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Résumé

Les systèmes physiques sont représentés par des modèles mathématiques qui peuvent être utilisés
pour simuler, analyser ou contrôler ces systèmes. Selon la complexité du système qu’il est censé
représenter, un modèle peut être plus ou moins complexe. Une complexité trop grande peut
s’avérer problématique en pratique du fait des limitations de puissance de calcul et de mémoire
des ordinateurs. L’une des façons de contourner ce problème consiste à utiliser l’approximation de
modèles qui vise à remplacer le modèle complexe par un modèle simplifié dont le comportement
est toujours représentatif de celui du système physique.

Dans le cas des modèles dynamiques Linéaires et Invariants dans le Temps (LTI), la com-
plexité se traduit par une dimension importante du vecteur d’état et on parle alors de modèles
de grande dimension. L’approximation de modèle, encore appelée réduction de modèle dans ce
cas, a pour but de trouver un modèle dont le vecteur d’état est plus petit que celui du modèle
de grande dimension tel que les comportements entrée-sortie des deux modèles soient proches
selon une certaine norme. La norme H2 a été largement considérée dans la littérature pour
mesurer la qualité d’un modèle réduit. Cependant, la bande passante limitée des capteurs et des
actionneurs ainsi que le fait qu’un modèle est généralement représentatif d’un système physique
dans une certaine bande fréquentielle seulement, laissent penser qu’un modèle réduit dont le
comportement est fidèle au modèle de grande dimension dans un intervalle de fréquences donné,
peut être plus pertinent. C’est pourquoi, dans cette étude, la norme H2 limitée en fréquence,
ou norme H2,Ω, qui est simplement la restriction de la norme H2 sur un intervalle de fréquences
Ω, a été considérée. En particulier, le problème qui vise à trouver un modèle réduit minimisant
la norme H2,Ω de l’erreur d’approximation avec le modèle de grande dimension a été traité.

Deux approches ont été proposées dans cette optique. La première est une approche em-
pirique basée sur la modification d’une méthode sous-optimale pour l’approximation H2. En
pratique, ses performances s’avèrent intéressantes et rivalisent avec certaines méthodes connues
pour l’approximation de modèles sur intervalles de fréquences limités.

La seconde est une méthode d’optimisation basée sur la formulation pôles-résidus de la
norme H2,Ω. Cette formulation généralise naturellement celle existante pour la norme H2 et
permet également d’exprimer deux bornes supérieures sur la norme H∞ d’un modèle LTI, ce
qui est particulièrement intéressant dans le cadre de la réduction de modèles. Les conditions
d’optimalité du premier ordre pour le problème d’approximation optimale en norme H2,Ω ont été
exprimées et utilisées pour créer un algorithme de descente visant à trouver un minimum local au
problème d’approximation. Couplée aux bornes sur la norme H∞ de l’erreur d’approximation,
cette méthode est utilisée pour le contrôle de modèles de grande dimension.

D’un point de vue plus pratique, l’ensemble des méthodes proposées dans cette étude ont été
appliquées, avec succès, dans un cadre industriel comme élément d’un processus global visant à
contrôler un avion civil flexible.

Mots-clés : modèles linéaires invariants dans le temps, modèles de grande dimension, réduction
de modèles, approximation de modèles, approximation de modèles sur intervalles de fréquences
limités
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Abstract

Physical systems are represented by mathematical models in order to be simulated, analysed or
controlled. Depending on the complexity of the physical system it is meant to represent and the
way it has been built, a model can have a varying complexity. This complexity can become an
issue in practice due to the limited computational power and memory of computers. One way
to alleviate this issue consists in using model approximation which is aimed at finding a simpler
model that still represents faithfully the physical system.

In the case of Linear Time Invariant (LTI) dynamical models, complexity translates into a
large dimension of the state vector and one talks about large-scale models. Model approximation
is in this case also called model reduction and consists in finding a model with a smaller state
vector such that the input-to-output behaviours of both models are close with respect to some
measure. The H2-norm has been extensively used in the literature to evaluate the quality of a
reduced-order model. Yet, due to the limited bandwidth of actuators, sensors and the fact that
models are generally representative on a bounded frequency interval only, a reduced-order model
that faithfully reproduces the behaviour of the large-scale one over a bounded frequency interval
only, may be more relevant. That is why, in this thesis, the frequency-limited H2-norm, or H2,Ω-
norm, which is the restriction of the H2-norm over a frequency interval Ω, has been considered.
In particular, the problem of finding a reduced-order model that minimises the H2,Ω-norm of
the approximation error with the large-scale model has been addressed here.

For that purpose, two approaches have been developed. The first one is an empirical approach
based on the modification of a sub-optimal H2 model approximation method. Its performances
are interesting in practice and compete with some well-known frequency-limited approximation
methods.

The second one is an optimisation method relying on the poles-residues formulation of the
H2,Ω-norm. This formulation naturally extends the one existing for the H2-norm and can also
be used to derive two upper bounds on the H∞-norm of LTI dynamical models which is of
particular interest in model reduction. The first-order optimality conditions of the optimal H2,Ω

approximation problem are derived and used to built a complex-domain descent algorithm aimed
at finding a local minimum of the problem. Together with the H∞ bounds on the approximation
error, this approach is used to perform control of large-scale models.

From a practical point of view, the methods proposed in this study have been successfully
applied in an industrial context as a part of the global process aimed at controlling a flexible
civilian aircraft.

Keywords : linear time invariant models, large-scale models, model reduction, model approx-
imation, frequency-limited model approximation
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Notations and acronyms

Mathematical Notations

j the square root of −1
Re(z) the real part of the complex z
Im(z) the imaginary part of the complex z
MT the transpose of M
M∗ the conjugate of M
MH the conjugate transpose of M
[M ]i,k the element of M located at the i-th row and k-th column
λi(M) the i-the eigenvalue of M
tr (M) the trace of M
In the identity matrix of size n
ei the i-th column canonical vector, i.e. the vector with zero entries

except for a 1 at the i-th position
M ⊙N the Hadamard product, or element-wise product, between M and N
diag(M) the column vector containing the diagonal of the square matrix M

1n a column vector of ones of size n
aω,λ denotes 2

πatan(
ω
λ )

vec(M) denotes the vectorisation of the matrix M , i.e. the column vector
formed by vertically concatenating the columns of M

Fl() represents the lower Linear Fractional Representation
Fu() represents the upper Linear Fractional Representation

Acronyms

BT Balanced Truncation
FW-BT Frequency-Weighted Balanced Truncation
FL-BT Frequency-Limited Balanced Truncation
IRKA Iterative Rational Krylov Algorithm,

also called Iterative Tangential Interpolation Algorithm (ITIA)
ISRKA Iterative SVD-Rational Krylov Algorithm,

also called Iterative SVD-Tangential Interpolation Algorithm (ISTIA)
FL-ISTIA Frequency-Limited SVD Tangential Interpolation Algorithm
DARPO Descent Algorithm for Residues and Poles Optimisation

LPV Linear Parameter Varying
LFR Linear Fractional Representation
SISO Single Input Single Output
SIMO Single Input Multiple Output
MISO Multiple Input Single Output
MIMO Multiple Input Multiple Output
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Chapter 1

Introduction to model approxima-
tion

1.1 Context and motivations

Physical systems or phenomena are generally represented by mathematical models in order to
be simulated, analysed or controlled. Depending on (i) the complexity of the physical system to
be modelled, (ii) the means used to build the mathematical model and (iii) the desired accuracy
of the model, this model can be more or less complex and representative.

A very accurate model is intuitively desirable, however this often yields an important com-
plexity which might not be tractable in practice. Indeed, the limited computational power of
computers and their limited storage capabilities might make some numerical tools not tractable
or not in an acceptable time. In addition, the errors induced by the floating point arithmetic
might significantly perturb some theoretical results. Hence, the complexity of the model has to
be restrained.

It may seem adequate to restrain the complexity of a model from the very beginning, i.e. ,
during its construction, however it is not always possible nor suitable. Indeed, on the one hand
numerical modelling tools (such as identification methods, finite elements methods, etc.) do not
necessarily enable to restrain the complexity without loosing too much information. And on
the other hand, models can be used for different purposes (simulation, control, analysis, etc.)
which limitations with respect to the complexity vary. Hence, a standard process in industrial
settings consists in creating one single high-fidelity model which is then transformed to match the
application. Thus, an a posteriori method is generally preferred to diminish the complexity of the
original, high-fidelity model. Model approximation serves this purpose. Indeed, the underlying
idea behind model approximation consists in replacing a complex model by a simpler one which
preserves its main characteristics and which is suitable for a specific application (e.g. simulation,
analysis or control).

In this study, dynamical systems are considered. They can be represented by finite difference
equations, ordinary differential equations, differential algebraic equations or partial differential
equations which can be linear, non-linear, time-invariant or time-variant. Linear Time Invariant
(LTI) models are widely used, both in the industry and in research. Indeed, for many physical
systems, they are sufficiently representative around an equilibrium point and numerous tools
exist in order to analyse and control them. For this kind of models, complexity results in a large
state-space vector and one talks of large-scale model.

Approximation of large-scale LTI models has been extensively studied over the years and
two main steps can be distinguished. Initially, some well-known methods such as the Balanced
Truncation and the Hankel norm approximation have been developed [Moore, 1981; Glover,
1984]. Then, the extensive use of numerical modelling tools has led to modify the conception
of large-scale models which can now have thousands or even millions of states. Standard model
approximation methods (in their basic form) were not adapted anymore for very large case
due to their inherent numerical complexity. Hence, original techniques that are numerically
cheaper have been developed. They are mainly based on interpolation through Krylov subspaces
[Grimme, 1997] and have more recently led to some interesting development concerning optimal
H2 model approximation [Gugercin et al., 2008; Van Dooren et al., 2008b]. This problem has
also been addressed in a different way using non-linear optimisation schemes [Marmorat et al.,

3



Chapter 1. Introduction to model approximation

2002; Beattie and Gugercin, 2009]. Initially, these methods were developed to reproduce the
behaviour of the large-scale model over the whole frequency range. However, in some cases, it
may seem more relevant to match the behaviour of the large-scale model only on a bounded
frequency range.

Indeed (i) the limited bandwidth of sensors used to identify models from measured data might
lead to an inaccurate (and thus irrelevant) model at some frequencies, (ii) similarly, actuators
cannot act on some dynamics which make them less important for control purpose and (iii) by
avoiding to take into accounts some dynamics, the large-scale model may be reduced even more
without loosing accuracy in the considered frequency band. That is why we have chosen in this
thesis to address the problem of approximation over a bounded frequency range.

The most intuitive way to address such a problem consists in applying frequency filters to the
large-scale model so that the reduced-order model is built in order to match the filtered large-scale
model. This is called the frequency-weighted approximation problem and several methods have
been developed to solve it [Enns, 1984; Lin and Chiu, 1990; Zhou, 1995; Leblond and Olivi, 1998;
Wang et al., 1999; Breiten et al., 2014]. Note that the filtered large-scale model is augmented by
the order of the filters. Hence, and even if it is often marginal compared to the order of the model,
the complexity is increased for the approximation algorithms. More importantly, the design of
adequate filters can be a tedious task. An approach that does not involve any explicit filtering,
called the frequency-limited balanced truncation, has been proposed in [Gawronski and Juang,
1990]. It is based on frequency-limited gramians which act as frequency-weighted gramians
[Enns, 1984] considered with perfect filters.

This thesis tries to bring together the methodology used in optimal H2 model approxima-
tion [Beattie and Gugercin, 2009] with the criterion derived from frequency-limited gramians
[Gawronski and Juang, 1990] in order to perform optimal frequency-limited H2 model approxi-
mation of large-scale LTI dynamical models. Note that a similar study has been conducted in
parallel of this work in [Petersson, 2013] with another formulation of the criterion.

From a practical point of view, the methods developed during this study are meant to be
applied in an industrial aeronautic context which problematic are quite specific as presented
below in the second motivating example.

1.2 Motivating examples

In Section 1.2.1, the benefits of model approximation for the simulation1 of LTI models is
highlighted with a 3D cantilever Timoshenko beam model. Then in Section 1.2.2, some issues
encountered in the context of industrial aircraft control are introduced. These issues form the
industrial application of this thesis and are addressed more in depth in Chapter 10. Finally, in
Section 1.2.3, the main models used as academic benchmarks in this thesis are introduced.

1.2.1 Simulation of a 3D cantilever Timoshenko beam

In [Panzer et al., 2009], a simple finite elements method to model a 3D Cantilever Timoshenko
beam (see Figure 1.1) loaded by some force F (t) at its tip is described. The provided script en-
ables to arbitrarily choose some parameters as the number of elements N used for discretization,
the length of the beam L, etc. Hence it can conveniently be used to build state-space models of

1The time measurement presented throughout this study are mainly aimed at being compared to each other
and should not be considered as absolute references but for sake of clarity, the technical details related to the
numerical computations are presented here.

All the numerical computations have been performed with MatlabR© R2013a on an IntelR© CoreTM i7-3610QM
processor under a Linux environment and with 8Gb of RAM.

In MatlabR©, the Just In Time (JIT) compiler has been disabled in order to have stable time measurements.
The elapsed time is measured through the CPU time.
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F(t)

x

y
z

Figure 1.1: 3D Cantilever Timoshenko beam.

Model Order Ti (s) Tf (s)
Hlarge 720 9.86 0.91
Hsmall 12 0.028 0.012
Hreduced 12 0.018 0.011

Table 1.1: Mean computation times of the impulse responses (Ti) and of the frequency responses
(Tf ) for the different models.

varying complexity. Note that by default, the output of the system is the vertical (along z axis)
displacement at the tip of the beam.

In this example, three models are considered :

◮ Hlarge : a high fidelity model built with N = 60 elements. It has nl = 720 states.

◮ Hsmall : a model built with N = 1 element. It has ns = 12 states.

◮ Hreduced : an approximation of Hlarge
2. It has also r = 12 states.

To evaluate the time taken to simulate each model, the impulse responses over 10s and the
frequency responses over 100 points linearly spaced between 10−2 and 102 rad/s are computed
50 times for each model. The mean times Ti and Tf for computing the impulse and frequency
responses, respectively, are reported in Table 1.1.

As expected, both low-order models Hsmall and Hreduced have similar simulation times.
However, the difference appears clearly with the large-scale model Hlarge which temporal and
frequency simulations take respectively about 300 and 90 times more time than for the low-order
models.

The low-order models Hsmall and Hreduced have the same order but they are not identical.
Indeed, by considering the large-scale model Hlarge as a reference, the low-order model obtained
by approximation is more accurate than the one obtained by limiting the number of elements
in the finite elements method. This is illustrated in Figure 1.2, where the impulse responses
of the different models as well as the impulse responses of the error models Hlarge −Hreduced

and Hlarge −Hsmall are plotted on the left and right, respectively. The response of Hlarge is
better matched by the response of Hreduced than the response of Hsmall. This illustrate the fact
that the complexity cannot necessarily be restrained directly when building the model without
loosing some accuracy.

2The reduced-order model is obtained with DARPO, the main method developed during this thesis which is
detailled in Chapter 9.
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Figure 1.2: Impulse responses of the models (left) and of the errors (right).

Note that in that case the simulation times of the large model Hlarge is not unacceptable.
However, for very large scale models, such as models obtained by discretisation of partial differ-
ential equations, it might be the case [Li and Kamon, 2005; Lienemann et al., 2006; Dergham
et al., 2011]. Besides, some tasks are far more demanding in terms of computational power
and memory requirement than simulation, for instance, even with a model like Hlarge, modern
robust, optimal or predictive control tools [Zhou et al., 1995; Scherer et al., 1997; Bemporad
and Morari, 1999; Apkarian and Noll, 2006; Burke et al., 2006] might fail to deliver a result
depending on the specifications of the controller.

1.2.2 Control of an industrial aircraft

Modelling of a flexible aircraft

The modelling process of an aircraft can roughly be divided into three steps as illustrated in
Figure 1.3. Firstly, the model of the structure is built by taking into account the materials, the
geometry, etc. Then, in a second step, the aerodynamics parameters are determined in wind
tunnel for some flight operating conditions (such as the mass, the Mach, etc.) while the loads and
gust propagation are modelled by simulation. At this point, the model of the aircraft consists
actually in a set of models, each one being valid at one single flight operating condition. Finally,
these models are adjusted with identification methods during flight tests. Since these tests are
expensive, the number of flight operating conditions for which a model is available is quite low.

Simply speaking, the model of an aircraft represents both its rigid and flexible dynamics.
The former translate the movement of the aircraft while the latter concern the deformation of the
structure. Depending on the type of aircraft, the flexible dynamics are more or less important to
describe accurately the behaviour of the aircraft. For instance, due to their large wingspan and
their low weight, current electrical aircraft are extremely flexible [Gadient et al., 2012; Wang
et al., 2014; Hesse and Palacios, 2014].

While the flexibility of industrial transport aircraft is not as pronounced, it cannot be ne-
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Structure modeling

Reference model (ma-

terial, masses, etc.)

Aerodynamic be-
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Load modeling

Parameters determination

(in wind tunnel) for some

flight operating conditions

Simulation of the load propa-

gation (gusts, maneuvers, etc.)

Flight test

Adjustement of the models

through identification

Figure 1.3: Overview of the modelling process in aeronautic.

glected since it can disturb the stability of the aircraft. This is especially true with modern
aircraft which use more composite materials to decrease their weight and are therefore more
flexible. Modelling accurately these flexible dynamics generally leads to a large dimension (see
Remark 1 for more information on what large means in this context).

Finally, the global model of an aircraft is composed by a set of large-scale and possibly
non-linear models representing the behaviour of the aircraft around different flight operating
conditions. Designing control-laws from this global model is a challenging task and the under-
lying idea of a commonly used approach to achieve such an objective is introduced thereafter.

Remark 1. The aircraft models used in the aeronautic industry have in general between 500 and
5000 states. This range of dimensions is relatively small in comparison to the very large-scale
models that can be obtained by discretising partial differential equations [Li and Kamon, 2005;
Lienemann et al., 2006; Dergham et al., 2011].

However, for control purpose and considering the demanding specifications for control-laws
in the aeronautical context, such a dimension is prohibitive. In particular, modern control or
analysis tools might not be applicable directly on these models.

Commonly used approaches for the control of a flexible aircraft

Historically, control in aeronautic implicitly generally refers to robust control. Indeed, (i) the
concept of robustness makes sense when considering the large domain (altitude, speed, etc.)
in which an aircraft can evolve, (ii) due to the constraints imposed by certification, strong
guarantees must be ensured by control-laws and (iii) the generic design framework associated
with robust control is convenient for engineers (generalised plant, [Zhou et al., 1995]).

Based on the robust control framework, one can distinguish two main approaches to design
a controller from a set of linear models,

◮ the first one consists in designing a controller for each model and to interpolate this set of
controllers,

◮ the second one consists in first interpolating the models into an uncertain, parameter
dependent model represented for instance as a Linear Fractional Representation (LFR) (see
[Magni, 2006; Poussot-Vassal and Roos, 2012; Vizer et al., 2013]) on which one controller
is designed.

While the first approach is still widely used in the industry, one believes that the second
one is more promising due to the fact that it directly builds the LFR model of the aircraft
which is mandatory to perform global stability or performance analysis. That is why it has been
privileged here.
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Figure 1.4: Global process for the control of industrial aircraft

In any case, for both approaches, the dimension of the initial models can become an issue.
Indeed, on the one hand, a controller cannot efficiently be designed on a too large model and on
the other hand the requirements concerning the interpolation of the set of models representing
the aircraft cannot be achieved in a satisfactory way on large models. More specifically, the
LFR must be stable over the whole parametric domain (since civilian aircraft are structurally
stable), the parametric dependence must be of low complexity (otherwise control/analysis tools
cannot be applied anymore) and the variation of the model between two parametric points must
be as smooth as possible. Hence, for both approaches to be applicable on large-scale models, a
preliminary approximation step is mandatory.

This approximation step too must satisfy some constraints :

◮ civilian aircraft are structurally stable, hence the reduced-order models must be stable too,

◮ as much as possible, the poles of the reduced-order model must not be too far from some
poles of the large-scale model. Indeed, the poles of the original large-scale model have a
physical meaning that is important to preserve for engineers.

The overall process for designing a controller from an initial set of large-scale linear models
based on the interpolation of the models is summarised in Figure 1.4. Such a process has been
applied on real case study detailed in Chapter 10.

1.2.3 Standard benchmarks

The numerical illustrations presented throughout this thesis are mainly based on three standard
academic benchmarks available in the library COMPLeib [Leibfritz and Lipinski, 2003]. These
benchmarks are not particularly high dimension, but each one has some interesting characteris-
tics:

◮ the Los Angeles Hospital model (LAH) is a strictly proper and stable SISO model of order
n = 48. Its frequency-response and its poles are plotted in Figure 1.5. This model has
several significant dynamics which require a relatively high reduced order to be reproduced
accurately.

◮ The Clamped Beam model (CBM) is a strictly proper and stable SISO model of order
n = 348. Its frequency-response and its poles are plotted in Figure 1.6. This model has a
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Figure 1.5: Frequency response (left) and eigenvalues (right) of the LAH model.
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Figure 1.6: Frequency response (left) and eigenvalues (right) of the CBM model.
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Figure 1.7: Frequency response (left) and eigenvalues (right) of the ISS model.
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high gain dynamic at low frequency and several other small dynamics at higher frequencies.
Catching accurately the low frequency dynamic directly yields a low approximation error.

◮ The International Space Station model (ISS) is a strictly proper and stable MIMO (ny =
nu = 3) model of order n = 270. Its frequency-response and its poles are plotted in Figure
1.7. Aside from being MIMO, this model has high gain dynamics at several frequencies
which makes it particularly well suited to illustrate the relevance of frequency-limited
approximation techniques.

Additional benchmarks are described when used if they are publicly available.

1.3 Problem formulation

The approximation problem, as considered in this study, is formulated in a general way in
Problem 1 thereafter.

Problem 1 (General LTI model approximation problem). Given a continuous, LTI, Multiple
Inputs Multiple Outputs (MIMO), large-scale dynamical model H of order n described by its
state-space representation,

H :=

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

,

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu . The model approximation problem
consists in finding a model Ĥ of order r ≪ n given by the following realisation,

Ĥ :=

{
˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t)
,

where Â ∈ Rr×r, B̂ ∈ Rr×nu , Ĉ ∈ Rny×r and D̂ ∈ Rny×nu , which accurately reproduces the
behaviour of the full-order model H in some sense.

The evaluation of the quality of the reduced-order model as formulated in Problem 1 is
purposely left vague at this stage and is detailed later using standard norms of LTI models.
The important point implied by the formulation of Problem 1 lies in the fact that in this study,
it is assumed that a realisation of the full-order model is available. This hypothesis therefore
differentiates the methods presented in this study from the recently developed realisation-free
(or data driven) methods such as those presented in [Antoulas et al., 2012; Ionita, 2013] which
are on the frontier between model approximation and model identification [Unbehauen and Rao,
1990; Vayssettes et al., 2014].

1.4 Overview of the contributions

This study is focused on the approximation of continuous, LTI, stable, large-scale dynamical
models over a bounded frequency range. In order to address this problem, several steps have
been followed during this thesis. In a first time, an empirical method has been developed by
modifying an existing sub-optimal H2 model approximation method to perform H2,Ω oriented
model approximation [Vuillemin et al., 2013a,b]. The method has proven to be efficient in
practice but the lack of theoretical guarantee and control over the approximation error has led
us to consider another approach based on optimality considerations.

In particular, the approximation over a bounded frequency range has been formulated as an
optimisation problem in terms of the frequency-limited H2-norm. In the H2 optimal approxima-
tion problem, the poles-residues formulation of the H2-norm had led to convenient optimality
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conditions. Hence, we have firstly proposed a similar formulation for the frequency-limited
H2-norm [Vuillemin et al., 2012b, 2014c]. Then, based on this formulation of the norm, the
first-order optimality conditions for the optimal frequency-limited approximation problem have
been derived [Vuillemin et al., 2014b]. However, unlike the H2 problem, these optimality con-
ditions could not be expressed as convenient interpolation conditions. Hence, an unconstrained
complex domain optimisation algorithm aimed at finding one optimal reduced-order model has
been developed [Vuillemin et al., 2014b]. Finally, this method has been brought one step further
towards some control objective by using the two upper bounds on the H∞-norm that we have
proposed [Vuillemin et al., 2014d] in order to build a frequency template of the approximation
error that can be exploited in the robust control framework.

Besides, from a practical point of view, all the proposed methods and tools have been inte-
grated in the MORE Toolbox3 [Poussot-Vassal and Vuillemin, 2012] and have successfully been
applied in several industrial applications. In a first time, the approximation methods developed
in this study have been applied on industrial large-scale aircraft models to evaluate their effi-
ciency on this type of models [Vuillemin et al., 2012a, 2013b]. Then, they have been used for the
control of large-scale models to design (i) an anti-vibration control law for a business jet aircraft
[Poussot-Vassal et al., 2013], (ii) a control law ensuring flight performance and load clearance
in presence of input saturation on a model representing the longitudinal behaviour of a flexible
civilian aircraft [Burlion et al., 2014]. Additionally, a process for the creation of a low-order
uncertain, parameter varying model from a set of large-scale dynamical models has been devel-
oped based on model approximation [Poussot-Vassal and Vuillemin, 2013; Poussot-Vassal et al.,
2014]. Based on a similar method, the global stability and performance of the set of controlled
large-scale models representing a business jet aircraft at different flight operating conditions
subject to actuator saturation have been proven by taking into account the error induced by the
approximation and the interpolation of the initial large-scale models [Vuillemin et al., 2014a].

1.5 Manuscript overview

This manuscript is divided into three parts in addition of the introduction that gather chapters
which concern the state of the art, the contributions of this thesis with regard to frequency-
limited model approximation and the conclusions of this study.

Part II : State of the Art

Chapter 2 : Preliminary in LTI systems theory

This chapter is aimed at recalling some general elements about linear systems theory and at
introducing the general notations used in this thesis. In particular, two elements that form the
basis of this thesis are recalled : the partial fraction decomposition of a transfer function and
the frequency-limited H2-norm of LTI models.

Chapter 3 : Standard model approximation methods

In this chapter, some well-known model approximation techniques based either on state-space
truncation or moment matching are recalled. In particular, the balanced truncation is recalled
since it is one of the most popular approximation method and that it serves as reference in
the benchmarks. Implicit moment matching methods are presented as an introduction for the
optimal H2 model approximation methods.

3The toolbox is available from w3.onera.fr/more and its use is illustrated by several code samples available
in Appendix C.
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Chapter 4 : Optimal H2 model approximation

The optimal H2 approximation problem is introduced together with some methods to address
it. The methods that are presented are those based on the interpolation of the large-scale model
through projection on some specific Krylov subspaces and one optimisation method relying on
the partial fraction decomposition of the reduced-order transfer function.

Chapter 5 : Frequency-weighted and frequency-limited model approximation

In this chapter, some methods aimed at model approximation over a bounded frequency range
are presented. Methods based on the use of filters are classified here as frequency-weighted model
approximation methods while those that do not require any weight falls into the frequency-limited
model approximation methods. Among these methods, the frequency-weighted and frequency-
limited balanced truncation are presented.

Part III : Frequency-limited approximation of linear dynamical models

Chapter 6 : development of a first approach for frequency-limited model approxi-
mation

In this chapter, an empirical method built by modification of a sub-optimal H2 model approx-
imation method to achieve model approximation over a bounded frequency-range is presented.
The improvement of performances in terms of H2,Ω-norm in comparison to the original method
is illustrated through various examples. Its efficiency is also illustrated by comparison with the
frequency-limited balanced truncation.

Chapter 7 : Formulation of the H2,Ω-norm with the poles and residues of the transfer
function

The only formulation available for the computation of the frequency-limited H2-norm was the
gramian one. In this chapter, a formulation based on the poles and residues of the transfer
function is developed thus generalising the poles-residues formulation of the H2-norm. This is
done both for models with semi-simple poles only and for model with higher order poles. Besides,
two upper bounds on the H∞-norm of LTI dynamical models are derived from this formulation.

The results presented in this chapter constitute the basis of the major contributions of this
thesis. Hence, this chapter plays a pivotal role in this manuscript.

Chapter 8 : Formulation of the H2,Ω-norm of the error and differentiation of its
gradient

The poles-residues formulation of the H2,Ω-norm is used to express the approximation error
between the large-scale and reduced-order models thus leading to a formulation of the optimal
H2,Ω model approximation problem in terms of the poles and residues of the reduced-order
model. The gradient of the error is derived with respect to the reduced-order model parameters
and the first-order optimality conditions are presented.

Chapter 9 : Development of DARPO, a descent algorithm for the optimal H2,Ω

approximation problem

Since the first-order optimality conditions of the optimal H2,Ω problem cannot be expressed as
convenient interpolation conditions, an optimisation scheme is developed to find a local minimum
of the approximation problem instead. In this chapter, this optimisation method is described
and compared to other frequency-limited approximation techniques on academic benchmarks. It
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is also used to address a fictive problem of control of large-scale model by exploiting the bounds
on the H∞-norm of the approximation error.

Chapter 10 : Industrial aeronautical use case

In this chapter, the model approximation methods and tools developed in this thesis are used
within a global process aimed at designing an anti-vibration control-law for an industrial business
jet aircraft. More specifically, the preliminary study in which the control design problem is
addressed on one single large-scale model representing the business jet aircraft at one flight
operating condition is presented. Then, based on a controller designed with the extension of
this approach, the global stability of the set of controlled large-scale models is assessed over the
whole parametric domain.

Part IV : Conclusion

Chapter 11 : Discussion

This chapter is aimed at recalling the contributions of this thesis as well as their limitations and
to present some improvement leads to alleviate them. In addition, some short-term extensions
are presented.

Chapter 12 : Perspectives

In this chapter, some long-term outlook concerning the extension of the methods and tools
developed in this thesis to other type of models or their application for control purpose are
drawn.
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Chapter 2

Preliminary in LTI systems theory

In this chapter, some general elements about LTI systems theory are recalled and the associated
notations introduced. The material is standard and can be found in many books such as [Zhou
et al., 1995]. Additional references are mentioned for less standard material when required.

Section 2.1 is aimed at presenting some elements about model representation and gramians,
and Section 2.2 concerns the norms of LTI models.

Contents
2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Representation of LTI dynamical models . . . . . . . . . . . . . . . . . 17

2.1.2 Gramians and balanced realisation . . . . . . . . . . . . . . . . . . . . 20

2.2 Norms of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 H2-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Frequency-limited H2-norm . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 H∞-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Generalities

In Section 2.1.1, some elements about the representation of LTI models are recalled. In particular,
the poles-residues representation of LTI models is presented. Then in Section 2.1.2, the infinite
gramians, the balanced realisation and the frequency-limited gramians are detailed.

2.1.1 Representation of LTI dynamical models

Time-domain representation

A n-th order, MIMO (ny outputs and nu inputs) LTI dynamical model H can be represented in
the time-domain by a state-space realisation,

H :=

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

,

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu . This realisation may also be written
as H := (A,B,C,D) or as

H :=

(
A B
C D

)

∈ R
(n+ny)×(n+nu).

Frequency-domain representation

The transfer function H(s) associated with the model H is given by

H(s) = C (sIn −A)−1
B +D ∈ C

ny×nu ,

and represents the model H in the frequency-domain. Depending on the multiplicity of the poles
of the model, the transfer function can be written in different forms, in particular :
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◮ if the model has semi-simple poles only, i.e. , A is diagonalisable, then the transfer function
H(s) can be decomposed as

H(s) =

n∑

i=1

Φi

s− λi
+D, (2.1)

where Φi ∈ Cny×nu with rank(Φi) = 1 are the residues of H associated with the poles λi,
i = 1, . . . , n. For semi-simple poles, the residues Φi are defined as

Φi = lim
s→λi

(s− λi)H(s).

They can also be computed thanks to the state-space matrices as

Φi = ci
Tbi = CXeiei

TX−1B,

where ei ∈ Rn is the i-th canonical vector and X =
[
x1 . . . xn

]
∈ Cn×n is the matrix

containing the right eigenvectors xi ∈ Cn (i = 1, . . . , n) of A.

Note that by imposing a condition on the norms of either ci or bi (i = 1, . . . , n), then the
representation (2.1) has the minimal number of parameters required to represent a LTI
dynamical model of order n. This formulation of the model transfer function is sometimes
called the diagonal canonical form [Van Dooren et al., 2008a] and may be referred here as
the poles-residues formulation of the transfer function.

◮ If the matrix A is defective, then the decomposition is slightly more complicated. Indeed,
let us consider a model H with nb Jordan blocks Ji ∈ Cni×ni associated with λi ∈ C. In
that case, the partial fraction decomposition of H(s), is given by

H(s) =

nb∑

i=1

Hλi
(s) +D =

nb∑

i=1

ni∑

k=1

Φ
(k)
i

(s− λi)k
︸ ︷︷ ︸

Hλi
(s)

+D, (2.2)

where the residues Φ
(k)
i ∈ Cny×nu k = 1, . . . , ni, corresponding to the pole λi are given by

Φ
(k)
i = lim

s→λi

1

(ni − k)!
dni−k

dsni−k
(s− λi)ni H(s). (2.3)

Again, these residues can be expressed with the state-space matrices A, B and C. Indeed,
let us consider an invertible matrix T ∈ Cn×n that transforms A into its Jordan canonical
form :

T−1AT = J =






J1
. . .

Jnb




 ,

where each Jordan block Ji (i = 1, . . . , nb) is given by

Ji =









λi 1

λi
. . .

. . . 1
λi









∈ C
ni×ni ,

By denoting Ci ∈ Rny×ni (resp. Bi ∈ Rni×nu) the columns (resp. lines) of CT (resp.
T−1B) associated with the block Ji

1, the transfer function Hλi
(s) (i = 1, . . . , nb) can be

1In other words, Ci = CTPT
i and Bi = PiT

−1B with Pi =
[

0
ni×(n1+...+ni−1)

Ini
0
ni×(ni+1+...+nb)

]

∈ R
ni×n.
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expressed as

Hλi
(s) = Ci(sIni

− Ji)−1
Bi. (2.4)

Due to the structure of the matrix Ji in (2.4), the inverse (sIni
− Ji)−1

can be written as
a sum of rational functions of s,

(sIni
− Ji)−1

= (s− λi)−1
F1 + (s− λi)−2

F2 + . . .+ (s− λi)−ni Fni
,

where Fk ∈ Rni×ni is the matrix with 1 on the (k − 1)-th upper diagonal and 0 elsewhere,
i.e.

F1 = Ini
, F2 =









0 1

0
. . .

. . . 1
0









, . . . , Fni
=









0 0 1

0
. . .

. . . 0
0









.

Hence, for i = 1, . . . , nb and k = 1, . . . , ni, the residues Φ
(k)
i are given by :

Φ
(k)
i = CiFkBi.

This decomposition, also called Jordan canonical form of H(s) [Van Dooren et al., 2008a],
is illustrated on a simple case in Example 1.

Example 1 (Simple model with one double pole). Let us consider the model H which realisation
is the following :

A =

[
−1 1
0 −1

]

, B = CT =

[
1
1

]

, D = 0.

The matrix A is already in its Jordan form and has a double eigenvalue at λ = −1. The transfer
function H(s) associated with the model H is given by

H(s) =
2s+ 3

(s+ 1)2
,

and can be decomposed as

H(s) =
Φ

(1)
λ

s+ 1
+

Φ
(2)
λ

(s+ 1)2
.

The residues Φ
(1)
λ and Φ

(2)
λ associated with the pole λ can either be computed with the equation

(2.3),

Φ
(1)
λ = lim

s→−1

1

(2− 1)!

d2−1

ds2−1
(s+ 1)2H(s) = lim

s→−1

d

ds
2s+ 3 = 2,

and,

Φ
(2)
λ = lim

s→−1

1

(2− 2)!

d2−2

ds2−2
(s+ 1)2H(s) = lim

s→−1
2s+ 3 = 1,

or with the state-space matrices. Indeed, here,

F1 =

[
1 0
0 1

]

and F2 =

[
0 1
0 0

]

,

thus,

Φ
(λ)
1 = CF1B = 2 and Φ

(λ)
2 = CF2B = 1.
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Chapter 2. Preliminary in LTI systems theory

2.1.2 Gramians and balanced realisation

Infinite gramians

The controllability and observability gramians P and Q (see Definition 1) are important matrices
in system theory, they are related to the concepts of state reachability and observability (see for
instance [Zhou et al., 1995] for further details). In particular, they give information about the
input-output energy of the model :

◮ the minimal energy ǫr required to make the system move from the state 0 to the state x
is given by

ǫr = xTP−1x.

If ǫr is large, then the state x is said to be hard to reach.

◮ The maximal observation energy ǫo obtained by releasing the system from an initial state
x without any input excitation is given by

ǫo = xTQx.

It the energy ǫo is small, the state x is said to be hard to observe.

These concepts of energy transfer are the basis of some model approximation methods.

Definition 1 (Infinite gramians). Given an asymptotically stable LTI dynamical model H :=
(A,B,C,D), the infinite controllability and observability gramians associated with H, denoted P
and Q respectively, are defined as,

P =

∫ ∞

0

eAtBBT eA
T tdt,

Q =

∫ ∞

0

eA
T tCTCeAtdt,

in the time domain and as,

P =
1

2π

∫ ∞

−∞

T (ν)HBBTT (ν)dν,

Q =
1

2π

∫ ∞

−∞

T (ν)HCTCT (ν)dν,

with T (ν) = (jνIn −A)−1
, in the frequency domain.

The controllability and observability gramians can be computed by solving two Lyapunov
equations. Indeed the controllability gramian P is the solution of

AP + PAT +BBT = 0, (2.9)

while the observability gramian Q is the solution of

ATQ+QA+ CTC = 0. (2.10)

It is important to note that the gramian depends of the basis in which the model is expressed.
Hence a state x which yields a small observation energy ǫo (i.e. it is hard to observe) might
only requires a small energy ǫr to be reached (i.e. it is easy to reach) and conversely in another
basis. However, the model can be put in a basis in which both notions coincide. This basis is
called the balanced realisation.
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2.1. Generalities

Balanced realisation

The balanced realisation (Abal, Bbal, Cbal, Dbal) of a LTI dynamical model H := (A,B,C,D)
is obtained through a state transformation x(t) = Txbal(t), where T ∈ Rn×n is a nonsingular
transformation matrix, as,

Abal = T−1AT, Bbal = T−1B, Cbal = CT, Dbal = D.

In this basis, the gramians are given by

Pbal = T−1PT−T and Qbal = TTQT.

If both Pbal andQbal are diagonal, the transformation T is called a contragredient transformation.
If in addition, they are equals,

Pbal = Qbal = Σ = diag (σ1, . . . , σn) ,

the state coordinates are said to be internally balanced and T is called the balanced transfor-
mation [Moore, 1981; Laub et al., 1987]. The diagonal entries σi (i = 1, . . . , n) of Σ are called
the Hankel singular values (see for instance [Antoulas, 2005, chap. 5] for further details on the
Hankel operator). For reachable, observable and stable models, they can be computed as the
square roots of the eigenvalues of the product of the two gramians, i.e. for i = 1, . . . , n,

σi =
√

λi (PQ).

Unlike the gramians, the Hankel singular values of the model are invariant by state transforma-
tion.

Remark 2. Note that more generally, the concept of balancing consists in simultaneously diag-
onalising two positive definite matrices. Depending on which matrices are diagonalised, the type
of balancing changes. In this section, only the Lyapunov balancing is presented, but there exist
also the stochastic balancing, the bounded real balancing and the positive real balancing which
are described more in depth in [Antoulas, 2005, chap.7].

As mentioned before, when the model is balanced, the reachability and observability energy

coincide. Indeed, consider the state x0 = ei =
[
0 . . . 1 . . . 0

]T
, then

ǫr = x0
TP−1x0 = ei

TΣ−1ei = σi
−1,

and similarly,

ǫo = x0
TQx0 = σi.

In the balanced realisation, ǫo = ǫ−1
r , hence the states that are easy to observe (large ǫo) are

also easily reachable (small ǫr).

Different approaches exist to find the balanced transformation, here two standard methods
presented in [Laub et al., 1987] are recalled in Algorithm 1 and in Algorithm 2. For a more
in depth study of the balanced transformations and their numerical differences, see [Antoulas,
2005, chap. 7] and references therein.
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Chapter 2. Preliminary in LTI systems theory

Algorithm 1 Balanced Transformation

1: Compute directly the lower Cholesky factorizations of the gramians with the method pre-
sented in [Hammarling, 1982] :

P = LcL
T
c and Q = LoL

T
o .

2: Compute the singular value decomposition of LT
o Lc,

LT
o Lc = UΣV T ,

where Σ is the diagonal matrix containing the Hankel singular values of H
3: The balanced transformation is given by

T = LcV Σ− 1
2 , and T−1 = Σ− 1

2UTLT
o .

One can verify that the transformation T constructed in Algorithm 1 is indeed a contragre-
dient transformation by projecting the gramians,

T−1PT−T = Σ− 1
2UTLT

o PLoUΣ− 1
2

= Σ− 1
2UT LT

o Lc
︸ ︷︷ ︸

UΣV T

LT
c Lo
︸ ︷︷ ︸

V ΣUT

UΣ− 1
2 = Σ.

Similarly,

TTQT = Σ− 1
2V TLT

c QLcV Σ− 1
2

= Σ− 1
2V T LT

c Lo
︸ ︷︷ ︸

V ΣUT

LT
o Lc
︸ ︷︷ ︸

UΣV T

V Σ− 1
2 = Σ.

Algorithm 2 Balanced Transformation

1: Compute the gramians P and Q with (2.9) and (2.10).
2: Compute the lower Cholesky factorization of P,

P = LcL
T
c .

3: Solve the following symmetric eigenvalue problem :

LT
c QLc = V Σ2V T ,

where Σ contains the Hankel singular values of the system.
4: The balanced transformation is given by

T = LcV Σ− 1
2 and T−1 = Σ

1
2V TLc

−1

Again, the transformation T given by the Algorithm 2 is a contragredient transformation,

T−1PT−T = Σ
1
2V TLc

−1 P
︸︷︷︸

LcLT
c

L−T
c V Σ

1
2 = Σ,

and
TTQT = Σ− 1

2V T LT
c QLc
︸ ︷︷ ︸

V Σ2V T

V Σ− 1
2 = Σ.

In Algorithm 2, the gramians are explicitly computed whereas in Algorithm 1, only their
Cholesky factorizations are required [Hammarling, 1982]. The latter method is numerically
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Figure 2.1: Hankel singular values of the ISS model obtained with Algorithm 1 and Algorithm
2.

more reliable because it does not involve the explicit computation of the products BBT and
CTC arising in the Lyapunov equations (2.9) and (2.10) which can lead to discard some small
singular values. An illustration of the difference between the two algorithms is shown in Example
2. The counterpart is that Algorithm 2 requires less operations than Algorithm 1 (see [Laub et al.,
1987] for a detailed description of the number of operations required for both algorithms). For
similar reasons, the product in step 2 of Algorithm 1 could also be avoided by using a dedicated
method for computing the singular value decomposition of a product of matrices [Heath et al.,
1986].

Example 2. In this example, the Hankel singular values of the ISS model are computed with
the algorithms 1 and 2 and plotted in Figure 2.1.

The largest singular values are not affected by the algorithm, but one can see that differences
appears for small singular values. Indeed for the singular values smaller than 10−10, the algorithm
that explicitly computes the gramians P and Q gives erroneous results.

Frequency-limited gramians

In [Gawronski and Juang, 1990], the authors have proposed to restrict the frequency-domain
definition of the gramian in order to build frequency-limited gramians (see Definition 2).

Definition 2 (Frequency-limited gramians). Given a frequency interval Ω = [ω1, ω2], 0 ≤ ω1 <
ω2 and a LTI model H := (A,B,C). The frequency-limited controllability and observability
gramians of H over Ω, denoted respectively as PΩ and QΩ, are defined as

QΩ = Q(ω2)−Q(ω1),
PΩ = P(ω2)− P(ω2),
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Chapter 2. Preliminary in LTI systems theory

where

P(ω) =
1

2π

∫ ω

−ω

T (ν)BBTT ∗(ν)dν,

Q(ω) =
1

2π

∫ ω

−ω

T ∗(ν)CTCT (ν)dν,

with T (ν) = (jνIn −A)−1
.

P(ω) and Q(ω) are the solutions of the following Lyapunov equations

AP(ω) + P(ω)AT +Wc(ω) = 0,

ATQ(ω) +Q(ω)A+Wo(ω) = 0,

where the last terms are given by

Wc(ω) = S(ω)BBT +BBTSH(ω),

Wo(ω) = SH(ω)CTC + CTCS(ω),
(2.11)

and where, by denoting logm(M) the matrix logarithm of M ,

S(ω) =
1

2π

∫ ω

−ω

T (ν)dν,

=
j

2π
logm

(

(A+ jωIn) (A− jωIn)−1
)

.

By denoting Wc(Ω) = Wc(ω2) − Wc(ω1) and Wo(Ω) = Wo(ω2) − Wo(ω1), it turns out that
similarly to the infinite gramians, the frequency-limited gramians QΩ and PΩ can be computed
by solving Lyapunov equations,

APΩ + PΩA
T +Wc(Ω) = 0,

ATQΩ +QΩA+Wo(Ω) = 0.
(2.12)

Alternatively, they can be computed directly from the infinite gramians as,

QΩ = Wo(Ω)
HQ+QWo(Ω),

PΩ = PWc(Ω)
H +Wc(Ω)P.

Remark 3 (Time limited gramians). By following the same idea, the authors in [Gawronski
and Juang, 1990] have also built time-limited gramians.

Remark 4 (Balancing of the frequency-limited gramians). Note that the last terms Wc(Ω) and
Wo(Ω) of the Lyapunov equations (2.12) are not necessarily positive definite, hence the Lyapunov
solver that directly gives the Cholesky factorisation of the gramians [Hammarling, 1982] is not
applicable here.

The frequency-limited gramians are also positive definite and can be balanced. Hence they
can be used to compute quantities similar to the Hankel singular values as illustrated in Example
3.

Example 3 (Singular values obtained from frequency-limited gramians). The idea behind this
example comes from [Gawronski, 2004, chap. 4]. Let us consider a 6-th order model which poles
are λ1 = −0.1 + 3j, λ2 = −0.05 + 10j, λ3 = −0.01 + 20j and their complex conjugate. The
transfer function associated with this model is given by

H(s) =
1

(s2 + 0.2s+ 9.01) (s2 + 0.1s+ 100) (s2 + 0.02s+ 400)
.
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Figure 2.2: Frequency response of H(s) (top) and Hankel singular values obtained from the
frequency-limited gramians for a varying pulsation ω (bottom).

The frequency-limited gramians QΩ and PΩ are computed for Ω = [0, ω] where ω varies from
0 to 20 and for each value of ω, the square roots of the eigenvalues of the product QΩPΩ are
computed, i.e. what may be called the frequency-limited Hankel singular values (FL-HSV) of the
model.

The frequency response of the model, its Hankel singular values (HSV) and its frequency-
limited Hankel singular values (FL-HSV) are plotted in Figure 2.2.

One can observe that the frequency-limited singular values are null (or very small) before
they cross the natural frequency of their corresponding mode, then, they are almost constant as
ω increases and have the same value as the Hankel singular values.

Note that this correspondence between the poles and the singular values is obvious in this case
because the modes are poorly damped but it would not be as obvious with highly damped modes.

2.2 Norms of systems

Various norms with different interpretation can be used for judging the quality of a reduced-order
model. Here, the definitions of the H2-norm (Section 2.2.1), its frequency-limited counterpart
(Section 2.2.2) and the H∞-norm (Section 2.2.3) are quickly recalled.

2.2.1 H2-norm

Definition and properties

The H2-norm can be interpreted, in the time domain, as the energy of the model output signal
when its input is a Dirac, and equivalently in the frequency domain, as the output energy of its
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transfer function when the input is a white noise. Its frequency domain definition is recalled in
Definition 3.

Due to its interesting physical interpretation, its properties and the relative simplicity to
compute it, the H2-norm has been widely considered in model approximation [Meier and Luen-
berger, 1967; Wilson, 1974; Fulcheri and Olivi, 1998; Van Dooren et al., 2008b; Gugercin et al.,
2008] (further information about optimal H2 model approximation are presented in Chapter 4).

Definition 3 (H2-norm). Given a LTI dynamical model H whose transfer function is H(s) ∈
Cny×nu , the H2-norm of H, denoted ‖H‖H2

is defined, in the frequency-domain, as

‖H‖2H2
:=

1

2π

∫ ∞

−∞

tr
(
H(jν)H(−jν)T

)
dν.

The H2-norm is infinite for models which have poles in the right half plane or a non-null
direct feedthrough matrix D.

Computation

The H2-norm of a model can be expressed either with the infinite gramians of the model as
presented in Theorem 1 or with its poles and residues, as shown in Theorem 2.

Theorem 1 (Gramian formulation of theH2-norm). Given an asymptotically stable LTI dynam-
ical model H which infinite observability and controllability gramians are Q and P, respectively.
The H2-norm of H, denoted ‖H‖H2 is given by

‖H‖2H2
= tr

(
CPCT

)

= tr
(
BTQB

)
.

Theorem 2 (Poles-residues formulation of the H2-norm). Given a n-th order asymptotically
stable and strictly proper LTI dynamical model H whose transfer function is H(s) and which
has only semi-simple eigenvalues. Then, by denoting Φi ∈ Cny×nu , the residues of the transfer
function associated with the pole λi ∈ C (i = 1, . . . , n), one obtains

‖H‖2H2
=

n∑

i=1

tr
(
ΦiH(−λi)T

)
= −

n∑

i=1

n∑

k=1

tr
(
ΦiΦ

T
k

)

λi + λk
.

The hypothesis on the multiplicity of the poles in Theorem 2 can be alleviated as shown in
[Antoulas, 2005, chap 5.].

2.2.2 Frequency-limited H2-norm

Definition and properties

The frequency-limited H2-norm, denoted H2,Ω-norm, has been suggested in [Anderson et al.,
1991] in order to estimate the H2-norm of nominally unstable models. Its definition is recalled
below in Definition 4. It has been used recently in [Garulli et al., 2013] to perform robustness
analysis on an aircraft model and in [Petersson, 2013] to perform optimal model approximation.
Its behaviour is illustrated in Example 4.

Definition 4 (H2,Ω-norm). Given a LTI dynamical model H whose transfer function is H(s) ∈
Cny×nu and a frequency interval Ω = [0, ω], the frequency-limited H2-norm of H, denoted
‖H‖H2,Ω

is defined as the restriction of its H2-norm over [−ω, ω], i.e.

‖H‖2H2,Ω
:=

1

2π

∫ ω

−ω

tr
(
H(jν)H(−jν)T

)
dν

:=
1

π

∫

Ω

tr
(
H(jν)H(−jν)T

)
dν
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Figure 2.3: Frequency-response of the LAH model (top) and evolution of its H2,Ω-norm with
Ω = [0, ω] with respect to ω (bottom).

Example 4 (Illustration of the behaviour of the H2,Ω-norm (code available in Appendix C.1)).
To illustrate the evolution of the H2,Ω-norm with respect to the frequency interval Ω, the H2,Ω-
norm of the LAH model is computed for the interval Ω = [0, ω] for varying ω and plotted in
Figure 2.3 together with its H2-norm and its frequency-response.

One can observe that the frequency-limited H2-norm gives insight about the evolution of the
transfer function since it increases more or less quickly depending on the gain of the transfer
function. Also, in that case, the frequency-limited H2-norm tends towards the H2-norm as ω
increases.

Note that using the frequency interval Ω = [0, ω] does not yield any loss of generality. Indeed,
as stated in Property 1, theH2,Ω-norm of a modelH over an union of multiple frequency intervals
can be expressed as a sum of its H2,Ω-norms over simpler intervals.

Property 1 (Multiple frequency intervals). Let us consider a model H and a frequency in-

terval Ω defined as the union of K ∈ N∗ separated frequency intervals Ωi =
[

ω
(0)
i , ω

(1)
i

]

=
[

0, ω
(0)
i

]
⋂
[

0, ω
(1)
i

]

= Ω
(0)
i

⋂
Ω

(1)
i with ω

(0)
i < ω

(1)
i , i.e. :

Ω =

K⋃

i=1

Ωi =

K⋃

i=1

(

Ω
(0)
i

⋂

Ω
(1)
i

)

.

Then the H2,Ω-norm of H can be rewritten with the frequency-limited H2-norms of H over Ω
(0)
i

and Ω
(1)
i (i = 1, . . . ,K) as

‖H‖2H2,Ω
=

K∑

i=1

‖H‖2H
2,Ω

(1)
i

−
K∑

i=1

‖H‖2H
2,Ω

(0)
i

.
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Figure 2.4: H2,Ω-norm and frequency-weighted H2-norm of the LAH model computed over
Ω = [10, 20] for varying order of the Butterworth filters.

A similar measurement to the frequency-limitedH2-norm is the frequency-weightedH2-norm,
denoted H2,W -norm (see for instance [Anić et al., 2013]). The latter is defined as the H2-norm
of the model H weighted by a filter W ∈ H∞, i.e.

‖H‖H2,W
= ‖HW‖H2 .

The frequency-limited H2-norm is equivalent to the frequency-weighted H2-norm considered
with perfect filters. This point is illustrated in Example 5 where both norms are compared.

Example 5 (Comparison of the H2,Ω-norm and frequency-weighted H2-norm). In this example,
the frequency-limited H2-norm of the LAH model is computed over the frequency interval Ω =
[10, 20] and compared to the H2-norm computed on the weighted model obtained by applying an
input bandpass filter to it. The filter is constructed with two Butterworth filters which orders are
increased from 1 to 10. The top frame of Figure 2.4 shows the H2,Ω-norm and frequency-weighted
H2-norm for varying order of the bandpass filter and the bottom frame represents the relative
error of the frequency-weighted H2-norm compared to the H2,Ω-norm.

The frequency-weighted H2-norm tends towards the H2,Ω-norm as the order of the filter in-
creases. With a 8-th order bandpass filter, the relative error falls below 5%. The frequency-
weighted H2-norm is not necessarily inferior or superior to the H2,Ω-norm, both cases can be
observed, depending on the model. Note that the required order of the filter strongly depends on
the considered model and the frequency interval Ω. Besides, multiple frequency intervals might
be difficult to handle with filters whereas they are indifferently handled with the H2,Ω-norm.

Computation

The frequency-limited H2-norm is closely related to the frequency-limited gramians introduced
in [Gawronski and Juang, 1990] and recalled in Definition 2. Indeed, the frequency-limited H2-
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norm can be computed with the frequency-limited gramians similarly to the H2-norm as stated
in Theorem 3.

Theorem 3 (Gramian formulation of the H2,Ω-norm). Given the frequency interval Ω and a
strictly proper LTI dynamical model H. Let PΩ and QΩ be its frequency-limited controllability
and observability gramians, then frequency-limited H2-norm of H is given as

‖H‖2H2,Ω
= tr

(
CPΩC

T
)

= tr
(
BTQΩB

)
.

In Theorem 3, the hypothesis is made that the model is strictly proper. This assumption
can be alleviated and the formulation of the norm adapted consequently as shown in [Petersson,
2013].

2.2.3 H∞-norm

The definition of the H∞-norm of a LTI dynamical model is recalled below in Definition 5. For
SISO models, it represents the maximum gain of the transfer function across all frequencies
and for MIMO models, it is the maximum singular value of the transfer function across all
frequencies.

Definition 5 (H∞-norm). Given an asymptotically stable LTI dynamical model H whose trans-
fer function is H(s) ∈ Cny×nu , the H∞-norm of H, denoted ‖H‖H∞

is defined as the maximum
of the largest singular value over the imaginary axis, i.e.

‖H‖H∞
:= max

ω∈R

σmax (H(jω)) .

Computing the H∞-norm is a complex task that is usually achieved by an iterative bisection
algorithm (see [Zhou et al., 1995, chap. 4]).

The problem that consists in finding a reduced-order model minimising the H∞-norm of the
error is complex and was still considered as unsolved in 2004 [Blondel and Megretski, 2004]. In
fact, only few methods have been proposed to address this problem :

◮ the non-smooth H∞ control synthesis methods presented in [Apkarian and Noll, 2006;
Burke et al., 2006] can also be used to perform optimal H∞ model approximation. Yet,
they have not been designed for this purpose and might not be tractable in large-scale
settings.

◮ Methods based on Linear Matrix Inequalities (LMIs) that solve a relaxation of the H∞

model approximation problem have been proposed (see for instance [Grigoriadis, 1995] and
reference therein). Generally, these approaches are intractable in large-scale settings and
the published application examples are generally of low order (n ≤ 10).

◮ An approach that adjusts the feedthrough term D̂ of the reduced-order model in an H∞-
optimal way has been proposed in [Flagg et al., 2013]. This method relies on an efficient
interpolation framework that is tractable even in large-scale cases but does not solve the
actual H∞ approximation problem.

Conclusion

In this chapter, some tools from LTI systems theory about the representation of models, their
gramians and their norms, have been recalled. Concerning the representation of LTI dynami-
cal models, the poles-residues one is convenient for addressing the optimal H2 approximation
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problem described in Chapter 4 and is also the basis of several elements developed during this
thesis.

The infinite gramians and their energetic interpretation are the foundations of the well known
balanced truncation and their frequency-limited counterpart is of particular interest for model
approximation over a bounded frequency interval.

The metrics used throughout this study, namely the H2, H2,Ω and H∞ norms, have also been
recalled. Each one of these norms has a different meaning and interest, but in the context of
model approximation, the H2-norm has been, by far, the most considered one. Here, due to the
objectives of this study, the contributions of the thesis are mainly focused on its frequency-limited
counterpart.

The next chapter is dedicated at describing some well known model approximation methods
which are important to understand more recent techniques.
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Chapter 3

Standard model approximation meth-
ods

This chapter is aimed at recalling some well-known model approximation techniques. In par-
ticular, in Section 3.1, two methods based on the truncation of the state-space realisation, the
modal truncation and the balanced truncation, are recalled and illustrated through some numer-
ical examples. Then, in Section 3.2, model approximation methods based on implicit moments
matching are presented. These methods are the basis of some of the H2 model approximation
methods presented in the next chapter.

Note that there exist many other model approximation methods and this chapter is not
meant to be an exhaustive overview of all these methods but rather a glimpse of the ones that
have, in some way, influenced this study. Therefore, some techniques such as the Hankel norm
approximation [Glover, 1984] are not presented in this chapter. For a much wider overview of
all the approximation methods, refer to [Antoulas, 2005; Benner et al., 2005].

Contents
3.1 Model approximation by truncation . . . . . . . . . . . . . . . . . . 31

3.1.1 Truncation and residualisation of state-space representation . . . . . . 31

3.1.2 Modal and balanced truncation . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Model approximation by moment matching . . . . . . . . . . . . . 38

3.2.1 Moment matching problem . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Implicit moment matching : the SISO case . . . . . . . . . . . . . . . 40

3.2.3 Tangential interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Model approximation by truncation

In this Section, the modal truncation and the balanced truncation are presented. They are both
based on the truncation of the state-space representation which principle is recalled in Section
3.1.1. Then, the actual model approximation methods are described in Section 3.1.2 with some
numerical illustrations.

3.1.1 Truncation and residualisation of state-space representation

Truncation

Given a n-th order linear time-invariant (LTI) dynamical model H described by the following
state-space representation :

H :=

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, (3.1)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu . The state vector x(t) can be divided
between the states which must be retained x1(t) and those which must be discarded x2(t), i.e.

x(t) =

[
x1(t)
x2(t)

]

.
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The state-space representation (3.1) can be structured accordingly to the partitioning of x(t),

A =

[
A11 A12

A21 A22

]

, B =

[
B1

B2

]

, C =
[
C1 C2

]
.

Then, the truncated state-space realisation Ĥ of H is obtained by keeping only the sub-matrices
associated with the states x1(t), i.e. Ĥ := (A11, B1, C1, D). The order of Ĥ is then given by the
number of states which have been retained.

In general, the truncated model Ĥ has no any particular property. In particular, any property
such as stability, observability, etc. might be lost. Since the direct feedthrough is not affected
by truncation, the only guaranty is that

H(∞) = Ĥ(∞).

The state-space truncation is generally interesting when the states have some specific physical
meaning or when it is performed on particular realisations such as the modal or balanced ones.

Residualisation

The state-space truncation procedure guarantees a perfect matching betweenH and Ĥ at infinity.
However, the steady-state error is not equal to zero, indeed,

H(0)− Ĥ(0) = C1A11
−1B1 − CA−1B.

If a perfect matching is required at low frequency, then state residualisation (or singular per-
turbation approximation) should be used instead of state truncation. It consists in saying that
the dynamics of x2(t) are fast compared to those of x1(t), i.e. ẋ2(t) = 0. This leads to the
equation :

−A22x2(t) = A21x1(t) +B2u(t).

If A22 is nonsingular, then the reduced order model Ĥ is then given by

Ĥ =

(
A11 −A12A22

−1A21 B1 −A12A22
−1B2

C1 − C2A22
−1A21 D − C2A22

−1B2

)

,

and with this method,

H(0) = Ĥ(0).

This result can be explained by the fact that the state residualisation is related to the state
truncation by the bilinear transformation s → s−1. Indeed a residualisation of H(s) can be
obtained by performing a state-truncation to G(s) = H(s−1) and setting Ĥ(s) = Ĝ(s−1). That
is why, in the sequel, no distinction is made between truncation and residualisation. The reader
should refer to [Kokotovic et al., 1986] or [Liu and Anderson, 1989] for further information on
this topic.

3.1.2 Modal and balanced truncation

Modal truncation

Truncation of modal realisations is widely used by engineers since it is conceptually simple and
enables to keep the meaningful modes of the initial system. For instance, high frequency modes
are often discarded because they play a secondary role in the system main dynamics and they
might also be out of the actuators’ bandwidths.

Let consider the LTI dynamical model H described by the state space representation (3.1).
For simplicity, let us assume that the matrix A is diagonalisable with semi-simple eigenvalues
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3.1. Model approximation by truncation

denoted by λi ∈ C, i = 1, . . . , n. By projection onto the eigenspace of A, the realisation of H
becomes

A∆ =






λ1
. . .

λn




 , B∆ =






b1

...
bn




 , C∆ =

[
c1

T . . . cn
T
]
, (3.3)

The reduced order model Ĥ is then obtained by retaining only some modes in (3.3). Let consider
that the first r modes of H are retained, then, the error between the two models can be expressed
as

H(s)− Ĥ(s) =
n∑

i=r+1

ci
Tbi

s− λi
,

where H and Ĥ are the transfer functions associated with H and Ĥ. In particular, the H∞-norm
of the error is given by,

‖H − Ĥ‖H∞
= max

ω∈R

∥
∥
∥
∥
∥

n∑

i=r+1

ci
Tbi

jω − λi

∥
∥
∥
∥
∥
2

(3.4a)

≤ max
ω∈R

n∑

i=r+1

∥
∥ci

Tbi

∥
∥
2

|jω − λi|
(3.4b)

≤
n∑

i=r+1

∥
∥ci

Tbi

∥
∥
2

|Re (λi)|
(3.4c)

Remark 5. The bound of the approximation error (3.4c) can be very pessimistic (see Example
6). This comes from the use of the triangular inequality (from (3.4a) to (3.4b)) and the transition
from (3.4b) to (3.4c) which consists in saying that the maximum of a sum of functions is smaller
than the sum of each maximum.

There are several ways to select the modes that should be retained. Engineers often select
those which have a particular physical meaning. This approach implies a good knowledge of the
physical system behind the equations. For more systematic selection methods, some criterion
can be formulated :

◮ to discard modes which have a fast decay rate, the modes with the largest real part Re (λi)
should be retained.

◮ to discard modes which have a natural high frequency, the modes with the smallest absolute
value |λi| should be retained.

◮ to minimize the H∞ bound of the error (3.4c), the dominant modes, i.e. those with the

highest ratio
‖ci

Tbi‖
2

|Re(λi)|
, should be retained.

In large-scale settings, the computation of the eigenvalues and corresponding eigenvectors can
become a tedious task. Iterative algorithms that only compute some eigenvalues can be used to
alleviate this issue :

◮ if the eigenvalues with the smallest or largest magnitude are required, then the Arnoldi or
Lanczos procedures can directly be used (see Algorithm 3 in Section 3.2). Using some shift
point in these algorithms enable to compute the poles in a neighbourhood of that point,

◮ dedicated algorithms have been developed to efficiently compute iteratively the dominant
poles of a model [Rommes and Martins, 2006].
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Figure 3.1: Relative H∞ approximation error and its bound obtained after reduction of the ISS
model with the modal truncation for r going from 2 to 40.

Example 6. Let us consider the International Space Station (ISS) model. This model is reduced
to several orders r going from 2 to 40 with the modal truncation by considering the last selection
method presented above. The relative H∞-norm of the approximation error and its bound, i.e.

‖H − Ĥ‖H∞

‖H‖H∞

and
1

‖H‖H∞

n∑

i=r+1

∥
∥ci

Tbi

∥
∥
2

|Re (λi)|
,

are computed for each value of r and plotted in Figure 3.1. As expected, the upper bound is very
pessimistic and obviously, the smaller the reduced-order model is, the worse the bound is. In
Figure 3.2, the magnitude of the frequency responses of the full-order model and reduced-order
one (for r = 10) are plotted. Due to the modes selection criterion, the input-output transfers
with the highest magnitude (like the 1st input to 1st output) are quite well matched while other
transfers with smaller magnitude (such as the 2nd input to 3rd output) are not as well reproduced.

On this example, the approximation error is reasonably small which shows that modal ap-
proximation may be sufficient in some cases.

Modal approximation is a simple approximation technique that has the advantage of pre-
serving some modes of the initial system. This is particularly interesting when some modes
with a particular physical meaning must be retained. Yet, when the H2 or H∞ norms of the
approximation error are considered, modal truncation is often less efficient than other methods
such as the balanced truncation described thereafter.
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Figure 3.2: Magnitude of the frequency responses of the full-order and reduced-order models for
r = 10.

Balanced truncation

The idea behind the balanced truncation1 (abbreviated BT in the sequel) is to discard the
states that require a lot of energy to be reached and/or the states that release only few energy
because they play a minor role in the input to output energy transfer. As mentioned before in
Section 2.1.2, the realisation in which states that are hard to observe are also hard to reach is
the balanced realisation.

Once a model H is balanced, its associated gramians are diagonal and equals to the matrix
Σ which diagonal entries are the Hankel singular values of the model (see Section 2.1.2). This
matrix can be partitioned as,

Σ =

[
Σ1 0
0 Σ2

]

, (3.5)

and following this partitioning, the state-space representation of the model can be written ac-
cordingly as

Abal =

[
A11 A12

A21 A22

]

, Bbal =

[
B1

B2

]

, Cbal =
[
C1 C2

]
, (3.6)

The reduced-order models obtained by balanced truncation are then given by,

Ĥi =

(
Aii Bi

Ci D

)

. (3.7)

The states that should be retained are those which correspond to the largest Hankel singular
values because they have a larger impact on the input-output energy transfer. The balanced
truncation has some interesting properties which are recalled in Theorem 4.

1Note that the Lyapunov balancing is considered here, the truncation procedure has different properties if
other type of balancing are used. See [Antoulas, 2005, chap.7] or [Gugercin and Antoulas, 2004] for further
details on this topic.
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Theorem 4 (Balanced truncation for continuous-time models [Antoulas, 2005, chap.7]). Given
the stable, reachable and observable continuous system H. The reduced-order models Ĥi, i = 1, 2
(3.7) obtained by balanced truncation have the following properties :

1. Ĥi is balanced and has no pole in the open right half plane.

2. If the singular values contained in Σ1 and Σ2 (3.5) are different, then Ĥi are reachable,
observable and have no pole on the imaginary axis.

3. The H∞-norm of the error between H and Ĥi is bounded by twice the sum of the neglected
Hankel singular values without their multiplicities [Pernebo and Silverman, 1982], i.e. if
Ĥ1 is of order r,

‖H − Ĥ1‖H∞
≤ 2

n∑

i=r+1

σi

Remark 6 (About the stability of the reduced-order model). The full proof of Theorem 4 is not
detailed here and can be found in [Antoulas, 2005, chap.7], but understanding where the stability
comes from helps to understand why it cannot be guaranteed with other methods presented in the
sequel.

Let us consider the reduced-order model Ĥ1 = (A11, B1, C1) from (3.6). By construction, Ĥ1

is balanced and the Lyapunov equations

A11Σ1 +Σ1A
T
11 +B1B

T
1 = 0 and AT

11Σ1 +Σ1A11 + CT
1 C1 = 0,

are satisfied. Then, since Σ1 is positive definite and B1B
T
1 (or CT

1 C1) positive semi-definite, in-
ertia results (see [Ostrowski and Schneider, 1962] or [Antoulas, 2005, chap.6]) enable to conclude
that A11 is stable. The asymptotic stability can then be proved by contradiction.

Computing an exact solution to a Lyapunov equation is an ill-conditioned problem which
might be difficult to achieve in large-scale settings. To overcome this issue,

◮ parallel computing capacities of modern computers can be exploited [Benner et al., 1999,
2000],

◮ low-rank solutions of the gramians can be computed [Penzl, 1999; Li and White, 2002;
Stykel and Simoncini, 2012] thus leading to approximate balanced truncation [Sorensen and
Antoulas, 2002; Bad́ıa et al., 2006; Gugercin and Li, 2005]. When approximate gramians
are used, the stability of the reduced-order model is not guaranteed anymore.

Example 7. In this example, the LAH model is approximated to several order r going from 2 to
30 with the modal approximation and the balanced truncation. For each order r, the H∞-norm
of the relative error is computed together with the corresponding upper bounds of each method
and both are plotted in Figure 3.3. In Figure 3.4, the poles of the large-scale and reduced-order
models are displayed for r = 20.

On this example, the balanced truncation performs better than the modal truncation in terms
of H∞-norm of the error. The bound given by the BT is also tighter than the one given by
the modal truncation. In Figure 3.4, one can observe that the BT does not preserve the poles
of the initial large-scale model unlike the modal truncation. However, the poles associated with
important dynamics are generally preserved (such as those close to the imaginary axis in this
case).

Due to its simplicity, its efficiency and the fact that it offers interesting guarantees, the
balanced truncation is one of the most popular model approximation methods. The method has
been extended to other kind of models such as parameter-varying models [Wood et al., 1996],
descriptor models [Mehrmann and Stykel, 2005], second-order linear models [Chahlaoui et al.,
2006], etc. A similar concept can also be applied to non-linear models (see Remark 7).
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Figure 3.3: Relative H∞ errors and bounds obtained with the balanced truncation and with the
modal truncation on the LAH model for varying approximation order r.
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Figure 3.4: Poles of the large-scale and reduced-order models obtained by modal and balanced
truncation for r = 20.
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Remark 7 (Empirical gramians and proper orthogonal decomposition). Empirical gramians
can be built from temporal simulations of a possibly non-linear model. Using these empirical
gramians to project the initial model leads to the so-called Proper Orthogonal Decomposition.
See [Antoulas, 2005, chap.9] and references therein for further information on this method. Note
also that an open-source toolbox dedicated to model approximation based on empirical gramians
is available in [Himpe, 2014].

In the next Section, other projection methods are presented. The underlying idea is no longer
to discard states that are barely involved in the input-output energy transfer but to match the
moments of the initial transfer function at some specific interpolation points.

3.2 Model approximation by moment matching

The method described in this section greatly relies on the projection (see Remark 8 for further
information on model approximation by projection) of the large-scale model over specific Krylov
subspaces. These subspaces, denoted Kk and defined as,

Kk (A,v) = span
(
v, Av, . . . , Ak−1v

)
,

arises in many areas of research and are of particular interest for large-scale problems since they
can be constructed iteratively. In particular, they are used

◮ to solve systems of linear equations Ax = b [Saad, 2003],

◮ to compute the eigenvalues of matrices [Ruhe, 1994; Sorensen, 1997],

◮ to compute approximate solutions of Lyapunov equations [Stykel and Simoncini, 2012],

◮ to reduce large-scale dynamical models [de Villemagne and Skelton, 1987; Grimme, 1997].

The last point is described in this Section. It consists in using the Krylov subspaces to perform
an implicit matching of the full-order model moments at some points.

In Section 3.2.1, the moments of a transfer function are defined and the problem of moment-
matching is introduced. The problem is then addressed for SISO models with a rational in-
terpolation framework in Section 3.2.2. Even if this framework can theoretically be directly
generalised to MIMO models, the associated algorithms become very complex. Instead, the
so-called tangential interpolation framework is used to address the MIMO case in Section 3.2.3.

Remark 8 (Model approximation by projection). Let us consider a LTI dynamical model H =
(A,B,C,D). In many cases, the trajectories x(t) of H are contained in a low dimensional
subspace S, that is to say x(t) can be expressed as,

x(t) = VS x̂(t),

where VS is a basis of S and x̂(t) is the reduced state vector. The exact basis of S is in general
not known, so an approximation V ∈ Rn×r is used instead, thus,

x(t) ≈ V x̂(t).

Then the ordinary differential equation representing H becomes

V x̂(t) = AV x̂(t) +Bu(t) + res(t), (3.8)

where res(t) is a nonzero residue which comes from the approximation of the state x(t). The
Petrov-Galerkin conditions are then enforced by forcing the residue res(t) to be orthogonal to a
subspace W. By denoting W ∈ Rn×r a basis of W and left-multiplying (3.8) by WT , one obtains

WTV x̂(t) =WTAV x̂(t) +WTBu(t) +WT res(t)
︸ ︷︷ ︸

=0

.
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3.2. Model approximation by moment matching

If WTV is nonsingular, the reduced-order differential equation becomes

x̂ =
(
WTV

)−1
WTAV x̂(t) +

(
WTV

)−1
WTBu(t),

and the associated output ŷ(t) is given by

ŷ = CV x̂(t) +Du(t).

If W = S, i.e. W = V , then one talks about orthogonal projection. Otherwise, one talks about
oblique projection. See [Saad, 2003] for further information on projection.

The projectors W and V can then be built so that the projected model Ĥ = (Â, B̂, Ĉ, D̂),

where Â =
(
WTV

)−1
WTAV , B̂ =

(
WTV

)−1
WTB, Ĉ = CV and D̂ = D, has some specific

properties. In this section, they are constructed as the basis of some Krylov subspaces to ensure
interpolation conditions.

3.2.1 Moment matching problem

The moments of a transfer function are presented in Definition 6 and the problem of model
approximation by moment matching is introduced in Problem 2.

Definition 6 (Moments of a transfer function). Let us consider a model H, its transfer function

H(s) = C(sIn −A)−1
B + D ∈ Cny×nu can be decomposed through a Laurent series expansion

around a given shift point σ ∈ C as,

H(s) =

∞∑

i=0

ηi(σ)
(s− σ)i

i!
,

where ηi(σ) ∈ Cny×nu , (i ∈ N) is the i-th moment of H(s) at σ associated with the model and is
defined as,

ηi(σ) = (−1)i d
iH(s)

dsi

∣
∣
∣
s=σ

Problem 2 (Moment matching problem). Given a n-th order model H whose transfer function
H(s) is decomposed at σ ∈ C as

H(s) =

∞∑

i=0

ηi(σ)
(s− σ)i

i!
,

the moment matching problem consists in finding a reduced-order model Ĥ which first r moments
η̂i(σ) at σ satisfy,

η̂i(σ) = ηi(σ), i = 1, . . . , r.

Depending on the point σ around which the moments have to be matched, the problem have
different names :

◮ if σ = 0, it is called a Padé approximation and the associated moments to match are given
by

η0(0) = −CA−1B +D, and ηi(0) = (−1)(i+1)CA−(i+1)B, i > 0.

◮ if σ =∞, then it is a partial realisation problem. In that case, the moments are called the
Markov parameters and are given by

η0(∞) = D, and ηi(∞) = CAi−1B, i > 0. (3.9)
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◮ otherwise it is a rational interpolation problem.

The simplest approach to address Problem 2 consists in computing explicitly the moments of
the initial model H and finding the reduced-order model that matches the first r ones [Grimme,
1997, chap.2]. However, computing the moments is ill-conditioned because it implies to evaluate
successive power of the matrix A (see for instance equation (3.9)). Thus this method is not
reliable. A more suitable approach consists in implicitly matching the moments of the full-order
model by projecting it onto particular Krylov subspaces.

3.2.2 Implicit moment matching : the SISO case

An in-depth study of the methods presented in this section can be found in [Grimme, 1997].
The first way to use Krylov subspaces to perform rational interpolation consists in projecting

the full-order model H on the Krylov subspace Kr

(

(σIn −A)−1
, (σIn −A)−1

B
)

. Indeed, as

stated in Theorem 5, this enables the reduced-order model to match the first r moments of H
at σ ∈ C. It is called one-sided moment matching since only one Krylov subspace is involved.

Theorem 5 (One-sided moment matching). Let us consider a SISO LTI dynamical model H :=
(A,B,C,D) and an interpolation point σ ∈ C such that (σIn −A) is nonsingular. If V ∈ Cn×r

is a full-rank matrix that columns span the Krylov subspace Kr

(

(σIn −A)−1
, (σIn −A)−1

B
)

,

i.e.
Kr

(

(σIn −A)−1
, (σIn −A)−1

B
)

⊆ V = span (V ) ,

then the reduced-order model Ĥ =
((
V TV

)−1
V TAV,

(
V TV

)−1
V TB,CV,D

)

obtained by projec-

tion matches the first r moments of H at σ, i.e.

η̂i(σ) = ηi(σ),

for i = 1, . . . , r.

To efficiently create a basis V ∈ Rn×r for the Krylov subspace used in Theorem 5, the Arnoldi
algorithm can be used. Its basic version is presented in Algorithm 3. This procedure enables to
construct an orthonormal basis for a Krylov subspace Kr (A,v1) without explicitly computing
the successive power of the matrix A.

Algorithm 3 Arnoldi Algorithm

Require: A ∈ Cn×n, v1 ∈ Cn×1 with ‖v1‖2 = 1, and r ∈ N∗
+.

1: for i = 1, . . . , r do
2: Compute w = Avi

3: for j = 1, . . . , i do
4: hj,i = vj

Hw
5: end for
6: Set w⊥ = w −∑i

j=1 hj,ivj

7: Set hi+1,i = ‖w⊥‖2
8: if hi+1,i = 0 then
9: Stop

10: end if
11: Set vi+1 = w⊥/hi+1,i

12: end for

At each iteration of Algorithm 3 a new vector w is created by multiplying the matrix A
with the Arnoldi vector vi, and by applying a simple Gram-Schmidt procedure, this vector
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3.2. Model approximation by moment matching

w is then orthogonalised with respect to the previous Arnoldi vectors vj, j = 1, . . . , i. The
new Arnoldi vector vi+1 if finally obtained by normalising the orthogonal vector w⊥. The
orthogonalisation step is very important, so a more evolved orthogonalisation procedure than
the simple Gram-Schmidt one can be used. For instance, the modified Gram-Schmidt or the
Householder procedures [Saad, 2003, chap. 1] are more adapted from a numerical point of view.

Remark 9. A much more detailed presentation of the Arnoldi procedure and its properties can
be found in [Saad, 2003, chap.6].

By using the Arnoldi procedure with A ← (σIn −A)−1
and v1 ← (σIn −A)−1

B then the
resulting matrix V ∈ Cn×r is a orthonormal basis for the Krylov subspace

Kr

(

(σIn −A)−1
, (σIn −A)−1

B
)

.

Note that since the Arnoldi procedure directly creates an orthonormal basis V , the reduced-order
model is obtained directly as Ĥ =

(
V TAV, V TB,CV,D

)
.

In Theorem 5, an orthogonal projection is performed, but better results can be obtained by
using an oblique projection as presented in Theorem 6 (see Remark 8). Indeed, twice the number
of moments of H are matched with a two-sided approach compared to the one-sided approach.

Theorem 6 (Two-sided moment matching). Let us consider a SISO LTI dynamical model H :=
(A,B,C,D) and an interpolation point σ ∈ C such that (σIn −A) is nonsingular. If V ∈ Cn×r

and W ∈ Cn×r are full-rank matrices that columns span the following Krylov subspaces,

Kr

(

(σIn −A)−1
, (σIn −A)−1

B
)

⊆ V = span (V ) ,

Kr

(

(σIn −A)−T
, (σIn −A)−T

CT
)

⊆ W = span (W ) ,

then the reduced-order model Ĥ =
((
WTV

)−1
WTAV,

(
WTV

)−1
WTB,CV,D

)

obtained by pro-

jection matches the first 2r moments of H at σ, i.e.

η̂i(σ) = ηi(σ),

for i = 1, . . . , 2r.

Similarly to the basis V ∈ Cn×r, W ∈ Cn×r can be efficiently computed by using the Arnoldi
procedure with A ← (σIn −A)−T

and v1 ← (σIn −A)−T
CT . Alternatively, the Lanczos

method can be used to directly compute both V and W in the same time. It is computationally
cheaper than the Arnoldi procedure but more complex to implement (see [Saad, 2003, chap.6]
or [Antoulas, 2005, chap.10]). The advantage of the two-sided moment matching approach over
the one-sided one is illustrated in Example 8.

Example 8. To compare the one-sided and two-sided moment matching approaches, the LAH
model is reduced to an order 2 with σ = 0 with both techniques. The frequency responses of the
error models are plotted in Figure 3.5. As expected, the two-sided method leads to better results
than the one-sided method. Since the interpolation is done at σ = 0, the error is smaller at low
frequency than at high frequency.

Note that by explicitly computing the moments of the different models, we can check that the
one-sided technique matches the first two moments whereas the two-sided approach matches the
first four moments.

Both Theorem 5 and Theorem 6 only enable to match the moments of the full-order model
H at one single point σ ∈ C. For a moment-matching at several points, the generalized Krylov
subspaces, which are the union of different Krylov subspaces at different points σi ∈ C, i =
1, . . . , nσ, must be considered. The result is presented in Theorem 7.
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Figure 3.5: Comparison of one-sided and two-sided moment matching on the LAH model which
is approximated to an order 2 at σ = 0.

Theorem 7 (Multiple points two-sided moment matching). Let us consider a SISO LTI dy-
namical model H := (A,B,C,D) and nσ interpolation points {σ1, . . . , σnσ

} ∈ C such that each
(σkIn −A), k = 1, . . . , nσ is nonsingular. If V ∈ Cn×r and W ∈ Cn×r are full-rank matrices
that columns spans the following generalized Krylov subspaces

nσ⋃

k=1

Krk

(

(σkIn −A)−1
, (σkIn −A)−1

B
)

⊆ V = span (V ) ,

nσ⋃

k=1

Krk

(

(σkIn −A)−T
, (σkIn −A)−T

CT
)

⊆ W = span (W ) ,

then the reduced-order model Ĥ =
((
WTV

)−1
WTAV,

(
WTV

)−1
WTB,CV,D

)

obtained by pro-

jection matches the first 2rk moments of H in each σk, i.e. for k = 1, . . . , nσ and i = 1, . . . , 2rk,

η̂i(σk) = ηi(σk).

All the moment-matching theorems presented above consider complex interpolation points
σi ∈ C. However, to obtain a real realisation for the reduced-order model, the interpolation
points must either be real or closed under conjugation. In the latter case, the columns of the
matrix V andW are also closed under conjugation, thus they can be replaced by two real matrices
which span the same subspace by separating the real and imaginary parts of each complex pair.
For instance, consider

V =
[
v1 v1

∗
]
∈ C

n×2.

V spans the same subspace as

VR =
[
Re (v1) Im (v1)

]
∈ R

n×2.

This is exploited in Example 9 where the multiple points two-sided moment matching approach
is compared to the single point one.
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Figure 3.6: Comparison of the 3rd-order approximations obtained by interpolation of the LAH
model at σ = {0} and at σ = {0, 5j,−5j}.

Example 9. This example illustrates the rational interpolation at multiple points. The LAH
model is reduced to an order 3 by a two-sided moment matching at σ = {0} and at σ =
{0, 5j,−5j}. The reduced model obtained with a Padé approximation, denoted Ĥpadé, matches
the first 6 moments of the full-order model H at 0 while the one obtained with a rational interpo-
lation at σ = {0, 5j,−5j}, denoted Ĥrat, matches the first 2 moments of H at each interpolation
points.

This can be seen in Figure 3.6 where the frequency responses of the error are plotted. Indeed,
for low frequency, Ĥpadé leads to a better approximation than Ĥrat whereas at ω = 5 rad/s (which

corresponds to the complex point 5j), the error H − Ĥrat falls drastically.

All the results presented in this section can theoretically be generalised to MIMO models.
However, in the latter case, the available algorithms, such as the block Arnoldi procedure [Saad,
2003, chap.6], are very tricky to implement and does not necessarily lead to satisfactory results.
Instead, the tangential interpolation framework proposed in [Gallivan et al., 2004a] enables to
elegantly and naturally address the MIMO case.

3.2.3 Tangential interpolation

An in-depth study of the tangential interpolation framework is done in [Gallivan et al., 2004a],
here, only the result involved in the optimal model approximation is presented. Theorem 8 shows
how a bi-tangential interpolation of a LTI model can be achieved by projection onto a particular
subspace. It is very similar to the previous generalised Krylov subspaces excepted that in this
case, tangential directions are involved.

Theorem 8 (Bi-tangential interpolation [Gallivan et al., 2004a]). Let us consider a MIMO LTI
dynamical model H with nu inputs and ny outputs. Let V , W ∈ Cn×r be full rank matrices and

let σi ∈ C, b̂i ∈ C1×nu and ĉi ∈ C1×ny , i = 1, . . . , nσ be a given set of interpolation points and
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Chapter 3. Standard model approximation methods

associated right and left tangential directions, respectively. Suppose that the points σi are such
that (σiIn −A) is nonsingular. If for i = 1, . . . , nσ,

(σiIn −A)−1
Bb̂T

i ⊆ span (V ) ,

(σiIn −A)−T
CT ĉTi ⊆ span (W ) ,

(3.10)

then the reduced order model Ĥ =
((
WTV

)−1
WTAV,

(
WTV

)−1
WTB,CV,D

)

satisfies the fol-

lowing bi-tangential interpolation equations,

ĉiH(σi) = ĉiĤ(σi),

H(σi)b̂
T
i = Ĥ(σi)b̂

T
i ,

ĉiH
′(σi)b̂

T
i = ĉiĤ

′(σi)b̂
T
i .

for i = 1, . . . , nσ.

It is easy to check that a model satisfying one of the condition in equation (3.10) tangen-
tially interpolates the initial model at σi from the left or the right. Indeed Let us consider r
interpolation points σi ∈ C such that (σiIn −A) is non-singular and r tangential directions b̂i.
Suppose that V ∈ Cn×r is given as

V =
[

(σ1In −A)−1
Bb̂T

1 . . . (σrIn −A)−1
Bb̂T

r

]
.

Let us consider the matrix Z ∈ Cn×r defined as

ZT =
(
WT (σiIn −A)V

)−1
WT (σiIn −A) .

It is clear that ZTV = Ir. The transfer function of the large-scale model evaluated at σi in the
direction b̂i is given by

H(σi)b̂
T
i = C(σiIn −A)−1

Bb̂T
i .

Since for i = 1, . . . , r, (σiIn −A)−1
Bb̂T

i is a column of V , then by using Lemma 1, one obtains

H(σ1)b̂
T
i = CV ZT (σiIn −A)−1

Bb̂T
i

= CV
(
WT (σiIn −A)V

)−1
WTBb̂T

i

= Ĉ
(

σiIr − Â
)−1

B̂b̂T
i

= Ĥ(σi)b̂
T
i .

The proof of the whole Theorem is more complex and the reader should refer to [Gallivan et al.,
2004a] for further information. The projection matrices that enable to fulfil those interpolation
conditions can either be built as before with iterative procedures but they can also be obtained
by solving some specific Sylvester equations [Gallivan et al., 2004b] or by contructing a Loewner
matrix [Mayo and Antoulas, 2007; Ionita, 2013]. An illustration of the tangential interpolation
is presented in Example 10.

Lemma 1 (See [Gallivan et al., 2004a]). Let V ∈ Cn×r, if the vector v belongs to the column
span of the matrix V . Then, for any matrix Z ∈ Cn×r such that ZTV = Ir,

v = V ZT v.

Example 10 (Illustration of the tangential interpolation). In this example, the ISS model, which
has 3 inputs and 3 outputs, is considered. It is tangentially interpolated at the points σ1 and σ2
in the left directions ĉ1, ĉ2 and in the right directions b̂T

1 , b̂
T
2 with

σ1 = 0.8j, b̂1 = ĉ1 =
[
j 0 0

]
,
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Figure 3.7: Frequency responses of the large-scale model H and reduced-order one Ĥ obtained
by tangential interpolation.

and
σ2 = 10j, b̂2 = ĉ2 =

[
0 0 j

]
.

In order to obtain a real reduced-order model Ĥ, the complex conjugates of those points are
considered too, thus leading to a 4-th order for Ĥ. With this choice of interpolation points and
directions, the reduced-order transfer matrix Ĥ(s) should interpolate the initial transfer function
matrix H(s) according to a specific pattern. In particular, the first line and the first column of
the matrix transfer Ĥ(s) should interpolate the first line and the first column of H(s) at σ1 and
the last line and the last column of Ĥ(s) should interpolate the corresponding transfers of H(s)
at σ2. This pattern can be represented by the following table where each entry indicates the point
at which the corresponding transfers of Ĥ(s) and H(s) should be matched,

σ1 σ1 σ1 and σ2
σ1 − σ2

σ1 and σ2 σ2 σ2

The frequency responses of both models plotted in Figure 3.7 illustrate this pattern. Indeed,
one can observe for instance that the transfer from the second input to the second output is not
interpolated at all. For the other interpolation points, the pattern appears more clearly when the
magnitude of the error between the two transfer functions is computed at σ1,

|H(σ1)− Ĥ(σ1)| = 10−4





0.0000 0.0000 0.0000
0.0000 0.1048 0.0003
0.0000 0.0003 0.0581



 ,

and at σ2,

|H(σ2)− Ĥ(σ2)| = 10−3





0.0692 0.0010 0.0000
0.0004 0.3353 0.0000
0.0000 0.0000 0.0000



 .
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Chapter 3. Standard model approximation methods

Note that the maximum value among the terms in bold is around the machine precision.

Conclusion

In this chapter, two standard model approximation methods based on truncation have firstly been
recalled. On the one hand, the modal truncation, which consists in keeping some relevant modes
of the large-scale model, is conceptually simple and widespread among engineers which have a
good knowledge of the physical systems below the models. On the other hand, the balanced
truncation, which is based on more systematic input-to-output energy transfer considerations, is
often considered as the golden standard of model approximation and is one of the most popular
model approximation method. A lot of researches are still conducted on this method, especially
to extend it to other kinds of models, such as LPV models, or to ease its numerical computation
through the development of efficient sparse solvers for large-scale Lyapunov equations.

Then, a completely different framework based on the projection of the large-scale model onto
specific Krylov subspaces has been introduced. It enables to implicitly match several moments of
a dynamical model at several interpolation points. In practice, this framework relies on iterative
algorithms that are perfectly suited for very large-scale models. The choice of the interpolation
points is of main interest since it determines the properties of the reduced-order model, but it
has not been discussed yet. This is done in the next chapter where the stationary points of the
optimal H2 model approximation problem are presented as tangential interpolation conditions
at the mirror images of the reduced-order model poles.

46



Chapter 4

Optimal H2 model approximation

In this chapter, the general model approximation problem formulated in the introduction (see
Problem 1) is refined in Problem 3 by using the H2-norm to evaluate the quality of the reduced-
order model leading to the so-called optimal H2 model approximation problem.

Problem 3 (optimal H2 model approximation problem). Given a n-th order, asymptotically
stable and strictly proper continuous LTI dynamical model H, the problem of optimal model
reduction in the H2 norm consists in finding an asymptotically stable and strictly proper r-th
order model Ĥ (with r ≪ n) which minimises the H2-norm of the approximation error, i.e.

Ĥ = arg min
G∈H2

‖H −G‖2H2
︸ ︷︷ ︸

JH2

.

Problem 3 has been extensively studied over the years, from a theoretical point of view in
[Baratchart, 1986], where the existence of a solution as well as some other theoretical properties
has been proven and also from a more practical point of view leading to several approaches to
address it :

◮ approaches based on the projection of the large-scale model onto specific Krylov subspaces
[Gugercin et al., 2008; Gugercin, 2007],

◮ approaches grounded on non-linear optimisation procedures have been developed in the
continuous case [Yan and Lam, 1999; Beattie and Gugercin, 2009] and in the discrete case
[Baratchart et al., 1991; Fulcheri and Olivi, 1998; Marmorat et al., 2002]1,

◮ hybrid methods coupling both interpolation through Loewner matrices and optimisation
[Beattie and Gugercin, 2012].

Here, the approaches based on projection presented in [Gugercin et al., 2008; Gugercin, 2007]
and the optimisation procedure [Beattie and Gugercin, 2009] are described. In Section 4.1, the
first-order optimality conditions of the optimalH2 approximation problem are introduced. Then,
the various algorithms are described in Section 4.2.

Contents
4.1 First order optimality conditions . . . . . . . . . . . . . . . . . . . . 48

4.1.1 H2 approximation error . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Formulation of the first-order optimality conditions . . . . . . . . . . . 49

4.2 Algorithms for optimal H2 approximation . . . . . . . . . . . . . . . 54

4.2.1 Iterative Rational Krylov Algorithm (IRKA) . . . . . . . . . . . . . . 54

4.2.2 Iterative SVD Rational Krylov Algorithm (ISRKA) . . . . . . . . . . 58

4.2.3 Optimisation algorithm for optimal H2 model approximation . . . . . 59

1The method is available in the software RARL2 [Marmorat and Olivi, 2002] at http://www-sop.inria.fr/

apics/RARL2/rarl2.html.
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Chapter 4. Optimal H2 model approximation

4.1 First order optimality conditions

Minimizing JH2
is a non-linear and non-convex problem (see Example 11), thus finding a global

minimum is a complex task. Instead, finding a local minimum is way more tractable. To this
goal, first-order necessary optimality conditions have been derived :

◮ as interpolation conditions between the transfer functions of the full-order and reduced-
order models for SISO systems with semi-simples poles only in [Meier and Luenberger,
1967],

◮ in a state-space form which involves the gramians of the error model in [Wilson, 1974],

◮ more recently in [Gugercin et al., 2008], tangential interpolation conditions have been
formulated thus generalising the interpolation conditions of [Meier and Luenberger, 1967]
to MIMO systems. These tangential interpolation conditions have also been presented in
a very comprehensive way in [Van Dooren et al., 2008b]. Finally, they have been extended
to the case of models with high order poles in [Van Dooren et al., 2010]2.

All the different formulations of the first-order optimality conditions have been shown to be
equivalent and the links that exist between them has been highlighted in different ways in
[Hyland and Bernstein, 1985; Gugercin et al., 2008; Van Dooren et al., 2008a].

One approach to obtain the first-order optimality conditions as interpolation conditions is
described below. In particular, in Section 4.1.1, the approximation error between the large-
scale and reduced-order model is formulated through the poles-residues expression of the H2-
norm and in Section 4.1.2, the stationary points of the optimal H2 approximation problem are
characterised.

4.1.1 H2 approximation error

As presented in Section 2.2.1, the H2-norm can be computed either using the gramians of the
model or using its poles and associated residues. Since it directly leads to the interpolation
conditions, the latter formulation is used. However, an equivalence can be made with the gramian
formulation as shown in [Van Dooren et al., 2008b].

Let us consider asymptotically stable and strictly proper models H = (A,B,C) and Ĥ =
(Â, B̂, Ĉ of order n and r, respectively. Let us assume that both models have semi-simple poles
only, i.e. A and Â are both diagonalisable.

Under these assumptions, their transfer functions H(s) and Ĥ(s) can be written as

H(s) =

n∑

i=1

Φi

s+ λi
, and Ĥ(s) =

r∑

k=1

Φ̂k

s+ λ̂k
, (4.1)

where λi, λ̂k ∈ C, and Φi, Φ̂k ∈ Cny×nu (i = 1, . . . , n and k = 1, . . . , r) are the poles and
associated residues of the transfer functions H and Ĥ, respectively.

For the model Ĥ as expressed in equation (4.1) to be of order r, the residues Φ̂k must be of
rank one. To explicitly show this constraint, the residues can be expressed as an outer product
of vectors, i.e. for k = 1, . . . , r,

Φ̂k = ĉTk b̂k,

where ĉk ∈ C1×ny and b̂k ∈ C1×nu . As mentioned in Section 2.1.1, the vectors ĉk and b̂k are
linked to the state-space representation of Ĥ, indeed

ĉTk = ĈX̂ek, and b̂k = ek
T X̂−1B̂,

2A previous version of this work with additional examples is available on arXiv [Van Dooren et al., 2008a].
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where X̂ is the matrix which columns are the right eigenvectors of Â.

Let us also consider the (n+ r)-th order error model H̃ = H− Ĥ. The approximation error
JH2 between H and Ĥ is the square of the H2-norm of H̃ and can be expressed as

‖H̃‖2H2
= JH2

=

n+r∑

i=1

tr
(

Φ̃iH̃(−λ̃i)T
)

, (4.2)

where λ̃i ∈ C and Φ̃i ∈ Cny×nu are the poles and residues of the transfer function H̃ of the error
model.

The poles and residues of H̃ are in fact composed of the poles and residues of the large-scale
and reduced-order transfer functions H and Ĥ. Let us assume that the elements are ordered as
follows

Φ̃i =

{
Φi i = 1, . . . , n

−Φ̂i i = n+ 1, . . . , n+ r,

and

λ̃i =

{
λi i = 1, . . . , n

λ̂i i = n+ 1, . . . , n+ r.

Equation (4.2) can then be reformulated as

JH2 =

n∑

i=1

tr

(

Φi

(

H(−λi)− Ĥ(−λi)
)T
)

−
r∑

k=1

tr

(

Φ̂k

(

H(−λ̂k)− Ĥ(−λ̂k)
)T
)

.

By expanding and separating all the sums, the approximation error JH2
can finally be written

as

JH2
=

n∑

i=1

tr
(
ΦiH(−λi)T

)

︸ ︷︷ ︸

‖H‖2
H2

+

r∑

k=1

tr
(

Φ̂kĤ(−λ̂k)T
)

︸ ︷︷ ︸

‖Ĥ‖2
H2

−2
r∑

i=1

tr
(

H(−λ̂i)Φ̂T
i

)

.
(4.3)

The H2 approximation error is composed of the H2-norms of the large-scale and reduced-order
models and of some cross terms between the two models.

4.1.2 Formulation of the first-order optimality conditions

The reduced-order model Ĥ is represented by its poles λ̂k and its residues decomposed in two
vectors ĉk and b̂k (k = 1, . . . , r). These parameters appear explicitly by expanding the transfer
function of the reduced-order model Ĥ and the residues Φ̂k in equation (4.3)

JH2
= ‖H‖2H2

−
r∑

i=1

r∑

k=1

ĉkĉ
T
i b̂ib̂

T
k

λ̂i + λ̂k
− 2

r∑

i=1

ĉiH(−λ̂i)b̂T
i . (4.4)
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By differentiating equation (4.4) with respect to λ̂m, ĉm and b̂m (m = 1, . . . , r), one obtains

∂JH2

∂λ̂m
= −2ĉm

r∑

k=1

ĉTk b̂k
(

λ̂m + λ̂k

)2 b̂
T
m + 2ĉm

n∑

i=1

Φi
(

λ̂m + λi

)2 b̂
T
m

= −2ĉm
(

Ĥ ′(−λ̂m)−H ′(−λ̂m)
)

b̂T
m.

∂JH2

∂ĉm
= −2

r∑

k=1

ĉTk b̂k

λ̂m + λ̂k
b̂T
m − 2H(−λ̂m)b̂T

m

= 2
(

Ĥ(−λ̂m)−H(−λ̂m)
)

b̂T
m.

∂JH2

∂b̂m

= −2
r∑

k=1

b̂T
k ĉk

λ̂m + λ̂k
ĉTm − 2H(−λ̂m)ĉTm

= 2
(

Ĥ(−λ̂m)−H(−λ̂m)
)T

ĉTm.

Finally, by setting
∂JH2

∂λ̂m

= 0,
∂JH2

∂ĉm

= 0 and
∂JH2

∂b̂m

= 0, the stationary points of Problem 3 can be

characterised as presented in Theorem 9. See Remark 10 for some comments about the specific
case of SISO models and refer to Remark 11 for further information about the more general
case of models with high order poles and for some remarks about the parametrisation of this
optimisation problem.

Theorem 9 (First-order optimality conditions for the H2 model reduction problem). Let us
consider a n-th order asymptotically stable and strictly proper LTI dynamical model H whose
transfer function is H(s) ∈ Cny×nu and Ĥ a r-th order asymptotically stable and strictly proper

model with semi-simple poles whose transfer function is Ĥ(s) = Ĉ(sIr − Â)
−1
Br ∈ Cny×nu . If

Ĥ solves Problem 3, then, for i = 1, . . . , r,

ĉiH(−λ̂i) = ĉiĤ(−λ̂i),
H(−λ̂i)b̂T

i = Ĥ(−λ̂i)b̂T
i ,

ĉiH
′(−λ̂i)b̂T

i = ĉiĤ
′(−λ̂i)b̂T

i .

(4.5)

where λ̂i ∈ C are the poles of the reduced-order model and ĉi ∈ C1×ny , b̂i ∈ C1×nu , (i = 1, . . . , r)
are tangential directions given as,

[
ĉT1 . . . ĉTr

]
= ĈX̂,

and
[

b̂T
1 . . . b̂T

r

]T
= X̂−1B̂,

where X̂ is the matrix which columns are the right eigenvectors of Â.

Theorem 9 asserts that a solution of the optimal H2 model approximation problem must be a
bi-tangential Hermite interpolant of the large-scale model H at the opposite of the reduced-order
model poles. In [Van Dooren et al., 2010], it is proved that these first-order optimality conditions
impose r (ny + nu) interpolations conditions which match the number of free parameters required
to represent the reduced-order model expressed as

Ĥ(s) =
r∑

i=1

ĉTi b̂i

s− λ̂i
,

with ||ĉi|| = 1 for i = 1, . . . , r.

The reduced-order model poles λ̂i appear in a non-linear way in the approximation error
JH2

(4.4) while each ĉi and b̂i appear in a quadratic way. In the SISO case, the residues can
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4.1. First order optimality conditions

be uniquely determined in an optimal way for fixed poles (see Remark 10) but in the MIMO
case, determining the optimal residues for fixed poles require an iterative optimisation algorithm
itself. In [Beattie and Gugercin, 2012], the authors have suggested to use an alternating least
square method for achieving what they call residue correction.

Note that if either the ĉi or the b̂i are chosen so that one of the two first set of interpolation
conditions in equation (4.5) is fulfilled then

r∑

i=1

ĉiH(−λ̂i)b̂T
i =

r∑

i=1

ĉiĤ(−λ̂i)b̂T
i = ‖Ĥ‖2H2

,

thus, the H2 norm of the reduced-order model simplifies with the cross term in equation (4.4)
and the approximation error becomes

JH2 = ‖H‖2H2
− ‖Ĥ‖2H2

.

Remark 10 (First-order optimality conditions for SISO models). In the SISO case, the tangen-
tial interpolation conditions expressed in Theorem 9 become the following rational interpolation
conditions :

H(−λ̂i) = Ĥ(−λ̂i),
H ′(−λ̂i) = Ĥ ′(−λ̂i)

(4.6)

for i = 1, . . . , r. In other words, the reduced-order model has to match the first two moments of
the large-scale model at the mirror images of the reduced-order model poles.

In [Gugercin et al., 2008], it is shown that if Ĥ(s) interpolates H(s) at the opposite of its
poles, i.e. if it satisfies the first condition in equation (4.6), then the reduced-order model Ĥ is
guaranteed to be an optimal H2 approximation of H among all the reduced-order models that
have the same poles as Ĥ.

This can also be seen from equation (4.3), indeed, in the SISO case, the scalar residues φ̂i ∈ C

are involved in a quadratic way in the approximation error. First let us rewrite the approximation
error as

JH2 = ‖H‖2H2
−

r∑

k=1

r∑

i=1

φ̂kφ̂i

λ̂k + λ̂i
− 2

r∑

i=1

H(−λ̂i)φ̂i.

Notice that each complex couple {λ̂k, φ̂k} appears with its complex conjugate somewhere else in
the sum. Hence, by re-ordering the indexes, the double sum can also be written as,

r∑

k=1

r∑

i=1

φ̂kφ̂i

λ̂k + λ̂i
=

r∑

l=1

r∑

i=1

φ̂∗l φ̂i

λ̂∗l + λ̂i
.

Finally, the approximation error becomes

JH2
=
[

φ̂∗1 . . . φ̂∗r
]
M






φ̂1
...

φ̂r




+ 2hT






φ̂1
...

φ̂r




+ ‖H‖2H2

, (4.7)

where the hermitian matrix M is defined as

M = −







1

2Re(λ̂1)
. . . 1

λ̂∗
1+λ̂r

...
. . .

...
1

λ̂∗
r+λ̂1

. . . 1

2Re(λ̂r)






∈ C

r×r,

and
h = −

[

H(−λ̂1) . . . H(−λ̂r)
]T ∈ C

r×1.
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Chapter 4. Optimal H2 model approximation

The second-order term of the quadratic function (4.7) is the H2-norm of the reduced-order model.

By denoting v =
[

φ̂1 . . . φ̂r
]T ∈ Cr×1,

vHMv = ‖Ĥ‖2H2
≥ 0,

which means that M is positive semidefinite. Hence the quadratic function JH2
(v) of equation

(4.7) is convex which makes the necessary conditions for optimality also sufficient to find a global
minimum of JH2 with respect to the residues.

To differentiate the first-order optimality conditions, let us undo the change of indexes and
write the second-order term as

vHMv = vTLv,

where the symmetric matrix L is given as,

L = −







1
2λ̂1

. . . 1
λ̂1+λ̂r

...
. . .

...
1

λ̂r+λ̂1
. . . 1

2λ̂r






∈ C

r×r.

Then, differentiating the approximation error,

JH2 = vTLv + 2hTv + ‖H‖2H2
,

with respect to v yields the following optimality condition3

2Lv + 2h = 0. (4.8)

Note that L is a Cauchy matrix and that solving the linear system (4.8) is equivalent to finding

a rational function with simple poles λ̂i which has fixed values (given by −h) at the points −λ̂i.
Hence one retrieves the first part of the interpolation conditions (4.6) expressed under another
form. This is illustrated in Example 11.

Example 11 (Non-convexity of the optimal H2 approximation problem - code available in
Appendix C.2). To illustrate the non-convexity of Problem 3 with respect to the poles of the
reduced-order model, the LAH model is approximated by a second order model Ĥ whose transfer
function is

Ĥ(s) =
φ̂

s− λ̂
+

φ̂∗

s− λ̂∗

where the pole λ̂ ∈ C is varying and the residue φ̂ ∈ C is determined in an optimal way for each
value of the pole.

As explained in Remark 10, if the poles λ of the reduced-order model are fixed, then its
residues φ can be uniquely determined in an optimal way by fulfilling the following interpolation
conditions4 :

H(−λ̂) = Ĥ(−λ̂) and H(−λ̂∗) = Ĥ(−λ̂∗), (4.9)

which is equivalent to solve

[ − 1
2λ̂

− 1

2Re(λ̂)
− 1

2Re(λ̂)
1

2λ̂∗

] [
φ̂

φ̂∗

]

=

[
H(−λ̂)
H(−λ̂∗)

]

.

3See [Brandwood, 1983] or Section 8.2.1 for the differentiation of non-analytic functions.
4A similar example has been provided in [Van Dooren et al., 2008a] where Ĥ is a second-order MIMO model.

In that case, the residue φ̂ is decomposed in two vectors as φ = ĉT b̂ and those vectors correspond to the dominant
singular vectors of H(−λ)T .
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Figure 4.1: H2-norm of the approximation error between the LAH model and a second order
model with respect to the poles of the reduced-order model. The blue stars are the poles of the
large-scale model contained in this part of the complex plane.

Since the interpolation conditions (4.9) are satisfied, the approximation error becomes

‖H − Ĥ‖2H2
= ‖H‖2H2

− ‖Ĥ‖2H2
,

where ‖Ĥ‖2H2
can be expressed as,

‖Ĥ‖2H2
= − |φ̂|2

Re
(

λ̂
) −Re

(

φ̂

λ̂

)

.

The resulting relative H2 approximation error
‖H−Ĥ‖H2

‖H‖H2
is plotted in Figure 4.1. One can

observe that the approximation error has several local minima. The poles that yield these minima
seem to have imaginary parts close to the frequencies of the main dynamics of the model (see
Figure 1.5).

It is also interesting to note that the approximation error varies much more along the imagi-
nary direction than along the real direction in which the error forms valleys. With another model
such as the ISS one which has very poorly damped dynamics, those valleys are actually thinner.

Remark 11 (Case of model with high order poles and parametrisation of the reduced-order
model). The result of Theorem 9 has been obtained by assuming some elements about the struc-
ture of the reduced-order model. Indeed, the reduced-order model is assumed to have semi-simple
poles only. These assumptions can be alleviated by considering the Jordan decomposition of the
transfer function as explained in [Van Dooren et al., 2010], in that case, the tangential directions
involved in Theorem 9 become functions of the variable s.

Besides, the authors show that choosing the parametrisation given in equation (4.1) for the
reduced-order model can lead to numerical issues if the reduced-order model comes close to a
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Chapter 4. Optimal H2 model approximation

model with high order poles. Indeed, near a model with high order poles, some eigenvectors of Â
might become linearly dependent thus making the interpolation conditions ill-conditionned.

To avoid this issue, the authors in [Van Dooren et al., 2010] recommend to work with a non-
minimal parametrisation of the reduced-order model such a its state-space representation since
the H2-norm of the error is smooth with respect to Â, B̂ and Ĉ.

In [Fulcheri and Olivi, 1998; Marmorat et al., 2002], a clever parametrisation of the reduced-
order model state-space representation based on its Douglas-Shapiro-Shield factorisation (see for
instance [Fuhrmann, 1994]) is used. This enables to have a minimal (in terms of the number of
parameters) and smooth representation that directly embeds some properties like stability.

In the next section, some of the methods that enable to fulfil these first-order optimality
conditions are presented.

4.2 Algorithms for optimal H2 approximation

As it has been mentioned before, several approaches are now available to address the problem
of optimal H2 approximation. In this section, the three approaches that have mainly inspired
the methods developed during this study are presented :

◮ the MIMO version of the Iterative Rational Krylov Algorithm (IRKA) [Gugercin et al.,
2008] in Section 4.2.1,

◮ the MIMO version of the Iterative SVD-Rational Krylov Algorithm (ISRKA) [Gugercin,
2007; Poussot-Vassal, 2011] in Section 4.2.2,

◮ the optimisation procedure based on the poles-residues formulation of the reduced-order
model presented in [Beattie and Gugercin, 2009] in Section 4.2.3.

4.2.1 Iterative Rational Krylov Algorithm (IRKA)

This method has been proposed in [Gugercin et al., 2006] for SISO models based on the rational
interpolation framework developed in [Grimme, 1997] (see Section 3.2.2). The MIMO extension
has then been suggested in [Gugercin et al., 2008] based on the tangential interpolation framework
developed in [Gallivan et al., 2004a] (see Section 3.2.3). It is based on the projection of the
initial large-scale model on suitable Krylov subspaces in order to find a reduced-order model
that fulfil the first-order optimality conditions presented in Theorem 9. The method, called
Iterative Rational Krylov Algorithm (IRKA), is recalled thereafter in Algorithm 4. Note that
a similar iterative interpolation scheme had been developed in [Krajewski et al., 1995] based on
the frequency-domain representation of the models in terms of numerator and denominator of
the associated transfer functions.

In steps 1 and 2, the initial projectors V andW are constructed from the initial interpolation
parameters. Then, until the interpolation points do not vary anymore, a reduced-order model
is built by projection of the large-scale one in step 5. The eigenvalues and right eigenvectors of
this reduced-order model are computed at step 6 and used in steps 7 and 8 in order to build the
next interpolation points and directions which lead the new projectors in steps 9 and 10.

At each iteration i and based on the Theorem 8 concerning tangential interpolation, the
reduced-order model Ĥi (step 5) tangentially interpolates the large-scale model at the opposite
of the previous reduced-order model eigenvalues, i.e.

ĉ
(i−1)
k H(−λ̂(i−1)

k ) = ĉ
(i−1)
k Ĥi(−λ̂(i−1)

k ),

H(−λ̂(i−1)
k )b̂

(i−1)T
k = Ĥi(−λ̂(i−1)

k )b̂
(i−1)T
k ,

ĉ
(i−1)
k H ′(−λ̂(i−1)

k )b̂
(i−1)T
k = ĉ

(i−1)
k Ĥ ′

i(−λ̂
(i−1)
k )b̂

(i−1)T
k .

54



4.2. Algorithms for optimal H2 approximation

Algorithm 4 Iterative Rational Krylov Algorithm (IRKA)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, initial interpolation points σ
(0)
i ∈ C and initial

tangential directions ĉi ∈ C1×ny and b̂i ∈ C1×nu (i = 1, . . . , r).
1: Construct,

V =
[

(σ
(0)
1 In −A)−1Bb̂T

1 . . . (σ
(0)
r In −A)−1Bb̂T

r

]

W =
[

(σ
(0)
1 In −A)−TCT ĉT1 . . . (σ

(0)
r In −A)−TCT ĉTr

]

2: Compute W ←W (V TW )−1

3: while max
k=1,...,r

|σ(i)
k − σ

(i−1)
k | > ε do

4: i← i+ 1
5: Project the large-scale model as

Â =WTAV, B̂ =WTB and Ĉ = CV.

6: Compute the eigenvalues and eigenvectors of the reduced-order model,i.e.

ÂX̂ = ∆X̂,

where ∆ = diag
(

λ̂1, . . . , λ̂r

)

.

7: Compute the new tangential directions b̂k and ĉk (k = 1, . . . , r) as

[

b̂T
1 . . . b̂T

r

]T
= X̂−1B̂,

[
ĉT1 . . . ĉTr

]
= ĈX̂.

8: Set σ
(i)
k = −λk(Â), k = 1, . . . , r.

9: Construct,

V =
[

(σ
(i)
1 In −A)−1Bb̂T

1 . . . (σ
(i)
r In −A)−1Bb̂T

r

]

W =
[

(σ
(i)
1 In −A)−TCT ĉT1 . . . (σ

(i)
r In −A)−TCT ĉTr

]

10: Compute W ←W (V TW )−1

11: end while
12: Construct Ĥ =

(
WTAV,WTB,CV,D

)

Yet, the poles of the current reduced-order model Ĥi might be different from those of the
previous reduced-order model, which means that the above interpolation conditions are not
the optimality conditions. At convergence though, since the interpolation points do not vary
anymore, the eigenvalues of consecutive reduced-order models do not vary either, thus the first-
order optimality conditions are fulfilled.

This algorithm can be seen as a fixed-point iteration where the fixed points are the stationary
points of the optimal H2 approximation problem. In fact, the interpolation points selection

strategy σ
(i)
k ← λk(Â) is a relaxation of a Newton iteration proposed in [Gugercin et al., 2008]

for the SISO case. Indeed, let σ denotes the set of interpolations points {σ1, . . . , σr} and λ(σ) the
poles of the reduced-order model Ĥ whose transfer function interpolates the large-scale model
transfer function and its derivative at {σ1, . . . , σr}. Then, finding a reduced-order model that
satisfies the SISO H2 first-order optimality conditions can be reduced to the root finding problem
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Chapter 4. Optimal H2 model approximation

λ(σ) + σ = 0. To this goal, the authors have proposed the following Newton iteration

σ(k+1) = σ(k) − (Ir + J)
−1
(

σ(k) + λ
(

σ(k)
))

, (4.10)

where J is the Jacobian of λ(σ) with respect to σ. In the neighbourhood of a stationary point,
the entries of the Jacobian matrix tend to vanish and setting J = 0 in equation (4.10) leads to
the iteration strategy of Algorithm 4. With this Newton iteration, the algorithm will converge
if the initial point is close enough to a fixed-point.

The convergence of the IRKA with the relaxed iteration scheme σ
(i)
k ← λk(Â) has been

proved only for the case of symmetric models in [Flagg et al., 2012]. Indeed, for these models,
the method is convergent towards a fixed point and this point is a local minimiser of Problem 3.

If the algorithm converges, the resulting reduced-order model satisfies the first-order opti-
mality conditions but it is not necessarily a minimum. To ensure that the reduced-order model
is a local minimum, the method proposed in [Beattie and Gugercin, 2007] can be used. It con-
sists in coupling the IRKA with an optimal interpolation point selection strategy ensuring that
consecutive reduced-order models yield a decreasing H2 approximation error.

The following additional remarks can be addressed concerning this algorithm :

◮ At each iteration, the algorithm requires to solve 2r large-scale linear systems. These
steps are the most expensive in terms of computational costs. However, efficient methods
that exploit sparsity exist to address this problem even in very large-scale settings ([Saad,
2003]) and inexact solves can also be considered [Beattie et al., 2012]. This makes IRKA
suitable for the approximation of very large-scale models as illustrated in Example 12.

◮ There is no standard way to select the initial interpolation parameters and they can be
chosen randomly. When the poles of the large-scale model are available, the initial inter-
polation points can be set as the mirror images of the poles associated with the largest
residues of the transfer function.

Example 12 (Illustration of IRKA on a very-large scale model). In this example, the small
3D Micropyros Thruster model available in the Oberwolfach benchmark collection [Korvink and
Rudnyi, 2005] is considered5. This model has 20360 states, 7 outputs and 1 input, it is reduced
to an order 10 with the IRKA.

With 10 initial real interpolation points logarithmically spaced between 10−2 and 102, the
algorithm converges (with the tolerance ǫ = 10−2) in 24 iterations which took about 20 minutes.
The frequency responses of both models are plotted in figure 4.2. The size of the large-scale model
prevents from computing exactly the norm of the approximation error on a standard computer,
hence, to estimate the error, the mean error between the two models at several frequencies, i.e.

E =

∑nω

i=1 ||H(jωi)− Ĥ(jωi)||F
∑nω

i=1 ||H(jωi)||F
,

is computed for nω = 70 logarithmically spaced frequency points between 10−3 and 103. In that
case E = 0.01% which is coherent with the frequency responses of the models that match well at
low frequency where the high gains are located. One can also see that the first 4 transfers are
better matched than the last ones. This comes from the fact that the former have on average a
slightly higher gain than the latter.

Unlike approximation methods based on the Singular Value Decomposition such as the BT,
the IRKA does not guarantee the stability of the reduced-order model. This drawback can be
alleviated by modifying the construction of one of the two projectors thus leading to the Iterative
SVD Rational Krylov Algorithm (ISRKA) presented in the next section.

5The model is available at http://simulation.uni-freiburg.de/downloads/benchmark/Thruster%20%

2838847%29.
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Figure 4.2: Frequency responses of the 3D Micropyros Thruster model (n = 20360) and its
approximation to an order 10 with the IRKA.
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4.2.2 Iterative SVD Rational Krylov Algorithm (ISRKA)

This modification of IRKA has been proposed in [Gugercin, 2007] for the SISO, MISO and SIMO
cases and in [Poussot-Vassal, 2011] for the MIMO case (see Remark 12 for some comments on
the nomenclature of the algorithm). It is aimed at ensuring the stability of the reduced-order
model by using one gramian to build one of the projectors. Similar uses of the gramian can be
found in [de Villemagne and Skelton, 1987] and [Yousuff et al., 1985]. The ISRKA is quickly
presented in Algorithm 5. The only differences with the IRKA are the following :

◮ at step 2, the observability gramian Q of the large-scale model is computed,

◮ it is used to build the projector W ∈ Rn×r at step 3 and 10 so that WTV = Ir.

Note that the controllability gramian P could be used instead ofQ, in that case, the left projector
W is replaced by

W =
[

(σ
(i)
1 In −A)−TCT ĉT1 . . . (σ

(i)
r In −A)−TCT ĉTr

]

at each iteration and the right projector V is built as

V = PW
(
WTPW

)−1
.

Using the controllability or observability gramian in the algorithm yields similar properties, only
the side of the tangential interpolation changes. These properties are enunciated below by using
the observability gramian.

Remark 12 (About the nomenclature of the algorithm). In the SISO, MISO and SIMO cases,
the algorithm performs a rational interpolation of the large-scale model. In the MIMO case
however, a tangential interpolation is performed. That is why, the MIMO version of the algorithm
which relies on tangential interpolation is also called Iterative SVD-Tangential Interpolation
Algorithm (ISTIA) in [Poussot-Vassal, 2011]. This name is also used in the MORE Toolbox
[Poussot-Vassal and Vuillemin, 2012].

Algorithm 5 Iterative SVD Rational Krylov Algorithm (ISRKA)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, initial interpolation points σ
(0)
i ∈ C and initial

tangential directions b̂i ∈ C1×nu (i = 1, . . . , r).

1: Construct, V =
[

(σ
(0)
1 In −A)−1Bb̂T

1 . . . (σ
(0)
r In −A)−1Bb̂T

r

]

2: Solve QA+ATQ+ CTC = 0 in Q
3: Compute W = QV (V TQV )−1

4: while maxk=1,...,r|σ(i)
k − σ

(i−1)
k | > ε do

5: i← i+ 1, Â =WTAV , B̂ =WTB
6: Solve the eigenvalues problem ÂX = ∆X

7: Compute
[

b̂T
1 . . . b̂T

r

]T
= X̂−1B̂

8: Set σ(i) = −λ(Â)
9: Construct, V =

[

(σ
(i)
1 In −A)−1Bb̂T

1 . . . (σ
(i)
r In −A)−1Bb̂T

r

]

10: Compute W = QV (V TQV )−1

11: end while
12: Construct Ĥ =

(
WTAV,WTB,CV,D

)

This modification leads to several differences concerning the properties of ISRKA in com-
parison to the IRKA :
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4.2. Algorithms for optimal H2 approximation

◮ unlike the IRKA, if the initial large-scale model is asymptotically stable, then, the reduced-
order model produced by the ISRKA is guaranteed to be asymptotically stable. The main
idea of the proof consists in projecting the large-scale Lyapunov equation. Indeed, let us
assume that the large-scale model H is in a basis in which Q = In, then W = V and the
observability Lyapunov equation becomes

AT +A+ CTC = 0.

By projecting this equation with WT = V T and V , one obtains

ÂT + Â+ ĈT Ĉ = 0,

which implies the stability of the reduced-order model through inertia results [Ostrowski
and Schneider, 1962]. The asymptotic stability is then proved by contradiction (see
[Gugercin, 2007]).

◮ Since the ISRKA only uses one Krylov subspace instead of two, the reduced-order model
obtained with Algorithm 5 only interpolates the large-scale model from the right, i.e. at
each iteration i, for k = 1, . . . , r,

H(σ
(i−1)
k )b̂

(i−1)T

k = Ĥi(σ
(i−1)
k )b̂

(i−1)T

k .

This implies, that at convergence, the reduced-order model fulfils only one of the three first-
order optimality conditions which yields weaker optimality properties than the IRKA. In
the SISO case, the reduced-order model obtained with the ISRKA is the best (in the H2

sense) among all other models sharing the same poles. This is also valid in the SIMO case
and in the MISO case if the controllability gramian is used. In the MIMO case however,
the ISRKA leads to reduced-order models that are the best among models that have the
same poles and the same left (or right) tangential directions.

◮ The ISRKA requires to solve r large-scale linear systems at each iteration instead of 2r
but one gramian of the large-scale model needs also to be computed. Hence the method
might not be tractable in very large-scale settings similarly to the BT. However, as with
the latter method, a low-rank approximation of the gramian can be used (see Section
3.1.2). In that case, and just like with the BT, the stability is no longer guaranteed.

A detailed cost comparison of the ISRKA with the BT is presented in [Gugercin, 2007].
The ISRKA is expected to be cheaper than the BT when exact gramians are used but
more expensive when approximate gramians are used.

Similarly to the IRKA, (i) a Newton iteration can be used instead of the simple interpolation
point selection of step 8, (ii) the convergence has not been proved in theory but does not seem
to be an issue in practice and (iii) the initial interpolation parameters can be selected in various
different ways.

4.2.3 Optimisation algorithm for optimal H2 model approximation

The method introduced in this section has been proposed in [Beattie and Gugercin, 2009]. Unlike
the IRKA or the ISRKA, it is not based on projection but on a more direct optimisation
approach.

The method is based on the poles-residues decomposition of the reduced-order model transfer
function. Indeed, let λ̂k and Φ̂k = φ̂kĉ

T
k b̂k

6 (with φ̂k > 0 and ||ĉk|| = ||b̂k|| = 1), k = 1, . . . , r

6For notations consistency with previous Sections, the vectors involved in the decomposition of the residues
Φ̂k are line vectors, this differs from the notation in Beattie and Gugercin [2009] where column vectors are used.
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Chapter 4. Optimal H2 model approximation

denote the (semi-simple) poles and associated residues of the reduced-order model, then, the
transfer function Ĥ(s) can be written as

Ĥ(s) =

r∑

k=1

φ̂k

s− λ̂k
ĉTk b̂k.

This representation varies slightly from what has been presented in Section 2.1.1 since the
directions ĉk and b̂k of the residues are separated from their norm φ̂k. By imposing the norm
constraints ||ĉk|| = ||b̂k|| = 1 for k = 1, . . . , r, this representation is minimal. The approximation
error JH2

between the large scale and reduced-order model induced by this formulation is very
close to the one given in equation (4.4).

With this representation of the reduced-order model Ĥ, the optimal H2 approximation prob-
lem (Problem 3) consists in finding the reduced-order model poles λ̂k and residues {φ̂k, ĉk, b̂k}
(k = 1, . . . , r) that minimises the H2-norm of the approximation error.

More specifically, the authors have gathered the optimisation parameters in two overlapping
sets : the degrees of freedom corresponding to the reduced residues {φ̂, ĉ, b̂} and the degrees

of freedom corresponding to the reduced poles {φ̂, λ̂}. This structure is developed in order to
decouple the optimisation of the residues from the optimisation of the poles because the latter
is harder than the former. This also enables to decrease the number of optimisation parameters
simultaneously involved in the optimisation procedure. A conceptually similar division of the
optimisation parameters is also used in [Marmorat et al., 2002] but based on a completely
different representation of the reduced-order model as mentioned in Remark 11.

The optimisation scheme used by the authors is in two folds :

◮ Firstly, a trust-region7 step in applied to improve the reduced poles location for for fixed
residues. It consists in approximating the local behaviour of the approximation error JH2

by a quadratic function formed with the gradient ∇{φ̂,λ̂}JH2
and the Hessian ∇2

{φ̂,λ̂}
JH2

of the error with respect to the poles degrees of freedom. Some constraints on the poles
location are also added here so that the reduced-order model stays stable.

◮ Secondly, the residues degrees of freedom {φ̂, ĉ, b̂} are adjusted through a corrective step

for fixed poles λ̂. This can be done easily in the SISO case (see Remark 10) but require a
optimisation procedure in the MIMO case (see for instance [Beattie and Gugercin, 2012]).

At each iteration, this method yields a stable reduced-order model which achieves a lower H2

approximation error than the previous one. If in addition, upon convergence, the Hessian is
positive definite, then it has led to a local minimiser of Problem 3. Unlike the IRKA and the
ISRKA (as presented in the previous sections), this approach offers more control over the error
and more guarantees concerning the reduced-order model. These advantages are inherent to the
optimisation framework.

The computation of the approximation error JH2 requires to evaluate the large-scale model
transfer function at the opposite of the reduced-order model poles. Its gradient and Hessian
(with respect to the poles degrees of freedom) require in addition the value of the large-scale
transfer function first and second derivatives at these points, respectively. Depending on the
number of trial in the trust-region step, a large number of evaluations of the objective function
might be required. Hence, the computational burden of this method might be higher than for
the IRKA depending on the number of iterations before convergence of both methods.

7An in-depth description of optimisation methods is out of the scope of this thesis, for further details on these
techniques, we refer to standard textbooks such as [Nocedal and Wright, 1999].
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Conclusion

In this chapter, the H2 optimal approximation problem has been introduced together with some
of the numerous methods available to address it. Among those methods, the IRKA is probably
the most suited for very large-scale model approximation. Its performances (and simplicity)
make it increasingly popular and it has been extended to the approximation of other types of
models such as bi-linear or descriptor models [Benner and Breiten, 2012; Gugercin et al., 2013].
However, for medium-scale model approximation, the methods based on optimisation may be
more adequate since they offer more guarantee on the reduced-order model.

In some cases, it is more relevant to preserve the behaviour of the large-scale model over
a bounded frequency interval only. Then, the H2-norm and the associated optimal model ap-
proximation methods are not completely relevant anymore and other approaches have to be
considered. In the next chapter, the problem of approximation over a bounded frequency inter-
val is introduced together with some existing methods to address it.
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Chapter 5

Frequency weighted and frequency-
limited model approximation

In this chapter, some methods aimed at approximating a large-scale model, so that its behaviour
over a bounded frequency interval is reproduced, are briefly presented. Here, these methods are
classified into two groups

◮ the approaches based on the use of explicit filters which are referred here as frequency-
weighted methods and

◮ those that do not involve explicitly any filter, called here frequency-limited methods.

The former class of methods is presented in Section 5.1 while the latter is described in Section
5.2.
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5.1 Frequency weighted model approximation

In this section, the methods based on the use of frequency filters are presented. Firstly, the
frequency-weighted extension of the balanced truncation is presented in Section 5.1.1. Then, in
Section 5.1.2, the idea leading to the extension of the IRKA (see Section 4.2.1) to the optimal
frequency-weighted H2 model approximation problem is introduced.

5.1.1 Frequency weighted balanced truncation

The underlying principle of frequency-weighted model truncation methods is the same as for the
balanced truncation (see Section 3.1.2), i.e. the large-scale model is balanced with respect to
some positive definite matrices of interest and the states corresponding to the smallest singular
values are discarded. The difference between the various balanced truncation methods lies in
the choice of the matrices with respect to which the model is balanced. Here, frequency-weighted
gramians are considered.

Let us consider a large-scale model H and input and output filters Wi and Wo, respectively.
The objective of frequency-weighted balanced truncation methods is to find a reduced-order
model Ĥ so that the filtered frequency error

‖Wo(H − Ĥ)Wi‖H∞
, (5.1)

is small.
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Chapter 5. Frequency weighted and frequency-limited model approximation

Note that the construction of the input and output weightings Wi and Wo is a problem in
itself which is not covered here. Instead, one directly assumes that the realisations

Wi :=

(
AWi

BWi

CWi
DWi

)

and Wo :=

(
AWo

BWo

CWo
DWo

)

are available. Based on these realisations, and assuming that there is no pole-zero cancellation,
one can build the minimal realisations of Hi(s) = H(s)Wi(s) and Ho(s) =Wo(s)H(s) as

Hi =

(
Ai Bi

Ci Di

)

=





A BCWi
BDWi

0 AWi
BWi

C 0 DDWi



 , (5.2)

and

Ho =

(
Ao Bo

Co Do

)

=





A 0 B
BWo

C AWo
0

DWo
C CWo

DWo
D



 . (5.3)

Let us also consider the matrices Qo and Pi which are the solutions of

AiPi + PiA
T
i +BiB

T
i = 0 and AT

oQo +QoAo + CT
o Co = 0,

and which can be decomposed as,

Qo =

[
Q11 Q12

QT
12 Q22

]

and Pi =

[
P11 P12

PT
12 P22

]

.

Q11 and P11 are called the frequency-weighted observability and reachability gramians (see
[Antoulas, 2005, Sec. 7.6] for further information). Based on these gramians, different balancing
strategies can be considered,

◮ in [Enns, 1984], the authors have suggested to balance the model H such that Q11 and
P11 are simultaneously diagonalised. The reduced-order model Ĥ is then obtained by dis-
carding the states associated with the smallest frequency-weighted Hankel singular values.
This method does not offer any guarantee concerning the stability of the reduced-order
model when two-sided weighting is considered.

In [Kim et al., 1995], an error bound on the weighted H∞-norm of the approximation error
(5.1) is derived when Ĥ is asymptotically stable.

◮ In [Lin and Chiu, 1990], the balancing method is based on the simultaneous diagonalisation
of the Schur complements of Pi and Qo, i.e. P11−P12P22

−1PT
12 and Q11−Q12Q22

−1QT
12.

With this approach, the stability of the reduced-order model is guaranteed when the re-
alisations (5.2) and (5.3) are minimal. An upper bound on (5.1) can also be derived with
this approach.

◮ In [Wang et al., 1999], different quantities are built for the balancing, in particular, let us
consider1

XB := BCWi
P12 + PT

12C
T
Wi
BT +BDWi

DT
Wi
BT

XC := Q12BWo
C + CTBT

Wo
QT

12 + CTDT
Wo
DWo

C.

If these two matrices are positive semi-definite, then the reduced-order model obtained by
Enn’s frequency weighted balanced truncation is guaranteed to be stable. Otherwise, let
us consider the eigen-decompositions of XB and XC , i.e.

XB = Mdiag (λ1, . . . , λn)M
T ,

XC = Ndiag (δ1, . . . , δn)N
T ,

1Those are the last terms in the Lyapunov equations associated with the frequency-weighted gramians P11

and Q11.
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and define
B̃ = Mdiag

(

|λ1|
1
2 , . . . , |λn|

1
2

)

,

C̃ = diag
(

|δ1|
1
2 , . . . , |δn|

1
2

)

NT .

The frequency-weighted gramians P̃ and Q̃ considered in this approach are then obtained
by solving

AP̃ + P̃AT + B̃B̃T = 0 and AT Q̃+ Q̃A+ C̃T C̃ = 0.

Based on this approach, the stability of the reduced-order model Ĥ is guaranteed. If in
addition rank(

[

B B̃
]
) = rank(B̃) and rank(

[

CT C̃T
]
) = rank(C̃T ) then Ĥ is

asymptotically stable and there is a bound on the weighted H∞ error (5.1) given by

‖Wo(H − Ĥ)Wi‖H∞
≤ 2‖WoL‖H∞

‖KWi‖H∞

n∑

i=r+1

σ̃i,

where K = B̃TB and L = CC̃T and σ̃i are the frequency-weighted singular values associ-
ated with P̃ and Q̃.

5.1.2 Frequency weighted H2 model approximation

In this section, the extension of the IRKA (see Section 4.2.1) to frequency-weighted H2 model
approximation is presented. The first step towards this extension has been done in [Anić et al.,
2013] where the first-order optimality conditions for the optimal frequency-weighted H2 model
approximation problem have been formulated for SISO models as interpolation conditions. An
heuristic approach based on the IRKA has also been proposed inspired by these interpolation
conditions. Then in [Breiten et al., 2014], the conditions have been extended to MIMO mod-
els and the Krylov subspaces involved in IRKA have been modified accordingly. For sake of
simplicity here, only the SISO case is considered.

The frequency-weighted H2-norm, denoted H2,W -norm here, of an asymptotically stable
model H is defined as

‖H‖H2,W
:= ‖HW‖H2

,

where W (s) ∈ H∞ is the transfer function associated with a weighting model W. The problem
considered in [Breiten et al., 2014] is then to find an asymptotically stable reduced-order model
Ĥ of order r which minimises the frequency-weighted H2 approximation error with a large-scale
model H, i.e.

Ĥ = arg min
rank(G)=r

‖H −G‖H2,W
. (5.4)

Let us assume here that H = (A,B,C,D), Ĥ = (Â, B̂, Ĉ, D̂) and W = (AW , BW , CW , DW )
have semi-simple poles only and that their associated transfer functions are given as,

H(s) =
n∑

i=1

φi
s− λi

+D, Ĥ(s) =

r∑

i=1

φ̂i

s− λ̂i
+ D̂ and W (s) =

p
∑

i=1

ψi

s− γi
+DW . (5.5)

where {λi, φi}, {λ̂k, φ̂k} and {γl, ψl} are the poles and associated residues of H, Ĥ and W,
respectively.

First-order optimality conditions for the H2,W approximation problem

Let us define, for an asymptotically stable model H and a filter W such that DDW = 0,

F [H](s) = H(s)W (s)W (−s) +
p
∑

k=1

H(−γk)W (−γk)
ψk

s+ γk
.
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If the reduced-order model Ĥ is a solution to (5.4), then, for k = 1, . . . , r,

F [H](−λ̂k) = F [Ĥ](−λ̂k),
F ′[H](−λ̂k) = F ′[Ĥ](−λ̂k),

(5.6)

and in addition, for all n ∈ Ker(DT
W )

(∫ ∞

−∞

F [H](jω)dω

)

n =

(∫ ∞

−∞

F [Ĥ](jω)dω

)

n

For further information on F [.](s) and on these first-order optimality conditions, refer to [Breiten
et al., 2014].

Use of IRKA for H2,W model approximation

The first-order optimality conditions (5.6) are similar to the optimality conditions arising in H2

model approximation (see Section 4.1) which suggest that an iterative scheme of the IRKA
can be used for the H2,W model approximation problem as well. Two approaches have been
considered,

◮ based on the notations of equation (5.5), the H2,W -norm of the approximation error be-

tween H and Ĥ can be written as,

‖H − Ĥ‖2H2,W
=

n∑

i=1

(

H(−λi)− Ĥ(−λi)
)

W (−λi)W (λi)φi

+

r∑

k=1

(

Ĥ(−λ̂k)−H(−λ̂k)
)

W (−λ̂k)W (λ̂k)φ̂k

+

p
∑

l=1

(

H(−γl)− Ĥ(−γl)
)

W (−γl)
(

H(γl)− Ĥ(γl)
)

ψl.

(5.7)

In [Anić et al., 2013], a specific choice of interpolation points is used in IRKA in order to
make some elements of the error (5.7) vanish. In particular, one of the projector in IRKA

is built so that at convergence Ĥ(−λ̂k) = H(−λ̂k) (which makes the second sum vanish)
while the other projector is built with fixed interpolation points so that Ĥ interpolates H
at the mirror images of the poles λi and γl associated with the highest residues φi and ψl

(which makes some elements of the first and third sums in (5.7) vanish).

However, with this approach, the first-order optimality conditions (5.6) are not fulfilled.

◮ In [Breiten et al., 2014], it is proven that F [H](s) has a realisation given by

F [H] =

(
AF BF

CF DF

)

=





A BCW ZCT
W +BDWDT

W

0 AW PWCT
W +BWDT

W

C DCW 0



 ,

where PW is the reachability gramian associated with W and Z is the solution of

AZ + ZAT
W +B(CWPW +DWBT

W ) = 0.

Based on this state-space representation, the construction of the projectors W and V in
IRKA has been modified so that at convergence, if Ran(Z) ⊂ Ran(V ), then the reduced-
order model Ĥ fulfils the first-order optimality conditions (5.6).

The assumption Ran(Z) ⊂ Ran(V ) is not necessarily fulfilled by the algorithm proposed
in [Breiten et al., 2014] which is why it is called Near Optimal Weighted Interpolation.
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5.2. Frequency-limited model approximation

Indeed, an error might appear depending on the difference Z−V Ẑ where Ẑ is the solution
of

ÂẐ + ẐAT
W + B̂(CWPW +DWBT

W ) = 0,

and can be viewed as the Petrov-Galerkin approximation of Z. The interpolation error
induced by Z − V Ẑ is expected to vanish as r increases.

5.2 Frequency-limited model approximation

In this section, model approximation methods that do not require the use of filters are presented.
In particular, in Section 5.2.1, the Frequency-Limited Balanced Truncation (FL-BT) is described
and in Section 5.2.2, an optimal H2,Ω model approximation method is presented.

5.2.1 Frequency-limited balanced truncation

In [Gawronski and Juang, 1990], the authors have proposed to use the restriction of the frequency
definition of the gramians, referred here as the frequency-limited gramians (see Section 2.1.2),
to balance the initial large-scale model.

For the frequency interval Ω = [ω1, ω2], the frequency-limited observability and reachability
gramians QΩ and PΩ, respectively, can be obtained, similarly to the infinite gramians, by solving
two Lyapunov equations,

APΩ + PΩA
T +Wc(Ω) = 0,

ATQΩ +QΩA+Wo(Ω) = 0,
(5.8)

where Wc(Ω) =Wc(ω2)−Wc(ω1) and Wo(Ω) =Wo(ω2)−Wo(ω1) with

Wc(ω) = S(ω)BBT +BBTS∗(ω) and Wo(ω) = S∗(ω)CTC + CTCS(ω),

and where S(ω) = j
2π logm((A+ jωIn)(A− jωIn)−1

).
By definition (see Section 2.1.2), the frequency-limited gramians QΩ and PΩ are positive

semi-definite. Hence, they can be balanced (i.e. , simultaneously diagonalised) so that in this
basis, they are both equal and diagonal,

QΩ = PΩ = diag
(
σΩ
1 , . . . , σ

Ω
n

)
,

where σΩ
i are what may be called here the frequency-limited Hankel singular values (see Example

3 for an illustration of those singular values).
The reduced-order model is then obtained by discarding the states of the large-scale model

associated with the smallest frequency-limited Hankel singular values. This approach can be
shown (see [Gugercin and Antoulas, 2004]) to be equivalent to the frequency-weighted balanced
truncation method presented in Section 5.1.1 considered with perfect filters. The advantage here
is that no explicit weight is involved.

Note that sinceWc(Ω) andWo(Ω) are not necessarily positive semi-definite, the reduced-order
model obtained with the FL-BT is not guaranteed to be stable (see Remark 6). In addition,
there is no upper bound on the H∞-norm of the approximation error. Both issues have been
alleviated by slightly modifying the method.

Modification of the FL-BT to ensure stability preservation

In [Gugercin and Antoulas, 2004], the authors have proposed a modification of the FL-BT in
order to ensure the stability of the reduced-order model. The idea is similar to the modification
of the frequency-weighted balanced truncation method from [Enns, 1984] proposed in [Wang
et al., 1999] and introduced in Section 5.1.1.
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Figure 5.1: Comparison of the FL-BT with theBT and themodified FL-BT by approximation
of the LAH model to and order r = 10 over Ω = [0, 10].

It consists in replacing the last terms involved in the Lyapunov equations (5.8), Wc(Ω) and
Wo(Ω), by positive semi-definite matrices W̃c(Ω) and W̃o(Ω) which are constructed by taking
the absolute values of the eigenvalues of Wc(Ω) and Wo(Ω).

With this modification, the reduced-order model is guaranteed to be stable and with similar
assumptions as in Section 5.1.1, the asymptotic stability can be proven as well and the existence
of a bound on theH∞-norm of the approximation error and on the frequency-weightedH∞-norm
of the error (5.1).

Numerical illustration and comparison of the FL-BT

The FL-BT is compared to the BT and the modified FL-BT on a simple case. The LAH
model is reduced to an order r = 10 over Ω = [0, 10] with the three methods. The frequency
responses of each models as well as the frequency responses of the errors are plotted in Figure
5.1.

One can observe that in the considered frequency band Ω, the error corresponding to the
model obtained with FL-BT is clearly inferior to the error obtained with the BT or the mod-
ified FL-BT. This is confirmed by H2,Ω norm of the errors, indeed,

‖H − ĤBT ‖H2,Ω

‖H‖H2,Ω

= 10.40%

‖H − Ĥmod.FLBT ‖H2,Ω

‖H‖H2,Ω

= 4.10%

‖H − ĤFLBT ‖H2,Ω

‖H‖H2,Ω

= 1.15× 10−4%.

On the frequency responses, the efficiency of the modified FL-BT with respect to the BT is
not obvious but it appears more clearly through the H2,Ω-norms of the errors. Even if it does not
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5.2. Frequency-limited model approximation

reach the performance of the FL-BT, it is still more efficient that the BT when the H2,Ω-norm
is considered.

5.2.2 Gramian-based H2,Ω optimal model approximation

The approach presented here has been developed in [Petersson, 2013; Petersson and Löfberg,
2014] in parallel of this thesis. It is an optimisation method aimed at finding a reduced-order
model which minimises the H2,Ω-norm of the approximation error where the latter is expressed
with the gramian-based formulation of the norm (see Section 2.2.2). To be more specific, let
us consider the n-th order large-scale model H := (A,B,C,D), the objective of the method is
to find a r-th order (r ≪ n) model Ĥ := (Â, B̂, Ĉ, D̂) which minimises the H2,Ω-norm of the

approximation error between H and Ĥ, i.e.

Ĥ = argmin
G
‖E‖2H2,Ω

= argmin
G
‖H −G‖2H2,Ω

, (5.9)

where Ω = [0, ω]. Note that due to Property 1 from Section 2.2.2, more complex frequency
intervals can readily be considered.

For simplicity, let us assume here that both models H and Ĥ are strictly proper, i.e. D =
D̂ = 0, the realisation of the error model E = H− Ĥ is then given by

E :=

(
AE BE

CE 0

)

=





A 0 B

0 Â B̂

C −Ĉ 0



 (5.10)

The frequency-limited H2,Ω-norm of the approximation error can be expressed through the
gramian-based formulation of the norm (see Section 2.2.2) as

‖E‖2H2,Ω
= tr

(
CEPE,ωC

T
E

)
= tr

(
BT

EQE,ωBE

)
, (5.11)

where PE,ω and QE,ω are the frequency-limited gramians associated with E considered over
Ω = [0, ω]. They are solutions of the following Lyapunov equations,

AEPE,ω + PE,ωA
T
E +Wc(ω) = 0

AT
EQE,ω +QE,ωAE +Wo(ω) = 0,

(5.12)

where
Wc(ω) = SE(ω)BEB

T
E +BEB

T
ESE(ω)

H ,

Wo(ω) = SE(ω)
HCT

ECE + CT
ECESE(ω),

with

SE(ω) =
j

2π
logm

(

(AE + jωIn+r) (AE − jωIn+r)
−1
)

. (5.13)

For asymptotically stable models, (5.13) can be simplified as,

SE(ω) = Re

(
j

π
logm (−AE − jωIn+r)

)

.

Note that due to the structure of the error model (5.10),

SE,ω =

[
S(ω) 0

0 Ŝ(ω)

]

.

where S(ω) = Re( j
π logm(−A − jωIn)) and Ŝ(ω) = Re( j

π logm(−Â − jωIr)). Similarly, by
partitioning the gramians as

PE,ω =

[ Pω P12,ω

PT
12,ω P̂ω

]

and QE,ω =

[ Qω Q12,ω

QT
12,ω Q̂ω

]

,
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the Lyapunov equations (5.12) can be decomposed as

APω + PωA
T + S(ω)BBT +BBTS(ω)H = 0,

AP12,ω + P12,ωÂ
T + S(ω)BB̂T +BB̂T Ŝ(ω)H = 0,

ÂP̂ω + P̂ωÂ
T + Ŝ(ω)B̂B̂T + B̂B̂T Ŝ(ω)H = 0,

and
ATQω +QωA+ S(ω)HCTC + CTCS(ω) = 0,

ATQ12,ω +Q12,ωÂ− Ŝ(ω)HCT Ĉ − CT ĈS(ω) = 0,

ÂT Q̂ω + Q̂ωÂ+ Ŝ(ω)HĈT Ĉ + ĈT ĈŜ(ω) = 0.

Finally, the approximation error (5.11) can be re-written as

‖E‖2H2,Ω
= tr

(

BTQωB + 2BTQ12,ωB̂ + B̂T Q̂ωB̂
)

= tr
(

CPωC
T − 2CP12,ωĈ

T + ĈP̂ωĈ
T
)

.
(5.14)

Based on (5.14), the H2,Ω approximation error can be differentiated with respect to the param-

eters of the reduced-order model Â, B̂ and Ĉ which yields

∂‖E‖2H2,Ω

∂Â
= 2

(

QT
12,ωP12,ω + Q̂ωP̂ω

)

− 2W

∂‖E‖2H2,Ω

∂B̂
= 2

(

Q̂ωB̂ +Q12,ωB
)

∂‖E‖2H2,Ω

∂Ĉ
= 2

(

ĈP̂ω − CP12,ω

)

(5.15)

where

W = Re

(
j

π
L
(

−Â− jωIr, V
))T

,

V = ĈT ĈP̂ω − ĈTCP12,ω,

L(., .) being the Fréchet derivative of the matrix logarithm [Higham, 2008, chap. 11]. The
first-order optimality conditions obtained from (5.15) are the generalisation to the H2,Ω case
of the first-order optimality conditions derived in [Wilson, 1974] for the optimal H2 model
approximation problem.

The approximation error (5.14) and its gradient (5.15) can then be used in an optimisation
algorithm to solve the optimal H2,Ω approximation problem (5.9). The advantage of working
with the gramian formulation of the approximation error in comparison to the optimal H2

approximation method presented in Section 4.2.3 or the method developed in this thesis in
Chapter 9, lies in the fact that here, no limitation comes from the order of the poles. In
particular, H and Ĥ can have poles of high order, it does not impact the approach.

On the computation of the matrix logarithm and its Fréchet derivative

One of the most efficient way to compute the matrix logarithms involved in S(ω) and in Ŝ(ω) is
to use the inverse squaring and scaling method which basic idea relies on the identity,

logm(M) = 2klogm(M1/2k), (5.16)

where M is a matrix with no eigenvalues on R−. Since M1/2k → I as k → ∞, a Padé approxi-
mation can be used to evaluate the right-hand side of (5.16) to a sufficient degree of accuracy for
some k sufficiently large. See [Higham, 2008, chap. 11] for further information and a description
of a stable algorithm to evaluate the logarithm of a matrix.
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5.2. Frequency-limited model approximation

The computation of the Fréchet derivative L(M,X) of the matrix logarithm is done through
a similar idea (see [Al-Mohy et al., 2013] for an in-depth description of the algorithm). Indeed,
similarly to identity (5.16),

L(M,X) = 2kL(M1/2k , Xk),

where X0 = X and the Xi (i = 1, . . . , k) are solutions of the Sylvester equations,

M1/2iXi +XiM
1/2i = Xi−1 i = 1, . . . , k.

Similarly to the logarithm, its Fréchet derivative L(M,X) is then approximated by the Padé

approximation of 2kL(M1/2k , Xk).

Conclusion

In this chapter, some methods for the approximation of a large-scale dynamical model over a
bounded frequency interval have been briefly presented. These methods have been classified here
into two groups, the methods that rely on the use of frequency-filters called frequency-weighted
model approximation methods and the ones that do not referred as frequency-limited model
approximation methods.

The most popular frequency-weighted model approximation method is the FW-BT which
extends the standard BT by defining frequency-weighted gramians. Depending on the chosen
approach, the FW-BT can guarantee the asymptotic stability of the reduced-order model and
gives an upper bound on the weighted H∞ approximation error. The use of filters has also
been considered to extend the IRKA in order to address the optimal frequency-weighted H2

model approximation problem. However, the resulting algorithm does not necessarily leads to
an optimal reduced-order model due to some error appearing during the interpolation. These
frequency-weighted model approximation methods are efficient but the design of the filter add a
tuning parameter which can be avoided by using frequency-limited model approximation meth-
ods.

The first one of these methods is the FL-BT which extends the BT by using frequency-
limited gramians to balance the large-scale model. This method is equivalent to one of the FW-
BT considered with perfect filters and is generally extremely efficient in practice. The other
approach is a non-linear optimisation algorithm aimed at solving the optimalH2,Ω approximation
problem based on the gamian formulation of the norm. This method is of particular interest
and a similar approach has been developed in this thesis based on the poles-residues of the
H2,Ω-norm.

This chapter concludes the part dedicated to the state of the art. The next part gathers the
contributions of this thesis concerning the frequency-limited approximation of linear dynamical
models.
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Part III

Frequency-limited approximation
of linear dynamical models
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Chapter 6

Development of a first approach
for frequency-limited model approx-
imation

In this chapter, a first approach to address the problem ofH2,Ω model approximation is presented.
It is an empirical method based on the Iterative SVD-Rational Krylov Algorithm (ISRKA, see
Section 4.2.2) and inspired by the Frequency-Limited Balanced Truncation (FL-BT, see Section
5.2.1).

In Section 6.1, the principle of the method is described and the algorithm presented. Then
in Section 6.2, several numerical experiments are made in order to illustrate the behaviour of
the algorithm and its performances.

This method has been presented and successfully applied on an industrial aircraft model in
[Vuillemin et al., 2013a,b].
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6.1 Modification of ISRKA

In Section 6.1.1, the principle of the method as well as the corresponding algorithm are presented.
In Section 6.1.2, the properties of the method are discussed and in Section 6.1.3, some numerical
improvements are proposed to enhance the method.

6.1.1 Presentation of the method

This method is based on the sub-optimal H2 model approximation method ISRKA (see Section
4.2.2) and has been inspired by the use of frequency-limited gramians in the BT which has led
to the FL-BT (see Section 5.2.1). In particular, it consists in using a frequency-limited gramian
instead of an infinite one in order to build one of the projector in ISRKA. The resulting
algorithm is called Frequency-Limited Iterative SVD Tangential Algorithm (FL-ISTIA) and is
presented in Algorithm 6. The algorithm has been integrated in the MORE Toolbox [Poussot-
Vassal and Vuillemin, 2012] and an example of its use can be found in Appendix C.3.

Initial projectors are built from step 1 to step 3. In particular, V is built as a basis of
a Krylov subspace and W is built thanks to the frequency-limited observability gramian QΩ

so that WTV = Ir. Then, while the algorithm has not converged, a reduced-order model is
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constructed by projection of the initial large-scale model in step 5. The eigenvalues and right
eigenvectors of this reduced-order model are computed at step 6 and are used in steps 7 and 8
in order to build new interpolation points and tangential directions. New projectors are then
created in steps 9 and 10 which will be used in the next iteration to build the reduced-order
model (step 5). Once the algorithm has converged, the final reduced-order model is obtained by
projection of the initial large-scale model (step 12).

Algorithm 6 Frequency-Limited Iterative SVD-Tangential Interpolation Algorithm (FL-
ISTIA)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, a frequency interval Ω, r initial interpolation

points σ
(0)
i ∈ C, r initial tangential directions b̂

(0)
i ∈ C1×nu

1: Construct,

V =
[

(σ
(0)
1 In −A)−1Bb̂T

1 , . . . , (σ
(0)
r In −A)−1Bb̂T

r

]

2: Compute the frequency-limited observability gramian QΩ

3: Compute W = QΩV (V TQΩV )−1

4: while max
k=1,...,r

|σ(i)
k − σ

(i−1)
k | > ε do

5: i← i+ 1, Â =WTAV , B̂ =WTB
6: Compute ÂX = diag(λ(Â))X

7: Compute
[

b̂T
1 , . . . , b̂

T
r

]T

= X−1B̂

8: Set σ
(i)
k = −λk(Â), k = 1, . . . , r.

9: Construct,

V =
[

(σ
(i)
1 In −A)−1Bb̂T

1 , . . . , (σ
(i)
r In −A)−1Bb̂T

r

]

10: Compute W = QΩV (V TQΩV )−1

11: end while
12: Construct the reduced-order model by projection Ĥ = (WTAV,WTB,CV )

With reference to this algorithm, the following remarks can be addressed :

◮ The frequency-limited controllability gramian PΩ can be indifferently used instead of the
observability one in the algorithm. In that case, the left projector W is built as a basis of
a Krylov subspace, i.e.

W =
[

(σ
(i)
1 In −AT )−1CT ĉT1 , . . . , (σ

(i)
r In −AT )−1CT ĉTr

]

,

where
[
ĉT1 , . . . , ĉ

T
r

]
= ĈX. The controllability gramian is then involved in the construction

of the right projector V = PΩW
(
WTPΩW

)−1
.

◮ The two main numerical costs of this algorithm come from the computation of the frequency-
limited gramian at step 2 and the resolution of r linear systems (step 9) at each iterations.
Since computing a frequency-limited gramian requires, in addition of solving a Lyapunov
equation, to evaluate the logarithm of a matrix, the FL-ISTIA is more complex than the
ISRKA and for the same reasons as those presented in [Gugercin, 2007], it is cheaper
than the FL-BT depending on the number of iterations.

◮ The algorithms stops when the interpolation points do not evolve anymore (step 4). Other
stopping criteria could be considered. One could for instance stops when the H2,Ω-norm
of the error does not evolve anymore (see Section 6.1.3 for some remarks about the com-
putation of the approximation error).
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◮ To alleviate the computational complexity of the algorithm in very large-scale settings, a
low-rank approximation of the gramian could be used as it has been done in [Gugercin,
2007]. However, this has not been considered here.

◮ Note that as in other methods rooted on Krylov subspaces, to obtain real valued pro-
jectors V and W , the interpolation points must either be real or closed under complex
conjugation. Indeed, in the latter case, if two vectors are complex conjugate v2 = v1

∗,
then they span the same subspace as their real and imaginary part, i.e. span {v1,v2} =
span {Re(v1), Im(v1)}. This also implies that only one linear system has to be solved
(step 1 and 9) for each pair of complex conjugate interpolation points, which reduces the
computational complexity.

◮ In general, the initial points are linearly or logarithmically spaced points in the interval
of interest. They can also be chosen as the opposite of the poles of the large-scale model
which are associated with the r largest residues in the considered frequency interval.

◮ Direct feedthrough are not taken into account in this algorithm because it is based on
projection and direct feedthrough are not modified by projection. A simple way to handle
non strictly proper models is to set D̂ = D. However, this is not the optimal choice
considering the gradient of the approximation error with respect to D̂ (see Chapter 8).

6.1.2 Properties

The properties of FL-ISTIA concerning stability preservation and interpolation of the large-
scale model are discussed below.

Stability

To prove the stability of the reduced-order models built by ISRKA [Gugercin, 2007], the Lya-
punov equation of the initial large-scale model is projected thus leading to the reduced-order
model Lyapunov equation. And, due to inertia results, the reduced-order model is proved to be
stable (see Section 4.2.2).

Here however, the same reasoning cannot be applied. Indeed, let assume that the basis is
such that QΩ = In, then, the large-scale Lyapunov equation is

AT +A+Wo (Ω) = 0.

By applying the projectors WT = V T and V to the equation, one obtains

ÂT + Â+ V TWo (Ω)V = 0.

The last term of the reduced-order Lyapunov equation is not necessarily positive semi-definite,
hence stability cannot be proved. In order to do so, the same modification that has been devel-
oped for ensuring the stability with the FL-BT [Gugercin and Antoulas, 2004] could be applied
(see Section 5.2.1). However, in the case of FL-BT, we have observed that this modification also
leads to a loss of performances in terms of approximation error in the considered frequency inter-
val. Since instability has rarely been observed in the reduced-order model built by FL-ISTIA,
this modification is not applied to the algorithm in the sequel.

Interpolation

The Krylov subspace used in FL-ISTIA (steps 1 and 9) is the same as the one used in IRKA
or ISRKA. It implies that at convergence, the reduced-order model interpolates tangentially
the initial large-scale model H from the left or the right (depending on the Krylov subspace
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that has been chosen) at −λ̂i for all i = 1, . . . , n. For instance, if at convergence, V =
[

(λ̂1In −

A)−1Bb̂T
1 , . . . , (λ̂rIn −A)−1Bb̂T

r

]

, then for all i = 1, . . . , n,

H(−λ̂i)b̂T
i = Ĥ(−λ̂i)b̂T

i . (6.1)

Note that equation (6.1) is one of the first-order optimality conditions for the optimal H2

approximation problem (see Theorem 9 in Section 4.1.2). For SISO models, just like ISRKA,
this implies that the reduced-order model built by FL-ISTIA is the best (in the H2-sense)
among all the models which share the same eigenvalues. The same property holds in SIMO
and MISO cases as well (depending on which side the Krylov subspace is built). In MIMO
cases however, the optimality property is weaker since only one part of the first-order optimality
conditions is fulfilled. In all cases, fulfilling this optimality condition implies that at convergence,
the H2-norm of the approximation error between the large-scale and reduced-order models is
equal to the difference of their H2-norm (see Section 4.1), i.e.

‖H − Ĥ‖2H2
= ‖H‖2H2

− ‖Ĥ‖2H2
. (6.2)

Fulfilling H2 optimality conditions is not really relevant in the case of model approximation
over a bounded frequency range and the choice of the Krylov subspace could be improved. This
stands also for the shifts point selection strategy at step 8 which is a relaxation of a Newton’s
scheme based on the optimality conditions of the H2 problem. However, as it will appear later in
Chapter 8, the optimality conditions for the H2,Ω approximation problem cannot be expressed as
convenient interpolation conditions and thus choosing a relevant Krylov subspace is not trivial.

6.1.3 Numerical improvement of the method

Below, two modifications are proposed for improving the behaviour of FL-ISTIA.

Error watch

One of the main drawback of FL-ISTIA lies in the fact that it does not give any information
about the approximation error between the large-scale model and the reduced-order one. This
issue can be alleviated by computing the approximation error at each iteration and keeping the
model which has yielded the smallest approximation error.

In order to keep the computation time to an acceptable level, the approximation error must
not be computed directly, instead its decomposition,

‖H − Ĥ‖2H2,Ω
= ‖H‖2H2,Ω

+ ‖Ĥ‖2H2,Ω
− 1

π

∫ ω

−ω

tr
(

H(jν)Ĥ(−jν)T
)

dν,

can be exploited. Indeed, since ‖H‖2H2,Ω
does not depend of the reduced-order model and

consequently, it does not need to be computed. The H2,Ω-norm of the reduced-order model is
easily computed since the order of the model is low. The cross term has to be computed at each
iteration and involves the large-scale model. Note that the H2,Ω-norm of the approximation
error cannot in general be simplified as in equation (6.2) since the optimality conditions are not
the same as in the H2 case (see Chapter 8).

Each term of the approximation error can either be computed by solving Lyapunov/Sylvester
equations (see for instance [Petersson, 2013]) or through the poles-residues formulation of the
approximation error (see Chapter 8). The advantage of the latter formulation lies in the fact
that once the eigenvalue decomposition of each model is available, the computation of each term
in the error is done through an explicit formulae. Its drawback is that both models must have
semi-simple poles only.

Note that both formulations still require at least one initial computationally demanding task,
thus this modification can only be applied to models of moderate size.
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Restarting procedure

In order to make FL-ISTIA less sensitive to the initial shift point selection and to explore
more possibilities, a restarting procedure can be used. It consists in launching several times
the algorithm with different initial interpolation points and keep the best result. Note that it
implies that the approximation error must be computed at least at the end of each launch. Hence
this modification also, is dedicated to models of medium size for which this information can be
computed.

The new set of initial interpolation points can be chosen in many different ways, but here a
simple perturbation of the final interpolation points is considered. This is done by adding some
random numbers to the real and complex parts of the points. Note that this perturbation must
preserve the fact that the interpolation points come in complex conjugate pairs and that they
have a positive real part.

6.2 Numerical illustrations

In this section, several numerical tests are conducted in order to highlight the advantages of the
frequency-limited version of ISRKA. In particular, in Section 6.2.1, FL-ISTIA is compared to
ISRKA in order to illustrate the benefit provided by the use of a frequency-limited gramian.
Then in Section 6.2.2, the improvement brought by the numerical improvement are estimated.
In Section 6.2.3, the method is compared to other methods such as the FL-BT.

6.2.1 Comparison with the standard version of ISRKA

In order to estimate the gain of performance induced by the use of a frequency-limited gramian,
the following experimental procedure is used.

Experimental procedure

A given large-scale model H is approximated with ISRKA and FL-ISTIA for reduced orders
r = 2, 4, 6, . . . , 20 and for the frequency interval Ω = [0, ω] where ω varies linearly from ωmin

to ωmax (40 points) which depends on the considered model1. Both methods are used with the
same parameters, in particular, the restarting procedure is disabled, the gramian used is the
controllability one, the maximum number of iterations is set to 30, the tolerance ǫ is set to 10−3,
the error is not checked at each iteration and the initial shift points are selected as real points
linearly spaced between minλ |Im (λ) | and maxλ |Im (λ) | where λ are the poles of H.

For each couple {r, ω}, the H2,Ω-norm of the approximation errors, i.e.

eISRKA = ‖H −HISRKA‖H2,Ω and eFLISTIA = ‖H −HFLISTIA‖H2,Ω ,

are computed. The improvement brought by FL-ISTIA is then measured by the following
quantity2

g =
eISRKA − eFLISTIA

eISRKA + eFLISTIA
,

which varies between −1 when eISRKA = 0 to 1 when eFLISTIA = 0. Note that given k ∈ R,
such that eFLISTIA = keISRKA then k = 1−g

1+g . Hence, the ratio between the two errors can be
retrieved from g quite easily.

This procedure is applied on the three test models from COMPLeib presented in the intro-
duction, i.e. the LAH, the CBM and the ISS models where

1ωmin is chosen so that the first main dynamic of the model belongs to Ω and ωmax is chosen so that all the
dynamics belong to Ω.

2The standard relative error (eISRKA − eFLISTIA) /eISRKA is not used because it is not symmetric and can
lead to misleading statistics.
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test model LAH CBM ISS
g ≥ 0 (FL-ISTIA better) 60.75 42 69.5
g < 0 (ISRKA better) 34.75 50.25 28.75

unstable 0 0.5 0
not converged 4.5 7.25 1.75

Table 6.1: Proportion of cases for which g is positive, strictly negative, for which FL-ISTIA
has led to an unstable model or has not converged (%).

test model LAH CBM ISS
mean 13.47 2.69 13.62
max 99.99 99.91 95.54
min -5.06 -32.31 -31.19
std 28.74 20.33 25.81

Table 6.2: Statistical indicators for the gain g (in %) computed among the case where FL-ISTIA
has converged and led to a stable model.

◮ for the LAH model, ωmin = 6 and ωmax = 100,

◮ for the CBM model, ωmin = 0.1 and ωmax = 45,

◮ and for the ISS model, ωmin = 1 and ωmax = 100.

In Table 6.1, the proportions of couples of approximation parameters {r, ω} for which the
gain g is positive, strictly negative, or for which FL-ISTIA has not converged or converged
towards an unstable model are reported.

In Figure 6.1, the spatial distribution of the sign of g is plotted in the plane formed by the
reduction order r and the frequency bound ω. The blue crosses indicate that FL-ISTIA has
not converged at that point, the black squares indicate that FL-ISTIA has led to an unstable
model, the green (resp. red) points indicate that g is positive (resp. strictly negative).

In Table 6.2, some statistical indicators about g considered among all the couples of ap-
proximation parameters for which FL-ISTIA has converged and has led to a stable model are
reported.

Finally, Figure 6.2 shows the relative approximation error obtained with both method against
ω for the LAH model and for a fixed approximation order r = 4 (this case corresponds to the
second column on the first plot of Figure 6.1).

Interpretation of the results

By looking a the mean values of the gain g provided in Table 6.2, one can see that on average, the
use of a frequency-limited gramian instead of an infinite one enables to improve the performances
in terms of H2,Ω-norm of the approximation error. However, this greatly varies between the
models, for instance, the mean of g is lower for the CBM than for the LAH and ISS models.
A similar conclusion comes from Table 6.1, indeed, we can see that with the beam model, the
reduced-order model is improved by FL-ISTIA less often than for the other models. This
is not surprising considering the frequency response of the clamped beam model (see Figure
1.6 in the introduction). Indeed, the CBM model is mainly characterised by a poorly damped
oscillatory mode at low frequency, the remaining oscillatory modes are almost insignificant. AH2

model approximation method such as ISRKA directly catches this low frequency dynamic thus
making frequency-limited method not specifically relevant in that case. In fact it is quite easy
to build examples on which the FL-ISTIA (or other frequency-limited model approximation
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Figure 6.1: Sign of the gain g for each couple of approximation parameters {r, ω} for LAH (top),
CBM (center) and ISS (bottom).
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Figure 6.2: Relative H2,Ω approximation error with respect to ω for the LAH model and r = 4.

methods) is particularly relevant (see Example 13). Here, the ISS model is much more suited
for frequency-limited model approximation over Ω = [0, ω] than CBM.

When looking at the spatial distribution of the sign of g in Figure 6.1, two remarks can be
made. Firstly, the cases for which the algorithm has not converged are mainly located at high
reduction orders r and low frequency bounds ω (bottom right of the plots), i.e. small frequency
interval Ω. This may be explained by the fact that the reduction order is too high compared to
the number of meaningful dynamics in that small frequency interval. For instance, for the LAH
model with r = 10 and Ω = [0, 6], the relative approximation error between the large-scale and
reduced-order models,

‖H −HFLISTIA‖H2,Ω

‖H‖H2,Ω

,

is already equal to 1.75 × 10−4%. Hence, increasing the approximation order is not necessarily
relevant. Besides, the two unstable models obtained for the model CBM are also located at low
frequency and high approximation orders.

Secondly, on average, the gain brought by FL-ISTIA seems to be more dominant for small
values of ω as the red stars are mainly located in the top of the plots. This is also illustrated in
Figure 6.2 where the difference between the approximation errors is particularly obvious for low
values of ω.

Figure 6.2 also enables to mitigate the negative gain obtained by FL-ISTIA in some cases.
The approximation errors obtained with FL-ISTIA are indeed higher than those obtained with
ISRKA for ω > 10 but the difference is not large.

Example 13 (Settings for which frequency-limited model approximation methods are particu-
larly relevant). Let us consider a model H with two poorly damped modes corresponding to the
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Figure 6.3: Frequency responses of the models H, HISRKA and HFLISTIA.

eigenvalues λ1 = 10−3 + j and λ2 = 10−5 + 10j and whose transfer function is

H(s) =
1

(s2 + 0.002s+ 1) (s2 + 2× 10−5s+ 100)
.

This 4-th order model is reduced to a second order model with ISRKA and FL-ISTIA over
Ω = [0, 2]. The frequency responses of the three models are plotted in Figure 6.3.

Since the high order mode has a higher gain than the low frequency one, ISRKA catches it
whereas FL-ISTIA catches the low frequency mode which is in the frequency interval Ω. The
low frequency dynamic is discarded by ISRKA and the high frequency dynamic has no impact
in the considered frequency interval, hence the approximation error obtained with ISRKA is
extremely high :

‖H −HISRKA‖H2,Ω

‖H‖H2,Ω

≈ 100%

‖H −HFLISTIA‖H2,Ω

‖H‖H2,Ω

= 0.05%

If the considered frequency interval Ω is chosen to embed the main dynamic, then both methods
lead to the same reduced-order model.

6.2.2 Impact of restart and error watching

In this section, the improvement brought by the restarting procedure and the error watch are
estimated through similar tests to what have been used previously in Section 6.2.1.
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test model LAH CBM ISS
g > 0 (modified FL-ISTIA better) 91.75 86.25 67

g = 0 (modified FL-ISTIA equivalent) 4 8.25 31.5
modified FL-ISTIA unstable 0 0.25 0

modified FL-ISTIA has not converged 4.25 5.25 1.5

Table 6.3: Proportion of cases for which g is strictly positive, null or for which the modified
FL-ISTIA has not converged or led to an unstable model (%).

test model LAH CBM ISS
mean 4.17 4.01 4.43
max 84.68 82.59 40.85
min 0 0 0
std 10.22 7.56 8.05

Table 6.4: Statistical indicators for the gain g (in %) computed among the case where both
instances of FL-ISTIA have converged and led to stable models.

Experimental procedure

The same set of models with the same set of approximation parameters than in Section 6.2.1
are used. But here, two instances of FL-ISTIA are compared, the first one has no restarting
procedure enabled and no error watch while the second one has two restarts and the error is
checked at each iteration. The second instance of FL-ISTIA may be referred as modified
FL-ISTIA below. The gain g is here computed between the two instances of FL-ISTIA

g =
eFLISTIA − emod.FLISTIA

eFLISTIA + emod.FLISTIA
,

where

eFLISTIA = ‖H −HFLISTIA‖H2,Ω
and emod.FLISTIA = ‖H −Hmod.FLISTIA‖H2,Ω

.

In Table 6.3, the proportions of cases for which the gain g between FL-ISTIA and the
modified FL-ISTIA is strictly positive, null, or for which the modified FL-ISTIA has not
converged or has led to an unstable model are reported.

In Table 6.4, statistical indicators of g considered among all the cases for which both instances
of FL-ISTIA have converged and have led to stable models are reported.

In Figure 6.4, the spatial distribution of the sign of the gain between the ISRKA and the
modified FL-ISTIA is plotted.

Finally, in Table 6.5, the mean relative increase in computation times between the two
instances of FL-ISTIA, i.e.

gt =
tmodFLISTIA − tFLISTIA

tFLISTIA
,

is reported.

test model LAH CBM ISS
gt 75 39 42

Table 6.5: Mean relative increase in computation times between FL-ISTIA and modified
FL-ISTIA (%).
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Figure 6.4: Sign of the gain g between ISRKA and the modified FL-ISTIA for each couple
of approximation parameters {r, ω} for LAH (top), CBM (center) and ISS (bottom).
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LAH CBM ISS
mean -2.60 13.50 2.29
max 39.62 92.78 57.73
min -99.99 -98.12 -89.31
std 25.97 23.02 11.95

Table 6.6: Statistical indicators relative to the gain gBT (in %) between the FL-BT and the
FL-ISTIA considered in all the cases where both methods have converge towards a stable
model.

Interpretation of the results

From Table 6.3, one can see that the modifications of FL-ISTIA improve the method in the
majority of cases. In comparison to Table 6.1, it also shows that these modifications enable to
slightly decreases the number of cases for which the algorithm does not converge or leads to a
unstable model.

From Table 6.4, one can see that the gain brought by the modifications is on average of 4%,
which means that on average emod.FLISTIA = 0.92 eFLISTIA. Obviously, it cannot be negative
since in the worst case, the modifications do not impact the behaviour of the algorithm. Note
that since the restart procedure involves random numbers, the result given by the modified FL-
ISTIA might vary for the same inputs. However the variation is generally small, that is why
we did not conduct any statistical study on this point.

Figure 6.4 enables to show the improvement brought by the modifications with respect to
ISRKA. Indeed, in comparison from Figure 6.1, we can see that there are less red points (g
negative).

This performance improvement comes at the cost of longer computation times as showed in
Table 6.5. Yet, from an user’s point of view, the difference is barely noticeable for models of size
lower than 500 states.

6.2.3 Comparison with other methods

In this Section, the FL-ISTIA is compared to the FL-BT and a corrective example of a
benchmark published in [Petersson, 2013] is also presented.

Comparison with the FL-BT

The algorithm FL-BT is compared with the modified FL-ISTIA with the same parameters
as in Section 6.2.2 and on the same test models. The difference between the two methods is
again measured by

gBT =
eFLBT − emod.FLISTIA

eFLBT + emod.FLISTIA
.

In Table 6.6, statistical indicators relative to gBT in the cases where both methods have
converged and led to a stable model are reported.

From Table 6.6, one can see that with the ISS and CB models, FL-ISTIA performs better
on average than the FL-BT. However, this is not the case on the LAH model. The FL-BT is
particularly efficient on the LAH model because it manages to reproduce more accurately the
differentiator behaviour of the model than FL-ISTIA.

Both methods and ISRKA are also used to approximate an industrial aircraft model (n =
289, ny = 4 and nu = 3) to an order r = 12 over the frequency interval Ω = [0, ω]. The relative
H2,Ω approximation errors are potted in Figure 6.5. This model is very ill-conditioned and in
fact, the FL-BT only produces unstable models even if the modification proposed in [Gugercin
and Antoulas, 2004] (see Section 5.2.1) is used. Similarly, one can observe that the evolution of
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Figure 6.5: Relative H2,Ω approximation error obtained by approximation of an industrial air-
craft model to an order r = 12 with ISRKA, FL-ISTIA with r = 12 and Ω = [0, ω] for varying
values of ω.

the approximation error corresponding to FL-ISTIA is chaotic but the reduced-order model is
still stable and of acceptable accuracy.

These results can be explained by the fact that the ill-conditioning of the model prevents
from solving accurately the Lyapunov equations which results in inaccurate frequency-limited
gramians. Indeed, when the frequency limited gramians are re-injected in their corresponding
Lyapunov equations, one can see that ‖ATQΩ+QΩA+Wo(Ω)‖2 and ‖APΩ+PΩA

T+Wc(Ω)‖2 are
far from being null with this model. In the case of FL-ISTIA, this inaccuracy is compensated
by the Krylov part of the method.

Corrective example

In [Petersson, 2013, chap.4], a comparison between several frequency-limited model approxima-
tion algorithms, among which FL-ISTIA, is presented. The Example 4.7 consists in reducing
the CD player model [Leibfritz and Lipinski, 2003] to an order3 r = 12 over Ω = [10, 1000].

In the presented results, the FL-ISTIA performed poorly. This is probably due to some
problems present in the previous release of the MORE toolbox. Indeed, the error obtained in the
current state of the algorithm differs as shown in Table 6.7 where the relativeH2,Ω approximation

errors between the large-scale model H and the reduced order model Ĥ, i.e.

‖H − Ĥ‖H2,Ω

‖H‖H2,Ω

,

are reported for the FL-BT, the old version of FL-ISTIA, the new one and the methods

3The reduced order is not clearly indicated but is likely to be 12 due to the error produced by the FL-BT.

87



Chapter 6. Development of a first approach for frequency-limited model approximation

FL-BT 1.24e-03
old FL-ISTIA 8.23e-02
current FL-ISTIA 9.76e-04
FLH2NL 6.95e-04
WH2NL 8.94e-04

Table 6.7: Relative approximation errors obtained by approximation of the CDP model to an
order r = 12 over Ω = [10, 1000] with different approximation methods

proposed in [Petersson, 2013]: FLH2NL and WH2NL. Note that the approximation with FL-
ISTIA is considered without restart, without error watch, with a tolerance of 10−3, with the
observability gramian, and with initial shift points linearly spaced between 10 and 1000.

The error obtained with the current version of FL-ISTIA is far better than the old one, but
still above the errors induced by FLH2NL and WH2NL, in that specific case.

Conclusion

In this Chapter, our first attempt at addressing the problem of model approximation over a
bounded frequency range has been presented. The idea was to use frequency-limited gramians in
place of infinite gramians in the algorithm ISRKA, the resulting algorithm is called FL-ISTIA.
Numerical experiments have shown that FL-ISTIA is indeed more efficient than ISRKA when
the H2,Ω-norm of the approximation error is considered. Its performances are also comparable
to those of the FL-BT and it seems that FL-ISTIA is numerically more robust. The FL-
ISTIA could be improved by using a Krylov subspace to enforce interpolation conditions that
are relevant for the H2,Ω approximation problem, but determining this Krylov subspace is not
obvious and is still under investigation. In the sequel, the problem of approximation over a
bounded frequency range is considered directly as an optimisation problem in terms of the H2,Ω-
norm.
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Chapter 7

Formulation of the H2,Ω-norm with
the poles and residues of the trans-
fer function

The poles-residues representation of a LTI model is not the most numerically robust represen-
tation that exists and it is dedicated (in order to be applicable) to models having semi-simple
poles only. But the associated formulation of the H2-norm has led to convenient first-order
optimality conditions in the context of optimal H2 model approximation (see Chapter 4). That
is why in this chapter, this representation is used to derive a poles-residues formulation for the
frequency-limited H2-norm for which only the gramian formulation existed (see Section 2.2).

Note that this poles-residues formulation of the norm is used in Chapters 8 and 9 to develop
an algorithm that minimises the JH2,Ω

-norm of the approximation error between a large-scale
model and a reduced-order one. Hence, this Chapter plays a pivotal role in this manuscript.

In a first step in Section 7.1, the case of models with semi-simple poles only is addressed.
The formulation is then generalised to models with high order poles in Section 7.2. This poles-
residues formulation is finally used in Section 7.3 to derive two bounds on the H∞-norm of LTI
dynamical models which are of great interest in the context of model approximation (see Section
9.2.3 and Chapter 10).

The poles-residues formulations of the H2,Ω-norm has been presented in [Vuillemin et al.,
2012b] and in [Vuillemin et al., 2014c] for the models with semi-simple and high order poles,
respectively, and the bounds on the H∞-norm has been presented in [Vuillemin et al., 2014d].
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7.1 Models with semi-simple poles only

The poles-residues (or spectral) formulation of the frequency-limited H2-norm for LTI models
with semi-simple poles only involves the principal value of the inverse tangent function which
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is introduced in Section 7.1.1. The main Theorem is then stated in Section 7.1.2. Finally, this
formulation of the norm is compared in some numerical examples in Section 7.1.3.

7.1.1 Preliminary results on complex functions

The principal value1 of the inverse tangent function relies on the principal value of the complex
logarithm which relies itself on the principal value of the complex argument. Hence, the defini-
tions of both functions are conditioned by the way the complex argument is defined, which is
merely a convention, but an important one. In this work, we have chosen a widely used con-
vention (see [Abramowitz and Stegun, 1964, chap. 4] or [Corless et al., 2000]) for the principal
value of the complex argument. The argument arg(z) of a non-zero complex number z 6= 0 is
chosen to lie in ]−π, π], i.e.

−π < arg(z) ≤ π,
for z 6= 0. This definition induces a branch cut along the negative real axis (−∞, 0] which is
inherited by the functions based on this convention. In particular, the principal value of the
complex logarithm, which is presented in Definition 7, has the same branch cut as the complex
argument.

Definition 7 (Principal value of the complex logarithm). The principal value of the logarithm
of z, denoted log(z), is defined for z 6= 0 as

log(z) = ln (|z|) + jarg(z),

where ln(x) is the natural logarithm of x ∈ R∗
+.

There exist various definitions for the complex inverse tangent function. Here, the definition
suggested in [Kahan, 1987] is considered (see Remark 13 for some remarks about alternative
formulations). It is recalled in Definition 8. The function atan(z), z 6= ±j is single-valued and
continuous excepted along two branch cuts (−j∞,−j]∪[j, j∞) (illustrated in Appendix B.1).

Definition 8 (Principal value of the complex inverse tangent). The principal value of the inverse
tangent of z, denoted atan(z), is defined for z 6= ±j as

atan(z) =
1

2j
(log(1 + jz)− log(1− jz)) .

Remark 13 (About the definition of the principal value of the complex inverse tangent). The
principal value of the complex inverse tangent can also be defined, for z 6= ±j as

1

2j
log

(
1 + jz

1− jz

)

,

which yields the same branch cuts as Definition 8 but does not coincide everywhere in the complex
plane. Indeed as shown in [Haber, 2012] (and illustrated in Appendix B.1),

log

(
1 + jz

1− jz

)

=

{
π + log(1 + jz)− log(1− jz) if z ∈ (−j∞,−j[

log(1 + jz)− log(1− jz) otherwise
.

In this study, the use of the complex inverse tangent function is merely a notational convenience
that enables to compact the expression of the H2,Ω-norm. The same results could have been
obtained by sticking with the complex logarithm. Moreover the hypothesis considered in Theorem
10 on the value of ω ensures that one cannot be in a case where the two definitions are not
equivalent.

1In this work, the principal values of complex functions are denoted by lower-case (and bold) names. The
notation often varies in the literature, here it is the same as in [Abramowitz and Stegun, 1964, chap. 4] but
differs, for instance, from the notation employed in the documentation of Mathematica.
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Yet, generally speaking, special care must be taken when using atan(z) in practice because
the convention of the function might vary between different software. Indeed, Mathematica doc-
umentation explicitly mentions that Definition 8 is used2, but there is no indication in the doc-
umentations of Matlab R©, Scilab and Octave.

7.1.2 Poles-residues formulation of the H2,Ω-norm

Theorem 10 (Spectral expression of the H2,Ω-norm). Given a frequency interval Ω = [0, ω]
and a continuous MIMO LTI dynamical model H of degree n. Suppose that the two following
hypothesis are satisfied

1. The transfer function associated with H can be written as

H(s) =

n∑

i=1

Φi

s− λi
+D ∈ C

ny×nu ,

where D ∈ Rny×nu , Φi ∈ Cny×nu and λi ∈ C (i = 1, . . . , n).

2. If there are indexes {j1, . . . , jK} such that {λj1 , . . . , λjK} are purely imaginary, then the up-
per bound ω of the interval Ω is smaller than their modulus, i.e. ω < min {|λj1 |, . . . , |λjK |}.

Then, the frequency-limited H2-norm of H can be written as

‖H‖2H2,Ω
=

n∑

i=1

n∑

k=1

ai,k +
ω

π
tr
(
DDT

)
− 2

π

n∑

i=1

tr
(
ΦiD

T
)
atan

(
ω

λi

)

(7.1)

where

ai,k =







2

π
tr

(
ΦiΦ

T
k

λi + λk

)

atan

(
ω

λi

)

if λi + λk 6= 0

− 1

π
tr

(
ωΦiΦ

T
k

ω2 + λiλi

)

otherwise.

Proof. Since A is diagonalisable, the transfer function H(s) can be decomposed as (see Section
2.1.1)

H(s) =

n∑

i=1

Φi

s− λi
+D,

where Φi ∈ Cny×nu is the residue associated with the eigenvalue λi. Using this decomposition in
the definition of the H2,Ω-norm (Definition 4) enables to divide it into several elements than can
be integrated under some additional assumptions in particular cases. Indeed, if some poles are
on the imaginary axis, the upper bound ω of the frequency interval Ω must be smaller than the
smallest modulus of those imaginary poles. The full proof can be found in Appendix A.1.

The two expressions for the ai,k ensure that (7.1) is continuous for every value of λi and
λk. The second expression is the limit of the first one as |λi + λk| tends towards 0. Note that
λi = −λk happens if the model has purely imaginary poles and can also happen if it has poles
in the right half-plane located symmetrically to some stable poles with respect to the imaginary
axis. Both cases do not occur if asimptotically stable models are considered and are therefore
discarded in the sequel.

Note that if λi + λk 6= 0 ∀ i, k = 1, . . . , n, then equation (7.1) can be rewritten as

‖H‖2H2,Ω
=

n∑

i=1

− 2

π
tr
(
ΦiH(−λi)T

)
atan

(
ω

λi

)

+
ω

π
tr
(
DDT

)
, (7.2)

2See http://mathworld.wolfram.com/InverseTangent.html
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which is close to the poles-residues expression of the H2-norm (see Section 2.1.1)

‖H‖2H2
=

n∑

i=1

tr
(
ΦiH(−λi)T

)
. (7.3)

Apart from the non-proper terms, the difference between equations (7.2) and (7.3) comes from
the coefficients atan( ω

λi
) which acts as weightings on each contribution in the sum.

If the model H is strictly proper, then the limit of the H2,Ω-norm of H as ω tends towards
infinity is determined by the limits of atan( ω

λi
). The latter are presented in Corollary 1 and the

former in Theorem 11.

Corollary 1. Given λ ∈ C∗ and ω > 0, the limits of atan
(
ω
λ

)
, where atan(z) is given by

Definition 8, are

lim
ω→∞

atan
(ω

λ

)

=







−π
2 if Re (λ) < 0
π
2 if Re (λ) > 0
π
2 if Re (λ) = 0 and Im (λ) < 0
−π

2 if Re (λ) = 0 and Im (λ) > 0

.

Proof. See Appendix B.2.

Theorem 11 (Limit as ω tends towards infinity). Let us consider a frequency interval Ω = [0, ω]
and a strictly proper model H with n− poles λ−i in the open left half-plane and n+ poles λ+k in
the open right-half plane that satisfies λ−i + λ+k 6= 0 ∀ i, k. The transfer function of H is written
as

H(s) =

n−∑

i=1

Φ−
i

s− λ−i
+

n+∑

k=1

Φ+
k

s− λ+k
.

Then, the limit of the frequency-limited H2-norm (see Remark 14 for some clarification about
the notation for unstable models) as ω tends towards ∞ is given by

lim
ω→∞

‖H‖H2,Ω =

n−∑

i=1

tr
(
Φ−

i H
T (−λ−i )

)
−

n+∑

k=1

tr
(
Φ+

kH
T (−λ+k )

)
.

Proof. Using Corollary 1 in equation (7.2) leads to the result.

Remark 14 (On the notation H2,Ω for unstable models). Given the definition of the frequency-
limited H2-norm considered in this thesis (see Definition 4), the H2,Ω-norm of an unstable model
is not necessarily infinite unlike the H2-norm.

The notation H2,Ω is misleading in that case and it would have been more appropriate to
talk about frequency-limited L2 norm, or L2,Ω-norm, which matches Definition 4 and enables to
encompass both the stable and unstable cases.

Yet, since the models considered in this thesis are mainly stable ones, the notation H2,Ω-norm
is used.

In the case of asymptotically stable models, Theorem 11 states that the frequency-limited
H2-norm of H tends towards its H2-norm as ω tends towards ∞. For a model H = (A,B,C)
which poles are located in the right half-plane, theH2,Ω-norm ofH tends towards theH2-norm of
the model which realisation is (−A,B,C). This is not surprising, since the H2,Ω-norm measures
the impact of the transfer function on the imaginary axis, whether the poles are located on the
right or on the left of the axis does not modify this impact.

If the model H is not strictly proper or has poles on the imaginary axis, then the limit is
infinite.
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On the computation of the H2,Ω-norm

To efficiently compute the H2,Ω-norm (7.2), the residues Φi should not explicitly be computed.
Indeed, by notingX ∈ Cn×n the matrix which columns are the right eigenvectors of A, Y = X−1,
and ei the canonical basis column vector, it turns out that

tr
(
ΦiΦ

T
k

)
= tr

(
CXeiei

TY B(CXekek
TY B)T

)

= ek
T (CX)TCX
︸ ︷︷ ︸

M1

eiei
T Y B(Y B)T
︸ ︷︷ ︸

M2

ek.

Hence
tr
(
ΦiΦ

T
k

)
= [M1]k,i [M2]i,k .

Since M1 and M2 are symmetric,

tr
(
ΦiΦ

T
k

)
= [M1]i,k [M2]i,k .

Consequently, by denoting L the matrix defined by

[L]i,k =
1

λi + λk
,

one obtains

n∑

i=1

n∑

k=1

tr
(
ΦiΦ

T
k

)

λi + λk
atan

(
ω

λi

)

= 1
T (M1 ⊙M2 ⊙ L)








atan
(

ω
λ1

)

...

atan
(

ω
λn

)







, (7.4)

where 1 denotes the column vector filled with ones and ⊙ the Hadamard product. Similarly, by
denoting diag (M) the column vector formed with the diagonal of the matrix M ,

n∑

i=1

tr
(
ΦiD

T
)
atan

(
ω

λi

)

= diag
(
Y BDTCX

)T








atan
(

ω
λ1

)

...

atan
(

ω
λn

)







.

Note that the matrices M1, M2 and L in equation (7.4) are symmetric and contain elements
that are complex conjugate. Hence, by exploiting this structure, it is possible to decrease even
further the number of operations required to computed the H2,Ω-norm with this formulation.

7.1.3 Numerical illustration of the formulation

To compare the numerical efficiency of the poles-residues formulation of the H2,Ω-norm, two
tests are conducted :

◮ firstly, with Ω = [0,∞], the norms of randomly generated models (with ny = nu =
5) which orders vary from 1 to 200 are computed with (i) the build-in routine norm of
Matlab R©, (ii) the gramian formulation of the norm3 as presented in Section 2.1.2 and
(iii) the poles-residues formulation presented above. For each order n, 50 models are
generated and the average CPU times required for the computation of the norms are
reported in Figure 7.1.

3Note that the eigen-decomposition of the matrix A is not used when solving the Lyapunov equation to
determine the gramian because it would remove what makes this formulation interesting (the absence of hypothesis
on the poles of the model).
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Figure 7.1: Average CPU times required to compute theH2-norm of 50×200 randomly generated
models with the built-in function of Matlab R©, the gramian formulation of the norm and the
poles-residues formulation

◮ Secondly, a similar test is achieved with a frequency interval Ω = [0, 5] (in that case, there
is not built-in function and both formulations are computed with the routine developed in
the MORE Toolbox, see Appendix C.1). The computation times are presented in Figure
7.2.

In Figure 7.1, one can observe that the routine of Matlab R© is seemingly slower than the two
other methods but this is probably due to the fact that the built-in method is likely to include
way more checks to avoid errors. This first example mainly illustrates the fact that both the
poles-residues and gramian formulations are equivalent for Ω = [0,∞] in term of computation
times.

However, one can see in Figure 7.2 that when a frequency-limited gramian is involved, the
poles-residues formulation tends to be faster. This can be explained by the fact that with a
bounded frequency interval, a logarithm of matrix must be evaluated to create the last term
of the Lyapunov equation (see equation (2.11)) which adds additional numerical cost for the
gramian formulation. On the contrary, the complexity of the poles-residues formulation does
not significantly vary with the frequency interval since it is explicit in ω and only involves
elementary functions.

The poles-residues formulation of the H2,Ω-norm presented in Theorem 10 relies on the fact
that the model has semi-simple poles only. This assumption can be alleviated and a similar
expression can be formulated for models that have higher order poles.

7.2 Models with higher order poles

The poles-residues formulation of the H2,Ω-norm presented before in Theorem 10 is extended to
models with higher order poles in Section 7.2.1. Then two special cases are addressed in Sections
7.2.2 and 7.2.3.
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Figure 7.2: Average CPU times required to compute the H2,Ω-norm of 50 × 200 randomly
generated models with the gramian formulation of the norm and the poles-residues formulation
for Ω = [0, 5].

7.2.1 Poles-residues formulation of the H2,Ω-norm for models with high
order poles

The poles-residues expression of the H2,Ω-norm for models with high order poles is presented
in Theorem 12. For sake of simplicity, the Theorem is restricted to asymptotically stable and
strictly proper models but these assumptions could be easily alleviated.

Theorem 12. Given a n-th order asymptotically stable and strictly proper MIMO LTI dynamical
model H := (A,B,C) whose transfer function is H(s) and an interval Ω = [0, ω] with ω > 0.
Let H have nb Jordan blocks of size ni (i = 1, . . . , nb), each associated with the eigenvalue λi.
Then the frequency-limited H2-norm of H is given by

‖H‖2H2,Ω
=

j

2π

nb∑

i=1

nb∑

k=1

ni∑

l=1

nk∑

m=1

tr
(

Φ
(l)
i Φ

(m)T

k

)

Ilm(λi, λk, ω) (7.5)

with

Ilm(λi, λk, ω) =

l∑

p=1

rm,l−p(λi, λk)Wp−1 (jω, λi) +

m∑

q=1

rl,m−q(λi, λk)Wq−1 (jω, λk) ,

where

Wu(jω, λ) =
1

u!

du

dyu
(log (−jω − y)− log (jω − y))

∣
∣
∣
y=λ

,

and

ru,v(λi, λk) = (−1)(u+v)

(
u+ v − 1

v

)
1

(λi + λk)
u+v .
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Figure 7.3: H2 and H2,Ω norms (with Ω = [0, ω]) of the model H for varying ω computed with
the gramian and poles-residues formulations.

Proof. The idea is the same as in the semi-simple poles case excepted that the transfer function
decomposition is different here. Indeed, as presented in Section 2.1.1, when a model has multiple
poles, the transfer function can be decomposed as

H(s) =

nb∑

i=1

ni∑

k=1

Φ
(k)
i

(s− λi)k
,

where nb is the number of Jordan blocks and ni (i = 1, . . . , nb) the size of the i-th Jordan block

and Φ
(k)
i ∈ Cny×nu is the k-th residue associated with the i-th Jordan block (see Section 2.1.1).

The full proof can be found in Appendix A.2.

Similarly to the semi-simple poles case, the formulation consists in the weighted sum of cross
multiplication among all the residues associated with each Jordan block. The main difference
with the semi-simple case lies in the fact that the weighting function also involves the successive
derivatives of the inverse tangent function.

Remark 15. Note that the poles-residues formulation presented in Theorem 12 requires the
Jordan canonical form of the matrix A in order to be computed. This decomposition is complex
to obtain in practice, hence, from the author’s point of view, this formulation must be considered,
in this case, mainly as a theoretical tool.

Example 14. Let us consider the simple model H considered in Example 1 which realisation is

A =

[
−1 1
0 −1

]

, B = CT =

[
1
1

]

, D = 0.

H has a double pole λ = −1, i.e. nb = 1 and n1 = 2. Hence, by applying Theorem 12, the
frequency-limited H2 norm of H over Ω = [0, ω] can be written as,

‖H‖2H2,Ω
=

j

2π

(

Φ
(1)
λ Φ

(1)
λ I11(λ, λ, ω) + Φ

(1)
λ Φ

(2)
λ I12(λ, λ, ω) + Φ

(2)
λ Φ

(1)
λ I21(λ, λ, ω) . . .

. . . +Φ
(2)
λ Φ

(2)
λ I22(λ, λ, ω)

)

,
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where Φ
(1)
λ = 2 and Φ

(2)
λ = 1. By computing I11(λ, λ, ω), I21(λ, λ, ω), I12(λ, λ, ω) and I22(λ, λ, ω),

‖H‖H2,Ω
can be expressed as an explicit function of ω,

‖H‖2H2,Ω
=

−1
4π(ω2 + 1)

(
26
(
ω2 + 1

)
atan (−ω)− 10ω

)
. (7.6)

The frequency-limited H2-norm of H is plotted in Figure 7.3 against the upper bound ω of the
frequency interval Ω. It is computed with equation (7.6) and with the gramian formulation of
the norm (see Section 2.1.2). Obviously, both formulations are equivalent and since the model is
asymptotically stable, its H2,Ω-norm tends towards its H2-norm as ω tends towards infinity.

7.2.2 Special case 1 : n eigenvalues of multiplicity 1 (semi-simple case)

Let us consider a stable and strictly proper model H with n simple eigenvalues which corre-

sponding residues are Φ
(1)
i (i = 1, . . . , n). Since ni = 1 (i = 1, . . . , n), the general expression of

the H2,Ω-norm (7.5) becomes

‖H‖2H2,Ω
=

j

2π

n∑

i=1

n∑

k=1

tr
(

Φ
(1)
i Φ

(1)T

k

)

I11(λi, λk, ω),

where the weighting functions I11(λi, λk, ω) are only composed of two terms

I11(λi, λk, ω) = r1,0(λi, λk) (W0 (jω, λi) +W0 (jω, λk)) ,

with

W0(jω, λi) = log (−jω − λi)− log (jω − λi) := 2jatan

(
ω

λi

)

,

and

r1,0(λi, λk) = −
1

(λi + λk)
.

Hence

‖H‖2H2,Ω
=

j

2π

n∑

i=1

n∑

k=1

−
2jtr

(

Φ
(1)
i Φ

(1)T

k

)

(λi + λk)

(

atan

(
ω

λi

)

+ atan

(
ω

λk

))

By reordering the sums so that the similar terms are grouped together, the poles-residues for-
mulation of the H2,Ω-norm for model with semi-simple poles (7.1) is retrieved :

‖H‖2H2,Ω
=

2

π

n∑

i=1

n∑

k=1

tr
(

Φ
(1)
i Φ

(1)T

k

)

λi + λk
atan

(
ω

λi

)

7.2.3 Special case 2 : 1 eigenvalue of multiplicity n

Given an asymptotically stable and strictly proper model H with one single Jordan block of

size n associated with the eigenvalue λ which corresponding residues are Φ
(i)
λ (i = 1, . . . , n), the

expression presented in [Antoulas, 2005, chap. 5],

‖H‖2H2
= tr

(
n∑

i=1

Φ
(i)
λ

(i− 1)!

di−1

dsi−1
H(−s)T

∣
∣
∣
s=λ

)

, (7.7)

is retrieved when ω tends towards infinity from equation (7.5). Indeed, first, note that, for u > 0,

Wu(jω, λ) =
1

u

(
1

(jω − λ)u −
1

(−jω − λ)u
)

,
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hence for u > 0,

lim
ω→∞

|Wu(jω, λ)| = 0.

Besides, since H is assumed to be asymptotically stable (see Corollary 1),

lim
ω→∞

W0(jω, λ) = −jπ.

The limits of the weighting functions Ilm(λ, λ, ω) (l = 1, . . . , n and m = 1, . . . , n) are thus given
by

lim
ω→∞

Ilm(λ, λ, ω) = −j2πrl,k−1(λ, λ),

where

rl,k−1(λ, λ) = (−1)l+k−1

(
l + k − 2
k − 1

)
1

(2λ)
l+k−1

.

By replacing the weighting functions by their limits, one obtains

lim
ω→∞

‖H‖2H2,Ω
=

n∑

k=1

n∑

l=1

tr
(

Φ
(k)
λ Φ

(l)T

λ

)

rl,k−1(λ, λ).

Finally, noticing that

n∑

l=1

Φ
(l)T

λ rl,k−1(λ, λ) =
1

(k − 1)!

dk−1

dsk−1
H(−s)T

∣
∣
∣
s=λ

,

leads to expression (7.7).

7.3 Upper bounds of the H∞-norm
In this section, the poles-residues formulation of the H2,Ω-norm is used to derive two upper
bounds on the H∞-norm of LTI dynamical models which are of great interest in the approx-
imation context. Theses bounds are formulated in Section 7.3.1. Their computation is then
presented in Section 7.3.2 and an experimental study of their conservatism is performed in Sec-
tion 7.3.3. And finally, in Section 7.3.4, a method aimed at building a frequency template of
LTI models is developed. Such a frequency template is useful in the context of model approx-
imation to bound the approximation error so that the large-scale model can be represented by
an uncertain low-order model and used for control or analysis purposes.

7.3.1 Formulation of the bounds

The link between the H∞-norm (Definition 5) and the H2,Ω-norm is presented in Theorem 13.
It is grounded on the Frobenius norm which is firstly recalled in Definition 9.

Definition 9 (Frobenius norm). The Frobenius norm of a matrix M ∈ Cm×n is given by

‖M‖F :=
√

tr (MMH) =

√
√
√
√

min(m,n)
∑

i=1

σ2
i ,

where the σi, i = 1, . . . ,min (m,n) are the singular values of M .
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Theorem 13 (H∞ upper bound). Let us consider an asymptotically stable MIMO LTI dynamical
model H whose transfer function is H(s). Then its H∞-norm is upper bounded by the derivative
with respect to ω of its H2,Ω-norm (with Ω = [0, ω]) as follows

‖H‖H∞
≤ max

ω∈R

√

π
d‖H‖2H2,Ω

dω
.

Moreover, the bound becomes an equality if H is SISO.

Proof. Considering the definition of the H∞-norm, one obtains

‖H‖H∞
= max

ω∈R

σmax(H(jω)) ≤ max
ω∈R

‖H(jω)‖F .

The H2,Ω-norm can be written as the integral of the transfer function’s Frobenius norm over
[−ω, ω], i.e.

‖H‖2H2,Ω
=

1

2π

∫ ω

−ω

‖H(jν)‖2F dν.

Thus by differentiating this expression with respect to ω, it is clear that

‖H(jω)‖2F = π
d‖H‖2H2,Ω

dω
,

which concludes the proof.

The general bound presented in Theorem 13 can be conveniently expressed based on the
spectral expression of the frequency-limited H2-norm. Indeed, by differentiating (7.2) with
respect to ω, one obtains

d‖H‖2H2,[0,ω]

dω
= − 2

π

n∑

i=1

tr
(
φiH(−λi)T

) λi
λ2i + ω2

+
1

π
tr
(
DDT

)
=

n∑

i=1

fi(ω) +
1

π
tr
(
DDT

)
.

Each function fi is a scalar complex valued function and comes with its complex conjugate which
makes the sum real. Therefore, only the real parts of the functions fi need to be considered, i.e.

gi(ω) = Re (fi(ω)) =
ai(x

2
i − y2i + ω2) + 2biyixi

(x2i − y2i + ω2)2 + 4x2i y
2
i

, (7.8)

where
xi + jyi = λi and
ai + jbi = − 2

π tr
(
φiH(−λi)T

)
λi,

(7.9)

The general bound presented in Theorem 13 can then be reformulated and another bound can
be derived as presented in Theorem 14.

Theorem 14 (Upper bounds on the H∞-norm). Given a MIMO LTI dynamical system H of
order n with a diagonalisable realisation matrix A, its H∞-norm is upper bounded by Γ and Γ̄
as follows,

‖H‖H∞
≤

√
√
√
√tr (DDT ) + max

ω∈R+

π

n∑

i=1

gi(ω)

︸ ︷︷ ︸

Γ

≤

√
√
√
√tr (DDT ) + π

n∑

i=1

max
ω∈R+

gi(ω)

︸ ︷︷ ︸

Γ̄

where the functions gi are defined as in (7.8).
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Figure 7.4: Upper bounds ΓΩ and Γ̄Ω over Ω1 = [0,∞] (a) and Ω2 = [10, 20] (b) for the LAH
model.

Obviously, by restricting the domain of research in Theorem 14 from R+ to some frequency
interval Ω, these bounds can be used to bound the maximal singular value of the transfer function
over Ω, i.e.

max
ω∈Ω

σmax(H(jω)) ≤

√
√
√
√tr (DDT ) + max

ω∈Ω
π

n∑

i=1

gi(ω)

︸ ︷︷ ︸

ΓΩ

≤

√
√
√
√tr (DDT ) + π

n∑

i=1

max
ω∈Ω

gi(ω)

︸ ︷︷ ︸

Γ̄Ω

.

An illustration of the bounds ΓΩ and Γ̄Ω is presented in Example 15. Note that the subscript Ω
may be dropped when Ω = [0,∞].

About the conservatism of ΓΩ. From standard norm inequalities, one knows that for a
matrix M of rank k,

‖M‖2 ≤ ‖M‖F ≤
√
k‖M‖2,

which gives an indication of how conservative the bound ΓΩ can be. In particular, by denoting
p = min{ny, nu}, one can say that

ΓΩ(H)

‖H‖H∞

≤ √p.

Lower bound of the H∞-norm for MIMO models. Let us consider a MIMO model H.
By computing ΓΩ for each SISO transfer Hi,j(s) of H, one can also find a lower bound for the
H∞-norm,

max
i ∈ [1, ny]
j ∈ [1, nu]

ΓΩ(Hi,j) ≤ ‖H‖H∞
.

Example 15 (Illustration of the upper bounds – code available in appendix C.4). In this
example, the bounds ΓΩ(H) and Γ̄Ω(H) are illustrated on the LAH model. The bounds are
computed for Ω1 = [0,∞] and for Ω2 = [10, 20] and plotted together with the gain of the model
frequency response in Figures 7.4a and 7.4b, respectively.

Since the model is SISO, the bound ΓΩ1 coincides with the H∞-norm of the model and ΓΩ2

coincides with the maximal singular value of the transfer function over Ω2.
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7.3.2 Computation of the bounds

Computation of Γ̄Ω

Computing Γ̄Ω consists in finding the maximum of n simple rational functions over Ω. This can
be achieved by evaluating these functions at a finite number of points.

Indeed, the functions gi have no real pole and tends towards 0 as ω tends towards infinity,
hence they are bounded on R. In particular, they are bounded on R either by 0 when they are
strictly negative, or by their value at one of the stationary points. Similarly, on Ω, they are
bounded either by their value at a stationary point which belongs to Ω or by their value at one
of the bound of the interval.

The stationary points of gi(ω) can easily be calculated by differentiating with respect to ω,

g′i(ω) =
2ωNi(ω)

((x2i − y2i + ω2)2 + 4x2i y
2
i )

2
,

where,

Ni(ω) = (x2i − y2i + ω2)(−ai(x2i − y2i + ω2)− 4biyixi)4aix
2
i y

2
i .

The stationary points are then given by the zeros of the numerator, i.e. 0 and the roots p
(i)
k ,

k = 1, . . . , 4 of the polynomial Ni which are

p
(i)
k = ±

√

±2
√

x2i y
2
i (a

2
i + b2i )

ai
− 2bixiyi

ai
− x2i + y2i . (7.10)

The different steps to compute Γ̄Ω are summarised in Algorithm 7.

Algorithm 7 Computation of Γ̄

Require: A state-space realisation (A,B,C,D) and a frequency-interval Ω.
1: Compute the eigenvalue decomposition of A, i.e. AX = X∆, where ∆ = diag (λ1, . . . , λn).
2: for i = 1, . . . , n do
3: Compute ai, bi, xi and yi from (7.9).

4: Compute the stationary points p
(i)
k , k = 1, . . . , 4, with (7.10) and keep the real ones that

belong to Ω, i.e. S =
{

p
(i)
k /Im

(

p
(i)
k

)

= 0 and Re
(

p
(i)
k

)

∈ Ω
}

.

5: Evaluate gi at 0 (which is also a stationary point), at the points contained in S and at
the limits of Ω.

6: Set ḡi as the maximum of the values computed at step 5.
7: end for
8: Set Γ̄ =

√

π
∑n

i=1 ḡi + tr (DDT ).

Computation of ΓΩ

The computation of the tight bound ΓΩ requires to find the maximum of a sum of rational
functions over Ω. In that case, an optimisation procedure must be used. It can either be a
dedicated method [Bugarin et al., 2011] or a generic local optimisation procedure [Fletcher,
2000; Nocedal and Wright, 1999]. Here, only the latter approach has been considered in a mixed
method that couples Newton iterations and gradient descent steps with a variable step length
depending on the sign of the Hessian4. The following remarks can be addressed about the
optimisation procedure

4Standard solvers such as fminunc or fmincon of MatlabR© have also been tested and work as well.
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◮ when a frequency interval Ω is considered, a constrained optimisation algorithm should
logically be used. However, since the maximum is either obtained at a stationary point or
at one bound of Ω, it can be omitted in this simple case by initialising the algorithm inside
Ω and by stopping it if the point goes outside of Ω. If the frequency interval Ω is composed
of disjoint frequency intervals, then several optimisations must necessarily be performed
with different starting points.

◮ The initial point is selected here as the strictly positive imaginary part of the eigenvalue
that yields the maximum of the objective function J (ω) =∑n

i=1 gi(ω)
5, i.e. by denoting

λ+ the set of eigenvalues with a positive imaginary part that belongs to Ω,

ω0 = argmax
{
J (Im (λ))/λ ∈ λ+)

}
.

Depending on the frequency interval Ω, it can happen that the set λ+ is empty or contains
very few elements. Hence it can be completed with arbitrary points that belong to Ω. Since
the objective function J is quite cheap to evaluate, adding points to λ+ is not prohibitive.

Since 0 is a stationary point of the objective function, if it belongs to the interval Ω, i.e.
0 ∈ Ω, then the maximum between J (0) and the value of the objective function after the
optimisation process is kept to create ΓΩ.

So far, this optimisation procedure with the aforementioned initialisation strategy has not failed
to deliver the correct result. Yet there is no guarantee that the maximum found this way is
actually the global maximum.

7.3.3 Experimental study of the bounds quality

In order to evaluate the quality of the bounds Γ and Γ̄ proposed in Theorem 14, three tests are
performed.

◮ Firstly, to show the good scalability of the method, the first test consists in computing
the H∞-norm (with Matlab R© routine norm with default tolerance), Γ and Γ̄ of randomly
generated models which order n varies from 1 to 200 with ny = nu = 5. For each order n, 50
random models are generated and the CPU time required by each routine is measured. The
average of these CPU times over the models having the same order n is reported in Figure
7.5. In Table 7.1 (left), the ratios of the bounds over the real H∞-norm (computed with

Matlab R© routine norm with a tolerance equal to the machine precision), i.e. rΓ = Γ(H)
‖H‖H∞

and rΓ̄ = Γ̄(H)
‖H‖H∞

are presented.

◮ Given the nature of the bounds, the number of inputs and outputs is more likely to impact
their quality. That is why, in the second test, the order n or the random models is fixed
to 20 while their number of inputs and outputs is increased from 1 to 200 (with ny = nu).
Again, for each number of inputs/outputs, 50 models are generated. The average CPU
times are plotted in Figure 7.6 and the average ratios of the bounds over the H∞-norm
are plotted in Figure 7.7. Those ratios are also presented in Table 7.1 (right).

◮ The bounds Γ and Γ̄ are compared to the bound provided by the Balanced Truncation
(see Section 3.1.2) by reducing the ISS model for several orders r going from 2 to 30. For
each reduced-order r, the H∞-norm of the approximation error and the various bounds
are computed and plotted in Figure 7.8.

Figure 7.5 shows that the computation time of the bounds is less impacted by the order of
the model than Matlab R© routine. For models of order n > 50, computing both bounds takes

5The constant term 1
π
tr

(

DDT
)

can be discarded during the optimisation process
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Figure 7.5: Average CPU times required to compute the H∞-norm and Γ, Γ̄ for random models
which order varies from 1 to 200.
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varying n rΓ rΓ̄
min 1.00 1.00
mean 1.12 1.24
max 1.61 2.23
var 0.015 0.11

varying ny, nu rΓ rΓ̄
min 1.00 1.00
mean 1.26 1.41
max 2.29 2.55
var 0.067 0.11

Table 7.1: Ratios of the bounds over the real H∞-norm for varying order n (left) and varying
number of inputs/outputs (right).

in average, less time than computing the H∞-norm. The same conclusion can be made with
respect to the number of inputs and outputs as illustrated in Figure 7.6. Indeed, increasing the
number of inputs and outputs barely increase the CPU time required to compute the bounds.
This is not surprising since the number of inputs and outputs has an impact only once in the
computation of the trace in the functions gi(ω).

From Table 7.1, one can see that on average, the bounds ΓΩ(H) and Γ̄Ω(H) are not extremely
conservative. As expected, they become more conservative as the number of inputs and outputs
increase. Indeed, the mean of the ratios rΓ and rΓ̄ increase from 1.12 and 1.24 in the case
of models with ny = nu = 5 (left table) to 1.26 and 1.41 in the case of models with varying
number of inputs and outputs (right table). As one can observe in Figure 7.7 this increase
happens mainly as the number of inputs and outputs goes from 1 to 20, but then, there is no
clear increase anymore. This may be due to the way random models are generated in Matlab R©

though.

From Figure 7.8, one can see that both Γ and Γ̄ are tighter than the bound given by the
balanced truncation on this example and Γ often coincides with the real H∞-norm. Yet, it is
important to remember that the proposed bounds cannot be computed a priori since they require
the reduced-order model to be built whereas the bound given by the BT can be evaluated for
several approximation orders r once the gramians have been computed.

7.3.4 Construction of a frequency template

In the context of model approximation, the bound Γ(H − Ĥ) developed in the previous section
gives information about the worst error induced by the approximation between H and Ĥ. With
that bound, one could directly build an uncertain reduced-order model which encompasses all
the dynamics of the large-scale model and which could then be used to perform robust control
or analysis in place of the initial large-scale model. Yet, such a static bound would be terribly
conservative and would not provide a sufficiently accurate representation of the approximation
error model. The method developed in this section is aimed at providing a more accurate
representation of the approximation error between H and Ĥ.

In particular the bound ΓΩ is exploited to develop a method aimed at building a dynamic
model G of low complexity which upper bounds another dynamical model H. For simplicity,
let us assume that H is SISO, then the problem consists in finding a minimum phase model G
whose transfer function G(s) satisfies, for all ω ∈ R+

|G(jω)| ≥ |H(jω)|. (7.11)

Since this general problem is complex, a practical approach is considered here. In particular,
the problem is simplified, firstly by imposing a specific structure to the transfer function G(s),

G(s) = K

(
s− z
s− p

)r

, (7.12)
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withRe(p) < 0 andRe(z) < 0. This structure is extremely restrictive but makes the process way
easier. Secondly, the constraint (7.11) is restricted to some relevant pulsations ωk, k = 1, . . . , N ,

|G(jωk)| ≥ |H(jωk)|. (7.13)

These relevant pulsations ωk are selected as the resonant pulsations, smaller than the pulsation
ω∞ where the H∞-norm is reached, at which |H(jω)| is the largest over the interval [0, ωk].
These frequencies are determined by computing ΓΩ(H) where the upper bound ω of Ω decreases
progressively from ω∞ to 0. This process is described in Algorithm 8. At step 1, the H∞-
norm and the corresponding pulsation ω∞ are computed. The pulsation ω∞ is the first resonant
pulsation ω1. Then at each iteration, the next resonant pulsation ωk+1 that yields τk+1 = ΓΩ(H),
Ω = [0, ωk+1] is computed by Algorithm 9. The loop stops when the next resonant pulsation is
smaller or equal to 0.

Algorithm 8 getAllMax

Require: A LTI dynamical model H.
1: Compute Γ(H) and the associated pulsation ω∞.
2: Set τ1 = Γ(H) and ω1 = ω∞.
3: i = 1
4: while ωk > 0 do
5: Compute the next resonant point with Algorithm 9, i.e.

[τk+1, ωk+1] = getNextMax(H,ωk).

6: k ← k + 1.
7: end while
8: return τ , ω

Algorithm 9 getNextMax

Require: A LTI dynamical model H, an initial pulsation ωi.
1: Choose ρ > 0.
2: Set ω̄ = ωi and ω = ωi.
3: while ω̄ = ω do
4: Set ω ← ω − ρ and Ω = [0, ω].
5: Compute ΓΩ(H) and the associated pulsation ω̄.
6: end while
7: return ΓΩ and ω̄.

Given a dynamical model H and an initial pulsation ωi, Algorithm 9 finds the next resonant
pulsation ω̄ < ωi which yields ΓΩ(H) where Ω = [0, ω̄]. This is achieved by computing ΓΩ(H),
Ω = [0, ω], with a progressively decreasing upper bound ω. The algorithm stops when the
pulsation where the maximum is reached returned by the computation of ΓΩ(H) is no longer
equal to the upper bound ω of the interval Ω. The algorithm is illustrated in Figure 7.9 where
the red star is located at the pulsation ωi, the orange one at ω̄ and the vertical dashed blue lines
represent the successive values of ω. For the first values of ω, the maximum Γ[0,ω](H) is reached
at the upper bound ω of the interval, but this is not a relevant frequency because it belongs
to the resonant mode located at ωi, that is why the interval is reduced until the maximum is
reached at a point that is not the upper bound of the interval, i.e. ω̄ 6= ω. The decrease factor
ρ is a tuning parameter that must not be too large in order to avoid to miss some relevant
pulsations but not too small either to avoid too many iterations, here it is set to be 0.01ωi.

There are several different approaches that can be considered to determine the gain K, the
pole p and the zero z of G(s) (7.12). Here, a simple heuristic approach aimed at constructing
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Figure 7.9: Illustration of Algorithm 8.

G such that |G(jω)| is the smallest possible in [0, ω∞] is considered. This choice is motivated
by the fact that low frequency are generally important from a physical point of view, hence the
approximation is often performed over [0, ω] which yields a lowest error in that interval.

The approach firstly consists in imposing that the static gain of the frequency template G is
equal to the non-null static gain of the model to be bounded, i.e.

G(0) = H(0). (7.14)

If H(0) = 0, one can set an arbitrary value for G(0). This constraint enables to determine one
of the three parameters when the other two are fixed, for instance, for each couple {K, p}, one
can determine the zero z as

z =

(
H(0)

K

) 1
r

p. (7.15)

The remaining two parameters K and p are slowly relaxed from an initial value that violates
the constraints (7.13) until they are all satisfied. In particular, K is initialised as Ki = Γ(H) =
‖H‖H∞

, which means that G(∞) = ‖H‖H∞
and p is initialised as pi = −ω∞ which sets the

cutoff frequency. Obviously, the initial frequency template Gi cannot satisfy the constraints
(7.13).

The way p and K are iteratively relaxed is a tuning parameter. Indeed, increasing p makes
the frequency template slide to the low frequency, while increasing K makes its value at ∞
increases. Since the high frequency are generally less important, here, K is increased faster than
p is decreased. The order r of the template has not been mentioned but it can be used to increase
the slope of the frequency template.

The complete process to build a frequency template G with the structure (7.12) that satisfies
the constraints (7.13) and (7.14) is summarised in Algorithm 10.

As mentioned before, this method is mainly an heuristic approach that does not offer a strict
guarantee that the general constraint (7.11) is really satisfied for all ω ∈ R+. Yet if no relevant
pulsation has been missed by Algorithm 8, that should not happen. The overall approach is
illustrated in Example 16.

Example 16 (Illustration of the frequency template – code available in Appendix C.5). To
illustrate the proposed approach, the transfer from the first input to the first output of the ISS is
reduced to an order 20 over Ω = [0, 10] and a frequency template of order r = 2 is built on the
corresponding approximation error. The two main steps of Algorithm 10 are the following :
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Algorithm 10 Algorithm for the construction of frequency template

Require: A LTI dynamical model H, the order r of the frequency template.
1: Compute all the relevant pulsations ω ∈ RK an associated gains τ ∈ RK with Algorithm 8.
2: Set p1 = −max(ω) and K1 = max(τ ).
3: Compute z1 as in equation (7.15).
4: Build G1 as in equation (7.12).
5: k = 1.
6: while the constraints (7.13) are not satisfied do
7: pi+1 ← −α|pi| with 0 < α < 1.
8: Ki+1 ← βKi with β > 1.
9: Update the zero zi+1 as in equation (7.15) with pi+1 and Ki+1.

10: Build Gi+1(s) as in equation (7.12).
11: i← i+ 1.
12: end while
13: return The frequency template G.
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Figure 7.10: Illustration of the Algorithm 10, computation of all the relevant pulsations.
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Figure 7.11: Illustration of the Algorithm 10, construction of the template G from Gi.

◮ Firstly, the Algorithm 8 is used in order to compute all the relevant pulsations, that is
to say the pulsations at which the model is resonant and bounds its response for smaller
pulsations. This is illustrated in Figure 7.10 where the numbers indicates the order in which
the points have been found. The H∞-norm is found first, then the other maximums that are
located at lower frequencies are computed. One can see that for each i, |H(jωi)| > |H(jω)|
for ω ∈ [0, ωi].

◮ Then, the main loop of Algorithm 10 is executed and transforms the initial frequency tem-
plate G1 by successive relaxation of its gain and pole, K and p, into the final one G. Both
frequency templates are plotted in Figure 7.11 where G1 is the red curve and G is the green
one.

MIMO case

For MIMO models, two uses of Algorithm 10 can be considered,

◮ firstly, it can be used directly of the whole MIMO model. In that case however, the absolute
values are replaced by Frobenius norms and the transfer function of the frequency template
G satisfies

‖G(jωk)‖F ≥ ‖H(jωk)‖F , k = 1, . . . , N,
‖G(0)‖F = ‖H(0)‖F ,

(7.16)

instead of (7.13) and (7.14). Equation (7.16) induces more conservatism than in the SISO
case, but it enables to exploit the frequency template for control purposes (see Section
9.2.3).

◮ Secondly, Algorithm 10 can be used on each SISO transfers separately. This can have an
interest for simulation since less conservatism than in the first case is introduced.
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Conclusion

In this Chapter, the poles-residues formulation of the H2-norm has been extended to the H2,Ω-
norm both for models with semi-simple poles only and for models with higher order poles. This
has been done by using the partial fraction decomposition of the transfer function in the norm
definition. In the case of models with high order poles, the poles-residues formulation is merely
a theoretical tool since it requires the Jordan decomposition of the matrix A, but in the semi-
simple case, it offers some numerical advantage in terms of computation time in comparison to
the gramian formulation.

Besides, it has been shown that the H2,Ω-norm can be used to bound the H∞-norm. In
particular, the poles-residues formulation of the H2,Ω-norm has enabled to derive two bounds
which can be computed either analytically or by an optimisation procedure. The quality of these
bounds has been highlighted by a numerical study.

Finally, the optimisation procedure used in the computation of the tight bound has also been
used in order to develop a method aimed at building a frequency template of LTI dynamical
models. These frequency-template can be exploited in the context of control or analysis of large-
scale models to dynamically bound the approximation error as illustrated in Chapters 9 and
10.

The poles-residues formulation of the H2,Ω-norm is used in the next chapter to express the
H2,Ω approximation error as a function of the poles and residues of the reduced-order model so
that the approximation problem can be reformulated as an optimisation problems in terms of
these variables.
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Chapter 8

Formulation of the H2,Ω error and

differentiation of its gradient

In this Chapter, the poles-residues formulation of the H2,Ω-norm developed in Chapter 7 is
exploited to express the H2,Ω-norm of the approximation error between a large-scale LTI model

H and a reduced-order model Ĥ which have both semi-simple poles only. The approach followed
in this Chapter is very similar to what have been done to introduce the optimal H2 model
approximation problem in Chapter 4. The similarities and the key differences between the H2,Ω

and H2 cases are highlighted.
In Section 8.1, the formulation of the error is presented together with some practical im-

plementation concerns and in Section 8.2, the approximation error is differentiated in order to
express the first-order optimality conditions of the optimal H2,Ω approximation problem.

The elements presented throughout this Chapter have partly been published in [Vuillemin
et al., 2014b].
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8.1 Expression of the approximation error with the poles
and residues of the models

This Section is aimed at presenting the poles-residues formulation of the H2,Ω approximation er-
ror. The theoretical aspects are presented in Section 8.1.1 while the numerical ones are discussed
in Section 8.1.2.

8.1.1 Poles-residues formulation of the H2,Ω approximation error

The poles-residues expression of the squared approximation error JH2,Ω = ‖H − Ĥ‖2H2,Ω
between

a large-scale model and a reduced-order one is presented in Theorem 15 for MIMO models and
in Remark 16, the SISO case is highlighted. In order to shorten the equations, the following
notation is used from now on,

aω,λ =
2

π
atan

(ω

λ

)

.

Theorem 15 (Poles-residues formulation of the H2,Ω approximation error). Let us consider a
frequency interval Ω = [0, ω], a n-th order LTI dynamical model H and a r-th order LTI dynam-
ical model Ĥ which have semi-simple poles only and whose transfer functions are respectively
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written as

H(s) =

n∑

i=1

Φi

s− λi
+D ∈ C

ny×nu and Ĥ(s) =

r∑

i=1

Φ̂i

s− λ̂i
+ D̂ ∈ C

ny×nu .

Let us also assume that λi + λk 6= 0, λi + λ̂l 6= 0 and λ̂l + λ̂m 6= 0 for all i, k = 1, . . . , n and
l, m = 1, . . . , r. Then, the squared H2,Ω-norm of the error between H and Ĥ, i.e. JH2,Ω

=

‖H − Ĥ‖2H2,Ω
, is given by

JH2,Ω =

n
∑

i=1

n
∑

k=1

tr
(

ΦiΦ
T
k

)

λi + λk

aω,λi
+

r
∑

i=1

r
∑

k=1

tr
(

Φ̂iΦ̂
T
k

)

λ̂i + λ̂k

aω,λ̂i
−

n
∑

i=1

r
∑

k=1

tr
(

ΦiΦ̂
T
k

)

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

. . .+

r
∑

i=1

tr
(

Φ̂iD̃
T
)

aω,λ̂i
−

n
∑

i=1

tr
(

ΦiD̃
T
)

aω,λi
+

ω

π
tr
(

D̃D̃
T
)

,

(8.1)

where aω,λ = 2
πatan

(
ω
λ

)
and D̃ = D − D̂.

Proof. The proof simply consists in writing the H2,Ω-norm of the approximation error in terms
of the residues and poles of the error model and then to separate the various sums. The full
proof can be found in Appendix A.3.

The assumptions λi + λk 6= 0, λi + λ̂l 6= 0 and λ̂l + λ̂m 6= 0 for all i, k = 1, . . . , n and
l, m = 1, . . . , r in Theorem 15 prevent the denominators in the various terms involved in JH2,Ω

in equation (8.1) to vanish. It can be easily alleviated by considering the complete poles-residues
formulation of the H2,Ω-norm presented in Theorem 10 which consists in replacing the elements
in the sums where two poles vanish, i.e. λ1 + λ2 = 0, by − ω

π(ω2−λ1λ2)
. As an illustration, the

general case is considered in Example 17. But to keep the notations simple and since the cases
for which the denominators can vanish are quite unusual in practice, the assumptions made in
Theorem 15 are maintained in the sequel and is summarised by saying that the poles are not
located symmetrically with respect to the imaginary axis which includes the case of poles on the
imaginary axis.

Remark 16 (SISO case). In the SISO case, the residues and the direct feedthrough are scalars,

i.e. Φi = φi ∈ C (i = 1, . . . , n), Φ̂k = φ̂k ∈ C (k = 1, . . . , r) and D̃ = d̃ ∈ R. Hence, the
expression of the H2,Ω approximation error JH2,Ω

(8.1) becomes

JH2,Ω =

n∑

i=1

n∑

k=1

φiφk
λi + λk

aω,λi
+

r∑

i=1

r∑

k=1

φ̂iφ̂k

λ̂i + λ̂k
aω,λ̂i

−
n∑

i=1

r∑

k=1

φiφ̂k

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

. . .

+

r∑

i=1

φ̂id̃aω,λ̂i
−

n∑

i=1

φid̃aω,λi
+
ω

π
d̃2.

(8.2)
For simplicity, let us now assume that d̃ = 0. By reordering the sums in the the reduced-order
model H2,Ω-norm (second term),

‖Ĥ‖2H2,Ω
=

r∑

i=1

r∑

k=1

φ̂iφ̂k

λ̂i + λ̂k
aω,λ̂i

=

r∑

i=1

r∑

k=1

φ̂iφ̂k

λ̂i + λ̂k

1

2

(

aω,λ̂i
+ aω,λ̂k

)

,

equation (8.2) can be re-written as a quadratic function of the residues like in the H2 case (see
Remark 10),

JH2,Ω
=

1

2

[

φ̂1 . . . φ̂r
]
L






φ̂1
...

φ̂r




+ hT






φ̂1
...

φ̂r




+ ‖H‖2H2,Ω

,
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where the symmetric matrix L is defined as

L =







a
ω,λ̂1

λ̂1
. . .

a
ω,λ̂1

+a
ω,λ̂r
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...
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...
a
ω,λ̂r

+a
ω,λ̂1

λ̂r+λ̂1
. . .

a
ω,λ̂r

λ̂r






∈ C

r×r, (8.3)

and

h = −
[
∑n

i=1
φi

λi+λ̂1

(

aω,λi
+ aω,λ̂1

)

. . .
∑n

i=1
φi

λi+λ̂r

(

aω,λi
+ aω,λ̂r

) ]T

∈ C
r×1. (8.4)

For the same reasons as in the H2 case presented in Remark 8.2, for SISO models, the optimal
residues can be determined by solving a linear system. In that case however, L is no longer a
Cauchy matrix.

Simplification of the expression of the error

The expression of the error from equation (8.1) can be reformulated in order to make the H2,Ω-

norms of the large-scale and reduced-order models to appear. First, let us expand D̃ = D− D̂,
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)
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−
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Then by noticing that
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and that
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= ‖H‖2H2,Ω
,

one obtains

JH2,Ω
= ‖H‖2H2,Ω

+ ‖Ĥ‖2H2,Ω
−

n∑

i=1

r∑

k=1

tr
(

ΦiΦ̂
T
k

)

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

+
n∑

i=1

tr
(

ΦiD̂
T
)

aω,λi

. . .+

r∑

i=1

tr
(

Φ̂iD
T
)

aω,λ̂i
− 2

ω

π
tr
(

DD̂T
)

.

(8.5)
If both D and D̂ are null, then equation (8.5) simplifies to

JH2,Ω
= ‖H‖2H2,Ω

+ ‖Ĥ‖2H2,Ω
−

n∑

i=1

r∑

k=1

tr
(

ΦiΦ̂
T
k

)

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

,

which is similar to what is obtained in the H2 case (see equation (4.3)), except that here, the

weighting functions aω,λi
prevent from writing the sum in i in the last term as H(−λ̂k). Yet,

by defining

Hω(s) =

n∑

i=1

Φi

s− λi
aω,λi

,
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the approximation error finally becomes

JH2,Ω = ‖H‖2H2,Ω
+ ‖Ĥ‖2H2,Ω

+

r∑

i=1

tr
((

Hω(−λ̂k) +H(−λ̂k)aω,λ̂k

)

Φ̂T
k

)

. (8.6)

If both H and Ĥ are asymptotically stable, then limω→∞ aω,λi
= limω→∞ aω,λ̂k

= −1 thus the

H2 approximation error presented in equation (4.3) is retrieved.

Behaviour of the H2,Ω approximation error as some poles cross the imaginary axis

The behaviour of the H2,Ω approximation error JH2,Ω
as the reduced-order model poles λ̂k,

k = 1, . . . , r cross the imaginary axis is not clear in the general case but is highlighted when H is
an asymptotically stable model and Ĥ is a second-order model in Example 17. In that example,
it is shown that crossing the imaginary axis from the left half-plane to the right half-plane is
unlikely to lead to a decrease of the H2,Ω approximation error when the large-scale model is
asymptotically stable. This is obviously not necessarily true anymore if the large-scale model is
unstable. Nevertheless, approximating an unstable model with a stable one does not appear to
be desirable, especially for control purpose.

Example 17 (Behaviour of theH2,Ω approximation error when approximating to a second-order
model - code available in Appendix C.6). This example is similar to Example 11 that illustrates
the non-convexity of the optimal H2 approximation problem with respect to the poles of the
reduced-order model. The LAH model is reduced over Ω = [0, ω] = [0, 20] to a second order
model whose transfer function is

Ĥ(s) =
φ̂

s− λ̂
+

φ̂∗

s− λ̂∗

where the pole λ̂ ∈ C is varying and the residue φ̂ ∈ C is determined in an optimal way (in
terms of H2,Ω-norm) for each value of the pole. Since both models are SISO, one can write the
approximation error JH2,Ω

as a quadratic function of the residues (see Remark 16).

The optimal residues can then be determined by setting
∂JH2,Ω

∂φ̂
= 0 which yields two solutions

depending on the location of the reduced-order poles :

◮ if the poles are not symmetrically located with respect to the imaginary axis, then the matrix
L and the vector h defined by equations (8.3) and (8.4) are given here as,

L =

[ a
ω,λ̂

λ̂

a
ω,λ̂

+a
ω,λ̂∗

λ̂+λ̂∗

a
ω,λ̂

+a
ω,λ̂∗

λ̂+λ̂∗

a
ω,λ̂∗

λ̂∗

]

and h = −





∑n
i=1

φi

λi+λ̂

(

aω,λi
+ aω,λ̂

)

∑n
i=1

φi

λi+λ̂∗

(

aω,λi
+ aω,λ̂∗

)



 .

The optimal residue and its conjugate are then determined by solving the following linear
system

L

[
φ̂

φ̂∗

]

= h.

◮ if λ̂ is on the imaginary axis and |λ̂| > ω (since there are only two complex conjugate poles,
this is the only specific case that can occur), then JH2,Ω

is still finite and can be obtained
by modifying some entries in the matrix L1. By considering the general expression of L

1The process to obtain these modifications is not detailed here, but it is quite straightforward. Indeed,
it consists in using the full poles-residues formulation of the H2,Ω-norm expressed in Theorem 10, without

making additional assumptions on the fact that λ̂i + λ̂k does not vanish, and to express the H2,Ω-norm of
the approximation error. Obviously, since the only term in the approximation error (equation (8.1)) where the

denominator λ̂i + λ̂k appears is the H2,Ω-norm of the reduced-order model, it is the only sum that is affected by
this modification.
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Figure 8.1: H2,Ω-norm of the approximation error between the LAH model and a second order
model with respect to the poles of the reduced-order model for Ω = [0, 20]. The blue stars are
the poles of the large-scale model contained in this part of the complex plane, the red/green
dashed line represents the frequency bound Ω.

presented in equation (8.3), the indexes i, k for which λ̂i + λ̂k = 0 must be modified into

[L]i,k = − ω

π (ω2 − λiλk)
.

Here, this means that when λ̂ is on the imaginary axis over ω, then the expression of h
remains the same but L becomes

Lim =





a
ω,λ̂

λ̂
− 2ω

π(ω2−λ̂λ̂∗)
− 2ω

π(ω2−λ̂λ̂∗)
a
ω,λ̂∗

λ̂∗



 ,

which is simply the limit of L as λ̂+ λ̂∗ → 0. In that case, the optimal residues are solution
of

Lim

[
φ̂

φ̂∗

]

= h.

◮ otherwise, if λ̂ is on the imaginary axis and |λ̂| ≤ ω, then the H2,Ω-norm of the error is,
by definition, infinite.

Again, as in the H2 case, once the optimal residues have been computed, the H2,Ω approximation
error JH2,Ω

simplifies (see Section 8.2) and becomes

JH2,Ω
= ‖H‖2H2,Ω

− ‖Ĥ‖2H2,Ω
.

The relative H2,Ω error is plotted in Figure 8.1 and projected on the real and imaginary axis
in Figure 8.2a and 8.2b, respectively.
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Figure 8.2: Projection of theH2,Ω-norm presented in Figure 8.1 on the real axis (a) and imaginary
axis (b).

In Figure 8.1, one can observe that the behaviour of JH2,Ω
inside the frequency interval Ω is

similar to the behaviour of the H2 approximation error (see Figure 4.1) but outside the interval,
the local minima present in the H2 case have completely vanished.

The behaviour of the objective function in the right-half plane depends on whether Im(λ̂)
belongs to Ω or not. Indeed, as one can see in Figure 8.2a,

◮ when Im(λ̂) > ω (red line in Figure 8.2a), the objective function increases as Re(λ̂) < 0
increases. It means that, with this asymptotically stable model, moving in the positive real
direction does not yield a decrease of the objective function and consequently is not likely
to represent a descent direction.

◮ If Im(λ̂) ∈ Ω (in green), one can see that JH2,Ω
is slowly decreasing as Re(λ̂) > 0

increases. Yet, this decrease is generally slower than on the left half-plane2. It suggests
that when Im(λ̂) ∈ Ω, switching from the right half-plane to the left half-plane is unlikely
to represent a descent direction.

These two points suggest that reducing an asymptotically stable model with a descent method
aimed at minimising JH2,Ω

is very unlikely to produce an unstable reduced-order model. Obvi-
ously, this is not necessarily true anymore if the large-scale model is not stable.

In Figure 8.2b, one can see that if λ̂ is in the right half-plane, then JH2,Ω does not evolve

along the imaginary axis as long as Im(λ̂) < ω. Then when Im(λ̂) > ω, the objective function

decreases slowly and appears to reach a limit. More specifically, let us consider λ̂ = x + jy,
y > 0, then the limit of JH2,Ω as y tends towards infinity is equal to the H2,Ω-norm of the
original large-scale model H. Indeed, by noticing that

1 + j
ω

λ̂
= 1 +

ωy

x2 + y2
+ j

ωx

x2 + y2
,

it is clear that

lim
y→∞

ln

(∣
∣
∣
∣
1 + j

ω

λ̂

∣
∣
∣
∣

)

= 0,

in addition, since 1 + j ω
λ̂
tends towards 1 as y tends towards infinity,

lim
y→∞

arg

(

1 + j
ω

λ̂

)

= 0

2This assertion does not hold around the local maxima of JH2,Ω
.
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The same limits hold with 1− j ω
λ̂
, thus

lim
y→∞

aω,λ̂ = 0.

This means that limy→∞ L = 0 (and similarly, one can prove that limy→∞ Lim = 0). Obviously

limy→∞H(−λ̂) = 0 thus, limy→∞ h = 0 which implies that

lim
y→∞

JH2,Ω
= ‖H‖2H2,Ω

.

This result is quite natural since if the reduced-order model poles move away from the frequency-
band of interest, its influence in this frequency interval vanishes and only the influence of the
large-scale model remains.

The fact that JH2,Ω
reaches a plateau as the imaginary parts of the reduced-order model poles

increase lead to believe that if a descent optimisation method is used, one should probably not
initialise it with a reduced-order model which poles are located outside of Ω.

8.1.2 On the computation of the approximation error

In optimisation, the evaluation of the objective function can be a numerical burden if it is not
fast enough. The first step towards a fast computation of JH2,Ω

is to express it with matrix and
vector operations to exploit the standard and highly optimised linear algebra libraries used in
software such as Matlab R©.

To this aim, let us define Wnn ∈ Cn×n, Wnr ∈ Cn×r and Wrr ∈ Cr×r as

[Wrr]i,k =
1

2

aω,λ̂i
+ aω,λ̂k

λ̂i + λ̂k
, (8.7)

[Wnr]i,k =
aω,λi

+ aω,λ̂k

λ̂i + λ̂k
, (8.8)

[Wnn]i,k =
aω,λi

λi + λk
.

Each of these matrix can be easily built as follows

Wnr =











aω,λ1

...
aω,λn




 1

T
n + 1r

[
aω,λ̂1

. . . ,aω,λ̂r

]




⊙







1
λ1+λ̂1

. . . 1
λ1+λ̂r

...
. . .

...
1

λn+λ̂1
. . . 1

λn+λ̂r






,

where ⊙ is the Hadamard product and 1n ∈ Rn×1 a column vector full of 1. Let C∆ ∈ Cny×n and
Ĉ∆ ∈ Cny×r denote the matrices formed by horizontally concatenating ci

T and ĉTk , respectively,
i.e.

C∆ =
[
c1

T . . . cn
T
]
and Ĉ∆ =

[
ĉT1 . . . ĉTr

]
, (8.9)

and let B∆ ∈ Cn×nu and B̂∆ ∈ Cr×nu be the matrices built by vertically concatenating bi and
b̂k, i.e.

B∆ =






b1

...
bn




 and B̂∆ =






b̂1

...

b̂r




 . (8.10)

Obviously, C∆ = CX, Ĉ∆ = ĈX̂, B∆ = X−1B and B̂∆ = X̂−1B̂, where X ∈ Cn×n and
X̂ ∈ Cr×r are the matrices which columns are the right eigenvectors of A and Â, respectively.
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Then, as it has been shown in Section 7.1.2, the H2,Ω-norms of H and Ĥ, direct feedthrough
excluded, can be computed as

‖H‖2H2,Ω
= 1

T
n

(
(CT

∆C∆)⊙ (B∆B
T
∆)⊙Wnn

)
1n,

and
‖Ĥ‖2H2,Ω

= 1
T
r

(

(ĈT
∆Ĉ∆)⊙ (B̂∆B̂

T
∆)⊙Wrr

)

1r.

Note that [Wrr]i,k could have been directly defined as
a
ω,λ̂i

λ̂i+λ̂k

(like in the poles-residues formula-

tion of the norm in Theorem 10), but here the fact that

‖Ĥ‖2H2,Ω
=

r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂k

)

λ̂i + λ̂k
aω,λ̂i

=

r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂k

)

λ̂i + λ̂k

1

2

(

aω,λ̂i
+ aω,λ̂k

)

,

has been exploited. This has no interest for the computation of ‖Ĥ‖2H2,Ω
presented above but it

is interesting for the the computation of the gradient in Section 8.2.2.
Similarly, the cross term in the error can be computed as

−
n∑

i=1

r∑

k=1

tr
(

ΦiΦ̂
T
k

)

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

= −1
T
n

(

(CT
∆Ĉ∆)⊙ (B∆B̂

T
∆)⊙Wnr

)

1r.

and by denoting diag(M) the column vector formed by the diagonal of the matrixM , the terms
in JH2,Ω

(8.1) associated with the direct feedthrough D and D̂ can be expressed as

−
n∑

i=1

tr
(

ΦiD̃
T
)

aω,λi
= −diag

(

B∆D̃
TC∆

)T






aω,λ1

...
aω,λn




 ,

and

r∑

i=1

tr
(

Φ̂iD̃
T
)

aω,λ̂i
= diag

(

B̂∆D̃
T Ĉ∆

)T






aω,λ̂1

...
aω,λ̂r




 .

Note that the number of operations required to compute JH2,Ω
can be decreased by exploiting

the structure of the matrices such as the symmetry of Wrr or Wnn or the fact that the complex
elements come with their complex conjugate, but the benefit would not necessarily be significant
in term of computation time, that is why it has not been considered here.

The second step towards a fast computation of JH2,Ω consists in avoiding to compute the
same things multiple times. Here, the matrices C∆, B∆, ‖H‖2H2,Ω

, the terms associated with D

and aω,λi
(i = 1, . . . , n) can be stored throughout the whole optimisation process. Besides, in the

context of minimisation of JH2,Ω
, it is worth noticing that computing ‖H‖H2,Ω

is not mandatory
since minimising JH2,Ω

is equivalent to minimise JH2,Ω
− ‖H‖2H2,Ω

. Yet, since the computation
of the cross terms require the poles and residues of the large-scale model, computing JH2,Ω does
not implies a lot of additional operations especially as it only needs to be done once.

Note that with respect to the computation time of the approximation error, the poles-residues
formulation of the H2,Ω approximation error offers some advantage compared to the gramian
based one (see Section 5.2.2). Indeed, with the gramian formulation, each evaluation of the
approximation error requires to solve a n× r Sylvester equation, a r× r Lyapunov equation, due
to the cross terms and the H2,Ω-norm of the reduced-order model respectively, while here, the
error is explicit in terms of the poles and residues of the reduced-order model. This advantage
comes from the additional hypothesis on the structure of the poles which must be semi-simple
and which is not made with the gramian-based formulation.
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8.2 Gradient of the error

Based on the poles-residues formulation of the H2,Ω approximation error between a large-scale

model H and a reduced-order one Ĥ, the problem of optimal H2,Ω approximation can be re-
formulated as follows.

Problem 4 (Poles-residues formulation of the H2,Ω optimal model approximation problem).
Given an asymptotically stable LTI dynamical model H of order n. The problem of optimal H2,Ω

model approximation consists in finding the poles λ̂i ∈ C, the vectors ĉi ∈ C1×ny and b̂i ∈ C1×nu

(i = 1, . . . , r) and the direct feedthrough D̂ ∈ Rny×nu of the asymptotically stable reduced-order
model Ĥ that minimises the H2,Ω-norm of the approximation error JH2,Ω

.

Since only stable models have been considered in this study, Problem 4 is restricted to
asymptotically stable models, but this assumption is more restrictive than what is required and
used here to express the first-order optimality conditions. Indeed, the hypothesis used here is
that the poles of both models are not symmetrically located with respect to the imaginary axis.
One could diminish these hypothesis even further by using the full expression of the H2,Ω-norm.
However, this has not been considered here.

JH2,Ω
is a function of r+rny+rnu+nynu variables, thus, Problem 4 is over-parametrised since

the minimal number of parameters to represent a LTI model of order r is rny+rnu+nynu. This

issue could be fixed by imposing some norm constraint on either the b̂i or the ĉi (i = 1, . . . , r),
but in order to stick with the simpler unconstrained optimisation framework, no constraint is
added.

JH2,Ω is a real valued function of complex variables λ̂i, b̂i, ĉi and their complex conjugates.
As it does not satisfy the Cauchy-Riemann equations, such a function is not analytic. The
common way of dealing with such kind of functions consists in writing them as functions of the
real and imaginary parts of the variables. However here, it would break the structure of JH2,Ω

and that is why keeping it as a function of complex variables is preferred.

In that context, the Wirtinger calculus is used to derive the first order optimality conditions
for the optimal H2,Ω approximation problem. A quick reminder of its main properties is done
in Section 8.2.1. It is then applied to differentiate JH2,Ω in Section 8.2.2.

8.2.1 Reminder on Wirtinger Calculus

This Section is not meant to be an exhaustive description of the Wirtinger calculus but rather
a quick reminder of the properties that are used in the next Section to express the first-order
optimality conditions of the approximation problem. It is mainly based on [Brandwood, 1983;
Remmert, 1991] where the complex gradient and conjugate gradient operators are defined. Ad-
ditional useful elements about the use of Wirtinger calculus for optimisation can be found in
[Kreutz-Delgado, 2009] and in [Sorber et al., 2012].

Partial complex-variable derivative

Let us consider g : C × C → C a function of z and its conjugate z∗ which is analytic with
respect to z and z∗ independently, i.e. g(z, a) and g(a, z) are analytic in z. Let us also consider
h : R×R→ C, the function of real variables x and y such that z = x+ jy and g(z, z∗) = h(x, y),
then

∂g

∂z
:=

1

2

(
∂h

∂x
− j ∂h

∂y

)

,

∂g

∂z∗
:=

1

2

(
∂h

∂x
+ j

∂h

∂y

)

,
(8.11)
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where ∂g
∂z (respectively ∂g

∂z∗ ) is obtained by treating z∗ (respectively z) as a constant3. Equation
(8.11) can easily be verified with simple functions, for instance,

∂z

∂z
=
∂z∗

∂z∗
= 1 and

∂z

∂z∗
=
∂z∗

∂z
= 0.

Let g(z, z∗) = u(x, y)+jv(x, y) where u and v are real functions, the Cauchy-Riemann conditions
can be retrieved, indeed, ∂g

∂z∗ = 0 can be rewritten with equation (8.11) as ∂u
∂x+j

∂v
∂x+j

∂u
∂y− ∂v

∂y = 0,
which yields, by identifying the real and imaginary parts, to

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

This means that a complex function f : C → C is analytic in z if and only if it only depends
exclusively of z and not of z∗.

Stationary points of non-analytic functions

Let us now consider a real-valued function f : C→ R of a complex variable z and its conjugate.
As mentioned above, such a function is not analytic in z. To characterise its stationary points,
one must consider the function g : C×C→ R of two complex variables and analytic with respect
to each variable such that f(z) = g(z, z∗). Then the stationary points of f are the points for
which either ∂g

∂z = 0 or ∂g
∂z∗ = 0.

This can be proved by setting g(z, z∗) = u(x, y)+ jv(x, y) where u and v are real functions of
the real variables x and y. Since g is real valued, v(x, y) = 0 for all x, y ∈ R, thus from equation
(8.11),

∂g

∂z
=

1

2

(
∂u

∂x
− j ∂u

∂y

)

and
∂g

∂z∗
=

1

2

(
∂u

∂x
+ j

∂u

∂y

)

.

By identifying the real and imaginary parts, it is clear that

∂u

∂x
=
∂u

∂y
= 0 ⇐⇒ ∂g

∂z
= 0 and

∂u

∂x
=
∂u

∂y
= 0 ⇐⇒ ∂g

∂z∗
= 0.

Note that the differential of g is given as

dg =
∂g

∂z
dz +

∂g

∂z∗
dz∗,

and since g is real valued, ∂g
∂z∗ =

(
∂g
∂z

)∗

, thus

dg = 2Re

(
∂g

∂z
dz

)

.

The differential dg is maximal when ∂g
∂zdz is real, thus dz must be proportional to

(
∂g
∂z

)∗

= ∂g
∂z∗ .

It means that ∂g
∂z∗ is the steepest ascent direction. Hence, if one looks for a maximum of f , one

could set the following iteration scheme

zk+1 = zk + α
∂g

∂z∗

∣
∣
∣
z=zk

,

where α is the step length. Example 18 illustrates the various elements of the Wirtinger calculus
presented here on a simple function.

3In [Kreutz-Delgado, 2009], such derivatives are said to be formal because one cannot vary z while keeping z∗

constant.
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x

y

− ∂g
∂z∗

−∂g
∂z

zopt

z0

Figure 8.3: Illustration of the descent directions for g(z, z∗) = zz∗.

Example 18 (Illustration of the Wirtinger calculus on a simple non-analytic function). Let
us consider the real-valued functions f(z) = |z|2, g(z, z∗) = zz∗ and u(x, y) = x2 + y2 with
z = x+ jy. The function f is non-analytic in z and clearly

f(z) = g(z, z∗) = u(x, y).

The stationary point of f can be characterised through the gradient of u,

∇u = 2

[
x
y

]

= 0 ⇐⇒ x = y = 0,

or equivalently through the partial complex derivatives

∂g

∂z
= z∗ and

∂g

∂z∗
= z,

which also yield z = 0.
Let us now consider an initial point z0 = x0 + jy0 with x0 > 0 and y0 > 0, then, the steepest

descent direction is given by

−∇u = −2
[
x0
y0

]

or −
[

∂g
∂z∗

∂g
∂z

]

= −
[
z0
z∗0

]

,

but not by −
[

∂g
∂z
∂g
∂z∗

]

= −
[
z∗0
z0

]

as illustrated in Figure 8.3 where the directions −∂g
∂z and − ∂g

∂z∗

are represented. Note also the factor 2 that is not present in the complex case.

Complex gradient

The elements mentioned above can be generalised to the multivariate case through the definition

of the complex gradient operator with respect to the vector z =
[
z1 . . . zN

]T ∈ CN×1,

∇z =






∂
∂z1
...
∂

∂zN




 .

Given a scalar real-valued function f : CN → R of a complex vector z (and its conjugate) and
g(z, z∗) : CN ×CN → R, an analytic function with respect to each zi and z

∗
i (i = 1, . . . , N) such

that f(z) = g(z, z∗), then, the following results hold,

◮ either ∇zg = 0 or ∇z∗g = 0 enables to characterise the stationary points of f ,

121



Chapter 8. Formulation of the H2,Ω error and differentiation of its gradient

◮ the differential of g is given by

dg = (∇zg)
T
dz+ (∇z∗g)

T
dz∗

= 2Re
(

(∇z∗g)
T
dz
)

(g is real-valued),
(8.12)

◮ by using the Cauchy-Schwarz inequality in equation (8.12), one can see that the differen-

tial Re((∇z∗g)
T
dz) is maximal when dz is co-linear to ∇z∗g. Hence the steepest ascent

direction is given by ∇z∗g.

Note that complex Hessian matrices can similarly be defined (see [Van Den Bos, 1994; Kreutz-
Delgado, 2009; Sorber et al., 2012]) but since the Hessian of JH2,Ω

is not exploited in the sequel,
they are not described here.

8.2.2 Gradient of the H2,Ω approximation error

To highlight clearly the link with the previous section, let us focus on the reduced-order poles
and consider that the approximation error JH2,Ω

is a function of the reduced-order model poles

λ̂i (i = 1, . . . , r) only. Let us also assume that these poles are all complex and ordered as

λ̂1, λ̂2 = λ̂∗1, λ̂3, λ̂4 = λ̂∗3, . . . , λ̂r−1, λ̂r = λ̂∗r−1.

In that case, the approximation error JH2,Ω can either be seen as a function of r
2 variables

λ̂1, λ̂3, . . . , λ̂r−1 or as a function of r variables λ̂1, λ̂
∗
1, . . . , λ̂r−1, λ̂

∗
r−1. In the former case, JH2,Ω

is similar to the function f(z) of Section 8.2.1 while in the latter case, JH2,Ω is like g(z, z∗).
To differentiate JH2,Ω

with respect to the poles, one must consider it as a function of w =
[

λ̂1 λ̂3 . . . λ̂r−1

]T
and of w∗. The first-order optimality conditions of JH2,Ω with respect

to the reduced-order model poles are then either given by the r
2 conditions

∂JH2,Ω

∂w = 0 or by

their conjugate
∂JH2,Ω

∂w∗ = 0.

In order to avoid differentiating between the complex and complex conjugate variables, one

can also directly consider z =
[
wT wH

]T ∈ Cr×1 and
∂JH2,Ω

∂z =
[

∂JH2,Ω

∂w

T ∂JH2,Ω

∂w∗

T
]

= 0

which leads to the same optimality conditions, excepted that they are redundant.

This is what is done in Theorem 16 where JH2,Ω is differentiated with respect to λ̂i, b̂i, ĉi
(i = 1, . . . , r) and D̂ without distinction between the variables, conjugated variables and real
variables. Refer to Remark 17 for some comments on the notations used in Theorem 16.

The Wirtinger calculus has already been implicitly used in Section 4.1 to express the first-
order optimality conditions of the optimalH2 approximation problem. It has not been mentioned
because it does not modify the differentiation rules and it is not mentioned in the literature.

Theorem 16 (Poles-residues formulation of the necessary conditions for the optimal H2,Ω ap-

proximation problem). Let us consider two LTI dynamical models H and Ĥ of order n and
r ≪ n, respectively, which poles are semi-simple and not symmetrically located with respect to
the imaginary axis and which associated transfer functions are given by

H(s) =

n∑

i=1

ci
Tbi

s− λi
+D and Ĥ(s) =

n∑

i=1

ĉTi b̂i

s− λ̂i
+ D̂.

Let us also consider a frequency interval Ω = [0, ω]. If Ĥ minimises JH2,Ω
= ‖H − Ĥ‖2H2,Ω

, then

the derivatives of JH2,Ω
with respect to λ̂m, b̂m, ĉm and D̂, given for m = 1, . . . , r by equations
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(8.13), (8.14), (8.15) and (8.16), respectively, are equal to 0.

∂JH2,Ω

∂λ̂m
= −

r∑

i=1

ĉmĉTi b̂ib̂
T
m






aω,λ̂i
+ aω,λ̂m

(

λ̂i + λ̂m

)2 +
2

π

ω
(

λ̂2m + ω2
)(

λ̂i + λ̂m

)




 . . .

+
n∑

i=1

ĉmci
Tbib̂

T
m






aω,λi
+ aω,λ̂m

(

λi + λ̂m

)2 +
2

π

ω
(

λ̂2m + ω2
)(

λi + λ̂m

)




 . . .

+
2

π
ĉmD̃b̂m

ω

ω2 + λ̂2m
,

(8.13)

∂JH2,Ω

∂b̂m

=

r∑

i=1

b̂T
i ĉiĉ

T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

−
n∑

i=1

bi
T ciĉ

T
m

λi + λ̂m

(

aω,λi
+ aω,λ̂m

)

+ D̃T ĉTmaω,λ̂m
, (8.14)

∂JH2,Ω

∂ĉm
=

r∑

i=1

ĉTi b̂ib̂
T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

−
n∑

i=1

ci
Tbib̂

T
m

λi + λm

(

aω,λi
+ aω,λ̂m

)

+ D̃b̂T
maω,λ̂m

, (8.15)

∂JH2,Ω

∂D̂
= −

r∑

i=1

ĉTi b̂iaω,λ̂i
+

n∑

i=1

ci
Tbiaω,λi

− 2

π
ωD̃. (8.16)

Proof. The derivative are obtained by straight differentiation of the approximation error JH2,Ω

given in equation (8.1).

Remark 17 (About the notations in Theorem 16). When differentiating with respect to the line

vectors b̂m or ĉm, the resulting gradients are column vectors denoted by
∂JH2,Ω

∂ĉm

∈ Cny×1 and
∂JH2,Ω

∂b̂m

∈ Cnu×1. Besides, the derivative with respect to D̂ is performed element-wise and the

resulting derivative is a matrix
∂JH2,Ω

∂D̂
∈ Rny×nu . This inconsistency has no real impact on the

sequel and allows for more clarity, in particular, the derivatives are straightforwardly obtained.

Reformulation of the first-order optimality conditions as interpolation conditions

The first-order optimality conditions of the H2,Ω approximation problem can be reformulated
as interpolation conditions similar, in some way, to the interpolation conditions arising in the
optimal H2 model approximation problem (see Section 4.1). Let us define the filtered transfer
functions Hω(s) and Ĥω(s) as the transfer functions H(s) and Ĥ(s) considered without the
direct feedthrough D and D̂ and which i-th modal contributions are weighted by aω,λi

and
aω,λ̂i

, respectively, i.e.

Hω(s) =

n∑

i=1

ci
Tbi

s− λi
aω,λi

and Ĥω(s) =

r∑

i=1

ĉTi b̂i

s− λ̂i
aω,λ̂i

.

Derivative with respect to b̂m. Let us consider the derivative of JH2,Ω
with respect to b̂m

of equation (8.14), the first sum can be written as

r∑

i=1

b̂T
i ĉiĉ

T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

− D̂T ĉTmaω,λ̂m
=

(
r∑

i=1

b̂T
i ĉi

λ̂i + λ̂m
aω,λ̂i

. . . +

(
n∑

i=1

b̂T
i ĉi

λ̂i + λ̂m
− D̂T

)

aω,λ̂m

)

ĉTm

=
(

−ĤT
ω (−λ̂m)− Ĥ(−λ̂m)Taω,λ̂m

)

ĉTm,
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and similarly, the second one can be written as

−
n∑

i=1

bi
T ciĉ

T
m

λi + λ̂m

(

aω,λi
+ aω,λ̂m

)

+DĉTmaω,λ̂m
=
(

Hω(−λ̂m)T +H(−λ̂m)Taω,λ̂m

)

ĉTm.

Hence
∂JH2,Ω

∂b̂m

= 0 is equivalent to

ĉm

(

Ĥω(−λ̂m) + Ĥ(−λ̂m)aω,λ̂m

)

= ĉm

(

Hω(−λ̂m) +H(−λ̂m)aω,λ̂m

)

. (8.17)

Derivative with respect to ĉm. Likewise,
∂JH2,Ω

∂ĉm

= 0 can also be written as

(

Ĥω(−λ̂m) + Ĥ(−λ̂m)aω,λ̂m

)

b̂T
m =

(

Hω(−λ̂m) +H(−λ̂m)aω,λ̂m

)

b̂T
m. (8.18)

Derivative with respect to λ̂m. This reformulation process is not as obvious concerning the
derivative of JH2,Ω with respect to λ̂m. Let us consider the first sum in equation (8.13), note
that

r∑

i=1

ĉm
ĉTi b̂i

(

λ̂i + λ̂m

)2 aω,λ̂i
b̂T
m = ĉmĤ

′
ω(−λ̂m)b̂T

m,

and that
r∑

i=1

ĉm
ĉTi b̂i

(

λ̂i + λ̂m

)2 aω,λ̂m
b̂T
m = ĉmĤ

′(−λ̂m)aω,λ̂m
b̂T
m. (8.19)

The last element of the sum is in fact the derivative of aω,−s with respect to s, indeed by noticing
that d

dsatan
(
−ω

s

)
= ω

ω2+s2 , it comes

r∑

i=1

ĉm

(

ĉTi b̂i

λ̂i + λ̂m
− D̂

)

2

π

ω

ω2 + λ̂2m
b̂T
m = ĉmĤ(−λ̂m)

2

π

d

ds
atan

(ω

s

) ∣
∣
s=−λ̂m

b̂T
m. (8.20)

Equations (8.19) and (8.20) can be grouped under the following formulation

ĉmĤ
′(−λ̂m)aω,λ̂m

b̂T
m + ĉmĤ(−λ̂m)

2

π

d

ds
atan

(ω

s

) ∣
∣
s=−λ̂m

b̂T
m = ĉm

d

ds

[

Ĥ(s)aω,−s

]

s=−λ̂m

b̂T
m.

The same result holds for the second sum involved in
∂JH2,Ω

∂λ̂m

. Thus
∂JH2,Ω

∂λ̂m

= 0 can finally be

re-written as

ĉm

(

H ′
ω(−λ̂m) +

d

ds
[H(s)aω,−s]s=−λ̂m

)

b̂T
m = ĉm

(

Ĥ ′
ω(−λ̂m) +

d

ds

[

Ĥ(s)aω,−s

]

s=−λ̂m

)

b̂T
m

(8.21)

Interpolation conditions. Equations (8.17), (8.18) and (8.21) can be further simplified by
defining the two functions4

T (s) = Hω(s) +H(s)aω,−s and T̂ (s) = Ĥω(s) + Ĥ(s)aω,−s.

4Since ∀z, atan(−z) = −atan(z), these functions can be written as T (s) = Hω(s) − H(s)aω,s and T̂ (s) =

Ĥω(s)− Ĥ(s)aω,s also.
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Indeed, with that notation, the first-order optimality conditions of the H2,Ω approximation
problem associated with the poles and the residues of the reduced-order model can then be
written as

T (−λ̂m)b̂T
m = T̂ (−λ̂m)b̂T

m

ĉmT (−λ̂m) = ĉmT̂ (−λ̂m)

ĉmT
′(−λ̂m)b̂T

m = ĉmT̂
′(−λ̂m)b̂T

m,

(8.22)

which is similar to the H2 optimality conditions expressed in Theorem 9 excepted that here the
interpolation does not concern directly the large-scale and reduced-order transfer functions. The
functions T (s) and T̂ (s) are probably related to the weighted functions involved in the frequency
weighted H2 optimality conditions derived in [Anić et al., 2013] (see Section 5.1.2) but a clear
link has not been established yet. Note that the function T (s) also appears in the approximation
error JH2,Ω

in equation (8.6) which becomes,

JH2,Ω = ‖H‖2H2,Ω
+ ‖Ĥ‖2H2,Ω

+

n∑

i=1

tr
(

T (−λ̂k)Φ̂T
k

)

.

Derivative with respect to D̂. The derivative of JH2,Ω
with respect to D̂ leads to a quite

different optimality condition in terms of the transfer functions H(s) and Ĥ(s), indeed, setting
∂JH2,Ω

∂D̂
= 0 in equation (8.16) yields, for i = 1, . . . , ny and k = 1, . . . , nu,

∫ ω

−ω

Hi,k(jν)dν =

∫ ω

−ω

Ĥi,k(jν)dν.

The direct feedthrough D̂ of the reduced-order model is involved in a quadratic and strictly
convex way in the H2,Ω approximation error JH2,Ω (8.1), indeed the second-order term is

tr(D̂D̂T ) = vec(D̂)Tvec(D̂) = vec(D̂)T Inynu
vec(D̂),

where vec(D̂) is the vectorisation of D̂, i.e. the column vector formed by vertically concatenating

the columns of D̂. Hence the necessary condition of optimality
∂JH2,Ω

∂D̂
= 0 is also sufficient to

find the global minimum of JH2,Ω
with respect to D̂. The optimal D̂ is uniquely determined as

a function of the residues and poles of both models H and Ĥ, the direct feedthrough D and the
upper bound of the frequency interval ω,

D̂opt =
π

2ω

(
r∑

i=1

ĉTi b̂iaω,λ̂i
−

n∑

i=1

ci
Tbiaω,λi

+
2

π
ωD

)

. (8.23)

This implies that D̂ can be discarded as an optimisation variable and replaced by its optimal
value in each one of the derivatives (8.13), (8.14) and (8.15).

Simplification of the H2,Ω approximation error

Let us consider the formulation of the approximation error JH2,Ω of equation (8.5). Let us

assume that either
∂JH2,Ω

∂ĉm

= 0 or
∂JH2,Ω

∂b̂m

= 0 for m = 1, . . . , r, then

r
∑

k=1

b̂k

(

n
∑

i=1

bi
T ci

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

)

ĉ
T
k =

r
∑

k=1

b̂k

(

r
∑

i=1

b̂T
i ĉi

λ̂i + λ̂k

(

aω,λ̂i
+ aω,λ̂k

)

+ D̃
T
aω,λ̂k

)

ĉ
T
k .
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By taking the trace and reordering the sums so that aω,λ̂i
+aω,λ̂k

is replaced by 2aω,λ̂i
, the H2,Ω

approximation error becomes

JH2,Ω = ‖H‖2H2,Ω
+ ‖Ĥ‖2H2,Ω

− 2

r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂
T
k

)

λ̂i + λ̂k
aω,λ̂i

+

r∑

i=1

tr
(

Φ̂iD̂
T
)

aω,λ̂i
. . .

+

n∑

i=1

tr
(

ΦiD̂
T
)

aω,λi
− 2

π
ωtr

(

DD̂T
)

.

If in addition
∂JH2,Ω

∂D̂
= 0, then

tr

((
n∑

i=1

Φiaω,λi
− 2

π
ωD

)

D̂T

)

= tr

((
r∑

i=1

Φ̂iaω,λ̂i
− 2

π
ωD̂

)

D̂T

)

,

thus

JH2,Ω
= ‖H‖2H2,Ω

+‖Ĥ‖2H2,Ω
−2





r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂
T
k

)

λ̂i + λ̂k
aω,λ̂i

−
r∑

i=1

tr
(

Φ̂iD̂
T
)

aω,λ̂i
+
ω

π
tr
(

D̂D̂T
)



 .

The last term is equal to ‖Ĥ‖2H2,Ω
, hence if

∂JH2,Ω

∂D̂
= 0 and either

∂JH2,Ω

∂ĉm

= 0 or
∂JH2,Ω

∂b̂m

= 0, the

squared H2,Ω approximation error JH2,Ω is equal to the difference of the squared H2,Ω-norms of

H and Ĥ,
JH2,Ω = ‖H − Ĥ‖2H2,Ω

= ‖H‖2H2,Ω
− ‖Ĥ‖2H2,Ω

.

On the computation of the gradient of JH2,Ω

The computation of the gradient is also an important part in an optimisation algorithm which
must be efficient in order not to become a numerical burden for the process. The process here
is similar to what has been done for the computation of the approximation error JH2,Ω in the
previous section and the matrices built to compute JH2,Ω are also involved here. Indeed, let us

consider the matrices Wrr ∈ Cn×n, Wnr ∈ Cr×r, C∆ ∈ Cny×n, Ĉ∆ ∈ Cny×r, B∆ ∈ Cn×nu and
B̂∆ ∈ Cr×nu defined in equations (8.7), (8.8), (8.9) and (8.10), respectively.

Let us consider
∂JH2,Ω

∂b̂m

which expression is

∂JH2,Ω

∂b̂m

=

r∑

i=1

b̂T
i ĉiĉ

T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

−
n∑

i=1

bi
T ciĉ

T
m

λi + λ̂m

(

aω,λi
+ aω,λ̂m

)

+ D̃T ĉTmaω,λ̂m
.

First, notice that

ĈT
∆Ĉ∆ =






ĉ1
...
ĉr






[
ĉT1 . . . ĉTr

]
=






ĉ1ĉ
T
1 . . . ĉ1ĉ

T
r

...
. . .

...
ĉrĉ

T
1 . . . ĉrĉ

T
r




 ∈ C

r×r,

By multiplying ĈT
∆Ĉ∆, element-wise, with 2Wrr, one obtains, in the m-th column,

tm =
[

ĉ1ĉ
T
m

(

aω,λ̂1
+ aω,λ̂m

)

. . . ĉrĉ
T
m

(

aω,λ̂r
+ aω,λ̂m

) ]T

∈ C
r×1, (8.24)

which is a part of the elements involved in the first sum of
∂JH2,Ω

∂b̂m

. By left multiplying the vector

tm from equation (8.24) by B̂T
∆, it comes

B̂T
∆tm =

[

b̂T
1 . . . b̂T

r

]
tm =

r∑

i=1

b̂T
i ĉiĉ

T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

.
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Thus the first sum of
∂JH2,Ω

∂b̂m

is the m-th column of B̂T
∆

((

ĈT
∆Ĉ
)

⊙ 2Wrr

)

, i.e.

[

B̂T
∆

((

ĈT
∆Ĉ
)

⊙ 2Wrr

)]

em =

r∑

i=1

b̂T
i ĉiĉ

T
m

λ̂i + λ̂m

(

aω,λ̂i
+ aω,λ̂m

)

. (8.25)

Similarly for the second sum,

[

BT
∆

((

CT
∆Ĉ∆

)

⊙ 2Wnr

)]

em =

n∑

i=1

bi
T ciĉ

T
m

λi + λ̂m

(

aω,λi
+ aω,λ̂m

)

. (8.26)

By following the same idea, it is easy to see that,

D̃T ĉTmaω,λ̂m
=
[(

D̃T Ĉ∆

)

⊙
(
1nu

[
aω,λ̂1

. . . aω,λ̂r

])]

em. (8.27)

By coupling equations (8.25), (8.26) and (8.27), on finally obtains

[
∂JH2,Ω

∂b̂1

. . .
∂JH2,Ω

∂b̂r

]

= B̂T
∆

((

ĈT
∆Ĉ
)

⊙ 2Wrr

)

−BT
∆

((

CT
∆Ĉ∆

)

⊙ 2Wnr

)

. . .

+
(

D̃T Ĉ∆

)

⊙
(
1nu

[
aω,λ̂1

. . . aω,λ̂r

])
.

The same idea can be used for
∂JH2,Ω

∂ĉm

and leads to

[
∂JH2,Ω

∂ĉ1

. . .
∂JH2,Ω

∂ĉr

]

= Ĉ∆

((

B̂∆B̂
T
∆

)

⊙ 2Wrr

)

− C∆

((

B∆B̂
T
∆

)

⊙ 2Wnr

)

. . .

+
(

D̃B̂T
∆

)

⊙
(
1ny

[
aω,λ̂1

. . . aω,λ̂r

])
.

The derivative with respect to the reduced-order model poles,
∂JH2,Ω

∂λ̂m

, is obtained in a very

similar way to the approximation error JH2,Ω . First, let us consider the matrices Lrr ∈ Cr×r

and Lnr ∈ Cn×r which elements are defined as,

[Lrr]i,k =
aω,λ̂i

+ aω,λ̂k
(

λ̂i + λ̂k

)2 +
2ω

π
(

λ̂2k + ω2
)(

λ̂i + λ̂k

) ,

and

[Lnr]i,k =
aω,λi

+ aω,λ̂k
(

λi + λ̂k

)2 +
2ω

π
(

λ̂2k + ω2
)(

λi + λ̂k

) .

By multiplying Lrr (respectively Lnr), element-wise, by B̂∆B̂
T
∆ (resp. B∆B̂

T
∆) and by ĈT

∆Ĉ∆

(resp. ĈT
∆C∆), one obtains a matrix which m− th column contains the terms in the first (resp.

second) sum of
∂JH2,Ω

∂λ̂m

, i.e.

[(

B̂∆B̂
T
∆

)

⊙
(

ĈT
∆Ĉ∆

)

⊙ Lrr

]

i,m
= ĉmĉTi b̂ib̂

T
m






aω,λ̂i
+ aω,λ̂m

(

λ̂i + λ̂m

)2 +
2

π

ω
(

λ̂2m + ω2
)(

λ̂i + λ̂m

)




 ,

and

[(

B∆B̂
T
∆

)

⊙
(

ĈT
∆C∆

)

⊙ Lnr

]

i,m
= ĉmci

Tbib̂
T
m






aω,λi
+ aω,λ̂m

(

λi + λ̂m

)2 +
2

π

ω
(

λ̂2m + ω2
)(

λi + λ̂m

)




 .
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Besides, the term relative to the direct feedthrough can be obtained as

2

π
ĉmD̃b̂m

ω

ω2 + λ̂2m
= em

T






diag

(

B̂∆D̃
T Ĉ∆

)

⊙







2ω

π(λ̂2
1+ω2)
...
2ω

π(λ̂2
r+ω2)












.

Hence, it finally comes that

[
∂JH2,Ω

∂λ̂1
. . .

∂JH2,Ω

∂λ̂r

]

= −1
T
r

((

B̂∆B̂
T
∆

)

⊙
(

ĈT
∆Ĉ∆

)

⊙ Lrr

)

. . .

+1
T
n

((

B∆B̂
T
∆

)

⊙
(

ĈT
∆C∆

)

⊙ Lnr

)

+diag
(

B̂∆D̃
T Ĉ∆

)T

⊙
[

2ω

π(λ̂2
1+ω2)

. . . 2ω

π(λ̂2
r+ω2)

]

.

Just like the approximation error JH2,Ω
, its gradient with respect to the reduced-order param-

eters can be easily computed with simple matrix and vector operations. Again, in comparison,
with the gramian-based approach, in addition of what is required to compute the error, one
n× r Sylvester equation and one r× r Lyapunov equation must be solved and the derivative of
a complex matrix logarithm must be computed (see Section 5.2.2).

Conclusion

In this Chapter, the poles-residues formulation of the H2,Ω-norm has been used to express the
approximation error JH2,Ω between a large-scale model and a reduced-order one as a function of
its poles and residues. There exist similarities between the structures of the H2 approximation
error (4.3) and JH2,Ω (8.5) but in the frequency-limited case, additional weightings prevent from
formulating the cross terms as the transfer function of the large-scale model evaluated at the
opposite of the reduced-order model poles.

The approximation error H2,Ω has then been differentiated with respect to the reduced-order
model poles and residues in order to express the necessary conditions for optimality. Similarly
to the H2 case, these optimality conditions can be expressed as interpolation ones. Yet they
concern some modified transfer functions (8.22) and not directly the models transfer functions.
Hence it is not clear if an iterative procedure as the IRKA (see Section 4.2.1) could be developed
for the H2,Ω approximation. That is why an optimisation procedure is developed in the next
Chapter.

128



Chapter 9

Development of a descent algorithm
for the optimalH2,Ω approximation

problem

Since most of the readily available optimisation solvers do not handle real functions of complex
variables directly in the complex domain1, the poles-residues formulation of the JH2,Ω

error and
its gradient derived in the previous chapter are used here to develop a complex-domain descent
algorithm. It is called Descent Algorithm for Residues and Poles Optimisation (DARPO) and
relies on the complex-domain optimisation framework developed in [Sorber et al., 2012]. It is
aimed at finding a reduced-order model Ĥ that satisfies the first-order optimality conditions for
the optimal H2,Ω approximation problem. More specifically, by writing the transfer function

Ĥ(s) associated with Ĥ as

Ĥ(s) =
r∑

i=1

ĉTi b̂i

s− λ̂i
+ D̂,

DARPO is aimed at finding the poles λ̂i, the residues {ĉi, b̂i} (i = 1, . . . , r) and the direct
feedthrough D̂ that fulfil the necessary conditions for optimality presented in Theorem 16. Using
this framework implies that both models H and Ĥ have semi-simple poles only and that their
eigenvalues are not located symmetrically with respect to the imaginary axis. These hypothesis
on the structure of the poles restrict the models on which the method can be applied but enables
to efficiently compute the approximation error and its gradient.

The algorithm is described in Section 9.1 and its behaviour is illustrated on academic exam-
ples in Section 9.2.

The results presented in this Chapter have partly been published in [Vuillemin et al., 2014b].
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9.1 A descent algorithm in the complex domain

In Section 9.1.1, a quick reminder of some aspects of unconstrained optimisation of real functions
of real variables are recalled. Then, in Section 9.1.2, the optimisation algorithm for optimal H2,Ω

model approximation is presented. Finally, the initialisation process used in the algorithm is
detailed in Section 9.1.3.

1L. Sorber and his colleagues have now proposed a complex-domain optimisation toolbox in [Sorber et al.,
2013].
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9.1.1 Reminder of unconstrained optimisation

In this Section, some elements about unconstrained optimisation are recalled. For sake of sim-
plicity, only the case of real functions of real variables is presented, but the ideas are the same
for the unconstrained optimisation of real functions of complex variables and the corresponding
algorithms are similar.

Several algorithms are available to perform unconstrained optimisation (see for instance
[Fletcher, 2000]). Here, a quasi-Newton method based on the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update of the inverse Hessian approximation is considered. This method has been cho-
sen because it does not require the Hessian of the objective function and is known for its good
performances in practice [Li and Fukushima, 2001].

In the sequel, the ideas behind the BFGS update and the algorithm used to address the
line-search sub-problem are presented.

The BFGS update

Let us consider a twice differentiable real-valued function, f : Rn → R of a real vector x that
has to be minimised. The idea behind the Newton iteration is to replace f by its quadratic
approximation qk around the iterate xk,

f(xk + p) ≈ qk(p) = fk + pTgk +
1

2
pTHkp,

where fk, gk and Hk are the function, its gradient and its Hessian at xk, respectively, and to
minimise qk with respect to p instead of f . Since qk is quadratic in p the necessary conditions
for optimality leads to

pk = −Hk
−1gk,

which is a minimum if and only if Hk is positive definite. Then, the Newton iteration is given
by xk+1 = xk + αkpk with αk = 1.

The Hessian H can be large, hence computing and inverting it can be tedious. Alternatively,
it can simply not be available. The quasi-Newton methods are aimed at alleviating these issues
by estimating the Hessian Hk or directly its inverse Hk

−1 from the successive values fk and gk.
To this aim, let us define the position and gradient increments sk and yk, respectively, as,

sk = xk+1 − xk and yk = gk+1 − gk.

From a Taylor expansion, one obtains

yk = Hksk + o(sk). (9.1)

One looks for a matrix Bk+1 that mimics the property of the true Hessian (9.1), i.e. that satisfies
the secant equation

yk = Bk+1sk. (9.2)

For n > 1, there is no unique solution to equation (9.2), thus there are several ways to compute
Bk+1 or its inverse. Two common methods are the Davidson-Fletcher-Powell (DFP) method and
the BFGS update (and its limited memory extension). The latter consists in selecting the next
inverse approximation of the Hessian, B−1

k+1, as the symmetric positive definite matrix satisfying

(9.2) which is the closest of B−1
k with respect to the Frobenius norm. The inverse BFGS update

is given by

B−1
k+1 =

(

In −
skyk

T

yk
T sk

)

B−1
k

(

In −
yksk

T

yk
T sk

)

+
sksk

T

yk
T sk

.

With this quasi-Newton method, the search direction is given by pk = −B−1
k gk. If Bk is positive

definite, then
pk

Tgk = −gk
TB−1

k gk < 0,
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9.1. A descent algorithm in the complex domain

Figure 9.1: Illustration of the Armijo, Wolfe and strong Wolfe conditions.

which means that pk is a descent direction.
The position update is given by xk+1 = xk + αkpk, where the step length αk is no longer

necessarily equal to one as in the Newton iteration. It has to be determined with a line-search
algorithm which basic principle is described thereafter.

The line-search algorithm

The step length αk should ideally be chosen so that it is the global minimiser of the function

φ(α) = f(xk + αpk), (α > 0)

which represents the evolution of the objective function f in the direction pk from the point xk.
In practice, finding the optimal value of α is too expensive and an inexact line-search is used
instead. This approach consists in finding a step-length αk that ensures a sufficient decrease of
f in the direction pk.

The sufficient decrease of the objective function is generally represented by the Armijo con-
dition which states that αk should satisfies

φ(αk) = f(xk + αkpk) ≤ fk + c1αkgk
Tpk

︸ ︷︷ ︸

l(αk)

, (9.3)

with 0 < c1 < 1. Equation (9.3) means that αk must yield a value φ(αk) below the line l(α)
which has a negative slope and begins at fk = φ(0). This is illustrated by the blue intervals in
Figure 9.1.

Since any sufficiently small α satisfies equation (9.3), the Armijo condition is not enough to
ensure a sufficient progress along the direction pk. To alleviate this issue, it is completed by the
curvature condition

∇f(xk + αkpk)
Tpk

︸ ︷︷ ︸

φ′(αk)

≥ c2 gk
Tpk

︸ ︷︷ ︸

φ′(0)

, (9.4)
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Chapter 9. Development of a descent algorithm for the optimal H2,Ω approximation problem

where c1 < c2 < 1. Equation (9.4) states that the slope of φ at the point αk must be greater
than the slope at the initial point φ′(0) < 0. In other words, αk must lead to a point where
moving along pk does not result anymore in a decrease of the objective function as significant
as at the initial point.

Equation (9.3) together with (9.4) represent the Wolfe conditions. These conditions are
given by the intersection of the blue and orange intervals in Figure 9.1. Still, these conditions
do not ensure that αk leads to a point close to a local minimum, for instance, the rightmost
point of the first blue interval in Figure 9.1 satisfies the Wolfe conditions since at that point
φ′(α) > 0 > c2φ

′(0).
In order to be close to a local minimum of φ, the Wolfe conditions can be modified as

f(xk + αkpk) ≤ fk + c1αkgk
Tpk

|∇f(xk + αkpk)
Tpk| ≤ c2|gk

Tpk|,
(9.5)

which are known as the strong Wolfe conditions. Adding the absolute value prevents the points
α where φ has a too large positive slope to be kept as acceptable. The points that satisfy
the strong curvature condition are represented by the dark red interval in Figure 9.1 and those
that satisfy the strong Wolfe conditions are given by the intersection of the blue and dark red
intervals.

Several algorithms have been developed to determine a step-length αk that satisfies the
(strong) Wolfe conditions. Here, the method proposed in [Fletcher, 2000, Section 2.6] has been
chosen. It can be decomposed in two phases:

◮ Bracketing phase. This first step consists in finding an interval [a, b] which contains an
acceptable step length. This is achieved by creating a sequence of increasing step-lengths
αi. This phase stops either when one αi is an acceptable step-length (i.e. it satisfies
the strong Wolfe conditions) or when an interval that necessarily contains an acceptable
step-length is found. In the former case, the line-search algorithm ends. The latter case
happens when φ(αi) ≥ l(αi), when φ(αi) ≥ φ(αi−1) or when φ′(αi) ≥ 0 and leads to the
sectioning phase.

◮ Sectioning phase. The second step generates a sequence of brackets [ai, bi] which length
decreases until an acceptable step-length αk has been found. At each iteration i of the
sectioning phase, a trial step-length αi is chosen to lie inside [ai, bi]. This selection is
usually achieved such that αi minimises a quadratic or cubic interpolation of φ on the
interval. Then either ai or bi is replaced by αi to generate the next interval [ai+1, bi+1].
An iteration of this phase is illustrated in Figure 9.2 for the various cases that can arise.
The sectioning step stops when an acceptable step-length is found.

In practice, additional precautions must be taken with the sectioning phase. In particular

(i) when selecting αi in [ai, bi] by interpolation, one must prevent αi from being too close
to the bounds of the interval. In [Fletcher, 2000], this is achieved by selecting αi inside
[ai + τ2(bi − ai), bi − τ3(bi − ai)] where 0 < τ2 < τ3 ≤ 1

2 .

(ii) Near a stationary point, two consecutive values of the objective function φ(0) = f(xk)
and φ(αk) = f(xk + αkpk) might become too close, i.e. of the order of magnitude of
the machine precision. Hence a stopping criterion should be added to avoid any further
irrelevant iteration.

(iii) Similarly, the optimisation process should stop whenever the change in position from xk

to xk+1 is no longer sufficient.

The tools for unconstrained optimisation that have been described here are used in the next
session to perform optimal approximation in the H2,Ω-norm.
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9.1. A descent algorithm in the complex domain

Figure 9.2: Illustration of the sectioning phase of the line-search algorithm.

9.1.2 Descent Algorithm for Residues and Poles Optimisation

The complex-domain optimisation algorithm developed here is mainly based on [Sorber et al.,
2012] where the BFGS algorithm is formally extended for the optimisation of real functions of
complex variables. In practice, the resulting optimisation scheme is the same as its real counter-
part described in the previous Section excepted that the gradient becomes the conjugate complex
gradient, and that the transpose operations are replaced by conjugate transpose operations.

The method is called DARPO and is presented in Algorithm 11. Given the realisation
of a large-scale model H := (A,B,C,D) and a frequency interval Ω, the first step consists in
computing the eigenvalue decomposition of the large-scale matrix A in order to build the matrices
C∆ and B∆ involved in the computation of the approximation error and its gradient (see Remark
18 for some comments on this step). Then an initial reduced-order model is chosen as a vector

z0 containing the poles λ̂i and residues {ĉi, b̂i} (i = 1, . . . , r). The process of initialisation is
detailed in Section 9.1.3. Note that as explained in Remark 19, D̂ does not need to be taken
into account among the optimisation variables.

Then, while a stationary point has not been reached, the approximation error JH2,Ω
is com-

puted together with its gradient (step 6) at the current point zk. Then the conjugate of the
gradient of JH2,Ω with respect to z is used, together with the current inverse Hessian approxima-

tion Bk
−1 to set the descent direction pk. At step 8, the step-length αk that yields a sufficient

decrease of the objective function in the direction pk is determined with the inexact line-search
algorithm described in Section 9.1.1. Then, at steps 9 and 10, the next point zk+1 is created and
the inverse Hessian approximation is updated. Finally, the reduced-order model is built from
the optimal poles, residues and direct feedthrough at step 13.

Additionally, the tools developed in Section 7.3 can be used to bound the H∞-norm of the
error model and to build a frequency template that bounds the Frobenius norm of the error
model transfer function (and thus its maximum singular value). Since the eigen-decomposition
of the large-scale and reduced-order models are already available, these optional steps can be
achieved with a limited computational cost.

As the method FL-ISTIA presented in Chapter 6, DARPO has been integrated to the
MORE Toolbox [Poussot-Vassal and Vuillemin, 2012] and an example of its use can be found in
Appendix C.7.

Remark 18 (Computation of the eigen-decomposition of the large-scale model). The first step
of DARPO requires to compute the full eigen-decomposition of the initial large-scale model H.
This is computationally expensive and cannot be performed for too large models. And, unlike in
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the H2-case, one cannot avoid this decomposition because here the eigenvalue of the large-scale
model explicitly appear in the approximation error JH2,Ω

.
Hence, and as the other results based on the poles-residues formulation of the H2,Ω-norm,

this algorithm is restricted to the cases for which the eigen-decomposition is actually available.
This issue is not specific to this formulation though. Indeed, with the gramian formulation, the
logarithm of a complex n×n matrix has to be computed and at each iteration, two n×r Sylvester
equations have to be solved.

Some hints to alleviate the issue related to the computation of the full eigen-decomposition
are presented as a perspective in Chapter 11.

Remark 19 (About the direct feedthrough D̂ in DARPO). As mentioned in Section 8.2.2, the
optimal direct feedthrough D̂ can be determined uniquely from equation (8.23). Hence in Algo-
rithm 11, it is assumed that each time the objective function JH2,Ω

or its gradient is evaluated,

D̂ is replaced with its optimal value.

The following remarks can be addressed about Algorithm 11

◮ Step 6 : one part of the gradient of the approximation error is the complex conjugate of
the other. To decrease the number of operations required to evaluate the gradient, one can
compute it for the real variables and those which imaginary part is positive (or negative)
only and then re-construct the complete gradient by conjugating its complex elements.

◮ Step 13 : the realisation of the reduced-order model Ĥ = (Â, B̂, Ĉ) is obtained by creating

arbitrary complex vectors x̂i ∈ Cr×1 associated with the eigenvalues λ̂i which respect the
complex conjugation of the eigenvalues, i.e. if λ̂j = λ̂∗i then x̂j = x̂∗

i , and which are linearly

independent. Then, by denoting X̂ ∈ Cr×r the matrix which columns are the vectors x̂i,
∆ ∈ Cr×r the diagonal matrix containing the eigenvalues λ̂i, Ĉ∆ ∈ Cny×r (respectively
B̂∆ ∈ Cr×nu) the matrix which columns (lines) are the ĉTi (b̂i),

Â = X̂∆X̂−1

B̂ = X̂B̂∆

Ĉ = Ĉ∆X̂
−1.

This is a basis change between the complex diagonal realisation (∆, B̂∆, Ĉ∆) of Ĥ and
a real realisation. The vectors x̂i can for instance be chosen so that the real realisation
(Â, B̂, Ĉ) is block diagonal.

◮ Step 14 : since the poles and residues of both the large-scale and reduced-order models are
already known, the computation of the upper bounds Γ̄Ω(H − Ĥ) and ΓΩ(H − Ĥ) does
not require to solve any additional large-scale eigenvalue problem. Indeed the poles of the
error model E = H− Ĥ are the poles of H and Ĥ while its residues are composed of the
residues of H and the opposite of the residues of Ĥ. The same remark holds for Step 15.

◮ Note that the stopping criterion ‖∂JH2,Ω

∂z |z=zk
‖ ≤ ǫ is the ideal one2 and indicates that the

algorithm has reached a stationary point. Yet, as suggested in Section 9.1.1, one also checks
the progress made at each iteration in the direction pk through the difference between two
consecutive iterates zk and zk+1 and between the corresponding values of the objective
function. One can also directly check the norm of the derivative of JH2,Ω

in the direction
pk before performing a line-search, i.e.

∥
∥
∥pH

k

∂JH2,Ω

∂z∗

∣
∣
∣
z=zk

∥
∥
∥. (9.6)

2By ideal stopping criterion, one means that it is the most relevant criterion available here to determine if the
current point is close to a stationary point.
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Algorithm 11 Optimisation scheme of DARPO

Require: An initial model realisation A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu , a
frequency interval Ω and a reduction order r ∈ N∗.

1: Solve the large-scale eigenvalue problem

AX = X∆,

where ∆ = diag (λ1, . . . , λn), and compute

C∆ =
[
c1

T . . . cn
T
]
= CX and B∆ =

[

b1
T . . . bn

T
]T

= X−1B.

2: Choose an initial point z0,

z0 =
[

λ̂
(0)
1 . . . λ̂

(0)
r ĉ

(0)
1 . . . ĉ

(0)
r b̂

(0)
1 . . . b̂

(0)
r

]T

∈ C
N×1,

which contains the poles λ̂i and residues {ĉi, b̂i} (i = 1, . . . , r) that represent the initial
reduced-order model.

3: Set the initial inverse Hessian approximation B−1
0 = IN .

4: k ← 0.

5: while

∥
∥
∥
∥

∂JH2,Ω

∂z

∣
∣
∣
z=zk

∥
∥
∥
∥
> ǫ do

6: Compute the H2,Ω approximation error JH2,Ω
(zk) from equation (8.1) and its gradient at

the point zk,
∂JH2,Ω

∂z

∣
∣
∣
z=zk

by using the derivatives with respect to λ̂m and ĉm and b̂m

presented in equations (8.13), (8.15) and (8.14).

7: Set the descent direction as pk = −B−1
k

∂JH2,Ω

∂z∗

∣
∣
∣
z=zk

= −B−1
k

(
∂JH2,Ω

∂z

∣
∣
∣
z=zk

)∗

.

8: Determine the step length αk that minimises JH2,Ω
in the direction pk and such that

JH2,Ω(zk + αkpk) satisfies the complex strong Wolfe conditions (9.5).
9: Set the new point as zk+1 = zk + αkpk.

10: Build the next inverse Hessian approximation with the BFGS update

B−1
k+1 =

(

IN −
sky

H
k

yH
k sk

)

B−1
k

(

IN −
yks

H
k

yH
k sk

)

+
sks

H
k

yH
k yk

,

where zk = zk+1 − zk and yk =
∂JH2,Ω

∂z

∣
∣
∣
z=z∗

k+1

− ∂JH2,Ω

∂z∗

∣
∣
∣
z=zk

.

11: k ← k+1.
12: end while
13: Use λ̂

(k)
i , ĉ

(k)
i , b̂

(k)
i (i = 1, . . . , r) to construct Â, B̂ and Ĉ and use equation (8.23) to build

the optimal direct feedthrough D̂.
14: [Optional] Compute the upper bounds Γ̄Ω(H − Ĥ) and ΓΩ(H − Ĥ) with the methods from

Section 7.3.
15: [Optional] Build a frequency template G(s) that satisfies ‖G(jω)‖F ≥

∥
∥
∥H(jω)− Ĥ(jω)

∥
∥
∥
F

for all ω ∈ R with the method from Section 7.3.
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If (9.6) is low (of the order of magnitude of the machine precision), then it means that the
objective function is almost flat in the direction pk, i.e. that current point is a stationary
point. Hence, the line-search algorithm is unlikely to find a significant step-length αk.

About the stability of the reduced-order model. In its current state, there is no formal
guarantee that DARPO preserves the stability of the initial large-scale model. Even if an
unstable reduced-order model is not expected to be obtained from an initial stable reduced-
order model (see Example 17), two problematic cases can arise

(i) there is actually an unstable local minimum,

(ii) the local minimum is stable but the line-search algorithm produces a step-length αk that
makes the poles switch from the left half-plane to the right half plane.

There is not much that can be done in case (i) without using constrained optimisation but case
(ii) can be handled fairly easily in the unconstrained optimisation framework.

Indeed, let us consider a pole λ̂ located in the left half-plane at the left (along the real axis)

of its optimal value λ̂opt which is also in the left half-plane, i.e.

Re(λ̂) < Re(λ̂opt) < 0.

In that case, the real part of the descent direction p ∈ C associated with the pole λ̂ is positive. If
a too large step is performed in the direction p, then the next iterate of the pole, λ̂+ αp, might
ends up in the right half-plane. Whether this will happen depends on the line-search algorithm
used to determine the step-length α (see Section 9.1.1).

First, note that the parameter 0 < c1 < 1 used in the definition of the line decrease l(α) in
equation (9.3) controls the slope of l. More specifically, the smaller c1 is, the flatter the decrease
line is and the larger the interval of acceptable points with respect to the decrease condition is
(this can be seen in Figure 9.1). The line l(α) is involved in both the bracketing and sectioning
phase of the line-search algorithm and determines how far in the descent direction the algorithm
can look. The further one looks in the direction p, the more likely a large acceptable step-length
α will be found.

The initial step-length trial used in the bracketing phase also contributes to determine the size
of the initial interval containing an acceptable step length. Choosing 1 as initial value is standard
since the Newton iteration is mimicked when the approximate Hessian is representative enough
of the real Hessian. Yet this might directly leads to consider an interval containing step-length
sufficiently large to make λ̂ moves in the right half-plane.

Hence, to avoid selecting a step-length α that satisfies the strong Wolfe conditions but leads
λ̂ in the right half-plane, two solutions can be considered,

◮ the first one consists in increasing c1 to prevent the line-search algorithm from looking too
far from the current point,

◮ the second one consists in verifying if the initial step-length trial α = 1 leads λ̂ to move in
the right half-plane. If it does, then it can be replaced by

αmax = −Re(λ̂)

Re(p)
,

which represents the maximum allowed step-length for the next pole λ̂ + αp to lies in
the left half-plane. One must then ensure that the line-search algorithm chose a point in
[0, αmax[.

Note that if Im(λ̂+ αmaxp) ∈ Ω, then αmax is necessarily an acceptable upper bound for
the bracketing phase since the objective function is, by definition, infinite when some poles
of the reduced-order model are on the imaginary axis inside Ω.
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About the convergence. The optimisation method used inDARPO produces a sequences of
reduced-order models that yield monotonically decreasing H2,Ω approximation errors. Whether
the final reduced-order model is a local minimum or not cannot be ensured without precise
knowledge of the curvature of the objective function. Indeed, the global convergence of the
BFGS update used here is not fully known for non-convex functions. However in practice, the
BFGS update is known to be efficient and in [Li and Fukushima, 2001], the authors show that
the BFGS update is a specific case of their cautious BFGS update which is proven to make
the optimisation method globally convergent. Hence, DARPO is expected to lead to a local
minimum of the optimal H2,Ω approximation problem.

9.1.3 Initialisation of DARPO

Unlike the FL-BT or the FL-ISTIA, a relevant reduced-order model should be used as ini-
tial point with DARPO. Hence this algorithm should be considered as a refinement process
which cannot be considered separately from how it is initialised. Indeed, DARPO is a local
optimisation algorithm applied to a non-linear and non-convex optimisation problem, thus the
selection of the initial reduced-order model is extremely important and determines the quality
of the solution.

Various initialisation strategies can be considered :

◮ Random initialisation. The simplest strategy consists in using a randomly generated
model as initial point.

This initialisation method is straightforward but should not be used because (i) it is not de-
terministic and might produce different reduced-order models through successive launches
on an identical use case, (ii) it does not take into account the frequency interval Ω over
which the initial large-scale model has to be reduced and (iii) it does not exploit any
information about the initial large-scale model while its eigenvalues and eigenvectors are
known from step 1. In practice, this initialisation strategy performs poorly on non-trivial
applications and leads to a local minimum far from being satisfactory.

◮ Initialisation with another method. The second initialisation strategy consists in
using another model approximation method to produce an initial reduced-order model.
Since the aim here is to perform optimal H2,Ω approximation, the model approximation
method should take into account the frequency interval Ω. For instance, one could use one
of the methods presented in Chapter 5 (such as the FW-BT or the FL-BT) or one could
also use FL-ISTIA, the empirical method developed during this thesis and presented in
Chapter 6.

This strategy generally leads to reduced-order model of good quality (with respect to the
H2,Ω-norm of the error) and, depending on the initial model approximation that is used, it
can be deterministic and exploit the eigen-decomposition of the matrix A (for computing
the gramians for instance).

Yet, since it implies to use two different model approximation methods, this strategy is not
completely satisfactory but it may be considered when computation time is not an issue.

◮ Initialisation with a modal truncation. This initialisation strategy consists in setting
the initial reduced-order model as a modal truncation of the initial large-scale model. This
initial reduced-order model is the most natural since the eigen-decomposition of the initial
model is computed at step 1 of Algorithm 11. As the objective here is to minimise JH2,Ω ,
a relevant criterion must be built to determine the poles that must be retained. To that
aim, various criteria have been considered and the most relevant are,
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– to keep the poles λi and associated residues Φi that maximise

J (1)
init(λi,Φi) =

∥
∥
∥Φiatan

(
ω

λi

)∥
∥
∥
2
.

where Ω = [0, ω] (see Remark 20 for more complex intervals). This criterion is similar
to what can appear in standard modal approximation with in addition the weight-
ing term which decreases the influence of the residues associated with poles which

imaginary part is outside of Ω. J (1)
init can easily be evaluated and does not add much

computation.

– The second criterion consists in keeping the poles λi and associated residues Φi that
have the maximum influence in the H2,Ω-norm of H, i.e. those that yield the largest

J (2)
init(λi,Φi) = −Re

(

tr
(
ΦiH(−λi)T

)
atan

(
ω

λi

))

, (9.7)

where Ω = [0, ω]. Again, the function J (1)
init can easily be evaluated3.

– The third criterion consists in keeping the poles λi and associated residues Φi that
would make the best second-order (or first-order if the pole is real) approximation of
H over Ω, i.e. by denoting Hi(s) the transfer functions defined as

Ĥi(s) =
Φi

s− λi
+

Φ∗
i

s− λ∗i
,

the poles to retain are those that maximise

J (3)
init(λi,Φi) = −‖H − Ĥi‖2H2,Ω

.

This selection method is computationally more demanding than the two others since
it requires to evaluate several approximation errors.

None of these poles selection method really stands out of the other in term of global

performance but the two first ones are cheaper. The criterion J (1)
init tends to be more

relevant than J (2)
init when the considered frequency interval contains only poles associated

with small residues in comparison to other areas but might fail on simple unbounded

intervals like [0,∞). Hence, J (2)
init is considered as the default initialisation procedure in

the sequel if nothing else is specified.

Independently of the poles selection method, this initialisation strategy based on the modal
truncation fully exploits the fact that the eigen-decomposition of the matrix A is computed

in DARPO and in addition it does not add much extra computation if J (1)
init or J (2)

init is
used. Besides, the poles of the reduced-order model are generally not too far from the poles
of the initial large-scale model which can be attractive from a practical point of view.

The main flaw of this initialisation strategy is that if the frequency interval Ω does not
contain enough poles, then irrelevant poles outside of Ω are selected and they might not
be able to move inside the frequency interval of interest as suggested by Example 17.

From a practical point of view, this initialisation strategy must also be completed with a
safeguard procedure dealing with the incoherence that can appear between the reduction
order r and the poles selected. For instance, when r is odd while the candidate poles are
all complex, etc.

3Indeed, since the eigen-decomposition of the initial model is known, H(−λi) can be expressed with the

poles and residues of the transfer function and the criterion J
(2)
init can thus be computed in a similar way to the

approximation error JH2,Ω
in Section 8.1.2.
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Remark 20. For a more complex interval Ω =
⋃nΩ

k=1

[

ω
(k)
1 , ω

(k)
2

]

, where ω
(k)
1 < ω

(k)
2 , the weight-

ing function atan( ω
λi
) becomes

∑nΩ

k=1 atan(
ω

(k)
2

λi
)− atan(

ω
(k)
1

λi
).

Example 19 (Illustration of the initialisation strategy of DARPO). In this example, the poles

selection criterion J (2)
init given in equation (9.7) is computed as a function of the upper bound

ω of the frequency interval Ω in order to determine how the influence of a pole evolves as the
frequency interval cross its imaginary part.

For each pole and associated residue {λi,Φi}, J (2)
init(λi,Φi) is computed for various values of

ω. This is done with the LAH model and with the first input to first output transfer of the ISS
model. The frequency-responses of the models, as well as the values of the criterion are plotted
in Figure 9.3. The vertical dashed lines correspond to the imaginary part of the eigenvalues and

share the same colour as their corresponding criterion J (2)
init.

For both models, one can see that for poorly damped modes, the criterion J (2)
init increases

drastically when ω crosses the imaginary part of the corresponding pole. This is particularly
clear with the ISS model which has three modes that strongly dominate the others.

Note that J (2)
init does not produce perfectly intuitive results. Indeed, if one would like to reduce

the ISS model over Ω = [0,∞) to an order 4, then one needs to select two couples of complex
conjugate poles. The initialisation process will select firstly the pole associated with resonance
(1), then the (3) and surprisingly not the (2) while the latter yields a higher resonance around
20 rad/s than the former does around 40 rad/s.

It turns out that in that case, the intuitive poles selection strategy, when used as initial
reduced-order model in DARPO, yields a larger H2,Ω approximation error than if the initial-

isation is done with the criterion J (2)
init. This is illustrated in Figure 9.4 where the frequency

responses of the initial model is plotted together with the frequency responses of the two 4-th
order models obtained with DARPO by using the two different initialisation strategies.

The error between the initial model and the reduced-order model is lower when the non-
intuitive pole selection approach given by J (2)

init is used.

9.2 Numerical illustration

In Section 9.2.1, the behaviour of DARPO such as its convergence and the decrease of the error
is illustrated, then, in Section 9.2.2, the gain that it can provide with respect to its initial point
is evaluated. Finally in Section 9.2.3, it is used to demonstrate the process that can be followed
for the control of large-scale model.

9.2.1 Illustration of the behaviour of DARPO

Reduction of the ISS model over Ω = [0,∞)

The examples presented in [Beattie and Gugercin, 2009] (see Section 4.2.3 for more information
on the method developed in this article) are reproduced to illustrate the behaviour of DARPO
and to show that its performances are similar to the optimal H2 approximation model presented
in the paper when Ω is set to [0,∞). The examples are based on the first input to first output
transfer of the ISS model.

The r = 2 case. In that case, the initial model is reduced to an order r = 2 in order to
illustrate the convergence of the poles and residues of the reduced-order model. The poles and
residues are initialised as

λ̂ = −4× 10−3 ± j7.8× 10−1 and φ̂ = 2.5× 10−4 ± j2.2× 10−4,

which is similar to what is done in [Beattie and Gugercin, 2009].
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model (bottom).

140



9.2. Numerical illustration

10
−1

10
0

10
1

10
2

10
3

−120

−100

−80

−60

−40

−20

0

M
ag
n
it
u
d
e
(d
B

Pulsation (rad/s)

 

 

H
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Figure 9.7: Evolution of the relative H2 approximation error (top) and of the norm of the
gradient (bottom) for r = 20.

In Figure 9.5, the evolution of the relative H2 approximation error
‖H−Ĥ‖H2

‖H‖H2
is plotted

together with the norm of the gradient. The evolution of the real and imaginary parts of the
pole λ̂ and the residue φ̂ are plotted in Figure 9.6a and Figure 9.6b, respectively.

The resulting reduced-order model is the same as in [Beattie and Gugercin, 2009]. One can
observe that DARPO stops after 17 steps, but the approximation error, the poles and the
residues do not evolve much after 10 iterations. In the article, the convergence is reached after
∼ 5 steps, this difference comes from the method used to determine a new trial point. Indeed,
in [Beattie and Gugercin, 2009], the authors use a trust-region method while DARPO is based
on a line-search method. The former is more robust and has stronger convergence properties
but obtaining a new trial point is more costly than with the latter approach [Nocedal and Yuan,
1998].

Moreover, the final value reached by the norm of the gradient is here ∼ 10−9 which can
seem high. Nevertheless, the norm of the derivative of JH2

at the last iteration k in the descent
direction pk given by equation (9.6) is around 10−20, lower than the machine precision. It means
that at convergence, the objective function is almost flat in the direction given by pk. Hence,
the line-search algorithm cannot find a better trial point in that direction.

The r = 20 case. In that case, the ISS model is reduced to an order r = 20. In [Beattie and
Gugercin, 2009], a randomly generated initial point is used thus one cannot reproduce the same

test. Here, DARPO is initialised by the modal truncation with the criterion J (2)
init presented in

Section 9.1.3. The relative H2 approximation error is reported in Figure 9.7 together with the
norm of the gradient and, in Figure 9.8, the frequency responses of both models are plotted.

In Figure 9.7, one can see that the initial approximation error is already extremely low (0.9
%), hence DARPO barely decreases the error which finally falls to 0.89 %. The initial point
was already almost an optimal choice. This is not surprising since the ISS model has only poorly
damped modes, the modal approximation used as initialisation is already a good approximation.
On this kind of models and with this initialisation strategy, only the residues are modified by
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Figure 9.8: Frequency responses the reduced-order model obtained with DARPO (r = 20) and
of the initial model.

DARPO and the poles barely moves.
One can observe in Figure 9.8 that the reduced-order model matches perfectly the initial

model. Only some small dynamics around 10 rad/s are missed.

Evolution of the H2 and H∞-norms of the error for varying approximation orders

In this example, the ISS model is reduced to several orders r going from 2 to 30 with DARPO
over

◮ Ω = [0,∞) : in that case, the bounds Γ(H−Ĥ) and Γ̄(H−Ĥ) are computed and compared
to the real H∞-norm of the error ‖H − Ĥ‖H∞

through the relative quantities

Γ(H − Ĥ)

‖H‖H∞

,
Γ̄(H − Ĥ)

‖H‖H∞

and
‖H − Ĥ‖H∞

‖H‖H∞

.

The resulting values are plotted in Figure 9.9 (a). The relative H2 approximation error
‖H−Ĥ‖H2

‖H‖H2
is also plotted in Figure 9.9 (b).

◮ Ω = [0, 5] : here the bounds ΓΩ(H − Ĥ) and Γ̄Ω(H − Ĥ) are computed and the maximal
singular value σ̄Ω of H(jω) over Ω is measured. In Figure 9.9 (c), the relative quantities

ΓΩ(H − Ĥ)

σ̄Ω
and

Γ̄Ω(H − Ĥ)

σ̄Ω
,

are plotted. In Figure 9.9 (d), the relative H2,Ω-norm of the error is also plotted.

One can observe in Figure 9.9 (b) and 9.9 (d) that in both cases, the H2 and H2,Ω norm of the
error globally decrease as the approximation order r increases. Yet, the decrease is more regular
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LAH gmodal gFLISTIA gFLBT

mean 21.88 7.11 7.72
max 99.82 96.97 100
min 2.17 0.12 0.084
std 27.91 16.76 16.90
ISS
mean 4.99 0.95 0.67
max 58.69 99.99 100
min 7.61× 10−4 3.45× 10−5 1.08× 10−5

std 8.07 7.91 5.51
CBM
mean 46.45 15.17 24.08
max 100 99.99 100
min 0.26 1.30× 10−5 2.55× 10−5

std 38.51 19.75 28.67

Table 9.1: Gain provided by the use DARPO with respect to the modal truncation, the FL-
ISTIA and the FL-BT (in %).

in the H2 case than in the H2,Ω case. Indeed, one can for instance see in Figure 9.9 (d) that the
approximation error barely decreases between r = 20 and r = 25 and even increases between
r = 20 and r = 22. This comes from the initialisation process of DARPO. Indeed, for r ≥ 20,

the selection criterion J (2)
init presented in Section 9.1.3 starts to select irrelevant poles outside

the frequency interval which does not necessarily improve the approximation error inside the
frequency interval Ω. In that case, a lower approximation error can for instance be obtained if
FL-ISTIA is used to initialise DARPO.

In Figure 9.9 (a), one can see that in spite of the fact that the model is MIMO, the bound
Γ is very close to the true H∞-norm and that similarly to the H2-norm, the H∞-norm of the
approximation error decreases as the approximation order increases. In Figure 9.9 (c), one can
observe that globally, Γ̄Ω is decreasing with the increase of the order and that ΓΩ has an evolution
similar to the H2,Ω-norm of the approximation error.

Note that if the approximation error globally decreases both in mean value (through JH2,Ω
)

and in maximum value (through ΓΩ), this is not true outside the interval Ω. To highlight this
point, let us consider Ω2 = [5,∞) and compute, for r = 16, ‖H − Ĥ‖H2,Ω2

and ΓΩ2
(H − Ĥ) at

each iteration of DARPO. The H2,Ω-norms of the approximation error over Ω and Ω2 as well
as the bounds ΓΩ and ΓΩ2 are plotted in Figure 9.10.

As expected the error ‖H − Ĥ‖H2,Ω
decreases in the interval Ω but the norm of the approxi-

mation over Ω2 has an inverse evolution and increases during the iterations. The same increase
can be observed with ΓΩ2

(H − Ĥ). Over Ω, the upper bound ΓΩ(H − Ĥ) is lower at the last
iteration that at the first one but this could not have been the case given its evolution.

9.2.2 Improvement provided by DARPO

As mentioned earlier, DARPO is first of all a refinement process that improves, locally, the
quality of the given initial reduced-order model. Hence, one must be cautious when comparing
it. For instance, comparing DARPO initialised with a modal truncation based on the criterion

J (2)
init directly with other methods such as the FL-ISTIA only enables to say whether the modal

truncation is close to a local minimum better than the model obtained with FL-ISTIA. Instead,
here, one rather evaluates the improvement that DARPO can achieve given an initial reduced-
order model obtained with another approximation method.

In particular, the LAH, the ISS and the CBM models are reduced for various approximation
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9.2. Numerical illustration

orders and various frequency intervals (the same as in Section 6.2) with DARPO initialised
with

◮ a modal truncation obtained with the criterion J (2)
init,

◮ the modified FL-ISTIA obtained with the same parameters as in Section 6.2,

◮ the FL-BT.

The improvement led by the use of DARPO to each stable initial point is measured through
the gain4

g =
e0 − ef
e0

,

where e0 is the initial H2,Ω approximation error, i.e. the one obtained with the initial approx-
imation method used, and ef is the final approximation error. Since DARPO is a descent
method, necessarily ef ≤ e0. The statistical indicators of the gain provided by DARPO are
reported in Table 9.1 and its mean values for each approximation order r and for each upper
bound ω of the frequency interval are plotted in Figures 9.11 and 9.12, respectively. For each
couple of approximation order and frequency interval, the best initialisation point, i.e. the one
that led DARPO to the lowest approximation error, is represented in Figure 9.13.

One can observe that the gain provided by the use of DARPO greatly varies between the
models. Indeed, while it provides, in average, a great improvement for the approximation of the
CBM model, the gain is not extremely significant with the ISS model. Similarly, depending on
the initial method used for initialisation, the gain is more or less important. DARPO improves,
in average, more the modal truncation than the FL-ISTIA or the FL-BT.

One can also see that with the FL-ISTIA and the FL-BT, the minimum value of g is equal
to ∼ 10−5%. This means that DARPO does not modify much the initial point and does not
provide any significant improvement. It also means that the initial reduced-order model given
by FL-ISTIA or the FL-BT is already located extremely close to a stationary point. From
Figure 9.11, one can observe that, in average, the smallest values of gain are reached for small
approximation orders r. This is not surprising since the search space is smaller for low values
of r, hence there are less local minima. In general, the discrepancies between various model
approximation methods appear for higher approximation orders.

From Figure 9.12, one can also see that the gain tends to decrease as the frequency interval
widens. This is especially visible when the FL-ISTIA is used as initial method. This was
expected since as ω increases, theH2,Ω-norm tends towards theH2-norm and FL-ISTIA reduces
to ISRKA, a sub-optimal H2-model approximation method (see Section 4.2.2), when ω → ∞.
Hence, unless DARPO moves the poles of the reduced-order model, it is already optimal.

This suggests that DARPO is particularly interesting when the frequency interval is small
and the approximation order large since in those cases, the other approximation methods are
generally further from a local minimum.

Finally, from Figure 9.13, one can see that none of the initialisation method considered here
stands really out of the two others. Indeed, while the FL-BT leads in general to better reduced-
order model with the LAH model, it is not true anymore with the ISS and CBM models. Yet,
this representation does not show that often, the errors obtained from the three initialisation
strategies are actually extremely close.

4The cases for which the initial reduced-order model is unstable are discarded.
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Figure 9.11: Mean gain provided by DARPO on the LAH (top), ISS (middle) and CBM
(bottom) models for each approximation order r.
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(bottom) models for each upper bound ω of the frequency interval.
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Figure 9.14: Fl(P,K)

9.2.3 Application for the control of a large-scale model

In this Section, DARPO is used to demonstrate the process that can be followed for the design
of controller on large-scale models. Note that this example is not a real industrial application and
has been built up. Yet, the specifications have been chosen to be as representative as possible
of what could be found in a real application. The code of this example is available in appendix
C.8.

Description of the specifications

Initial control problem. Let us consider the ISS model H := (A,B,C), (n = 270, ny = 3
and nu = 3) which represents the transfer of a large flexible space structure with collocated
actuators and rate sensors. The initial control objective is to design a controller K of order
nk ≪ n that performs an input disturbance rejection of xdB = 30 dB. In other words, one would
like to find the controller K such that the difference between the H∞-norms of the open and
closed loops is, at least, of xdB , i.e.

20log10 (‖H‖H∞
)− 20log10 (‖HBF ‖H∞

) ≥ xdB ,

which can be rewritten as

‖HBF ‖−1
H∞
≥ ‖H‖−1

H∞
10xdB/20 = α, (9.8)

where α = 272.88 here. This disturbance rejection problem can be formulated as a standard
H∞ control problem aimed at finding K which solves the non-smooth optimisation problem,

K = arg min
K̃ stabilises P

K̃ ∈ K

‖Fl(P, K̃)‖H∞
,

where Fl(P,K) is the lower Linear Fractional Representation (LFR)5 formed by interconnecting
the plant P (s) with the gain K(s) as represented in Figure 9.14 and K represents the set of
nk-th order rational transfer matrices. Note that the H∞-norm of the LFR Fl(P,K) is simply
the H∞-norm of the closed-loop HBF from (9.8) scaled by α,

‖HBF ‖H∞
=

1

α
‖Fl(P,K)‖H∞

hence the disturbance rejection specification (9.8) can be rewritten as

‖Fl(P,K)‖H∞
≤ 1. (9.9)

Since the model H is positive, finding a controller K satisfying the rejection specification
(9.9) is simple (see [Balakrishnan, 1996]). Indeed, any sufficiently large negative static feedback

5A very comprehensive description of the LFR and associated manipulation can be found in [Magni, 2006].
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Figure 9.15: Singular values of the open-loop model H and of the closed-loop model Fl(P,K1)
obtained with the static output feedback K1(s).

is sufficient to damp all frequencies. For instance, let us consider the static feedback gain
K1 = −αI3, then the H∞-norm of the lower LFR Fl(P,K1) satisfies inequality (9.9), indeed

‖Fl(P,K1)‖H∞
= 0.9693 < 1.

This is illustrated in Figure 9.15, where the singular values of the open-loop and closed-loop
models H and Fl(P,K1) are plotted.

Adding actuators. To make the control problem more interesting and more realistic, a dy-
namic is added to represent the actuators. Let us consider the actuator Ac(s) = ac(s)I3 where
ac(s) is a damped second-order low-pass filter of bandwidth 20 rad/s, i.e.

ac(s) =
ω2
a

s2 + ξaωas+ ω2
a

,

with ξa = 1.4 and ωa = 20rad/s. Note that the actuator is built to have a static gain of 1,
which means that the assumption is made that it does not disturb the low frequency and does
not modify the H∞-norm of the LFR.

The H∞ control problem is consequently modified and consists now in finding the controller
K which solves

K = arg min
K̃ stabilises P

K̃ ∈ K

‖F (2)
l (P, K̃)‖H∞

, (9.10)

where F (2)
l (P,K) is the LFR obtained by adding the actuator dynamics to Fl(P,K) as repre-

sented in Figure 9.16. One can easily checks that the former static output feedback K1 is no
longer sufficient when the actuators dynamic is taken into account, indeed

‖F (2)
l (P,K1)‖H∞

= 6.5079 > 1.
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Figure 9.16: F (2)
l (P,K)

This can also be seen in Figure 9.17 (left) where the singular values of the open-loop and closed-
loop models are plotted. More importantly, the closed-loop becomes unstable when the feedback

gain increases, for instance one can observe in Figure 9.17 (right) that the closed-loop F (2)
l (P,K2)

where K2 = 3K1 has unstable poles. Hence, a dynamic controller has to be found to fulfil the
disturbance rejection when the actuator dynamic is taken into account.

Roll-off specification for the controller. In practice, it is common to restrain the dynamics
of a controller in high frequency in order to (i) attenuate the transmission of measurement noise
and (ii) to avoid to obtain the inverse of the actuator with a H∞ synthesis6. This constraint
can be translated in the H∞ control framework by adding the optimisation objective ‖WK‖H∞

,
where W (s) is a roll-off filter, to the previous optimisation problem (9.10) which therefore
becomes multiobjective,

K = arg min
K̃ stabilises P

K̃ ∈ K

max{‖F (2)
l (P, K̃)‖H∞

, ‖WK̃‖H∞
}. (9.11)

If the controller K(s) is such that ‖WK‖H∞
≤ 1, then it means that its dynamics are upper

bounded by the inverse of the roll-off filter W (s), i.e.

σi(K(jω)) ≤ σi(W−1(jω)), ∀ω ∈ R, i = 1, . . . , 3.

In addition, ‖WK‖H∞
≤ 1 ensures the strong stabilisation, that is to say that the controller

K(s) is stable. This property is quite recommended in space applications from a practical
implementation point of view.

Here the roll-off filter W (s) is designed in the following way

◮ one would like a roll-off of 40db/decade on each axis, hence the roll-off filter W (s) is
chosen as a diagonal transfer matrix where each diagonal entry is a damped, invertible,
second-order model.

◮ In addition, since one knows that α is the required gain to achieve the disturbance rejection
specification without actuator, the controller must, at least, be allowed to reach this value
for frequencies lower than 40rad/s where the last resonance of the model H is located.
Hence, one wants that

|W−1(jωro)| = ρα, ρ > 1,

Here, ρ is set to 3 in order not to be too restrictive.

6Indeed, K(s) = −αA−1
c (s) cancels the dynamics of the actuator and achieves the disturbance rejection. Yet

in practice, it is not acceptable because the dynamic of the actuator is not perfectly known and noise is likely to
be present on the output y.
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Figure 9.17: Singular values of the open-loop and closed-loop models H and F (2)
l (P,K1) (left)

and poles of the open-loop and closed-loop models H and F (2)
l (P,K2) where K2 = 3K1 (right).

By taking into account these two points, the filter can be chosen for instance as

W (s) =
1

ρα

s2

ω2
ro

1
(pωro)2

s2 + ξ
pωro

s+ 1
I3,

where ρ = 3, ωro = 40 rad/s, p = 300, ξ = 1.4. Note that decreasing ρ or ωro makes the control
problem harder since the inverse of W (s) is then constraining the dynamics of the controller
directly below 40rad/s where the last resonance of the model is located.

Note that since the filter W (s) imposes a second-order roll-off on each one of the three axis,
the order of the controller must at least be equal to 6.

Solving the H∞ control problem

The multiobjective H∞ control problem (9.11) can be solved using dedicated non-smooth opti-
misation tools [Apkarian and Noll, 2006; Gumussoy et al., 2009]. However, the size of the model
H slows down the optimisation process and can prevent it from satisfying the constraints due
to the presence of more local minima. Model approximation can be used to alleviate this issue.

Indeed, let us consider Ĥ, the r-th order approximation of H and G, the frequency template
built with the method proposed in Section 7.3.4 and whose transfer function G(s) satisfies, for
all ω ∈ R,

‖G(jω)‖F ≥
∥
∥
∥H(jω)− Ĥ(jω)

∥
∥
∥
F
≥ σmax(H(jω)− Ĥ(jω)). (9.12)

The frequency template G represents the error induced by the approximation and can be seen
as an additive uncertainty on the reduced-order model Ĥ. This reduced-order uncertain model
encompasses all the dynamics of the large-scale model.

By synthesising a controller K(s) that ensures the robust stability of Ĥ with respect to the
uncertainty G, then it is guaranteed to stabilise the large-scale model H. Hence, a stabilising
controller K(s) for H can be found by solving the following H∞ control problem

K = arg min
K̃ stabilises P̂

K̃ ∈ K

‖F (3)
l (P̂ , K̃)‖H∞

,
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Figure 9.18: F (3)
l (P̂ ,K)

where F3
l (P̂ ,K) is the low-order LFR formed by interconnecting the reduced-order plant P̂ with

K(s) and Ac(s) and by adding the uncertainty G(s) in output of the performance channel as
represented in Figure 9.18. Note that the method to build the frequency template G proposed
in Section 7.3.4 produces a SISO model while the model here is MIMO. That is why one has to
create the MIMO transfer matrix G(s)I3.

Hence, instead of (9.11), one rather wants to find K(s) that solves

K = min
K̃ stabilises P̂

K̃ ∈ K

max{‖F (2)
l (P̂ , K̃)‖H∞

, ‖WK̃‖H∞
, ‖F (3)

l (P̂ , K̃)‖H∞
}. (9.13)

The differences between the H∞ control problem (9.11) and (9.13) are

(i) the new H∞ problem involves only low-order models while the problem (9.11) involves the
initial large-scale plant P ,

(ii) the optimisation channel ‖F (3)
l (P̂ , K̃)‖H∞

in (9.13) ensures that the controller K(s) sta-
bilises the large-scale plant P by synthesising a robust controller on the low-order uncertain
model,

(iii) the performance channel ‖F (2)
l (P̂ , K̃)‖H∞

guarantees that the controller K(s) ensures the

disturbance rejection on the low-order LFR F (2)
l (P̂ , K̃) but it is not necessarily true on

the large-scale one F (2)
l (P, K̃).

The last point implies that the H∞-norm of F (2)
l (P, K̃) must be recomputed afterwards to check

if it is inferior to 1 (see Remark 21). With a sufficiently accurate reduced-order model Ĥ, one
expects the constraint to be satisfied though.

Remark 21 (Robust performance). In order to guarantee that the disturbance rejection is sat-
isfied on the large-scale model, the controller K(s) should be synthesised using µ-synthesis to
ensure the robust performance of the controller with respect to the approximation error.

The available methods for µ-synthesis lead to controllers of the same dimension as the plant
which is not necessarily interesting. One way to address the issue here is to perform a H∞

synthesis based on the H∞ control problem represented in Figure 9.20. However, with this
approach, only sufficient conditions can be fulfilled, hence the controller might be conservative.
Here, with the specifications considered in the control problem, no satisfactory solution is found
with this approach.

In this example, the H∞ control problem (9.11) on the large-scale plant P has not led to
a solution which satisfies all the constraints (γ = 2.8). In particular, the template imposed by
the roll-off filter has not been satisfied. By relaxing the latter, i.e. by increasing ρ, a satisfying
controller can be found.

For the problem (9.13), the large-scale model H has been approximated to an order 30 with
DARPO over Ω = [0, 40] and the frequency template has an order 2. The singular values of the
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Figure 9.20: H∞ control problem for robust performance.

approximation error H − Ĥ and of the frequency template G are plotted in Figure 9.19 where
one can observe that the constraint (9.12) is indeed satisfied.

On this low-order H∞ problem, a controller K(s) is found such that

max{‖F (2)
l (P̂ ,K)‖H∞

, ‖WK‖H∞
, ‖F (3)

l (P̂ ,K)‖H∞
} = 0.9086 < 1,

which means that the robust stability, the roll-off specification and the disturbance rejection on
the low-order plant are all satisfied. To verify that the disturbance rejection is also satisfied on
the large plant P , one must compute the H∞-norm of the large LFR, i.e.

‖F (2)
l (P,K)‖H∞

= 0.9097 < 1.

The disturbance rejection of 30dB can be seen in Figure 9.21 where the singular values of the
open-loop, low-order closed-loop and large-scale closed-loop are plotted. The difference between
the low-order (green) and the large-scale (red) closed-loops is barely noticeable here. One can
also see that the synthesised controller K(s) satisfies the constraint imposed by the roll-off filter
W (s) in Figure 9.22.

Note also that by approximating the large-scale model H over Ω = [0,∞), no satisfying
controller is found. This is certainly due to the fact that the 30-th order approximation over
[0,∞) misses a low frequency resonance on the second input to second output transfer while the
reduced-order model obtained by approximation over [0, 40] catches it.
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Conclusion

The poles-residues formulation of the H2,Ω approximation error between a large-scale model and
a reduced-order one together with its gradient, developed in Chapter 8, have been used here in
a complex-domain, quasi-Newton optimisation algorithm. This optimisation algorithm relies on
the BFGS update of the approximate inverse Hessian and on an inexact line-search method sat-
isfying the strong Wolfe conditions. The resulting approximation algorithm DARPO produces
a sequence of reduced-order model which yields a monotonically decreasing H2,Ω approximation
error with the initial large-scale model and is expected to converge towards a local minimum.

DARPO is a local optimisation procedure and is therefore particularly dependent of the
initial point it is given. The modal truncation is the most natural initial reduced-order model
that can be used but other frequency-limited methods can also be used. Depending of the
proximity of the initial reduced-order model to a local minimum, DARPO can bring substantial
improvement with respect to the initial point.

DARPO has also been used in a simple process for designing a stabilising controller for a
large-scale model. It consists in building a frequency template upper bounding the approximation
error with the method proposed in Section 7.3.4 and to consider it as an additive uncertainty on
the reduced-order model. A robust controller can then be designed on this low-order uncertain
model and is guaranteed to stabilise the initial large-scale model.

In the following Chapter, DARPO is used together with FL-ISTIA on an industrial appli-
cation as part of a global process used to design control laws on large-scale aircraft models.
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Chapter 10

Industrial aeronautical use case

The study detailed in this chapter has been motivated by the increasing dimension of the models
representing civilian aircraft which prevents standard control design methods from being directly
used. An approximation step is mandatory and this step must not weaken the robustness and
performance properties of the controllers that are designed. Indeed, in the aeronautical context,
strong constraints can exist on the control laws in order to satisfy safety specifications. Several
steps have been taken towards this goal,

◮ in a first time, the performances of several model approximation methods, including FL-
ISTIA, have been evaluated on the large-scale models representing the longitudinal be-
haviour of a long-range flexible civilian aircraft in [Vuillemin et al., 2012a, 2013b],

◮ then FL-ISTIA and DARPO have been used to enable the design of (i) an anti-vibra-
tion control law for a business jet aircraft [Poussot-Vassal et al., 2013] and (ii) a control
law ensuring flight performance and load clearance in presence of input saturation on a
longitudinal aircraft model [Burlion et al., 2014].

◮ Model approximation has also been used as the starting point in a modelling process
aimed at creating a low-order uncertain, parameter varying model from a set of large-scale
dynamical models [Poussot-Vassal and Vuillemin, 2013; Poussot-Vassal et al., 2014],

◮ thanks to this process, the global stability and performance of the set of controlled large-
scale models representing the business jet aircraft subject to actuator saturation have been
proven by taking into account the error induced by the approximation and the interpolation
of the initial large-scale models [Vuillemin et al., 2014a].

In this Chapter, the global process used for the design and validation of an anti-vibration
control law for a business jet aircraft is detailed. In particular, in Section 10.1, the preliminary
approach used to design an anti-vibration control law for one model representing a business
jet aircraft at one single flight operating condition is described. The stability of the controller
obtained from the generalisation of this approach to the set of models representing the aircraft
at different Mach-numbers is then assessed in Section 10.2 in presence of input saturation.

Note that this process involves way more methods and tools than model approximation only
which are out of the scope of this study. Hence all the steps cannot be covered in depth, but
adequate references are pointed out when required.
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Chapter 10. Industrial aeronautical use case

10.1 Vibration control for one business jet aircraft model

The motivations and general industrial framework of this study are described in Section 10.1.1.
The general control problem is then formulated in Section 10.1.2 and addressed in Section 10.1.3.
Finally, the numerical results are presented in Section 10.1.4.

10.1.1 General industrial framework

In aeronautics, engineers have often to cope with many technical and practical problems for the
design of a control laws caused by the complexity of the underlying models which are referred
as aeroservoelastic models. Such models take into account

◮ the physic involved in the aeroelastic phenomena such as the structural loads (e.g. ma-
noeuvres) or the aerodynamics loads (e.g. gusts),

◮ the flight control system behaviour, i.e. the dynamics of the actuators (aerodynamic con-
trol surfaces) and the sensors (e.g. accelerometers and gyrometers), eventual measurements
delays, etc.

◮ uncertainties concerning the characteristics and state of the aircraft such as its mass (which
varies during the flight due to the tanks filling), its speed, its flight altitude, etc.

For industrial civilian aircraft, these models are generally composed by a set of large-scale models
representing the aircraft at different flight operating conditions.

Based on these aeroservoelastic models, nominal flight control laws are designed such that
(i) the robustness (stability and performances) of the aircraft over the whole parametric domain
(speed, altitude, etc.) is guaranteed, (ii) flying quality specifications (i.e. fast and smooth
response to pilot commands and rejection of gust disturbances) are satisfied.

In addition, comfort control laws1 are designed in order to attenuate the undesirable vibra-
tions which are likely to appear due to aerodynamics disturbances. For instance, disturbances
on the rear part of the aircraft can generate vibrations in the cockpit or in the cabin. These
anti-vibration control laws must also satisfy some constraints, in particular (i) they are required
to reduce the vibrations to a specified level, (ii) they must have a negligible effect on the nominal
control law and (iii) they must be of low complexity.

Here, the preliminary study for the design of such an anti-vibration control law for an indus-
trial business jet aircraft (denoted BizJet in the sequel), in the context of a collaboration between
Onera and Dassault-Aviation, is presented. More specifically, and with reference to Figure 10.1,
the objective is to design an anti-vibration control law (in red) for a large-scale BizJet model
controlled by its nominal flight control law (in blue) which respects the specifications mentioned
above. This objective is challenging for several reasons,

◮ the large dimension of the model (n ≈ 600) prevents from applying directly standard
control tools,

◮ the undesirable vibrations should be attenuated over a specific frequency range only (re-
lated to passenger and pilot comfort specifications),

◮ the nominal flight control law performances must be preserved and high frequency lightly
damped modes must remain sufficiently stable,

◮ the anti-vibration control is based on the deflection of existing control surfaces which means
that no dedicated actuators are available to achieve the objective.

1Actually, these control-laws also enable to decrease the loads on the structure of the aircraft.
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Figure 10.1: BizJet model (H) and anti-vibration controller.

The approach used to achieve that objective is in three steps (i) first, the large-scale model
is reduced, (ii) then, a general control problem is formulated by using suitable weighting filters
which capture the frequency-limited nature of the objectives, (iii) finally, a structured controller
based on non-smooth H∞ synthesis is designed. At this stage, the approximation step does
not offer any kind of guarantee for the controller designed on the reduced-order model, hence,
the anti-vibration control law must be validated experimentally on the large-scale BizJet model.
This issue is alleviated in Section 10.2 by a rigorous global stability analysis.

10.1.2 Problem formulation and business jet aircraft model approxi-
mation

Control problem formulation

The initial BizJet aircraft model is of order n = 597, has nu = 2 inputs,

◮ wa(t), the external disturbance input representing the aerodynamic disturbance affecting
the rear part of the aircraft,

◮ ua(t), the anti-vibration control output, i.e. the input of the elevator on the rear part,

and ny = 3 outputs,

◮ acont(t), the vertical acceleration output, used by the nominal flight controller,

◮ qcont(t), the pitch rate of the aircraft, used by the nominal flight controller,

◮ apil(t), the acceleration sensor located close to the pilot’s seat, which has to be monitored
for comfort issues.

Let us denote by Twa→apil
and Twa→acont

the transfers, in the nominal case (i.e. without the
anti-vibration control law) from the disturbance input to the acceleration of the pilot and to the
vertical acceleration, respectively. An let us denote by Fl(H,K)wa→apil

and Fl(H,K)wa→acont

the same transfers when the anti-vibration loop is closed with the controller K.
Let us reformulate the objectives and constraints related to the desired controller,
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◮ Objectives : the controller should reduce the pilot acceleration response apil(t) to an
aerodynamic disturbance wa(t) over Ω1 = [ω1 ω2] while keeping this transfer as unchanged
as possible in Ω2 = [0, ω1]

⋃
[ω2, ω3], (ω1 < ω2 < ω3).

◮ Constraints : the controller must not modify the transfer Twa→acont
of more than 20% of

its nominal value for frequencies inferior to ωc and it must be asymptotically stable (strong
stability). Additionally, the controller should be of the lowest achievable complexity2.

These objectives and constraints are stated more formally by using the frequency-limited H2-
norm as the problem of finding the controller K which solves

K = argmin ‖Fl(H, K̃)wa→apil
‖H2,Ω1

s.t.

(i) maxω∈[0,ωc]

∣
∣
∣
Fl(H,K̃)wa→acont

(jω)−Twa→acont
(jω)

Twa→acont
(jω)

∣
∣
∣ < 0.2

(ii) maxi Re
(

λi(K̃)
)

< 0

(iii) ‖Fl(H, K̃)wa→apil
− Twa→apil

‖H2,Ω2
≤ β

(10.1)

While the constraints (i) and (ii) are required, the third one is looser, that is why (iii) has been
mentioned as an objective before, i.e. one would like the closed-loop transfer from wa to apil to
remain as unchanged as possible over Ω2.

Note that to the author’s knowledge, there is no tool to solve a H2,Ω control problem, hence
in the sequel, a H∞ control problem which mimics problem (10.1) is built and addressed instead.
To alleviate the computational complexity induced by the large dimension of the aircraft model,
a preliminary approximation step is performed.

Model approximation

To chose a suitable reduced-order model, the relative approximation errors obtained by approx-
imating it with the sub-optimal H2 model approximation method ISRKA (see Section 4.2.2)
and the BT (see Section 3.1.2) are computed for varying approximation orders r going from 2
to 50 and reported in Figure 10.2.

The first observation that one can make is that the ISRKA leads generally to a better
reduced-order model than the BT on this model. Yet, what is really important to notice here is
the relative errors achieved by the approximation methods. For r = 2, the relative approximation
errors are between 80% and 100% and fall below 10% only for r = 50. The relative errors are
significantly higher than what could be achieved on the simpler benchmarks considered in the
other chapters of this thesis. It highlights the complexity of the underlying model which cannot
be reduced efficiently with a very low order model.

In the sequel, the large-scale model H is replaced by the 50-th order approximation Ĥ
obtained with the ISRKA.

10.1.3 Anti-vibration control design

To design anti-vibration controllers, engineers generally rely on their expertise of the physical
system. Yet, due to the complexity of the design problems, this approach often requires several
trials and errors. Here, a more generic approach based on the reformulation of the problem into
a H∞ optimisation one is considered.

2Limiting the complexity of the controller enables to simplify the implementation process and the eventual
re-tuning performed during flight tests.
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model and its approximation for varying orders r obtained with the ISRKA and the BT.
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Figure 10.3: General control problem.

General control problem

The first step in H∞-synthesis is to express the control plant P̂ involved in the general control
problem formulation (see for instance [Zhou et al., 1995; Apkarian and Noll, 2006; Burke et al.,
2006]). This general plant is illustrated in Figure 10.3 and represents the interconnection of
the open-loop model Ĥ (in violet) and the performances objectives which are characterised by
weighting functions (in green). The H∞ control problem then consists in finding a controller
K ∈ K which solves

K = arg min
K̃ ∈ K

K̃ stabilises P̂

‖Fl(P̂ , K̃)‖H∞
. (10.2)

Here, the signals used to build the standard control problem are the following,

◮ w̃(t) = w(t) = wa(t) (Wi = 1), representing the only exogenous input,

◮ u(t) = ua(t), representing the only control input,
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◮ the measured output vector y(t) is composed of acont(t), qcont(t) and apil(t),

◮ z(t) =Woz̃(t), which gathers the output performances.

More specifically, the performance signal z(t) is linked to (i) the input signal ua(t), (ii) the
acceleration of the pilot apil(t) and (iii) to a fictive error signal ācont(t)− acont(t) where ācont(t)
is a reference signal allowing to fulfil constraint (i) from (10.1). In other words, z(t) can be
written as

z =





z1
z2
z3



 =





We 0 0
0 Wu 0
0 0 Wav





︸ ︷︷ ︸

Wo





ācont(t)− acont(t)
ua
apil



 ,

where

◮ We is designed as a ne-th order invertible low-pass filter aimed at penalising the error
ācont − acont in low frequency,

We =
Gωc

Gle

(
1

ωe2
s+ 1

1
ωe1

s+ 1

)ne

where

– Gle enables to set the maximum low frequency gain that the controller is allowed to
reach for that transfer,

– ωe1 < ωe2 are the cut-off pulsations,

– Gwc
is the inverse of the gain of the uncontrolled transfer from wa to acont evaluated

at wc, i.e. |Twa→acont
(jωc)|−1. It enables to normalise the performance channel.

◮ Wu is an invertible nu-th order high-pass filter aimed at penalising the command in high
frequency,

Wu =
1

Glu

(
1

ωu1
s+ 1

1
ωu2

s+ 1

)nu

with ωu1 < ωu2. This filter allows a signal amplification of gain Glu in low frequencies up
to wu1 and add a roll-off in higher frequencies.

◮ the filter Wav is a first-order low-pass filter aimed at preventing the controller to modify
Twa→apil

in low frequency,

Wav = Gav
1

1
ωav

s+ 1
.

The gain Gav is also normalised by the highest gain of the nominal transfer from wa to
apil.

With reference to problem (10.1), the filter We translates the constraint (i), the filters Wu and
Wav translate together the main objective and the constraint (iii). Note that even if those filters
involved several tuning parameters, they can easily be linked with engineers specifications.

The reference signal ācont must represent the transfer Twa→acont
in low frequency, i.e. below

the pulsation ωc. Since this transfer is of high order, it cannot be used directly, instead, it is
replaced by its frequency-limited approximation Ĥωc

over [0, ωc] obtained with the FL-ISTIA
and the reference signal is chosen as

ācont = Ĥωc
wa,

The frequency responses of both models are plotted in Figure 10.4 and one can observe that Ĥωc

matches well the behaviour of Twa→acont
for ω ≤ ωc.
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Structured H∞ design

Now that the standard control problem has been formulated, it can be solved. Clearly, since
problem (10.1) requires the controller to be as simple as possible, full-order design must not be
considered. Instead, structured H∞ synthesis is used [Apkarian and Noll, 2006; Burke et al.,
2006]. Such a synthesis allows to choose the order of the controller as well as its structure.

Overall process

Since the approximation step does not offer any guarantee on the synthesised controller, a trial
and error process cannot completely be avoided for the design of this anti-vibration control law.
However, the overall process presented here has the advantage to assist the engineers by making
the approximation and control steps more systematic. It can be summarised as follows,

(1) compute a reduced-order model Ĥ from the large-scale BizJet aircraft model,

(2) generate a candidate controller K by solving the H∞ control problem (10.2),

(3) perform an analysis step on the reduced-order model,

– if it is not satisfactory, then modify (relax) the gains of the weighting filters or increase
the order of the desired controller and return to step (2),

– otherwise, perform an analysis on the large-scale model,

∗ if it is not satisfactory, then modify the weighting filters or increase the order
of the controller and return to step (2) or increase the approximation order and
return to step (1),

∗ otherwise, stop.
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Figure 10.5: Open and closed loops of the objective (top) and constraint (bottom) transfers.

10.1.4 Numerical results

In this case, a controller K of order nk = 6 which solves the H∞ control problem (10.2) (with
γK = 0.97 < 1) is obtained with the previous process and increasing further the order does not
help improving the performances anymore.

With this controller, the mean vibration attenuation achieved in the frequency interval Ω1 =
[ω1, ω2], measured through the decrease of the H2,Ω-norm over this interval, is of 27%, i.e.

‖Twa→apil
‖H2,Ω1

− ‖Fl(H,K)wa→apil
‖H2,Ω1

‖Twa→apil
‖H2,Ω1

= 27%. (10.5)

The attenuation can also be measured by comparing the highest gains in Ω1 reached in open
and closed-loop by using ΓΩ1 (see Section 7.3) to compute

ΓΩ1
(Twa→apil

)− ΓΩ1
(Fl(H,K)wa→apil

)

ΓΩ1
(Twa→apil

)
= 51%. (10.6)

Since the models in (10.6) are SISO, the bounds ΓΩ1
coincide with the maximum singular values

of the corresponding transfer functions in Ω1. These results can be visualised in Figure 10.5
(top) where the frequency responses of the open and closed loops of the performance transfer
are plotted.

One can also check that the transfer from wa to apil has not been too modified by the
anti-vibration controller by computing the mean error between the open and closed loops over
Ω2 = [0, ω1]

⋃
[ω2, ω3],

‖Twa→apil
−Fl(H,K)wa→apil

‖H2,Ω2

‖Twa→apil
‖H2,Ω2

= 28%. (10.7)

Note that (10.5) and (10.7) does not represent the same quantities at all. Indeed, with reference
to Figure 10.5 (top), (10.5) represents the proportion of the area between the blue and red curves
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in Ω1 in comparison to the area below the blue curve in the same interval while (10.7) represents
the proportion of the mean absolute gap between the red and blue curves over Ω2 in comparison
to the area below the blue curve over Ω2. The high value of (10.7) comes from the gap between
the open and closed loops which appears just before ω1 and just after ω2 (the scale is logarithmic
in Figure 10.5). Yet, the error has been judged acceptable and the controller validated.

Besides, in Figure 10.5 (bottom), one can observe that for frequencies ω ≤ ωc, the closed-loop
Fl(H,K)wa→acont

remains in the envelope formed by ±20% of the open-loop transfer Twa→acont
.

Conclusion

In this section, the approach that has been followed in order to design an anti-vibration control
law for one large-scale BizJet aircraft model has been presented. Although it is not completely
generic, the approach has greatly simplified the process of designing a controller subject to
various constraints.

The design process presented here represents only a preliminary study to what has finally
been used in practice. Indeed, here, only one model representing the aircraft at one single
flight operating condition has been considered. The final controller K has been obtained by
generalising this control process through a multi-model H∞ synthesis (not detailed here). The
global stability of this final controller is assessed in the next section through a global stability
analysis.

10.2 Global stability validation of a parameter varying
business jet aircraft

In this Section, the anti-vibration controller K generated by the multi-model extension of the
process described in Section 10.1.3 is considered. Its stability must be assessed over the full
parametric domain in presence of actuator saturation. The problem is stated more formally
in Section 10.2.1 while Sections 10.2.2, 10.2.3 and 10.2.4 describe the three steps involved to
address this problem.

10.2.1 Problem statement

Let us consider the set of large-scale models {H1, . . . ,HN} (in blue in Figure 10.6), which
represent the BizJet aircraft model at different flight operating conditions, interconnected with
the controller K (in purple), which output is subject to a magnitude saturation (in red). The
objective here is to prove the stability of this large-scale controlled aircraft model over the
continuum of parameter variation when the actuator is subject to a saturation. In this study,
the Mach-number is the only varying parameter considered and there are N = 3 large-scale
models.

To this aim, a three steps methodology is followed

(i) first, in Section 10.2.2, each large-scale model is approximated over a frequency-limited
interval and a frequency template is built to bound the worst approximation error3,

(ii) then, the set of reduced-order models are interpolated into an LFR with a bound on the
interpolation error in Section 10.2.3,

(iii) finally, the stability validation is performed in Section 10.2.4 with an irrational multipliers-
based Integral Quadratic Constraint (IQC) approach.

3The robust controller designed by multi-model H∞ synthesis considered in this section is based on these
frequency-limited reduced-order models.
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Figure 10.6: Controlled large-scale models Hi (i = 1, . . . , N) with a saturation in input.

Together, steps (i) and (ii) are aimed at transforming the initial set of controlled large-scale
models (green block in Figure 10.6) into a low-order uncertain and parameter varying model
Ĥ(∆r, δM , δerr) as represented in Figure 10.7 where ∆r(s) and δerr embed the approximation
and interpolation errors, respectively. These errors bounds are finally taken into account in step
(iii) with the saturation to check if necessary conditions for stability are fulfilled.

Note that an in-depth description of the techniques and tools involved in steps (ii) and (iii) is
out of the scope of this manuscript. For further information on the method used for interpolating
a set of models into a LFR, refer to [Ferreres, 2011]. The irrational multipliers-based approach is
an extension of the method presented in [Demourant, 2013]. Additional useful information and
references can also be found on the site of the SMAC Toolbox, http://w3.onera.fr/smac/,
which gathers the tools used for steps (ii) and (iii).

10.2.2 Model approximation & error bounding

Approximation of the large-scale models

Here, the reduced-order models are aimed at being interpolated in place of the large-scale ones.
For this interpolation process to be as simple as possible and for the resulting parameter varying
model to have a low-complexity with respect to the parameters, the dimension of the reduced-
order models to be interpolated must be as low as possible. Hence, unlike in Section 10.1 where
the controller has been synthesised, one cannot consider 50-th order approximations.

To limit the complexity of the reduced-order models, the initial large-scale models are reduced
over the bounded frequency interval Ω = [0, ω3] which is where the main dynamics of the models
are located. Discarding the higher frequency dynamics makes sense since (i) the dynamics they
represent are not perfectly known, hence discarding them during the approximation process only
implies a higher uncertainty at high frequency for the low-order uncertain model and (ii) since the
controller K has been designed with a roll-off filter preventing it from disturbing high frequency,
it is unlikely that unstability in closed-loop comes from these dynamics.

The approximation order is set to r = 16 and the reduced-order models Ĝi (i = 1, . . . , N)
are obtained with DARPO. The relative errors

Ei =
‖Hi − Ĝi‖H2,Ω

‖Hi‖H2,Ω

,
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Figure 10.7: Low-order uncertain and parameter varying model Ĥ(∆r, δM , δerr) which encom-
passes all the the possible trajectories of the set of large-scale models in Figure 10.6.

i 1 2 3
Ei (%) 2.86 2.39 2.49

Table 10.1: Relative H2,Ω approximation errors between Hi and Ĝi (i = {1, 2, 3}).

achieved by these models are reported in Table 10.1 and the frequency responses of H1 and Ĝ1

are plotted in Figure 10.8.
One can observe from Table 10.1 that limiting the approximation interval enables to greatly

decrease the approximation error. Indeed, with an approximation order of r = 16, a relative
error inferior to 3% is obtained while the relative error was superior to 30% for the same order
when approximating over [0,∞) (see Figure 10.2). This was expected since the high frequency
dynamics require a complex model to be accurately represented while the low frequency be-
haviour, which contains the rigid behaviour and the first flexible modes, can be caught more
easily.

Bounds on the approximation errors

For the uncertain low-order model Ĥ from Figure 10.7 to encompass the error induced by the
approximation step, a worst-case operator ∆r(s) must be constructed. Due to the fact that
the controller K is included in Ĥ, ∆r(s) is not built to bound directly the approximation
error but rather the error between the open-loop transfer functions from the input usata to
the outputs of the controller K, i.e. ua and ûa, respectively. More specifically, by denoting
Fi(s) = K(s)Hi(s)usat

a →y and F̂i(s) = K(s)Ĝi(s)usat
a →ŷ, ∆r(s) must statisfies

‖∆r(jω)‖F ≥ max
i=1,...N

∥
∥
∥Fi(jω)− F̂i(jω)

∥
∥
∥
F
,

for all ω ∈ R+. Note that these open-loops are SISO, thus the Frobenius norm reduces to the
absolute value.

Since ∆r(s) is not involved in the interpolation step and the method used to perform the
IQC analysis is not limited by the dimension of the block, the order of ∆r(s) can be fixed freely.
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Figure 10.8: Frequency responses of the large scale model H1 and of the 16-th order reduced-
order model Ĝ1 obtained with DARPO for Ω = [0, ω3].

In this case, an order 25 is chosen and the frequency template ∆r(s) is built with an extension
of the method presented in Section 7.3.4 which provides less conservatism, especially considering
the shape of the error here4. The resulting frequency template is plotted in Figure 10.9.

10.2.3 Low-order LFR model creation

Given the set of reduced-order models obtained in Section 10.2.2, the objective is here to derive
a low-order uncertain and parameter varying model that can be exploited by the IQC framework
in Section 10.2.4. More precisely, and with reference to Figure 10.7, the aim is to compute the
low-order interconnection plant P̂ (s), such that the continuum of parametrised transfer functions

Tusat
a →ûa

(s) = Fu(P̂ (s),∆(δM , δerr)),

where ∆(δM , δerr) = diag(δMInM
, δerrInerr

), covers all possible Mach cases in the admissible
range when the normalised parameter δM evolves in [−1, 1].

The plant P̂ (s) is obtained by polynomial interpolation from the set of low-order open-loop
plants F̂i(s) associated with a selection of Mach numbers obtained in the previous section. To
limit the complexity of the LFR, low-complexity polynomials are used which yields interpola-
tion errors that have to be encompassed by the uncertainty δerrInerr

which creation is detailed
thereafter. Together, the LFR Fu(P̂ (s),∆(δM , δerr)) and the approximation error ∆r(s) en-
able the nonlinear closed-loop model in Figure 10.7 to encompass all possible trajectories of the
parametrised family of large-scale models with a reasonable complexity. The creation of the
plant P̂ (s) consists in three steps detailed below.

4This extension is described quickly in the perspectives in Section 11.3
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Figure 10.9: Frequency template ∆r(s) of the approximation error.

Preliminary transformation of the open-loop models

The reduced-order open-loop transfer functions F̂i(s) (i = 1, . . . , N) obtained in Section 10.2.2
have now 22 states (the controller has 6 states and the reduced-order model has 16 states) with
4 pairs of poorly damped but rather high frequency modes. Those transfers are available for
three Mach number ranging from 0.8 to 0.9 and includes a fixed part mainly due to the actuator
whose model is independent of the Mach number. Hence, each transfer can be factorised as

F̂i(s) = Ac(s)Li(s),

where Ac(s) = s(s+ a)
−1

(s+ b)
−1

(a, b > 0) is a constant third order transfer functions while

the 19-th order Mach-number dependent transfers Li(s) = Ci(sI19 −Ai)
−1
Bi+Di are rewritten

here in a rescaled state-space companion form (see Remark 22) as,

(
Ai Bi

Ci Di

)

=










0 τ1 0 0
...

. . .
...

...
0 0 . . . τ18 0
a1,i a2,i . . . a19,i bi
c1,i c1,i . . . c19,i di










(10.8)

Remark 22 (About the rescaled companion form). Note that the chosen state-space representa-
tion (10.8) is a straightforward generalisation of the standard controllable canonical form which
is easily recovered with τ1 = τ2 = . . . = τ18 = 1. Here, these parameters are tuned in order to
improve the condition number of Ai.

In the context of LFR modeling the above description is of very high interest since the varying
state-space parameters to be interpolated all appear only in the last two lines of the model. Thus,
assuming that every parameter is approximated by a q-th order polynomial, the size of the ∆-block
δMInM

capturing Mach-number induced variations is limited to nM = 2q.
For further details on the rescaled state-space companion form, refer to [Ferreres, 2011].
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Polynomial interpolation with guaranteed error bounds

Let us denote V (i) = V (δMi
) ∈ R2×20 the last two lines of the matrix (10.8) associated with

its varying part. The objective here is to find a polynomial approximation of the finite set of
matrices {V (i)}i=1...N with guaranteed error bounds which will constitute the uncertainty δerr.

Given q, the order of the polynomial, the problem reduces to the determination of a set of
matrices {Vl}l=0...q such that the nonnegative entries of the error matrix E are minimised under
the following linear constraints (with j = 1, 2 and k = 1 . . . 20),

∣
∣
∣
∣
∣
∣

[

V0 +

q
∑

l=1

δlMi
Vl − V (i)

]

j,k

∣
∣
∣
∣
∣
∣

≤ Ej,k , i = 1 . . . N.

The above optimisation problem is easily solved by standard linear programming solvers. Note
that the order q of the polynomial must be carefully chosen. Indeed, low values might lead to
a rough approximation which might result in a too conservative LFR model. Conversely, high
values may help improve the accuracy of the interpolation but the resulting LFR might be too
complex. Besides, undesirable oscillations are likely to appear between the interpolation points
if the difference between the number of points and the order of the polynomial, i.e. N − q,
becomes too small. This is typically the case here, where N = 3.

To alleviate this issue, additional models for intermediate Mach numbers must be considered
to enrich the set {V (i)}i=1...N . Here, since there is no additional models available, fictitious
models must be created. For simplicity, this is done through a linear interpolation process which
provides stable models with smooth evolution of the closed-loop poles for two new Mach numbers
0.825 and 0.875. With these additional points, the number of models available increases from
N = 3 to nM = 5 which is sufficient to avoid any oscillation in the interpolation.

The result of the interpolation process with q = 2 is illustrated in Figure 10.10 where the
evolution of the coefficient c19 (chosen for its significant variations) is plotted. The two red tri-
angles represent the two fictitious points which have been added. The nominal Mach-dependent
polynomial function is represented by the solid blue line while its uppers and lower bounds are
represented by the dotted red lines. For this coefficient, the error is bounded by E2,19 = 0.04
and its three nominal values for δM = −1, δM = 0 and δM = 1 (blue circles) all appear on the
upper-bound.

Quite interestingly, with n = 2, a similar property as the one observed above is true for
any of the 40 parameters whose nominal values on the initial Mach grid either all belong to the
upper-bound or the lower-bound of its polynomial approximation. Consequently, a matrix Ẽ
whose entries satisfy Ẽj,k = ±Ej,k is easily deduced from E. Hence, for any value of δM = δMi

on the initial grid, there exists a scalar δerr ∈ [−1, 1] such that

V (i) = V0 +

2∑

l=1

δlMi
Vl + δerrẼ. (10.9)

LFR modeling

Based on (10.9) and using standard LFR manipulations (see [Magni, 2006]), one can easily verify
the existence of a matrix ΣV ∈ R8×48 such that ∀(δM , δerr) ∈ [−1, 1]2,

V (δM , δerr) = Fu(ΣV ,diag(δMI5, δerrI2)), (10.10)

where Fu() represent the upper LFR. Then, there simply remains to insert the static LFR
object (10.10) into the state-space description (10.8) and to multiply the result by the fixed
part Ac(s)

5. Finally, one obtains the interconnection Fu(P̂ ,∆(δM , δerr)), with ∆(δM , δerr) =
diag(δMInM

, δerrInerr
), depicted in Figure 10.7 with nM = 5 and nerr = 2.

5These operations are easily handled by the LFR Toolbox [Magni, 2006].
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Figure 10.10: Illustration of a 2nd order polynomial interpolation result with minimized guaran-
teed error bound for the coefficient c19 = V2,19.

Preliminary validation tests on the linear closed-loop

Before the global validation step, one can already perform some preliminary tests without the
saturation nor the approximation error ∆r by looking at the closed-loop poles for (δM , δerr) ∈
[−1, 1]2. If unstable poles are detected, then the polynomial approximation must be refined by
increasing the interpolation order q.

From Figure 10.11, one can observe that all the closed-loops remain stable here. Hence, it
does not seem that an higher order polynomial approximation is required here. In order to verify
that no worst-case parametric combination has been missed, a µ analysis with respect to the
parametric uncertainties δM , δerr and the worst-case LTI operator ∆r must be performed (see
[Biannic and Ferreres, 2005; Roos et al., 2011] for further information about µ analysis and the
tools used here). This step (not detailed here) enables to show that the continuum of closed-loop
models remains stable for an admissible uncertainty. It remains to check the stability in presence
of the saturation which cannot be achieved by µ analysis anymore.

10.2.4 IQC-based global stability analysis

Generally speaking, IQC methods enable to analyse the stability and performance properties
of an interconnection M(s)/∆ of a LTI operator M(s) with a structured model uncertainty ∆
which can gather non-linearities (such as saturation), LTI or Linear time-varying parameters,
delays, etc. Due to their versatility, IQC methods can be used on a wide range of problems and
are perfectly suited here due to the presence of the input saturation.

General principle

Let us consider two signals, v and w, square integrable over [0,∞) and which represent the input
and output signals of the uncertainty block ∆, i.e. w = ∆v. These signals are said to satisfy
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Figure 10.11: Zoom near the origin on the closed-loop poles evolution without saturation for
δM ∈ [−1, 1] and δerr ∈ [−1, 1] and ∆r(s) = 0.

the IQC defined by Π if and only if their Fourrier transforms ṽ and w̃ satisfy

∫ ∞

−∞

[
ṽ(jω)
w̃(jω)

]H

Π(jω)

[
ṽ(jω)
w̃(jω)

]

≤ 0.

Π can be any measurable Hermitian matrix function of ω and is called a multiplier. To analyse
the stability of the interconnection of M(s) with the bounded operator ∆ (through a positive
feedback) which input and output signals satisfy the IQC defined by Π, one must verify that6,
∀ω ∈ R+,

[
M(jω)
I

]H

Π(jω)

[
M(jω)
I

]

≺ 0. (10.11)

Condition (10.11) can be turned into a Linear Matrix Inequality (LMI) feasibility problem
dependent on the frequency ω. Then, the standard approach to address the latter problem is to
use the Kalman-Yakubovitch-Popov lemma to transform it into another LMI feasibility problem
which does not depend on the frequency ω anymore (see [Megretski and Rantzer, 1997] for
further information). This approach enables to transform an infinite number of LMI feasibility
problems into one single LMI feasibility problem.

Yet, the number of decision variables involved in the last LMI problem grows quadratically
with the closed-loop order which might make it quickly untractable in practice if the model is
of large dimension. In addition, the parametrisation of the multiplier Π must be chosen a priori
which might lead to a tedious trial and error process7. Instead here, an approach based on
frequency inequalities on a gridding is used.

6Somme additional mild assumptions are actually required, see [Megretski and Rantzer, 1997] for further
information

7Indeed, if the feasibility problem is not satisfied for a parametrisation, one cannot conclude on the stability
of the closed-loop since there may be another parametrisation which would imply the feasibility.

174



10.2. Global stability validation of a parameter varying business jet aircraft

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

−
λ

Pulsation ω

Figure 10.12: Opposite of the eigenvalues of (10.11) between 0 and 100 rad/s for the plant P̂ (s)
interconnected with Φ.

Frequency gridding approach for the IQC

The technique has been proposed in [Sideris and Sanchez Pena, 1990] and adapted to the problem
considered here in [Demourant, 2013]. The idea of the method relies on the fact that if (10.11)
is true for some frequency ωi, then it holds for a small interval Ωi around ωi which upper
and lower bounds can be characterised. Hence, by iteratively adding new frequency points ωi

for which new multipliers Πi = Π(ωi) are found, one can extend the interval where (10.11) is
verified. In particular, if the intersection of all the intervals of validity Ωi covers R+, i.e. if
⋃

i=1,...,NΩ
Ωi = [0,∞), then it means that (10.11) holds true for all ω ∈ R+ which implies the

stability of the interconnection of M(s) and ∆. If at some frequency, no multiplier is found,
then the stability is not guaranteed.

Note that with such an approach, one actually obtains a set of multipliers Πi associated with
each interval Ωi, i.e. ∀ω ∈ Ωi, Π(jω) = Πi(jω).

Global stability validation for the anti-vibration controller

Here, the method described above is used to analyse the stability of the interconnection of P̂ (s)
with Φ = diag(φ,∆r(s), δMInM

, δerrInerr
) where φ represents the saturation. See [Vuillemin

et al., 2014a] for a precise description of the parametrisation of the multiplier.
After 8 iterations, the methods stops with NΩ = 104 valid frequency intervals Ωi which cover

R+. Hence, the solution is validated on the whole frequency domain. This is illustrated in Figure

10.12 where the opposite of the eigenvalues of
[

P̂ (jω) I
]∗

Π(jω)
[

P̂ (jω) I
]T

are plotted
for pulsations going from 0 to 100 rad/s. Note that these eigenvalues are necessarily real since
Π(jω) is Hermitian and that Π(jω) may change for different pulsations since it is piece-wise
continuous. For each pulsation, there are 4, possibly multiple, eigenvalues which are plotted
with the same colour. One can observe that the opposite of the eigenvalues remains positive
over R+.

175



Chapter 10. Industrial aeronautical use case

This enables to conclude on the stability of the low-order uncertain and parameter varying
model Ĥ(∆r, δM , δerr) subject to the input saturation. Since the trajectories of this model
also encompass all the possible trajectories of the parametrised family of large-scale models Hi

(i = 1, . . . , N), one can conclude on the global stability of the large-scale parameter varying
model subject to input saturation for all normalised Mach numbers δM ∈ [−1, 1].

Conclusion

In this chapter, the global process followed for the design and global stability validation of an
anti-vibration control law for an industrial business jet aircraft represented by a family of large-
scale LTI models subject to input saturation has been presented. Model approximation merely
represents a preliminary step in both the design and validation process, but still a mandatory
one.

Indeed, in the design step, model approximation has enabled to consider a control problem
with complex constraints which would have been difficult to address directly with the initial
large-scale model. Similarly, in the analysis step, model approximation has enabled to greatly
decrease the complexity of the family of large-scale models which could not have been interpo-
lated otherwise. In addition, by bounding the approximation error, the stability of the initial
large-scale models can still be guaranteed.

This chapter concludes the contributions of this thesis and the next (and last) part concludes
this thesis.
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Chapter 11

Discussion

In this Chapter, the main contributions of the thesis are recalled and their limitations are
discussed. In addition, solutions or, at least hints, are proposed to alleviate these drawbacks and
to extend the range of application of the results.
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11.1 FL-ISTIA

In Chapter 6, a heuristic method for frequency-limited model approximation has been proposed.
The core of the method is the same as the sub-optimalH2 model approximation method ISRKA
presented in Section 4.2.2, excepted that frequency-limited gramians are used in place of the
infinite gramians. This modification has been inspired by the way the FL-BT has been obtained
from the BT (see Sections 5.2.1 and 3.1.2, respectively).

In spite of its simplicity, this modification has led to improve the overall performances of the
ISRKA in terms of the H2,Ω-norm of the error. Yet, two fundamentals elements of the method
are directly inherited from the ISRKA and have not been modified

◮ the Krylov subspaces involved in the interpolation,

◮ the selection of the new interpolation points as the mirror images of the current reduced-
order model poles.

More specifically, the Krylov subspaces and the interpolation points are such that at convergence,
the reduced-order model tangentially interpolates the large-scale model from the left (or the
right) at the mirror images of its poles, i.e.

H(−λ̂i)b̂T
i = Ĥ(−λ̂i)b̂T

i , (i = 1, . . . , r), (11.1)

which is one of the first order optimality condition of the optimal H2 approximation problem
(see Section 4.1).
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However, as it has been shown in Chapter 8, the optimality conditions for the optimal
H2,Ω approximation problem are not equivalent to the H2 ones, hence fulfilling (11.1) is clearly
irrelevant for the approximation over a bounded frequency range. Hence, FL-ISTIA could
greatly be improved by considering meaningful Krylov subspaces and interpolation points.

To this aim, one should determine whether the interpolation conditions expressed for the
optimal H2,Ω approximation problem in Chapter 8 can be fulfilled through projection on Krylov
subspaces. If not possible, an approximation of these interpolation conditions may be used
instead, or, simply another interpolation framework such as the Loewner framework [Antoulas
et al., 2012; Ionita, 2013].

11.2 Poles-residues formulation of the H2,Ω-norm

In Chapter 7, the H2,Ω-norm of a LTI dynamical model has been formulated through the use
of the poles and residues of its transfer function both when the model has semi-simple poles
and when it has high order poles. This formulation naturally extends the one existing for the
H2-norm (see Section 2.2) and enables to express the H2,Ω-norm of a model in a closed form
involving only elementary functions as soon as the poles and residues of the model are available.
It has proven to be numerically very efficient for the computation of the H2,Ω-norm of models
with semi-simple poles only and has enabled to derive the most significant results in this thesis.

11.2.1 Numerical robustness

The poles-residues formulation of the H2,Ω-norm is mainly limited by two elements in the large-
scale framework,

◮ the eigenvalue decomposition is not particularly numerically robust,

◮ the formulation is not convenient when the model has Jordan blocks. Indeed, the com-
putation of the Jordan decomposition is only possible on ”toy models” and should not be
considered in larger settings.

When Jordan blocks are involved, two workarounds can be considered,

(i) if the residues of a transfer function can be efficiently computed knowing the eigenvalues
but not the eigenvectors, then the H2,Ω-norm may be computed by evaluating the transfer
function and its derivative as in the H2-case (see Section 7.2.3). Evaluating the deriva-
tive of the transfer function is not particularly simple either but remains preferable than
computing the Jordan canonical form.

(ii) It is well-known that matrices with Jordan blocks are extremely sensitive to perturbations,
however, one may want to consider the impact of this sensitivity for the computation of
the H2,Ω-norm. As illustration, let us consider a n-th order model H = (A,B,C) where

A =









−1 1

−1 . . .

. . . 1
−1









∈ R
n×n, C = BT =

[
1 . . . 1

]
∈ R

1×n,

i.e. λ = −1 is an eigenvalue of order n. Let us also consider the perturbed model Hǫ =
(Aǫ, B, C), where

Aǫ =









−1 1

−1 . . .

. . . 1
ǫ −1









∈ R
n×n,
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Figure 11.1: Eigenvalues of the perturbed matrix Aǫ (left) and error between the H2,Ω norms of
H and Hǫ (right) for Ω = [0, 5] and ǫ = 10−6.

The eigenvalues of Aǫ are located on a circle centred at −1 and of radius ǫ
1
n as illustrated

in Figure 11.1 (left) and are no longer multiple, i.e. Aǫ is not defective anymore. Let us
compute the H2,Ω-norm of H and of Hǫ for n = 2, . . . , 20, and check the error between the
two norms

∣
∣‖H‖H2,Ω

− ‖Hǫ‖H2,Ω

∣
∣ ,

where ‖Hǫ‖H2,Ω
is calculated both with the poles-residues and gramian formulations for

Ω = [0, 5] and ǫ = 10−6. The errors are plotted in Figure 11.1 (right) with respect to n.

One can observe that the error is increasing from ǫ to ∼ 3×10−5 which remains reasonably
low. In particular, when comparing this error to the H2,Ω-norm of H for n = 20 which is
equal to 51.66 one obtains a relative error of 10−4%.

Note that with this value of ǫ both the gramian and poles-residues formulations give the
same value for the H2,Ω-norm of Hǫ but this might not always be the case. Indeed,
depending on the value of ǫ, the eigenvalues of Aǫ are more or less close to each other
which can impact the eigenvalue computation process.

This simple example is not a proper perturbation study but simply highlights the fact
that perturbing the models which have Jordan blocks may be a satisfactory approach to
make the poles-residues formulation viable to compute their H2,Ω-norm to a satisfactory
accuracy. The main difficulty lies in the fact that, in practice, the matrix A is not given
in its Jordan canonical form and determining which element must be disturbed and by
which gain might not be obvious. In addition, Aǫ remains a nearly defective matrix which
eigen-decomposition must be computed with precautions.

A more radical solution would consist in replacing the eigen-decomposition by another matrix
decomposition which is numerically more robust and which is not modified if multiple eigenvalues
appear. Hessenberg or tridiagonal forms are interesting candidates since a somehow explicit
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Figure 11.2: Relative error between the real H2,Ω-norm and the approximate H2,Ω-norm con-
sidered with a increasing number of eigenvalues on the ISS model for several frequency interval
Ω.

formulae exists to invert them [Mallik, 2001]. Whether it could be exploited to compute efficiently
the H2,Ω-norm is not obvious though.

11.2.2 Scalability

Independently of the formulation chosen for the H2,Ω-norm, its computation for very large-
scale models is difficult. With the poles-residues formulation, one possible solution relies on the
assumption that on an interval Ω, the H2,Ω-norm of a model H can be well approximated by
considering only some of its poles λi (and associated residues Φi), i.e.

‖H‖2H2,Ω
= −

n∑

i=1

tr
(
ΦiH(−λi)T

)
aω,λi

≈ −
m∑

i=1

tr
(
ΦiH(−λi)T

)
aω,λi

,

where m < n. The initial assumption is likely to be verified with models which have poorly
damped dynamics.

As an illustration, let us consider the ISS model (n = 270) which approximate H2,Ω-
norm is computed by using an increasing number of poles ordered by decreasing values of
Re
(
−tr

(
ΦiH(−λi)T

)
aω,λi

)
and compared to the true H2,Ω-norm. In Figure 11.2, the rela-

tive error between the real H2,Ω-norm and the approximate one is plotted for different frequency
intervals. One can see that with this model, the approximate error between the approximate
H2,Ω-norm and the real one decreases quickly. Obviously, the wider the interval Ω is, the more
eigenvalues are needed. However, with 20 eigenvalues used among 270, the error is quite low
even on the widest interval [0, 100] which embeds all the dynamics of this model. The validity
of the approach needs to be experimented on less resonant models though.

From a practical point of view, the poles and residues that must be retained could be de-
termined with an algorithm similar to the Dominant Poles Algorithm [Rommes and Martins,
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2006]. The main question raised by this approach is to know whether the error induced by this
approximation can be quantified without the discarded poles and residues.

11.3 Bounds on the H∞-norm and its applications

In Section 7.3, the poles-residues formulation of the H2,Ω-norm is used to derive two upper
bounds on the H∞-norm of a LTI dynamical model H,

max
ω∈Ω

σmax(H(jω)) ≤ ΓΩ(H) ≤ Γ̄Ω(H).

From a practical point of view, computing Γ̄Ω requires to find the maximum of several first-order
rational functions while computing ΓΩ requires to find the maximum of a sum of univariate ratio-
nal functions. These upper bounds have proven to be, quite unexpectedly, not too conservative.

Obviously, since these bounds are based on the poles-residues formulation of the H2,Ω-norm,
they inherit its limitations. In this case however, it is clear that the issue related to the Jordan
blocks can be readily alleviated for the computation of ΓΩ by looking for the maximum of
‖H(jω)‖F over Ω without exploiting the eigen-decomposition of the matrix A.

These bounds have been particularly useful in the context of model approximation through
the construction of frequency templates bounding the approximation error. An improvement of
the algorithm developed to build the frequency templates as well as more general applications
are discussed thereafter.

11.3.1 Improvement of the construction of frequency templates

The method proposed to build frequency template in Section 7.3.4 is simple and efficient but
could be improved, either by using the same idea with a more elaborate template structure or
by completely reformulating the problem.

A quick improvement of the frequency templates construction

The current method for building frequency templates is in two steps. First, a set of relevant
pulsations at which the gain of the transfer function is higher than the gain reached for any
smaller pulsations ω is determined by computing the upper bounds ΓΩ with Ω = [0, ω] when ω
varies between 0 and the pulsation ω∞ where the H∞-norm is reached.

Then the frequency template is built by successive relaxation of its pole and gain until its
Frobenius norm upper bounds the Frobenius norm of the initial transfer function at the pulsations
determined previously.

The frequency template could easily be refined by enriching its structure as

G(s) = K1

(
s− z1
s− p1

)r1

︸ ︷︷ ︸

G1(s)

K2

(
s− z2
s− p2

)r2

︸ ︷︷ ︸

G2(s)

, (11.2)

where the poles p1, p2 and the zeros z1, z2 are all located in the left half-plane. Mainly two
interesting frequency templates can be build from (11.2),

◮ if |z1| < |p1| < |z2| < |p2|, then a frequency template with stairs can be obtained. This
is illustrated in Figure 11.3. One way to obtain such a frequency template is to (i) divide
the set of relevant pulsation {w1, . . . , wk} in two sets W1 and W2 such that the minimum
pulsation ofW2 is superior the maximum value ofW1, (ii) construct G1 as in Section 7.3.4
using only the pulsations contained in W1, (iii) construct G2 in a similar way to G1 with
the pulsations of W2 but instead of fixing z2, the pole p2 is fixed and adjusted for each
value of z2, K2 so that G2(0) = 1 in order no to disturb the first filter G1. A frequency
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Figure 11.3: Illustration of the frequency template (11.2) when |z1| < |p1| < |z2| < |p2|.

template of this form has actually been used in [Vuillemin et al., 2014a] (see Section 10.2),
but in its current state, the algorithm still requires some tuning.

◮ If |z1| < |p1| < |p2| < |z2|, then the frequency template is a band-pass filter. This structure
requires more work, in particular the relevant pulsations located after the pulsation where
the H∞-norm is reached have to be known. This can be obtained through Algorithm 8 of
Section 7.3.4 by modifying the successive intervals of research in order to look for higher
pulsations than the first one instead of lower ones. Then, G1 and G2 can be designed
separately in a similar way to what is done in Section 7.3.4 and the final frequency template
G could be adjusted at the end in order to decrease the disturbances caused by G2 on G1

in low frequency and conversely.

Obviously, both structures can be combined and additional layers can be added to the frequency
template (11.2), in that case however, a more rigorous approach for the determination of the
parameters may be required. This is discussed in the next section.

Alternative formulation for the construction of frequency templates

A more rigorous approach of the problem, based on optimisation, could be considered and may
lead to a much more tight frequency templates.

In particular, the H2,Ω-norm ban be used to translate the fact that the frequency template G
must be tight in some frequency interval Ω (possibly [0,∞)). The problem would then consists
in finding the frequency template G whose transfer matrix G(s) is the solution of

G = argmin ‖G̃‖2H2,Ω

s.t.

G̃ ∈ G
∥
∥
∥G̃(jω)

∥
∥
∥
F
≥ ‖H(jω)‖F , ∀ω ∈ R+,

(11.3)
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where G represents the space of frequency templates with a defined structure (stable, fixed order,
minimum phase, etc.). In addition, problem (11.3) may be completed with a constraint on the
H∞-norm of G̃(s) in order to avoid any unwanted local resonance or unbounded behaviour
outside of Ω. Note that if G̃ in equation (11.3) is given the same structure as in Section 7.3.4,
then the poles-residues formulation of the H2,Ω-norm for models with high order poles developed
in Section 7.2.1 may be used and since the Jordan block is directly known, it does not represent
an issue here.

The inequality constraint on the Frobenius norm might be difficult to fulfil. Indeed, unlike in
Section 7.3.4 and depending on the structure chosen for G(s), it cannot necessarily be restricted
to some relevant pulsations ωk in order to be true for all ω ∈ R+ especially if resonant modes
are involved.

A valid frequency template could certainly be obtained by solving an adequate H∞ problem,
yet in an approximation context, H is of large-scale, hence (11.3) seems to be a more modest
and reachable objective. Alternatively, the bound ΓΩ could be used instead of the H2,Ω-norm
in problem (7.3.4).

11.3.2 Other possible applications for the H∞ bound ΓΩ

Since ΓΩ upper bounds the H∞-norm and is faster to compute than the latter, it could be used
as a surrogate when the computation of the H∞-norm becomes an issue. In particular

◮ for model approximation, one could look for the reduced-order model Ĥ whose transfer
matrix Ĥ(s) solves

Ĥ = arg min
rank(G)=r

ΓΩ (H(jω)−G(jω)) ,

◮ for robust control of large-scale models, whether ΓΩ can represent a valid replacement of
the H∞-norm in tools such as HIFOO [Burke et al., 2006] should be investigated. This
would enable large-scale control problem such as the one presented in Section 9.2.3 to be
handled directly.

Some preliminary experiments have been conducted during this study concerning the second
point but they do not enable to conclude on the validity of the approach, yet.

11.4 First-order optimality conditions for the H2,Ω approx-
imation problem

In Chapter 8, the H2,Ω-norm of the approximation error between a large-scale model H and

a reduced-order one Ĥ has been expressed with the poles and residues of both models under
the assumption that both models have semi-simple poles only. Then, the first-order optimality
conditions of the optimal H2,Ω approximation problem have been derived with respect to the
poles and residues of the reduced-order model.

Both the approximation error and its gradient can efficiently be computed through elementary
operations once the poles and residues of both models are available. This point is particularly
interesting in an optimisation context which usually involves many evaluations of the objective
function and its gradient.

Moreover, it has also been shown how these first-order optimality conditions can be for-
mulated as interpolation conditions similar to those arising in the optimal H2 approximation
problem (see Section 4.1.2). Indeed, if Ĥ is a r-th order minimum of the H2,Ω approximation
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problem, then, for m = 1, . . . , r,

T (−λ̂m)b̂T
m = T̂ (−λ̂m)b̂T

m

ĉmT (−λ̂m) = ĉmT̂ (−λ̂m)

ĉmT
′(−λ̂m)b̂T

m = ĉmT̂
′(−λ̂m)b̂T

m,

(11.4)

where λ̂m, {ĉm, b̂m} are the poles and associated residues of the reduced-order model and

T (s) = Hω(s) +H(s)aω,−s, T̂ (s) = Ĥω(s) + Ĥ(s)aω,−s.

with

Hω(s) =

n∑

i=1

Φi

s− λi
aω,λi

, Ĥω(s) =
r∑

i=1

Φ̂i

s− λ̂i
aω,λ̂i

,

and aω,s =
2
πatan(

ω
s ) :=

1
jπ (log(1 + j ωs )− log(1− j ωs )).

The interpolation conditions (11.4) have not been exploited in this study and their meaning
is still not clear but they represent an interesting lead for future researches in frequency-limited
model approximation. In particular, the elements that need to be clarified are

◮ the link between the interpolation conditions (11.4) and the ones derived for the optimal
frequency-weighted H2 model approximation problem in [Anić et al., 2013] (see Section
5.1.2),

◮ whether conditions (11.4) can be fulfilled efficiently. Krylov subspaces are unlikely to be
applicable since this approach would require a realisation for T (s). The Loewner framework
[Antoulas et al., 2012; Ionita, 2013] seems more suited since it enables to build a model of
fixed order from frequency data. Still, it would only provide an approximate realisation
for T̂ (s) which is not the reduced-order model transfer function Ĥ(s).

11.5 DARPO

In Chapter 9, a descent algorithm aimed at finding a local minimum for the optimal H2,Ω

approximation problem has been developed. The algorithm relies on a quasi-Newton method
based on the BFGS update to find poles and residues of a reduced-order model which satisfy
the first-order optimality conditions.

The approximation method has been illustrated on various examples and in particular, it has
been used to demonstrate one process that can be followed to address the control of a large-scale
model using the robust control framework.

Since DARPO is based on the poles-residues formulation of the H2,Ω-norm, it inherits its
limitations concerning (i) the Jordan block structure of the models and (ii) the applicability of
the method to very large-scale models. Both points are discussed in Section 11.5.1. Several
improvement can also be considered for the optimisation process, they are discussed in Section
11.5.2. Then in Section 11.5.3, an alternative use of DARPO is presented. Finally, the future
developments concerning the application of DARPO for the control of large-scale models are
presented in Section 11.5.4.

11.5.1 Issues related to the poles-residues formulation of the H2,Ω-
norm

Presence of Jordan blocks in the reduced-order model

The presence of high order eigenvalues in the large-scale model has been discussed in Section
11.2.1, here the presence of Jordan blocks in the reduced-order model is discussed.
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Figure 11.4: Apparition of a Jordan block in the reduced-order model with DARPO.

Jordan blocks can appear in the reduced-order model when two poles cross each other. In
general, this does not happen, but one can build examples in which it should happen. In partic-
ular, if a second-order model with a pair of complex conjugate poles is approximated to an order
2 and that DARPO is initialised with a second-order model with real poles. The corresponding
H2 approximation error is represented in Figure 11.4 where the successive positions of the poles
are represented by blue and red dots.

The expected behaviour is that the poles move along the real axis until they reach each other
and at this point, they should split as complex conjugate poles. When the poles are at the
exact same location, the semi-simple poles-residues formulation of the approximation error and
its gradient are no longer valid. Instead, the generalised formulation must be used.

Here, what happens in practice is that both poles stop moving before they reach the same
location. The exact explanation is still not clear, but it is likely that the line-search algorithm
does not find a suitable step-length along the real axis.

In theory, using the poles-residues formulation generalised to model with high-order poles
would be sufficient to alleviate the issue. Yet in practice, it might be difficult to determine when
some poles are close enough to switch (in the algorithmic procedure) to this formulation.

Very-large scale models

In order for the algorithm DARPO to be applicable, the full eigenvalue decomposition of
the initial large-scale model is required. This is an important limitation in the context of model
approximation since it is expensive to compute. In addition, the eventual sparsity of the matrices
C and B of the large-scale model is lost when changing to the modal realisation of the large-
scale model. These issues are inherent to the framework used in the study and cannot fully be
alleviated but still, some hints are presented here in order to decrease the complexity associated
with the algorithm.

The idea here relies on the same assumption as in Section 11.2.2, i.e. that the H2,Ω-norm
of a model can be well estimated by computing only some of its poles and associated residues.
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Ω DARPO sDARPO Modal trunc.
[0 10] 7.87 13.48(6) 13.68
[0 20] 16.74 17.07(12) 28.99
[0 34] 12.74 13.21(18) 15.33
[0 60] 19.43 19.48(36) 22.26

Table 11.1: Relative H2,Ω errors (in %) obtained with DARPO, sDARPO and the modal
truncation used as initial point in the former case after reduction of the LAH model to an order
6 for several Ω.

Hence, instead of approximating directly the large-scale model H, one would approximate an
intermediate model Hi which is the m-th order (r < m < n) modal truncation of H such that

‖Hi‖H2,Ω
≈ ‖H‖H2,Ω

.

As mentioned in Section 11.2.2, such an intermediate model could be obtained with an algorithm
similar to the Dominant Poles Algorithm [Rommes and Martins, 2006] which takes advantage
of the sparsity of matrices.

To illustrate the idea, let us approximate the LAH model with DARPO over Ω = [0, ω] to
an order 6 using either all the eigenvalues and their corresponding eigenvectors or only the eigen-
values which have a magnitude below ω. When only some eigenvalues are used, the algorithm
is denoted sDARPO for sparse DARPO. As the error given by sDARPO is not exact, it is
recomputed afterwards.

The relative errors obtained with (i) the modal approximation used as initial reduced-order
model in DARPO, (ii) DARPO and (iii) sDARPO, are reported in Table 11.1, where the
number of eigenvalues used with sDARPO is indicated in parenthesis. Note that the modal
truncation used as initial reduced-order model represents the reduced-order model that would
have been obtained if a modal truncation had been performed directly to the order r. It is
presented here to illustrate that using an intermediate model is beneficial for the final reduced-
order model.

One can observe that even if only some eigenvalues are used, the optimisation process can
still improve the reduced-order model in comparison to a direct modal truncation. For some
frequency intervals, the error obtained with sDARPO is even comparable to the one obtained
with DARPO.

Such an approaches raises two main questions,

◮ first, and as in Section 11.2.2, how the error induced by the intermediate approximation
step can be quantified?

◮ secondly, does minimising the H2,Ω approximation error between the reduced-order model
and the intermediate one necessarily leads to a decrease of the error between the reduced-
order model and the initial large-scale one?

11.5.2 Optimisation scheme

The optimisation scheme used in DARPO is already efficient but several improvements can be
considered :

◮ in order to decrease the number of optimisation variables, the idea of optimising separately
the poles and the residues as it is done in [Marmorat and Olivi, 2002] and [Beattie and
Gugercin, 2009] should be used.

◮ In order to formally guarantee the stability of the reduced-order model, constrained opti-
misation should be used instead of unconstrained optimisation. This implies to determine
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how the constrained optimisation methods existing for the optimisation of real functions
of real variables are modified when complex variables are considered.

Using constrained optimisation would also enable to add additional constraints to the H2,Ω

approximation problem such as (i) matching the static gain of the large-scale model when
Ω = [0, ω] (ii) preventing its behaviour outside of Ω from exploding, or (iii) preventing the
reduced-order model poles to move too far where the approximation error becomes flat
(see Example 17).

◮ As in the majority of non-linear and non-convex optimisation problems, the initialisation
step is extremely important in DARPO. While the current one based on the modal trun-
cation of the large-scale model is simple and quite efficient in general, it tends to perform
poorly when the frequency of interval does not contains enough relevant poles. Indeed,
in those cases, some poles outside the interval are selected while they do not necessarily
enable to decrease the approximation error. Hence the initialisation process should be
investigated more in depth. A possible lead it to use the Loewner framework [Ionita, 2013]
to build a reduced-order model that interpolates the initial one in the considered frequency
interval.

More radically, an approach different from a local optimisation algorithm may be worth
considering. Due to the non-linearity of the problem and the presence of many local minima,
evolutionary, stochastic or hybrid methods could be used, either partially, e.g. in the initialisation
step, or completely for determining the poles of the reduced-order model.

11.5.3 Approximation for a fixed error

As it has been formulated in this study, the model approximation problem consists in finding a
r-th order model Ĥ from a large-scale model H of order n ≫ r. Yet, from a practical point of
view, the approximation order r is merely a constraint and what is really interesting is rather
to know whether the reduced-order model is sufficiently accurate, or if it can be used safely for
control purpose, etc.

Concerning the accuracy of the reduced-order model, DARPO can actually be used in a
constructive way, the approximation order r being increased until some objective H2,Ω approxi-
mation error is reached. The way the feature can be used is shown in Appendix C.9.

For instance, let us consider the LAH model, one would like to find a reduced-order model Ĥ
such that the relative H2,Ω approximation error over Ω = [0, 20] is below 5%. The decrease of the
relative error and the frequency responses of the large-scale and final reduced-order models are
plotted in Figure 11.5. Note that since the LAHmodel has only complex poles, the approximation
order is increased by steps of 2.

One can observe that DARPO stops after 490 iterations (achieved in ∼ 4 sec). The final
approximation order is 14 and the final error is 0.051%. Indeed, the optimisation for the current
approximation order r is not stopped even if the objective is met since the reduced-order model
can be improved even further with that order. Here, it means that an approximation order of
12 has led to an error above 5% while the order 14 enables to decrease the error to 0.051%. This
is probably due to the new parameters selection strategy considered here.

Indeed, each time the approximation order is increased, new poles and residues must be
added to the current model. This is done by taking into account the initial ranking of the poles

obtained with the initialisation criterion J (2)
init from Section 9.1.3 which does not take into account

the current state of the reduced-order model and whether the new poles enable to decrease the
approximation error or not.

This approach was also developed in order to see if starting from a small order and increasing
it by steps could lead, at the end, to a better reduced-order model than the one obtained by
directly approximating at the final order. Yet this is not the case in the current state of the
approach. Indeed, the model obtained here is the same as the one that would have been obtained
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Figure 11.5: Approximation of the LAH model over Ω = [0, 20] for a fixed relative approximation
error of 5%.

by approximating the LAH model directly to an order 14. This is probably due to the selection
strategy used for the new poles and residues which could greatly be improved.

A constructive process is also used in [Marmorat and Olivi, 2002], and for each increase of the
approximation order, several guesses are built from the current reduced-order model. A similar
idea should be developed here.

11.5.4 Model approximation for the control of large-scale models

In Section 9.2.3, DARPO has been used in order to design a simple controller to perform
disturbance rejection on a large-scale model. The underlying process consists in completing
the reduced-order model by a low complexity uncertainty which represents (and bounds) the
approximation error and to use the robust control framework to design a controller on this
low-order uncertain model.

This approach is promising but several points need to be clarified, especially

◮ the influence of the approximation order r is not clear and an indication of the right order
required for the design of a controller is missing,

◮ the influence of the approximation interval Ω is not clear either. Indeed, the impact of the
frequency interval lies mainly in the initial reduced-order model selection which set the
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dynamics that will be preserved. Hence, the real, non-trivial, question is to determine the
dynamics that matter for the closed-loop.

A completely different approach would consists in using the gap or ν-gap metrics [Vidyasagar,
1984; Vinnicombe, 1992] as criterion for the approximation as it has been done in [Sootla, 2011].
Yet, the resulting approximation problem is difficult and whether it can be solved efficiently on
large-scale models is not clear due to the complexity of the evaluation of this norm which is
based on the H∞ one.

Conclusion

The main limitation of the proposed model approximation method lies in the use of the poles-
residues formulation of the models and of the approximation error. Indeed, this formulation
requires the full eigen-decomposition of the large-scale model and becomes ill-conditioned if high
order poles are involved. Hence, a formulation of the state-space may appear more suitable,
however (i) the computational complexity does not vanish since the eigenvalue decomposition
is replaced by the need to solve various Sylvester equations, which is a complex task when
performed exactly, (ii) in the frequency-limited context, the logarithm of a matrix as well as its
derivative are required, which are not trivial to compute either. The core of the problem when
using an optimisation algorithm to perform large-scale model reduction lies in the computation
of the approximation error and its gradient which reduces here to the computation of the inverse
(sIn −A)−1

arising in the transfer function (and thus in the H2,Ω-norm).
As pointed out in [Moler and Van Loan, 1978], a trade-off must be considered between the

eigen-decomposition (or Jordan form) which offers the easiest, but most ill-conditioned, way to
compute a matrix function, and another decomposition which is well-conditioned but does not
yield a particularly easy computation of the function (such as the Schur decomposition). In
[Moler and Van Loan, 1978], a block diagonal matrix where nearly confluent eigenvalues are
clustered is presented as an interesting candidate. Such a decomposition may be considered for
the computation of the H2,Ω-norm and in the optimal H2,Ω approximation problem in future
researches.

Besides, the other interesting lead for further development lies in the first-order optimality
conditions expressed as interpolation conditions. Indeed, generalising interpolation methods such
as the IRKA to the optimal H2,Ω approximation would be particularly interesting given the
performance and simplicity of the approach. In the next chapter, some longer term perspectives
are pointed out.
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Outlook

The perspectives of this thesis can be considered along two major lines : model approximation
and control of large-scale models. The former concerns the extension and further development
of the proposed methods while the latter focuses rather on the adaptation and application of
these methods for the control of large-scale models.

More specifically, concerning model approximation, and in addition of the technical points
raised in the previous chapter :

◮ the different contributions of this thesis mainly result of the formulation of the H2,Ω-norm
with the poles and residues of the transfer function associated with a LTI dynamical model.
Whether this formulation can be extended to other types of models should be investigated.
In particular, it may be extended to descriptor models by using the Weierstrass canonical
form of a matrix pencil and to some time-delays models by using the Lambert function to
compute the poles of the transfer function.

◮ More generally, H2,Ω model approximation represents the natural generalisation of the H2

model approximation and it should be extended to other types of models such as LPV
models, bilinear models (such as in [Shaker and Tahavori, 2014]), etc.

Concerning the control of large-scale models :

◮ the global process for the control of large-scale model used in Chapter 10 may be sim-
plified by merging the approximation and interpolation steps. To that goal, multi-model
approximation, i.e. low-order LPV modelling, could be investigated.

◮ Alternatively, a constructive approach which successively include additional dynamics of
the large-scale model until a satisfactory controller is found may also be considered.

◮ In this thesis, only robust control has been considered, but other control methods such
as predictive or optimal control may also benefit from the use of model approximation
methods to alleviate the numerical burden associated with large-scale models.

The model approximation problem is far from being solved and the increasing use of numerical
tools for the modelling of complex dynamical systems is likely to make this subject a central
element for the practical implementation of theoretical tools.
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Appendix A

Proofs related to the poles-residues
expression of the H2,Ω-norm

A.1 Poles-residues expression of theH2,Ω-norm in the semi-
simple case

Let us consider the Definition of the H2,Ω-norm of H with Ω = [0, ω],

‖H‖2H2,Ω
:= tr

(
1

2π

∫ ω

−ω

H(jν)H(−jν)T dν
)

. (A.1)

The assumption is made that H(s) can be written as,

H(s) =
n∑

i=1

φi
s− λi

+D, (A.2)

where D ∈ Rny×nu , φi ∈ Cny×nu and λi ∈ C (i = 1, . . . , n). In other words, we assume that H
has only semi-simple poles. By noting H̃(s) =

∑n
i=1

φi

s−λi
and replacing H by its decomposition

(A.2), in (A.1), one obtains

‖H‖2H2,Ω
=

1

2π
tr

(∫ ω

−ω

DDT + H̃(jν)DT +DH̃(−jν)T + H̃(jν)H̃(−jν)T dν
)

. (A.3)

Each term of this integral is then considered separately:

(i) Considering the first term, it follows that

1

2π

∫ ω

−ω

DDT dν =
ω

π
DDT . (A.4)

(ii) Greater attention should be given to the following (second) integral

1

2π

∫ ω

−ω

H̃(jν)DT dν =
1

2π

n∑

i=1

∫ ω

−ω

φi
jν − λi

DT dν.

Indeed, if Re (λi) = 0, then φi

jν−λi
is integrable over [−ω, ω] if and only if ω < |λi|. Hence,

in the sequel, the following assumption is made:

ω < min {|λi|/Re (λi) = 0} . (A.5)

It implies that φi

jν−λi
is integrable over [−ω, ω] for all i = 1, . . . , n. Under this assumption

and based on the definition of the complex arctangent (Definition 8), one obtains

∫ ω

−ω

φi
jν − λi

DT dν = jφi [log (−jω − λi)− log (jω − λi)]DT

:= −2φiatan
(
ω

λi

)

DT .
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Thus
1

2π

∫ ω

−ω

H̃(jν)DT dν = − 1

π

n∑

i=1

φiD
Tatan

(
ω

λi

)

. (A.8)

(iii) In a similar way

1

2π

∫ ω

−ω

DH̃(−jν)T dν = − 1

π

n∑

i=1

DφTi atan

(
ω

λi

)

. (A.9)

(iv) Regarding the last term of (A.3), one has

H̃(jν)H̃(−jν)T =
n∑

i=1

n∑

k=1

φiφ
T
k

(jν − λi) (−jν − λk)

and it follows that

1

2π

∫ ω

−ω

H̃(jν)H̃(−jν)T dν =

n∑

i=1

n∑

k=1

1

2π

∫ ω

−ω

φiφ
T
k

(jν − λi) (−jν − λk)
dν

︸ ︷︷ ︸
ai,k

.

From here, two cases must be considered :

(a) If λi + λk 6= 0, then

ai,k =
1

2π

∫ ω

−ω

φiφ
T
k

(jν − λi) (−jν − λk)
dν =

1

2π

∫ ω

−ω

(
pi,k

jν − λi
+

pi,k
−jν − λk

rν

)

,

with pi,k = − φiφ
T
k

λi+λk
. Because of assumption (A.5), each term can then be integrated

as previously and one gets

ai,k =
1

π

φiφ
T
k

λi + λk
atan

(
ω

λi

)

+
1

π

φiφ
T
k

λi + λk
atan

(
ω

λk

)

.

Since pi,k = pTk,i, the sums can be reordered as follows

ai,k =
1

π

φiφ
T
k + φkφ

T
i

λi + λk
atan

(
ω

λi

)

. (A.10)

(b) If λi + λk = 0, then

ai,k =
1

2π

∫ ω

−ω

φiφ
T
k

(jν − λi) (−jν − λk)
dν =

1

2π

∫ ω

−ω

− φiφ
T
k

(jν − λi)2
dν.

After integration, one obtains

ai,k =
1

2π

(

−j φiφ
T
k

jω − λi
+ j

φiφ
T
k

−jω − λi

)

= − 1

π

ωφiφ
T
k

w2 + λiλi
.

(A.11)

Taking the trace of (A.4), (A.8), (A.9) and (A.10) (or (A.11)) and adding them up leads
to the result of Theorem 10.
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A.2 Poles-residues expression of the H2,Ω-norm for models
with higher order poles

Let us consider an asymptotically stable and strictly proper MIMO LTI dynamical model H
with nb eigenvalues λi of multiplicity ni described by its transfer function H(s). The H2,Ω-norm
of H is defined as,

‖H‖2H2,Ω
=

1

2jπ

∫ jω

−jω

tr
(
H(s)H(−s)T

)
ds. (A.12)

By replacing H(s) by its partial fraction expansion (2.2), one obtains

tr
(
H(s)H(−s)T

)
=

nb∑

i=1

nb∑

k=1

ni∑

l=1

nj∑

m=1

tr
(

Φ
(l)
i Φ

(m)T
k

)

(s− λi)l (−s− λk)m
.

The integral (A.12) comes down to the following integrals for each i, k, l and m,

∫ jω

−jω

tr
(

Φ
(l)
i Φ

(m)T
k

)

(s− λi)l (−s− λk)m
ds = tr

(

Φ
(l)
i Φ

(m)T
k

)∫ jω

−jω

fiklm(s)ds

︸ ︷︷ ︸

Ilm(λi,λk,ω)

.

By noticing that the functions fiklm has two poles, λi and −λk, of order l and m, respectively,
their partial fraction decomposition are given by

fiklm(s) =

l∑

p=1

ap
(s− λi)p

+

m∑

q=1

bq
(−s− λk)q

, (A.13)

where

ap =
1

(l − p)!
dl−p

dsl−p
(s− λi)l fiklm(s)

∣
∣
∣
s=λi

for p = 1, . . . , l and

bq = (−1)m−q 1

(m− q)!
dm−q

dsm−q
(−s− λk)m fiklm(s)

∣
∣
∣
s=−λk

,

for q = 1, . . . ,m. Note that the sign (−1)m−q is introduced due to the specific form of the partial
fraction decomposition (A.13) which uses 1

(−s−λk)
q instead of (−1)q 1

(s+λk)
q .

The residues ap and bq can be written in similar forms. Indeed ap = rm,l−p(λi, λk) and
bq = rl,m−q(λi, λk) where

ru,v(λi, λk) = (−1)(u+v)

(
u+ v − 1

v

)
1

(λi + λk)
u+v .

Since the systemH is assumed to be asymptotically stable, each integral composing Ilm(λi, λk, ω)
can be directly calculated. Indeed,

∫ jω

−jω

a1
s− λi

= a1 [log (s− λi)]jω−jω ,

∫ jω

−jω

a2

(s− λi)2
= a2

[

− 1
s−λi

]jω

−jω
,

and so on for each value of p = 1, . . . , l and q = 1, . . . ,m. Finally, the resulting functions of ω
can be written in a more convenient way as Wp−1(jω, λi) and Wq−1(jω, λk) where

Wu(jω, λ) =
1

u!

du

dyu
(log (−jω − y)− log (jω − y))

∣
∣
∣
y=λ

.
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Chapter A. Proofs related to the poles-residues expression of the H2,Ω-norm

A.3 Poles-residues expression of the H2,Ω approximation
error

The proof comes from writing the H2,Ω-norm of the error in terms of the residues Φ̃i and poles

λ̃i, i = 1, . . . , n+ r of transfer function H̃ of the error system H̃ = H− Ĥ,

JH2,Ω
=

n+r∑

i=1

n+r∑

k=1

tr
(

Φ̃iΦ̃
T
k

)

λ̃i + λ̃k
aω,λ̃i

−
n+r∑

i=1

tr
(

Φ̃iD̃
T
)

aω,λ̃i
+

1

π
ωtr

(

D̃D̃T
)

. (A.14)

The poles/residues of H̃ are composed of the poles/residues of H and −Ĥ. By supposing they
are ordered as

λ̃i =

{
λi if i = 1, . . . , n

λ̂i if i = n+ 1, . . . , n+ r,

Φ̃i =

{
Φi if i = 1, . . . , n

−Φ̂i if i = n+ 1, . . . , n+ r,

the sums in (A.14) can then be divided as follow,

JH2,Ω =

n∑

i=1

n∑

k=1

tr
(
ΦiΦ

T
k

)

λi + λk
aω,λi

−
n∑

i=1

tr
(

ΦiD̃
T
)

aω,λi
. . .

+

n∑

i=1

r∑

k=1

tr
(

−ΦiΦ̂
T
k

)

λi + λ̂k
aω,λi

+

r∑

i=1

n∑

k=1

tr
(

−Φ̂iΦ
T
k

)

λ̂i + λk
aω,λ̂i

. . .

+

r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂
T
k

)

λ̂i + λ̂k
aω,λ̂i

+

r∑

i=1

tr
(

Φ̂iD̃
T
)

aω,λ̂i
. . .

+
1

π
ωtr

(

D̃D̃T
)

.

Finally, regrouping the cross sums leads to the result,

JH2,Ω
=

n∑

i=1

n∑

k=1

tr
(
ΦiΦ

T
k

)

λi + λk
aω,λi

−
n∑

i=1

tr
(

ΦiD̃
T
)

aω,λi
. . .

−
n∑

i=1

r∑

k=1

tr
(

ΦiΦ̂
T
k

)

λi + λ̂k

(

aω,λi
+ aω,λ̂k

)

+
1

π
ωtr

(

D̃D̃T
)

. . .

+

r∑

i=1

r∑

k=1

tr
(

Φ̂iΦ̂
T
k

)

λ̂i + λ̂k
aω,λ̂i

+

r∑

i=1

tr
(

Φ̂iD̃
T
)

aω,λ̂i
.

200



Appendix B

Elements about the principal value
of the complex arctangent

B.1 Difference between the two definitions of the inverse
tangent function

The principal value of the complex inverse tangent function can either be defined as

atan(z) =
1

2j
(log (1 + jz)− log (1− jz)) , (B.1)

or as

atan(z) =
1

2j

(

log

(
1 + jz

1− jz

))

. (B.2)

The two definitions yield the same branch cuts (−j∞,−j]∪[j, j∞) but do not coincide on
(−j∞,−j[ (see [Haber, 2012] for the proof). This is illustrated in Figure B.1 where the real part,
imaginary part and absolute value of both functions are plotted with respect to the real and
imaginary parts of z ∈ C and where the red (respectively black) line represents the imaginary
(respectively real) axis.

B.2 Limit of atan
(
ω
λ

)
as ω tends towards infinity

By definition, atan
(
ω
λ

)
, λ ∈ C∗ can be written in terms of the principal value of the complex

logarithm, i.e.

atan
(ω

λ

)

:=
1

2j

[

log
(

1 + j
ω

λ

)

− log
(

1− j ω
λ

)]

:=
1

2j

[

ln
(∣
∣
∣1 + j

ω

λ

∣
∣
∣

)

− ln
(∣
∣
∣1− j ω

λ

∣
∣
∣

)

+ j
(

arg
(

1 + j
ω

λ

)

− arg
(

1− j ω
λ

))]

(B.3)
By denoting λ = x+ jy, the imaginary part of (B.3) becomes

ln
(∣
∣
∣1 + j

ω

λ

∣
∣
∣

)

− ln
(∣
∣
∣1− j ω

λ

∣
∣
∣

)

= ln

(∣
∣
∣
∣

λ+ jω

λ− jω

∣
∣
∣
∣

)

=
1

2
ln

(
ω2 + 2ωy + y2 − x2
ω2 − 2ωy + y2 + x2

)

,

which tends towards 0 as ω tends towards ∞.
Let us now consider the real part of (B.3) and set the following notations :

z1(ω) = 1 + j
ω

λ
= 1 +

ω

|λ|2
y

︸ ︷︷ ︸

a1(ω)

+j
ω

|λ|2
x

︸ ︷︷ ︸

b1(ω)

,

z2(ω) = 1− j ω
λ

= 1− ω

|λ|2
y

︸ ︷︷ ︸

a2(ω)

+j
−ω
|λ|2

x

︸ ︷︷ ︸

b2(ω)

.
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Figure B.1: Real, imaginary and absolute value of the complex inverse tangent function defined
as (B.1) (top) or as (B.2) (bottom).
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Figure B.2: Principal value of the complex argument arg z of z = a + jb through the four
quadrant inverse tangent function (often denoted atan2 ).

Note that ∀ω > 0, b2(ω) = −b1(ω) and that ∀ω > W = x2+y2

|y| , sign (a1(ω)) = −sign (a2(ω)).

Hence, for sufficiently large values of ω, z1(ω) and z2(ω) lie in symmetric (with respect to the
origin) quadrants of the complex plane.

Let us denote by (I), (II), (III) and (IV) the four quadrants of the complex plane as repre-
sented in Figure B.2. The principal value of the complex argument arg z can be expressed in
different ways depending on the complex quadrant where z lies (see Figure B.2) and since

lim
ω→∞

atan

(
b1(ω)

a1(ω)

)

= lim
ω→∞

atan

(
b2(ω)

a2(ω)

)

,

then one obtains

lim
ω→∞

arg z1(ω)− arg z2(ω) =

{
π if Im (z1(ω)) > 0 or z1(ω) ∈ R−

−π if Im (z1(ω)) < 0 or z1(ω) ∈ R+
.

Note that when z1(ω) lies in the upper half-plane (without the real axis) then by applying
a conjugation and a clockwise rotation of π

2 , one can see that λ belongs to the right half-plane
and if z1(ω) lies in the lower half-plane then λ is in the left half-plane, i.e.

Im (z1(ω)) > 0 ⇔ Re (λ) > 0,
Im (z1(ω)) < 0 ⇔ Re (λ) < 0.
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B.2. Limit of atan
(
ω
λ

)
as ω tends towards infinity

Thus

lim
ω→∞

atan
(ω

λ

)

=

{
π
2 if Re (λ) > 0
−π

2 if Re (λ) < 0

To determine the limits on the imaginary axis, let us assume that λ = jγ with γ ∈ R, then

arg z1(ω)− arg z2(ω) = arg(1 +
ω

γ
)− arg(1− ω

γ
),

which tends towards −π is γ > 0 and to π if γ < 0 as ω tends towards ∞. Finally, the limits of
atan(ωλ ) are given by

lim
ω→∞

atan
(ω

λ

)

=







−π
2 if Re (λ) < 0
π
2 if Re (λ) > 0
π
2 if Re (λ) = 0 and Im (λ) < 0
−π

2 if Re (λ) = 0 and Im (λ) > 0

which is coherent with the limits of acot(z) = atan( 1z ) derived in [Haber, 2012].
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Appendix C

Code samples

In this appendix, some code samples are provided so that the reader can reproduce some of the
examples presented in this thesis and also see how the routines developed during this thesis can
be called through the MORE Toolbox [Poussot-Vassal and Vuillemin, 2012]. Here are the steps
to follow for these code samples to work :

◮ first, download the limited version of the MORE toolbox from w3.onera.fr/more. It
requires to create an account.

◮ Then, download the benchmark collection COMPleib from www.complib.de/. This li-
brary contains, among others, the LAH, the CBM and the ISS models that are used as
benchmarks and which can be used in the limited version of the MORE Toolbox.

◮ Get the files lah.mat, cbm.mat and iss1 2.mat from COMPleib and add the library as
well as the toolbox to the Matlab R© path.

The call of the routines are relatively self-explanatory with the embedded commentaries and
are therefore not described in depth here, for that purpose, please refer to the documentation of
the toolbox on the website. Note that the most recent algorithms developed during this thesis
might not be fully documented yet.

C.1 H2,Ω-norm computation

This code enables to plot Figure 2.3 of Section 2.2.2 that illustrates the behaviour of the H2,Ω-
norm on the LAH model.

%% Illustration H2W−norm
% initial model
load lah;
H = ss(A,B,C,0);
h2 = norm(H);
[M,Ph,W] = bode(H);
% Computation of the H2w norm for varying w
opt.compMethod = 1; % set which method is used to computed the H2W−norm

% 1 : the poles−residues formulation (default)
% 2 : gramian formulation

ww = logspace(0,2,200);
for i = 1:length(ww);
% frequency interval Omega = [0 w(i)]
opt.freqBand = [0,ww(i)];
% computation of the frequency−limited H2 norm over Omega
h2w(i) = moreNorm(H,2,opt);

end

xl = [1,100];
figure

subplot(211)
loglog(W,20∗log(abs(M(:))),’b’,’lineWidth’,3)
set(gca,’xlim’ , xl) ;
xlabel(’Pulsation (rad/s)’) ;
ylabel(’Gain (dB)’);
title ( ’Frequency response’);
subplot(212)
semilogx([ww(1),ww(end)],[h2,h2],’b’,’lineWidth’,3)
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hold on
semilogx(ww,h2w,’r−−’,’lineWidth’,3);
set(gca,’xlim’ , xl) ;
l = legend(’H 2−norm’,’H {2,\Omega}−norm’);
xlabel(’Pulsation (rad/s)’) ;
ylabel(’Value of norms’)
title ( ’Evolution of the H {2,\Omega}−norm wrt to \omega’)

C.2 Example 11 : non-linearity of the optimal H2 approx-
imation problem

This is the code that has been used to produce the figure of Example 11 aimed at illustrating
the non-linearity of the optimal H2 approximation problem

%% Illustration of the non−convexity of the optimal H2 approximation pb.
% load large−scale model
load lah;
H = ss(A,B,C,0);
normH = norm(H);
% real and imaginary parts of the reduced−order model poles
rp = linspace(−3,−0.1,30);
ip = linspace(1,40,40);
% preallocating
error = zeros(length(rp),length(ip));
squaredNormHr = error;
for i = 1:length(rp)
for j = 1:length(ip)
% fix the poles of the reduced−order model
P(i, j) = complex(rp(i),ip(j)) ;
p = P(i,j) ;
% determine the associated optimal residues
M = [1/(−2∗p) , 1/(−2∗real(p));

1/(−2∗real(p)) , 1/(−2∗p’)];
rhs = [freqresp(H,−p);

freqresp(H,−p’)];
phi opt = M\rhs;
phi = phi opt(1);
% compute the H2 approximation error
squaredNormHr(i,j) = −abs(phi)ˆ2/real(p)−real(phiˆ2/(p));
error(i, j) = sqrt(normHˆ2−squaredNormHr(i,j));

end

end

surf(real(P),imag(P),error/normH∗100)
zlabel(’Relative H2 error’)
xlabel(’Real part’)
ylabel(’Im. part’)
view(55,34)

C.3 Use of the FL-ISTIA

In this example, the LAH model is reduced to an order r = 10 over Ω = [10, 20] with the
FL-ISTIA. The frequency responses of the large-scale model, the reduced order model and the
error model are plotted (see Figure C.1) and the relative H2,Ω-norm of the approximation error
computed.

%% Example FL−ISTIA
%% Model and approximation parameters
load lah;
H = ss(A,B,C,0); % initial model
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Figure C.1: Frequency responses of the large-scale model, the reduced-order model and the error
model.

r = 10; % approximation order
fb = [10 20]; % frequency interval
%% Optional parameters
% default values are assigned if left blank
opt. shiftPoint = linspace(fb(1),fb(2),r) ;% initial shift points
opt.gram = ’o’ ; % gramian used
opt.checkH2 = ’no’; % error monitoring
opt. restart = 0; % number of restart
opt.maxIter = 30; % maximum number of iterations
opt.display = 1; % verbosity of the algorithm
opt.freqBand = fb; % frequency band
%% Approximation
% routine to call ISTIA on the LAH model
[ H flistia ,out1] = moreLTI(’LAH’,r,’ISTIA’,opt); % FL−ISTIA
%% Error
bodemag(H,H flistia,H−H flistia)
legend(’Large−scale model’,’FL−ISTIA’,’Error model’,’Location’,’SouthWest’);
optNorm.freqBand = fb; % frequency band for the norm
% relative error computed with moreNorm
relError = 100∗moreNorm(H−H flistia,2,optNorm)/moreNorm(H,2,optNorm);
sprintf(’Norm of the relative error : %2.2f (%%)’,relError)

C.4 Example 15 : computation of the bounds on the H∞-
norm

This code shows how the bounds Γ and Γ̄ can be called (Example 15 from Section 7.3).

%% Illustration of the uppber bounds on the Hinf norm
load lah
H = ss(A,B,C,0);
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% Computation of the bounds over [0 inf)
[GammaBar,Gamma,winf] = moreHinfOmegaBound(H);
% and over [10 20]
opt.freqBand = [20 30];
[GammaBarOmega,GammaOmega,winfOmega] = moreHinfOmegaBound(H,opt);
%
bodemag(H,’k’)
hold on
loglog(get(gca,’xlim’),20∗log10(GammaBar)∗ones(1,2),’b’)
loglog(get(gca,’xlim’),20∗log10(Gamma)∗ones(1,2),’r’)
loglog(get(gca,’xlim’),20∗log10(GammaBarOmega)∗ones(1,2),’c’)
loglog(get(gca,’xlim’),20∗log10(GammaOmega)∗ones(1,2),’m’)
loglog(opt.freqBand(1)∗ones(1,2),get(gca,’ylim’),’k−−’)
loglog(opt.freqBand(2)∗ones(1,2),get(gca,’ylim’),’k−−’)
h=legend(’$H$’,’$\bar{\Gamma}$’,’$\Gamma$’,’$\bar{\Gamma} {\Omega}$’,’$\Gamma \Omega$’,’$\

Omega$’);
set(h, ’Fontsize ’ ,18, ’ interpreter ’ , ’ latex ’ , ’ location ’ , ’southEast’);

C.5 Example 16 : construction of a frequency template

This code shows how a frequency template can be built to bound the Frobenius norm of the
approximation error between the ISS model and a reduced-order model obtained with DARPO
(Example 16 from Section 7.3.4).

%% Illustration of the frequency template
load iss1 2
H = ss(A,B,C,0);
% Reduction of the ISS model over [0 10] to an order 20 with DARPO
r =20;
opt.freqBand = [0 10];
[Hr,out] = moreLTI(’ISS1’,r,’DARPO’,opt);
% Construction of the frequency template with different tuning parameters
tempOrder = 2;
optTemp.alpha = (1−1e−4); % decrease factor of the pole
optTemp.beta = (1+1e−3); % increase factor of the gain
optTemp.minStaticG = 1e−6;% minimal allowed static gain of the template
G1 = moreTemplate(H−Hr,tempOrder,optTemp);
%
optTemp.alpha = (1−1e−3); % decrease factor of the pole
optTemp.beta = (1+1e−4); % increase factor of the gain
optTemp.minStaticG = 1e−6;% minimal allowed static gain of the template
G2 = moreTemplate(H−Hr,tempOrder,optTemp);
%
sigma(H−Hr,G1,G2)
legend(’H−Hr’,’G1’,’G2’,’Location’,’northWest’)

C.6 Example 17 : behaviour of the H2,Ω approximation
error when approximating to a second-order model

This code enables to reproduce Example 17. It is interesting to make the frequency bound ω
vary to see how the shape of the approximation error is modified.

%%
load lah;
H = ss(A,B,C,0);
% computation of the residues and poles of the large−scale model that
% are required to build the affine term in the quadratic expression of the
% approximation error
[X, D] = eig(H.A);
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second-order model

eign = diag(D);
c = C∗X;
b = X\B;
for i = 1:length(H.A)
phi(i ,1) = c(:, i )∗b(i ,:) ;

end

omega = 20; % upper bound of the frequency interval Omega
rp = linspace(−3,3,50); % real part of the reduced order poles
rp = [rp 0]; rp = sort(rp); % adding the imaginary axis
ip = linspace(1,30,50); % imaginary part of the reduced−order poles
% H2w norm of the large−scale model
opt.freqBand = [0 omega];
h2wNormOfH = moreNorm(H,2,opt);
% the inverse tangent function
myatan = @(z) 1/(2∗1i)∗(log(1+1i∗z)−log(1−1i∗z));
% function that computes : a {omega,l1} + a {omega,l2}
sumAtan = @(omega,l1,l2) 2/pi∗(feval(myatan,omega./l1)+feval(myatan,omega./l2));
% function used to build the affine term h
Hw = @(omega,l) sum(phi./(eign + l).∗feval(sumAtan,omega,eign,l));
%%
h2wError =zeros(length(rp),length(ip));
for i = 1:length(rp)
for j = 1:length(ip)
% poles of the reduced−order model
P(i, j) = complex(rp(i),ip(j)) ;
p1 = P(i,j) ;p2 = conj(p1);
if rp(i ) == 0 && ip(j)<=omega
% if the poles are on the imaginary axis and inside [0, omega]
% the error is , by definition , infinite
h2wError(i,j) = inf;

elseif rp(i )==0 && ip(j)>omega
% if the poles are on the imaginary axis and outside [0, omega]
L = [ 2/pi∗feval(myatan,omega/p1)/p1, −2∗omega/pi∗1/(omegaˆ2−p1∗p2);

−2∗omega/pi∗1/(omegaˆ2−p2∗p1) , 2/pi∗feval(myatan,omega/p2)/p2];
rhs = [feval(Hw,omega,p1);% rhs = −h

feval(Hw,omega,p2)];

redPhi opt =L\rhs; % optimal residues for these poles
squaredh2wNormOfHr = 1/2∗real(redPhi opt.’∗L∗redPhi opt);
h2wError(i,j) = sqrt(h2wNormOfHˆ2−squaredh2wNormOfHr);

else

% if the poles are not on the imaginary axis
L = [ 2/pi∗feval(myatan,omega/p1)/p1 , feval(sumAtan,omega,p1,p2)/(p1+p2);

feval(sumAtan,omega,p2,p1)/(p2+p1), 2/pi∗feval(myatan,omega/p2)/p2];

rhs = [ feval(Hw,omega,p1); %rhs = −h
feval(Hw,omega,p2)];

redPhi opt =L\rhs;% optimal residues for these poles
squaredh2wNormOfHr = 1/2∗real(redPhi opt.’∗L∗redPhi opt);
h2wError(i,j) = sqrt(h2wNormOfHˆ2−squaredh2wNormOfHr);

end

end

end

%% 3D plot of the H2W approximation error
surf(real(P),imag(P),h2wError/h2wNormOfH∗100)
view(−133,16)
xlabel(’Real part’)
ylabel(’Im. part’)
zlabel(’Relative H2W error’)
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C.7 Use of DARPO

In this example, the LAH model is reduced to an order r = 10 over Ω = [10, 20] with the
DARPO (see Chapter 9) and the frequency responses of the models are plotted together with
the frequency response of the error.

%% Example FL−ISTIA
%% Model and approximation parameters
load lah;
H = ss(A,B,C,0); % initial model
r = 10; % approximation order
fb = [10 20]; % frequency interval
%% Optional parameters
% default values are assigned if left blank
opt.maxIter = 500; % maximum number of iterations
opt.display = 1; % verbosity of the algorithm
opt.freqBand = fb; % frequency band
opt. tol = 1e−12; % tolerance
%% Approximation
% routine to call DARPO on the LAH model
[H darpo,out1] = moreLTI(’LAH’,r,’DARPO’,opt);
%% Error
bodemag(H,H darpo,H−H darpo)
legend(’Large−scale model’,’DARPO’,’Error model’,’Location’,’SouthWest’);
% relative error (in %) given by the algorithm directly
relError = out1.h2wError(end);
sprintf(’Norm of the relative error : %2.2f (%%)’,relError)

C.8 Use of DARPO for the control of a large-scale model

This code enables to reproduce the example presented in Section 9.2.3. Note that for conve-
nience, the H∞ problems are solved with the method available in the Robust Control Toolbox
of Matlab R©, but one could also have used HIFOO which is available at http://www.cs.nyu.
edu/overton/software/hifoo/.

clear all ;close all ;clc ;
%% Illustration of the process for the control of large−scale model
%% initial model and parameters
load iss1 2
H ol = ss(A,B,C,0);
I3 = eye(3);
Z3 = zeros(3,3);
doLargeSynthesis = 0; % set to 1 to make the synthesis on the large−scale model
%% P for the hinf control problem
P large = ss(A,[B B],[C;C],0);
%
Xdb = 30;
alpha = (10ˆ(Xdb/20))/norm(H ol,inf);
% actuator
Act = tf(20∗20,[1 1.4∗20 20∗20])∗I3;
% roll off filter
wrl = 40;
W = 1/(3∗alpha)∗tf([1/wrlˆ2 0 0],[1/(300∗wrl)ˆ2 1.4/(300∗wrl) 1])∗I3;
% hinf control problem with actuator
P large act = P large∗append(I3,Act);
% Static gain for the disturbance rejection on the large plant without
% actuators :
BF1 = alpha∗lft(P large,−alpha∗eye(3));
% Static gain for the disturbance rejection on the large plant with
% actuators :
BFa1 = alpha∗lft(P large,−alpha∗eye(3)∗Act);
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%% Control on the large plant
if doLargeSynthesis == 1
K6th1 = ltiblock . ss( ’K6 large’ ,6,3,3) ;%
% LFR for the ’large’ Hinf problem
CL large = alpha∗lft(P large act ,K6th1);
t = cputime;
[CL large opt,gamma large]=hinfstruct(blkdiag(CL large,W∗K6th1));
dt large = cputime−t;
K large = ss(CL large opt.blocks.K6 large);
% Checks that the controller synthesised on the large plant
% stabilises the large plant
isstable ( lft (P large act ,K large))
% satisfies the disturbance rejection on the large plant
norm(alpha∗lft(P large act,K large),Inf)
end

%% Control on the low order plant with uncertainty
K6th small = ltiblock . ss( ’K6 small’ ,6,3,3) ;%
r = 30; % approximation order
opt.freqBand = [0 40]; % frequency interval of reduction
Hr = moreLTI(’ISS1’,r,’DARPO’,opt); % reduction of the large−scale model
He = H ol−Hr; % approximation error
optTemp.alpha = 1−1e−5; % decrease of the pole of the template
optTemp.beta = 1+1e−4; % increase of the gain of the template
optTemp.minStaticG = 1e−8; % minimal static gain
G = moreTemplate(He,2,optTemp); % construction of the frequency template
G = G∗I3;
%% Low order Hinf control problem
%
P small = ss(Hr.a,[Hr.b Hr.b ],[Hr.c;Hr.c ],0) ;
P small act = P small∗append(I3,Act);
%
P small2 = ss(Hr.a,[0∗Hr.b Hr.b],[0∗Hr.c;Hr.c ],[ Z3 I3;I3 Z3]);
P small error act = append(G,I3)∗P small2∗append(I3,Act);
% LFRs for the low−order Hinf problem
CL small act = alpha∗lft(P small act,K6th small); % disturbance rejection on the

% low−order plant
CL small error act = lft(P small error act ,K6th small); % robust stability channel
%
t = cputime;
[CL small opt,gamma small,info] = hinfstruct(blkdiag(CL small act,CL small error act,W∗K6th small));
dt small = cputime−t;
K small = ss(CL small opt.blocks.K6 small);
% Checks that the controller synthesised on the low−order plant
% stabilises the large plant
isstable ( lft (P large act ,K small))
% satisfies the disturbance rejection on the large−plant
norm(alpha∗lft(P large act,K small),Inf)
%% PLOT
WF = sort([logspace(−1,2,400) linspace(30,100,100)]);
[svBO1] = sigma(alpha∗H ol,WF);

% Open loop vs closed loop without actuator
figure

green = 1/256∗[97 186 26];
[svBF1] = sigma(BF1,WF);
p1 = semilogx(WF,20∗log10(svBO1),’b’);
hold on
p2 = semilogx(WF,20∗log10(svBF1),’color’,green);
p3 = semilogx(get(gca,’xlim’),zeros(1,2),’k−−’);
hh=legend([p1(1) p2(1) p3],’Normalised open−loop model $\alpha H$’,’Closed−loop model $\mathcal{F} l({

P},{K 1})$’,’Disturbance rejection limit’);
set(hh,’ interpreter ’ , ’ latex ’ ) ;
xlabel(’Pulsation (rad/s)’) ;ylabel(’Singular values (dB)’);
% Open loop vs closed loop with actuator
evBO1 = eig(H ol.A);
K2 = −3∗alpha∗I3;
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BF2 = alpha∗lft(P large act,K2);
evBF2= eig(BF2.A);

figure

subplot(121)
[svBFa1] = sigma(BFa1,WF);
p1 =semilogx(WF,20∗log10(svBO1),’b’);
hold on
p2 = semilogx(WF,20∗log10(svBFa1),’r’);
set(gca,’xlim’ ,[min(WF),max(WF)])
p3 = semilogx(get(gca,’xlim’),zeros(1,2),’k−−’);
hh=legend([p1(1),p2(1),p3(1)],’Normalised open−loop model $\alpha H$’,’Closed−loop model $\mathcal{F} l

ˆ{(2)}({P},{K 1})$’,’Disturbance rejection limit’);
set(hh,’ interpreter ’ , ’ latex ’ ) ;
xlabel(’Pulsation (rad/s)’) ;ylabel(’Singular values (dB)’);
subplot(122)
plot(real(evBO1),imag(evBO1),’bx’);
hold on
plot(real(evBF2),imag(evBF2),’r.’);
axis([−5 1 −1 60])
plot(get(gca,’xlim’),[0 0], ’k’)
plot([0 0],get(gca,’ylim’), ’k’)
hh=legend(’Open−loop poles’,’Closed−loop poles’);
set(hh,’ interpreter ’ , ’ latex ’ ) ;
xlabel(’Real part’) ;ylabel(’Imaginary part’);

% Frequency template on the approximation error
WFe = logspace(−4,3,500);
figure

svError = sigma(He,WFe);
svG = sigma(G(1,1),WFe);
p1 = semilogx(WFe,20∗log10(svError),’b’);
hold on
p2 = semilogx(WFe,20∗log10(svG),’color’,green);
h = legend([p1(1),p2(1)],’Error model $H−\hat{H}$’,’Frequency template $G$’);
set(h, ’Location’, ’NorthWest’,’interpreter ’ , ’ latex ’ ) ;
xlabel(’Pulsation (rad/s)’) ;ylabel(’Singular values (dB)’);
set(gca,’xlim’ ,[min(WFe),max(WFe)])

% Final closed loop
figure

svBFr = sigma(alpha∗lft(P small act,K small),WF);
svBFf = sigma(alpha∗lft(P large act,K small),WF);
p1 = semilogx(WF,20∗log10(svBO1),’b’);
hold on
p2 = semilogx(WF,20∗log10(svBFr),’color’,green);
p3 = semilogx(WF,20∗log10(svBFf),’r’);
p4 = semilogx(get(gca,’xlim’),zeros(1,2),’k−−’);
hh = legend([p1(1),p2(1),p3(1),p4(1)],’Normalised open−loop model $\alpha H$’,’Low−order closed−loop $\

mathcal{F} lˆ{(2)} (\hat{P},K)$’,’Large−scale closed−loop $\mathcal{F} lˆ{(2)} (P,K)$’,’Disturbance
rejection limit’);

set(hh,’ interpreter ’ , ’ latex ’ ) ;
xlabel(’Pulsation (rad/s)’) ;ylabel(’Singular values (dB)’);

% Controller dynamic
figure

WF2 = logspace(1,5,200);

[svW] =sigma(1/W,WF2);
[svK] = sigma(K small,WF2);
p1 = semilogx(WF2,20∗log10(svW),’b’);
hold on
p2 = semilogx(WF2,20∗log10(svK),’color’,green);
hh=legend([p1(1),p2(1)],’$Wˆ{−1}$’,’$K$’);
set(hh,’ interpreter ’ , ’ latex ’ ) ;
xlabel(’Pulsation (rad/s)’) ;ylabel(’Singular values (dB)’);
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C.9 Use of DARPO for the approximation at a fixed error

This code illustrates how DARPO can be used to approximate a model at a given relative H2,Ω

error instead of a given approximation order r (see Section 11.5.3).

%% Illustration of the use of DARPO at fixed approximation error
% Initial model
load lah
H = ss(A,B,C,0);
% Model approximation
opt.freqBand = [0 20]; % frequency interval
opt.h2wError = 5; % Desired relative H2w approximation error (in %)
% The order r must be left blank when calling the routine
[Hr,out] = moreLTI(’LAH’,[],’DARPO’,opt);
%
figure

semilogy([1:length(out.h2wError)],out.h2wError)
hold on
semilogy(get(gca,’xlim’),5∗[1 1],’r−’)
yl = get(gca,’ylim’);
for i = 1:length(out.rIncreased)
semilogy(out.rIncreased(i)∗[1 1], yl , ’k−−’);

end

legend(’Approximation error’,’Desired relative H2W error’,’Reduced order increase’);
xlabel(’Iteration ’ ) ;ylabel(’Relative error ’ ) ;
figure

bodemag(H,’k’,Hr,’r−−’,H−Hr,’b−.’)
legend(’H’,’Hr’, ’H−Hr’);
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Frequency-limited model approximation of large-scale dynamical models

Abstract. Physical systems are represented by mathematical models in order to be simulated, analysed or
controlled. Depending on the complexity of the physical system it is meant to represent and the way it has
been built, a model can have a varying complexity. This complexity can become an issue in practice due to the
limited computational power and memory of computers. One way to alleviate this issue consists in using model

approximation which is aimed at finding a simpler model that still represents faithfully the physical system.
In the case of Linear Time Invariant (LTI) dynamical models, complexity translates into a large dimension of
the state vector and one talks about large-scale models. Model approximation is in this case also called model

reduction and consists in finding a model with a smaller state vector such that the input-to-output behaviours of
both models are close with respect to some measure. The H2-norm has been extensively used in the literature to
evaluate the quality of a reduced-order model. Yet, due to the limited bandwidth of actuators, sensors and the
fact that models are generally representative on a bounded frequency interval only, a reduced-order model that
faithfully reproduces the behaviour of the large-scale one over a bounded frequency interval only, may be more
relevant. That is why, in this thesis, the frequency-limited H2-norm, or H2,Ω-norm, which is the restriction of the
H2-norm over a frequency interval Ω, has been considered. In particular, the problem of finding a reduced-order
model that minimises the H2,Ω-norm of the approximation error with the large-scale model has been addressed
here. For that purpose, two approaches have been developed. The first one is an empirical approach based on the
modification of a sub-optimal H2 model approximation method. Its performances are interesting in practice and
compete with some well-known frequency-limited approximation methods. The second one is an optimisation
method relying on the poles-residues formulation of the H2,Ω-norm. This formulation naturally extends the one
existing for the H2-norm and can also be used to derive two upper bounds on the H∞-norm of LTI dynamical
models which is of particular interest in model reduction. The first-order optimality conditions of the optimal
H2,Ω approximation problem are derived and used to built a complex-domain descent algorithm aimed at finding
a local minimum of the problem. Together with the H∞ bounds on the approximation error, this approach is
used to perform control of large-scale models. From a practical point of view, the methods proposed in this
study have been successfully applied in an industrial context as a part of the global process aimed at controlling
a flexible civilian aircraft.

Keywords : linear time invariant models, large-scale models, model reduction, model approximation, frequency-

limited model approximation

Approximation de modèles dynamiques de grande dimension sur intervalles de fréquences limités

Résumé. Les systèmes physiques sont représentés par des modèles mathématiques qui peuvent être utilisés
pour simuler, analyser ou contrôler ces systèmes. Selon la complexité du système qu’il est censé représenter, un
modèle peut être plus ou moins complexe. Une complexité trop grande peut s’avérer problématique en pratique
du fait des limitations de puissance de calcul et de mémoire des ordinateurs. L’une des façons de contourner
ce problème consiste à utiliser l’approximation de modèles qui vise à remplacer le modèle complexe par un
modèle simplifié dont le comportement est toujours représentatif de celui du système physique. Dans le cas des
modèles dynamiques Linéaires et Invariants dans le Temps (LTI), la complexité se traduit par une dimension
importante du vecteur d’état et on parle alors de modèles de grande dimension. L’approximation de modèle,
encore appelée réduction de modèle dans ce cas, a pour but de trouver un modèle dont le vecteur d’état est plus
petit que celui du modèle de grande dimension tel que les comportements entrée-sortie des deux modèles soient
proches selon une certaine norme. La norme H2 a été largement considérée dans la littérature pour mesurer la
qualité d’un modèle réduit. Cependant, la bande passante limitée des capteurs et des actionneurs ainsi que le
fait qu’un modèle est généralement représentatif d’un système physique dans une certaine bande fréquentielle
seulement, laissent penser qu’un modèle réduit dont le comportement est fidèle au modèle de grande dimension
dans un intervalle de fréquences donné, peut être plus pertinent. C’est pourquoi, dans cette étude, la norme

H2 limitée en fréquence, ou norme H2,Ω, qui est simplement la restriction de la norme H2 sur un intervalle de
fréquences Ω, a été considérée. En particulier, le problème qui vise à trouver un modèle réduit minimisant la
norme H2,Ω de l’erreur d’approximation avec le modèle de grande dimension a été traité. Deux approches ont été
proposées dans cette optique. La première est une approche empirique basée sur la modification d’une méthode
sous-optimale pour l’approximation H2. En pratique, ses performances s’avèrent intéressantes et rivalisent avec
certaines méthodes connues pour l’approximation de modèles sur intervalles de fréquences limités. La seconde est
une méthode d’optimisation basée sur la formulation pôles-résidus de la norme H2,Ω. Cette formulation généralise
naturellement celle existante pour la norme H2 et permet également d’exprimer deux bornes supérieures sur la
norme H∞ d’un modèle LTI, ce qui est particulièrement intéressant dans le cadre de la réduction de modèles.
Les conditions d’optimalité du premier ordre pour le problème d’approximation optimale en norme H2,Ω ont
été exprimées et utilisées pour créer un algorithme de descente visant à trouver un minimum local au problème
d’approximation. Couplée aux bornes sur la norme H∞ de l’erreur d’approximation, cette méthode est utilisée
pour le contrôle de modèles de grande dimension. D’un point de vue plus pratique, l’ensemble des méthodes
proposées dans cette étude ont été appliquées, avec succès, dans un cadre industriel comme élément d’un processus
global visant à contrôler un avion civil flexible.

Mots-clés : modèles linéaires invariants dans le temps, modèles de grande dimension, réduction de modèles,

approximation de modèles, approximation de modèles sur intervalles de fréquences limités
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