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General introduction

Predicting the role played by small scale heterogeneities on the macroscopic response of materials
is an important challenge in mechanics. In fracture problems, heterogeneities and defects can
play a central role: In some specific cases, when crack initiation dominates the fracture process,
the strength to failure of a solid is not ruled by an average of its local properties, but rather
by the response of small parts, that act as “weak links” and are responsible for the failure of
the whole solid (Weibull, 1939). In other cases, when material failure involves the propagation
of a free-discontinuity (interface) like a crack, some rare specific heterogeneities located at the
crack tip can have a dominant effect on the macroscopic material strength. For these reasons,
the passage from micro to macro in fracture problems governed by the propagation of a crack
can be highly complex. The central objective of this work is to develop tools relevant to such
a passage and quantify the effects of the small scale heterogeneities on the macroscopic failure
response of a material.

We shall address this problem for a planar crack propagation in the presence of strong
toughness heterogeneities for which new and interesting mechanisms take place. The presence
of a strong heterogeneity may induce large front perturbations (see Fig. Int. (a)) from which
non-linear geometrical mechanisms can emerge. Another mechanism is the occurrence of an
unstable crack growth where material failure is localized on some specific part of the fracture
front (see e.g. the fingering instability in Fig. Int. (b)).

front$

(a)$ (b)$

Fingering$front$

Figure Int.: Crack fronts propagating in a heterogeneous medium (a) Experimental example of a crack in-
teracting with a single strong heterogeneity (Chopin, 2010); (b) Numerical example of a front propagating by
fingering.

Describing quantitatively the large front deformation under the effect of strong toughness
heterogeneities and their implication on the effective fracture behavior is the aim of this
work. More precisely, we will start by extending current linear theories of crack front
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deformation in order to describe non-linear effects arising in the presence of rather strong
heterogeneities. For achieving a critical comparison with experimental examples, the extended
theories will be tested on heterogeneous systems using peeling experiments. Finally, we
address the problem numerically to explore the effect of arbitrarily strong heterogeneities.
This work is divided in two preliminary chapters plus two parts, the first part concerning
analytical developments and experiments, while the second part deals with the numerical works.

As a preliminary, chapter 1 gives the context and motivation of this study: we briefly
present the concepts relevant to fracture process in homogeneous brittle materials. We then
present more recent developments useful to describe the fracture of heterogeneous materials
and some important challenges in this field. In chapter 2, as a prerequisite we describe the
theoretical framework of fracture mechanics for a perturbed crack front which will be used
throughout in this manuscript.

Part I which is made of chapters 3, 4 and 5, is devoted to the analytical extension of the
current linear theories, discussed in chapter 2, to second-order in the crack front perturbation.
This is done for two model geometries: a half-plane crack in an infinite body (chapter 3) and
a half-plane crack lying on the mid-plane of an infinite plate (chapter 4). The theoretical
predictions drawn from these developments are then confronted to peeling experiments in
chapter 5.

Part II which is made of chapters 6 and 7, is devoted to the resolution of the problem of
crack propagation in the presence of heterogeneities for arbitrary large toughness variations.
The method (described in chapter 6) is based on the iteration of the perturbative approach,
presented in chapter 2. It is applied, in chapter 7, to the study of a penny-shaped crack
propagating in some model heterogeneous toughness field.



Chapter 1

Context and motivation

Crack propagation is the main mechanism of failure of materials. Based on an energy approach
developed all over the twentieth century, Linear Elastic Fracture Mechanics (LEFM) brings
nowadays a solid theoretical framework to describe how cracks propagate in homogeneous brit-
tle materials. However, this approach says little about the fracture of heterogeneous solids,
despite the key role played by material heterogeneities on the propagation of a crack. After a
pedagogical introduction of classical approach to fracture of homogeneous media, we will de-
scribe recent developments in the study of fracture of heterogeneous materials in the context of
weak heterogeneities before to introduce the current challenges on the problem of crack propa-
gation in presence of strong heterogeneities, in particular the prediction of effective macroscopic
fracture properties from microscopic heterogeneities.

1.1 Fracture of brittle materials: The central role of flaws and
cracks

To discuss the role of defects and cracks on the response of solids, let us consider first the
idealized case of a flawless solid presented on Fig.1.1 (a) and estimate its strength. When
submitted to an external tensile stress σ, the atomic bonds get stretched over a length ∆a =
a0
σ

E
where, a0 is the their original spacing and E is the YoungÕs modulus of the material.

Quantum-mechanical calculations done by Marder and Fineberg (1996) showed that when ∆a
becomes 20% of the original spacing a0 between atoms, the bond breaks. This corresponds to a
critical stress σc at material failure of the order of E/5. This estimation is compared with the
experimental strengths of materials in Table 1.1. This oversimplified model predict a strength

Table 1.1: Comparison between theoretical and experimental strengths of materials.

Materials Young’s modulus
E (GPa)

Theoretical strength
E/5 (GPa)

Experimental strength
(GPa)

Iron 160 32 0.85
Copper 190 38 0.49
Silicon 180 36 0.62
Glass 70 14 0.02

σc which is about two orders of magnitude larger than the experimental observations. The
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reason behind this huge discrepancy is the existence of numerous defects in real materials.

1.1.1 Concept of stress concentration at crack tips

In order to improve the description of the material provided above, we introduce an elliptical
cavity (Fig. 1.1 (b)) and investigate the effect on the material strength. Inglis (1913) analyzed
the stress field in a such geometry. We note the semi-axes of the elliptical cavity by b and c.
Under the application of an external uniform stress σ as schemated in Fig. 1.1 (b) on the body

2c

2b

σ

s2c

2b

σ

s 2c

2b

σ

s

2a

(a)$ (b)$ (c)$

Figure 1.1: Models of material description for fracture problems: (a) an idealized model without any defect,
(b) a solid containing an elliptical hole with semi-axes b and c, and (c) a solid containing a Griffith (slit) crack
with length 2a, subjected to uniform tensile stress σ

boundaries, Inglis showed that the actual stress acting locally at point s where the radius of
curvature ρs = c2/b is minimal is amplified and follows

σs

σ
= 1 + 2

√
b

ρs
. (1.1)

The resulting stress concentration in the vicinity of this defect may explain the discrepancy
between practical and theoretical strengths of materials. However, for the limiting case b/ρs →
∞ equivalent to a slit crack (Fig. 1.1 (c)) in an ideal elastic homogeneous solid, the amplification
factor of Eq. (1.1) is diverging. This description predict not only zero strength of material but
seems also contrary to the fact that larger cracks propagate generally more easily than smaller
ones. This inconsistency motivates an other approach based on energy-balance rather than on
the crack-tip stresses.

1.1.2 Concept of energy balance during crack propagation

Here we present the energy approach proposed by Griffith (1920). The main idea is to look at
the variation of the stored elastic energy in a loaded elastic solid when a crack propagates over
an infinitesimal distance. This rate of energy released, which is a finite quantity even in the
slit crack geometry (Fig. 1.1 (c)) where the stress diverges, provides a driving force for crack
advance. In qualitative terms, for crack extension to occur under the influence of an applied
stress, the decrease in mechanical energy must compensate the increase in surface energy due to
crack extension δa. Noting δUM the mechanical energy of the body released during this process,
the energy balance then reads as

δUM = 2γsδa (1.2)
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where γs –known as the specific surface energy – is an intrinsic quantity of a material. It
describes the energy required to create two new surfaces of unit area by taking into account
the atomic bond energy. Accordingly, to the applied stress level at the material boundary, the
energy balance of Eq. (1.2) gives a critical condition for the crack propagation in terms of rate
at which mechanical energy is flowing in the crack tip region. It is accordingly convenient to
define a quantity called the energy-release-rate (ERR),

G ≡ − lim
δa→0

δUM

δa
= −∂UM

∂a
(1.3)

where the minus sign denotes decrease in the total mechanical energy. The unit of G is J.m−2,
and coincides with the units of a surface energy. With this, the so called Griffith’s criterion for
crack propagation follows

{
G < Gc Stable crack
G = Gc Propagating crack

(1.4)

where Gc – known as the fracture energy or fracture toughness – is equal to 2γs in the case of an
ideally brittle material. Very recently, this relation between the surface energy and the fracture
energy was verified in cleavage experiment performed on silicon crystal (Gleizer and Sherman,
2014). However, the large majority of materials do not behave on an ideally brittle manner and
their failure is accompanied by some additional dissipation (plasticity, visco-elasticity, damage).
The ERR is then increased due to blunting at the crack tip, resulting from various dissipative
mechanisms accompanying bond breaking. As suggested by Orowan (1955) and Irwin (1958),
the Griffith’s criterion reformulated by incorporating the dissipative energy γd due to these
additional mechanisms follows

Gc = 2 (γs + γd) . (1.5)

Table 1.2 compares fracture to surface energy for different brittle materials. Even though these

Table 1.2: Comparison between contributions due to surface energy 2γs and dissipative energy
2γd in the fracture energy Gc.

Materials Gc (J.m−2) 2γs (J.m−2)
γd

γs
=
Gc

2γs
− 1

Silicon – Si(110)
Gleizer and Sherman (2014);
Pérezss and Gumbsch (2000)

3.5 3.46 0.01

Diamond – C (111)
Lawn (1993)

15 12 0.25

Sapphire – Al2O3 (1010)
Lawn (1993)

25 8 2.12

Silica – SiO2 (Glass)
Lawn (1993)

8 2 3

materials are nominally brittle, the fraction of dissipation energy is not negligible and in some
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cases dominants over the surface energy conditions. Therefore, the effective fracture toughness
of the material is not always governed by the pure contribution of surface energy. One of the
key factors that are responsible for generating dissipation near the crack tip, might be the small
scale material heterogeneities that exist near the crack tip. Some strong heterogeneity then
might trap the crack front. As a result, large deformations may localized there which result in
some dissipations and affect the macroscopic effective fracture toughness.

Now we have derived a global criterion for crack propagation, we would like to come back
to the properties of the local stress field in the crack tip vicinity.

1.1.3 Local stress field near the crack tip

Near the crack tip, the stress field can be decomposed in three components, called Mode I,
Mode II and Mode III, as sketched in Fig. 1.2. Mode I causes the crack to open orthogonally
to the crack plane. Mode II causes the crack surfaces to slide relative to each other in the the
crack propagation direction. Mode III causes the crack surface to slide relative to each other in
the 3 – direction. With these definitions the solution of the crack tip fields can be broken down
into three problems. Modes I and II are found by the solution of either a plane stress or plane
strain problem and Mode III by the solution of an anti-plane shear problem.

Mode I Mode II Mode IIII$

Tensile$mode$

II$

Shearing$mode$

III$

Tearing$mode$

2$
1$

3$

Figure 1.2: The three modes of fracture.

Let us focus further on a pure mode I loading that will be the main focus in this work. In
his fundamental contribution to the analysis of stresses in the vicinity of a crack, Irwin (1958)
calculated the stress distribution in the rectangular coordinate system of Fig. 1.3 :

Mode III

1$

2$

r"

θ$

P$

Figure 1.3: Rectangular co-ordinate system at the crack tip P.

σij(ρ, θ) =
KI√
2πr

f I
ij(θ) (1.6)

where f I
ij are universal functions; (r, θ) are polar co-ordinates of point ahead of crack tip where

the stress is being observed; i, j = 1, 2 and KI is the so-called stress intensity factor (SIF).
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This quantity depends both on the geometry of the system and the external loading. Note
that non-diverging terms contribute also to the stress field near the crack tip. However, our
interest lies here in singularity term given in Eq. (1.6), since they dominant both the stress
level sufficiently close to the tip and the crack behavior.

Mode II and mode III loadings lead to the same form of stress field as given in Eq. (1.6)
but with stress intensity factors KII ,KIII and functions f II

ij , f
III
ij that varies with the fracture

mode. In the case of a slit crack in an elastic solid, the stress field for mixed modes is given by
the sum of the three contributions of each mode taken individually.

In the mode I, SIF KI ≡ K and energy-release-rate G are linked by Irwin (1958)’s formula:

G =
K2

E
(1.7)

so that, Griffith (1920)’s criterion (1.4) is equivalent to Irwin (1958)’s criterion which states that
the crack propagates if the stress intensity factor K at the crack tip exceeds the local toughness
Kc: {

K < Kc Stable crack
K = Kc Propagating crack

(1.8)

where the toughness is defined as Kc =
√
GcE.

1.1.4 Existence of a process zone

To summarize, the basic essence of the LEFM is that it provides a criterion of crack propagation
based on energy balance that links the available macroscopic energy – that depends only on
the imposed boundary conditions and the sample geometry – to microscopic energy required to
create two new surfaces. Unfortunately, this is also the limitation of this macroscopic approach.
The divergence of the stress field at the crack tip is physically unacceptable. Most materials
develop plastic deformation or damage when the intrinsic strength σc of material is exceeded
in the region near the crack tip. On one hand, this provides an explanation to the release of
the crack tip stresses. On the other hand, it explains the additional dissipation highlighted
by the large experimental values of fracture energy Gc > 2γs (Table 1.2). These dissipative
mechanisms take place in a process-zone of size lpz near the crack tip. Qualitatively, this size
is comprehended to the maximum distance from the crack tip where the tensile stress imposed
by the presence of the crack is sufficient to induce irreversible deformations (Fig. 1.4). A rough

approximation can then be obtained using the relation σc ∼ Kc/
√
lpz. A more refined model

was proposed by Barenblatt (1962) based on a cohesive zone approach with constant cohesive

strength σc. The predicted value follows lpz =
π

8
(Kc/σc)

2.

Therefore, the elastic stress analysis becomes increasingly inaccurate as this process zone
at the crack tip becomes sufficiently large and linear elastic fracture mechanics (LEFM) is no
longer useful for predicting the crack evolution. However, LEFM reconciles such non-linear
processes under the assumption of the so-called small scale yielding : the size lpz of the process
zone is assumed to be smaller than any structural length of the system, for example the crack
size a (Fig. 1.4). Under this condition, instead of relating the ERR G to the local quantity SIF
K that is ill-defined, it now interprets as the flow of energy going to the crack tip region that
can, still be defined using local stress field near the crack tip using the concept of J−integral.
This path-independent J− integral, introduced by Cherepanov (1967) and Rice (1968) can be
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used to calculate crack driving force G from the presence of some localized process zone at the
tip under small scale yielding conditions.

a"

σ

r

σ
c

lpz

Figure 1.4: Schematic representation of the process zone around the crack tip surrounded by a material behaving
elastically.

Finally, it is useful to note that the approach discussed so far is restricted to ideal homo-
geneous media. As soon as one considers real materials, small scale heterogeneities can have
dramatic effects that are not described by the theory presented so far. This is the central point
of the following section.

1.2 Fracture of heterogeneous materials

As explained in the previous section, LEFM provides a powerful framework to study the problem
of a crack propagating in an ideal homogeneous elastic medium. However this approach does not
address the effects due to microscopic material heterogeneities - that can have huge consequences
on the response of a crack. Therefore, the concepts presented until now leave many fundamental
questions open: What sets the value of the fracture toughness of a material? In the context
of perfectly brittle materials, can we predict the macroscopic toughness from their microscopic
features? Let us now look in more detail at the role played by material heterogeneities on the
propagation of a crack and the effective material toughness.

1.2.1 On the key role of the heterogeneous fracture properties on crack prop-
agation

Because of the presence of the stress singularity at the crack tip, material heterogeneity, even
very localized in a small zone, can have macroscopic consequences on the crack propagation.
This effect is characteristic of failure problems: Because of the stress concentration, the crack
enhances the effects of mechanisms localized at its tip. In other words, rare specific heterogeneity
can have a giant effect on the macroscopic failure behavior.
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To illustrate these effects, let us consider a 2D material characterized by a one-dimensional
layered heterogeneity as represented in Fig. 1.5. This composite material is made of two com-
pounds a and b characterized by their toughness Ka

c and Kb
c , respectively (Ka

c < Kb
c). Let’s

consider the specific case when these compounds are oriented transversely to the crack line
(Fig. 1.5 (a)). To make the crack propagate through the whole material, one must apply a load-
ing Kapplied

I at least equal to Kb
c otherwise the crack is “pinned” in the blue region. Therefore,

the macroscopic response of this model heterogeneous material is solely governed by the tough
phase b, irrespective of the toughness of the phase a. In the case when these compounds oriented
parallel to the crack line (Fig. 1.5 (b)), the macroscopic response of this model heterogeneous
material is mainly governed by the phase in which the crack is lying. As presented in Fig. 1.5
(b), crack lies in weak phase a, the macroscopic response is governed by phase a only. With

Kc
b$

Kc
a$

(a)$ (b)$

Figure 1.5: Representation of a 2D layered material made of two compounds with different toughness: (a)
Compounds oriented transversely to the crack line, (b) Compounds oriented parallel to the crack line.

these two examples in mind, let’s now consider a material made of N different parallel layers
of toughness Ki

c with parallel orientation with respect to the crack. The macroscopic failure
response is then governed either by the maximum value of Ki

c or its minimum value so that a
very small part of the heterogeneous materials rules its whole behavior. Therefore, the way of
doing a homogenization in fracture problems must be tackled carefully and is very different from
other homogenization problems like in elasticity, electrostatics, magnetism and other problems
that are addressed by variational principles that consist in finding relevant effective parameters
by the principle of minimization of the stored potential energy in the system (Nemat-Nasser and
Hori, 1999). After these examples on how small scale heterogeneities can dramatically change
the whole response of a solid, we now discuss the 3D situation where a planar crack propagates
in some heterogeneous fracture plane.

1.2.2 Involvements of the different length scales

Fig. 1.6 (a) shows a schematic representation of planar crack propagating in a medium with
heterogeneity of size ξ1. Compare to 2D example presented in Fig. 1.4, the circular process
zone is now a cylinder of radius of lpz, elongated along the crack front. Before pursuing, let
us make some remarks on the length scales involved in this 3D problem. There is one more
material length scale ξ involved here along with the two length scales introduced previously in
the context of homogeneous medium, namely the process zone size lpz and a structural length
like the crack size a. This length scale due to heterogeneity plays a crucial role from two points
of view : (i) If ξ is comparable with the process zone size lpz, the framework of LEFM does

1We define here as the typical length scale over which fracture energy Gc is varying. In the reminder of this
work, we will restrict our discussion to smoothly varying Gc along the propagation direction.
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Figure 1.6: Representation of a 3D crack of size a with (a) the process zone of size lpz at crack tip, and (b)
its equivalent representation in the limit of small scale yielding, propagating in a medium with heterogeneities of
size ξ.

not remain valid anymore to quantify the effects of small scale heterogeneities, and one needs
to look for another framework to tackle the problem; (ii) if this size is large enough compare
to lpz but smaller than a structural length a (lpz ≪ ξ ≪ a), the framework of LEFM can be
properly used: We can study crack propagation by replacing the crack front with its cylindrical
process zone by a crack front described as a line (Fig. 1.6 (b)). At these neglected intermediate
scales (of order between tens of nanometers to hundreds of microns), material heterogeneities
can have dramatic effects on the macroscopic failure response of a material. In order to have a
clear conceptual and theoretical framework to explore these effects, we confine ourselves to the
case where lpz ≪ ξ ≪ a for which LEFM works properly.

1.2.3 Homogenization over the small scale heterogeneities

In the limit of quasi-static crack propagation, recently, Hossain et al. (2014) have derived the
effective toughness of heterogeneous media loaded in Mode-I loading conditions. Their main
formulation is based on what they called “surfing boundary conditions”. The main idea lies in
defining an effective homogeneous medium with an effective property that describes the results
of a macroscopic experiment without having to resolve the microscopic details. In order to do
that, one needs to define a problem in which the crack growth is steady at the macroscopic
scale, but crack sets are completely free to evolve in any manner that they choose at the
microscopic scale. They have achieved this by solving the microscopic problem subject to the
surfing boundary condition. They have explored their formulation mainly in studying the crack
propagation in the 2D examples that we have discussed in previous section in the context
of toughness heterogeneity. They have also studied the example of heterogeneity in the elastic
constants. Their calculations found that the effective toughness of heterogeneous media is solely
governed by the peak value of toughness field.

In this work, we are going to study the corresponding 3D fracture problem. We will restrict
ourselves to the case of toughness heterogeneities while keeping homogeneous elastic proper-
ties. The problem with heterogeneities in the elastic constants will be remained to one of the
perspective of this work. The basic difference from that 2D example is that, now crack can
have more than one interaction with heterogeneities at the same time. Deformations of the
front line is, thus, going to be the main mechanism to select local properties. With this new
mechanism in the problem, our key objective is here to explore in different situations how the
complex front evolution selects local fracture properties and sets the overall effective material
toughness. In order to do that, at first, one needs to calculate the front deformations when
trapped by heterogeneities. A basic mechanism playing a role here is that elasticity tries to
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keep the front line flat while heterogeneities try to deform it. Thus, the distribution of driving
forces along the crack front and front geometry are coupled and both are unknown a priori.
Our basic approach to address the problem is based on perturbation method developed by Rice
(Rice, 1985, 1989) that gives a priori, the variations in the driving force along the crack front
due to small otherwise arbitrary perturbations of crack front geometry.

1.2.4 Weakly heterogeneous toughness fields: In the limit of small front
deformations

Let us look at the propagation of a crack in some specific cases of weakly heterogeneous tough-
ness fields, as schematized on Fig. 1.7. Depending on the fluctuations in fracture toughness
along the propagation direction, different cases can be distinguished (Roux et al., 2003): (i)
if the fluctuations of the toughness in the propagation directions are very small or negligible
(Fig. 1.7 (a)), the crack front propagates smoothly so that the driving force G reaches the local
fracture toughness at each position along the crack front (G = Gc). In this case, heterogeneous
material can be safely replaced by an equivalent homogeneous one with effective toughness
equal to its mean value < Gc >; (ii) In contrast if the spatial fluctuations along the propagation
direction are strong (Fig. 1.7 (b)), there might be jumps during the crack propagation: crack
front gets pinned on higher toughness points for a while, and once loading increases enough,
the crack front get depinned and jumps to another tough point without visiting domains of
weaker toughness. Therefore, the condition G = Gc might not always admit a solution and the
effective toughness is governed by the pinned points: hence it is larger than the spatial average
of the local fracture energy (Patinet et al., 2013; Demery et al., 2014). However, note that these
results hold in the limit of very small front deformations.
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Figure 1.7: Representation of the propagation of a crack (in red) in (a) a toughness field (tougher zones are
in black) that is invariant along the left to right propagation direction (weak pinning), and (b) a toughness field
that is variant along the propagation direction (strong pinning).

1.3 Objective of this thesis

The key objective of this thesis is to explore new effects arising for strongly heterogeneous
toughness fields. In particular, since stronger heterogeneities would not affect much the strong
pinning regime, we will focus on the effect of strong heterogeneities in the weak pinning regime.
Does the equation G = Gc still admits any solution in terms of crack front geometry? How to
predict the evolution of front geometry during its propagation? How does it set the effective
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fracture properties of the materials? These are the main key issues that will be tackled in
this manuscript. In order to address them, we will use the theoretical framework of fracture
mechanics with perturbed crack front that we describe in the next chapter.



Chapter 2

Some prerequisites on perturbative
approaches in brittle fracture

The aim of this chapter is to expound some necessary definitions and classical results of LEFM
with perturbed crack front. As explained in the previous chapter, attention is restricted to the
sole case of a planar crack subjected to some tensile mode I loading.

2.1 Basic definition of the mode I stress intensity factor

Consider (Figure 2.1) a planar crack with arbitrary contour embedded in some arbitrary
isotropic elastic body symmetric about the crack plane, loaded in pure mode I through some
symmetric system of prescribed forces and/or displacements. Let Oxyz denote the global refer-
ence co-ordinate system, and s some curvilinear abscissa along F. At each point s of F, define
a local basis of vectors (−→e 1(s),−→e 2(s),−→e 3(s)) as follows:

• −→e 1(s) ≡ −→e 1 is orthogonal to the crack plane.

• −→e 2(s) is in the crack plane and orthogonal to F.

• −→e 3(s) is in the crack plane and tangent to F.

y

x

z

−→e 1

−→e 2(s0)

−→e 3(s0)

s0

s

F

Ω

Figure 2.1: A three-dimensional planar crack F embedded in an arbitrary body Ω
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The mode I SIF K at the point s is then defined by the following asymptotic forms of the tensile
stress just ahead of the crack front and the crack opening displacement just behind it :

σ11(s, ρ) ≡ σ(s, ρ) ∼ K√
2πρ

; Ju1(s, ρ)K ≡ Ju(s, ρ)K ∼ 8
1 − ν2

E
K(s)

√
ρ

2π
. (2.1)

In these expressions σ(s, ρ) denotes the stress tensor at the distance ρ ahead of the point s,
in the direction of the vector −→e 2(s); Ju(s, ρ)K denotes the displacement discontinuity across
the crack plane at the distance ρ behind the point s, in the direction of the vector −−→e 2(s); E
denotes Young’s modulus and ν Poisson’s ratio.

2.2 Coplanar perturbation of a crack

The aim of this section is to give the first-order variations of the stress intensity factor and the
fundamental kernel (FK) due to small in-plane perturbations of the crack front (Fig. 2.2). Such
formulae have been developed by Rice (1989) using Bueckner (1970)’s weight-function theory,
and generalized to general loading conditions by Leblond et al. (1999), Favier et al. (2006).

y

x

z

−→e 1

−→e 2(s0)

−→e 3(s0)

s0

s

F

δa(s)

Ω

Figure 2.2: A planar mode I crack with a slightly perturbed front in an arbitrary body.

2.2.1 Definition and elementary properties of crack-face weight functions

The mode I crack-face weight function (CFWF), denoted by k(x, z; s), verifies the following
properties, the first of which is in fact a definition (Rice, 1989) :

• If the loading consists of opposite surface tractions T (x,±0, z) = ±T (x, z) exerted on the
upper (+) and lower (−) crack surfaces at the location (x,±0, z), then the mode I SIF K
induced at the location s along F is

K(s) =
∫

crack
k(x, z; s)T (x, z)dxdz. (2.2)

Considering the special case of a pair of unit point forces exerted at the location (x,±0, z),
one sees that k(x, z; s) may be interpreted as the SIF generated at point s of the crack
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front F by such forces. Thus the function k(x, z; s) depends on the crack front geometry
but has no dependence upon the original loading other than on which portions of the body
and its boundary have forces versus displacements prescribed.

• If the crack front location is altered by a small distance δa(s), as in Fig. 2.2, under fixed
loading conditions, then the variation of the crack opening displacement at location (x, z)
is, to first order in δa(s),

δJu(x, z)K = 2
1 − ν2

E

∫

F

k(x, z; s)K(s)δa(s)ds. (2.3)

A special limit of the CFWF will play a major role in the sequel. Let us choose two point
locations s and s′ along F, and a point (x,±0, z) on the crack faces behind the point s at a

distance ρ = ρ(x, z) along the direction of the vector −−→e 2(s). The function k(x, z; s′)/
√
ρ(x, z)

is known to have a well-defined limit for ρ(x, z) → 0 (Rice, 1989). One may then define a regular
function W (s, s′) by the formula

W (s, s′) ≡ π

√
π

2
D2(s, s′) lim

ρ(x,z)→0

k(x, z; s′)√
ρ(x, z)

(2.4)

where D2(s, s′) denotes the cartesian distance between the points s and s′. The function W (s, s′)
thus depends on the crack front geometry, just like the CFWF, but has no dependence upon
the loading other than on which portions of the body and its boundary have forces versus
displacements prescribed. It may also be shown, using Betti’s theorem, to be symmetric (Rice,
1989).

We shall also use the notation

Z(s, s′) ≡ W (s, s′)
2πD2(s, s′)

. (2.5)

Just like W (s, s′), Z(s, s′) depends on the crack front geometry but has no dependence upon
the loading other than on which portions of the body and its boundary have forces versus
displacements prescribed. Also, since W (s, s) = 1 it behaves like 1/D2(s, s′) when the points s
and s′ become close.

In the sequel, the wording “fundamental kernel” (FK) will designate the functions W or Z
indifferently.

2.2.2 First order variation of the stress intensity factor

Assume that the crack front is perturbed, under constant loading, by a small distance δa(s)
within the crack plane in the direction perpendicular to the front (Fig. 2.2). Assume further
that δa(s1) = 0 at some point s1.

Consider a point (x, z) at a small distance ρ(x, z) from the point s1 of the crack front F

along the vector −−→e 2(s1). The variation of Ju(x, z)K is then given by Eq. (2.1)2:

δJu(x, z)K ∼ 8
1 − ν2

E
δK(s)

√
ρ(x, z)

2π
. (2.6)

Using this equation along with Eqs. (2.3), (2.4) and (2.5), dividing both sides of the resulting

equation by
√
ρ(x, z) and taking the limit ρ(x, z) → 0, one gets Rice (1989)’s first formula
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which provides the infinitesimal variation δK(s1) of the SIF to first order in the crack front
perturbation δa(s):

δK(s1) = PV

∫

F

Z(s1, s)K(s)δa(s)ds (2.7)

where the symbol PV denotes the Cauchy principal value of the integral, which is taken over
the crack front F.

Note that the asymptotic behaviour of the FK Z mentioned above ensures that the integral
in Eq. (2.7) does make sense as a Cauchy principal value if (1) δa(s1) = 0, and (2) d[δa(s)]/ds
is Hölder continuous at s = s1.

There is an issue with the practical applicability of Eq. (2.7), since it does not provide δK(s)
at points s where δa(s) 6= 0. However, Rice (1989) has pointed out that it is always possible to
decompose the given perturbation δa(s) in the following form

δa(s) = δ∗a(s) + [δa(s) − δ∗a(s)] (2.8)

where δ∗a is another perturbation such that δ∗a(s1) = δa(s1), so that the second term, in
brackets, vanishes as required for to be applicable Eq. (2.7). Such a decomposition is interesting,
of course, only if special motions δ∗a(s) of crack front exist for which the variation δ∗K(s1) may
be calculated independently. Then

δK(s1) = δ∗K(s1) + PV

∫

F

Z(s1, s)K(s) [δa(s) − δ∗a(s)] ds (2.9)

where δ∗K(s1) represents the perturbation of K(s1) arising from the perturbation δ∗a. An
interesting special case consists of a δ∗a(s) representing a uniform advance of the crack
front F by the amount δa(s1), for which the corresponding first order variation of the SIF,
[δK(s1)]δa(s)≡δa(s1) ∀s is often known explicitly. From this choice of δ∗a Eq. (2.9) becomes

δK(s1) = [δK(s1)]δa(s)≡δa(s1) ∀s + PV

∫

F

Z(s1, s)K(s) [δa(s) − δa(s1)] ds. (2.10)

It is useful to rewrite this formula in terms of the function W :

δK(s1) = [δK(s1)]δa(s)≡δa(s1) ∀s +
1

2π
PV

∫

F

W (s1, s)
D2(s1, s)

K(s) [δa(s) − δa(s1)] ds. (2.11)

Another possibility is to choose δ∗a corresponding to an overall translatory motion of the crack
front. In the special cases, for example a circular crack in an infinite body subject to prescribed
forces only, such motion leave the SIF unaffected so that δ∗K(a1) = 0.

2.2.3 First order variation of the fundamental kernel

In addition, just by applying Eq. (2.9) to the special case of a loading system consisting of a
pair of opposite unit point forces exerted on the upper (+) and lower (−) crack surfaces, one
may derive Rice (1989)’s second formula which provides the infinitesimal variation of the FK
in the following form:

δZ(s1, s2) = δ∗Z(s1, s2) + PV

∫

F

Z(s1, s)Z(s, s2)[δa(s) − δ∗a(s)]ds (2.12)
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or equivalently

δW (s1, s2) = δ∗W (s1, s2) +
D2(s1, s2)

2π
PV

∫

F

W (s1, s)
D2(s1, s)

W (s, s2)
D2(s, s2)

[δa(s) − δ∗a(s)]ds (2.13)

where δ∗Z(s1, s2) or δ∗W (s1, s2) is the variation of the FK due to any other crack pertur-
bation δ∗a(s) such that

δ∗a(s1) = δa(s1) and δ∗a(s2) = δa(s2). (2.14)

Note that there are in fact two principal values here, one at s = s1 and the other at s = s2.
Eq. (2.12) is interesting, again, only if one can find special motions δ∗a(s) (satisfying the
constraints (2.14)) of the crack front for which the variation δ∗Z(s1, s2) may be calculated
independently. Such a motion can always be found by combining a translatory motion, a
rotation and a homothetical transformation bringing two distinct points s1 and s2 from their
initial positions to their final positions. In some special cases, for instance that of a semi-infinite
crack in an infinite body subjected to prescribed forces only, such a combination leaves the FK
unaffected so that δ∗Z(s1, s2) = 0. In some other cases like planar circular cracks embedded in
an infinite body loaded by remote stress, one has δ∗W (s1, s2) = 0 since W is dimensionless and
the problem is unchanged by the transformations. In finite bodies, such cases are no longer the
case in general but there are some special cases where certain perturbations δ∗a(s) generate a
zero δ∗Z or δ∗W .

2.3 Concluding remarks

With this framework of LEFM with perturbed crack front, in the sequel we will use the formula
updating the SIF K and FK Z or W in iterative way to explore the effects due to large front
deformations induced in the presence of strong heterogeneities.
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Introduction

Almost two decades ago, based on Bueckner (1970)’s weight-function theory, Rice (1985) derived
the first-order expression of the variation of the mode I stress intensity factor (SIF) induced by
some small, but otherwise arbitrary coplanar perturbation of the front of a semi-infinite tensile
crack in an infinite body. This expression was the first analytical development of the type. This
expression has then been extensively used as a cornerstone for predicting planar crack growth
evolution through a single defect, or a periodic or random array of such defects (Schmittbuhl et
al., 1995; Bonamy et al., 2008; Gao and Rice, 1989; Bower and Ortiz , 1991; Li and Keer, 1992),
and deciphering the puzzling geometrical properties of planar cracks observed in experiments
(Delaplace et al., 1999; Santucci et al., 2010; Bonamy and Bouchaud, 2011; Budzik et al., 2013;
Xia et al., 2012).

However, Rice (1985)’s first-order formula relies on the assumption that crack front pertur-
bations are of small wavelength compared to the specimen dimensions, which is questionable in
some experiments (Schmittbuhl et al., 2003). This was the motivation for Legrand et al. (2011)’s
recent extension of Rice (1985)’s formula to the case of coplanar perturbation of an emerging
tensile crack lying on the mid-plane of a semi-infinite plate, thus accounting for the effect of
the finite dimensions of the specimen. Patinet et al. (2013) showed that the new formula did
significantly improve the agreement between experimental and computed shapes of crack fronts
deformed by the presence of obstacles.

However, both Rice (1985)’s and Legrand et al. (2011)’s formulae are only accurate to
first order in the perturbation of the front, limiting their application to weak variations of
toughness. To explore the non-linear response of cracks pinned by defects of larger contrasts,
Leblond et al. (2012) extended Rice (1985)’s first-order formula to the second order in the
case of a semi-infinite crack propagating in an infinite body. Leblond et al. (2012)’s treatment
relied on application of some general results of Rice (1989) presented in chapter 2. Their
formula for the perturbed SIF was found to differ from the earlier ones, themselves in conflict,
of Adda-Bedia et al. (2006) and Katzav et al. (2007), derived by a more complex method.
Direct numerical computations of the SIF along perturbed crack fronts by the finite element
method confirmed the correctness of Leblond et al. (2012)’s new formula. However Leblond
et al. (2012) retained Adda-Bedia et al. (2006)’s and Katzav et al. (2007)’s assumption that
the unperturbed SIF, for the straight configuration of the crack front, was independent of the
position of this front within the crack plane. Further extensions are therefore necessary. This
part is organised as follows:
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Chapter 3

As a first-step this chapter is devoted to extend the work of Leblond et al. (2012) on second-order
perturbation of a semi-infinite crack in an infinite body to the case where the unperturbed SIF
is dependent on the position of the crack front within the crack plane (i.e. dK0/da 6= 0). This
hypothesis of dK0/da 6= 0 permits to unambiguously calculate the shape of the front deformed
by inhomogeneities of toughness, up to second order in the fluctuation of fracture toughness.
Using this equilibrium shape of the crack front, as a first application we show that the effec-
tive fracture toughness experienced by a crack propagating in a randomly heterogeneous, but
statistically homogeneous material is slightly less than the average value of the local toughness.
As a second application, we study the influence of the shape of the toughness map on the crack
front deformations by calculating the equilibrium shape of a crack front penetrating into (i) a
single obstacle of infinite length in the direction of propagation, (ii) a periodic array of such
obstacles, (iii) a sinusoidal distribution of such obstacles, up to second order in the contrast of
toughness between the matrix and the obstacle(s). One major outcome is that in all cases, the
first-order approximation overestimates the deformations of the front.

Chapter 4

This chapter is devoted to further extension of second-order perturbation with dK0/da 6= 0, for
a semi-infinite crack in an infinite body to the case of the finite body and particular to a plates
of arbitrary thickness. The case of a single, harder, infinitely elongated obstacle is considered
to highlight the finite thickness effect. We find notably that the thiner the sample, the small
the deformation of the front. This case is further addressed to experiments in the next chapter.

Chapter 5

For achieving a critical comparison of the model with experimental examples, this chapter is
devoted to the experimental study on half-plane cracks propagating in heterogeneous materials.
We perform these experiments following the setup designed by Xia et al. (2012) in which a thin
film is being peeled of from the rigid substrate with patterned interface with controlled field of
fracture energy. We explore the process of front pinning in specimens of thickness comparable
with the obstacle size. The geometry of the experimental pinned front is compared with the
results of our calculations for various toughness contrasts of the obstacles, providing a critical
test of the theory and its range of applicability. This comparison qualifies the limits in the
approach in terms of toughness contrast and of crack width.



Chapter 3

Second-order perturbation of a
semi-infinite mode I crack in an
infinite body

The aim of this chapter1 is to derive the second-order variation of the SIF induced by some
small, but otherwise arbitrary coplanar perturbation of the front of a semi-infinite tensile crack
in an infinite body subjected to some symmetric Mode I loading. In particular, we will extend
the results of Leblond et al. (2012) to the case where the unperturbed SIF depends upon the
position of the (straight) crack front within the crack plane. The chapter is organized as follows:

• Section 3.1 presents the basic problem definition with the necessary notations.

• As a preliminary, Section 3.2 presents the first-order solution for a slightly perturbed crack
front.

• We then calculate, in Section 3.3, the second-order expression of the SIF for the same
cracked geometry. This is done by applying Rice (1989)’s formula for the infinitesimal
variation of the SIF to some pre-perturbed configuration of the front upon which is su-
perposed some infinitesimal proportional perturbation. One thus gets an expression of
the derivative of the SIF with respect to the amplitude of the perturbation accurate to
first order in this amplitude, which yields the second-order expression of this SIF upon
integration. We finally perform a Fourier transform of this second-order expression in the
direction of the crack front.

• Section 3.4 then considers the case of a crack propagating according to Griffith’s criterion
along a fracture plane having a given heterogeneous distribution of toughness. Assuming
the ERR to be equal to its critical value at every point of the crack front, we apply the
results just obtained to the determination of the shape of this front up to second order in
the fluctuations of toughness.

• As a first application, Section 3.5 presents the calculation of the ”apparent macroscopic
toughness” experienced by a crack propagating in a material having a random distribu-
tion of toughness at the micro scale.

1The results presented in this chapter constitute the bulk of the material published in Vasoya et al. (2013).



38 Chapter 3. A semi-infinite mode I crack in an infinite body

• As a second application, Section 3.6 finally considers the case of a crack penetrating
into a single obstacle of infinite length in the direction of propagation, or some periodic
distribution of such obstacles and the case of sinusoidal distribution of the toughness. The
equilibrium shape of the front is calculated up to second order in the contrast of toughness
between the matrix and the obstacle(s).

3.1 Problem definition

Consider (Fig. 3.1) a semi-infinite tensile crack located in some infinite body subjected to
prescribed forces only (no prescribed displacements). Assume that the (planar) crack front is
slightly curved, its equation in the crack plane Oxz being of the form

x(z) = a+ δa(z) = a+ ǫφ(z) (3.1)

where a denotes the distance from the axis Oz to some “reference straight front”, ǫ a small but
not necessarily infinitesimal parameter, and φ(z) a given, fixed, smooth function. The position
of the front is thus characterized by the parameters a and ǫ, and the position of a current point
along it by the parameter z.

(z)εφ

O

x

y

z

a

Figure 3.1: A semi-infinite crack with a slightly perturbed front in an infinite body

The SIF for a given, fixed loading, and the FK for this cracked geometry are denoted
K(a, ǫ; z1) and Z(ǫ; z1, z2) respectively. (The FK is independent of the position of the unper-
turbed crack front a because as explained in chapter 1, it depends only on the geometry and
hence is insensitive to translatory motions of the crack front in the direction x). Our inter-
est here lies in both the second-order expression of K(a, ǫ; z1) and the first-order expression of
Z(ǫ; z1, z2) with respect to ǫ:

{
K(a, ǫ; z1) ≡ K0(a) + ǫK1(a; z1) + ǫ2K2(a; z1) +O(ǫ3)
Z(ǫ; z1, z2) ≡ Z0(z1, z2) + ǫZ1(z1, z2) +O(ǫ2).

(3.2)
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It is assumed in Eq. (3.2)1 that the loading has a translatory invariance in the direction z of
the crack front, so that the unperturbed SIF K0(a) depends on the position a of the (straight)
front but not on the position of the point of observation along it.

3.2 Zeroth and first-order solutions

• At order 0 in ǫ, no general expression can be provided for the unperturbed SIF K0(a),
since it depends on the loading. On the other hand the expression of the unperturbed FK
Z0(z1, z2) is known to be (Rice, 1985, 1989):

Z0(z1, z2) =
1

2π(z1 − z2)2
. (3.3)

• At order 1, K1(a; z1) is obtained through direct application of Rice (1989)’s first formula
(2.10) to the straight configuration of the front with the perturbation δa(z) = ǫφ(z); this is
possible since the FK appearing in this formula is known explicitly for this configuration.
Thus

K1(a; z1) =
dK0

da
(a)φ(z1) +K0(a)PV

∫ −∞

−∞
Z0(z1, z) [φ(z) − φ(z1)] dz. (3.4)

The first term in the right-hand side here results from identification of the quantity

[δK(s1)]δa(s)≡δa(s1),∀s of Eq. (2.10) to
dK0

da
(a)ǫφ(z1), since it represents the variation

of the SIF resulting from a uniform shift of the straight crack front by a distance ǫφ(z1)
in the direction x.

The expression of Z1(z1, z2) may be obtained by combining Rice (1989)’s second formula
(2.12), applied to the straight configuration of the front, and Eq. (3.3). To make the
procedure work, one needs to decompose the arbitrary perturbation ǫφ(z) in the same
way as in Eq. (2.8), i.e. as ǫφ(z) = [ǫφ(z) − ǫφ∗(z)] + ǫφ∗(z). In the specific case
considered here, the ancillary perturbation ǫφ∗(z) may be taken as a suitable combination
of a translatory motion and a rotation:

φ∗(z) ≡ φ(z1) +
φ(z2) − φ(z1)

z2 − z1
(z − z1) = φ(z2) +

φ(z1) − φ(z2)
z1 − z2

(z − z2). (3.5)

Such a motion brings no change to the FK since it leaves the geometry unmodified, so
that the term δ∗Z(z1, z2) in Eq. (2.12) is zero. The ancillary perturbation ǫφ∗(z) may be
eliminated in the resulting formula through suitable transformations. The final result is
(Leblond et al., 2012):

Z1(z1, z2) =
1

4π2(z1 − z2)2
PV

∫ +∞

−∞

[(
1

z − z1
+

1
z − z2

)
φ′(z)

+
2

z1 − z2

(
1

z − z2
− 1
z − z1

)
φ(z)

]
dz.

(3.6)
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3.3 Second-order variations of the stress intensity factor and
the energy-release-rate

We now wish to derive the expression of K2(a; z1) for a semi-infinite crack with a slightly
perturbed front in an infinite body. This will be done by considering two configurations of the
front, whose respective positions x(z), (x+ δx)(z) along the axis Ox are given by the equations

{
x(z) = a+ ǫφ(z)
(x+ δx)(z) = a+ (ǫ+ δǫ)φ(z)

(3.7)

where ǫ is a small quantity and δǫ an infinitesimal one; the first configuration is thus obtained
from the straight one (x = a) by adding the perturbation ǫφ(z), and the second one from the first
by adding a secondary perturbation δǫφ(z) having the same function φ(z), but some infinitesimal
amplitude δǫ. This will allow us to derive an expression of the derivative ∂K(a, ǫ; z1)/∂ǫ accurate
to first order in ǫ, and the second-order expression of K(a, ǫ; z1) will follow through integration.
On the one hand, the variation δK(z1) of the SIF between the two configurations is given by

δK(z1) ≡ K(a, ǫ+ δǫ; z1) −K(a, ǫ; z1) ≡ ∂K

∂ǫ
(a, ǫ; z1)δǫ. (3.8)

On the other hand this variation is given by Rice (1989)’s first formula (2.10)1:

δK(z1) = [δK(z1)]δx(z)≡δx(z1),∀z + PV

∫ +∞

−∞
Z(ǫ; z1, z)K(a, ǫ; z)[δǫφ(z) − δǫφ(z1)]dz. (3.9)

Now since [δK(z1)]δx(z)≡δx(z1),∀z represents the variation of the SIF arising from a uniform shift
δǫφ(z1) of the crack front, it is given by

[δK(z1)]δx(z)≡δx(z1),∀z ≡ K(a+ δǫφ(z1), ǫ; z1) −K(a, ǫ; z1) ≡ ∂K

∂a
(a, ǫ; z1)δǫφ(z1). (3.10)

Combining equations (3.8), (3.9) and (3.10) and dividing by δǫ, and then using the expansions
(3.2) of K(a, ǫ; z1) and Z(ǫ; z1, z) and the expression (3.4) of K1(a; z1), one gets

∂K

∂ǫ
(a, ǫ; z1) =

∂K

∂a
(a, ǫ; z1)φ(z1) + PV

∫ +∞

−∞
Z(ǫ; z1, z)K(a, ǫ; z) [φ(z) − φ(z1)] dz

=

[
dK0

da
(a) + ǫ

∂K1

∂a
(a; z1)

]
φ(z1) + PV

∫ +∞

−∞

[
Z0(z1, z) + ǫZ1(z1, z)

]

×
[
K0(a) + ǫK1(a; z)

]
[φ(z) − φ(z1)] dz +O(ǫ2)

=
dK0

da
(a)φ(z1) +K0(a)PV

∫ +∞

−∞
Z0(z1, z) [φ(z) − φ(z1)] dz

+ǫ

{
d2K0

da2
(a)φ2(z1) +

dK0

da
(a)PV

∫ +∞

−∞
Z0(z1, z)

[
φ2(z) − φ2(z1)

]
dz

+K0(a)PV
∫ +∞

−∞

∫ +∞

−∞
Z0(z1, z)Z

0(z, z′) [φ(z) − φ(z1)]
[
φ(z′) − φ(z)

]
dzdz′

+K0(a)PV
∫ +∞

−∞
Z1(z1, z) [φ(z) − φ(z1)] dz

}
+O(ǫ2).

(3.11)
1This formula is applied using the infinitesimal distance between the fronts and the infinitesimal length

element measured perpendicularly to and along the axis Oz, respectively, instead of the true ones measured
perpendicularly to and along the primarily perturbed front. The errors made are of second order in ǫ and
therefore negligible in the calculation of the first-order expression of ∂K(a, ǫ; z1)/∂ǫ.
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Integration of this expression with respect to ǫ then yields Eq. (3.2)1, K1(a; z1) being given by
Eq. (3.4) and K2(a; z1) by

K2(a; z1) =
1
2

d2K0

da2
(a)φ2(z1) +

1
2

dK0

da
(a)PV

∫ +∞

−∞
Z0(z1, z)

[
φ2(z) − φ2(z1)

]
dz

+
K0(a)

2

{
PV

∫ +∞

−∞

∫ +∞

−∞
Z0(z1, z)Z

0(z, z′) [φ(z) − φ(z1)]
[
φ(z′) − φ(z)

]
dzdz′

+PV
∫ +∞

−∞
Z1(z1, z) [φ(z) − φ(z1)] dz

}

(3.12)
or equivalently, account being taken of the expressions (3.3) and (3.6) of Z0 and Z1 :

K2(a; z1) =
1
2

d2K0

da2
(a)φ2(z1) +

1
2π

dK0

da
(a)PV

∫ −∞

−∞

φ(z)φ′(z)
z − z1

dz

+
K0(a)

8π2
PV

∫ +∞

−∞

∫ +∞

−∞

[(
1

z′ − z1
+

2
z′ − z

)
φ′(z′)

+
2

z − z1

(
1

z′ − z1
− 1
z′ − z

)
φ(z′)

]
φ(z) − φ(z1)

(z − z1)2
dzdz′.

(3.13)

Integrations by parts have been performed here, with respect to z in the integral involving
φ2(z) − φ2(z1), and with respect to z′ in that involving [φ(z) − φ(z1)]

[
φ(z′) − φ(z)

]
. In the

limit
dK0

da
→ 0, Eq. (3.13) becomes equivalent to equation (14) of Leblond et al. (2012).

It is worth noting that for the sinusoidal perturbation

φ(z) ≡ cos(kz) (k > 0), (3.14)

equation (3.13) yields, after some calculations,

K2(a; z) =
1
2

d2K0

da2
(a) cos2(kz) − 1

4
dK0

da
(a) k cos(2kz) − K0(a)

8
k2 sin2(kz), (3.15)

this same result has been arrived at by Willis (2013), by a completely different method.

3.3.1 Formulae in Fourier’s space

Expressions of the Fourier transforms of the formulae obtained in the direction of the crack
front will be needed in the sequel. The definition adopted here for the Fourier transform ψ̂(k)
of an arbitrary function ψ(z) is

ψ(z) ≡
∫ +∞

−∞
ψ̂(k)eikzdk ⇔ ψ̂(k) ≡ 1

2π

∫ +∞

−∞
ψ(z)e−ikzdz. (3.16)

Stress intensity factor:

The expression (3.2)1 of the SIF reads in Fourier’s space,

K̂(a, ǫ; k) ≡ K0(a)δ(k) + ǫK̂1(a; k) + ǫ2K̂2(a; k) +O(ǫ3) (3.17)

where δ denotes Dirac’s distribution (or generalised function), and K̂1(a; k) and K̂2(a; k) are
the Fourier transforms of K1(a; z) and K2(a; z).
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The expression of the Fourier transform K̂1(a; k) is then (Lazarus, 2011):

K̂1(a; k) = K0(a)

[
dK0

K0da
(a) − |k|

2

]
φ̂(k). (3.18)

The expression of the Fourier transform of K2(a; z1) consists of several terms. The Fourier
transform of the term involving φ2(z1) is proportional to the convolution product of the function

φ̂ and itself. To get that of the term involving PV
∫ +∞

−∞

φ(z)φ′(z)
z − z1

dz, the simplest method is

to express φ(z) as an integral involving φ̂(k), and φ′(z) as another one involving φ̂(k′) ; the
problem then reduces to calculating the integral

PV

∫ +∞

−∞

eiλz

z − z1
dz = eiλz1PV

∫ +∞

−∞

eiλ(z−z1)

z − z1
dz = eiλz1sgn(λ)PV

∫ +∞

−∞

eiλu

u
du

= iπ sgn(λ)eiλz1 .

(3.19)

Finally the calculation of the Fourier transform of the double integral is more complex but
basically reduces to that of the same integral; it is detailed in the work of Leblond et al. (2012).
The final result reads:

K̂2(a; k1) = K0(a)
∫ +∞

−∞
R(a; k, k1 − k) φ̂(k) φ̂(k1 − k) dk (3.20)

where

R(a; k, k′) ≡ 1
2

d2K0

K0da2
(a) − 1

4
dK0

K0da
(a)|k + k′| +

1
16

{
sgn(kk′)(k + k′)2

+
[
sgn(k) − sgn(k′)

]
|k + k′|(k − k′) − k2 − k′2

}
.

(3.21)

Energy-release-rate:

The expansion of the Fourier transform Ĝ(a, ǫ; k) of the ERR G(a, ǫ; z) follows from Irwin’s
formula and the expressions (3.18) and (3.20) of K̂1(a; k) and K̂2(a; k):

Ĝ(a, ǫ; k) ≡ G0(a)δ(k) + ǫĜ1(a; k) + ǫ2Ĝ2(a; k) +O(ǫ3) (3.22)

where G0(a) is the unperturbed ERR, and





Ĝ1(a; k) = G0(a)

[
dG0

G0da
(a) − |k|

]
φ̂(k)

Ĝ2(a; k1) = G0(a)
∫ +∞

−∞
S(a; k, k1 − k) φ̂(k) φ̂(k1 − k) dk

(3.23)

with

S(a; k, k′) ≡ 1
2

d2G0

G0da2
(a) − 1

4
dG0

G0da
(a)

(
|k + k′| + |k| + |k′|

)

+
1
8

{
sgn(kk′)(k + k′)2 +

[
sgn(k) − sgn(k′)

]
|k + k′|(k − k′) −

(
|k| − |k′|

)2}
.

(3.24)
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3.4 The equilibrium shape of the front of a crack

3.4.1 Generalities

We shall now apply the preceding results to the study of coplanar propagation of the crack,
governed by Griffith’s criterion with a heterogenous fracture toughness Gc(x, z) given by

Gc(x, z) ≡ Gc [1 + ǫgc(x, z)] (3.25)

where Gc is a “mean toughness”, ǫ a small parameter and gc(x, z) a given function describing
the toughness fluctuations. For a given loading, provided that G is equal to Gc at every point
of the crack front, the distribution of toughness determines the shape of this front in the form

x = a+ ǫφ1(a; z) + ǫ2φ2(a; z) +O(ǫ3) (3.26)

where a, φ1(a; z) and φ2(a; z) are a parameter and functions to be determined.

3.4.2 First- and second-order expressions of the crack front shape

To determine a, φ1(a; z) and φ2(a; z), it is useful to rewrite, for a crack front shape of type
(3.1),Eqs. (3.23) in the form

Ĝ1(a; k) ≡ Ĝ1
[
a; {φ̂}

]
(k) ; Ĝ2(a; k) ≡ Ĝ2

[
a; {φ̂}

]
(k). (3.27)

These somewhat formal equalities express the fact that the functions Ĝ1(a; .) and Ĝ2(a; .) are
linear and quadratic functionals, respectively, of the Fourier transform φ̂ of the “perturbation
function” φ.

With these notations, for the crack front shape depicted by Eq.equation (3.26), correspond-
ing to the perturbation function ǫφ ≡ ǫφ1 + ǫ2φ2, the expansion (3.22) of Ĝ(a, ǫ; k) takes the
form

Ĝ(a, ǫ; k) = G0(a) δ(k) + ǫĜ1
[
a; {φ̂1 + ǫφ̂2}

]
(k) + ǫ2Ĝ2

[
a; {φ̂1 + ǫφ̂2}

]
(k) +O(ǫ3)

= G0(a) δ(k) + ǫĜ1
[
a; {φ̂1}

]
(k)

+ǫ2
{
Ĝ1
[
a; {φ̂2}

]
(k) + Ĝ2

[
a; {φ̂1}

]
(k)
}

+O(ǫ3).

(3.28)

Now the local toughness is 1

Gc

[
x = a+ ǫφ1(a; z) + ǫ2φ2(a; z) +O(ǫ3), z

]

= Gc

{
1 + ǫgc

[
a+ ǫφ1(a; z) + ǫ2φ2(a; z) +O(ǫ3), z

]}

= Gc

[
1 + ǫgc(a, z) + ǫ2

∂gc

∂x
(a, z)φ1(a; z)

]
+O(ǫ3).

The Fourier transform of this expression at the point k1 is

Gc

[
δ(k1) + ǫĝc(a, k1) + ǫ2

∫ +∞

−∞

∂ĝc

∂x
(a, k) φ̂1(a; k1 − k)dk

]
+O(ǫ3).

Assuming G to be equal to Gc at every point of the crack front and therefore equating the
right-hand side of Eq. (3.28)2 (at k = k1) to this expression, one gets the following conditions:

1The spatial expansion of Gc here is based on the assumption that the geometrical perturbations of the crack
front are small compared to the typical scale over which the local toughness varies in the direction of propagation,
that is |ǫφ| ≪ ζx where ζx is the correlation length of the toughness fluctuations in the direction x; this is verified
in the limit of weakly heterogeneous materials.
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• At order 0:
G0(a) = Gc . (3.29)

This condition determines the position a of the reference straight front as a function of
the loading applied.

• At order 1:

Ĝ1
[
a; {φ̂1}

]
(k) = Gc ĝc(a, k),

which implies, by the expression (3.23)1 of the functional Ĝ1
[
a; {φ̂1}

]
(k) and Eq. (3.29),

that

φ̂1(a; k) = − ĝc(a, k)

|k| − dG0

G0da
(a)

. (3.30)

• At order 2:

Ĝ1
[
a; {φ̂2}

]
(k1) = −Ĝ2

[
a; {φ̂1}

]
(k1) +Gc

∫ +∞

−∞

∂ĝc

∂x
(a, k) φ̂1(a; k1 − k)dk,

which implies, by Eqs. (3.23), (3.29) and (3.30), that

φ̂2(a; k1) =
1

|k1| − dG0

G0da
(a)

{∫ +∞

−∞
S(a; k, k1 − k)

ĝc(a, k)

|k| − dG0

G0da
(a)

ĝc(a, k1 − k)

|k1 − k| − dG0

G0da
(a)

dk

+
∫ +∞

−∞

∂ĝc

∂x
(a, k)

ĝc(a, k1 − k)

|k1 − k| − dG0

G0da
(a)

dk

}
.

(3.31)

3.4.3 Some mathematical remarks

It is necessary to discuss here the convergence of the integrals appearing in the expressions of
φ̂1(a; k) and φ̂2(a; k) and their inverse Fourier transforms φ1(a; z) and φ2(a; z). The following
hypothesis is introduced on the sign of the first derivative of the unperturbed ERR G0(a):

dG0

da
(a) < 0. (3.32)

This condition is necessary for quasi-static propagation to be stable and was fulfilled in all
experiments mentioned in the Introduction.

With this condition, the denominator in the expression (3.30) of φ̂1(a; k) can never be zero,
so that the integral over k expressing φ1(a; z) in terms of φ̂1(a; k) is perfectly convergent. Also, in

the integrals appearing in the expression (3.31) of φ̂2(a; k1), the denominators |k|− dG0

G0da
(a) and

|k1 − k| − dG0

G0da
(a) again cannot vanish so they do not raise any problem of convergence either.

Finally the integral over k1 expressing φ2(a; z) in terms of φ̂2(a; k1) involves the denominator

|k1| − dG0

G0da
(a), but again this denominator can never be zero and convergence of the integral

is ensured.
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Consider now the special but interesting situation where G0 becomes independent of a. This

is in fact a limit-case in which the derivative
dG0

da
(a) takes very small negative values; in physical

terms, this means that the characteristic distance of variation of the unperturbed ERR is much
larger than that of fluctuations of the fracture toughness.

When
dG0

da
(a) = 0, the expression (3.30) of φ̂1(a; k) still makes sense, but the integral over k

expressing φ1(a; z) in terms of φ̂1(a; k) involves the denominator |k| which becomes zero in the
interval of integration; hence the integral diverges, except if ĝc(a, 0) = 0. Also, in the expression
(3.31) of φ̂2(a; k1), the integrals are also divergent, except again if ĝc(a, 0) = 0, because they
involve the denominators |k| and |k1 − k|. Finally, even if ĝc(a, 0) = 0, the expression of
φ̂2(a; k1) makes sense but that of φ2(a; z) is once more a divergent integral over k1 involving
the denominator |k1|.

It may thus be concluded that consideration of this limiting case where
dG0

da
(a) = 0 requires

some mathematical precautions. The best way to handle it is to first assume
dG0

da
(a) < 0,

perform all calculations with this hypothesis, and only finally examine whether the expressions

found make sense in the limit
dG0

da
(a) → 0, which they may or may not, depending on the

quantity of interest.

It remains to check that the functions φ1(a; z) and φ2(a; z) thus determined uniquely are
admissible in the sense that they do not predict any receding of the crack. Now the equations of
the crack front at two nearby instants, corresponding to the successive positions a, a+ δa (> a)
of the reference straight front, are given by

{
x(z) = a+ ǫφ1(a; z) + ǫ2φ2(a; z) +O(ǫ3)
(x+ δx)(z) = a+ δa+ ǫφ1(a+ δa; z) + ǫ2φ2(a+ δa; z) +O(ǫ3)

(3.33)

respectively, so that the difference in the position of the fronts is

δx(z) = δa+ ǫ
[
φ1(a+ δa; z) − φ1(a; z)

]
+ ǫ2

[
φ2(a+ δa; z) − φ2(a; z)

]
+O(ǫ3)

= δa

[
1 + ǫ

∂φ1

∂a
(a; z) + ǫ2

∂φ2

∂a
(a; z)

]
+O(ǫ3).

(3.34)

This quantity is positive since the perturbation procedure used makes sense only in the limit
ǫ → 0. Hence the front does not recede.

The conclusion is that with condition (3.32), the problem of determination of successive
crack front configurations admits a unique solution for which G = Gc at every point of the crack
front and every instant. In other words, crack propagation is possible in the complete absence of
dynamic effects and with a continuously advancing front. Note that this conclusion is intimately
tied to the hypothesis made of small fluctuations of toughness; for large fluctuations, the crack
front may never penetrate certain specially hard obstacles but leave them behind unbroken,
and conversely propagate unstably over small distances when suddenly encountering regions of
sufficiently low toughness; see Gao and Rice (1989), Schmittbuhl et al. (1995) and Bonamy et
al. (2008).
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3.5 Effective apparent fracture properties

In this subsection, we assume that condition (3.32) holds, so that the equality G = Gc may be
satisfied all along the crack front and at all instants. We wish to compute the apparent toughness
Geff experienced by the crack when propagating along a plane in a randomly inhomogeneous, but
statistically homogeneous material. In intuitive terms, this quantity represents the toughness of
some ‘equivalent homogeneous material’. In more precise terms, it is defined, for every position
a of the reference straight crack front, as the value of the unperturbed ERR for a fictitious
straight front having the same average position as the true, curved one:

Geff ≡ G0
(
a+ ǫ〈φ1(a; z)〉 + ǫ2〈φ2(a; z)〉 +O(ǫ3)

)
(3.35)

where 〈f(a; z)〉 denotes the average value of the function f(a; z) along the front axis z.

To facilitate the calculation of average values, the distribution of toughness is assumed to
be periodic in the direction z. The normalized fluctuation gc(x, z) and its Fourier transform
ĝc(x, k) are then of the equivalent forms

gc(x, z) ≡
+∞∑

m=−∞

cm(x)eimk0z ⇔ ĝc(x, k) ≡
+∞∑

m=−∞

cm(x)δ(k −mk0) (3.36)

where k0 denotes some positive wavenumber and the cm(x) coefficients. Moreover, the degree
of arbitrariness left on the definition of the quantity Gc permits to consider it as identical
to the exact average value of the local toughness in the fracture plane Oxz. The toughness
fluctuation gc(x, z) is then zero on average in this plane and even, by the hypothesis of statistical
homogeneity, on every straight line parallel to the axis Oz, so that

c0(x) ≡ 0, ∀x. (3.37)

At order 1, one gets from equations (3.30) and (3.36)2:

φ̂1(a; k1) = −
+∞∑

m=−∞

cm(a)

|m| − 1
G0

dG0

da (a)
δ(k −mk0)

⇒ φ1(a; z) = −
+∞∑

m=−∞

cm(a)

|m| − 1
G0

dG0

da (a)
eimk0z. (3.38)

In this sum, the only term which could a priori give a nonzero contribution in the average value
〈φ1(a; z)〉 has m = 0, but this term is zero by Eq. (3.37); hence

〈φ1(a; z)〉 = 0,∀a. (3.39)
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At order 2, equations (3.31) and (3.36)2 yield

φ2(a; z) =
∫ +∞

−∞

1

|k1| − dG0

G0da
(a)

{∫ +∞

−∞
S(a; k, k1 − k)

ĝc(a, k)

|k| − dG0

G0da
(a)

ĝc(a, k1 − k)

|k1 − k| − dG0

G0da
(a)

dk

+
∫ +∞

−∞

∂ĝc

∂x
(a, k)

ĝc(a, k1 − k)

|k1 − k| − dG0

G0da
(a)

dk

}
eik1zdk1

=
∫ +∞

−∞

∫ +∞

−∞

[
S(a; k, k′)

ĝc(a, k)

|k| − dG0

G0da
(a)

ĝc(a, k′)

|k′| − dG0

G0da
(a)

+
∂ĝc

∂x
(a, k)

ĝc(a, k′)

|k′| − dG0

G0da
(a)

]

× 1

|k + k′| − dG0

G0da
(a)

ei(k′+k)zdkdk′

=
+∞∑

m=−∞

+∞∑

n=−∞

[
S(a;mk0, nk0)

cm(a)

|m|k0 − dG0

G0da
(a)

cn(a)

|n|k0 − dG0

G0da
(a)

+ c′
m(a)

cn(a))

|n|k0 − dG0

G0da
(a)

]

× ei(m+n)k0z

|m+ n|k0 − dG0

G0da
(a)

.

(3.40)
In this double series, the only terms which do not average out to zero have m+n = 0; therefore

〈φ2(a; z)〉 = − G0(a)
dG0

da (a)





+∞∑

m=−∞

S(a;mk0,−mk0)cm(a)c−m(a)
[
|m|k0 − dG0

G0da
(a)
]2 +

+∞∑

m=−∞

c′
m(a)c−m(a))

|m|k0 − dG0

G0da
(a)




.

(3.41)

Grouping the terms
c′

m(a)c−m(a))

|m|k0 − dG0

G0da
(a)

and
c′

−m(a)cm(a))

|m|k0 − dG0

G0da
(a)

in the second series and accounting

for the fact that the Fourier coefficients of gc(x, z) satisfy the relation c−m(a) = cm(a) since this
function is real, one gets

〈φ2(a; z)〉 = − G0(a)
dG0

da (a)





+∞∑

m=−∞

S(a;mk0,−mk0)|cm(a)|2
[
|m|k0 − dG0

G0da
(a)
]2 +

+∞∑

m=1

(|cm(a)|2)′

mk0 − dG0

G0da
(a)




. (3.42)

The right-hand side here fluctuates with a because the coefficients cm(a) themselves fluctuate.
However since the apparent toughness is by nature a macroscopic quantity, it is reasonable
when defining it to average 〈φ2(a; z)〉 in the direction x over some distance much larger than
the typical distance of fluctuation of the local toughness, though still much smaller than the
distance over which G0(a) varies significantly. The derivatives (|cm(a)|2)′ then average out to
zero so that the expression of 〈φ2(a; z)〉 becomes

〈φ2(a; z)〉 ≃ − G0(a)
dG0

da (a)

+∞∑

m=−∞

S(a;mk0,−mk0)|cm(a)|2
[
|m|k0 − dG0

G0da
(a)
]2

=
1

2dG0

da (a)

+∞∑

m=−∞

dG0

da (a)|m|k0 − d2G0

da2 (a)
[
|m|k0 − dG0

G0da
(a)
]2 〈|cm(a)|2〉

=
1

dG0

da (a)

+∞∑

m=1

dG0

da (a)mk0 − d2G0

da2 (a)
[
mk0 − dG0

G0da
(a)
]2 〈|cm(a)|2〉

(3.43)
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where the symbol 〈|cm(a)|2〉 denotes the average value of |cm(a)|2 and the expression (3.24) of
the function S(a; k, k′) has been used.

Combination of Eqs. (3.35), (3.39) and (3.43) then yields,

Geff ≃ Gc + ǫ2
+∞∑

m=1

dG0

da (a)mk0 − d2G0

da2 (a)
[
mk0 − dG0

G0da
(a)
]2 〈|cm(a)|2〉 +O(ǫ3). (3.44)

Thus the apparent toughness Geff(a) depends on the loading through the derivatives
dG0

da
and

d2G0

da2
. Also, Geff(a) is slightly lower than the exact average value Gc of the local toughness,

each term of the series here being negative by inequality (3.32) and the extra hypothesis

d2G0

da2
≥ 0 (3.45)

which is reasonable since the unpertubed ERR G0(a) is a positive and decreasing function.

The effect, which disappears in the limit
dG0

da
→ 0, arises from the fact that for a given

loading, the real curved crack front in a heterogeneous material is slightly more advanced on
average than it would be in a fictitious homogeneous material with the same average toughness
(〈φ2(a; z)〉 > 0, see equation (3.43)).

In order to provide an estimate of the effect in practical situations, let us consider a sinu-
soidal variation of toughness with amplitude ǫgc and wavelength λ = 2π/(m0k0). Then the
coefficients cm(a) are zero except cm0(a) = cm0(a) = gc/2. Since the denominator in Eq. (3.44)
is larger than (m0k0)2, the relative decrease of toughness (Gc − Geff)/Gc may be bounded by
1
4

(ǫgc)
2

(
1
G0

dG0

da
λ

2π
− 1
G0

d2G0

da2

λ2

4π2

)
. For wavelengths much smaller than the typical distance

over which G0(a) varies significantly, the weakening effect is therefore rather limited; but it
could play a significant role for wavelengths comparable to this distance.

The result (3.44) must be compared to the predictions of Roux et al. (2003) and the obser-
vations of Ponson (2009), who actually found an enhancement of the apparent toughness due
to random heterogeneities. In these studies, higher levels of heterogeneity were considered, so
that the front did not propagate smoothly in the disordered landscape of fracture energy, but
through sudden jumps from one equilibrium position to another; this intermittency biased the
sampling of the local toughness since such instabilities occurred for local values of G actually
larger than the local resistance Gc. In contrast, in the present work, the condition G = Gc

holds along the whole front and at all times since the limit of weakly disordered materials is
considered.

3.6 The shape of crack fronts encountering obstacles

As an application, we shall determine the equilibrium shape of the front of a crack penetrating
into a single obstacle of infinite length in the direction of propagation, or a periodic distribution
of such obstacles, up to second order in the contrast of toughness. The toughness of the matrix
will be denoted GM

c , and the toughness and width of the obstacle(s), GO
c and 2d, respectively.

We shall be particularly interested in the limit-case where
dG0

da
(a) → 0; this corresponds, in
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physical terms, to the situation where the typical distance of variation of the unperturbed ERR
is much larger than d (and the period in the periodic case).

3.6.1 Case of a single obstacle

The distribution of toughness in this case is represented in Fig. 3.2. This distribution may be
represented by formula (3.25) with

Gc ≡ GM
c ; ǫ ≡ GO

c −GM
c

GM
c

; gc(x, z) ≡ gc(z) ≡
{

1 if |z| < d
0 if |z| > d.

(3.46)

The Fourier transform of the function gc(x, z) is given by

ĝc(x, k) ≡ ĝc(k) ≡ 1
2π

∫ d

−d
e−ikz dz =

sin(kd)
πk

. (3.47)

At order 1 in ǫ, one gets from Eqs. (3.30) and (3.47):

G
c

G
c

M

G
O

c

O zd−d

Figure 3.2: The distribution of fracture toughness in an infinite body containing a single infinitely elongated
obstacle

φ̂1(a; k) = − sin(kd)

πk
[
|k| − dG0

G0da
(a)
]

so that

φ1(a; z) = − 1
π

∫ +∞

−∞

sin(kd)

k
[
|k| − dG0

G0da
(a)
] eikz dk

= − 2
π

∫ +∞

0

sin(kd)

k
[
k − dG0

G0da
(a)
] cos(kz) dk.

Now let
dG0

da
(a) → 0. It is clear that the integral defining φ1(a; z) diverges in this limit; this

is an illustration of the mathematical difficulties mentioned in Subsection 3.4.3. However we
are not really interested in the absolute position of the crack front in the direction x, but only
in its deviation from straightness. This deviation is characterized at order 1 by the quantity

φ̃1(a; z) ≡ φ1(a; z) − φ1(a; 0) =
2
π

∫ +∞

0

sin(kd)

k
[
k − dG0

G0da
(a)
] [1 − cos(kz)] dk . (3.48)
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This quantity has a well-defined limit φ̃1(z) for
dG0

da
(a) → 0 given by

φ̃1(z) ≡ 2
π

∫ +∞

0

sin(kd)
k2

[1 − cos(kz)] dk . (3.49)

To calculate this integral explicitly, it suffices, following Chopin (2010), to differentiate it with
respect to z, evaluate the derivative using Gradshteyn and Ryzhik (1980)’s formula 3.741.1 and
re-integrate. The result is (Chopin, 2010):

φ̃1(z) =
d

π
[(1 + u) ln (|1 + u|) + (1 − u) ln (|1 − u|)] , u ≡ z

d
. (3.50)

At order 2, Eqs. (3.31) and (3.47) yield, since the function ĝc(x, k) is independent of x:

φ2(a; z) =
∫ +∞

−∞

∫ +∞

−∞
S(a; k, k′)

ĝc(k)

|k| − dG0

G0da
(a)

ĝc(k′)

|k′| − dG0

G0da
(a)

ei(k+k′)z

|k + k′| − dG0

G0da
(a)

dkdk′

=
1
π2

∫ +∞

−∞

∫ +∞

−∞
S(a; k, k′)

sin(kd)

k
[
|k| − dG0

G0da
(a)
] sin(k′d)

k′
[
|k′| − dG0

G0da
(a)
]

× ei(k+k′)z

|k + k′| − dG0

G0da
(a)

dkdk′

=
2
π2

∫ ∫

k+k′≥0
S(a; k, k′)

sin(kd)

k
[
|k| − dG0

G0da
(a)
] sin(k′d)

k′
[
|k′| − dG0

G0da
(a)
]

× cos[(k + k′)z]

k + k′ − dG0

G0da
(a)

dkdk′

where we have grouped the terms (k, k′) and (−k,−k′) in the double integral and accounted for
the fact that S(a; −k,−k′) = S(a; k, k′), see equation (3.24).

Again, we are interested only in the deviation of the crack front from straightness, charac-
terized at order 2 by the quantity

φ̃2(a; z) ≡ φ2(a; z) − φ2(a; 0) =
2
π2

∫ ∫

k+k′≥0
S(a; k, k′)

sin(kd)

k
[
|k| − dG0

G0da
(a)
]

× sin(k′d)

k′
[
|k′| − dG0

G0da
(a)
] cos[(k + k′)z] − 1

k + k′ − dG0

G0da
(a)

dkdk′.
(3.51)

This quantity has a well-defined limit φ̃2(z) for
dG0

da
(a) → 0 given by

φ̃2(z) ≡ 2
π2

∫ ∫

k+k′≥0
S0(k, k′)

sin(kd)
k|k|

sin(k′d)
k′|k′|

cos[(k + k′)z] − 1
k + k′

dkdk′ (3.52)

where

S0(k, k′) ≡ lim
dG0/da→0

S(a; k, k′)

=
1
8

{
sgn(kk′)(k + k′)2 +

[
sgn(k) − sgn(k′)

]
|k + k′|(k − k′) −

(
|k| − |k′|

)2} ;

(3.53)
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the integral in Eq. (3.52) is convergent because the function S0(k, k′) verifies the properties
S0(k, 0) = S0(0, k′) = 0.

Quite remarkably, one may calculate the integral in Eq. (3.52) explicitly. To do so, the first
step consists in reducing the integration domain

{
(k, k′), k + k′ ≥ 0

}
. This domain consists of

two sub-domains,
{
(k, k′), k + k′ ≥ 0, k ≥ k′} and

{
(k, k′), k + k′ ≥ 0, k′ ≥ k

}
which yield equal

contributions since the integrand is invariant upon interchange of k and k′; hence the integral
is equal to twice the integral over the first sub-domain. Also, this sub-domain consists of two
sub-sub-domains,

{
(k, k′), k ≥ 0, 0 ≤ k′ ≤ k

}
and

{
(k, k′), k ≥ 0, −k ≤ k′ ≤ 0

}
, over which the

function S0(k, k′) takes the values kk′/2 and −k′(k + k′)/2 respectively; using the change of
variable k′′ ≡ −k′ in the integral over the second sub-sub-domain, then re-using the notation k′

instead of k′′, one finally gets

φ̃2(z) =
2
π2

∫ +∞

0

{∫ k

0

(
sin(kd)
k

sin(k′d)
k′

cos((k + k′)z) − 1
k + k′

+
sin(kd)
k2

sin(k′d)
k′

[
cos((k − k′)z) − 1

])
dk′
}

dk.

In a second step, one may write k′ ≡ λk, 0 ≤ λ ≤ 1 and use the variables of integration
(k, λ) instead of (k, k′); the preceding equation then becomes

φ̃2(z) =
2
π2

∫ +∞

0

{∫ 1

0

(
sin(kd)
k

sin(λkd)
λk

cos((1 + λ)kz) − 1
(1 + λ)k

+
sin(kd)
k2

sin(λkd)
λk

[cos((1 − λ)kz) − 1]
)
kdλ

}
dk

or equivalently, upon change of the order of integration,

φ̃2(z) =
2
π2

∫ 1

0

{
J [d, λd, (1 + λ)z] − J(d, λd, 0)

λ(1 + λ)
+
J [d, λd, (1 − λ)z] − J(d, λd, 0)

λ

}
dλ (3.54)

where

J(α, β, γ) ≡
∫ +∞

0
sin(αx) sin(βx) cos(γx)

dx
x2

. (3.55)

The third step consists in calculating the integral J(α, β, γ); this is done in Appendix A.1 and
the result is

J(α, β, γ) =
π

8
(|α+ β + γ| + |α+ β − γ| − |α− β + γ| − |α− β − γ|) . (3.56)

Eq. (3.54) becomes, upon use of this formula, replacement of z by |z| (which is admissible since
the function φ̃2(z) is obviously even) and rearrangement of terms,

φ̃2(z) =
d

4π

∫ 1

0

(∣∣∣∣1 − |u|
∣∣∣∣− 2

2 + λ

1 + λ
− 1
λ

∣∣∣∣
1 − λ

1 + λ
− |u|

∣∣∣∣+
1
λ

∣∣∣∣1 + λ− (1 − λ)|u|
∣∣∣∣
)

dλ (3.57)

where u has been defined in Eq. (3.50)2. In a fourth and final step, one must evaluate this
integral; the calculation is straightforward but somewhat heavy because of the presence of
absolute values in the integrand which makes it necessary to distinguish between cases. The
final result reads

φ̃2(z) =





− d

2π
[(1 + u) ln(1 + u) + (1 − u) ln(1 − u)] if |u| ≤ 1

− d

2π

[
(|u| − 1) ln

( |u| + 1
|u| − 1

)
+ 2 ln 2

]
if |u| ≥ 1.

(3.58)
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It is remarkable that by Eqs. (3.50) and (3.58)1, φ̃2(z) = −φ̃1(z)/2 inside the obstacle (|u| ≤ 1).
Outside the obstacle (|u| ≥ 1), however, the functions φ̃1(z) and φ̃2(z) behave differently; for

instance in the limit |u| → +∞, φ̃1(z) diverges like
2d
π

ln(|u|) whereas φ̃2(z) goes to the constant

−d

π
(1 + ln 2).

Instead of plotting both φ̃1(z) and φ̃2(z), we choose to plot the sole global perturbation of
the front defined by

δ̃a(z) ≡ ǫφ1(z) + ǫ2φ2(z) − ǫφ1(0) − ǫ2φ2(0) = ǫφ̃1(z) + ǫ2φ̃2(z) (3.59)

deduced from Eqs. (3.50) and (3.58), as a function of the “normalized toughness contrast” ǫ.
Fig. 3.3 shows this quantity for different values of the contrast ǫ. The nonlinear dependence of

δ̃a(z)/d upon ǫ is quite conspicuous here: the effect of ǫ seems to “saturate” when this parameter
becomes large, that is, the linear theory tends to overestimate the deformation of the crack front
for large toughness contrasts. This observation seems to be confirmed by experiments performed
by Chopin (2010) for a very large toughness contrast of 50, which have produced relatively
modest crack front deformations, thus supporting the idea that the crack front becomes stiffer
as its perturbation increases in amplitude for a fixed wavelength. It may be inferred from these
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Figure 3.3: Equilibrium shape of a crack front penetrating into a single obstacle (represented by a gray
rectangle), for various toughness contrasts

numerical results that the range of values of the normalized toughness contrast ǫ for which the
above formulae provide reasonably accurate predictions extends up to about 0.2 if Eq. (3.50)
is used alone, and to about 1 if Eqs. (3.50) and (3.58) are used in conjunction.

3.6.2 Case of a periodic distribution of obstacles

The distribution of toughness for a periodic array of infinitely elongated obstacles is represented
in Fig. 3.4, where the period is denoted 2L. This distribution may be represented by formula
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(3.25) with





Gc ≡
(

1 − d

L

)
GM

c +
d

L
GO

c ; ǫ ≡ GO
c −GM

c

Gc
;

gc(x, z) ≡ gc(z) ≡





1 − d

L
if |z − 2nL| < d

− d

L
if |z − 2nL| > d

((2n− 1)L ≤ z ≤ (2n+ 1)L).
(3.60)

The functions gc and ĝc are then of the equivalent forms

gc(x, z) ≡
+∞∑

m=−∞

cm eimk0z ⇔ ĝc(x, k) ≡
+∞∑

m=−∞

cm δ(k −mk0) (3.61)

where

k0 ≡ π

L
; cm ≡ 1

2L

∫ L

−L
gc(z)e

−imπz/L dz =





0 if m = 0
sin(mπd/L)

mπ
if m 6= 0.

(3.62)
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Figure 3.4: The distribution of fracture toughness in an infinite body containing a periodic array of obstacles

At order 1 in ǫ, Eqs. (3.30), (3.61)2 and (3.62) yield

φ̂1(a; k) = −
+∞∑

m=−∞

cm

|m|π
L − dG0

G0da
(a)

δ

(
k − mπ

L

)

⇒ φ1(a; z) = −
+∞∑

m=−∞

cm

|m|π
L − dG0

G0da
(a)

eimπz/L = −
∑

m6=0

sin(mπd/L)

mπ
[

|m|π
L − dG0

G0da
(a)
] eimπz/L

= −2
+∞∑

m=1

sin(mπd/L)

mπ
[

mπ
L − dG0

G0da
(a)
] cos(mπz/L).

Taking the limit
dG0

da
(a) → 0 does not raise any particular problem here; φ1(a; z) goes to

a limit φ1(z) given by the following series, which unfortunately can’t be expressed in terms of
elementary functions:

φ1(z) ≡ −2L
π2

+∞∑

m=1

sin(mπd/L)
m2

cos(mπz/L). (3.63)
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At order 2, one gets from Eqs. (3.31), (3.37), (3.61)2 and (3.62):

φ2(a; z) =
∫ +∞

−∞

∫ +∞

−∞
S(a; k, k′)

ĝc(k)

|k| − dG0

G0da
(a)

ĝc(k′)

|k′| − dG0

G0da
(a)

ei(k+k′)z

|k + k′| − dG0

G0da
(a)

dkdk′

=
+∞∑

m=−∞

+∞∑

n=−∞

S

(
a;
mπ

L
,
nπ

L

)
cm

|m|π
L − dG0

G0da
(a)

cn

|n|π
L − dG0

G0da
(a)

ei(m+n)πz/L

|m+n|π
L − dG0

G0da
(a)

=
∑

m6=0,n6=0

S

(
a;
mπ

L
,
nπ

L

)
sin(mπd/L)

mπ
[

|m|π
L − dG0

G0da
(a)
]

× sin(nπd/L)

nπ
[

|n|π
L − dG0

G0da
(a)
] ei(m+n)πz/L

|m+n|π
L − dG0

G0da
(a)

.

Subtracting the average value
〈
φ2
〉

of φ2, corresponding to the terms having m + n = 0,
one gets from there

φ2(a; z) ≡ φ2(a; z) −
〈
φ2
〉

=
∑

m6=0,n6=0,m+n6=0

S

(
a;
mπ

L
,
nπ

L

)
sin(mπd/L)

mπ
[

|m|π
L − dG0

G0da
(a)
]

× sin(nπd/L)

nπ
[

|n|π
L − dG0

G0da
(a)
] ei(m+n)πz/L

|m+n|π
L − dG0

G0da
(a)

=
∑

m6=0,n6=0,m+n>0

2S
(
a;
mπ

L
,
nπ

L

)
sin(mπd/L)

mπ
[

|m|π
L − dG0

G0da
(a)
]

× sin(nπd/L)

nπ
[

|n|π
L − dG0

G0da
(a)
] cos[(m+ n)πz/L]

(m+n)π
L − dG0

G0da
(a)

.

In the limit
dG0

da
(a) → 0, this expression goes to a limit φ2(z) given by

φ2(z) ≡ 2L3

π5

∑

m6=0,n6=0,m+n>0

S0
(
mπ

L
,
nπ

L

)
sin(mπd/L)

m|m|

×sin(nπd/L)
n|n|

cos[(m+ n)πz/L]
m+ n

.

Accounting finally for the expression (3.53) of the function S0(k, k′), one gets from there,
after a few transformations:

φ2(z) =
L

π3

+∞∑

m=1

+∞∑

n=1

sin(mπd/L)
m(m+ n)

[
sin(nπd/L)

n
cos[(m+ n)πz/L]

+2
sin[(m+ n)πd/L]

m+ n
cos(nπz/L)

]
.

(3.64)

Eqs. (3.63) and (3.64) permit to calculate the normalized perturbation of the front

δa(z) ≡ ǫφ1(z) + ǫ2φ2(z) − ǫφ1(0) − ǫ2φ2(0) = ǫφ1(z) + ǫ2φ2(z) − ǫφ1(0) − ǫ2φ2(0) (3.65)

numerically, as a function of the normalized toughness contrast ǫ and the dimensionless pa-
rameter L/d comparing the respective sizes of the period and the obstacle. Figs. 3.5 and 3.6
show the results obtained; Figure 3.5 is for ǫ = 1 and various values of L/d, and Figure 3.6
for L/d = 3 and various values of ǫ. One sees in Fig. 3.5 that the influence of the finiteness
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of the period is maximum half-way between the obstacles, where the slope of the front is zero
for symmetry reasons. One also sees in Fig. 3.6 that in the periodic case, the nonlinear effect
of the toughness contrast is weak, except near the boundary of the obstacles (observe that at
z/d = ±1, the gap between the red and green curves, corresponding to values of ǫ differing by
a factor of 5, is lower than what the linear theory would predict).
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Figure 3.5: Equilibrium shape of a crack front penetrating into a periodic array of obstacles - Influence of the
relative sizes of the period and the obstacle for a fixed toughness contrast (ǫ = 1)
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Finally, it is worth noting that in the limit of a very large period, the results for a periodic
array of obstacles converge toward those for a single one; this is illustrated in Fig. 3.7 which
compares crack front shapes obtained for a single obstacle and a periodic array having L/d =
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640, for a normalized toughness contrast ǫ of unity.
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Figure 3.7: Comparison of equilibrium shapes of crack fronts penetrating into a single obstacle and a periodic
array of obstacles with a large period (L/d = 640), for a normalized toughness contrast ǫ = 1

The theoretical predictions of Eqs. (3.50) and (3.58) for an isolated pinning obstacle on the
one hand, and (3.63) and (3.64) for a periodic array of obstacles on the other hand, provide a
basis to interpret crack front patterns observed in heterogeneous interfaces (see e.g. Dalmas et
al. (2009), Chopin et al. (2011), Xia et al. (2012)). In particular, it provides an efficient means of
measuring the toughness of defects or impurities in these systems, using the toughness contrast
as an adjustable parameter in the fit of experimental data.

3.6.3 Case of a sinusoidal distribution of obstacles

The toughness field corresponding to a sinusoidal distribution of infinitely elongated obstacles
is represented in Figure 3.8, where the wavenumber of the distribution is denoted k0. This
distribution may be represented by formula (3.25) with,

ǫ ≡ Gmax
c −Gmin

c

Gc
; gc(x, z) ≡ gc(z) ≡ 1

2
cos(k0z) (3.66)

where k0 = 2π/λ0 is the wavenumber and λ0 is the wavelength of the sinusoidal distribution.
The Fourier transform of the functions gc is given by

ĝc(x, k) ≡ ĝc(k) =
1
4

[δ(k + k0) + δ(k − k0)] . (3.67)

Using this equation in the Eq. (3.30) one gets:

φ̂1(a; k) = −δ(k + k0) + δ(k − k0)

4
[
|k| − dG0

G0da
(a)
]

so that
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+
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∞
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−
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+
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∞
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φ̃2(z) ≡ 1
16

∫ +∞

−∞

∫ +∞

−∞
S0(k, k′)

δ(k + k0) + δ(k − k0)
|k|

δ(k′ + k0) + δ(k′ − k0)
|k′|

×cos[(k + k′)z] − 1
|k + k′| dkdk′.

(3.72)

Using again the properties of Dirac distribution function δ, first on variable k′ and then on k,
one obtains

φ̃2(z) ≡ 1
16k3

0

S0(k0, k0) [cos(2k0z) − 1] (3.73)

where the property S0(−k,−k′) = S0(k, k′) has been used. From Eq. (3.53), we finally plug the
value of S0(k0, k0) = k2

0/2 into the former expression to obtain

φ̃2(z) ≡ 1
32k0

[cos(2k0z) − 1] . (3.74)

Thus total front perturbation is given by

δ̃a(z) ≡ ǫφ1(z) + ǫ2φ2(z) − ǫφ1(0) − ǫ2φ2(0) = ǫφ̃1(z) + ǫ2φ̃2(z)

≡ ǫ

2k0
[1 − cos(k0z)] +

ǫ2

32k0
[cos(2k0z) − 1] .

(3.75)

Fig. 3.9 (a) shows the calculated front deformations for different contrast values ǫ = 0.4 and
ǫ = 0.8. Note that the results are normalized by the wavelength λ0 of the toughness field. It
can be noticed that for a given value of contrast ǫ, the amplitude of the deformations remains
the same for first - and second-order developments. However, the shape of the front is different.
That means that the first-order term only contributes to the total amplitude:

|δ̃a(z)| ≡ ∆a =
ǫ

k0
=
λ0ǫ

2π
. (3.76)

As a result, the perturbation amplitude is linear in toughness contrast ǫ as shown on Fig. 3.9 (b)
that represents the amplitude normalized by the wavelength as a function of toughness contrast
ǫ. In order to highlight the effect of the second-order correction on the front shape, we normalise
now δ̃a(z) by the amplitude, and not the wavelength (see Fig. 3.9 (c)). The results correspond
here to the contrast ǫ equal to 0.4 and 0.8. As expected, the normalized curves have the same
amplitude. But we observe that the front deformation gets flatter as contrast increases, large
and large parts of the crack front remain pinned in tougher zone of the sinusoidal toughness
field.

We now would like to discuss why the second order approximation doesn’t contribute to the
amplitude of the front perturbations. It can be rationalised by considering the symmetry of
the field of the fracture energy (3.66): As we change the contrast form ǫ to −ǫ, the sinusoidal
toughness field given by Eqs. (3.25) and (3.66) remains identical after translated by half of a
wavelength along the z−axis, as illustrated on Fig. 3.10

G(−ǫ)
c (k0z) = G(ǫ)

c (k0z + π) (3.77)

where G(−ǫ)
c is the toughness field corresponding to negative contrast and G(ǫ)

c to positive con-
trast. This implies that the front perturbation has also same property, i.e :
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contribution is necessarily of period λ0/2, consisted with the calculated expression of φ̃1 given
in Eq. (3.74). Since the deformation amplitude follows

∆a ≡ δ̃a(λ0/2) − δ̃a(0) = ǫ
[
φ̃1(λ0/2) − φ̃1(0)

]
+ ǫ2

[
φ̃2(λ0/2) − φ̃2(0)

]
(3.80)

the periodicity of φ̃2 with period λ0/2 also implies that the second-order (but also all the terms
of even-order) does not contribute to the overall amplitude. This property does also hold for the
periodic array of obstacles with width equal to the their spacing (i.e. L = 2d in Eq. 3.62), that
also displays a toughness invariant by the transformation ǫ → −ǫ. This means that in such cases
of toughness fields, second-order approximation is not enough to determine to which value of
contrast the first-order can work with better prediction. One needs higher order approximation
to distinguish the range of first-order approximations. However, it is possible to calculate this
range of contrast by looking at the change in front shape due to second order as presented in
Fig. 3.9 (c). One may define the error to quantify the change in front shape due to second order
like ratio between second-order term and first-order term at z = λ0/4 :

Err ∼
∣∣φ̃2(λ0/4)

∣∣
∣∣φ̃1(λ0/4)

∣∣ =
ǫ

4
. (3.81)

This results that for an acceptable error level of 0.1, the first order approximation can be used
as long as the contrast is lower than 0.4.

3.6.4 Effect of the toughness contrast on the front deformation amplitude

Before going to the final conclusive remarks, let us look at the effect of toughness contrast on
the front perturbation amplitude for the threes examples of toughness field explored in this
chapter.

In order to do that, let us first define the amplitude of the crack front deformations in these
different cases. For example, in the case of a sinusoidal distribution it has been given by Eq.
(3.80), i.e. that the amplitude corresponds to the difference in front deformations at points
z = 0 and z = λ0/2. The same definition holds in the case of a periodic array of obstacles with
wavelength of 2L, i.e. ∆a ≡ δa(z = L) − δa(z = 0). In the case of a single obstacle, we choose
to define the amplitude as the difference of deformation between the front position at the defect
edge z = d and at the defect center z = 0:

∆a ≡ δ̃a(z = d) − δ̃a(z = 0) =
d

π
ǫ (2 − ǫ) ln 2. (3.82)

Fig. 3.11 plots the toughness contrast ǫ = ∆Gc/Gc versus amplitude normalized by either the
defect size (in the case of single obstacle) or the wavelength (in periodic array and sinusoidal
distribution). At first in the vicinity of contrast ∆Gc/Gc = 0, it can be noticed that all
curves corresponding to different examples, are linear in ǫ and symmetric under the ǫ → −ǫ
transformation up to some range of the contrast values. This is the range of contrast in which
first-order approximation works with better precision. After this range of contrast value, the
curves start to deviate due to the effect of the second-order term.

One shall notice that the range of contrast values where the first-order approximation is
valid is not same in all examples represented here. For example, in the case of single obstacle,
this range goes up to ∆Gc/Gc = 0.2, while in the case of periodic array of obstacles with
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Figure 3.11: Different solutions for the amplitude ∆a as a function of contrast ǫ = ∆Gc/Gc when half-
plane crack interact with (a) single obstacle: the intrinsic length of toughness field is given by half-width of
obstacle d, (b) Sinusoidal distribution of obstacles: the intrinsic length of toughness field is given by wavelength
λ0 = 2L = 2π/k0, (b) periodic array of obstacles: the intrinsic length of toughness field is given by half-wavelength
of the periodic array L = αd.

α = 4 and α = 1.3 as presented on the Fig. 3.11 (c) (green and red curves), it goes up to
∆Gc/Gc = 0.4. This means there are effects not only due to the toughness contrast but also
due to the geometry of the heterogeneities and their size (defined by the obstacle size (single
obstacle) or by the wavelength of distribution of such obstacles (periodic)).

In the case of sinusoidal distribution of the toughness field as presented on the Fig. 3.11
(b) and in the case of periodic array of obstacles with α = 2 as presented on the Fig. 3.11
(c) (blue curve), the toughness field holds symmetry property as discussed previously. As
a result, the second-order doesn’t contribute to the total front deformation amplitude and
therefore, corresponding curves of the amplitude ∆a is linear and symmetric under the ǫ → −ǫ
transformation for any value of the contrast. As discussed previously, this means that in such
cases, second-order approximation is not enough to determine up to which value of contrast the
first-order can work with a good precision.

We finally see that, as we have assumed Griffith’s equilibrium, for any value of the toughness
contrast one always finds the solution for the crack deformation amplitude. However, this might
not be always true: In particular in the part devoted to numerical simulations, we will see
that beyond some contrast value this hypothesis of Griffith’s equilibrium does not exist. As a
result, larger toughness contrast doesn’t admit any solution in terms of amplitude of the front
deformations.
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3.7 Concluding remarks

The aim of this chapter was to investigate geometrically nonlinear effects in the quasi static,
coplanar propagation of cracks in heterogenous materials. The simplest case of a semi-infinite
crack in an infinite body was considered.

In a first step, this required an extension of Leblond et al. (2012)’s treatment of second-
order in-plane perturbation of a crack to the case where the unperturbed SIF K0(a), for the
straight configuration of the front, depends on its position a within the crack plane. Indeed
when dK0/da = 0, mathematical difficulties arise in the form of divergent integrals appearing
in the expression of the equilibrium shape of the crack front resulting from a given distribu-
tion of fracture toughness. Consideration of this interesting limiting case therefore requires to
first perform all calculations with dK0/da 6= 0, before finally (and carefully) taking the limit
dK0/da → 0. In addition, the more general new formula not making any assumption on the
value of dK0/da extends the second-order expression of the stress intensity factor of a perturbed
crack front to more realistic fracture test geometries.

In a second step, the formulae obtained for the first- and second-order variations of the SIF
resulting from a given perturbation of the front were applied to the explicit calculation of the
equilibrium shape of the front of a semi-infinite crack propagating in an infinite heterogeneous
medium according to Griffith’s criterion, up to second order in the fluctuations of fracture
toughness.

As a first application, we determined the apparent fracture toughness experienced by a
crack propagating in a randomly heterogeneous, but statistically homogeneous material. This
apparent toughness was found to depend on the loading and be slightly less than the exact
average value of the local toughness, the effect being tied to the necessary decrease of the
unperturbed ERR with the distance of propagation, and disappearing in the limit of negligibly
small rates of decrease.

As a second application, we calculated the equilibrium shape of a crack front penetrating
into a single obstacle of infinite length in the direction of propagation, or a periodic array or
sinusoidal distribution of such obstacles, up to second order in the contrast of toughness between
the matrix and the obstacle(s). The second-order perturbation of the front was expressed in
a very simple analytical form for a single obstacle and for a sinusoidal distribution, and as an
infinite double series for an array of obstacles. One major outcome of the work is that in the case
of single obstacle, or some cases of periodic array of such obstacles, the second-order correction
relevant for large toughness contrasts shows that the crack front stiffens under the action of
strong obstacles; in other words, the first-order approximation overestimates the deformation of
the crack pinned by such obstacles. However, in the case of sinusoidal toughness field, second-
order is only relevant in front shape changes while it is irrelevant in contributing to the front
deformation amplitude.

The next step will be to introduce the finite size of specimen in the formulation. This will
be done in the next chapter.



Chapter 4

Second-order perturbation of a
semi-infinite mode I crack lying on
the mid-plane of an infinite plate

The aim of this chapter1 is to study the effect of geometrical nonlinearities along with that of
the finite size of samples on crack propagation in heterogeneous media. We shall consider the
typical configuration, often used in actual experiments, of a crack lying on the mid-plane of a
plate of finite thickness.

The chapter is organized as follows:

• Section 4.1 recalls, as a prerequisite, some established results for planar cracks with slightly
perturbed fronts located on the mid-plane of a plate (Legrand et al., 2011).

• Section 4.2 presents an extension of Legrand et al. (2011)’s first-order results for a cracked
plate to the second order, using Rice (1989)’s general results.

• Section 4.3 applies the results found to the case of a semi-infinite crack propagating quasi-
statically along the mid-plane of an infinite plate having some heterogeneous distribution
of toughness. Assuming the stress intensity factor to be equal to the toughness at every
point of the crack front, we determine the resulting shape of this front up to second order
in the toughness fluctuations.

• As an application, Section 4.4 considers the case of a crack penetrating into a single
obstacle of infinite length in the direction of propagation. The equilibrium shape of the
front is calculated up to second order in the contrast of toughness between the matrix and
the obstacle.

• Section 4.5 finally provides a summary of, and some comments on, the results obtained.

1The results presented in this chapter constitute the bulk of the material published in Vasoya et al. (2014).
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4.1 Legrand et al. (2011)’s first-order solution for a crack lying
on the mid-plane of a plate

Let us consider (Figure 4.1(a)) a semi-infinite plate of thickness 2h. Choose the coordinate axes
in such a way that this plate occupies the domain 0 ≤ x < +∞,−h ≤ y ≤ h,−∞ < z < +∞
in 3D space. Assume that there is an emerging crack on the mid-plane of the plate, occupying
the region 0 ≤ x ≤ A, y = 0,−∞ < z < +∞, where A denotes the distance from the plate
boundary to the crack front. Finally assume that the upper and lower parts of the boundary
are subjected to opposite prescribed displacements perpendicular to the crack plane, generating
a state of pure mode I at every point of the crack front.

z

x

y

h

h
O

A

(a) View of the original crack in the Oxy plane.

A +   a(z)

x

O

y

z

boundary

plate 

(b) View of the perturbed crack in
the Ozx plane.

Figure 4.1: A slightly perturbed emerging crack lying on the mid-plane of a semi-infinite plate.

Assume now that the crack front is perturbed by a small distance δa(z) within the crack
plane (Figure 4.1(b)). Under such conditions, Legrand et al. (2011) expressed the infinitesimal
variation of the local SIF in the following form:

δK(z1)
K0(A)

= −2
δa(z1)
A

+ PV

∫ +∞

−∞

f(A
h ; z−z1

h )

(z − z1)2
[δa(z) − δa(z1)] dz (4.1)

where K0(A) denotes the unperturbed SIF, depending on the location A of the unperturbed

front, and the function f(
A

h
;
z − z1

h
)/(z1 − z)2 represents the FK for the semi-infinite cracked

plate considered, subjected to displacements prescribed on its boundary. A fully explicit formula
was provided for this specific FK.

An interesting limit-case is that of a semi-infinite crack in an infinite plate (A → +∞). The
conditions of prescribed displacements on the boundary then become equivalent to conditions of
prescribed bending moments far from the crack front1. In such a limit-case, Eq. (4.1) becomes

δK(z1)
K0

= PV

∫ +∞

−∞

f( z−z1

h )

(z − z1)2
[δa(z) − δa(z1)] dz (4.2)

1In the limit A → ∞, no matter the boundary conditions on the boundary of the plate, the loading becomes
equivalent to a prescribed bending moment. This is illustrated in Appendix B.1 by considering for instance the
case of a prescribed force on this boundary before taking the limit A → ∞.
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where the function f(
z − z1

h
)/(z − z1)2 ≡ f(+∞;

z − z1

h
)/(z − z1)2 now represents the FK for

an infinite cracked plate subjected to prescribed forces only. Attention will be focused on this
sole special case in the sequel.

The Fourier transform of δK(z1) is readily found by expressing the function δa in Eq. (4.2)
in terms of its Fourier transform δ̂a: one thus obtains

δK(z1)
K0

=
∫ +∞

−∞
δ̂a(k)

[
PV

∫ +∞

−∞

f( z−z1

h )

(z − z1)2

(
eikz − eikz1

)
dz

]
dk.

Writing now eikz − eikz1 as eikz1(eik(z−z1) − 1), one gets from there, with a few transformations,

δ̂K(k)
K0

= −|k|X(kh)δ̂a(k) (4.3)

where

X(p) ≡ 1
|p|PV

∫ +∞

−∞

f(u)
u2

(
1 − eipu

)
du ⇔ f(u) ≡ 1

2π

∫ +∞

−∞

[
|p|X(p)

]′′
e−ipu dp. (4.4)

Eq.(4.4)1 here is obtained directly, and Eq.(4.4)2 is then easily established by calculating
[|p|X(p)]′′ (Note that this second-derivative must be understood in the sense of distributions).

In the work of Legrand et al. (2011), Eq. (4.2) was not obtained directly but through Fourier
inversion of Eq. (4.3). This equation was itself established by solving the elasticity problem of
a plate the mid-plane of which contained a crack with a sinusoidal front, both analytically in
the case of an infinitesimal plate thickness, and by the finite element method in the case of a
finite one. The procedure yielded the following explicit expression of the function X(p):

X(p) ≃ 1
2

[
1 +

3

1 + 1
3 |p|4/3

]
. (4.5)

This expression is (slightly) approximate in general because of the numerical method used to
determine it, but exact in the two limits p → 0 and p → ±∞.

It is finally instructive to consider a sinusoidal perturbation of the front of wavelength λ.
For such a perturbation the only values of the wavenumber k to be considered are k = ±2π/λ.
Then:

• if h ≫ λ, |kh| ≫ 1 so that, by Eq. (4.5), X(kh) → 1
2

and Eq. (4.3) becomes identical to

a formula of Rice (1985) for a semi-infinite crack in an infinite body;

• if h ≪ λ, |kh| ≪ 1, so that X(kh) → 2 and Eq. (4.3) becomes identical to the formula
established analytically by Legrand et al. (2011) for a semi-infinite crack lying on the
mid-plane of a plate of infinitesimal thickness.

The value of δK(z) is thus 4 times larger, for a given crack front perturbation δa(z), in a very
thin plate than in an infinite body.
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4.2 Coplanar perturbation of a semi-infinite crack lying on the
mid-plane of an infinite plate

4.2.1 Notations

For now on, we consider (Figure 4.2) the case of a semi-infinite crack located on the mid-plane
of an infinite plate of thickness 2h, loaded in pure mode I through prescribed forces only.

z

x

y

h

h
O

a

(a) View of the original crack in the Oxy plane.

boundary

plate 

a +   a(z)

x

O

y

z

axis

arbitrary

(b) View of the perturbed crack in
the Ozx plane.

Figure 4.2: A slightly perturbed semi-infinite crack lying on the mid-plane of an infinite plate.

We assume that the crack front perturbation δa(z) is of a form similar to that in previous
chapter, that is,

x(z) = a+ δa(z) = a+ ǫφ(z) (4.6)

where a denotes the distance front the arbitrary Oz axis to the reference straight crack front.
The expansions of the SIF and FK in ǫ are then similar to those given by Eq. (3.2) with the
same assumption that the loading has a translatory invariance in the direction z of the crack
front, so that the unperturbed SIF K0(a) depends on the location a of the (straight) front but
not on the position of the point of observation along it. With this background our interest here
again lies in the second-order expression of the SIF K(a, ǫ; z) and the first-order expression of
the FK Z(ǫ; z1, z2). The only difference is that now both the SIF and the FK involve the finite
thickness h of the plate as an extra argument.

4.2.2 First-order expansion of the fundamental kernel

Since both the special loading considered by Legrand et al. (2011) when deriving Eqs. (4.2),
(4.4) and (4.5), and the more general one considered here, involve prescribed forces only, the
FK Z0(z1, z2) for the unperturbed configuration of the crack is the same as in Eq. (4.2),

Z0(z1, z2) ≡ f( z1−z2

h )

(z1 − z2)2
(4.7)

where the function f is given by Eqs. (4.4) and (4.5).
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In the specific case considered, the ancillary perturbation δ∗a(z) ≡ ǫφ∗(z) of Rice (1989)’s
second formula (2.12) may again be taken as a suitable combination of a translatory motion
and a rotation as defined in Eq. (3.5). The lack of a homothetical transformation of the crack
front here (which basically arises from its initial straightness) implies that it undergoes a mere
rigid-body motion. Under such a motion the thickness of the plate, and therefore the overall
geometry, remain unchanged1 so that δ∗Z is zero. Eq. (2.12) therefore applies and gives

Z1(z1, z2) = PV

∫ +∞

−∞

f( z1−z
h )f( z−z2

h )

(z1 − z)2(z − z2)2
[φ(z) − φ∗(z)] dz (4.8)

where use has been made of Eq. (4.7).

4.2.3 Second-order expansion of the stress intensity factor

At order 1 in ǫ, the expression of K1(a; z) is obtained through direct application of Rice (1989)’s
first formula (2.10) for the variation of the SIF to the straight configuration of the front:

K1(a; z1) =
dK0

da
(a)φ(z1) +K0(a)PV

∫ +∞

−∞

f( z−z1

h )

(z − z1)2
[φ(z) − φ(z1)] dz. (4.9)

This equation is identical to Eq. (4.2) of Legrand et al. (2011) except for the additional first
term in the right-hand side. This term was zero for the special loading envisaged by Legrand
et al. (2011) because the unperturbed SIF was independent of the location of the (straight)
crack front within the crack plane, but this does not remain true for the more general loading
considered here.

In the same way, at order 2, K2(a; z) may be obtained by again applying Rice (1989)’s
first formula (2.10), considering some pre-perturbed configuration of the front upon which is
superimposed a secondary, infinitesimal proportional perturbation. When doing so, one must
use formulae for the SIF and the FK on the pre-perturbed configuration accurate to first order
in the primary perturbation; the first of these formulae is provided by Eq. (4.9) and the second
by Rice (1989)’s second formula (2.12), which takes the form (4.8) in the present case. The
output is an expression of ∂K(a, ǫ; z)/∂ǫ accurate to first order in ǫ, which immediately yields
the second-order expression of K(a, ǫ; z) upon integration. This was the procedure followed by
Leblond et al. (2012) and described in the previous chapter in the case of an infinite body. The
reasoning for a plate is analogous and therefore will not be repeated. The final result reads :

K2(a; z1) =
1
2

d2K0

da2
(a) [φ(z1)]2 +

1
2

dK0

da
(a)PV

∫ +∞

−∞

f( z−z1

h )

(z − z1)2
[φ2(z) − φ2(z1)] dz

+
K0(a)

2

{
PV

∫ +∞

−∞

∫ +∞

−∞

f( z−z1

h )f( z′−z
h )

(z − z1)2(z′ − z)2
[φ(z) − φ(z1)][φ(z′) − φ(z)] dzdz′

+PV
∫ +∞

−∞

∫ +∞

−∞

f( z′−z1

h )f( z′−z
h )

(z′ − z1)2(z′ − z)2

[
φ(z′) − φ(z1) − φ(z) − φ(z1)

z − z1
(z′ − z1)

]

×[φ(z) − φ(z1)] dzdz′
}
.

(4.10)

1Note that the hypothesis of infiniteness of the plate plays a central role here; if it were semi-infinite, like at
the beginning of Section 4.1, the rotation of the crack front would not leave the geometry unchanged since this
front would not remain parallel to the plate boundary.
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4.2.4 Formulae in Fourier’s space

Stress intensity factor:

With regard to the SIF, at order 1 in ǫ, the expression of the Fourier transform of K1(a; z1) is
easily established by expressing the function φ in Eq. (4.9) in terms of its Fourier transform φ̂
and using Eq. (4.4)1; one thus gets

K̂1(a; k) =

[
dK0

da
(a) −K0(a)|k|X(kh)

]
φ̂(k). (4.11)

This expression extends Eq. (4.3), due to Legrand et al. (2011), by including the term
dK0

da
(a)φ̂(k), which was absent in this equation since for the loading considered by these au-

thors, the unperturbed K0 was independent of the location of the crack front within the crack
plane.

In the same way, at order 2, the expression of the Fourier transform of K2(a; z1) can be
established by expressing the function φ in Eq. (4.10) in terms of its Fourier transform φ̂; one
thus gets

K2(a; z1) =
∫ +∞

−∞

∫ +∞

−∞
φ̂(k)φ̂(k′)

{
1
2

d2K0

da2
(a)ei(k+k′)z1

+
1
2

dK0

da
(a)PV

∫ +∞

−∞

f( z−z1

h )

(z − z1)2

(
ei(k+k′)z − ei(k+k′)z1

)
dz

+
K0(a)

2

[
PV

∫ +∞

−∞

∫ +∞

−∞

f( z−z1

h )f( z′−z
h )

(z − z1)2(z′ − z)2

(
eikz − eikz1

) (
eik′z′ − eik′z

)
dzdz′

+PV
∫ +∞

−∞

∫ +∞

−∞

f( z′−z1

h )f( z′−z
h )

(z′ − z1)2(z′ − z)2

(
eikz′ − eikz1 − eikz − eikz1

z − z1
(z′ − z1)

)

×
(
eik′z − eik′z1

)
dzdz′

]}
dkdk′.

(4.12)
Now, taking ei(k+k′)z1 as a common factor in the integrands and using Eq. (4.4)1, one gets

K2(a; z1) =
∫ +∞

−∞

∫ +∞

−∞
φ̂(k)φ̂(k′)

{
1
2

d2K0

da2
(a) − 1

2
dK0

da
(a)|k + k′|X((k + k′)h)

+
K0(a)

2

[
I1(h; k, k′; z1) + I2(h; k, k′; z1)

]
}
ei(k+k′)z1dkdk′,

(4.13)

where I1(h; k, k′; z1) and I2(h; k, k′; z1) are double integrals, the expression and calculation of
which is presented in Appendix B.2, with the conclusion that they are in fact independent of
z1, and given by





I1(h; k, k′; z1) ≡ I1(h; k, k′) = |k′|X(k′h)
[
|k + k′|X((k + k′)h) − |k′|X(k′h)

]

I2(h; k, k′; z1) ≡ I2(h; k, k′) =
1
2

[
k2X2(kh) − (k + k′)2X2((k + k′)h) − k′2X2(k′h)

+2|k + k′||k′|X((k + k′)h)X(k′h)
]
.

(4.14)
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Equation (4.13) becomes, upon use of these formulae and “symmetrization” of the integrand
with respect to k and k′,

K2(a; z1) = K0(a)
∫ +∞

−∞

∫ +∞

−∞
R(a;h; k, k′)φ̂(k)φ̂(k′)ei(k+k′)z1dkdk′ (4.15)

where

R(a;h; k, k′) ≡ 1
2

d2K0

K0da2
(a) − 1

2
dK0

K0da
(a)|k + k′|X((k + k′)h)

+
|k + k′|

2
X((k + k′)h)

[
|k|X (kh) + |k′|X (k′h)

]

−1
4

[
(k + k′)2X2((k + k′)h) + k2X2(kh) + k′2X2(k′h)

]
.

(4.16)

Using the change of variable k1 = k+k′, the preceding expression of K2(a; z1) may be rewritten
in the form

K2(a; z1) = K0(a)
∫ +∞

−∞

[∫ +∞

−∞
R(a;h; k, k1 − k)φ̂(k)φ̂(k1 − k)dk

]
eik1z1dk1

which implies, upon comparison with the definition (3.16) of the Fourier transform, that

K̂2(a; k1) = K0(a)
∫ +∞

−∞
R(a;h; k, k1 − k)φ̂(k)φ̂(k1 − k)dk. (4.17)

Note the remarkable property that K̂2(a; k1), just like K̂1(a; k1), depends upon the FK of
the cracked geometry considered through the sole function X defined by Eq. (4.4) (since the
expression (4.16) of R(a;h; k, k′) involves only X).

A comparison with the results of Vasoya et al. (2013) for an infinite body expounded in the
previous chapter is in order here, by letting h go to infinity. The function R becomes in this

limit, since X(kh) → 1
2

then (see Eq. (4.5)):

lim
h→+∞

R(a;h; k, k′) =
1
2

d2K0

K0da2
(a) − 1

4
dK0

K0da
(a)|k + k′|

+
1
16

[
2|k + k′|

(
|k| + |k′|

)
− (k + k′)2 − k2 − k′2

] (4.18)

which is another form of the function R found by Vasoya et al. (2013), recalled in Eq. (3.21)
of the previous chapter. This establishes the equivalence of the results found in the case of an
infinite body.

Energy-release rate:

The expansion of the Fourier transform Ĝ(a, ǫ; k) of the elastic energy-release-rate G(a, ǫ; z)
follows from Irwin’s formula and the expressions (4.11) and (4.17) of K̂1(a; k) and K̂2(a; k). It
is given by Eq. (3.22) of chapter 3 where





Ĝ1(a; k) = G0(a)

[
1
G0

dG0

da
(a) − 2|k|X(kh)

]
φ̂(k)

Ĝ2(a; k1) = G0(a)
∫ +∞

−∞
S(a;h; k, k1 − k) φ̂(k) φ̂(k1 − k) dk

(4.19)
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where

S(a;h; k, k′) ≡ 1
2

d2G0

G0da2
(a) − 1

2
dG0

G0da
(a)
[
|k + k′|X((k + k′)h) + |k|X(kh) + |k′|X(k′h)

]

−1
2

[
|k + k′|X((k + k′)h) − |k|X(kh) − |k′|X(k′h)

]2

+2|k||k′|X(kh)X(k′h).
(4.20)

4.3 The equilibrium shape of the front of a crack propagating
in a heterogeneous plate

In the same way as we have examined, in the previous chapter, the shape of the front of a
crack propagating in an infinite body, we shall now apply the preceeding results to calculate
the equilibrium front geometry of a crack propagating along the mid-plane of an infinite plate
subjected to some mode I loading, propagation being governed by Griffith’s criterion with a
heterogeneous fracture toughness Gc(x, z) given by Eq. (3.25). Following the same procedure
as in § 3.4 to calculate the parameter a (unperturbed crack position) and the functions φ1(a; z)
and φ2(a; z) defining the crack front perturbation, one gets the following conditions:

• At order 0:
G0(a) = Gc . (4.21)

This condition again determines the mean location a of the crack front.

• At order 1:

Ĝ1
[
a; {φ̂1}

]
(k) = Gc ĝc(a, k)

which implies, by the expression (4.19)1 of the functional Ĝ1 and equation (4.21), that

φ̂1(a; k) = − ĝc(a, k)

2|k|X(kh) − dG0

G0da
(a)

. (4.22)

• At order 2:

Ĝ1
[
a; {φ̂2}

]
(k1) = −Ĝ2

[
a; {φ̂1}

]
(k1) +Gc

∫ +∞

−∞

∂ĝc

∂x
(a, k) φ̂1(a; k1 − k)dk

which implies, by expressions (4.19) of Ĝ1 and Ĝ2 and Eqs. (4.21) and (4.22), that

φ̂2(a; k1) =
1

2|k1|X(k1h) − dG0

G0da
(a)

{∫ +∞

−∞
S(a;h; k, k1 − k)

× ĝc(a, k)

2|k|X(kh) − dG0

G0da
(a)

ĝc(a, k1 − k)

2|k1 − k|X((k1 − k)h) − dG0

G0da
(a)

dk

+
∫ +∞

−∞

∂ĝc

∂x
(a, k)

ĝc(a, k1 − k)

2|k1 − k|X((k1 − k)h) − dG0

G0da
(a)

dk
}
.

(4.23)
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Again, in order to warrant convergence of the integrals appearing in these expressions of φ̂1(a; k)
and φ̂2(a; k) and their inverse Fourier transforms φ1(a; z) and φ2(a; z), it is necessary to make
the hypothesis defined by Eq.(3.32) on the sign of the derivative of the unperturbed ERR G0

with respect to the unperturbed crack position, ensuring that the denominators of the various
fractions never vanish.

4.4 The shape of a crack front encountering a single obstacle

As an application, we shall again determine the equilibrium shape of the front of a crack lying
on the mid-plane of an infinite plate and penetrating into a single obstacle of infinite length in
the direction of propagation, up to second order in the contrast of toughness. The distribution
of toughness is again represented by Eq. (3.46). At order 1, one gets from equations (4.22) and
(3.47):

φ̂1(a; k) = − sin(kd)

πk
[
2|k|X(kh) − dG0

G0da
(a)
]

so that

φ1(a; z) = − 1
π

∫ +∞

−∞

sin(kd)

k
[
2|k|X(kh) − dG0

G0da
(a)
] eikz dk

= − 2
π

∫ +∞

0

sin(kd)

k
[
2kX(kh) − dG0

G0da
(a)
] cos(kz) dk.

In the limit
dG0

da
(a) → 0−, the integral defining φ1(a; z) here diverges. However we are interested

only in the deviation of the crack front from straightness, characterized again at order 1 by the
quantity

φ̃1(a; z) ≡ φ1(a; z) − φ1(a; 0) =
2
π

∫ +∞

0

sin(kd)

k
[
2kX(kh) − dG0

G0da
(a)
] [1 − cos(kz)] dk . (4.24)

This quantity has a well-defined limit φ̃1(z) for
dG0

da
(a) → 0− given by

φ̃1(z) ≡ 1
π

∫ +∞

0

sin(kd)
k2X(kh)

[1 − cos(kz)] dk . (4.25)

At order 2, equations (4.23) and (3.47) yield, since the function ĝc(x, k) is independent of x:

φ2(a; z) =
1
π2

∫ +∞

−∞

∫ +∞

−∞
S(a;h; k, k′)

sin(kd)

k
[
2|k|X(kh) − dG0

G0da
(a)
] sin(k′d)

k′
[
2|k′|X(k′h) − dG0

G0da
(a)
]

× ei(k+k′)z

2|k + k′|X((k + k′)h) − dG0

G0da
(a)

dkdk′

=
2
π2

∫ ∫

k+k′≥0
S(a;h; k, k′)

sin(kd)

k
[
2|k|X(kh) − dG0

G0da
(a)
] sin(k′d)

k′
[
2|k′|X(k′h) − dG0

G0da
(a)
]

× cos[(k + k′)z]

2(k + k′)X((k + k′)h) − dG0

G0da
(a)

dkdk′
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where we have grouped the terms (k, k′) and (−k,−k′) in the double integral and accounted for
the fact that S(a;h; −k,−k′) = S(a;h; k, k′), see equation (4.20).

Again, we are interested only in the deviation of the crack front from straightness, charac-
terized at order 2 by the quantity

φ̃2(a; z) ≡ φ2(a; z) − φ2(a; 0) =
2
π2

∫ ∫

k+k′≥0
S(a;h; k, k′)

sin(kd)

k
[
2|k|X(kh) − dG0

G0da
(a)
]

× sin(k′d)

k′
[
2|k′|X(k′h) − dG0

G0da
(a)
] cos[(k + k′)z] − 1

2(k + k′)X((k + k′)h) − dG0

G0da
(a)

dkdk′.

(4.26)

This quantity has a well-defined limit φ̃2(z) for
dG0

da
(a) → 0− given by

φ̃2(z) ≡ 1
4π2

∫ ∫

k+k′≥0
S0(h; k, k′)

sin(kd)
k|k|X(kh)

sin(k′d)
k′|k′|X(k′h)

cos[(k + k′)z] − 1
(k + k′)X((k + k′)h)

dkdk′ (4.27)

where

S0(h; k, k′) ≡ lim
dG0/da→0−

S(a;h; k, k′)

= −1
2

[
|k + k′|X((k + k′)h) − |k|X(kh) − |k′|X(k′h)

]2
+ 2|k||k′|X(kh)X(k′h).

(4.28)
The integral in equation (4.27) is convergent because the function S0(h; k, k′) verifies the prop-
erties S0(h; k, 0) = S0(h; 0, k′) = 0.

Since the function S0 is obviously invariant upon interchange of k and k′, the integral in Eq.
(4.27) can be simplified by reducing the integration domain

{
(k, k′), k + k′ ≥ 0

}
in the same

way as for integral (3.52); one thus gets

φ̃2(z) =
1

2π2

∫ +∞

0

{∫ k

0

[
S0(h; k, k′)

cos((k + k′)z) − 1
(k + k′)X((k + k′)h)

+S0(h; k,−k′)
cos((k − k′)z) − 1

(k − k′)X((k − k′)h)

]
sin(kd)
k2X(kh)

sin(k′d)
k′2X(k′h)

dk′
}

dk.

One may now write k′ ≡ λk, 0 ≤ λ ≤ 1 and use the variables of integration (k, λ) instead of
(k, k′); the preceding equation then becomes

φ̃2(z) =
1

2π2

∫ +∞

0

{∫ 1

0

[
S0(h; k, λk)

cos((1 + λ)kz) − 1
(1 + λ)X((1 + λ)kh)

+S0(h; k,−λk)
cos((1 − λ)kz) − 1

(1 − λ)X((1 − λ)kh)

]
sin(kd)
X(kh)

sin(λkd)
λ2X(λkh)

dλ
}

dk
k4
.

Introducing the notation

S0(h; k, λk)
k2X(kh)X(λkh)X((1 + λ)kh)

≡ T 0(kh, λ) (4.29)

in the preceding integral and changing the order of integration, one gets the final expression of
φ̃2(z):

φ̃2(z) =
1

2π2

∫ 1

0

{
J [h;λ; d, λd, (1 + λ)z] − J(h;λ; d, λd, 0)

1 + λ

+
J [h; −λ; d, λd, (1 − λ)z] − J(h; −λ; d, λd, 0)

1 − λ

}
dλ
λ2

(4.30)
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where

J(h;λ;α, β, γ) ≡
∫ +∞

0
T 0(kh, λ) sin(αk) sin(βk) cos(γk)

dk
k2
. (4.31)

4.4.1 Limiting cases of infinite and infinitesimal thicknesses

In the limit of an infinite body (h → +∞), for which X(kh) → 1
2

, the integrals in Eqs. (4.25),

(4.30) and (4.31) may be calculated analytically, and the final results for φ̃1 and φ̃2 read (Chopin
et al., 2011; Vasoya et al., 2013)




lim
h→+∞

φ̃1(z) =
d

π

[
(1 + u) ln (|1 + u|) + (1 − u) ln (|1 − u|)

]

lim
h→+∞

φ̃2(z) =





− d

2π

[
(1 + u) ln(1 + u) + (1 − u) ln(1 − u)

]
if |u| ≤ 1

− d

2π

[
(|u| − 1) ln

( |u| + 1
|u| − 1

)
+ 2 ln 2

]
if |u| ≥ 1.

(4.32)

On the other hand, for an infinitely thin plate (h → 0), X is multiplied by a factor of 4 with
respect to the case h → +∞, so that by Eqs. (4.25), (4.28), (4.29), (4.30) and (4.31), φ̃1 and
φ̃2 are simply divided by a factor of 4; that is,





lim
h→0

φ̃1(z) =
d

4π

[
(1 + u) ln (|1 + u|) + (1 − u) ln (|1 − u|)

]

lim
h→0

φ̃2(z) =





− d

8π

[
(1 + u) ln(1 + u) + (1 − u) ln(1 − u)

]
if |u| ≤ 1

− d

8π

[
(|u| − 1) ln

( |u| + 1
|u| − 1

)
+ 2 ln 2

]
if |u| ≥ 1.

(4.33)

4.4.2 Numerical solutions for arbitrary values of the thickness

For arbitrary values of h, the integrals appearing in Eqs. (4.25), (4.30) and (4.31) may be
calculated numerically. Instead of plotting both φ̃1(z) and φ̃2(z), we again choose to plot the
total perturbation of the front defined by Eq. (3.59). In the following figures, the value the
normalized toughness contrast is chosen.

Fig. 4.3 first compares, in the two limiting cases h → +∞ and h → 0, and for a normalized
toughness contrast ǫ of unity, the value of δ̃a(z)/d obtained numerically (full lines) and analyt-
ically (dotted lines). The agreement is excellent in both cases, which shows that the numerical
calculation of the integrals is correct and accurate.

Fig. 4.4 now shows the same quantity as a function of the normalized plate thickness h/d,
for the same normalized toughness contrast ǫ of unity. The dependence of δa(z)/d upon h/d is
quite clear here: when the plate becomes thinner, the deformation of the crack front decreases,
that is, this front becomes “stiffer”. Note that although the value ǫ = 1 here is admittedly high,
the perturbation of the front remains reasonably small, at least for thin plates.

It is worth noting that the effect of the finite thickness of the plate on the crack front
geometry is more pronounced in the thick plate regime, h ≫ d, than in the thin plate regime,
h ≪ d. Indeed the solution for an infinitely thick plate provides an acceptable approximation
(within 10% in the domain |z/d| ≤ 6) only for values of h/d exceeding 100, whereas that for an
infinitely thin plate remains acceptable (with the same error on the same domain) up to values
of h/d of the order of 0.4. This observation suggests that the finite thickness of the specimen



74 Chapter 4. A semi-infinite mode I crack lying on the mid-plane of an infinite plate

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
(z

)/
d

z/d

 

 

Numerical: h/d  + 

Analytical: h/d  + 

Numerical: h/d  0

Analytical: h/d  0 −
−

−

f δa
(z
)/
d

− − −

/d z/d

Figure 4.3: Equilibrium shape of a crack front penetrating into a single obstacle of normalized toughness
contrast ǫ = 1, in plates of infinite and infinitesimal thicknesses.

may have had a significant impact on the experimental front geometries reported in the works
of Delaplace et al. (1999) and Dalmas et al. (2008).

Another interesting feature is that the range of validity of the first-order approximation
is independent of the specimen thickness, and extends (within 10% for all values of z) up to
contrasts ǫ ≃ 0.2. Indeed, in both limiting cases of infinitely thin and thick plates, the first-and
second-order contributions are proportional to each other by a factor of 4 (see Eqs. (4.32) and
(4.33)).

4.5 Concluding remarks

The primary objective of this work was to provide a quantitative description of the process of
crack pinning by moderately strong heterogeneities in specimens of finite size, and especially in
plates of arbitrary thickness.

This problem was addressed theoretically by calculating the second-order expansion of the
stress intensity factor resulting from some small, but otherwise arbitrary coplanar perturbation
of the front of a semi-infinite crack lying on the mid-plane of an infinite plate of finite thickness
and subjected to general mode I loading conditions. The results obtained were used to predict
the equilibrium geometry of the crack for a given heterogeneous distribution of fracture tough-
ness within its plane, assuming the stress intensity factor for an unperturbed crack front to be
a decreasing function of the crack extent. Specializing to the case where this decrease becomes
negligibly small and the crack is pinned by a single infinitely elongated obstacle, we found a
formula for the shape of the crack front accurate to second order in the toughness contrast. This
formula was fully explicit in all cases, and entirely analytic (i.e. did not require the numerical
evaluation of any integrals) in the two extreme limits of infinitely thick and infinitely thin plates.

This work highlights the following generic features of crack pinning in samples of finite size:
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Figure 4.4: Equilibrium shape of a crack front penetrating into a single obstacle of normalized toughness
contrast ǫ = 1, in plates of various thicknesses.

• For a given distribution of obstacles, the thinner the sample, the smaller the deformation
of the front. In the limit of a very thin specimen, this deformation is exactly 4 times
smaller than in the limit of an infinitely thick one.

• Again, as has been shown in the previous chapter, the second-order correction relevant for
larger toughness contrasts shows that the crack front stiffens under the action of stronger
obstacles.

• Although the effect of the specimen thickness may now be taken into account quantita-
tively, the finite width of the specimen might also play a significant role and deserves
further investigations.

In the next chapter, the results obtained here will be used to interpret peeling experiments.





Chapter 5

Experimental investigation of crack
pinning by strong heterogeneities

The aim of this chapter1 is to study experimentally the problem of crack pinning by strong
heterogeneities. Since the pioneering work of Rice (1985) a large amount of theoretical works
have been devoted to the study of the SIF along a perturbed planar crack under different loading
and geometrical conditions (Gao and Rice, 1986; Leblond et al., 1996; Lazarus and Leblond,
1998, 2002; Favier et al., 2006). These models have led to the development of a powerful
theoretical tools to address these problems, that can be used to predict the crack geometry
and its behaviour as it encounters heterogeneities. Surprisingly, experimental studies of these
questions are rather scarce, despite their relevance to test these theoretical models and determine
their range of validity. The exploration of front deformation by toughness heterogeneities on
experimental examples will be the main purpose of this chapter.

The small number of experimental study in the field can be explained (i) by the difficulty
to make direct observations of the crack front geometry, and (ii) by the difficulty to design
material with controlled and known toughness field. Daguier et al. (1995) have proposed an
experimental method injecting ink into the crack after propagation, hence allows one to study
crack geometry at some given time in an opaque material (here, a metallic alloy). Mower and
Argon (1995) were first able to capture directly the propagation of a crack in a transparent epoxy
containing defaults as nylon rods. Their main aim was to study, at large toughness contrast,
the crack trapping by unbroken nylon rods at the wake of the crack. Schmittbuhl and Maloy
(1997) explored the propagation of a crack within a plane containing a random distribution
of defects using two transparent Plexiglas blocks. In their experiment, a disorder toughness
pattern is obtained by sandblasting the surface of one of the Plexiglass block before merging
them together by heat-treatment to create a weak heterogenous interface. This setup has
widely been used to obtain statistical properties of crack front roughness in disordered materials
(Delaplace et al., 1999; Santucci et al., 2010). However, quantitative comparisons with models
beyond the scaling properties of the roughness seem out of reach, because of the uncontrolled
nature of the heterogeneities resulting from the sandblasting technique. To explore pinning
by individual obstacles, Dalmas et al. (2009), followed by Patinet et al. (2013), have studied
the problem of crack propagating along a patterned interface using classical Double Cantilever
Beam (DGB) geometry and they analyzed the crack front morphology in the framework of the

1The results presented in this chapter constitute the bulk of the material published in Vasoya et al. (2014).
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crack perturbation linear theory. The main advantages of their experimental setup is that (i)
the crack is loaded in pure tensile mode, and (ii) the crack propagation is purely in-plane. They
infer the toughness contrast from the front geometry obtained in experiments: After recording
the experimental front geometry, they indeed fit it using first-order perturbation approximation
by adjusting the toughness contrast used here as a free parameter. They have compared finally
the obtained values of the toughness contrast with the one obtained using FE calculations. By
taking the geometrical dimensions of the experimental sample, morphology of the crack front
and the associated opening displacement, they have solved the static elasticity problem by FE.
The 3D displacement fields obtained from FE calculations then have been used to obtain the
local ERR along the front with the ”G-theta” method developed by Destuynder and Djaoua
(1981). Their work did not reveal any non-linear geometrical effects, despite the investigation
of rather strong heterogeneities.

Here we design an experimental such that :

• The toughness contrast of the obstacles will be measured independently using force mea-
surement so that comparison between theory and experiment can be done without any
adjustable parameter.

• The experimental setup will allow to tune continuously the toughness contrast from small
to large values in order to explore the transition from linear to non-linear front deforma-
tions.

In order to fulfil this aspiration, we take inspiration from the work of Xia et al. (2012) and use
thin film peeling as a model system to study the problem of crack propagation in heterogeneous
materials. This chapter is organized as follows:

• Section 5.1 presents why and to which extent thin film peeling is appropriate to investigate
problems of perturbed planar crack propagation analyzed theoretically in the previous
chapters 3 and 4.

• We then present, in Section 5.2, the experimental procedure by describing the different
tasks used to realize the experiments. Sub-section 5.2.1 describes the procedure used to
prepare samples. In sub-section 5.2.2, we present the geometry used for the peeling test
experiment. In sub-section 5.2.3, we explain how to characterize the adhesion energy
and measure the toughness contrast. Sub-section 5.2.4 presents procedure to measure the
deformed front shape and its amplitude.

• As a first set of experiments, in Section 5.3, we study peeling of thin films from rigid sub-
strate patterned with a sinusoidal distribution of fracture energy along the front direction.

• As a second set of experiments, in Section 5.4 we study peeling of thin films from rigid
substrate patterned with a single obstacle of infinite length in the direction of propagation.

• Finally, we use these experiments to infer the range of validity of the first- and second-order
theory of crack perturbation and discuss some previous experimental results (Patinet et
al., 2013).
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5.1 Context of the study: Thin film peeling as a model system
for the study of planar crack propagation

We choose here thin film peeling (see e.g. Xia et al. (2011), Xia et al. (2012)) as a model system
to explore experimentally fracture mechanics problem. Aim of this section is to explain why
and to which extent it might be appropriate to investigate problems of perturbed planar crack
propagation analyzed theoretically in previous chapters 3 and 4. Fig. 5.1 compares a peeling and
a planar crack geometry. Fig. 5.1 (a) shows a schematic of a planar crack problem where a crack
F of size a, is embedded in some arbitrary isotropic elastic infinite medium, subjected to some
mode I loading through an imposed force F . And Fig. 5.1 (b) shows a schematic representation
of the peeling of a thin film from a rigid substrate. The peeling front Γ separates the released
portion of the film from the portion of the film still bonded to the substrate. It propagates as
thin film is peeled off from rigid substrate upon applied peeling force Fp at peeling angle θp.
Fig. 5.1 (c) represents the 2D view of the thin film model on the Oxy plane. We compare both
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Figure 5.1: Schematic representation of (a) a semi-infinite crack embedded in an infinite medium, and (b) thin
film peeled from a rigid substrate, (c) 2D view of the thin film at two different instants during the peeling process.

geometries in terms of front perturbations and perturbed driving force.

• Perturbation of the front :

In peeling geometry, the peeling front is confined to the interface plane between the film
and the substrate. As a result, it gets perturbed only in-plane within Oxz. This makes
peeling geometry appropriate to study the problem of planar crack propagation.

• Driving force :

– Straight crack configuration : For a planar crack with the straight configuration, at
Griffith’s equilibrium of energy, the driving force is proportional to square of applied
force F and is given (Irwin, 1958) in the following form,

G0 ≃ F 2g0(a) (5.1)

where g0(a) describes the effect of the geometry of the straight crack F on the value
of the ERR. For the peeling of an inextensible thin film from a rigid substrate, Rivlin
(1944) has proposed like in fracture theory, an energy approach to derive the relation
between the applied peeling force Fp and the driving force G0. i.e.,

G0 ≃ Fp

2b
(1 − cos θp) (5.2)
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where b denotes the half-width of the film. However, in the limit where the peeling
angle approaches zero, large stretching deformations may occur that dominate over
the bending mode of deformation of the film considered here. Kendall (1973) has
derived an alternative, more refined equation by incorporating the elasticity of the
thin film. This transition from a peeling mode governed by stretching to a mode

governed by bending occurs for a peeling angle θc
p ≃ 4

√
G0/Eh, where h is the thick-

ness of the thin film. As a result, to have the domination of the bending mode over
the deformation of the film in the sequel, we use a large enough peel angle such that
θp > θc

p.

– Perturbed crack configuration : Let’s now assume that during their propagation, crack
F and peeling front Γ get perturbed within their plane Oxz by a small amount δa(z).
Rice (1985) has derived the expression of the variations in driving force induced
by coplanar perturbation of the semi-infinite planar crack embedded in an infinite
medium :

δ̂G(a; k)
G0(a)

=
[

1
L

− |k|
]
δ̂a(k) (5.3)

where k is the wavenumber along the crack front and L is a characteristic length
scale of the geometry and the loading system given by G0/(dG0/da). In the case of
thin film peeling that corresponds to the problem of an elastic plate clamped to some
rigid body with perturbed clamped boundary, the driving force has been calculated
using Von Karman plate theory that take into account both bending and stretching
of the plate (Ponson et al., 2014). When the deformation of the plate is governed
by bending deformations only (for θp > θc

p), the variations of driving force read in
Fourier’s space,

δ̂Gp(a; k)
G0

= −4

√
1 +

1
4(λbk)2

|k|δ̂a(k) (5.4)

where λb is a characteristic bending length that corresponds about the radius of
curvature at peeling front (see Fig. 5.1(c)) that follows,

λb =

√
Eh3

24(1 − ν2)G0
. (5.5)

Depending on the wavelength λ = 2π/k of the peeling front perturbations, one shall
distinguish two asymptotic behaviours,





δ̂Gp(a; k)
G0

≃ −4|k|δ̂a(k) if λ ≪ 4πλb

δ̂Gp(a; k)
G0

≃ 2
λb
δ̂a(k) if λ ≫ 4πλb.

(5.6)

In the case of small wavelength of the peeling front perturbations, the formula con-
verges to the same form as the second term of Eq.(5.3) of one for a planar crack
embedded in an infinite medium. The only difference is that now the variations in
the driving force are increase by the factor of 4. From a pure bending plate theory,
Legrand et al. (2011) found the same result using Love-Kirchhoff plate theory. In
the case of large wavelength of the peeling front perturbations, the variations in the
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driving force, just like in the case of a planar crack perturbation, is proportional to
front perturbations. The only difference is the cut-off lengths, L and λb, of the regime
(δ̂Gp(a; k)/G0 ∼ −|k|δ̂a(k)) displaying a non-local driving force that are specific to
each geometry.

Conclusively, in the sequel experimental investigation, toughness fluctuations will be chosen
such that wavelengths λ of the induced front perturbations remain small with respect to the
characteristic bending length, i.e. λ ≪ 4πλb, but large enough so that λ & h. The first
condition ensures that the cut-off effects arising for large wavelengths of the film perturbation
can be neglected and that LEFM approach developed in the previous chapters 3 and 4, applies.
The second condition ensures that the geometry of the detachment front can be described by
the previous calculations made in the limit h/d → 0. It is now necessary to explain why, in the
limit of very thin plates h/d → 0, the LEFM analysis of a crack lying at the interface between
two elastic plates (see Fig. 4.2) applies to the peeling of an elastic plate from a rigid substrate.
It so occurs that for the problem considered in Fig. 4.2, the replacement of the bottom elastic
plate by a rigid one does not affect the calculation, as long as the limit h/d → 0 is considered.
Indeed in this limit, as a result of the Love-Kirchhoff theory of thin plates, all components of the
displacement are identically zero on the unbroken part of the interface between the two plates,
irrespectively of the elasticity of the bottom plate; hence the boundary conditions imposed onto
the top plate by the bottom one are exactly the same as if the latter were rigid1. Note that for a
given front geometry, the perturbation δG of the elastic energy-release-rate is twice larger when
the upper plate is bonded onto another elastic plate rather than on some rigid substrate, since
the same amount of elastic energy is released from both plates; but since the same argument
also holds for the elastic energy-release-rate G0 for a straight crack front, Eqs. (4.33) derived
above using only the value of the ratio δG/G0 apply indifferently to both cases.

5.2 Experimental setup

The experimental setup consists of a thin film (F ) made of polydimethylsiloxane (PDMS),
and a substrate (S) made of a transparency with some printed ink pattern, as represented
schematically in Fig. 5.2.

5.2.1 Sample preparation

The specimen preparation follows the procedure detailed in Xia et al. (2012). Basic steps are:

• Substrate with controlled heterogeneities: To introduce obstacles of controlled ge-
ometry and toughness and permit a quantitative comparison with the predictions of Sec-
tion 4.4, an obstacle aligned with the peeling direction is printed on the transparency
using a standard commercial printer. The neat side of the transparency is subsequently
glued onto a glass plate.

• Preparation of PDMS: The SYLGARD Âő184 silicone elastomer kit is used for the
experiments. The curing agent is thoroughly mixed with the base at 1:10 ratio. The
mixture is then kept inside a desiccator for about 30 minutes. Inside the desiccator, the
mixture undergoes degassation under vacuum provided by a vacuum pump.

1This does not remain true for elastic plates of finite thickness, because as a result of the theory of 3D
elasticity, the horizontal components of the displacement are no longer zero on the unbroken part of the interface.
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Figure 5.2: Experimental setup: (a) Schematic representation of the peeling test. The substrate is translated
horizontally at the velocity vx in order to maintain a constant peeling angle θp. (b) Snapshot of the experiment.

• Spin coating of PDMS thin films: The PDMS premix is spin-coated over the rigidly
supported transparency by spinning the machine at a rate of 300 rpm during 20 s. This
procedure produces homogeneous thin films with thickness h = 400 µm.

• Curing of Sample: This phase is followed by a curing of the thin film and its substrate at
a temperature of 60◦C for two hours. The curing temperature and time control the cross
linking and lead to a Young modulus E and a Poisson ratio ν of PDMS of 1.2 MPa and
0.5 (a value characteristic of incompressible elastomers), respectively. The heat treated
samples are then kept at room temperature for 48 hours prior to the test. This two-stage
curing treatment is used to minimize the residual stress in cured PDMS.

5.2.2 Peeling test

A standard peel test configuration is employed to measure the peel force required to peel off
the PDMS thin film. As shown in Fig. 5.2, the free end of the PDMS thin film is peeled off at
a constant speed, vy = 1.65 mm.s−1, and at a peel angle θp = 45◦, from the ink-patterned rigid
substrate. For ease of experimental implementation, the film is always peeled upwards, and the
rigid substrate is rotated about its hinge to obtain any desired peel angle. In order to maintain
a constant peel angle θp during the test, the substrate is moved in the horizontal direction at a
speed vx = vy sin θp/(1 − cos θp). In this way, a stationary regime of propagation is reached.

5.2.3 Characterization of the adhesion energies

To introduce defects pinning the detachment front, we take advantage of strong adhesion of
PDMS on ink, characterized by the high interfacial fracture energy GO

c , as compared to that on
neat transparency, characterized by the lower energy GM

c . To vary the strength of these defects,
we tune their grayscale cgray (cgray = 0 without any obstacle and cgray = 1 for a black obstacle).

The first task is to measure the interfacial fracture energies of PDMS with the transparency
(GM

c ), and with the printed obstacle (GO
c ) as a function of cgray. To do so, we first deduce the

mean interfacial fracture energy Gc from Rivlin (1944)’s equation (5.2) with the half-width1

1This width is kept constant during the first set of experiments discussed here, but will be varied in a second
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b = 24mm of the adhesive (see Fig. 5.2). An alternative, more refined equation due to Kendall
(1973) incorporating the elasticity of the film is also used, without significantly changing the
results obtained (see Fig. 5.3) due to the large peeling angle taken here. The inset (a) of Fig. 5.3
shows the peel force Fp as a function of the peel displacement, for various values of the width
2d of the obstacle. One sees that the force quickly increases to reach a stationary value. This
reflects the stationary loading conditions imposed to the adhesive that is peeled with an angle
maintained constant during the experiment.

To now deduce the values of GM
c and GO

c from that of Gc, we perform peel strength mea-
surements of samples with defects with the same gray level cgray but various widths 2d, and use
the equation

Gc =
(

1 − d

b

)
GM

c +
d

b
GO

c (5.7)

expressing the “mixture rule’” for the effective fracture energy of heterogeneous interfaces in-
variant along the propagation direction. This procedure is illustrated in Fig. 5.3 where the best
linear fit of the experimental curve is used to determine the values of GM

c and GO
c . The adhesion

energy of the PDMS-transparency interface found, GM
c = 2.2 ± 0.1 J.m−2, is confirmed inde-

pendently through additional peel tests performed on homogeneous specimens. Note that the
values of fracture energy are found to slightly vary with the velocity of the peeling front. In the
experiments reported in this paper, the velocity is therefore fixed to a value of vp = 1.65 mm.s−1.
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Figure 5.3: Effective adhesion energy of the interface as a function of the half-width d of the obstacle, for
cgray = 0.4. Inset (a): Peel force versus displacement curves for the same grayscale but different obstacle half-
widths. Inset (b): Contrast of interfacial fracture energy versus grayscale of the obstacle.

This procedure provides accurate values of the normalized toughness contrast. The contrast
defined by

ǫ(cgray) = [GO
c (cgray) −GM

c ]/Gc

set discussed in Section 5.4.2.
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is represented as a function of cgray in the inset (b) of Fig. 5.3. One observes that ǫ(cgray)
evolves linearly with cgray, according to the law ǫ(cgray) = 1.8 cgray. The maximum value of 1.8
corresponding to black ink permits to explore crack pinning by rather strong obstacles, beyond
the range of validity ǫ . 0.2 of the first-order theory determined previously.

5.2.4 Image Acquisition

In parallel to measuring the peel force required to peel off the PDMS thin film during peeling
test, a Nikon DSLR 800E equipped with a high-magnification lens of the Zeiss Makro-Planar
T* 100mm f/2 ZF.2 lens is positioned above the substrate surface, perpendicularly to it, and
used to record in situ t 4,800×2,704 pixel size images of the peel-front configuration. The
characteristic features of the camera like the shutter speed and the exposure time are chosen
in order to obtain a good contrast between the peeled part of the film and the part of the film
that is still bonded to the substrate. Typical pictures are shown in Figs. 5.4 (c) and 5.6 (c).
Using a proper lighting device, the front shape appears as a thin bright line. The other, thicker
bright line that appears on the raw image results from the reflection of the light on the curvy
part of the debonded thin film and is discarded in the analysis. Image processing is then used
to enhance the contrast and discrete positions of the front are obtained by manual selection on
a zoomed image.

5.3 Sinusoidal perturbations of the peeling front: Effect of con-
trast

As mentioned in its title, the aim of this section is to quantify the crack propagation in the
sinusoidal toughness map defined by Eq. (3.66) and represented schematically in Fig. 5.4 (b). In
the stationary regime, G0 does not depend on the crack size a, hence it is not possible to define
a mean position using Eq. (3.29). Instead, from now on, we take as reference the straight line
which intersects the front in z = 0 and denote δa the front perturbation from this new reference
in agreement with Eq. (3.75). The first- and second-order approximations, corresponding to
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Figure 5.4: (a) Equilibrium shape of crack front at contrast ǫ = 0.2 and wavelength λ0 = 12mm; (b) Represen-
tation of the sinusoidal distribution of the toughness; (c) Typical snapshot of the peeling front as it propagates
in sinusoidal toughness map.
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the limit h/d → 0 that is same Eq. (3.75) but divided by 4, are also plotted in Fig. 5.4(a)
using the contrast value ǫ = 0.2 measured independently from peel force measurements and
wavelength λ0 = 12 mm. It is observed that the second-order theory brings correction only
to the shape of the perturbed front but it doesn’t affect the amplitude of the perturbed front.
The “tunability” of the printed ink distribution may be exploited to explore other contrasts.
Fig. 5.5 shows the measured normalized amplitude of the crack front perturbations as a function
of toughness contrast for given wavelength of the toughness fluctuations λ0 = 12 mm. This value
of wavelength is smaller that the cut-off length 4πλb. As shown analytically in Eq. (3.76), we
expect then the front deformation to vary linearly with the toughness contrast, even taking into
account the secod-order correction. This is in rather good agreement with our experimental
measurement within the range of toughness contrast investigated here. Despite the correct
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Figure 5.5: Effect of toughness contrast on amplitude of front deformation for wavelength λ0 = 12 mm.

agreement between analytical and experimental results in the case of sinusoidal pattern of
obstacles, one shall notice that exploration of effects due to second-order corrections are still
missing since :

• second-order contribution does not affect the deformation amplitude up to rather large
toughness contrasts that would require high order corrections.

• with our experimental setup, the maximum contrast value one can get is about 0.9.

Therefore, to explore effects due to second-order corrections, we move to the study of crack
front pinning by a single obstacle.

5.4 Deformation of the front pinned by a strong obstacle

Again in this case, in the stationary regime, G0 does not depend on the crack size a, hence it
is not possible to define a mean position using Eq. (3.29). Instead, from now on, we take as
reference the straight line which intersects the front in z = 0 and denote δa the front perturbation
from this new reference in agreement with Eq. (3.59). The result is plotted on Fig. 5.6(a) with
an amplification in the y−direction. One immediately recognizes the characteristic shape of a
crack front pinned by an isolated obstacle of larger toughness, as has been observed by Dalmas
et al. (2008); Patinet et al. (2013); Budzik et al. (2013); Chopin et al. (2011).
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Figure 5.6: (a) Equilibrium shape of a crack front pinned by a single obstacle of contrast ǫ = 0.66 with b/d = 24,
and comparison with the first- and second-order theoretical predictions (Eqs. (4.33))); (b) Representation of
distribution of the toughness corresponding to single obstacle with width of 2d; (c) Typical snapshot of the
peeling front as it crosses an obstacle. Here, the toughness contrast is ǫ = 1.0 in order to highlight the front
deformation;

The first- and second-order approximations (Eqs. (4.33)),corresponding to the limit h/d → 0,
are also plotted in Fig. 5.6(a) using the contrast value ǫ = 0.66 measured independently from peel
force measurements. It is observed that the second-order theory brings a significant correction
to the first-order one, by predicting a less deformed (“stiffer”) crack front, and considerably
improves the agreement between experiment and theory. Experimentally, we limited our analysis
to the region |z/d| ≤ 5. Beyond this domain, accurate measure of the front shape becomes
extremely difficult because we could not avoid the presence of unwanted heterogeneities which
deform the front. Hence it is difficult to measure up to which value of z/d the theoretical
predictions remain valid.

5.4.1 Effect of the toughness contrast

The “tunability” of the printed obstacles may be exploited to explore other contrasts. Fig. 5.7
shows the normalized amplitude of the crack front perturbation, defined as the amplitude of
this deformation within the obstacle, that is the difference of position δa(d) of the front at the
edge and center of this obstacle, normalized by the defect half-width d. The range of explored
toughness contrasts here varies from negative (GO

c < GM
c ) to positive (GO

c > GM
c ). The quantity

δa(d)/d depends only on the contrast, and varies linearly with it according to the first-order
theory. In contrast, the experiments exhibit some “saturation” of the amplitude as the contrast
increases. These saturation and divergence are correctly predicted by the second-order theory.

This quantitative comparison with experiments permits to define the practical limits of the
first- and second-order theories. We retrieve experimentally that the first-order calculation
provides an accurate prediction (within 10%) of the deformation of the front of a pinned crack
for low contrasts, ǫ . 0.2 (see Section 4.4.2). The second-order calculation extends this range of
validity to at least ǫ = 0.7, as shown experimentally (Fig. 5.7). For larger contrasts, the second-
order theory underestimates the deformation of the front; either a higher-order development
or a numerical approach (see Bower and Ortiz (1991); Lazarus (2003)) would be needed to
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contrast, and comparison with the predictions of the first- and second-order theories.

accurately describe the geometry of the crack front in such situations.

5.4.2 Effect of the sample width on the deformation of the front

To investigate question of the effect of the sample width, we measure the crack front deformation
for a fixed contrast ǫ = 0.66 and a fixed defect half-width d = 1 mm, but various specimen
widths 2b. Fig. 5.8(a) shows the results obtained1. The comparison with the first- and second-
order theories (strictly valid in the limit b/d → +∞) displayed in Fig. 5.8(a) shows that the
specimen width has a negligible effect on the crack front deformation if b/d & 12 in the peeling
test geometry used in this study. Provided this condition is met, the second-order expansion
captures the front geometry fairly well, confirming the results of the previous section and the
relevance of the second-order correction for strong obstacles.
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Figure 5.8: Effect of the specimen widths on the front perturbation: (a) Geometry of the pinned front for
ǫ = 0.66 for various specimen widths b. (b) Geometry of the pinned front after correction by the front geometry
without defect.

For the smallest sample having b/d = 8, the crack front geometry is clearly influenced by

1Because of the symmetry (z → −z) of the peeling test geometry, we only show one half of the front and
represent the mean value of the deformations δa(z) measured in the regions z < 0 and z > 0
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the finite width of the specimen. To account for this effect, Patinet et al. (2013) proposed to
correct the crack front deformation δa(z) observed by subtracting the deformation δahom(z)
measured for a homogeneous interface, before comparing it to that predicted theoretically for
an infinitely wide specimen. This procedure is tentatively applied to our experiments: first, the
crack front geometry was measured in homogeneous specimens of various widths 2b, as shown
by the discrete points in the inset of Fig. 5.8(b). The parabolas δahom(z) = 0.037 z2/b also
represented there by straight lines provide a good description of the experimental points. Then
this deformation was subtracted from the original deformation and the corrected crack front
geometry was compared to the theoretical predictions in Fig. 5.8(b). One observes that this
procedure degrades the agreement between experimental and theoretical values.

The apparent inappropriateness of this procedure might be due to the fact that it makes the
implicit assumption that the zeroth-order crack front shape (for a homogeneous interface) is
influenced by the finite width of the specimen, but that the first- and second-order corrections
(due to the presence of the obstacle) are less, since the corrected crack front deformation δa(z)−
δahom(z) is compared to the sum of these corrections calculated in the limit b/d → +∞. There is
no clear reason why this assumption should be correct, especially considering the large influence
of the thickness 2h of the specimen upon the first- and second-order corrections.

A discussion of the results of Patinet et al. (2013) is finally possible. These authors performed
similar measurements of the crack front deformation when pinned by a single obstacle, and
concluded that the predictions of the first-order theory were quantitatively correct over a much
larger range of values of the contrast than found here. Since this range of validity was shown to
be independent of the specimen thickness, we might attribute this discrepancy to the finite width
of the specimen: Patinet et al. (2013) used specimen widths in the range 9 . b/d . 13, for which
the effect of the finite width of the specimen was significant in our setup, and used the procedure
of correction of the observed crack front geometries depicted above. Now in the double cantilever
beam they used, the sign of the curvature of the crack front for a homogeneous interface was
opposite to that of the same curvature in our peeling test. As a result, the subtraction of
δahom(z) from δa(z) resulted in an increase of the crack front deformation instead of a decrease
like in our case (see Figs. 5.8(a) and (b)). If, as suggested by the above results, the procedure
of correction of the observed crack front shapes was in reality inappropriate, it might have led
to an overestimation of the crack front deformation bringing it closer to the predictions of the
first-order theory, and thus giving the impression of correctness of this theory beyond its real
range of applicability.

While the effect of the specimen thickness on the pinning of crack fronts can now be quanti-
tatively taken into account, the role played by the specimen width is less obvious and deserves
further investigations. To circumvent this difficulty in our experiments, we used thin films of
sufficiently large width b & 12d with respect to the heterogeneity size d. Note however that this
range of validity might vary with the employed test geometry.

5.5 Concluding remarks

The aim of this chapter focused on experiments performed in the limit of infinitesimal thickness
of a infinite-plate, using peeling test with fully controlled fields of local fracture energy. Two
different distribution of the toughness were explored; (i) crack propagating in a sinusoidal
distributed obstacles, and (ii) crack crossing a single obstacle. In both cases, the distribution
is invariant along the crack propagation direction.
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This experimental work interpretes the following generic features of crack pinning in samples
of finite size:

• The experimental crack front deformations were observed to be in good agreement with
the theoretical formulas and the second order term to (i) greatly improve the agreement
and (ii) broaden their range of applicability in terms of admissible values of the toughness
contrast.

• Although the effect of specimen thickness can now be quantitatively taken into account,
the finite width of the specimen might play a significant role and deserve further inves-
tigations. In practice, we found that in peeling tests, films at least 12 times wider than
the defect size are necessary in order to apply the theory developed in previous chapters
3 and 4 under the hypothesis of infinite width.

• Generally speaking, the non-linear correction arising from large contrasts of toughness
is expected (Delaplace et al., 1999; Xia et al., 2012) to play a significant role in various
experimental situations and should be taken into account to predict the failure behavior
of engineered heterogeneous materials with new and improved properties. We have shown
that the second order approximation is useful to increase the accuracy. However numerical
methods which will be described in the part II, become unavoidable to consider strong
heterogeneities.





Part II

A numerical study for an arbitrary
toughness contrast





Introduction

For a moderate toughness contrast, first order (Rice, 1985; Bonamy, 2009; Lazarus, 2011) and
second order (Leblond et al., 2012; Vasoya et al., 2013; Willis, 2013) perturbation approaches
are valid so that it becomes possible to derive some analytical results (Part I). As still discussed
in chapter 1 at first order approximation, it has been shown that two situations may occur
depending on the spatial toughness distribution (Roux et al., 2003): (1) if the variations of
toughness in the propagation direction are small (or negligible), the crack front deforms so that
the stress intensity factor reaches the local toughness at each position along the crack front
(K = Kc everywhere). It is in particular the case when the toughness map is invariant in
the direction of propagation; (2) in contrast, if the spatial fluctuations along the propagation
direction are strong, some parts of the front remain pinned on higher toughness positions (K <
Kc at some places). Using terminology defined in Gao and Rice (1989), the first situation
is coined regular and the second irregular process in the sequel. In the case of regular crack
propagation, heterogeneous material can safely be replaced by an equivalent homogeneous one
with effective toughness equal to its mean value < Kc > (Roux et al., 2003; Patinet et al.,
2013). But in the case of irregular crack propagation, the equivalent toughness can no more be
obtained by a simple average and the effective toughness is governed by the pinned zones hence
is larger than the spatial average along crack front (Patinet et al., 2013; Demery et al., 2014).

The study of a crack propagating in a heterogeneous toughness with an arbitrary toughness
contrast, is still lacking in literature. Here, we address the problem in some, as simple as possible,
situations. In particular, we take into account the effect of large crack front deformations
induced by large toughness contrasts, and investigate the influence of local toughness map
on the crack propagation problem and on the macroscopic effective toughness during crack
propagation. We restrict to in-plane propagation of a flat crack. In order to focus on the crack
front deformations without introducing any boundary effects, we use the finite perturbation
method proposed by Rice (1989) and developed numerically by Bower and Ortiz (1990); Lazarus
(2003). Moreover we study a circular crack front rather than a straight one to avoid any
inevitable truncation effects of the discretization. As of now, we keep the toughness map
Kc(M) in a general scalar form which includes contrast effects along crack front as well a
spatial variation of toughness field in the propagation direction:

Kc(M) = Kc [1 + ∆ η(M)] (5.8)

The quantity Kc corresponds to the mean value of the toughness over crack plane, ∆ to the
relative toughness contrast, the function η(M) describes the toughness fluctuations at point M .
Aim is then to study the influence of the toughness contrast ∆ and the toughness fluctuations
η(M) on the crack propagation. This part is organised in two chapters:
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Chapter 6

In this chapter, we propose an homogenization method to bridge micro to macro scales. At the
micro scale the crack front is deformed by the local toughness map. At the macro scale, we
define some approximate undeformed geometry and apparent toughness. We present a numerical
procedure devoted to this problem. This procedure is based on large numerical iterations of
first-order approximation expounded in chapter 2.

Chapter 7

As an application, this chapter involves the study of a crack propagating in some model tough-
ness field which gives invariance of the problem along crack propagation direction. In detail,
we explore effects of different toughness field parameters in terms of toughness contrast ∆ and
intrinsic length ξ of the heterogeneity. We find that depending on ∆ and ξ, the propagation is
regular (for small enough ∆ and ξ) or irregular (for larger ∆ and ξ). In the regular case, the
crack reaches a stationary shape, whereas in the irregular case, some fingering occurs. Corre-
spondingly, the effective toughness is shown to decrease with ∆ and ξ than average value of the
local toughness up to its minimum one.



Chapter 6

Problem definition and numerical
method

6.1 Problem definition

We consider a planar crack F with initial local radius a(M), embedded in an infinite isotropic
elastic medium with heterogeneous fracture toughness properties and loaded in pure mode I
through some uniform remote stress applied at infinity σ (see Fig. 6.1).

a(M)
F

"e1

"e2

σ("e3)

M

θ(M)

Figure 6.1: A tensile planar crack in an infinite body under uniform stress σ

We assume a quasi static propagation of the crack front, so that the crack advance at a
point M of the front is governed by Irwin’s criterion (1.8):

{
K(M) < Kc(M) : no crack advance
K(M) = Kc(M) : possible crack advance

(6.1)

where K(M) is the SIF and Kc(M) the toughness at point M given by equation (5.8).
We suppose that the remote loading σ adapts in order to stay in the quasi static regime

and to ensure crack propagation at least, on some part of the front. This implies that at each
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moment:

max
M∈F

K(M)
Kc(M)

= 1 (6.2)

Under the assumption of quasi static propagation and for a given toughness map Kc(M),
the problem is to find the successive positions of the crack front and the corresponding loading
σ.

6.2 Homogenization: Macroscopic apparent fracture properties

Aim of this section is to address possible ways to do homogenization for determining the effective
toughness. The main difficulty of the problem is that due to heterogeneous toughness, the front
will not preserve a circular geometry as the crack advances. Rather it will roughen due to the
facing toughness heterogeneity. Hence the geometry of the crack front has to be accounted for.
Due to such interaction of the front with the local toughness, the local stress intensity factor
will be modulated. In an homogenization process, we shall replace such complex problem at
smaller scales by an equivalent circular crack of mean radius a:

a =

√
S

π
(6.3)

where S is a crack surface area. Correspondingly by applied stress, a first natural definition of
apparent effective fracture toughness would be,

Keff =
2√
π
σ

√
a. (6.4)

where σ is defined by Eq. (6.2).
On the other hand, such homogenized quantities may be defined by statistical means over

local elastic fields instead of just looking at applied loading alone. For example, the simplest
way is to integrate local fields along the crack front, either the stress intensity factor,

Km =
1
L

∫

F

K(M)dM (6.5)

or the energy release rate field,

Gm =
1
L

∫

F

G(M)dM (6.6)

where L is total length of the crack front.
From aspects of physical energy dissipation during crack propagation, a more interesting

and important quantity would be a mean ERR defined by averaging local ERR over advanced
crack area,

GA =

∫
F
G(M)δa(M)dM∫
F
δa(M)dM

(6.7)

where δa(M) is a small advance of crack front position (δa(M) > 0).
All these four macroscopic quantities (Keff ,Km, Gm, GA) may serve as an equivalent macro-

scopic toughness value writing an Irwin or a Griffith type criteria at the macro-scale. As the
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crack front is being deformed due to heterogeneity, all these macroscopic quantities are sup-
posed to evolve during propagation with mean crack size a. Thus in order to define a single
valued apparent effective property, one shall define the equivalent macroscopic quantities as an
integration of these evolving quantities over mean crack size. That is:

F∞
c =

〈
F
〉

a
= lim

a→∞

1
a

∫ a

a0

F (a′)da′ (6.8)

where, F is equal to either Keff , Km, Gm, GA.

For the geometrical deformation of the crack front, we introduce the following macroscopic
quantities:

• A normalized amplitude of perturbed crack front defined by:

∆a
a

=
maxM∈F[a(M)] − minM∈F[a(M)]

a
. (6.9)

• An integral along the perturbed crack front of the local deformations:

I(a) =
∫ 2π

0

∣∣∣∣
1

a(M)
∂a

∂θ
(M)

∣∣∣∣dθ(M). (6.10)

6.3 Numerical Procedure

Knowing the local toughness map, it is in particular possible to obtain the global quantities a,
Keff , Km, Gm, GA, ∆a/a and I(a) if one is able to solve the propagation problem. Bower and
Ortiz (1990) followed by Lazarus (2003), developed a powerful method based on the iteration of
Rice (1989)’s linear schemes given by Eqs. (2.11 and 2.13). The efficiency of this method arises
from the need for the sole 1D meshing of the crack front. The basic difference in these methods
is that, the method is implicit in Bower and Ortiz (1990)’s work in the sense they update the
local front geometry by inverting the linear elastic kernels at each iteration, whereas Lazarus
(2003)’s method is explicit, in the sense she updates the front geometry using some Paris type
propagation law. Here, we adapt the method of Lazarus (2003) to our problem. In particular,
we are taking care of numerical instability that might arise due to inappropriate discretization
[Appendix C.1] and develop a new step to calculate homogenized effective failure properties
during propagation. In practice, we introduce the dimensionless SIF K̂ by :

K(M) = σ
√
a0 K̂(M). (6.11)

It depends on the crack front shape and size but by linearity of the elasticity problem, is
independent of applied loading. As discuss below, we calculate this quantity by numerical
means, the loading being derived from it. We start from an initial circular crack of radius a0

for which K̂(M) = K̂0 with

K̂0(M) =
2√
π

and W = 1. (6.12)

The problem is then solved iteratively by successive small perturbations δa(M) of the crack
front in the following main four steps:
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1. Irwin-Griffith propagation law (6.1) is regularized by some Paris’ law with a large Paris
exponent β (Lazarus, 2003) that is:

δa(M) = δamax

(
K̂(M)/Kc(M)

maxM∈F K̂(M)/Kc(M)

)β

, β ≫ 1 (6.13)

it ensures to retrieve Irwin’s threshold behaviour (6.1), since:

{
δa(M) ∼ 0 if K(M) < Kc(M)
δa(M) ∼ δamax if K(M) = Kc(M).

(6.14)

Here δamax is a numerical parameter which is supposed to be small enough such that first,
Rice (1989)’s linear scheme can be applicable and second, such that numerical results are
stable. Advantage of using Paris’s law is that the crack advance at all steps is directly
provided in some explicit way. Disadvantages is, as for Euler’s explicit scheme, that nu-
merical instability may appear for some discretization parameters. This issue is discussed
in more details in the appendix C.1.

2. the dimensionless SIF K̂ and FK W are updated by using Rice (1989) first order pertur-
bation formulae (2.11) and (2.13).

3. the critical loading is then obtained by introducing (6.11) in (6.2):

σ
√
a0

Kc
=

[
max
M∈F

K̂(M)
1 + ∆ η(M)

]−1

(6.15)

where Kc, ∆ and η(M) are defined in (5.8).

4. the global effective toughness defined in previous section re-read in terms of K̂;

• Mean SIF Km:

Km =
σ

√
a0

L

∫

F

K̂(M)dM (6.16)

• Mean ERR Gm:

Gm =

(
1 − ν2

E

)
σ2a0

L

∫

F

K̂2(M)dM (6.17)

• Mean ERR over advanced crack area:

GA =

(
1 − ν2

E

)
σ2a0

∫
F
K̂2(M)δa(M)dM∫

F
δa(M)dM

(6.18)

where σ is given by Eq. (6.15)
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6.4 Numerical code

The numerical code of Lazarus (2003) is written in C-language. Its aim is to predict the mode
I propagation of any shaped planar embedded in an homogeneous media. It was found that
for any initial shape (heart, elliptical, rectangular) the crack always retrieves a circular shape.
We have extended this code to deal with heterogeneous fracture properties. In particular, we
have been handling the large crack front deformations induced by strong heterogeneity. In
some particular case of heterogeneous fracture properties, we have implemented the symmetric
and periodic boundary conditions while calculating two integrals (2.11) and (2.13) that update
the SIF K̂ and FK W . As a result, it reduces the total computational CPU time. Per one nu-
merical iteration, the CPU time is reduced by factor of (1/2k)3, where k denotes the periodicity.

Let us discuss on the choice of different numerical parameters. On the one hand, to have
better predictions of effects due to heterogeneities, the length of the segment (between two
nodes) lN must be smaller than the size ξ of heterogeneity that defined by toughness map.
For example, in a case of periodic toughness map with the wavelength λ of fluctuations in the
toughness, lN must be smaller than λ. On the other hand, as wanted, value of β must be large
enough so that brittle fracture framework works perfectly. However, this must be balanced by
the fact that increasing β implies higher constraint on N , δmax due to the diminution of the
numerical stability region (see Appendix C.1, fig. C.2). In practice, we have chosen the value
of β equal to 25 which gives the well converged results. Accordingly, we have chosen number
of nodes N and maximum possible front advance δmax using (i) stability curve presented on
Fig. C.2 and (ii) constraint that lN ≪ λ.

6.5 Concluding remarks

To bridge information from micro to macro scales, an homogenization of the problem is intro-
duced through several definitions of macroscopic quantities defining an apparent toughness and
an apparent geometry of the crack front during propagation. We propose to solve the problem
numerically by adapting the iterative-perturbation numerical method of Lazarus (2003), based
on the perturbation approach described in chapter 1. This method uses as input the toughness
map and an initial circular crack shape and yields as output:

(i) the evolution of the critical loading corresponding to quasi-static propagation and

(ii) the corresponding evolution of the crack shape.

We apply it in the next chapter to an invariant toughness map along the propagation direc-
tion.





Chapter 7

Circular cracks propagating in an
invariant toughness field along the
propagation direction

Aim of this chapter is to explore crack propagation in the following toughness map:

Kc(θ) = Kc [1 + ∆ cos(kθ)] . (7.1)

By Irwin’s relation (1.7) corresponding critical ERR reads,

Gc(θ) =
Gc

1 + ∆2

2

[
1 + 2∆ cos(kθ) + ∆2 cos2(kθ)

]
(7.2)

where,

Gc ≡ 1
2π

∫ 2π

0
Gc(θ)dθ =

1 − ν2

E
K

2
c

(
1 +

∆2

2

)
(7.3)

In this way, toughness map (5.8) depends on the position only through the polar angle θ of M
so that the toughness is invariant in the directional of propagation. k is the wave-number of

toughness fluctuations the corresponding size of the heterogeneity being ξ =
2π
k
a. This choice

of toughness map allows us to focus, as wanted, on the large toughness contrasts effects (or
effect of large front perturbations). In the case of weak heterogeneity (∆ ≪ 1), it corresponds
moreover to the weak pinning case described by Roux et al. (2003), for which a regular regime
is reached (K = Kc everywhere along front) and the macroscopic toughness has been shown
to be equal to the mean toughness map Kc. The aim here is to discuss the possible effects
of larger toughness contrast on this behavior: Is a regular regime still reached ? what about
the definition and evolution of the macroscopic toughness ? To answer to these questions, we
study several configurations of the toughness map introduced above, corresponding to various
combinations of wave-number k or equivalently on the heterogeneity size and toughness contrast
∆.

For given wave-number k of toughness fluctuations, we retrieve that in the case of small
contrast ∆, a crack propagation coins the regular propagation whereas in the case of large
enough toughness contrast, despite the spatial invariance of the toughness in the propagation
direction, a regular regime is never reached and a fingering instability occurs. The study of
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direction

such fingering process and its implication on the macroscopic effective fracture properties are
central key points to be discussed in the sequel.

7.1 First-order approximation: Analytical results

Consider a planar circular crack embedded in some arbitrary isotropic elastic body symmetric
about the crack plane, loaded in pure mode I through some remote constant loading. Assume
that the crack is perturbed, by a small distance within its plane. The position O of the center
of the circular crack remains unchanged after perturbation (Fig. 7.1), and any point M of
it is described by its radius a(θ). Under such conditions, Gao and Rice (1987) provides the

O

a(θ)

a(θ′)

"e1

"e2

M

M ′

θ

θ
′

Figure 7.1: A slightly perturbed planar crack in an infinite body under uniform stress σ

infinitesimal variation δK̂ of the local elasticity in the following form,

δK̂(θ) =
K̂0[a(θ)]

8π
PV

∫ 2π

0

a(θ′)/a(θ) − 1
sin2[(θ − θ′)/2]

dθ′ (7.4)

where K̂0[a(θ)] is the unperturbed SIF corresponding to the circular crack with radius of a(θ)
which passes through point M . In the case of an harmonic perturbation of a circular front with
radius a, i.e.

a(θ) − a ∼ D cos(kθ) (7.5)

where D is a constant with D/a ≪ 1, one gets, with a few transformations, the SIF along
perturbed crack front:

K(θ) =
2√
π
σ

√
a

[
1 − D

2a
(k − 1) cos(kθ)

]
. (7.6)

It will be useful in sequel to make note on stability of circular crack front shape upon such
harmonic perturbations. Linear stability analysis provides that SIF at most advanced point of
front to be less than SIF at most retard point. By Eq. (7.5) most advanced point, let denote it
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by A, is corresponding to θ = 0 and most retarded point, let denote it by B, is corresponding
to θ = π/k. By Eq. (7.6) then it reads,

K(B) > K(A) (7.7)

which means that B will advance faster than A so that the circular shape will be retrieved in
the absence of any other heterogeneity.

7.1.1 The equilibrium shape of the crack front

We shall now apply the preceding Eq. (7.6) to the study of co-planar propagation of the crack
governed by Irwin-Griffith equilibrium (6.1)2. For a given loading, provided that K equal to
Kc at every point of the crack front, the heterogeneous toughness map (7.1) determines the
geometry of crack front given by Eq. (7.5). By equating Eq. (7.6) to the Eq. (7.1), one gets,

• corresponding to the unperturbed configuration :

2√
π
σ

√
a = Kc. (7.8)

• corresponding to the cosine perturbation :

D

a
= − 2∆

k − 1
. (7.9)

With this analytical solution at first-order for small front perturbation, we have verify results
from our numerical code [see Appendix D.1]. It shall also be remarked that for k = 1, Eq. 7.9
is diverging which means that there is no solution to the equation K = Kc along all the front;
the propagation can only be irregular.

7.1.2 Macroscopic quantities

Using local solutions of zeroth and first order derived in previous section, the different quantities
introduced in Section 6.2 read :

• From definition (6.4) and zero-order solution (7.8):

Keff = Kc. (7.10)

• Upon use of K(θ) = Kc(θ) in definition (6.5):

Km = Kc. (7.11)

• Similarly, upon use of G(θ) = Gc(θ) in definition (6.6) and first order expression Gc(θ) =
Gc [1 + 2∆ cos(kθ)] of Gc(θ) derived from Eq. (7.2), one gets:

Gm = Gc (7.12)

and by definition (6.7) GA reads,

GA =

∫
F
Gc(θ)δa(θ)dθ∫
F
δa(θ)dθ

(7.13)
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where positive advance of front δa(θ) has to be determined by the front perturbation given
by Eq. (7.5) and reads,

δa(θ) = D [1 + cos(kθ)] (7.14)

so that upon use of this equation in integral (7.13), one gets,

GA = Gc. (7.15)

In all above calculations for global quantities we have used
∫ 2π

0
cos(kθ)dθ = 0. One shall

notice that in the limit ∆ ≪ 1, all potential definitions (6.4-6.7) of an equivalent toughness are
equivalent and equal to the mean value of Kc or Gc along crack plane.

For geometrical quantities, from Eq. (7.9) one obtains that the normalized amplitude of
deformed front ∆a/a reaches a stationary value given by:

∆a∞

a
=

4∆
k − 1

. (7.16)

A stationary value I∞ of integral I(a) reads upon use of Eqs. (7.5) and (7.9) in Eq. (6.10),

I∞ = k

(
2∆
k − 1

)∫ 2π

0

∣∣∣∣
sin(kθ)

1 − 2∆
k−1 cos(kθ)

∣∣∣∣dθ.

As front shape is symmetric and periodic in polar coordinate, the domain [0, 2π] of integral
simply made of 2k equal domains [0, 2π/k] . Thus above integral reads,

I∞ = k

(
2∆
k − 1

)
2k
∫ π

k

0

∣∣∣∣
sin(kθ)

1 − 2∆
k−1 cos(kθ)

∣∣∣∣dθ.

Upon use of Taylor expansion
1

1 − 2∆
k−1 cos(kθ)

∼ 1 +O(∆) and
∫ π

0
sin x dx = 2, one gets:

I∞ = 8∆
(

k

k − 1

)
. (7.17)

7.2 Higher order resolution: Two regimes depending on (k, ∆)

Aim of this section is to explore crack propagation behavior at all orders using numerical method
described in previous chapter.

7.2.1 (k, ∆) phase-diagram

For exploring all possible results, we have run numerical simulations for several toughness maps
(7.1) with different wave numbers k and toughness contrasts ∆. Results from these simulations
are showing two kinds of crack propagation behavior depending on k and ∆:

• for small toughness contrast ∆ < ∆c(k) (Fig. 7.2a):

At initial stage, only zones of the front where the toughness is weaker start advancing
whereas the tougher parts remain pinned. But after this transient phase, the whole front
reached Irwin criteria, then remains in a stationary shape. This situation corresponds to
a regular process in the nomenclature introduced in the introduction.
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• for large contrast ∆ > ∆c(k) (Fig. 7.2b):

The parts of the front where the toughness is higher never reach the threshold and remain
pinned. The crack front never attains a stationary shape. Instead it develops a flower like
shape with infinitely growing petals or fingers. It corresponds to an irregular propagation
process.
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Figure 7.2: Phase diagram: Regular and irregular propagation. a) example of k = 4, ∆ = 0.3, b) example of
k = 4, ∆ = 0.6.

Fig. 7.2 represents these two propagation behaviors on a k − ∆ phase diagram. One shall
make remark that, as the value of wave-number k of toughness fluctuations increases, the range
of toughness contrasts for which crack propagation is regular, increases. Regions for both be-
haviors are separated by well fitted relation between wave-number and toughness contrast, that
is

∆c(k) =
k − 1

3.65 + k
(7.18)

where ∆c(k) represents corresponding critical value of contrast. That means ∆c → 0 when
k → 1 (in agreement with first-order results described in §7.1) and ∆c → 1 when k → ∞. The
stability boundary that has been found here also covers the stability boundary (k > 1, ∆ = 0)
that has been constructed by Gao and Rice (1987) based on linear stability analysis of crack
front perturbation in the homogeneous media. In the sequel both behaviors will be studied
more precisely.

7.2.2 Regular propagation

In this section we present evolution of the local elasticity and geometry of crack front during
regular propagation. As typical examples, the results for cases with toughness contrast of
∆ = 0.3 with k = 4 and k = 6 are considered. Figs. 7.3(a) and 7.3(b), show the evolution of
the successive equilibrium positions of crack fronts and Figs. 7.3(c) and 7.3(d) the evolution of
the corresponding local SIF K normalized by Kc. Abscissa in Figs. 7.3(c) and 7.3(d) is the
normalized polar co-ordinate θ/θ0 along crack front, where θ0 is the period of toughness map :

θ0 = 2π/k. (7.19)
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The different colored curves corresponding to different stages during propagation are in corre-
spondence with each other. Red dashed curve is corresponding to normalized fracture toughness
Kc/Kc along crack front. Let denote A (θ = π/k) a point along the crack front where the tough-
ness is minimum and B (θ = 0) where it is maximum.
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Figure 7.3: Evolution of local quantities: Regular crack propagation

On Figs. 7.3(a) and 7.3(b) we observe that the propagation is continuous without jumps,
showing that the pinning is weak. One can notice that first the crack front deforms from a
circular crack to a k-petals flower shape, which then, remains the same.

It can be explained by looking at Figs. 7.3(c) and (d). In the initial stage, the configuration
of crack front is circular, so that only the points where Kc is minimum reach the threshold
(dashed red curve) and propagate (around point A). Then, during a transient phase more and
more points reach the threshold and start propagate. For example see some front positions
during this initial stage, depicted in green and blue curves in Figs. 7.3(a) and (b): only the
points around weakest point A advance while points around toughest point B remain pinned
by surround tough heterogeneity. Correspondingly SIFs at tough points B then increase (see
Figs. 7.3(c) and (d)), in agreement with the result (7.6) of Gao and Rice (1987), until reaching
the maximum toughness. At this point the Irwin’s criteria K = Kc is, and further remains,
verified all along the crack front. By propagation law (6.13) crack front attains and then
remains in a stationary shape, i.e. crack just propagates with homothetical scaling of ‘k-petal’
front shape (see last three front shapes denoted in magenta, cyan and black: all these three
shapes are the same and corresponding SIFs along these crack fronts are the same and equal
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everywhere to Kc).
Let us now focus at the evolution during propagation of macroscopic quantities, normalized

amplitude of front deformations ∆a/a, integral of local deformations I(a) and normalized SIF
K/Kc at weak point A and tough point B. Fig. 7.4 shows the evolution of normalized geometric
quantities, ∆a/a0 and I(a), describing front deformations. It can be seen that both quantities
start with zero value corresponding to the initial circular crack configuration and increase until
a plateau is reached. The plateau corresponds to the stationary regime. In this regime the
shape of the crack doesn’t change, only its size is growing in proportional to crack mean size,
i.e. ∆a∞ ∝ a.
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Figure 7.4: Evolution of macroscopic geometrical quantities : k = 4, ∆ = 0.3

Correspondingly, Fig. 7.5 shows the evolution of K/Kc at points A and B, as a function of
normalized amplitude of front deformations ∆a/a0. Fig. 7.5(a) is corresponding to the cases of
k = 4,∆ = 0.3 and Fig. 7.5(b) to k = 6,∆ = 0.3. The red cross marks are in correspondence
to the minimum fracture toughness, i.e. Kmin

c /Kc = 1 − ∆ and the black cross marks are in
correspondence to the maximum fracture toughness, i.e. Kmax

c /Kc = 1 + ∆.
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Figure 7.5: Evolution of normalized K/Kc at weak point A and tough point B: Regular crack propagation

Therefore as still discussed previously, from starting threshold is always reached at weak
point A: both plain curve corresponding to the evaluation of the SIF and the crossed curve,
correspondingly to the value of 1 − ∆ of K/Kc can not be distinguished. At tough point B,
K/Kc increases during a transient zone, until it reached its threshold (i.e. Kc(B)/Kc = 1 + ∆)
and then it remains same during stationary regime.
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7.2.3 Irregular propagation

Aim of this section is to look at the evolution of local quantities during irregular crack propaga-
tion. As typical examples, the results for cases with large enough toughness contrast of ∆ = 0.6
with k = 4 and k = 6 are considered. Figs. 7.6(a) and 7.6(b), show successive equilibrium
positions of crack fronts in these cases. Tough parts of crack front B remain pinned while weak
parts A remain in advanced: large “fingers” develop. One shall also notice that although the
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Figure 7.6: Evolution of local quantities: Irregular propagation

whole shape is not stationary, the shape at the top of the petals, around A, is always stationary.
It can be explained by looking at Figs. 7.6 (c) and (d). Similarly as it has been observed in

the case of regular propagation, in the initial stage, only the points where Kc is minimum reach
the threshold (dashed red curve) and propagate (around point A). A front part around point A
advances while points around toughest point B remain pinned by surround tough heterogeneity
(see curves till curve coloured with dark blue). Correspondingly SIFs at tough points B then
increase (see Figs. 7.6 (c) and (d)), in agreement with the result (7.6) of Gao and Rice (1987).
But before it reaches to the maximum toughness, K(B)/Kc starts to decrease and point B
remains pinned forever. At this point amplitude of front perturbations becomes of same order
of initial crack size, i.e. ∆a ∝ a0. This will be cleared more during discussion on Figs. 7.8.
Finally, it can be noticed that, as observed in Fig. 7.6 the front part around point A is always
stationary, corresponding SIFs along this part of the crack are the same and equal everywhere
to Kc.
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Fig. 7.7 shows the evolution of macroscopic geometric quantities ∆a/a and I(a) during
propagation. They both increase with a/a0 since the deformations of the crack always increases.
The increase in ∆a/a however slows down with a. This can be rationalized by the fact that a
stationary shape exists around point A and becomes dominant in the calculation of the mean
size a in the comparison to the initial crack.
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Figure 7.7: Evolution of macroscopic geometrical quantities : k = 4, ∆ = 0.3

Figs. 7.8 shows the evolution of the normalized SIF K/Kc at weak A and tough B points.
Again, as linear perturbation theory predicted, at initial stage, the normalized SIF K/Kc

increases at point B but, in contrary to regular propagation, before it attains Irwin’s threshold,
it reached some peak value and then starts to decrease. Point B therefore, get disconnected
from loading and remains pinned forever and thus whole system remains in an eternal transient
regime with increasing in finger size.
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Figure 7.8: Evolution of normalized K/Kc at weak point A and tough point B : Irregular crack propagation

For other values of k, results are presented in Appendix D.4.

7.2.4 Physical mechanism for the fingering instability

Here, we explain the basic physical mechanism of the fingering instability by looking at the
evolution of the local elasticity of crack front. To remove the loading effect, we have introduced

the normalized local SIF by K(M)/K0, where K0 =
2√
π
σ

√
a0 (SIF corresponding to circular
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crack with radius of a0). This quantity only depends on the crack shape and size. Fig. 7.9(a)
shows a typical evolution of this quantity at weak point A and at tough point B as a function of
the normalized petal size ∆a/a0. One shall notice that, at initial stage, K/K0 increases at point
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Figure 7.9: Irregular crack propagation: (a) evolution of K/K0 at weak point A and tough point B; (b)

successive front positions in vicinity of weak point A; (c) successive front positions in vicinity of weak point B

(case k = 4, ∆ = 0.6)

B and decreases at point A, in agreement with small perturbation theory developed by Gao and
Rice (1987). After the petal becomes of the size of the initial crack size a0 (i.e. ∆a/a0 ∼ 1),

• A part of the front around point B is trapped in some limit geometry, see Fig. 7.9 (c).
Corresponding evolution of K(B)/K0, slows down and seems to converge to some plateau
value, i.e. K(B)/K0 ∝ Cst.

• A part of the front around point A evolves with some stationary shape (see Fig. 7.9(b)).
Correspondingly, K(A)/K0 evolves, like square root of petal size, i.e. K(A)/K0 ∝√

∆a/a0.

Conclusively, it shall be noticed that due to such large front perturbations, even though the
elasticity of the crack front depends on the whole crack front geometry, local elasticity around
point A and B evolve differently and become disconnected. It’ll be seen in Appendix D.3.2
that:

(i) At point A, the SIF evolves as the square-root of the radius of the local curvature.

(ii) At point B, the SIF is approximately equal to the one of the small initial circle of size a0.

7.3 Evolution of the global quantities

For the initial circular crack of radius a0, K(M) = K0 all along the front, so that onset of
propagation given by Eq. (6.2) verifies

2√
π

σ
√
a0

Kc
=
Kmin

c

Kc
= 1 − ∆. (7.20)
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It follows that for a = a0,
Keff

Kc
=
Km

Kc
= 1 − ∆ (7.21)

and
GA

Gc
=
Gm

Gc
=
Gmin

c

Gc
=

(1 − ∆)2

1 + ∆2

2

. (7.22)

Below we present the evolution of these quantities when a increases in both cases: regular
and irregular propagation.

7.3.1 Evolution of the loading

Fig. 7.10 (a) shows the evolution of the normalized loading as a function of normalized mean
radius a/a0 for two values of the contrast ∆ equal to 0.3 and 0.6 in corresponding to cases
of regular and irregular for k = 4. In both cases, initial evolution of the normalized loading
starts with value (∼ (1 − ∆)) corresponding to the initial circular crack geometry and during
initial stage it increases from this value until a peak value. In the case of regular propagation,
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Figure 7.10: Evolution of loading during propagation: Case k = 4

after this point (where tough point B get breaks and start to propagate), stationary regime
is reached and it starts to decay with mean crack size in the same decay form as it follows in

case of homogeneous toughness field (∆ = 0) that is
2√
π

σ
√
a0

Kc
∼
√
a0

a
. This indicates that

Keff/Kc = 1 (Fig. 7.10 (b)).
In the case of irregular propagation, still point B doesn’t get break at this point, but the

loading starts to decay in same form of inverse square root of mean crack size and correspond-
ingly Keff reaches to some plateau value (Fig. 7.10 (b)). The only difference is in proportionality
constant, now in the case of irregular propagation this proportional constant is smaller, so that
Keff remains smaller than Kc (Fig. 7.10 (b)).

7.3.2 Evolution of the macroscopic SIF and ERR

Fig. 7.11 (a) shows evolution of the quantities GA, Gm, Km as a function of crack mean size a
in the case of regular propagation. They start with the corresponding minimum values of the
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Figure 7.11: Evolution of global quantities during (a) regular propagation, and (b) irregular propagation.

toughness, and increase until a plateau is reached, once in the stationary regime.
Fig. 7.11 (b) shows evolution of the same quantities as a function of crack mean size a during

irregular propagation. Their evolution starts with their onset values, it increases at initial stage
of propagation, attains a peak value, decrease and after a while drop it seems to tend toward
some stationary plateau value. Due to limit on computational cost, it is difficult to pursue the
calculation further to verify the existence of this plateau. We have also tried to interpolate the
decrease with some simple functions but without success. Also, instead of discussing each case
of (k,∆), we decide to report the discussion in the next section where the values of the plateau
are studied as a function of k and ∆.

7.3.3 Influence of the geometrical parameters (k, ∆) of the toughness field
on the asymptotic macroscopic values

As named the section title, aim of this section is to look at the influence of the toughness contrast
∆ and toughness spatial re-partition k on the asymptotic macroscopic values G∞

A , G
∞
m ,K

∞
m and

K∞
eff corresponding to stationary plateau regime of the macroscopic quantities. Figs. 7.12(a) and

(b) describe the influence on the asymptotic macroscopic values G∞
A and G∞

m and Figs. 7.12(c)
and (d) describe the influence on the asymptotic macroscopic values K∞

m and K∞
eff . The points

corresponding to the regular case (empty symbol) correspond to the well defined plateau of
Figs. 7.10 (b) and 7.11 (a). The points corresponding to the irregular case (filled symbol) are
choose to correspond to the values of the quantities for a/a0 = 7. They are hence greater than
the asymptotic values which are numerically difficult to catch.

For small enough toughness contrast ∆ ≪ 1, the first-order approximations (Section 7.1)
are retrieved. Corresponding all the quantities are equivalent and equal to toughness average
value along crack plane. Appendix D.2 presents when first-order approximation starts to make
error.

For larger toughness contrast, all quantities are no more equivalent and they are always
lower than toughness average value. They decrease with increase in toughness contrast ∆
and with decrease in toughness re-partition k. The decrease is slower in the case of regular
propagation regime than in the irregular one. Let us discuss further both behaviours separately.

In the case of regular propagation, since K = Kc everywhere, the SIF along the crack front
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Figure 7.12: Influence of toughness map parameters k and ∆ on the equivalent fracture properties. Empty

symbols are correspond to regular propagation and filled one are correspond to irregular propagation.

is given by :

K(θ) =
2√
π
σ

√
a
(
K̃m + ∆K̃ cos(kθ)

)
(7.23)

with ∆K̃ = ∆. We have moreover obtained numerically that the mean value of K̃ verifies
K̃m = 1 (see Appendix D.3.1). Then since K = Kc all along crack front, one gets in particular
for θ = π/2k :

2√
π
σ

√
aK̃m = Kc ⇒ 2√

π

σ
√
a

Kc
=

1

K̃m

Since K̃m = 1 and definition (6.4), one gets

K∞
eff

Kc
= 1 (7.24)

for any toughness map parameters within regime of regular propagation1.
For the asymptotic values of other macroscopic quantities, let takes K∞

m as an example, by
definition (6.5) one shall write,

K∞
m

Kc
=

1
2π

∫ 2π

0
(1 + ∆ cos(kθ)) ds(θ)

1By following same procedure in section 3.5 calculating effective fracture toughness in the case of half-plane
crack, it can be noticed that Geff < Gc since dG0/da < 0.
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= 1 +
k∆
π

∫ π/k

0
cos(kθ)ds(θ). (7.25)

The integration in second term of above equation can be split in following two terms,

∫ π/k

0
cos(kθ)ds(θ) =

∫ π/2k

0
cos(kθ)ds(θ) +

∫ π/k

π/2k
cos(kθ)ds(θ).

Since cos(kθ) changes sign at θ = π/2k, first integration on [0, π/2k] is positive and second
integration on [π/2k, π/k] is negative and since the front deformed more in weak part of tough-
ness map the length of domain [π/2k, π/k] is larger than [0, π/2k] which gives the overall∫ π/k

0
cos(kθ)dθ < 0 and thus

K∞
m < Kc. (7.26)

Similarly, one can demonstrate that G∞
m < Gc, G

∞
A < Gc.

Finally one shall notice that, for a given values of k, these values decrease, whereas quantities
corresponding to front deformation ∆a∞/a and I∞ increase (Fig. 7.13), with ∆. Physically, it
looks obvious, that in case of higher contrast, the crack front deforms more, hence propagates
more in weaker regions and therefore, the mean toughness along the front is decreasing as
the contrast increases. Now for a given value of ∆, they increase, whereas ∆a∞/a and I∞

decrease with the heterogeneity wavenumber k, that is when the number of defects increases
along the crack front. Physically, it is due to the fact that when k increases, the amplitude of
the deformation has less space to develop, and so the front becomes more straight. Indeed, from
fit which has been shown in Fig. 7.2, it can bee seen that in the limit of k → ∞ the propagation
of a crack always remains within regular regime. Top of it, a correlated fact is that for this limit
case all the quantities are simply equal to Kc.
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Figure 7.13: Influence of toughness map parameters k and ∆ on the equivalent front deformations.

In the case of irregular propagation, the effective toughness seems to be governed by the
sole minimum toughness values. For example, see Fig. 7.12 (a), G∞

A follows the minimum of
Gc curve. It is slightly above but it may be due to the fact that we take values at a finite
value of a (a/a0 = 7). If one looks at the definition (6.7) of GA, the integrals are zero nearly
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everywhere along the front since δa ∼ 0, except in the vicinity of point A where G ∼ Gmin
c so

that G∞
A ∼ Gmin

c .
On the values ofK∞

m andG∞
m , from Fig. 7.6, it seems that the SIFK becomes nearly constant

along the front so that K ∼ Kmin
c nearly everywhere so that K∞

m , G∞
m are approximately equal

to their minimum values.
For the values of K∞

eff , threshold is reached around point A, i.e.:

K(A) =
2√
π
σ

√
aK̃(A) = Kmin

c ⇒ Keff ∼ Kmin
c

K̃(A)
. (7.27)

And it has been shown in Appendix D.3.2 that K̃(A) is linked to the radius Rc(A) of curvature

at A, i.e. K̃(A) ∼
√
Rc(A)/a. Since Rc(A)/a ∼ Ctc < 1, one gets that,

K∞
eff > Kmin

c . (7.28)

The decrease of K∞
eff with increase in toughness contrast ∆ and with decrease in toughness re-

partition k is linked to the behaviour of K̃(A) with k,∆ which could only be find by numerical
ways.

7.4 Concluding remarks

In this chapter, the influence of large toughness contrasts on the crack shape has been explored
numerically. In order to focus on the effect of the large crack front deformations, we studied the
case of a circular crack propagating in an invariant toughness map along the propagation direc-
tion. This allows us to observe whether crack front reaches a stationary shape regime in which
Irwin’s threshold is reached at each point of the front or not. In case of small contrasts, a station-
ary flower shape is always reached for which K = Kc all along the front (regular propagation).
For larger contrasts, some zones of the front remains pinned on the higher toughness regions
so that the petals or fingers grow infinitely (irregular propagation). By performing systematic
simulations for several configurations of the toughness map, corresponding to various combina-
tions of wave-number k and toughness contrast ∆, the well defined boundary ∆c(k) between
the two behaviors was found: regular crack propagation regime for small contrast ∆ < ∆c(k)
and irregular crack propagation regime for large contrast ∆ > ∆c(k).

In order to do homogenization over the heterogeneous fracture properties, different macro-
scopic quantities are introduced. All these quantities are equivalent to the average value of the
toughness map for ∆ ≪ 1 but it no more remains true for larger values of toughness contrast ∆.
They are smaller than the average value and decrease with ∆. The decrease becomes dramatic
in the fingering regime. The propagation is then governed only by the weakest part of the
toughness map. On other hand, for a given value of the toughness contrast, these quantities
increase with k. In the limit when k → ∞, (i) propagation remains in the regime of regular
propagation (Fig. 7.2), (ii) equivalent fracture properties are simply equal to the average value
of toughness. The next interesting step would be to extend this study of large crack front de-
formations to the case of strong pinning (where heterogeneous toughness map also varies along
crack propagation direction).





General conclusion

The primary objective of this thesis was to provide a quantitative description of effective
toughness variations due to large deformations in the crack front geometry that can be induced
by strong toughness heterogeneities. Before pursuing the detailed discussion on main results,
let us remind the context of this work. For weak heterogeneities, Roux et al. (2003), Patinet
et al. (2013) and Demery et al. (2014) have shown that (i) an increase in effective toughness
may be reached only if some parts of the part remain pinned by some tougher material and
(ii) this situation may occur only if the material is heterogeneous in the propagation direction,
when it is homogeneous in this direction, the front shape deforms to reach a situation where
G = Gc all over the front and the effective toughness is equal to the average value of the local
toughness on the crack plane. Here we want to see if even when the material is invariant in
the propagation direction, some impact on the effective toughness may be induced by strong
heterogeneities. Hence we made the following hypothesis. First, we studied the problem under
the assumption of brittle quasi-static crack propagation (G ≤ Gc). The propagation medium
has been considered to be heterogeneous in the toughness field only, the elasticity constants
have been assumed to be uniform. In order to focus on large toughness contrasts, the toughness
map has been chosen to be invariant in the propagation direction. We have considered several
problem configurations; (a) planar half-plane cracks located (i) in some infinite body, or (ii)
on the mid-plane of a plate, subjected to mode I loading conditions, (b) planar circular crack
located in some infinite body subjected to remote mode I stress loading. With this framework,
we have studied the influence of the toughness map – its level and shape – on the planar
crack propagation and its implication on the effective fracture toughness. Based on the basic
questions we had raised while describing the objectives of this thesis work, the main results
can be summarized in the following three points.

First, this study has proven to be useful to calculate the equilibrium front deformations
and for measuring at least the range of toughness contrast values that validate the first-order
approximation. This range has been summarized in the Table Cnl. Range of second-order
approximation has been explored on the model peeling experiments in the case of half plane
cracks. In the special case of pinning by a single infinitely elongated obstacle, the first-order
approximation is sufficient for contrasts up to 0.2, whereas the second-order one correctly
predicts the crack front deformation up to 0.7. The limit value has been shown to depend on
the heterogeneity size, on the crack geometry: for instance in the case of half-plane cracks,
it is 0.1 in the case of a single obstacle and 0.2 for a periodic array of obstacles. In the case
of a circular crack, it varies from 0.14 to 0.24 when k varies from 2 to 6. To summarize,
it shall be noticed that this range of validaty depends on the toughness map, the geometry
of the crack, the type of loading since the deformation of the front depends on these parameters.
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Table Cnl: Range of toughness contrasta ∆ validating the first-order approximation.

Analytical – half plane cracks Numerical – circular crack

Toughness map: Kc = Kc [1 + ∆ cos(kθ)].
Single obstacle 0 – 0.1 k = 2; 0 – 0.14
Periodic obstacles 0 – 0.2 k = 4; 0 – 0.19

k = 6; 0 – 0.24

aIn part I, we defined it as Gc contrast and noted it as ǫ; In part II, we defined it as Kc contrast and noted
it as ∆. Both definitions are related by ǫ = 2∆.

Second, let us discuss whether Griffith’s equilibrium condition G = Gc all along the crack
front can always be reached (regular) or not (irregular). Numerical study that has been
done on the planar circular crack has shown that for small enough toughness contrast, the
crack propagation always reaches a regular regime but for larger toughness contrasts, some
situations exist where the regular regime is never reached even when the toughness field is
invariant in the propagation direction. Some parts of the front remain pinned which results
in crack propagation with growing fingers. On the other hand, for a half-plane crack front,
we have shown using analytical results corresponding to second-order developments, that the
second-order development is not enough to catch some irregular regime. Use of numerical
tools is necessary to verify if such a transition exists for a half-plane crack. However, such a
transition cannot be obtained for the half-plane crack without introducing a structural length
scale that can be compared to an intrinsic length scale of the heterogeneous toughness field:
for instance a length that is governed by the loading in the problem as in chapter 3, or a finite
body size as in chapter 4, or a finite crack size as in Part II.

Third, for capturing the implication of such crack propagation on the effective response,
different definitions of effective fracture properties have been introduced. Mainly two definitions
are most relevant from engineering and physical point of views. One is to define it by replacing
the deformed crack front by a straight/circular line configuration (Geff in the case of half-plane
crack, Keff in the case of circular crack) and by considering the critical loading. This definition
seems most useful in engineering applications. The other one is defined by the quantity of
energy that is being dissipated per unit cracked surface area (G0 in the case of circular crack).
This definition gives more physical insight by quantifying small scale dissipations at macro
scale. Both these quantities are – as found analytically – equivalent to the average value of the
toughness map at the first-order approximations but this does not remain true for large front
deformations induced by larger values of the toughness contrasts.

Let first discuss the behaviour of effective fracture toughness that has been defined from the
engineering point of view. The second-order approximation of the half-plane crack propagating
in the sinusoidal toughness field has shown that the effective fracture toughness is less than
the average value of the local material toughness on the crack plane. However, in the case
when a typical wavelength of the toughness field is smaller that the typical distance over which
the loading varies significantly (dG0/da ∼ 0), the weakening effect is rather limited and the
effective fracture toughness is simply equal to the average value of the local material toughness.
Therefore, the second-order correction has highlighted that the effective fracture toughness is
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dependent on the loading condition. This phenomena is missed in the first-order approximation.
In the case of circular crack, this effective fracture toughness Keff has been found always equal
to the average value of the local material toughness in the regular regime. We have seen that
this surprisingly result is linked to the fact that the mean value of the SIF along the flower
shaped crack front is equal to the SIF of an equivalent circular crack of the same area. This
result however does not remain true for the half-plane crack submitted to uniform line traction
forces (dG0/da < 0) for which Geff was found to be smaller than Gc.

On the other hand, it has been shown that the effective fracture toughness, defined from
the energy dissipation at small scale, is smaller than the average value and decreases with the
toughness contrast and the size of heterogeneity. This is linked to the fact that for given size
of heterogeneity, as the contrast increases the crack front explores mainly the weak part of
the toughness map. Therefore, the contribution of the minimum value of toughness map is
dominant in the effective fracture toughness. On the other side, for a given toughness contrast,
as the size of heterogeneity decreases (equivalently number of heterogeneity spot increases) the
crack front has less space to deform and thus the effective fracture toughness remains equal to
the average value of the local toughness. In the irregular regime, the decrease in the effective
fracture toughness becomes dramatic. The propagation is then governed only by the weakest
part of the toughness map.

Regarding perspectives of this work, both the theoretical and numerical frameworks that
have been developed in this work are general for any given material toughness distribution. This
means that these frameworks are useful to understand weak as well strong pinning effects on the
apparent effective properties of heterogeneous materials. First, the influence of the heterogeneity
variations in the propagation direction shall be investigated. Second, an interesting perspective
would be to extend the numerical method to the half-plane crack. Such an extension would be
useful to explore the transition from the regular to the irregular regime that have been explored
here in the case of circular crack. Third, it would be interesting to explore the transition from
regular to irregular propagation in experiments. From the optimization point of view, it would
be interesting to use such frameworks, theoretical and numerical, to devise an optimization
tool to design material systems with a tailored microstructure topology providing increased
toughness.
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Appendix of chapter 3

A.1 Calculation of the integral J(α, β, γ)

The well-known trigonometric relations





cos a cos b =
1
2

[cos(a+ b) + cos(a− b)]

sin a sin b =
1
2

[− cos(a+ b) + cos(a− b)]

imply that

sin(αx) sin(βx) cos(γx) =
1
2

{− cos [(α+ β)x] + cos [(α− β)x]} cos(γx)

=
1
4

{− cos [(α+ β + γ)x] − cos [(α+ β − γ)x]

+ cos [(α− β + γ)x] + cos [(α− β − γ)x]} .
It then follows from equation (4.31) that

J(α, β, γ) =
1
4

∫ +∞

0
{− cos [(α+ β + γ)x] − cos [(α+ β − γ)x]

+ cos [(α− β + γ)x] + cos [(α− β − γ)x]} dx
x2

=
1
4

[I(α+ β + γ) + I(α+ β − γ) − I(α− β + γ) − I(α− β − γ)] ,

I(λ) ≡
∫ +∞

0

1 − cos(λx)
x2

dx.

The integral I(λ) is given by formula (3.782.2) of Gradshteyn and Ryzhik (1980):

I(λ) =
π

2
|λ|.

Inserting this result into the preceding expression of J(α, β, γ), one gets equation (3.56) of
the text.
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Appendix of chapter 4

B.1 Cracked Love-Kirchhoff plate with boundary subjected to
prescribed forces

The aim here is to illustrate the fact that in the limit A → ∞ (infinite-plate), no matter
the boundary conditions on the boundary of the plate, the loading becomes equivalent to a
prescribed bending moment. As a result, the corresponding FK always converges to the same
FK given by Eq. (4.2). In order to show that, we first derive the FK in the case of a prescribed
force on the boundary of a semi-infinite plate, and in a second step we take the limit A → ∞
on FK obtained.

Let us consider the same geometry as in Legrand et al. (2011) and chapter 4, that is a
semi-infinite plate of thickness 2h (Fig. B.1). Choose the coordinate axes in such a way that
this plate occupies the domain 0 ≤ x < +∞,−h ≤ y ≤ h,−∞ < z < +∞ in 3D space.
Assume that there is an emerging crack on the mid-plane of the plate, occupying the region
0 ≤ x ≤ a(z), y = 0,−∞ < z < +∞, where the distance a(z) specifies the position of the
crack front from the Oz axis. The plate is made of some isotropic elastic material with Young’s
modulus E and Poisson’s ratio ν. The loading now consists of uniform, opposite line forces F0,
−F0 in the y direction imposed on the upper and lower halves of the left boundary. The crack
is thus loaded in a state of pure mode I at all points of its front.

In comparison to the work of Legrand et al. (2011), the views of the exterior problem
(with variables x, y/h, z) and the interior problem (with variables x/h, y/h, z) remain similar.
However, due to prescribed forces, the boundary conditions of the exterior problem with a
perturbed crack front are changed. In particular boundary condition at x = 0 is changed into

Vx(0, z) = −F0;Mxx(0, z) = 0 (B.1)

where Vx = Qx +
∂Mxz

∂z
denotes the total shear force in the y direction; Qx, Mxz and Mxx

are the resultant shear forces and moments respectively as described in Fig. B.1 (d). For an
isotropic Love-Kirchhoff plate

Vx(0, z) = −D ∂

∂x

(
∂2

∂x2
+ (2 − ν)

∂2

∂z2

)
v(0, z) = −F0

⇒ ∂

∂x

(
∂2

∂x2
+ (2 − ν)

∂2

∂z2

)
v(0, z) =

F0

D

(B.2)
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Figure B.1: A slightly perturbed emerging crack lying on the mid-plane of a semi-infinite plate subjected
to constant line force ±F0 at its left boundary: (a) View of the original crack in the Oxy plane; (b) View of
the perturbed crack in the Ozx plane; (c) Equivalent Kirchhoff plate model of upper plate with applied force at
x = 0 and clamped condition at x = A + δa(z); (d) Representation of the different moments and transverse shear
stress acting.

and

Mxx(0, z) = −D
(
∂2

∂x2
+ ν

∂2

∂z2

)
v(0, z) = 0

⇒
(
∂2

∂x2
+ ν

∂2

∂z2

)
v(0, z) = 0.

(B.3)

The clamped condition at x = a(z) remains the same as of described in the work of Legrand et
al. (2011). As a result, the equations of Love-Kirchhoff’s plate theory on the upper plate now
reads, 




(
∂2

∂x2
+

∂2

∂z2

)2

v(x, z) = 0 for 0 ≤ x ≤ a(z),−∞ < z < +∞

∂

∂x

(
∂2

∂x2
+ (2 − ν)

∂2

∂z2

)
v(0, z) =

F0

D(
∂2

∂x2
+ ν

∂2

∂z2

)
v(0, z) = 0





for − ∞ < z < +∞

v(a(z), z) = 0
∂v

∂n
(a(z), z) = 0



 for − ∞ < z < +∞.

(B.4)

Consider now a perturbation of the crack front of small amplitude, and denote δv(x, z) the
variation, under constant loading, of the normal displacement of the upper plate arising from
the variation of position δa(z) of the crack front around the mean value A. The equilibrium
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equation and boundary conditions of the left side satisfied by δv(x, z) are readily obtained
through differentiation of Eqs. (B.4) at constant force F0:





(
∂2

∂x2
+

∂2

∂z2

)2

δv(x, z) = 0 for 0 ≤ x ≤ A,−∞ < z < +∞

∂

∂x

(
∂2

∂x2
+ (2 − ν)

∂2

∂z2

)
δv(0, z) = 0

(
∂2

∂x2
+ ν

∂2

∂z2

)
δv(0, z) = 0





for − ∞ < z < +∞

δv(A, z) = 0
∂δv

∂x
(A, z) = −2γK0δa(z)



 for − ∞ < z < +∞

(B.5)

where γ denotes the constant connecting the SIF K(P ) in the interior problem to the component
C11(P ) of Love-Kirchhoff’s deformation tensor in the exterior problem (see Section 4.2 for its
definition and Section 4.3 for its calculation in the paper of Legrand et al. (2011)).

In order to solve this problem, let us take its Fourier transform in the direction z; we get





(
∂2

∂x2
− k2

)2

δ̂v(x, k) = 0 for 0 ≤ x ≤ A,−∞ < k < +∞

∂

∂x

(
∂2

∂x2
− (2 − ν)k2

)
δ̂v(0, k) = 0

(
∂2

∂x2
− νk2

)
δ̂v(0, k) = 0





for − ∞ < k < +∞

δ̂v(A, k) = 0
∂δ̂v

∂x
(A, k) = −2γK0δ̂a(k)





for − ∞ < k < +∞.

(B.6)

The solution of Eq. (B.6)1 must be looked the form of an exponential eξx. Then ξ satisfies the

characteristic equation
(
ξ2 − k2

)2
= 0, which admits two double solutions, ξ = k and ξ = −k.

Thus δ̂v(x, k) must be of the form

δ̂v(x, k) = (Px+Q) sinh(kx) + (Rx+ S) cosh(kx) (B.7)

where P,Q,R and S are constants to be determined. Now, by Eqs. (B.6)2,3 one gets,

kQ =
1 + ν

1 − ν
R; kS = − 2P

1 − ν
. (B.8)

With these relations and Eqs. (B.6)4,5, finally one gets,




P = −2γ(1 − ν)K0δ̂a(k)
kA(1 − ν) cosh(kA) + (1 + ν) sinh(kA)

k2A2(1 − ν)2 + 4 cosh2(kA) − (1 + ν)2 sinh2(kA)

Q = −2γ(1 + ν)K0 δ̂a(k)
k

2 cosh(kA) − kA(1 − ν) sinh(kA)

k2A2(1 − ν)2 + 4 cosh2(kA) − (1 + ν)2 sinh2(kA)

R = −2γ(1 − ν)K0δ̂a(k)
2 cosh(kA) − kA(1 − ν) sinh(kA)

k2A2(1 − ν)2 + 4 cosh2(kA) − (1 + ν)2 sinh2(kA)

S = 4γK0 δ̂a(k)
k

kA(1 − ν) cosh(kA) + (1 + ν) sinh(kA)

k2A2(1 − ν)2 + 4 cosh2(kA) − (1 + ν)2 sinh2(kA)
.

(B.9)
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The variation of the SIF in Fourier’s space is given by Eq. (30) of Legrand et al. (2011) :

δ̂K(k)
K0

=
1

2γK0

∂2δ̂v

∂x2
(A, k) − 3χ

γK0
δ̂a(k), χ ≡ −1

6
d3v

dx3
(A) (B.10)

where v(x) is the solution in the upper plate for a uniform perturbation of the crack front,
a(z) ≡ A:

v(x) = −F0

D

[
A3

3
− A2

2
x+

1
6
x3

]
(B.11)

so that
F0

D
= −2

γK0

A
; χ = −γK0

3A
. (B.12)

By Eqs. (B.7) and (B.9),

1
2γK0

∂2δ̂v

∂x2
(A, k) = − k

[
(3 + ν)(1 − ν) sinh(2kA) + 2kA(1 − ν)2

]

k2A2(1 − ν)2 + 4 + (3 + ν)(1 − ν) sinh2(kA)
. (B.13)

Combining Eqs. (B.10), (B.12)2 and (B.13), one gets

δ̂K(k)
K

= F (kA)
δ̂a(k)
A

. (B.14)

F (p) is a function of the “reduced wavenumber” p = kA defined by

F (p) ≡ 1 − p
(3 + ν)(1 − ν) sinh(2p) + 2p(1 − ν)2

p2(1 − ν)2 + 4 + (3 + ν)(1 − ν) sinh2(p)
. (B.15)

Note the important limit p → ±∞ of the function F (p) :

F (p) = 1 − 2|p| +O
(
p2e−2|p|

)
for p → ±∞. (B.16)

This result means that when the distance A from the left boundary to the crack front goes to
infinity, the FK of the cracked plate goes to the limit described by Eq. (4.2) of text.

B.2 Calculation of integrals I1 and I2

B.2.1 Integral I1

This integral is given by

I1(h; k, k′; z1) = PV

∫ +∞

−∞

∫ +∞

−∞

f( z−z1

h )f( z′−z
h )

(z − z1)2(z′ − z)2

×
(
eik(z−z1) − 1

) (
eik′(z′−z) − 1

)
eik′(z−z1)dzdz′.

Quite remarkably, one may express it in terms of the sole function X defined by Eq. (4.4). To
do so, the first step consists in performing the changes of variables z − z1 = ζ, z′ − z = ξ; one
thus gets

I1(h; k, k′; z1) ≡ I1(h; k, k′) = PV

∫ +∞

−∞

∫ +∞

−∞

f( ζ
h)f( ξ

h)

ζ2ξ2

(
eikζ − 1

) (
eik′ξ − 1

)
eik′ζdζdξ

= PV

∫ +∞

−∞

f( ζ
h)

ζ2

(
ei(k+k′)ζ − eik′ζ

)
dζ . PV

∫ +∞

−∞

f( ξ
h)

ξ2

(
eik′ξ − 1

)
dξ.
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Writing then ei(k+k′)ζ − eik′ζ as ei(k+k′)ζ − 1 + 1 − eik′ζ , performing the changes of variables
ζ/h = u and ξ/h = v, and using the definition (4.4) of X, one gets Eq. (4.14)1 of the text.

B.2.2 Integral I2

This integral is given by

I2(h; k, k′; z1) = PV

∫ +∞

−∞

∫ +∞

−∞

f( z′−z1

h )f( z′−z
h )

(z′ − z1)2(z′ − z)2
×

[
eik(z′−z1) − 1 − eik(z−z1) − 1

z − z1
(z′ − z1)

] [
eik′(z−z1) − 1

]
dzdz′.

Again, one may express it in terms of the sole function X. Indeed, one may first perform the
changes of variables z′ − z1 = ζ, z − z′ = ξ; one gets

I2(h; k, k′; z1) ≡ I2(h; k, k′) = PV

∫ +∞

−∞

∫ +∞

−∞

f( ζ
h)f( ξ

h)

ζ2ξ2

×
(
eikζ − 1 − eik(ζ+ξ) − 1

ζ + ξ
ζ

)(
eik′(ζ+ξ) − 1

)
dζdξ.

Now, “symmetrizing” the integrand with respect to the variables of integration ζ and ξ, one
gets

I2(h; k, k′) =
1
2
PV

∫ +∞

−∞

∫ +∞

−∞

f( ζ
h)f( ξ

h)

ζ2ξ2

(
eikζ + eikξ − 1 − eik(ζ+ξ)

) (
eik′(ζ+ξ) − 1

)
dζdξ

=
1
2
PV

∫ +∞

−∞

∫ +∞

−∞

f( ζ
h)f( ξ

h)

ζ2ξ2

(
eikζ − 1

) (
eikξ − 1

) (
1 − eik′(ζ+ξ)

)
dζdξ

=
1
2
PV

∫ +∞

−∞

f( ζ
h)

ζ2

(
eikζ − 1

)
dζ . PV

∫ +∞

−∞

f( ξ
h)

ξ2

(
eikξ − 1

)
dξ

−1
2
PV

∫ +∞

−∞

f( ζ
h)

ζ2

(
ei(k+k′)ζ − eik′ζ

)
dζ . PV

∫ +∞

−∞

f( ξ
h)

ξ2

(
ei(k+k′)ξ − eik′ξ

)
dξ.

Reasoning then like for integral I1, one gets Eq. (4.14)2 of the text.
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Appendix of chapter 6

C.1 Stability study for numerical computations

Aim of this appendix is to describe a basic analysis of the numerical stability for explicit
numerical method which is used in Part II: for which values of N and δamax, is the numerical
scheme stable ?s

C.1.1 Problem Statement

We consider a planar circular crack with radius of a0, embedded in an infinite isotropic elastic
medium with homogeneous fracture toughness properties and loaded in pure mode I through
some uniform remote stress σ applied at infinity (see Fig. C.1).

δamax

a0

i = 0

s

ds

Figure C.1: Initial crack configuration with artificial perturbation δ0

We perturbed then the front by advancing only the initial node (i = 0) by distance of δamax

in the following way:

δi =

{
δamax if i=0

0 if i 6= 0.
(C.1)

Thanks to Gao and Rice (1987)’s stability analysis this perturbation must disappear if the
material is homogeneous since the circular shape is stable. Hence we are looking for which
values of δamax, N , it is indeed the case when solved with our scheme. To check whether the
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artificial perturbation δi disappears or not, we check the uniformity of the distribution of SIF
along the crack front when the mean size of the crack is twice the initial one (i.e.a = 2a0). In
order to do that, we have defined a standard deviation σ2 of SIF distribution,

σ2 ≡

√√√√ 1
N

N∑

i=1

[
K[i] − K̄

]2
(C.2)

where K denotes statistical mean of the SIF distribution along the crack front that is:

K ≡ 1
N

N∑

i=1

K[i]. (C.3)

We then look whether σ2 is smaller (stable) or not (unstable) than a given precision p. In the
sequel we will keep p = 5%.

C.1.2 Result and discussion

We have run the simulations under different values of N, δamax. Fig. C.2 gives the satiability
diagram for given values of β. There are region noted stable and unstable on the plots separated
by a well defined boundary. Stable region means under any combination of N and δmax within
this region perturbation δ0 always demises as crack propagates while their combination within
unstable region δ0 is not going to demise. One notice that for a given value of β and num-
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Figure C.2: Stability diagram of the numerical scheme.

ber of nodes N , the value of the temporal discretization has to be the small enough to ensure
the numerical stability. We observe that when β increase the stability domain is considerably
shrinking so that the calculation may be very time consuming (small time steps for large num-
bers of nodes). A compromise has to be found between high enough β (brittle case), and an
acceptable number of nodes and crack advance. In the report, we choose β = 25 which has been
verified to be enough to find a converged result.
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Appendix of chapter 7

D.1 Verification of numerical results at first-order approxima-
tion

Main interests of this section is to verify the numerical results with first-order analytical results
at small toughness contrasts. Fig. D.1 shows a comparison between the front geometries ob-
tained numerically and analytically at first-order in the case of toughness map with k = 4 and
∆ = 0.2. Fig. D.1 (a) plots a stationary geometry of the perturbed crack front. Background
colormap is showing a representation of the corresponding toughness map for k = 4. The al-
ready broken part of the map is denoted by the light colormap and unbroken part is denoted
by the dark colormap. The interface between these colormaps denotes the crack front. One
shall notice that the agreement between numerical and analytical results is very good with a
negligible error. As can bee seen in see Fig. D.1 (b), the maximum relative error is only 1.4%
despite the not so small value of ∆.

First−Order theory
Numerical

(a)$ (b)$

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

/
0

E
rr

(%
)

Error in local radius (front geometry)

Figure D.1: Comparison with first-order approximation for k = 4, ∆ = 0.2 : (a) Front geometry during
stationary regime i.e. K(θ) = Kc(θ), (b) Error between the results along crack front.
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D.2 Range of toughness contrasts validating the first-order ap-
proximation

As mentioned in the main text, aim of this appendix to look at the range of toughness contrast
that validates the first-order approximation. For same we have calculated the relative error of
numerical results from their first-order approximations. We have performed these calculations
on results during stationary regime of crack propagation. For example let say error in the
numerical value of G∞

A from its first order approximation, i.e.:

Err(%) =
G∞

A −Gc

Gc
× 100. (D.1)

Fig. D.2 (a) plots this error as a function of toughness contrast ∆ for given wavenumber k.
Similarly, relative errors in other global quantities like G∞

m and K∞
m are plotted in Figs. D.2 (b)

and D.2 (c) respectively.
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Figure D.2: Relative error made by their first-order approximations of ; (a) G∞

A , (b) G∞

m , and (c) K∞

m .

For small values of the toughness contrast these quantities evolve exactly as their first-
order approximations within some small error but as contrast increases the error made using
first-order approximation starts to increase.

It can be noticed that a range of the toughness contrasts that validates the first-order
approximation increases as value of k increases. This means that the more the material has
irregular fracture properties, the more it responses linearly.
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D.3 SIF along the obtained flower shape cracks

In addition to the propagation, the numerical code provides the values of the SIF along the flower
shapes we obtain. We now discuss these values in corresponding to these shapes independently
from any advance law. In order to do that we remove by linearity, the loading from the SIF
and concentrate at functions K̃ and K̂ defined by

K(θ) =
2√
π
σ

√
aK̃(θ) =

2√
π
σ

√
a0K̂(θ), (D.2)

so that K̃ = 1 if circular crack of radius a and K̂ = 1 if circular crack of radius a0. Both K̃ and
K̂ depend on θ, k,∆ and ∆a/a0 but not on the loading. Whereas K̂ depends on the shape and
size of the crack, K̃ depends only on its shape.

D.3.1 Regular propagation

Because of the evolution of front shape always attains a stationary regime in the case of regular
propagation, we focus here on function K̃.

As an example we have plotted in Fig. D.3, the evolution of the normalized K̃ during crack
propagation in the case of toughness map with k = 4 and ∆ = 0.3. Fig. D.3(a) shows the
evolution along crack front as crack propagates, different colored curves are in corresponding to
different positions of crack front shown in Fig. 7.3(a).
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Figure D.3: Evolution of the normalized K̃ during crack propagation in the case of k = 4, ∆ = 0.3 ; (a)
distribution along crack front, and (b) evolution at weak point A and at tough point B with normalize amplitude
∆a/a0 of front deformation.

One shall notice that during transient regime, this quantity evolves with front deformations
and then during stationary regime, it attains some stationary value which depends only on the
front shape. For example, let’s look at the evolution of this quantity at points A and B as
a function of the normalized amplitude of the front deformations (Fig. D.3(b)). As described
first-order approximation in section 7.2.2, at initial stage K̃(A) decreases while K̃(B) increases
and then both attain plateau values.

Next step, we look at the dependency of these stationary values on the toughness map
(k,∆). Fig. D.4(a) shows K̃ as function of θ/θ0 for different values of k and a given value of
∆. One shall notice that, with such re-scaling, all curves are collapsing, without surprise since
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K = Kc everywhere, on one master curve which is independent of wave-number k and depends
only on toughness contrast ∆. Fig. D.4(b) give these values for different values of ∆. Re-scale
these curves in following way,

K

(
θ

θ0

)
=
K̃ (θ/θ0) − K̃m

∆K̃
(D.3)

where K̃m is the mean value of K̃ defined by:

K̃m ≡ K̃max + K̃min

2
(D.4)

and ∆K̃ is the amplitude of K̃ defined by:

∆K̃ ≡ K̃max − K̃min

2
. (D.5)

All normalized K̃ curves are then collapsed in single master K − curve, see Fig. D.5. This
K − curve is independent of both toughness field parameters, wave-number k and toughness
contrast ∆ and it is found that this function follows a cosine function, i.e.,

K(θ) =
1
2

cos
(

2π
θ

θ0

)
∀k,∆,∆a∞/a. (D.6)
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Figure D.4: Local elastic field: Stationary regime

We verify that the value of ∆K̃ is given by:

∆K̃ ∼ ∆. (D.7)

This results from K = Kc everywhere. The value of K̃m could however not be obtained from
the criterion. It depends on the crack front shape and could only be obtained numerically. We
show that it is independent of toughness map and is given by

K̃m = 1. (D.8)

This value corresponds to the one of a circular crack of same area than the flower shape crack.
This means that the average value of the SIF along our flower shape cracks is equal to the SIF
of a circular crack of the same area. Is this a general property for any flower shape crack ? We
will see in Appendix D.5 that it seems to be the case.
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D.3.2 Irregular propagation

Fig. D.6 shows a typical distribution of dimensionless SIF K̃ and K̂ along crack front. Different
colored curves are in corresponding to different positions of crack front shown in Fig. 7.6(a).
Fig. D.6(a) plots the distribution of K̃ and Fig. D.6(b) plots the distribution of K̂. After some
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Figure D.6: Distribution of dimensionless SIF along crack front corresponding to different successive equlib-

rium positions of front in the case: k = 4, ∆ = 0.6; (a) K̃ Vs θ/θ0, (b) K̂ Vs θ/θ0.

propagation, around point A, the distribution of K̃ becomes invariant with propagation (last
two curves, the red and grey are collapsed in a single curve). At point B, the distribution of
K̂ becomes invariant with propagation (last two curves, coloured with the red and grey are
collapsed).
Focus now at the evolution of K̃(A) at point A and K̂(B) at point B as a function of
normalized finger petal size ∆a/a0. As an example we have plotted in Fig. D.7, the evolution
of these quantities in the case of toughness map with k = 4 and ∆ = 0.6. Fig. D.7(a) shows the
evolution of K̃(A) and Fig. D.7(b) shows the evolution of K̂(B). It can be noted that after a
transient phase both K̃(A) and K̂(B) attain some plateau values. Let denote these stationary
values as K̃∞

A and K̂∞
B . They depend on (k,∆) only.

Fig. D.8 shows K̃∞
A as a function of toughness contrast ∆ for given toughness spatial re-
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Figure D.7: Evolution of the normalized local SIF at points A and B during crack propagation in the case

of k = 4, ∆ = 0.6 ; (a) evolution of K̃(A), and (b) evolution K̂(B), with normalize amplitude ∆a/a0 of front
deformation.

partition k. K̃∞
A decreases as toughness contrast ∆ and toughness spatial re-partition k increase.

Let us link this behaviour to the radius of local curvature around point A. Figs. D.9 (a) and
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Figure D.8: Dependency of K̃∞

A on toughness map parameters (k, ∆).

(b) give the evolution of the shape [a(θ) − a0] /a0 for values of k and ∆ respectively. One can
observe that the radius of curvature Rc(A) around A decreases with k and ∆. To correlate this

behaviour with the one of K̃∞
A let us plot

K̃∞
A√

Rc(A)/a
as a function of ∆ (Fig. D.9 (c)). As ∆

increases, the value of the SIF at point A becomes well approximated by the one of a circular

crack of radius Rc(A). One has K̃∞
A ∼

√
Rc(A)/a.

Similarly, Fig. D.10 plots the K̂∞
B as a function of toughness contrast ∆ for a given value of k.

One shall notice that, K̂∞
B converges to unity as contrast increases. This is linked to the fact

that as toughness contrast increases more and more points around tough point B remain pinned
and therefore the value of K̂∞

B is dominated purely by the initial circular crack configuration
even though very small part of front (around point A) has been broken and gone far away.
Therefore, as contrast increases the evolution of the SIF around point B simply converges to
the SIF corresponding to the circular crack with radius of a0 (that is K0). As a schematic
representation of this explanation, Fig. D.11 shows front shapes around point B for different
cases with contrast of 0.6, 0.8 and 0.9. It shall be seen that as contrast increases the front shape
around the vicinity of point B converges to circular shape with size of a0. To summarize, it
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shall be noticed that at such large front perturbations, the local SIF at these points A and B
depends on the whole shape of the front but approximate values can be found by considering
the local curvatures :

• K̃(A) ∼
√
Rc(A)
a

⇒ K(A) ∼ 2√
π
σ
√
Rc(A).

• K̃(B) ∼ 1 ⇒ K(B) ∼ 2√
π
σ

√
a0.

D.4 Numerical solutions for other values of k

D.4.1 Case k = 1

This is the special case of a toughness map for which, as remarked in §7.1 of main text, there is no
solution to the equation K = Kc along all the front except for ∆ = 0 (which is corresponding to
the case of the crack propagating in a homogeneous media): The propagation is always irregular
for any toughness contrast value other than zero (∆ > 0). For instance, we have plotted the
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Figure D.12: Evolution of local quantities in the special case of k = 1.

crack front position in Fig. D.12 (a) and corresponding evolution of K/Kc in Fig. D.12 (b) with
tiny toughness contrast equal to 0.1. It shall be noticed that propagation is irregular: the crack
advance only in the weakest zone.

D.4.2 Case k = 2

The results are similar to those commented in sections 7.2.2 and 7.2.3 of chapter 7 for cases
k = 4 and k = 6. Figs. D.13 (a) and (c) are corresponding to a case of regular propagation
(∆ = 0.1) and Figs. D.13 (b) and (d) are corresponding to the case of irregular propagation
(∆ = 0.4).
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Figure D.13: Evolution of local quantities in the case of k = 2.

First, the front is pinned at the strongest part, so that SIF first increases there. In the regular
case, it increases up to required threshold. But in the irregular case, it starts to decrease before,
so that part of the crack front there remains pinned forever and fingering occurs.

D.5 Different examples of invariant toughness map along the
propagation direction

As mentioned in Appendix D.3.1, aim of this appendix is to show how the master curves
corresponding to stationary regime can be influenced by different map toughness configuration.
As an example, here we study the following toughness map:

Kc(θ) = Kc

[
1 + ∆ cos3(kθ)

]
. (D.9)

For a typical results of this problem, Fig. D.14 plots the successive front positions and corre-
sponding evolution of K/Kc for cases of k = 2,∆ = 0.15 and k = 4,∆ = 0.25. The discussion
follows as commented previously for the case of regular propagation of previous toughness map.
That is initial circular geometry of the crack front reaches some stationary shape after some
transient zone. At this point the IrwinÕs criteria K = Kc is, and further remains, verified all
along the crack front as described by the evolution of the K/Kc.

Next step is to study the influence of toughness map parameters on this stationary regime.
Fig. D.15 plots the corresponding K̃ along the crack front for different values of k and ∆. For
given value of toughness contrast ∆ = 0.15, Fig. D.15 (a) shows the result for different values of
k = 2 and 4. Again, it shall be noticed that, K̃ is itself semi-master curve that is independent
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Figure D.14: Evolution of local quantities: Regular propagation.
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Figure D.15: Local elastic field during stationary regime.

of k. Now, for given value of k = 2, Fig. D.15 (b) shows the result for different values of
∆ = 0.1, 0.15 and 0.2. Following same procedure as described in §D.3.1 one gets a master curve
that presented in Fig. D.16 and follows, as awaited, a cubic of cosine, i.e.
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K(θ) = cos3
(

2π
θ

θ0

)
∀k,∆,∆a∞/a, (D.10)

with ∆K̃ ∼ ∆. Here as before, we find again

K̃m = 1 (D.11)

which implies that Keff = Kc. With remotely loaded circular crack, Does this remain true for
any invariant toughness map along the propagation direction is however still an open question?
For sure for other loading conditions, it doesn’t remain true as we have shown that for half-plane
cracks, even for invariant toughness map along the propagation direction, Keff 6= Kc as soon as
dK0/da < 0 (refer §3.5).
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Résumé

Le développement d’outils prédictifs qui relient l’échelle microscopique à l’échelle macroscopique
dans le cadre de la rupture fragile est le défi majeur de cette thèse. Dans le cas d’une fissure plane
se propageant de façon quasistatique, en mode I, dans un matériau faiblement hétérogène et
invariant dans la direction de propagation, on peut montrer à l’aide d’une approche perturbative
utilisant les fonctions de poids, que le seuil de rupture de Griffith est toujours atteint en tout
point du front et que par conséquent la ténacité effective est simplement égale à la moyenne des
valeurs locales.

Nous abordons ici le même problème mais avec des hétérogénéités de ténacité plus élevées.
Dans la première partie, nous considérons une fissure semi-infinie dans un corps infini ou dans
une plaque d’épaisseur finie et nous étendons analytiquement l’approche du premier au second
ordre. Nous montrons que, même si le critère de Griffith est atteint partout, les déformations du
front peuvent induire une déviation de la ténacité efficace de sa valeur moyenne. Nous effectuons
de plus des expériences de peeling afin de préciser le domaine de validité des approches.

Dans la deuxième partie, nous considérons une fissure circulaire se propageant dans un motif
de ténacité invariant dans la direction de propagation, et résolvons le problème numériquement,
quelquesoit le contraste de ténacité et la taille des hétérogénéités, en itérant sur les formules du
premier ordre. Pour un contraste d’hétérogénéité suffisamment grand, le critère de la Griffith
ne peut plus être atteint partout: certains points du front sont piégés par les zones plus tenaces,
tandis que d’autres parties avancent indéfiniment. De ce fait, la ténacité diminue avec la taille
et le contraste, à partir de sa valeur moyenne locale jusqu’à son minimum.

Mots-clés: Rupture fragile; Fissure plane en tension; Champ de ténacité hétérogène; Pro-
priétés effectives de rupture; Approche perturbative; Piégeage d’une fissure; Instabilité de forme.





Abstract

The development of predictive tools that bridge microscopic to macroscopic scales in brittle
fracture is the key challenge of this thesis.

In the context of quasi-static planar crack propagation under mode I loading, it has been
shown, using first-order weight-function perturbation approaches that, for weak heterogeneities,
when the material is homogeneous in the propagation direction, the Griffith’s threshold is always
reached for all points of the crack front so that the effective toughness is simply equal to the
average of the local toughness.

Here, we address the same problem but with stronger toughness heterogeneities. In the first
part, we consider a half-plane crack embedded in an infinite body or in a finite thickness plate
and we extend analytically the first-order approaches to the second-order. We show that even if
Griffith’s criterion is reached all over the front, the deformations of the front may induce some
second-order deviation of the effective toughness from its mean value. We also perform peeling
experiments that define their range of applicability.

In the second part, we consider a circular crack propagating in an invariant toughness map
along the propagation direction and solved the problem numerically, for any toughness contrast
and heterogeneity size, by iterating the first-order formulas. For large enough heterogeneity
contrast, the Griffith’s criterion can no more be reached everywhere: some points of the front
are pinned by strong impurities, while some other parts advances continuously. Correspond-
ingly, the effective toughness is shown to decrease with size and strength of heterogeneity from
the average value of the local toughness down to its minimum one.

Keywords: Brittle fracture; Tensile planar crack; Heterogeneous toughness field; Effective
failure properties; Perturbation method; Crack pinning; Shape instability.
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