measures, we
noted that most of the measures were applicable only to final UI since the main goal of QUIM
is the definition of quality in use that means, while using the UI. We decided therefore to
analyze also the internal measures of usability (applied to a non-executable software product)
from ISO9126. The ISO9126 external measures (applied to an executable software or system)
has already been included in QUIM. Finally, we also analyzed the ergonomic criteria from the
most cited usability model, defined by Scapin and Bastien (1997).

Our procedure was first to read the measure definition (description, formula and scales
when available). Next, considering the features of each design model, we identified if that
measure could be applied to that design model even that the formula customization would be
needed. Finally, we analyzed the measures against the three UI design models proposed in the
CAMELEON framework (Calvary et al., 2003):

• Task model - that describes the various users' tasks to be carried out with a UI. Concur
Task Tree (CTT) (Paterno et al., 1997) is the most used notation to define this model;

• The abstract User Interface (AUI) - that defines the rendering of the task model
independently from any style of interaction (e.g. graphical interaction, vocal
interaction, speech synthesis and recognition, video-based interaction, virtual,
augmented or mixed reality) as well as the capability and constraints of the platform;

• The concrete user interface (CUI) – that concretizes an abstract UI into an interactor-
dependent expression for a given context of use;

• Final UI – that is the operational user interface running in a specific platform.

 Chapter 5 ‐ Synthesis and Research Perspectives

 132

To do the analysis, we took into account the features of each one of the UI models. For
instance, the task model defined using CTT, is composed basically of a hierarchy of different
kind of tasks (abstract, interaction, user and application tasks) and temporal relationships
among tasks (interleaving, synchronization, enabling, enabling with information passing,
choice, deactivation, iteration and optional).

Table 5.1 presents some measures extracted from QUIM. We discovered that some
measures require the execution of the UI (e.g. temporal efficiency, error frequency), therefore,
it will be applied to the final UI only. Others are related to the UI design itself (e.g. layout
complexity, local density), are thus related to the CUI and some of them to AUI. Finally,
some measures are related to the information to be presented in the UI (e.g. visual coherence,
number of commands/tasks whose terminology is familiar to the user), thus they can be
applied in all UI design models from the highest level of abstraction (the task model).

Table 5.1. Example of analysis of measures

After analyzing measurable criteria (considering QUIM measures, SQUARE standard, and
Scapin and Bastien criteria), we started the customization of them to evaluate each one of the
models. Table 5.2 presents the analyses of some measures applicable to task model. We note
that we have qualitative and quantitative measures.

The qualitative measures are collected by inspections with UI designers. Those inspections
are cognitive walkthrough based (Polson et al., 1992; Mahatody et al., 2010), since the
assessment is done by experts who should wonder the potential perception of the user in the
use of UI implemented based on that task model.

 Chapter 5 ‐ Synthesis and Research Perspectives

 133

Table 5.2. Some proposed measures

Measure Purpose Measurement

Function

understandability
What proportion of the product

functions will the user be able to

understand correctly?

Subjective evaluation with five point ordinal

scale (1-5)

Longest Depth What is the maximum path to

execute a task?
Computes the number of nodes in the CTT

hierarchy from the root till the primitive task
Terminology

familiarity
What is the number of

commands/tasks whose

terminology is familiar to the user?

Objective: 100 - number of tasks which

terminology is unfamiliar to evaluator)/number of

tasks %
Subjective: 1(non Familiar) – 5 (Familiar)

Percentage

grouping
What is the percentage of

decomposed tasks?
(Number of tasks decomposed in at least one

primitive task) / total number of tasks * 100
Size of group What is the average size of group

of tasks?
Average of (total of primitive task / Number of

tasks decomposed in at least one primitive task)
Visual

Coherence
How well grouped are the tasks in

the abstract tasks?

100 - Number of primitive task that are not

closely related in the same high level task /

number of primitive tasks defined * 100
Evident

functions
What proportion of the product

functions the UI designer expert

believes will be evident to the

user?

Subjective evaluation with a five point ordinal

scale

Immediate

Feedback
What proportion of tasks represents

the feedback?

(Number of application tasks or Number of

decomposed application tasks) + Number of

interactive task for feedback) / Number of tasks

decomposed in at least one primitive task *100
Legibility How clear is the text of

information that will be required or

displayed?

Subjective evaluation with a five point ordinal

scale (1-5)

Minimal Actions What is the minimum path of

access to primitive task?
Compute the minimum path of access to

primitive task
Information

Density
What is the information density? Maximum and minimal number of input

information needed per abstract task
Average percentage of tasks of order independent

among the decomposed tasks that has order

independence relationships
Consistency How consistent are the terms used

in different tasks?
100-Number of terms used with different

meanings in the definition of tasks / number of

terms used in the definition of tasks*100
Significance of

Codes
What proportion of codes has a

clear meaning?
(100 - Number of codes with no clear meaning)

/Number of codes * 100
Input validity

data
What proportion of input data is

validated?
(Number of sequence of "Enabling with

information passing" + number of tasks explicitly

defined to validate the data)/ Number of tasks is

decomposed in at least one primitive task
User Control How well the user can control

his/her interaction with the system?
Number of temporal relation used for

navigability among decomposed tasks (Enabling

with information passing, enabling, deactivation)

/ Number temporal relationships * 100. We

consider that the use of a temporal relation in one

direction means backward and forward
Number of temporal relationships that allows free

choice to the user (independent concurrence,

order independence, concurrence with exchange,

choice) / Number temporal relationships * 100

 Chapter 5 ‐ Synthesis and Research Perspectives

 134

The quantitative measures can be calculated from the data obtained from task models tools
(e.g. IdealXML and CTTE).

It is important to highlight that each one of those measures is not complete, that means,
each measure is defined to measure what can be measured in the task model considering only
the elements of this model. However, in other models and in the final UI other aspects of the
same measure should be evaluated. For example, the measure defined for information density
considers only the aspect number of input/output in the same task since this task will probably
be designed in the same panel/window (if we consider graphical UI). However, when
evaluating this measure in an AUI or in CUI we can look for the organization of those
input/output related to the whole space of the panel/window.

We also highlight that some transversal features cannot be evaluated in a task model since
they are usually not modeled. These transversal features include: help, interface customization
aspects, specific aspects of navigability such as home, exit, etc.

Finally, we note that our idea is not to define an interpretation of each measure. This will
be done by comparing the result of evaluation for a specific project with other results plotted
in a graph of correlation points. This graph correlates measures of models with the evaluation
of final UI.

Table 5.3 shows the results of the measures collected for the task model published in
(Molina et al., 2005) (Figure 5.2).

Figure 5.2. Task model for the radio player (Molina et al., 2005)

To allow the prediction evaluation we need to compare these results with historical data of
previous evaluations where correlations were discovered between the evaluation of the task
models and the final UI.

The definition of a database of correlation takes time since we need several UI designs of
several projects, the definition of the UI based on those models and the evaluation from UI
design models and final UI.

 Chapter 5 ‐ Synthesis and Research Perspectives

 135

Table 5.3. Resuls of measures for the “Radio Player”

Measure Value

Function understandability 5-All
Longest Depth 4
Terminology familiarity Objective : 100%

5 – Familiar to the

domain
Percentage grouping 5/16*100 = 31.25 %
Size of group 11/2 = 5.5
Visual Coherence 100-0/11= 100%
Evident functions 5-All
Immediate Feedback (3+0)/5*100= 60%
Legibility Input : 5- Very easy

Output: 5-Very easy
Minimal Actions 1
Information density:
 Max number of Inputs 5
 Minimum number of

Inputs
1

 Average of order
 independence task

5

Consistency 100-0= 100%
Significance of Codes 0
Input validity data 2/5=0.4
User Control:
 Navigability 4/10*100 = 40%
 Flexibility 6/10 * 100 = 60%

However, to evaluate the feasibility of our idea, we developed a case study with students of
the second year of the two-year graduate course on computer science at the University of
Valenciennes. Although we had very little data (collected from 14 projects done by students
during the course) for an adequate predictive evaluation, we would like to show an example
of the proposed approach. Figure 5.3 presents a graph that shows the evaluation of the task
model (x axis) for the measure input validity data and the evaluation of the same measure in a
final UI (y axis) (we used a scale from 1 (input never validated) to 5 (input always validated)).
It shows that when the task model has a good evaluation the final UI tends to have a better
evaluation too. We obtained a value of Spearman correlation equals to 0.46, which is not very
good, but that we considered acceptable since we do not have a lot of points (only 14 projects)
and the subjects (i.e., the students) had very little experience in task modeling and
programming. By looking at the graph, we could infer that the measure result for the task
model evaluation for the “Radio Player” (input validity data = 0.4) should give a final user
perception around 2.

This preliminary study showed us that there a lot of work need to be perform to effectively
validate this approach since we must have UI design models and the final UI developed based
on those models. That means, that many controlled experiments have to be performed to
generate enough data for statistical analysis of correlations.

 Chapter 5 ‐ Synthesis and Research Perspectives

 136

 Figure 5.3. Evaluation of UI design model x Final UI for input validity data

5.3.2 Quality Evaluation of HCI in Ubiquitous Systems

As previously defined (chapter 3, § 3.3.3), we have noted in our research on quality
evaluation of HCI in ubiquitous systems, that many other aspects are important in the
evaluation of HCI than the traditional ones concerned about usability.

Hassanein and Head (2003) proposed that the usability for ubiquitous systems is
determined by the elements about its user, environment, task and interface. This idea comes
from the intrinsic characteristic of being context-aware. Ubiquitous systems must be able to
capture the context and use it to guide their behavior and assist users in performing their
tasks. Abowd and Mynatt (2000) stated that the context should consider: who is the user and
the other people in the environment where the system is used; what to consider about human
activity to be able to provide useful information; where the user is while using the system;
when the system is used and the relative changes in time as an aid for interpreting human
activity; and, the why the user performs certain actions, understanding “why” that person is
doing it. According to (Hassanein and Head, 2003), new characteristics for usability
evaluation should be taken into account considering the types and limitations of the user,
environment, task and interface, as follows:

• The user - it consist of the analyses of novice and experts, and their capacity of
performing sequential or multi-tasking. The user limitation is related to his/her
memory, visual and motor skill capacities;

• The environment - the influences of the static/dynamic environment, that considers if
the user is using an application while being stationary or while moving around; and
the quiet/noisy environment, which implies the audio/visual interferences. Regarding
environment limitations, the authors quoted the distractions due to various stimuli that
will compete with the user’s attention, the ambient conditions (e.g. poor/high
luminance, extreme temperatures) and time (e.g. time pressure);

• The task – that can be opened/closed or accessing/authoring tasks. Open tasks are
more explanatory, vague and non-specific than closed tasks that have a specific
objective. Task limitations that influence ubiquitous systems are the complexity and
interaction level required by the tasks;

• The interface – several interfaces types (hierarchical menu, short-cut codes, tree-
based, table-based, speech based) and their limitations (screen size and quality, input
methods and varied devices) have to be considered.

According to Postlad (2009), the complexity of HCI for ubiquitous systems increases
because of the following reasons:

0

1

2

3

4

5

6

0,00 0,50 1,00 1,50

 Chapter 5 ‐ Synthesis and Research Perspectives

 137

• The need to use tasks as part of activities requiring access services that are in various
devices;

• The use of the devices by different kind of users;
• Users are engaged in multiple concurrent activities;
• Users are engaged in activities that may occur in various physical environments;
• The activities may be shared among the participants;
• The activities may occasionally be suspended and resumed; and,
• The complexity of determining correctly the user's context

Thus, new challenges for HCI emerge when taking into account the explicit and implicit
interaction in ubiquitous environment (Abowd, 1999; Postlad, 2009), such as:

• Ubiquitous system support with information from a limited context in order to
improve user experience and satisfaction;

• Integration between the ubiquitous devices, the environment and the user;
• Development of a process for user-centered systems;
• Optimization of energy in ubiquitous devices;
• Minimization of the explicit user interaction with the system;
• Better system adaptation to provide users with information and services relevant to

their needs at the desired time;
• Implementation of mechanisms for automatic acquisition of contextual information.

Furthermore, an important difficulty of testing a context-aware application is that part of
its behavior depends of the context (Tse et al., 2004); therefore, it is necessary to preview all
relevant changes in the context and determine when those changes can impact the behavior of
the system application (Wang et al., 2007). Lu (2009) proposed four challenges for testing
context-aware applications:

• Rich formats - context data can be captured dynamically from a variety of different
sources. The data are then represented in formats and rich semantic hierarchies.
Testers need to carefully replicate or simulate context values in different formats
supported by the application design as test inputs;

• Volatile contexts – the context can vary rapidly. So when running a software system
using a particular context to derive its response to the user, the context may have
already been replaced by a new context. Thus, unlike a traditional application in which
is produced the same result for the same input value, the input from a context-
awareness application can generates different executions according to the different
contexts;

• Sensitivity to egocentric context - computational entities are usually modeled as
services and have egocentric behavior, that means they take into account only the
context information they need;

• Soft Computing - physical contexts are by nature imprecise. When a software
application generates a result, it is difficult to determine if it is (i) correct, (ii) wrong
due to software failure, or (iii) wrong due to inaccuracy of context information.

On the other hand, in their essence, ubiquitous systems are open distributed systems
(Baresi et al., 2006), volatile (Kindberg and Fox, 2002; Coulouris et al., 2011), heterogeneous
(Satyanarayanan, 2001) and focused on users (Weiser, 1991) with two main characteristics:
spontaneous interoperability and integration with the physical world (Kindberg and Fox,
2002). This physical word includes a large diversity of computing devices range from simple
sensors to large computers, through watches, smartphones, tablets and laptops, which have
different features (e.g. accelerometer, camera and global positioning system) and varied

 Chapter 5 ‐ Synthesis and Research Perspectives

 138

computational capabilities (e.g. memory size, processing power and screen resolution).
Besides the heterogeneity of computational devices, there is heterogeneity of development
platforms (e.g. Sun Microsystems JME, Google Android, .NET Compact Framework and
Apple iOS SDK), programming language (e.g. Java, C#, Objective-C), execution platforms
(e.g. Linux, Windows Mobile and iOS) and communication technology (e.g. Bluetooth,
Zigbee, RFID, Wi-Fi). Additionally, these computing devices, platforms, programming
languages and communication technologies are provided by different vendors, who in their
great majority adopt different standardizations.

In summary, performing quality assessment of ubiquitous systems is not a trivial task. We
should take into account all the particularities of these kinds of system previously described
(e.g. context information, diversity of devices, different contexts of use). A specific
methodology for the evaluation of these systems is, therefore, necessary.

 In our experience of evaluating ubiquitous systems (Santos et al., 2013; Santos 2014), we
used several procedures to collect and interpret the results, as follows:

• Set log files for each system to be evaluated to collect the data to compute some of the
measures defined; that means, to collect the automatic and quantitative data;

• Define questionnaire forms to evaluate the qualitative information to be answered by
the users after the use of the application system; that means, applying subjective
methods to obtain the users’ appreciation of the system (qualitative data);

• Define questionnaires for the software developers to learn about the system
information to be developed;

• Observation of the users while executing the tasks to evaluate the system; and,
• Define test cases to be executed to allow the quality assessment.

Table 5.4 presents some examples of measures used in our case studies and the method we
used to collect the measures to support the quality evaluation. To collect these measures,
specific test scenarios were defined and executed.

Table 5.4. Examples of measures and methods used for quality evaluation

Quality
characteristic

Measure Description Method used for
evaluation

Context
awareness

Correction of
adaptation

The extent to which the
adaptation is correct for the
current context of the user

Automatic by the log that
register the adaptation
performed

+

Observation to confirm if
the adaptation performed
is the one expected for
that context

Mean time between
context changes

Time frequency between context
changes?

Automatic collection by
the log files

Calmness Courtesy The extent to which interaction
occurs in the best possible ways.

Questionnaire answered
by users

Transparency Application
proactiveness

The extent to which the
application can override the user's
actions with the use of sensors?

Questionnaire answered
by developers

 Chapter 5 ‐ Synthesis and Research Perspectives

 139

Considering this previous experience and the specificities of ubiquitous systems, we
envisage the definition of a methodology as presented in Figure 5.4 portraits the overview of
what we plan to define in the methodology to evaluate HCI for ubiquitous applications. This
methodology will be the combination of the existing methods (inspection-based methods,
usability questionnaires, usability tests), in a well-defined process that establishes all the
activities to be performed, techniques and methods to be used, the outcomes of activities and
guidelines about how to integrate the whole information to support the decision-making about
the quality of the HCI of the ubiquitous system in evaluation. The basis of this methodology
is the definition of formally planned tests that consider the information of different situations
of context and allow to collect the data to obtain measures.

Figure 5.4. Overview of quality evaluation of HCI in ubiquitous systems

First of all, we plan to define measures for the set of quality characteristics defined in
previous research (see chapter 2, § 3.3.3, Table 3.11). To that end, we will organize the 26
characteristics identified in a hierarchical quality model as defined by SQuaRE (ISO/IEC
25000, 2005, see chapter 2, § 2.4). Then, measures will be defined for the sub-characteristics.
For each measure, procedures for collection and interpretation will be set. For while,
considering our previous experience, we plan to collect the data for these measures with:

• Questionnaires to be answered by the users and software developers (for instance,
user’s satisfaction; or, number of functions the system can perform without the
explicit user’s interaction);

• Quantitative data obtained in the structured log files that register all inputs, output and
changes that the system performs during the whole time of HCI;

• By observation of the use of system.

All these methods to collect data should be correctly planned in the test protocols. These
protocols should set the potential contexts of use of the application to run the tests. To that
end, a context model should be used. From the context model previously defined (see chapter
3, § 4.5.1.1), we plan to define a context model specific for ubiquitous systems applications.
Moreover, the protocol should also specify test requirements, schedule, responsible, and
introduce which measures will be collected in each situation, where to record the results and

 Chapter 5 ‐ Synthesis and Research Perspectives

 140

how to support their analysis. Once all these aspects are defined, the quality evaluation can be
performed by asking users to use the system.

Ubiquitous systems developed in LAMIH will be used in the case studies. Currently, two
systems have already be developed: CATS (Context-Aware Transportation Services) and a road
traffic simulator. The CATS proposes a service-oriented architecture able to compose
applications out of services. This makes our framework flexible and allows for easier
adaptation to context changes through the use of a Context Manager for all services (instead
of having each service or application monitor the context) (Popovici et al., 2012). The road
traffic simulator is available on TangiSense tabletop in two versions: centralized (on one
tabletop), distributed (on several tabletops) (Kubicki et al, 2013). This tabletop allows
different users to manipulate virtual and tangible objects. The tangible objects are equipped
with RFID tags (Kubicki et al., 2012).

The complete definition of this envisioned methodology with empirical validation is a
long-term project and requires several research studies.

5.3.3 Towards Knowledge Management of and for Software Quality Assurance

Based on the learning experience of applying knowledge management practices for SQA
presented in Chapter 1, we have concluded that SQA is a knowledge-rich activity including
explicit documented knowledge in standards, quality measures and techniques as well as tacit
knowledge of each individual who participates in the quality evaluation process (evaluators,
users and other stakeholders in the process).

By analyzing my research, I see two important aspects. First, most of the work I have done
in the knowledge management area is related to the capture, organization (as ontology
concepts, lessons learned, best practices, etc.), dissemination and use of the knowledge to
support SQA activities, mainly, quality improvement. In general, I have worked on the
“explication” of knowledge. Only the work with learning histories (see Chapter 4, §4.4) tried
to capture and disseminate the knowledge considering it as resulting of some action that
should be interpreted in new contexts, considering knowledge as a process.

Second, as already discussed, the work I performed was focused in using knowledge
management issues for SQA, that is, to support the identification of problems, correct them
and improve the software product and processes. In all the work I performed, I considered the
individuals (stakeholders) as either (i) “owners” of the domain knowledge to what the system
is being developed (e.g. cardiologists, experts in transportation system), or (ii) “owners” of
the experiences performing activities of software development and maintenance (for instance,
software designers and programmers). In the first case, I tried to elicit the knowledge and
organize it in domain ontologies to support the generation of better products focusing on some
quality aspects (e.g. ontology for cardiology (Oliveira et al., 2004), for transportation
(Oliveira et al., 2013), for telecommunication (Maidantchick et al., 2000)). In the second
case, I tried to collect what the individuals learned about the software process activities and
about the software products, to be possible to make better next time (lessons learned about
effort estimate (Kolsloski and Oliveira, 2005) and in maintenance projects (Anquetil et al.,

2007)).

Nevertheless, I did not look for these individuals as “owners” of knowledge about the SQA
domain itself. I did not consider that the stakeholders of the SQA activities carry their own
knowledge, that their experiences in quality evaluation, their experiences in the organization,
the scope of their expertise, and their personal knowledge could also influence the quality
assessment.

 Chapter 5 ‐ Synthesis and Research Perspectives

 141

We know that even while evaluating using measures, the thresholds are not enough and the
analysis of an expert for their interpretation is required (Oliveira et al., 2012). Both the
interpretation of measures and the evaluation according to quality characteristics can vary
greatly from evaluator to evaluator, even when the evaluators have the same level of
expertise. This is not only because of the subjective nature of an evaluation but also due to
differences of tacit knowledge of each evaluator. Thus, some questions emerged:

• How to explain the differences in the quality evaluations performed by the
stakeholders? What do they take into account in their decisions?

• Is it possible to capture/transfer knowledge from experts in evaluation to novices?
• How to take into account the knowledge brought by evaluators to support the SQA

activities?

These questions are not easy to answer and involve a deep analysis about the activity of
performing an assessment itself before analyzing the assessment of software product and
processes. Furthermore, we believe we should also analyze the idea of knowledge creation
ability introduced by Tsuchiya (1993). According to him, tacit knowledge is the interpretation
of information by an individual by activating his/her interpretative framework. Next section
presents some concepts related to the notion of tacit knowledge creation before describing
some ideas about this research perspective.

5.3.3.1 Tacit Knowledge and Interpretative Framework

As presented in chapter 2 (§ 2.5.1) we usually find in the literature the definition of
knowledge by differentiating data (or datum), information and knowledge. Following this
trend, Tsuchiya (1993) defines that:

“When datum is sense-given through interpretative framework, it becomes
information, and when information is sense-read through interpretive framework, it
becomes knowledge (p. 88)”

This definition highlights three concepts: sense-giving, sense-reading and interpretative
framework.

Sense-giving and sense-reading were introduced by Polany in 1967 (Polany, 1967).
According to Polany, when one uses “words” to describe an experience, s-he performs a
sense-giving action. One’s experience, perception and tacit knowledge are expressed as
explicit knowledge in the “words”. On the other hand, when someone reads these words and
interprets them, s-he performs a sense-reading action, eventually, generating new tacit
knowledge. Tsuchiya (1993) states that the execution of these actions uses one’s interpretative
framework.

Arduin (2013) organized these concepts as presented in Figure 5.5. When a person P1
structures his/her tacit knowledge and transfers it, P1 creates information. When a person P2,
collects data from that information and absorbs it, P2, potentially, creates a new tacit
knowledge. Therefore, knowledge is a result of the interpretation of some information by an
individual. This interpretation is made through an interpretative framework, which filters the
data contained in the information, and with the use of pre-existing tacit knowledge
considering the context, the situation and intentions. In this way, tacit knowledge is
transferred from one person to another.

 Chapter 5 ‐ Synthesis and Research Perspectives

 142

Figure 5.5. Tacit Knowledge transfer (Arduin, 2013)

Once we recognize the existence of an interpretative framework, it is important to
understand the concept of commensurability of the interpretative frameworks. Grundstein
(2012) defined commensurability as “the common space of the set of interpretative
frameworks of each member (e.g. cognitive models, mental models directly forged by
education, experience, beliefs, and value systems)”. In other words, if the probability that two
individuals give the same meaning to the same information is strong, we say that their
interpretative frameworks have a strong commensurability or are commensurable. Otherwise,
if the probability is low, we say that their interpretation schemes have low commensurability
or are incommensurable (Arduin et al., 2013). According to Tsuchiya (1993)
commensurability of interpretative frameworks of members is essential for tacit knowledge
sharing.

5.3.3.2 Exploring knowledge about SQA

As previously presented, this research perspective looks for exploring knowledge
management concepts in benefit of the quality evaluation activity itself. In other words, we
would like to investigate how to take into account the stakeholders’ knowledge used in the
quality evaluation to support the SQA.

We are aware that to answer this question we should work with the two main categories of
knowledge:

i) Explicit knowledge - the know-how about SQA, the knowledge that can be formalized
in documents, artifacts or in a repository. Some proposals in that direction consider the
definition of a software quality ontology (Kayed et al., 2009; Bertoa et al., 2006) and
software process ontology (Palomäki and Keto, 2006; Wongthongtham et al., 2006);

ii) Tacit knowledge – embodied in stakeholders’ minds and that can come from routines
performed in the organization (collective knowledge) and personal knowledge (skills,
knowledge of the history of the organization, etc.) when doing SQA activities. How to
profit of this knowledge to assist in the SQA itself?

For the first category ((i) explicit knowledge), it is necessary to study the process of
knowledge management in terms of quality assurance in order to answer what knowledge to
acquire, where to get them, how to use and maintain, how to transfer the knowledge from
quality evaluation, and what happens during the SECI (socialization, externalization,
combination and internalization) cycle (see Chapter 2, §2.5.1) in the quality assurance
process.

 Chapter 5 ‐ Synthesis and Research Perspectives

 143

We should also, identify the knowledge that can be explained and formalized; that is,
organize the knowledge used in the quality assurance and, analyze how it is performed by
understanding the reasoning behind the evaluation activity. The organization of this
knowledge can be done using domain ontology(ies), or knowledge repositories with
guidelines, lessons learned, measures, etc. (in connection with the other research perspectives
previously described).

However, the most difficult challenge of this research perspective is to investigate the
second category ((ii) tacit knowledge) to really understand how knowledge can be transferred
to support SQA activities. To address this challenge, we identify two branches of research.

The first one is to investigate what the stakeholders take into account while performing a
qualitative evaluation (for example, from qualitative measures) or while interpreting results
of quantitative evaluation (from quantitative measures). In this context, we should investigate
why we can have differences even when the evaluators have the same level of expertise in
quality evaluation procedures. An idea in this direction is to investigate potential differences
in their interpretative framework (as defined in previous section).

To that end, several empirical studies of quality evaluation should be performed (here,
again the idea is to take advantage of the experiments planned in the previous research
perspectives). Evaluators with different levels of expertise, and different levels of experience
will participate in these studies. Then, we should analyze the results of the subjective
evaluations and the interpretation of quantitative data collected for the objective measures
trying to understand the interpretative framework used by each one. This is an exploratory
research aiming at gathering preliminary information that will help suggest hypothesis for
further investigations.

The second branch of research is to understand how we could transfer the knowledge of
the experts in evaluation to novices. It seems that when we identify a high commensurability
in the empirical studied performed, it could be possible to efficiently share the knowledge
used by the evaluators to perform the evaluation. On the other hand, low commensurability
could help to understand what should be taken into account in an evaluation, and what is
needed to perform it.

The main result of this research is the definition of an approach that integrates knowledge
management of SQA to support SQA activities.

5.4 Conclusion

This document has presented the main research I have developed after finishing my
doctorate. Working in different countries and universities I had the opportunity to collaborate
with professionals from different domains (e.g. computer science, management, psychology).
All work carried out have aimed to search for software quality assurance, a research area that
interested me since my Master in computer science.

SQA is a dynamic area that must respond to the continuous evolution of technology to
ensure the best customer satisfaction. Therefore, a lot of work has still to be done. I described
in this document some of the research perspectives I plan to work in the next years. However,
new challenges will also emerge, and new research will be necessary to address these
challenges.

144

145

References

Abbas, K. Système d'accès personnalisé à l'information : application au domaine medical. Doctoral Thesis,
INSA de Lyon, 2008.

Abi-Char, P. E., Mhamed, A., El-Hassan, B., Mokhtari, M. A Flexible Privacy and Trust Based Context-aware
Secure Framework. 8th international conference on Smart homes and health telematics, Seoul, Korea, June
2010, pp. 17-23.

Abowd, G. D., Dey, A. K., Brown, P.J, Davies, N., Smth, M., Steggles, P. Towards a Better Understanding of
Context and Context-Awareness. International symposium on Handheld and Ubiquitous Computing,
Karlsruhe, Germany, September 1999, pp. 304-307.

Abowd, G., Mynatt, E.D. Charting Past, Present, and Future Research in Ubiquitous Computing. ACM
Transactions on Computer-Human Interaction, v. 7, n. 1, March 2000, pp. 29-58.

Abrahão, S., Insfran, E. Early Usability Evaluation in Model-Driven Architecture Environments. 6th IEEE
International Conference on Quality Software, Beijing, Chine, October 2006, pp. 287-294.

Abran, A., Khelifi, A., Suryn, W., Seffah, A. Usability Meanings and Interpretations in ISO Standards. Software
Quality Journal, v. 1, n. 4, 2003, pp. 325-338.

Abran, A., Nguyenkim, H. Analysis of Maintenance Work Categories Through Measurement. Conference on
Software Maintenance, Sorrento, Italy, October 1991, pp. 104-113.

Agarwal, R., Kumar, M. Yogesh, S., Mallick, S., Braradwaj, R. M., Anantwar, D. Estimating Software projects,
ACM SIGSOFT, July 2001, pp. 60-67.

Agresti W. Lightweight Software Metrics: The P10 Framework. IT Professional, 8(5), 2006, pp. 12-16.

Al Balushi, T.H.,Sampaion, P.R.F. Loucopoulos, P. Eliciting and prioritizing quality requirements supported by
ontologies: a case study using the ElicitO framework and tool. Expert systems, v. 30, issue 2, 2013, pp. 129 -
151.

Albert, B., Tullis, T., Tedesco, D. Beyond the usability lab. Amsterdam, The Netherlands: Morgan Kaufmann,
2010.

Anderson, J., Fleak, F., Garrity, K., Drake, F. Integrating usability techniques into software development. IEEE
Software, v. 18, n. 1, January-February 2001, pp. 46-53.

Andrade, E. L. P., Oliveira, K. M. Aplicação de Pontos de Função e Pontos de Casos de Uso de Forma
Combinada no Processo de Gestão de Estimativa de Tamanho de Projetos de Software Orientados a Objetos.
IP. Informática Pública, v. 7, n. 1, 2005, pp.13-30.

Andrade, E.L.P., Oliveira, K. M. Uso Combinado de Análise de Pontos de Função e POntos de Caso de Uso na
Gestão de Estimativa de Tamanho de Projetos de Software Orientado a Objetos. III Simpósio Brasileiro de
Qualidade de Software, Brasilia, Brazil, June 2004, pp. 234-248.

Anquetil, N., Oliveira, K. M., Dias, M. Software Maintenance Ontology. Ontologies for Software Engineering
and Software Technology ed.Heildelberg: Springer, 2006, v. 1, pp. 153-173.

Anquetil, N., Oliveira, K. M., Dias, M., Ramal, M., Menezes, R. Knowledge for Software Maintenance.
Software Engineering and Knowledge Engineering, San Francisco, USA, July 2003, pp. 6-68.

Anquetil, N., Oliveira, K. M., Souza, K. D. De, Dias, M. Software Maintenance Seen as a Knowledge
Management Issue. Information and Software Technology, v. 49 (5), 2007, pp. 515-529.

Arduin, P-E, Doctoral Thesis, Vers une métrique de la commensurabilité des schemas d’interprétation, Paris-
Dauphine University, 2013.

Arduin, P.E., Doan, Q-M., Grigori, D., Grim, M., Grunstein, M., Negre, E., Rosenthal-Sabroux, C., Thion, V.,
Evaluation d’un système d’information et de connaissance - De l’importance de la prise en compte de la
connaissance. INFORSID’2012, INFormatique des ORganisations et Systèmes d'Information et de Décision,
Montpellier, France, May 2012, pp. 371-378.

Arduin, P.E., Grunstein, M., Rosenthal-Sabroux, Évaluer la prise en compte des connaissances tacites dans un
système d'information : vers un système d’information et de connaissance, Ingénierie des Systèmes
d'Information, 18(3), 2013, pp. 121-148.

 References

 146

Arnaut, W., Oliveira, K. Lima, F. OWL-Soa: A Service Oriented Architecture Ontology Useful During
Development Time And Independent From Implementation Technology, 4th IEEE International Conference
on Research Challenges in Information Systems, Nice, France, May 2010, pp. 527-536.

Asato, R., Mesquita, S. M., Costa, I., Farias, S. W. H. Alignment between the business strategy and the software
processes improvement: A roadmap for the implementation. Portland International Conference on
Management of Engineering & Technology, Portland, OR, October 2009, pp. 1066-1071.

Assila A., Ezzedine H., Oliveira K., Bouhlel M. Towards improving the subjective quality evaluation of Human
Computer Interfaces using a questionnaire tool. International Conference on Advanced Logistics and
Transport, Sousse, Tunisia, May 2013, pp. 275-283.

Assila, A., Oliveira, K.M.; H.Ezzedine, K.M. Towards qualitative and quantitative data integration approach for
enhancing HCI quality evaluation, 16th International Conference on Human-Computer Interaction, Springer,
22-27, June 2014, Creta, Greece, June 2014. (accepted for publication)

Atterer, R. Where Web Engineering Tool Support Ends: Building Usable Websites. the 20th Annual ACM
Symposium on Applied Computing, Santa Fe, New Mexico, March 2005, pp. 12-17.

Aurum, A., Jeffrey, R., Wohlin, C., Handzic, M. Managing Software Engineering Knowledge, Springer Verlag,
Berlin, 2003.

Aversano, L., Esposito, R., Mallardo, T. e Tottorella, M. Supporting Decisions on the Adoption of Re-
engineering Technologies. Eighth European Conference on Software Maintenance and Reengineering,
Tampere, Finland, March 2004, pp. 95-104.

Bacha, F., Abed, M., Oliveira, K. Providing Personalized Information in Transport Systems: A Model Driven
Architecture Approach. First IEEE International Conference on Mobility, Security and Logistics in
Transport, Hammamet, Tunisia, June 2011d, pp. 452-459.

Bacha, F., Intégration de la personnalisation du contenu dans la conception et la génération des applications
interactives basée sur une approche MDA, Doctoral Thesis, University of Valenciennes, May 2013.

Bacha, F., Oliveira K., Abed M. Foundations of a Model Driven Engineering Approach for Human-Computer
Interface Focused on Content Personalization. The 11th IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design, and Evaluation of Human-Machine Systems, Valenciennes, France, September 2010.

Bacha, F., Oliveira, K., Abed, M. A model driven architecture approach for user interface generation focused on
content personalization. Fifth IEEE International Conference on Research Challenges in Information Science,
Guadeloupe - French West Indies, France, May 2011c, pp. 1-6.

Bacha, F., Oliveira, K., Abed, M. Context-Aware MDA Approach for Content Personalization in User Interface
Development. Diaz V.G., Lovelle J.M.C., Garcia-Bistelo B.C.P, Martinez O.S., Progressions and Innovations
in Model-Driven Software Engineering, IGI Global, 2013, pp. 88-105.

Bacha, F., Oliveira, K., Abed, M. Supporting models for the generation of personalized user interfaces with
UIML. Software Support for User Interface Description Language, UIDL'2011, Interact'2011 workshop,
Lisbon, Portugal, Septembre 2011b.

Bacha, F., Oliveira, K., Abed, M. Using Context Modeling and Domain Ontology in the Design of Personalized
User Interface. International Journal on Computer Science and Information Systems (IJCSIS), 6, 2011a, pp.
69-94.

Barcellos, M.P., Falbo, R.; Rocha, A.R. A Well-Founded Software Process Behavior Ontology to Support
Business Goals Monitoring in High Maturity Software Organizations, 14th IEEE International Enterprise
Distributed Object Computing Conference Workshops, Vitória, Brazil, October 2010, pp. 253-262.

Baresi, L., Di Nitto, E., Ghezzi, C., Toward Open-World Software: Issue and Challenges, Computer , v. 39, n.
10, , October 2006, pp. 36-43.

Basili V.R., Caldiera G., Rombach H.D. The Goal Question Metric Approach, Encyclopedia of Software
Engineering, Wiley, 1994a.

Basili, V., Caldiera, G.H. Rombach. D. The Experience Factory, Encyclopedia of Software Engineering, John
Wiley & Sons, 1994b, pp 469–76,

Basili, V., Costa, P., Lindval, M., Mendona, M., Seaman, C., Roseanne, T., Zelkowitz, M.. An experience
management system for a software engineering research organization. 26th Annual NASA Goddard Software
Engineering Workshop. NASA Goddard Space Flight Center, 2001.

Bennett, K.; Ramage, M.; Munro, M. Decision Model for Legacy Systems. IEE Proceedings Software, v. 146, n.
3, June 1999, pp. 153-159.

 References

 147

Berander P, Jönsson P. A goal question metric based approach for efficient measurement framework definition.
International Symposium on Empirical Software Engineering, Rio de Janeiro, Brazil, September 2006, pp.
316-325.

Bertoa, M., Vallecillo, A., An Ontology for Software Measurement. Ontologies for Software Engineering and
Software Tecnology ed.Heildelberg, Springer 2006, pp. 175-196.

Biggerstaff, T.J., Mitbander, B.G, Webster, D. Program understandingand the concept assignment problem,
Commun. ACM 37 (5), 1994, pp. 72–83.

Birk, A., Dingsoyr, T., Stalhane, T. Postmortem: Never Leave a Project Without It, IEEE Software, v. 19, n. 3,
2002, pp. 43-45.

Bjørnson, F.O., Dingsøyr, T. Knowledge management in software engineering: A systematic review of studied
concepts, findings and research methods used, Information and Software Tecnology, v. 50, n. 11, October
2008, pp. 1055-1068.

Booch, G., Rumbaugh, J., Jacobson, I. UML - Guia do usuário. Editora CAMPUS, 2000.

Bradbury, H. and Mainemelis, C. Learning history and organizational praxis. Journal of Management Inquiry,
10(4) , 2001, pp. 340–357.

Briand, L. C., Basili, V., Kim, Y., Squier, D. R. A Change Analysis Process to Characterize Software
Maintenance Projects. The International Conference on Software Maintenance, Victoria, Canada, September
1994, pp. 38-49.

Briand, L.C., Daly, J.W., Wust, J.K. A unified framework for coupling measurement in object-oriented systems,
IEEE Transactions on Software Engineering, v. 25, 1999, pp. 91-121.

Brito, M. C. A., Nóbrega, G.M., Oliveira, K. M. Integrating instructional material and teaching experience into a
teachers’ collaborative learning environment. European Conference on Technology Enhanced Learning.
Lecture Notes in Computer Science, n. 4227, Crete, Greece, October 2006, pp. 458-463.

Brito, M., Nóbrega, G.M., Oliveira, K. M. Capturando experiência docente para guiar o design instrucional
colaborativo e contínuo. XVI Simpósio Brasileiro de Informática na Educação, Juiz de Fora, Brazil, 2005,
pp. 147-157.

Brooke, C.; Ramage, M. Organisational scenarios and legacy systems. International Journal of Information
Management, 2001, pp. 365-384.

Brossard, A., Abed, M., Kolski, C. Taking context into account in conceptual models using a Model Driven
Engineering approach. Information and Software Technology, 53 (12), 2011, pp. 1349-1369.

Brown, A., Earl, A., McDermid, J., Software Engineering Environments: Automated Support for Software
Engineering; McGraw-Hill Book Company, 1992.

Calazans, A.T.S., Oliveira, K. M., Santos, R. Medição de Tamanho para Sistemas de Data Mart. III Simpósio
Brasileiro de Qualidade de Software, Brasília, Brazil, June 2004b, pp. 384-398.

Calazans, A.T.S., Oliveira, K. M., Santos, R. R. Adapting Function Point Analysis to Estimate Data Mart Size.
10th IEEE International Symposium on Software Metrics, Chicago, USA, September 2004a, pp. 300-311.

Caldwell, B., Cooper, M., Reider, L. G., Vanderheiden, G. Web Content Accessibility Guidelines 2.0: W3C
Candidate Recommendation 11, December 2008. (http://www.w3.org/TR/WCAG20/) (Accessed April 10,
2014)

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting with Computers, v. 15, n. 3, June 2003, pp. 289–
308.

Campo, M. Why CMMI maturity level 5?, CrossTalk, v. 25, 2012, pp. 15-18.

Cappiello, I., Puglia, S., Vitaletti, A. Design and Initial Evaluation of a Ubiquitous Touch-Based Remote
Grocery Shopping Process. International Workshop on Near Field Communication, Hagenberg, Austrian,
February 2009, pp. 9-14.

Carazza, A., Mello, W., Oliveira, K. M. Avaliação da Qualidade de Software: um estudo de caso. Workshop de
Qualidade, Rio de Janeiro, Brazil, June 2001, pp.183–188.

Card, S.K., Moran, T.P. and Newell, A. The Psychology of Human-Computer Interaction. Erlbaum, Hillsdale,
NJ, 1983.

Chandrasekaran, B., Josephson, J. R., Benjamins V. R. What Are Ontologies, and Why Do We Need Them?.
IEEE Intelligent Systems & their applications, v. 14, n. 1, 1999, pp. 20-26.

Chang, Y.-H., Lin, B.-S. An Inquiry-based Ubiquitous Tour System. International Conference on Complex,
Intelligent and Software Intensive Systems, Seoul, July 2011, pp. 17-23.

 References

 148

Charfi, S., Trabelsi, A., Ezzedine, H., Kolski, C. Widgets dedicated to user interface evaluation. International
Journal of Human-Computer Interaction, v. 30, n. 5, 2014, pp. 408-421.

Cheng, B.H.C., Lemos, R., et. al.: Software Engineering for Self-Adaptive Systems: A Research Roadmap.
Software Engineering for Self-Adaptive Systems, Springer Berlin Heidelberg, 2009, pp. 1-26.

Cherfi, S. S., Ayad, S., Comyn-Wattiau, I. Improving Business Process Model Quality Using Domain
Ontologies, Journal on Data Semantics, v. 2, 2013, pp. 75-87.

Chevalier, M. et Julien, C. Interface coopérative et adaptative pour la recherche d'information sur le web.
Chrisment, C., editeur: BDA, 2003.

Chrissis M, Konrad M, Shrum S. CMMI for development: guidelines for process integration and product
improvement. 2nd ed. Addison-Wesley, 2011.

Cockton, G., Woolrych, A., Lavery, D. Inspection-Based Evaluations. Sears, A. and Jacko, J. Human-Computer
Interaction: Development Process, CRC Press, 2009, pp. 274-292.

Comella-Dorda, S., Wallnau, K., Seacord, R., Robert, J. A Survey of Legacy System Modernization Approaches.
Technical Note CMU/SEI 2000-TN-003, April 2000.

Corrêa, G., Figueiredo, R., Oliveira, K. M., Araújo, José Marcelo Pereira de Diretrizes para a Melhoria da
Gerência e Desenvolvimento de Requisitos em uma Empresa de Software. Simpósio Internacional de
Melhoriade Processos de Software, São Paulo, Brazil, November 2004, pp.95 – 106.

Coulouris, G., Dollimore, J., Kindberg, T., Blair, G. Distributed Systems: Concepts and Design, Addison
Wesley, 2011.

Crispim, E., Calixto, I., Brito, M., Nóbrega, G.M., Oliveira, K. M. Um ambiente Web para a captura de
experiência docente baseado em Objetos de Aprendizagem e na colaboração: da concepção à prototipagem
VIII Simpósio Brasileiro de Informática na Educação, Sào Paulo, Brazil, 2007, pp. 318-327.

Cristal, M., Reis, J. Leveraging lessons learned for distributed projects through Communities of Practice.
International Conference on Global Software Engineering, Florianóplois, Brazil, October 2006, pp. 239-240.

Crosby, P.B., Quality is free, McGraw-Hill, New York, 1979.

D’Oliveira, F.M., Oliveira, K. M., Figueiredo, Adelaide. Priorização de Testes de Software: Uma abordagem
orientada ao cliente. Simpósio Brasileiro de Qualidade de Software, Fortaleza, Brazil, 2003, pp. 218-232.

Damián-Reyes, P., Favela, J., Contreras-Castillo, J. Uncertainty Management in Context-aware Applications:
Increasing Usability and User Trust. Wireless Personal Communications, 2011, v. 56, n. 1, pp. 37–53.

Davenport, T.H., Prisak, L. Working Knowledge: How Organizations Manage What They Know, Harvard
Business School Press, Boston, 1998.

De Lucia, A., Fasolino, A.R. e Pompelle, E. A Decisional Framework for Legacy System Management, 2001,
pp. 642-651.

De Marco, L., Ferrucci, F., Gravino, C., Sarro, F., Abrahao, S., Gomez, J. Functional versus design measures for
model-driven Web applications: A case study in the context of Web effort estimation. 3rd International
Workshop on Emerging Trends in Software Metrics, Zurich, Switzerland, June 2012, pp.21-27.

De Moor, K., Ketyko, I., Joseph, W., Deryckere, T., Marez. L., Martens, L., Verleye, G. Proposed Framework
for Evaluating Quality of Experience in a Mobile, Testbed-oriented Living Lab Setting. Mobile Networks
and Applications, v. 15, n. 3, 2010, pp. 378-391.

Delgado, A., Weber, B., Ruiz, F., Guzman, I.G., Piattini, M. An integrated approach based on execution
measures for the continuous improvement of business processes realized by services, Information and
Software Technology, vol 56, Issue 2, February 2014, pp 134-162.

Dias, M., Anquetil, N., Oliveira, K. M. Organizing the Knowledge Used in Software Maintenance. Journal of
Universal Computer Science, v. 9, 2003, pp.641-658.

Dingsøyr , T. Moe, N.B., Moe, N. Augmenting experience reports with lightweight postmortem reviews.
PROFES, Lecture Notes in Computer Science, n. 2188, Kaiserslautern, Germany, September 2001, pp.167-
181.

Dingsøyr, T. Conradi, R. A survey of case studies of the use of knowledge management in software
engineering. International Journal of Software Engineering and Knowledge Engineering, 12 (4), 2002, pp.
391–414.

Dixon, N.M. Common Knowledge: How Companies Thrive by Sharing What They Know. Harvard Business
School Press, 2000.

DOT, DOT/SSA/CT-91/1, Software Quality Metrics, US Department of Transportation, August 1991.

 References

 149

Doucet, A., Lumineau, N., Berrut, C., Denos, N., Rumpler, B., Rocacher, D., Boughanem, M., Soule-Dupuy, C.,
Mouaddib, N. et Kostadinov, D. Action Specifique sur la Personnalisation de l'Information. Groupe MRIM -
CLIPS-IMAG, 2004.

Dumas, J.S., Fox, J.E. Usability Testing: Current Practice and Future Direcstions. Sears, A., Jacko, J., Human-
Computer Interaction: Development Process, CRC Press, 2009, pp. 231-251.

Dupuy-Chessa, S., Oliveira, K.M, Si-Said Cherfi, S. Qualité des modèles : retour d’expériences.
INFORSID’2014, INFormatique des ORganisations et Systèmes d'Information et de Décision, Lyon, France,
May 2014. (accepted for publication).

Duran, R., Marinho, M., Figueiredo, R., Oliveira, K. M. Institucionalização da Gerência de Configuração no
Desenvolvimento de Software de uma Organização. VII Simposio Internacional de Melhoria de Processo de
Software, São Paulo, Brazil, Novembro 2005, pp. 60-85.

Emam, K. E., Drouin, J. N., Melo, W. SPICE – The Theory and Practice of Software Process Improvement and
Capability Determination, IEEE Computer Society, Edwards Brothers Inc., Estados Unidos, 1998.

Emam, K. The ROI from Software Quality, 1a ed.: Auerbach Publications, 2005.

Erdinc, O., Lewis, J.R. Psychometric Evaluation of the T-CSUQ: The Turkish Version of the Computer System
Usability Questionnaire. International Journal of Human and Computer Interaction, vol 29(5), 2013, pp. 319-
326.

Evers, V. et al. Interacting with Adaptive Systems. Interactive Collaborative Information Systems, Springer,
2010, pp. 299–325.

Fagan, M.E., Advances in Software Inspections, IEEE Transactions on Software Engineering, v. SE-12, n. 7,
July 1986, pp. 744-751.

Fenton, N., Pfleeger, S. Software Metrics A Rigorous & Practical Approach, 2nd. Ed., PWS Publishing
Company, 1997.

Ferreira, A.I.F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Rocha, A. R., Barreto, A. O. S, Silva Filho,
R. C. ROI of software process improvement at BL informática: SPIdex is really worth it, Software Process
Improvement and Practice, v. 13, 2008, pp. 311-318.

Fikes, R., Farquhar, A. Distributed Repositories of Highly Expressive Reusable Ontologies. IEEE Intelligent
Systems & their applications, v. 14, n. 2, March/April 1999, pp. 73-79.

Fink, M., Obendorf, H. Scenario-based usability engineering techniques in agile development processes. ACM -
CHI Extended Abstracts on Human Factors in Computing Systems, Florence, Italy, April 2008, pp. 2159-
2166.

Gabillon Y., Lepreux S., Oliveira K. Towards ergonomic User Interface composition: a study about information
density criterion. M. Kurosu, 15th International Conference on Human-Computer Interaction, HCI
International, Lecture Notes in Computer Science, Las Vegas, USA, July 2013, pp. 211-220.

Gabillon, Y., Petit, M., Calvary, G., and Fiorino, H. Automated planning for user interface composition. 2nd
International Workshop on Semantic Models for Adaptive Interactive Systems (SEMAIS'11) of the
International Conference on Intelligent User Interfaces, Palo Alto, CA, USA, 2011.

Galin, D. Software Quality Asssurance. Pearson Addison-Wesley, UK, Harlow, 2003.

Galinac, T. Empirical evaluation of selected best practices in implementation of software process improvement,"
Information and Software Technology, v. 51, 2009, pp. 1351-1364.

García, J., Amescua, A., Sanchez-M-I, Bermón, L., Design guidelines for software processes knowledge
repository development, Information and Software Technology, v. 53, issue 8, August 2011, pp. 834–850.

Garía-Barrios, V., Mödritscher, F. Gütl, C. Personalisation versus Adaptation? A User-centred Model Approach
and its Application. In: K. Tochtermann, & H. Maurer (eds.). International Conference on Knowledge
Management, Graz, Austria, 2005, pp. 120-127.

Glavinic, V., Ljubic, S., Kukec, M. A Holistic Approach to Enhance Universal Usability in m-Learning. The
Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies,
Valencia, Spain, September/October 2008, pp. 305-310.

Gomes, A., Machado, L. F., Oliveira, K. M., Rocha, A.R., Software Process Improvement Through
Measurement And Experts Judgement. The 3rd European Software Measurement Conference - (Federation
of European Software Metrics Associations), 2000.

Gomes, A., Oliveira, K. M., Rocha, A.R. Métricas para Medição e Melhoria de Processos de Software. 4o
Encontro de Qualidade nas Tecnologias de Informação e Comunicações, 2001b, Lisboa, Portugal, March
2001b, pp. 71- 78.

 References

 150

Gomes, A., Oliveira, K. M., Rocha, A.R., Avaliação de Processos de Software baseada em Medições. XV
Simposio Brasileiro de Engenharia de Software, Rio de Janeiro, RJ, October 2001a, pp. 84-99.

Grammenos, D., Akoumianakis, D., Stephanidis, C. Integrated support for working with guidelines: the Sherlock
guideline management system. Interacting with Computers, vol 12(3), 2000, pp. 281 – 311.

Gruber, T., 1993, A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, 5(2),
1993, pp. 199-220.

Grundstein, M. Three Postulates That Change Knowledge Management Paradigm, New Research on Knowledge
Management Models and Methods, Huei-Tse Hou (Ed.), InTech, 2012.

Guarino, N. Formal Ontology and Information System, In: Guarino, N. (ed.) Formal Ontology in Information
System, 3-15, IOS Press, 1998.

Haapalainen, E., Kim, S., Forlizzi, J. F., Dey, A. K. Psycho-Physiological Measures for Assessing Cognitive
Load. ACM International Conference on Ubiquitous computing, Copenhagen, Denmark, September 2010,
pp. 301-310.

Hagen P., Manning, H. Souza, R. Smart Personalization. Forrester Research, USA, 1999.

Hall, T., Fenton N. Implementing effective software metrics programs. IEEE Software, v. 14, n. 2, 1997, pp. 55-
65.

Hardin, M., Hom, D., Perez, R., Williams, L. Quel diagramme ou graphique vous convient le mieux? Copyright
Tableau Software, Inc. 2012.

Harris, K., Mcroy, L. Use a Health Check to Determine Your Application’s ‘Fitness for Duty. Gartner Research.
2006.

Harrison, R., Counsell, S.J., Nithi, R.V. An evaluation of the MOOD set of object-oriented software metrics.
IEEE Transactions on Software Engineering, v. 24, n. 6, 1998, pp. 491- 496.

Harrison, W., Cook, C. Insights on Improving the Maintenance Process Through Software Measurement.
Conference on Software Maintenance, San Diego, USA, November 1990, pp. 37-45.

Hassanein, K., Head, M. Ubiquitous Usability: Exploring Mobile Interfaces within the Context of a Theoretical
Model. Workshop on Ubiquitous Mobile Information and Collaboration Systems Workshop, The 15th
Conference on Advanced Information Systems Engineering (CAiSE), Klagenfurt/Velden, Austria, June
2003.

Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A. Vanderdonckt, J. Human-Centered
Engineering with the User Interface Markup Language. Seffah, A., Vanderdonckt, J., Desmarais, M. (eds.).
Human-Centered Software Engineering, Chapter 7, HCI Series, 2009, pp. 141-173.

Henderson-Sellers, B., Gonzalez-Perez, C., Mcbride, T., Low, G. An ontology for ISO software engineering
standards: 1) Creating the infrastructure. Journal on Computer Standards & Interfaces archive, v. 36, n. 3,
March 2014, pp. 563-576.

Henry, S. L. 2005. Introduction to Web Accessibility. http://www.w3.org/ WAI/intro/accessibility.php
(Accessed April 10, 2014).

Heravi, B.R., Lycett, M., Cesare, S. Ontology-based standards development: Application of OntoStanD to
ebXML business process specification schema. International Journal of Accounting Information Systems,
2014.

Holzinger, A. Usability Engineering Methods for Software Developers. Communications of the ACM, v. 48, n.
1, 2005, pp. 71-64.

Holzinger, A. Usability Engineering Methods for Software Developers. Communications of the ACM, v. 48, n.
1, January 2005, pp. 71-64.

Hornbæk, K., Høegh, R. T., Pedersen, M. B., Stage, J. Use Case Evaluation (UCE): A Method for Early
Usability Evaluation in Software Development. 11th International Conference on Human-Computer
Interaction, Rio de Janeiro, Brazil, September 2007, pp. 578-591.

Ianzen, A., Mauda, E.C., Paludo, M.A., Reunehr, S., Malucelli, Software process improvement in a financial
organization: An action research approach, Computer Standards & Interfaces, v. 36, issue 1, November 2013,
pp. 54–65.

IEEE, IEEE Std 610.12-1990 – IEEE Standard Glossary of Software Engineering Terminology, the Institute of
Eletrical and Electronics Engineers, USA, New York, 1990.

INFORSID, La recherche en systèmes d’information et ses nouvelles frontières. Ingénierie des Systèmes
d'Information, v. 17/3, 2012, pp. 9-68.

 References

 151

Ioannidis, Y. E., Koutrika, G. Personalized systems: Models and methods from an ir and db perspective. In
Bohm, K., Jensen, C. S., Haas, L. M., Kersten, M. L., Larson, P.A. and Ooi, B. C., editeurs, VLDB, 1365,
2005.

Iqbal, R. Sturm, J.A., Terken, J.M.B. Wang, C. User-centred design and evaluation of ubiquitous services. the
23rd annual international conference on Design of Communication: Documenting and Designing for
Pervasive Information, ACM SIGDOC, 2005, pp. 138-145.

ISO 9241-11. Ergonomic requirements for office work with visual display terminals - Part 11: Guidance on
Usability, 1998.

ISO 9241-171. Ergonomics of human-system interaction — Part 171: Guidance on software accessibility, 2008.

ISO 9241-151. Ergonomics of human-system interaction — Part 151: Guidance on world wide web user
interfaces, 2008.

ISO 9241-920:2009. Ergonomics of human-system interaction -- Part 920: Guidance on tactile and haptic
interactions, 2009.

ISO/IEC 12207. Systems and Software Engineering - Software Life Cycle Processes, 2008.

ISO/IEC 14598. Information Technology: Software Product Evaluation – Part 1: General Overview, 1999.

ISO/IEC 14764. Information technology – Software Maintenance. Technical Report 14764, Joint Technical
Commitee International Standards Organization/International Electrotechnique Commission, 1999.

ISO/IEC 15504-1. Information technology - Process assessment - Part 1: Concepts and Vocabulary, November
2004.

ISO/IEC 15504-2. Information technology — Process assessment — Part 2: Performing an assessment, October
2003.

ISO/IEC 15504-3. Information technology — Process assessment — Part 3: Guidance on performing an
assessment. January 2004.

ISO/IEC 15939. System and Software Engineering – Measurement Process, second edition, 2007.

ISO/IEC 25000. ISO/IEC FDIS 25000, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE), January 2005.

ISO/IEC 25022. Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — Measurement of quality in use, July 2012.

ISO/IEC 25023. Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — Measurement of system and software product quality, August 2011.

ISO/IEC 9126. Software engineering - Product quality - Part 1: Quality model, 2001.

ISO9000:2000. Systèmes de management de la qualité -- Principes essentiels et vocabulaire, Quality
management systems – Fundamentals and vocabulary, December, 2000.

Itaborahy, A., Oliveira, K. M., Santos, R. Value-Based Software Project Management: a business perspective on
software projects, 10th International Conference on Enterprise Information Systems, Bracelona, Spain, June
2008, pp. 218-225.

Itaborahy, A., Radis, E., Longhi, F., Oliveira, K. M., Figueiredo, R. Aplicação do método SCAMPI para
avaliação do processode gerenciamento de projetos de software numa instituiçãofinanceira. VII Simposio
Internacional de Melhoria de Processo de Software, São Paulo, Brazil, November 2005, pp.1-26.

Ivory, M. Y., Hearst, M. A. The state of the art in automating usability evaluation of user interfaces. ACM
Computing Surveys, v. 33, n. 4, December 2001, pp. 470-516.

Jafari, S., Mtenzi, F., O'Driscoll, C., Fitzpatrick, R., O'Shea, B. Privacy Metrics in Ubiquitous Computing
Applications. International Conference for Internet Technology and Secured Transactions (ICITST), London,
UK, November 2010, pp. 1-2.

Jermakovics, A., Scotto, M., Succi, G. Visual Identification of Software Evolution Patterns. Ninth international
workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting,
Dubrovnik, Croatia, 2007, pp. 27-30.

Ji, N. Continuous Quality Improvement (CQI) Model Based on Knowledge Management for Software
International Conference on Enterprise. Information Management, Innovation Management and Industrial
Engineering, Shenzhen, China, November 2011, pp. 247-251.

Jia, L., Collins, M., Nixon, P. Evaluating Trust-Based Access Control for Social Interaction. International
Conference on Mobile Ubiquitous Computing, Systems, Services, and Technologies, Sliema, Malta, October
2009, pp. 277-282.

Juran, J.M., Godfrey, A.B. Juran’s Quality Control Handbook, McHraw-Hill, New York, 1990.

 References

 152

Kallepalli, C., Tian, J., Measuring and modeling usage and reliability for statistical Web testing. IEEE
Transactions on Software Engineering, v. 27, n. 11, November 2001, pp.1023-1036.

Kaplan, R.S, Norton, D. P. The Balanced Scorecard: measures that drive performance. Harvard Business
Review, January/February 1992, pp. 71–80.

Kayed, A. Hirzalla, N. Samhan, A.A. Alfayoumi, M. Towards an Ontology for Software Product Quality
Attributes. Fourth International Conference on Internet and Web Applications and Services, Venice/Mestre,
Italy, May 2009, pp. 200-204.

Kemp, E. A., Thompson, A-J., Johnson, R. S. Interface Evaluation for Invisibility and Ubiquity: An Example
from E-learning. 9th ACM SIGCHI New Zealand Chapter's International Conference on Human-Computer
Interaction: Design Centered HCI, 2008, pp. 31-38.

Kerzazi, N., Lavallée, M. Inquiry on usability of two software process modeling systems using ISO/IEC 9241.
24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, Canada, May
2011, pp. 773-776.

Khoshgoftaar, T.M., Allen, E.B., Halstead, R., Trio, G.P., Flass, R.M. Using process history to predict software
quality, Computer, v. 31, n. 4, April 1998, pp. 66-72.

Khurshid, N., Bannerman, P. L. and Staples, M. Overcoming the first hurdle: Why organizations do not adopt
CMMI. International Conference on Software Process, Lecture Notes in Cumputer Science, n. 5543,
Vancouver, Canada, May 2009, pp. 38-49.

Kim, G., Lee, M., Lee, J., Lee, K., Design of SPICE experience factory model for accumulation and utilization
of process assessment experience. Third ACIS International Conference on Software Engineering Research,
Management and Applications, 2005, August 2005, pp. 368-374.

Kim, H. J., Choi, J. K., JI, Y. Usability Evaluation Framework for Ubiquitous Computing Device. 3rd
International Conference on Convergence and Hybrid Information Technology, Busan, South Korea,
November 2008, pp. 164-170.

Kindberg, T., Fox, A. System software for ubiquitous computing. IEEE Pervasive Computing, v. 1, issue 1,
January/March 2002, pp. 70-81.

Kitchenham, B., Dyba, T., Jorgensen, M. The value of mapping studies – A participant-observer case study. In
14th International Conference on Evaluation and Assessment in Software Engineering, Keele, UK, April
2010, pp. 1-9.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.; Rosenberg, J.,
Preliminary guidelines for empirical research in software engineering, IEEE Transactions on Software
Engineering, v. 28, n. 8, August 2002, pp.721-734

Kitchenham, K., Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering.
EBSE Technical Report, 2007.

Kleiner, A., and Roth, G.L. Learning about Organizationl Learning – Creating a Learning History. MIT Center
for Organizational Learning, 1995.

Knight, J. and Myers, E.A. Improved inspection technique, Communications of the ACM, 1993, pp. 51- 61.

Ko, I.-Y., Koo, H.-M. Jimenez-Molina, A. User-centric Web Services for Ubiquitous Computing. Advanced
Techniques in Web Intelligence, Springer, 2010, pp. 167–189.

Kobsa, A. Generic user modeling systems. User Modeling and User-Adapted Interaction, 11(1), 2001, pp. 49-63.

Kolski, C., Ezzedine, H, Gervais, M.P, Oliveira, K.M., Seffah, A. Evaluation des SI; Besoins en méthodes et
outils provenant de l’ergonomie et de l’IHM, INFORSID’2012, INFormatique des ORganisations et
Systèmes d'Information et de Décision, Montpellier, France, May 2012, pp. 395-410.

Kolski, C., Uster, G., Robert, J., Oliveira, K., David, B. Interaction in mobility: the evaluation of interactive
systems used by travellers in transportation contexts. International Conference, HCI International, Lecture
Notes in Computer Science, n. 6763, Orlando, USA, July 2011, pp. 301-310.

Koskinen, J., Ahonen, J., Sivula, H., Tilus, T, Lintinen, H. e Kankaanpaa, I. Software Modernization Decision
Criteria: An Empirical Study. Ninth European Conference on Software Maintenance and Reengineering,
Manchester, UK, March 2005, pp. 324-331.

Kosloski, R.A., Oliveira, K. M. An Experience Factory to Improve Software Development Effort Estimates. 6th
International Conference Product Focused Software Process Improvement, Lecture Notes in Computer
Science, n. 3597, Oulu, Finland, June 2005, pp. 560-573.

Kosloski, R.A.D., Oliveira, K. M. Melhoria Contínua de Estimativa de Esforço para o Desenvolvimento de
Software: Uma Abordagem sobre Produtividade. V Simpósio Brasileiro de Qualidade de Software, Vila
Velha, Brazil, June 2006, pp. 409-423.

 References

 153

Kourouthanassis, P. E., Giaglis, G. M., Karaiskos, D. C. Delineating the Degree of Pervasiveness in Pervasive
Information Systems: An assessment framework and design implications. Pan-Hellenic Conference on
Informatics, Samos, Grece, August 2008, pp. 251-255.

Kroeger, T.A., Davidson, N.J., Cook, S.C., Understanding the characteristics of quality for software engineering
processes: A Grounded Theory investigation. Information and Software Technology, vol 56, issue 2, pp. 252-
271, February 2014.

Kryvinska, N., Strausss, C., Zinterhof, P. Variated Availability Approach to the Services Manageable
Delivering. Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), Seoul, Korea, June/July 2011, pp. 106-113.

Kubicki S., Lebrun Y., Lepreux S., Adam E., Kolski C., Mandiau R. Simulation in Contexts Involving an
Interactive Table and Tangible Objects. Simulation Modelling Practice and Theory, 31, 2013, pp. 116–131.

Kubicki, S., Lepreux, S., Kolski ,C. RFID-driven situation awareness on TangiSense, a table interacting with
tangible objects. Personal and Ubiquitous Computing, 16 (8), 2012, pp. 1079-1094.

Kumari, K.A., Saranya, K., Babu, B., Sathasivam, G.S., Ontology for semantic web using personalization,
International Conference on Advances in Engineering, Science and Management, Nagapattinam, Tamil
Nadu, March 2012, pp.688-693.

Lazić, L., Mastorakis, N. E., Software economics: Quality-based return-on-investment model, Iasi, 2010, pp. 25-
39.

Leão, P.R., Oliveira, K. M., Moresi, E.. Ontologia para gestão de competências dos profissionais em Tecnologia
da Informação. IV Jornadas Iberoamericanas en Engenieria del Softfware e Ingenieria del Conocimento,
2004, v. 2, pp. 651-655.

Lee, J., Song, J., Kim, H., Choi, J. Yun, M.H. A User-Centered Approach for Ubiquitous Service Evaluation: An
Evaluation Metrics Focused on Human-System Interaction Capability. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), n. 5068,
2008, pp. 21–29.

Lee, J., Yun, M. H.: Usability Assessment for Ubiquitous Services: Quantification of the Interactivity in Inter-
personal Services. International Conference on Management of Innovation and Technology, Sanur, Bali,
June 2012, pp. 718-724.

Lehaney, B., Clarke, S., Coakes, E., Jack, G. Beyond Knowledge Management. Hershey: Idea Group Publishing.
2004.

Lepreux S., Vanderdonckt J., Kolski C. User Interface Composition with UsiXML. Faure D., Vanderdonckt J.,
Workshop on User Interface Extensible Markup Language UsiXML, Berlin, Germany, June 2010, pp. 141-
151.

Lepreux, S., Vanderdonckt, J., and Michotte, B. Visual Design of User Interfaces by (De)composition. 13th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-IS'2006, G. Doherty, A.
Blandford (eds.). Lecture Notes in Computer Science, n. 4323, Sublin, Ireland, July 2006, pp.157-170.

Lethbridge, T. C., Sim, S. E., Singer, J. Software Anthropology: Performing Field Studies in Software
Companies. Consortium for Software Engineering Research (CSER), 1996.

Lewis, J.R. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for
use. International Journal of Human Computer Interaction, vol (7), 1995, pp. 57–78.

Liampotis, , Roussaki, I., Papadopoulou, E., Abu-Shaaban, Y., Williams, M.H., Taylor, N.K., McBurney, S.M.,
Dolinar, K. A privacy framework for personal self-improving smart spaces. 2th IEEE International
Conference on Computational Science and Engineering, Vancouver, Canada, August 2009, pp. 444-449.

Lima, R., Sampaio, F., Oliveira, K. M., Rocha, A.R. Evaluating Web Sites For an Educational Environment
Target For Cardiology. The 3rd European Software Measurement Conference - Federation of European
Software Metrics Associations, 2000.

Lima, S., Lima, F., Oliveira, K. M. Evaluating the Accessibility of Websites to Define Indicators in Service
Level Agreements, 11th International Conference on Enterprise Information Systems, Milan, Italy, May
2009, pp. 858-869.

Lima, S., Lima, F., Oliveira, K.M., Towards Metrics for Web Accessibility Evaluation. International Workshop
on Design & Evaluation of e-Government Applications and Services, Rio de Janeiro, Brazil, 2007.

Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A. End-user programming of mashups with vegemite. 14th
ACM international conference on Intelligent user interfaces, Florida, USA, February 2009, pp. 97-106.

Lindvall, M., Rus, I., Jammalamadaka, R., Thakker, R. Software Tools for Knowledge Management. Technical
Reports, DoD Data Analysis Center for Software, Rome, NY, 2001.

 References

 154

Lu, H. A software testing framework for context-aware applications in pervasive computing, Doctoral Thesis,
University of Hong Kong, Hong kong. 2009

Luna, E. R., Panach, J. I., Grigera, J., Rossi, G., Pastor, O. Incorporating usability requirements in a test/model-
driven web engineering approach. In Journal of Web Engineering, 9, 2010, pp. 132-156.

Macedo, C. C., Lima, S., Rocha, A.R., Natali, A.C., Oliveira, K. M., Mian, P., Barreto, A., Barreto, A., Santos,
G., Conte, T. Implantação de Melhoria de Processos de Software no Tribunal Superior Eleitoral. V Simpósio
Brasileiro de Qualidade de Software, Vila Velha, Brazil, June 2006, pp. 351-358.

Machado, L. F., Oliveira, K. M., Rocha, A.R. Modelo para Definição de Processos de Software baseado na
ISO/IEC12207, em Modelos de Maturidade e Características do Projeto. Terceiro Workshop Ibero-americano
de Engenharia de Requisitos e Ambientes de Software, Cancun, Mexico, April 2000b, pp.73-84.

Machado, L. F., Oliveira, K. M., Rocha, A.R. Using Standards And Maturity Models For The Software Process
Definition. 4th International Software Quality Week Europe, Brussels, Belgium, November 2000a.

Mahatody, T., Sagar, M., Kolski, C. State of the Art on the Cognitive Walkthrough method, its variants and
evolutions. International Journal of Human-Computer Interaction, 26 (8), 2010, pp. 741-785

Maidantchick, C., Oliveira, K. M., Vidal, H., Masiero, M. L. Applying Management Model and Ontology on a
Telecommunication Company. 13th International Conference Software & Systems Engineering and their
Applications, Paris, France, November 2000.

Marinho, F.G., Andrade, R. M. C., Werner, C. , Viana, W. Maia, M. E. F. Rocha, L. S. Teixeira, E. Filho, J. B.
F. Dantas, V. L. L. Lima, F. , Aguiar, S. MobiLine: A Nested Software Product Line for the domain of
mobile and context-aware applications. Science of Computer Programming, v. 78 (2), December 2013, pp.
2381-2398.

Mayhew, D.J. The Usability Engineering Lifecycle: A Practitioner's Handbook for User Interface Design,
Morgan Kaufman Publishers, 1999.

Mayr, A., Plosch, R., Klas, M., Lampasona, C., Saft, M., A Comprehensive Code-Based Quality Model for
Embedded Systems: Systematic Development and Validation by Industrial Projects. 23rd IEEE International
Symposium on Software Reliability Engineering, Dallas, USA, November 2012, pp.281-290.

McGarry J, Card D, Jones C, Layman B, Clark E, Dean J, Hall F. Practical Software Measurement: objective
information for decision makers. 1st ed. Addison-Wesley: Boston, 2002.

McGibbon, T., Nicholls, D. Making the (Business) case for software reliability, Seattle, WA, 2002, pp. 285-292.

Melo, A. M., Baranauskas, M.C.C., and Bonilha, F.F.G. Avaliação de Acessibilidade na Web com a Participação
do Usuário: Um Estudo de Caso. Simpósio Sobre Fatores Humanos em Sistemas Computacionais, Curitiba,
Brazil, October 2004, pp. 181-184.

Mnasser, H., Khemaja, M., Oliveira, K., Abed, M. A public transportation ontology to support user travel
planning, 4th International Conference on Research Challenges in Information Systems, Nice, France, May
2010, pp. 127-186.

Molina, F., Toval, A. Integrating usability requirements that can be evaluated in design time into Model Driven
Engineering of Web Information Systems. Journal Advances in Engineering Software, Oxford, 40, 2009, pp.
1306-1317.

Molina, J.P., Vanderdonckt, J., Montero, F., González, P. Towards Virtualization of User Interfaces based on
UsiXML. Web3D 2005 Symposium, 10th International Conference on 3D Web Technology, Bangor, UK,
March-April 2005, pp. 169-178.

Monteiro L., Oliveira K.M. Defining a catalog of indicators to support process performance analysis. Journal of
Software Maintenance and Evolution: Research and Practice, vol 23, Issue 6, 2011, pp. 395-422.

Montoni, M., Rocha, A.R, Weber, K. MPS.BR: a successful program for software process improvement in
Brazil, Software Process: Improvement and Practice, vol 14, issue 5, September 2009, pp. 289-300.

Muller, N. J. Managing Service Level Agreements. International Journal of Network Management. v. 9, n. 3,
May–June 1999, pp. 155-166.

Myers, B. Engineering more natural interactive programming systems: keynote talk. 1st ACM SIGCHI
symposium on Engineering interactive computing systems, EICS, Pittsburgh, USA, July 2009, pp. 1-2.

Myers, G.J. The Art of Software Testing. John Wiley & Sons, Inc., Hoboken, New Jersey, 2n edition, 2004.

Nascimento, A. A., Knoth, C. R., Fagundes, J. S., Figueiredo, R., Oliveira, K. M. Aplicações de Práticas
Selecionadas do Nível 2 do Modelo eSCM-SP v2 em um Órgão da Administração Pública Federal Brasileira.
5th Conference for Quality in Information and Communications Tecnhology, Porto, Portugal, October 2004,
pp.153-159.

 References

 155

Nery, A., Bandeira, L., Lima, F., Oliveira, K. M. Qualidade de Software aplicada à navegabilidade na Web.
Simpósio Brasileiro de Sistemas Multimídia e Web, Natal, Brazil, November 2006.

Nielsen, J. Heuristic evaluation, Jakob Nielsen, Mack, R. L. (eds), Usability inspection methods, Heurisitic
Evaluation, New York, NY, John Wiley & Sons, Inc, 1994.

Nielsen, J. Usability engineering, Boston, Academic Press, 1993.

Nikov, A., Vassileva, S., Angelova, S. ,Tzvetanova, Stoeva, S. WebUse: An approach for web usability
evaluation. 3rd Symposium on Production Research, Istanbul, Turkey, 2003, pp. 511-518.

Nonaka, I., and Takeuchi, H. The Knowledge-Creating Company, Oxford University Press, 1995.

OCG, Office for Government Commerce. ITIL – The Key to Manage IT Services: Service Delivery – Version
1.2; Crow, 2001.

Oliveira K., Thion V., Dupuy-Chessa S., Gervais M., Si-Said Cherfi S., Kolski C. Limites de l'évaluation d'un
système d'information : une analyse fondée sur l'expérience pratique. INFORSID, INFormatique des
ORganisations et Systèmes d'Information et de Décision, Montpellier, France, May 2012, pp. 411-427.

Oliveira, K. New Research Challenges for User Interface Quality Evaluation. Conference Internationale
Francophone sur I'Interaction Homme-Machine, Luxembourg, Septembre 2010, pp. 145-148.

Oliveira, K. M., Gallota, C., Menezes, C., Travassos, G.H, Rocha, A.R. Defining and Building Domain-Oriented
Software Development Environments. 12th International Conference Software & Systems Engineering and
their Applications, Paris, France, November 1999b.

Oliveira, K. M., Menezes, C., Travassos, G.H, Rocha, A.R. Using Domain-Knowledge in Software Development
Environments. Software Engineering and Knowledge Engineering, Kaiserslautern, Germany, June 1999a, pp.
180-187.

Oliveira, K. M., Model for the construction of Domain-Oriented Software Development Environments, Doctoral
Thesis, Federal University of Rio de Janeiro, October 1999.

Oliveira, K. M., Rabelo Jr, A., Rocha, A.R., Souza, A., Ximenes, A., Andrade, C., Asanome, C., Onnis, D.,
Olivaes, I., Lobo, N., Ferreira, N., Werneck, V. An Experience of Software Quality Assurance for an Expert
System in Cardiology. 2nd Medical Engineering Week of the World, Taipei, China, May 1996.

Oliveira, K. M., Villela, K., Rocha, A., Travassos, G.H. Use of Ontologies in Software Development
Environments. Ontologies for Software Engineering and Software Technology, ed. Heidelberg: Springer, v.1,
2006, pp. 275-309.

Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Gallota, C., Menezes, C. Domain-oriented software
development environment. Journal of Systems and Software, v. 172, 2004, pp.145-161.

Oliveira, K., Rosenthal-Sabroux, C. Numéro spécial Évaluation des Systèmes d'information, Ingénierie des
systèmes d'information (ISI), 18 (3), Hermes, Paris, ISBN 1633-1311, 2013.

Oliveira, K.M., Bacha, F., Mnasser, H., Abed, M. Transportation Ontology Definition and Application for the
Content Personalization of User Interfaces. Expert Systems with Applications, 40 (8), 2013, pp. 3145-3159.

Olsina, L., Rossi, G., Measuring Web application quality with WebQEM, IEEE MultiMedia, v. 9, n.4, October-
December 2002, pp. 20-29.

OMG, Model-Driven Architecture Guide Version 1.0.1. 2003.

Orenyi, B. A., Basri, S., Jung, L.T. Object-Oriented Software Maintainability Measurement in the past Decade.
International Conference on Advanced Computer Science Applications and Technologies, Kuala, Lumpur,
November 2012, pp. 257-262.

Page-Jones, M., Structured system design, Prentice Hall, 2nd edition, 1988.

Palomäki, J., Keto, H. A Process-Ontological Model for Software Engineering, 18th Conference on Advanced
Information Systems Engineering - Trusted Information Systems, Workshops and Doctoral Consortium,
Luxembourg, June 2006, pp. 720-726.

Panach, J. I., Condori-Fernández, N., Vos, T. E. J., Aquino, N., Valverde, F. Early Usability Measurement in
Model-Driven Development: Definition and Empirical Evaluation, International Journal of Software
Engineering and Knowledge Engineering, v. 21, n. 3, 2011, pp. 339-365.

Panach, J. I., Juzgado, N. J., Pastor, O. Including functional usability features in a model-driven development
method. Computer Science and Information System Journal, v.10, n.3, 2013, pp. 999-1024.

Papazoglou, M. P. Service-oriented computing: Concepts, characteristics and directions. Fourth International
Conference on Web Information Systems Engineering, December 2003, pp. 3-12.

Parasuraman, A., Zeithaml, V.A., Berry, L.L. SERVQUAL: A Multiple-Item Scale for Measuring Consumer
Perceptions of Service Quality. Journal of Retailing, v. 64, n. 1, 1988, pp. 12-40.

 References

 156

Park R.E., Goethert W.B. e Florac W.A. Goal Driven Software Measurement – a Guidebook, CMU/SEI-96-BH-
002, Software Engineering Institute, Carnegie Mellon University, August 1996.

Paterno, F., Mancini, C., Meniconi, S. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models,
INTERACT '97, International Conference on Human-Computer Interaction, Sydney, Australia, July 1997,
pp. 362-369.

Pearse, T. Oman, P. Maintainability measurement on industrial source code maintenance activities, International
Conference on Software Maintenance, Opio, France, October 1995, pp. 295-303

Peixoto, D.C.C., Bastista, V. A., Resende, R. F. and Pádua, C. I. P. S. A case study of Software Process
Improvement implementation, Redwood City, CA, 2010, pp. 716-721.

Pfleeger, S. L. Software Engineering: Theory and Practice. 2nd Edition. New- Jersey: Prentice Hall, 2001.

Pigoski, T.M. Practical Software Maintenance: Best Practices for Software Investment, John Wiley & Sons, Inc.,
1996.

Pinna-Dery, A. M., Fierstone, J., Picard E. Component model and programming: a first step to manage human
computer interaction adaptation. 5th International Symposium on Human- Computer Interaction with Mobile
Devices and Services (Mobile HCI), Lecture Notes in Cumputer Science, n. 2795, Udine, Italy, September
2003, pp. 456-446.

Pino, F., Pardo, C., García, F., Piattini. Assessment methodology for software process improvement in small
organizations. Information and Software Technology, v. 52, n.10, October, 2010, pp 479-500.

Polany, Sense-giving and sense-Reading. Journal of the Royal Institute of Philosophy, v. 42, n. 162, 1967, pp.
301-323.

Polson, P., Lewis, C., Rieman, J., & Wharton, C. Cognitive Walkthrough: A method for theory-based evaluation
of user interface. International Journal of M Polson an-Machine Studies, 36, 1992, pp. 741–773.

Popovici D., Desertot M., Lecomte S., Delot T. A framework for mobile and context-aware applications applied
to vehicular social networks. Journal of Social Network Analysis and Mining, Springer, 2012.

Porto, D., Souza, L., Martinez, M., Anquetil, N., Oliveira, K. M. Avaliação da Confiabilidade de um Software
utilizando Aspectos. V Simpósio Brasileiro de Qualidade de Software, Vila Velha, Brazil, June 2006, pp.
334-342.

Poslad, S. Ubiquitous Computing Smart Devices, Smart Environments and Smart Interaction. Wiley. 2009.

Pranata, I., Athauda, R., Skinner, G. Determining Trustworthiness and Quality of Mobile Applications, Mobile
Wireless Middleware, Operating Systems, and Applications. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, v. 65, 2013, pp. 192-206.

Probst, G,; Raub, S., Romhardt, K. Managing knowledge: building block for success. Jonh Wiley & Sons. 2000.

Queiroz, A., Anquetil, N. Oliveira, K.M. Avaliação pró-ativa da deterioração de sistemas de informação por
meio de medidas de gestão, Revista de Informática Téorica e Aplicada, v. 16, n. 1, 2009, pp. 45-68.

Rabelo Jr, A., Rocha, A.R., Oliveira, K. M., Ximenes, A., Souza, A., Andrade, C., Onnis, D., Lobo, N., Ferreira,
N., Werneck, V. An Expert System for the Diagnosis of Acute Myocardial Infarction with EKG Analysis.
Artificial Intelligence in Medicine, v. 1, 1997, pp. 75-92.

Ramos C., Oliveira K. M., Rocha A. Towards a strategy for analysing benefits of Software Process Improvement
programs. The 25th International Conference on Software Engineering and Knowledge Engineering, Boston,
USA, June 2013.

Ramos, C. S., Oliveira, K. M., Anquetil, N. Legacy Software Evaluation Model for Outsourced Maintainer. 8th
IEEE European Conference on Software Maintenance and Reengineering, Tampere, Finland, March 2004,
pp. 48-57.

Ramos, C., Oliveira, K. M., Rocha, A. Uma Abordagem para Análise de Retorno sobre Investimentos em
Programas de Melhoria de Processos de Software. WAMPS, Workshop Anual do MPS.BR, Campinas,
Brazil, October 2012, pp. 43-54.

Ramos, C.S., Oliveira, K. M., Anquetil, N. Avaliação de Sistemas Legados. IV Simpósio Brasileiro de
Qualidade de Software, Porto Alegre, Brazil, June 2005, pp. 139-144.

Ranganathan, A., Al-Muhtadi, J., Biehl, J., Ziebart, B., Campbell, R.H., Bailey, B. Towards a Pervasive
Computing Benchmark. International Conference on Pervasive Computing and Communications Workshops,
Kauai Island, USA, March 2005, p. 194-198.

Ransom, J., Sommerville, I. e Warren, I. A method for assessing legacy systems for evolution. 2nd Euromicro
Conference on Software Maintenance and Reengineering, Florence, Italy, March 1998, pp. 128-134.

 References

 157

Rico, D.F. ROI of Software Process Improvement: Metrics for Project Managers and Software Engineers: J.
Ross Publishing, Inc, 2004.

Rising, L., Patterns in postmortems, 23rd IEEE Annual International Computer Software and Applications
Conference, Phoenix, USA, October 1999, pp. 314–315.

Rocha, C., Oliveira, K. M., Rocha, A.R., Montoni, M., Timbo, A., Sampaio, L. C., Rabelo Jr., A. CardioSurgery:
An Environment to Support Surgical Planning and Follow-up in Cardiology. WebNet - World Conference on
the WWW and Internet, San Antonio, USA, 2000, pp. 459-463.

Rocha, L.S., Filho, J. B. F., Lima, F.F.P., Maia, M.E.F., Viana, W., Castro, M.F., Andrade, R.M.C. Past, Present,
and Future Perspectives on Ubiquitous Software Engineering. Journal of Systems and Software, 2012.

Ross, T.; Burnett, G. Evaluating the Human–Machine Interface to Vehicle Navigation Systems as An Example
of Ubiquitous Computing. International Journal of Human-Computer Studies, v. 55, n. 4, October 2001, pp.
661–674.

Rubio, J. M. L., Bozo, J. P. Approach to a Quality Process for the Ubiquitous Software Development.
Electronics, Robotics and Automotive Mechanics Conference, Morelos, Mexico, September 2007, pp. 701-
705.

Rus, M. Lindvall, M. Knowledge management in software engineering, IEEE Software. 19 (3), 2002, pp. 26–38.

Santos R., Oliveira K., Andrade R., Santos I., Lima E. A Quality Model for Human-Computer Interaction
Evaluation in Ubiquitous Systems. 6th Latin American Conference on Human Computer Interaction, Lecture
Notes in Cumputer Science, n. 8278, Guanacaste, Costa Rica, December 2013, pp. 63-70.

Santos, R. P. Dos, Oliveira K. M. De, Silva, W. P. da., Evaluating the Service Quality of Software Providers
appraised in CMM/CMMI, Software Quality Journal, Springer Verlag, v. 17 (3), September 2009, pp. 283-
301.

Santos, R. P., Oliveira, K. M., Silva, W. P. Percepção dos Clientes sobre a Qualidade do Serviço de Provedores
Formalmente Avaliados nos Modelos CMM/CMMI. Simpósio Brasileiro de Qualidade de Software,
Fortaleza, Brazil, Junho 2007, pp. 203-217.

Santos, R. P., Souza, S. M., Lima, S. T., Oliveira, K. M., Figueiredo, R., Knoth, C. R. Definição de SLA para
Processos de Testes de Software - Um estudo de caso em unidade de teste de integração de sistemas. 5th
Conference for Quality in Information and Communications Tecnhology, Porto, Portugal, October 2004, pp.
127-134.

Santos, R., Caracteísticas e Medidas de Software para a Avaliação da Qualidade da Interação Humano-
Computador em Sistemas Ubíquos, Masters Report, Federal Universy of Ceará, February 2014.

Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE Personal Communications, v. 8, 2001,
pp. 10-17.

Sauro, J., Kindlund E. A method to standardize usability metrics into a single score. ACM-CHI conference on
Human Factors in Computing Systems, Portland, USA, April 2005, pp. 401-409.

Sayeb, K, Rieu, D., Mandran N, Dupuy-Chessa. S. Qualité des langages de modélisation et des modèles : vers un
catalogue des patrons collaboratifs. INFORSID, INFormatique des ORganisations et Systèmes d'Information
et de Décision, Montpellier, France, May 2012, Montpellier, France, 2012, pp. 429-446.

Scapin, D.L. and Bastien, J.M.C. Ergonomic criteria for evaluating the ergonomic quality of interactive systems.
Behaviour & Information Technology, v. 16, n.4, 1997, pp. 220-231.

Schalkwyk, J., Beeferman, D.m Beaufays, F., Byrne, B. et al. "Your Word is my Command": Google Search by
Voice: A Case Study. Advances in Speech Recognition, Springer, 2010, pp. 61–90.

Scholtz, J.; Consolvo, S. Toward a Framework for Evaluating Ubiquitous Computing Applications. IEEE
Pervasive Computing, v. 3, n. 2, April 2004, pp. 82-88.

Scott, L., Jeffery, R., Carvalho, L., D'Ambra, J., Rutherford, P. Practical software process improvement - the
IMPACT project. Australian Software Engineering Conference, Camberra, Australie, August 2001, pp. 182-
189.

Seacord, Robert C., Plakosh, Daniel, Lewis, Grace A. Modernizing Legacy Systems: Software Technologies,
Engineering Processes, and Business Practices, Addison-Wesley, 2003.

Sears, A. Layout Appropriateness: A Metric for Evaluating User Interface Widget Layout. IEEE Transaction on
Software Engineering, n. 19, July 1993, pp. 707-719.

Sears, A., Jacko, J. Human-Computer Interaction: Development Process, CRC Press, 2009.

Seffah, A., Donyaee, M., Kline, R. Padda, H. Usability measurement and measures: A consolidated model,
Software Quality Journal, v. 14, 2006, pp. 159–178.

 References

 158

SEI – Software Engineering Institute. CMMI® for Development, Version 1.3. 2010.

Senge, P., Kleiner, A., Roberts, C., Ross, R., Roth, G. Smith, B.. The dance of change: the challenges of
sustaining momentum in learning organizations. Nicholas Brealey Publishing, London, 1999.

Simonin J., Carbonell N. Interfaces adaptatives : adaptation dynamique à l’utilisateur courant. In Saleh, I. and
Regottaz, D., Interfaces numériques, Paris : Hermes Lavoisier (coll. Information, hypermédias et
communication), 2006.

Sneed, H. Planning the reengineering of legacy systems. IEEE Software, v. 12, n. 1, 1995, pp. 24-34.

SOFTEX, Melhoria de Processo do Software Brasileiro – Guia Geral MPS de Software, (editors: Souza, G.S.;
Rocha, A. R.; Machado, C.A.F.), August 2012.

SOFTEX, Melhoria de Processo do Software Brasileiro – Guia Geral MPS de Software, (editors: Oliveira, K.M.,
Rouiller, A.C, Rocha, A.R.), 2006.

Solingen, R. van, Berghout, E.. The Goal/Question/Metric Method: A practical guide for quality improvement of
software development. McGraw-Hill, 1999.

Sottet, J-S., Calvary, G., Coutaz, J., Favre, J-M. A Model-Driven Engineering Approach for the Usability of
Plastic User Interfaces, ACM SIGCHI symposium on Engineering interactive computing systems EICS,
2007, Lecture Notes in Cumputer Science, n. 4940, 2008, pp. 140-157.

Sousa, B., Pentikousis, K., Curado, M. UEF: Ubiquity Evaluation Framework. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ,
n. 6649, 2011, pp. 92–103.

Sousa, K.D, Anquetil, N., Oliveira, K.M. Learning software maintenance organizations, in: Grigori Melnik,
Harald Holz (Eds.), Advances in Learning Software Organizations – 6th International Workshop, LSO 2004,
Lecture Notes in Cumputer Science, n. 3096, June 2004, pp. 67–77.

Sousa, M., Sândi, V.T., Oliveira, K. M., Figueiredo, R. Processo de Aquisição de Produtos e Serviços de
Softwarepara uma Instituição Bancária. VII Simposio Internacional de Melhoria de Processo de Software,
São Paulo, Brazil, November 2005, pp. 37-53.

Souza, K.D., Anquetil, N., Oliveira, K. M. Learning Software Maintenance Organizations. International
Workshop on Learning Software Organizations, Lecture Notes in Cumputer Science, n. 3096, Banff, Canada,
June 2004, pp. 67-77.

Souza, K.D., Oliveira, K. M., Anquetil, N. Aplicação do GQM para Avaliação de Processo de Manutenção de
Software. III Jornadas Iberoamericana de Ingenieria del Software e Ingenieria del Conocimento, 2003, pp.
65-74.

Souza, S. C. B., Anquetil, N., Oliveira, K. M. Which documentation for software maintenance? Journal of the
Brazilian Computer Society, v. 3, 2007, pp. 31-44.

Souza, S.C.B., Anquetil, N., Oliveira, K. M.A Study of the Documentation Essential to Software Maintenance.
International Conference on Design of Communication (SIGDOC), Conventry, Engalnd, September 2005,
pp. 68–75.

Stålhane, T. Dingsøyr, T. Hanssen, G.K. and Post, N.N.M. Postmortem - an assessement of two approaches. In
Empirical Methods and Studies in Software Engineering, Lecture Notes in Cumputer Science, n. 2765, 2003,
pp. 129-141.

Strauss, A., Corbin, J. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded
Theory. 2 ed. London, SAGE Publications, 1998.

Sulayman, M., Urquhart, C., Mendes, E., Seidel, S. Software process improvement success factors for small and
medium Web companies: A qualitative study, Information and Software Technology, vol 54, n. 5, May 2012,
pp. 1044-1061.

Sun, T., Denko, M. K.: Performance Evaluation of Trust Management in Pervasive Computing. International
Conference on Advanced Information Networking and Applications, Okinawa, March 2008, pp. 386-394.

Surrephong, Pradorn Sureephong, P. , Chakpitak, N., Ouzrout, Y., Bouras, A. An Ontology-based Knowledge
Management System for Industry Clusters, in Global Design to Gain a Competitive Edge, 2008, pp. 334-342.

Szyperski, C. Gruntz, D., Murer. S. Component software: beyond object-oriented programming. Addison-
Wesley Professional, 2002.

Tan, D.S., Meyers, B. and Czerwinski, M. Wincuts: manipulating arbitrary window regions for more effective
use of screen space. ACM CHI 2004 Conference on Human Factors in Computing Systems, v. 2, Vienna,
Austria, April 2004, pp. 1525–1528.

 References

 159

Tang, L., Yu, Z., Zhou, X., Wang, H., Becker, C., Supporting rapid design and evaluation of pervasive
applications: challenges and solutions. Personal Ubiquitous Computing, v. 15, n. 3, March 2011, pp. 253-
269.

Thompson, S. G., Azvine, B. No Pervasive Computing Without Intelligent Systems. BT technology journal, v.
22, n. 3, 2004, pp. 39–49.

Tiwana, A. The knowledge management toolkit: practical techniques for building a knowledge management
system, Prentice Hall PTR Upper Saddle River, USA, 2000.

Toch, E. Super-Ego: a framework for privacy-sensitive bounded context-awareness. ACM International
Workshop on Context-Awareness for Self-Managing Systems, Beijing, China, September 2011, pp. 24-32.

Torres, A. H. S., Anquetil, N., Oliveira, K. M. Pro-active dissemination of knowledge with learning histories. 8th
International Workshop on Learning Software Organization, Rio de Janeiro, Brazil, September 2006, pp. 19-
27.

Torres, A.H., Oliveira, K.M., Anquetil, N., Lucena, G. Historias de aprendizagem em projetos de software: da
teoria à prática. Editora Universa, Brasília, DF, Brasil, 2009.

Tran, C., Ezzedine, H., Kolski, C. EISEval, a Generic Reconfigurable Environment for Evaluating Agent-based
Interactive Systems, International Journal of Human-Computer Studies, v. 71, n. 6, 2013, pp. 725-761.

Traue, T. G., Kobayashi, G. A discussion about Human-Computer interaction requirements for ubiquitous
systems”, Fourth International Conference on Ubi-Media Computing, 2011, pp. 134-137.

Travassos, G. H., Shull, F., Fredericks, M., Basili, V. Detecting defects in object-oriented designs: using reading
techniques to increase software quality. 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 34, Denver, USA, November 1999, pp. 47-56.

Tse, T. H., Yau, S. S., Chan, W. K., Lu, H., Chen, T. Y. Testing Context-Sensitive Middleware-Based Software
Applications. International Computer Software and Applications Conference - COMPSAC'04, Washington,
USA, September 2004, pp. 458-466.

Tsuchiya, S. Improving knowledge creation ability through organization learning, International Symposium on
the Management of Industrial and Corporate Knowledge, 1993, pp. 87-95.

Tullis, T., Predicting the usability of alphanumeric displays. Doctoral Dissertation. Dept of Psychology,
Houston, TX, Rice University. 1984.

Unterkalmsteiner, M., Gorschek, T., Islam, A., Cheng, C. K., Permadi, R. B., Feldt, R., Evaluation and
measurement of software process improvement-A systematic literature review, IEEE Transactions on
Software Engineering, v. 38, 2012, pp. 398-424.

Valentim, N.M.C., Oliveira K., Conte, T. Definindo uma abordagem para inspeção de usabilidade em modelos
de projeto por meio de experimentação. IHC '12, Proceedings of the 11th Brazilian Symposium on Human
Factors in Computing Systems, Cuiaba, Brazil, Novembre 2012, pp. 165-174.

Vanderdonckt, J. Guide ergonomique des interfaces homme-machine. Presses Universitaires de Namur, 1994.

Vanderdonkt, J. A MDA-Compliant Environment for Developing User Interfaces of Information Systems.
CAISE, Lecture Notes in Cumputer Science, n. 3520, 2005, pp. 16-31.

Villela, K., Oliveira, K. M., Travassos, G.H., Rocha, A. R. The Definition and Automated Support of Software
Processes, taking Domain Knowledge and Organizational Culture into Consideration. Workshop on Software
Quality – ICSE, Orlando, USA, May 2002.

Viravan, C., Lessons learned from applying the spiral model in the software requirements analysis phase. Third
IEEE International Symposium on Requirements Engineering, Annapolis, USA, January 1997.

Visaggio, G. Assessment of a Renewal Process Experimented in the Field, The Journal of Systems and Software
v. 45, n. 1, 1999, pp. 3–17.

Visaggio, G. Value-based decision model for renewal processes in software maintenance. Annals of Software
Engineering 9, 2000, pp. 215-233.

von Krogh, G., Ichijo, K., and Nonaka, I.. Enabling knowledge creation. Oxford University Press, New York,
2000.

Vora, V., and S. Bojewar. Design of a tool using statistical approach for personalization and usability
improvement. International ACM Conference & Workshop on Emerging Trends in Technology, Mumbai,
India, February 2011, pp. 228-229.

Vuljanić, D., Rovan, L., Baranović, M. Semantically enhanced web personalization approaches and techniques.

32nd International Conference on Information Technology Interfaces, Cavtat, Dubrovnik, June 2010, pp.
217-222.

 References

 160

Wagner, S., Toftegaard, T., Bertelsen, O. Requirements for an Evaluation Infrastructure for Reliable Pervasive
Healthcare Research. 6th International Conference on Pervasive Computing Technologies for Healthcare,
San Diego, USA, May 2012, pp. 260-267.

Waibel, A., Stiefelhagen, R. (eds) Computers in the Human Interaction Loop. Handbook of Ambient Intelligence
and Smart Environments, Springer, 2010.

Wang, Q., Li, M. Measuring and improving software process in China. International Symposium on Empirical
Software Engineering, November 2005.

Wang, Z., Elbaum, S.; Rosenblum, D. S. Automated Generation of Context-Aware Tests. International
conference on Software Engineering, Minneapolis, USA, May, 2007, pp. 406-415.

Warnock, D. A Subjective Evaluation of Multimodal Notifications. 5th International Conference on Pervasive
Computing Technologies for Healthcare, Dublin, Irealnd, May 2011, pp. 461-468.

Warren, I., Ransom, J. Renaissance: A Method to Support Software System Evolution. 26th Annual International
Computer Software and Applications Conference, Oxorf. UK, August 2002, pp.415-420

Weber, K.C., Rocha, A. R., Rouiller, A. C., Alves, A., Crespo, A., Goncalves, A., Paret, B., Vargas, C.,
Salviano, C., Oliveira, K. M. Uma Estratégia para Melhoria de Processo de Software nas Empresas
Brasileiras. 5th Conference for Quality in Information and Communications, Porto, Portugal, October 2004,
pp. 73-78.

Weihong-Guo, A. et al. Using Immersive Video to Evaluate Future Traveller Information Systems. IET
Intelligent Transport Systems, v. 2, n. 1, March 2008, pp. 38-46.

Weiser, M. The computer for 21st century, Scientific American, 1991.

Werneck, V., Oliveira, K. M., Rabelo Jr, A., Rocha, A.R. A Software Development Process for Expert Systems.
10th International Symposium on Methodologies for Intelligent Systems, Charlotte, USA, 1997, pp. 1-10.

Wholin, C., Runeson, P., Host, M. et al., Experimentation in Software Engineering, Kluwer Academic
Publishers, 2000.

Won K. Personalization: Definition, Status, and Challenges ahead. Journal of Object Technology, 2002, pp. 29-
40.

Wongthongtham, P., Chang, E., Dillon, T. Software Design Process Ontology Development, OTM 2006
Workshops, Lecture Notes in Cumputer Science, n. 4278, 2006, pp. 1806-1813.

Wu, C.-L. C.-L., Fu, L.-C. Design and Realization of a Framework for Human-System Interaction in Smart
Homes. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, v. 42, n. 1,
January, 2012, pp. 15–31.

Yourdon, E. Minipostmortems. Computerworld, March19, 2001.

Zhang, Y., Zhang, S., Tong, H. Adaptive Service Delivery for Mobile Users in Ubiquitous Computing
Environments. International conference on Ubiquitous Intelligence and Computing, Lecture Notes in
Cumputer Science, n. 4159, Wuhan, China, September, 2006, pp. 209-218.

Zlot, F., Oliveira, K. M., Rocha, A. Modeling Task Knowledge to Support Software Development. Software
Engineering and Knowledge Engineering, Ischia, Italy, July 2002, pp. 35-42.

161

Appendix A. Defect Density Indicator

This appendix presents the specification of an indicator for software process performance
analysis (Monteiro and Oliveira, 2011). This specification is part of the research presented
in part II, Chapter 3, § 3.2.2.

Information Need What is the quality of the software product being developed?
Information Category Quality

Measurement Objective
Measurement

Objective
To evaluate the performance of technical processes of software development based on

the quality of the resulting product of these processes.

Entities and Attributes
Relevant Entities Project product (documentation or unit of software).
Attributes Number of defects

Size

Base Measure Specification
Base Measures Number of defects

Total number of defects
Number of defects by type
Product size:
Source lines of code
Number of function points
Number of requirements
Document page count

Measurement

Methods
Count the total number of defects found in tests of a package or unit of software.
Count the number of defects found in tests of a package or unit of software, classified

by type of defect or cause of the defect (Implementation, Database, Analysis, Design,

Requirement, Integration, Environment, etc.).
Assess the size of the product.
Count the number of source lines of code.
Count the number of function points.
Count the number of functional requirements of the software.
Count the number of pages of the document or other project product.

Type of Method

Objective
Objective
Objective

Scale

Integers, from zero to infinity
Integers, from zero to infinity

Integers, from zero to infinity
Decimals, from zero to infinity
Integers, from zero to infinity
Integers, from zero to infinity

Appendix A. Defect Density Indicator

 162

Type of Scale

Absolute
Nominal

Absolute
Rational
Absolute
Absolute

Unit of Measurement

Defects
Defects

Source lines of code
Function points
Requirements
Number of pages

Derived Measure Specification
Derived Measure Total defect density

Defect density by type
Measurement

Function

Indicator Specification
Indicator Description

and Sample
18

Defect density: This indicator shows the ratio between the number of defects found

during the tests and the size of the product verified (Figure A). The indicator also

presents the classification of defects by type to identify the processes that caused the

most defects in the project product Figure B).

Figure A. Defect density indicator

Figure B. Classification of defects

Analysis
Model

The measure of “total defect density” is presented in the form of a control chart in

order to evaluate the stability of the software development process in relation to the

quality of the product created.
 The u Chart Control presents the evolution of the defect density in different products

produced and verified by the project team. The analysis of this chart should look for

signs of deviations, or exceptional variations of the process, that require detailed

sizeProduct

defects ofnumber Total

sizeProduct

by type defects ofNumber

In
te
g
ra
tio
n

Im
p
le
m
e
n
ta
tio
n

D
e
si
g
n

R
e
q
u
ir
e
m
e
n
ts

D
a
ta
b
a
se

E
n
vi
ro
n
m
e
n
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
e
fe

c
ts

 D
e
n
s
it

y

0

20

40

60

80

100

Defect Density (Pareto)

Appendix A. Defect Density Indicator

 163

research in order to identify and correct the causes of variation. The centerline (CL)

represents the defect density average, and the upper and lower control limits (UCL and

LCL) are not fixed. That is, for each observation of the measure, its limits are

recalculated from the average of all defect densities observed and the relationship

between the densities of defects versus the size of each observation of the measure.

This relationship involving individual averages is what adds flexibility to the control

limits.
 The measure of “defect density by type” is presented in a Pareto chart. This diagram

shows the main causes of defects found, sorted according to their defect densities. The

goal of the Pareto diagram is to support the prioritization of actions to resolve the

causes that have the highest defect densities.
Decision Criteria The decision criteria of the “total defect density” measure follows the rules of process

instability for each of the graphs that represent the indicator. For every occurrence of

one of the rules listed below, the process should be examined in order to identify and

eliminate the causes of variation.
For the u control chart, one or more points outside the upper control limit (CL + 3

sigma) and lower control limit (CL – 3 sigma)
For the Pareto chart, the defect density by type has no decision criteria. The main

causes of variation should be primarily dealt with.
Indicator

Interpretation
19

The control chart in the example above shows that Builds 9, 10, 11, 12, 13, 15, and 18

show signs of diversion, as they demonstrate values outside the upper and lower

control limits.
The Pareto chart of the above example shows that the most common causes of defects

in the product are: Integration, followed by Implementation, Design, Requirements,

Database and Environment. Following the Pareto rule that 20% of causes are

responsible for 80% of the problems, actions should be implemented primarily in the

processes of Integration, Implementation, Design and Requirements, because they will

be most effective in improving product quality.

Data Collection Procedure (for Each Base Measure)
Frequency of Data

Collection
Each package or unit of software delivered to the customer (Build). Collection of the

total number of defects of the package or unit of software.
Each package or unit of software delivered to the customer (Build). Collection of

number of defects by type of the package or unit of software.
Each package or unit of software delivered to the customer (Build). Collection of size

of the package or unit of software.
Responsible

Individual
The Test analyst collects the number of defects and defects by type; the Metrics analyst

obtains the size of the package or unit of software tested and consolidates the

measurement information.
Phase or Activity in

Which Collected
In construction and transition phases of the project life cycle, measurement continues

during the operation of the product: data should be collected from the time the first

tests are carried out. Optionally, the measure can continue being collected during the

operation or warranty of the product in a production environment.
Tools Used in Data

Collection
Defect recording tool
Defect recording tool

Counting lines of code tool
Function point recording tool
List of requirements

Verification and

Validation
Audits on the records of defects and product size.

Repository for

Collected Data
Measurement repository of the organization.

Appendix A. Defect Density Indicator

 164

Data Analysis Procedure (for each Indicator)
Frequency of Data

Reporting
For each product or software package delivered to the customer.

Responsible

Individual
Measurement Analyst and Project Manager (project level)
Organizational Measurement Analyst (organizational level)

Phase or Activity in

Which Analyzed
In construction and transition phases of the project life cycle, and to continue during

the operation of the product: data should be collected from the time the first tests are

carried out. Optionally, the measure can continue being collected during the operation

or warranty of the product in a production environment.
Source of Data for

Analysis
Measurement repository of the organization

Tools Used in

Analysis
Measurement repository of the organization

Review, Report, or

User
Project team, Project Manager, and Portfolio Manager (Project level)
Portfolio Manager and Senior Manager (organizational level)

Additional Information
Additional Analysis

Guidance
Analysis of the evolution of the defect density by type may be carried out through the

evaluation of the different Pareto diagrams produced each month.
Implementation

Considerations
Phase or activity of the life cycle: The organization must adapt the timing of data

collection and indicator analysis according to the phases and activities defined in the

life cycle of its projects (e.g. waterfall or iterative).
Minimum quantity of data: To start the analysis of variability are required at least 20

points in the graph. Below this number, the chart can be prepared, but is not suitable for

analysis of variability.

