Commande référencée vision pour drones à décollages et atterrissages verticaux - Archive ouverte HAL
Thèse Année : 2014

Vision-Based control for UAVs vertical take off and landing

Commande référencée vision pour drones à décollages et atterrissages verticaux

Résumé

La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre de nombreux services: pour se rendre dans des lieux peu accessibles, pour remplacer l'homme dans des missions pénibles ou périlleuses, et pour accroître la fiabilité de telles missions, ces appareils prennent en effet une place croissante dans notre monde. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier); l'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Une loi de commande a été définie, avec prise en compte de critères de performance. Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par différentes perspectives pour poursuivre les travaux.
The computers miniaturization has paved the way for the conception of Unmanned Aerial Vehicles –"UAVs"- that is : flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives.The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment.First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work.
Fichier principal
Vignette du fichier
DCSD14056.1395759146.pdf (8.56 Mo) Télécharger le fichier

Dates et versions

tel-01092388 , version 1 (08-12-2014)

Identifiants

  • HAL Id : tel-01092388 , version 1

Citer

H. de Plinval. Commande référencée vision pour drones à décollages et atterrissages verticaux. Physique de l'espace [physics.space-ph]. ISAE - Institut Supérieur de l'Aéronautique et de l'Espace, 2014. Français. ⟨NNT : ⟩. ⟨tel-01092388⟩

Collections

ONERA
281 Consultations
774 Téléchargements

Partager

More