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Abstract

Our homes are becoming smart thanks to the numerous devices, sensors and actuators
available in it, providing services, e.g., entertainment, home security, energy efficiency and
health care. Various service providers want to take advantage of the smart home opportunity by
rapidly developing services to be hosted by an embedded smart home gateway. The gateway is
open to applications developed by untrusted service providers, controlling numerous devices,
and possibly containing bugs or malicious code. Thus, the gateway should be highly-available
and robust enough to handle software problems without restarting abruptly. Sharing the
constrained resources of the gateway between service providers allows them to provide richer
services. However, resource sharing conflicts happen when an application uses resources
“unreasonably” or abusively. This thesis addresses the problem of resource sharing conflicts in
the smart home gateway, investigating prevention approaches when possible, and considering
detection and resolving approaches when prevention is out of reach.

Our first contribution, called Jasmin, aims at preventing resource sharing conflicts by
isolating applications. Jasmin is a middleware for development, deployment and isolation of
native, component-based and service-oriented applications targeted at embedded systems.
Jasmin enables fast and easy cross-application communication, and uses Linux containers for
lightweight isolation. Our second contribution, called Incinerator, is a subsystem in the Java
Virtual Machine (JVM) aiming to resolve the problem of Java stale references, i.e., references
to objects that should no more be used. Stale references can cause significant memory
leaks in an OSGi-based smart home gateway, hence decreasing the amount of available
memory, which increases the risks of memory sharing conflicts. With less than 4% overhead,
Incinerator not only detects stale references, making them visible to developers, but also
eliminates them, hence lowering the risks of resource sharing conflicts. Even in Java, memory
sharing conflicts happen. Thus, in order to detect them, we propose our third contribution: a
memory monitoring subsystem integrated into the JVM. Our subsystem is mostly transparent
to application developers and also aware of the component model composing smart home
applications. The system accurately accounts for resources consumed during cross-application
interactions, and provides on-demand snapshots of memory usage statistics for the different
service providers sharing the gateway.

Keywords: resource; sharing conflict; embedded software; component; service; smart home;
home automation; Fractal; MIND; Jasmin; OSGi; JVM; Incinerator; stale reference; virtual
machine; isolation; monitoring.
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Résumé

Nos maisons deviennent de plus en plus intelligentes grâce aux nombreux appareils, capteurs,
et actionneurs disponibles, et fournissant des services, tels que le divertissement, la sécurité,
l’efficacité énergétique et le maintien à domicile. Divers fournisseurs de services veulent
profiter de l’opportunité de la maison intelligente en développant rapidement des services
à héberger dans une passerelle domotique embarquée. La passerelle est ouverte à des
applications développées par des fournisseurs de services non fiables, contrôlant de nombreux
appareils, et pouvant contenir des bugs ou des codes malicieux. Par conséquent, la passerelle
doit maintenir une haute disponibilité et suffisamment de robustesse pour tolérer les
problèmes logiciels sans avoir à redémarrer brutalement. Partager les ressources, même
restreintes, de la passerelle entre les fournisseurs de services leur permet de fournir des
services plus riches. Cependant, des conflits de partage des ressources se produisent quand
une application utilise les ressources «déraisonnablement» ou abusivement. Cette thèse
aborde le problème des conflits de partage des ressources dans la passerelle domotique,
investiguant des approches de prévention autant que possible, et envisageant des approches
de détection et de résolution quand la prévention est hors de portée.

Notre première contribution «Jasmin» vise à prévenir les conflits de partage des ressources
en isolant les applications. Jasmin est un intergiciel pour le développement, le déploiement
et l’isolation des applications natives, à base de composants et orientées services prévues
pour des systèmes embarqués. Jasmin permet une communication rapide et facile entre
applications, et utilise les conteneurs Linux pour une isolation à faible coût. Notre seconde
contribution «Incinerator» est un système dans la machine virtuelle Java (JVM) qui résout
le problème des références obsolètes en Java, c.-à-d., des références à des objets à ne plus
utiliser. Les références obsolètes peuvent causer des fuites mémoire importantes dans une
passerelle domotique basée sur OSGi, diminuant ainsi la quantité de mémoire disponible,
ce qui augmente les risques de conflits de partage de mémoire. Avec un coût inférieur à
4%, Incinerator non seulement détecte les références obsolètes, les rendant visibles aux
développeurs, mais aussi les élimine, diminuant ainsi les risques de conflits de partage
de ressources. Même en Java, les conflits de partage de mémoire se produisent. Afin de
les détecter, nous présentons notre troisième contribution : un système de surveillance de
mémoire intégré à la JVM. Notre système est pratiquement transparent aux développeurs
d’applications et conscient du modèle à composants formant les applications domotiques.
Le système compte précisément les ressources consommées pendant les interactions entre
applications, et fournit, à la demande, des statistiques instantanées d’utilisation de mémoire
pour les différents fournisseurs de services partageant la passerelle.

Mots clés : ressource ; conflit de partage ; logiciel embarqué ; composant ; service ; maison
intelligente ; domotique ; Fractal ; MIND ; Jasmin ; OSGi ; JVM; Incinerator ; référence obsolète ;
machine virtuelle ; isolation ; surveillance.
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Introduction

Our homes are full of electronic devices that assist our life in various ways. An increasing
number of these devices is becoming smarter, i.e., they are being equipped with more
processing power, more sensors and actuators and better connectivity with the surrounding
devices and the internet. These smart devices are becoming more and more popular at
home due to the advanced services they provide at an affordable cost. The services include
entertainment, home security, energy efficiency, health care, well-being, comfort, and content
sharing. Thanks to these devices, we are becoming the inhabitants of smart homes.

The smart home offers new opportunities to various service providers, who long to rapidly
develop and deploy services that take advantage of, not only the devices present at home, but
also services offered by other providers. To allow cohabitation of different service providers,
smart home operators are designing a gateway that hosts applications provided by different
actors [59, 112]. The gateway provides basic services to hosted applications, including
deployment, connectivity, data storage, and service discovery. In order to allow the sharing of
devices and services between hosted applications, smart home operators are standardizing
an interface that is used to provide and access the services provided by smart devices and
providers. For example, one service provider could use the standard interface to control a
device manufactured by another service provider that conforms to the same interface.

The applications running on the smart home gateway control actuators and devices inside
the home, and some of those devices handle security and health of the inhabitants, such as
gas sensors, air conditioners, door alarms, etc. Therefore, abruptly restarting the gateway
can be dangerous. In fact, the smart home gateway is a long-running platform that needs to
be highly available and robust enough to handle software errors without the need to restart
abruptly. This long-running nature is the reason the smart home gateway supports application
hot-swapping, i.e., starting and stopping and updating of applications on the fly, without the
need to restart the whole environment. To implement hot-swapping, hosted applications are
made of components that can be individually started and stopped and replaced.

Addressed issues

Sharing of the smart home resources between service providers is necessary to provide rich
and integrated services to the end-user, while keeping the choice to the user to freely mix smart
devices and services from different hardware manufacturers and software editors. However,
resource sharing naturally raises the risk of resource conflicts between service providers,
such as resource starvation, illegal access to resources, and abusive use of resources. These
conflicts threaten confidentiality, and slow down the gateway performance, and deprive
correct sharing of available resources.
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In this thesis, we study the problem of resource sharing conflicts in the smart home gateway
from different perspectives. We confront the issue of preventing resource conflicts from
happening in the first place. But since we cannot prevent all resource sharing conflicts,
we also focus on resolving the conflicts when they happen or when they are discovered.
Discovering resource conflicts needs resource monitoring approaches, which is our third
concern.

The applications deployed by service providers can contain bugs. Those bugs may lead to
injection of malicious behavior into the applications. These risks are the reasons we do
not trust applications developed by service providers [79], which is why the solutions we
present tend to avoid, as far as possible, to delegate additional responsibilities to application
developers.

To summarize, we argue that the smart home gateway needs an open software environment
that provides the following features:

1. Prevents resource sharing conflicts as far as possible, using different forms of isolation
and protection.

2. Monitors resources conflicts that still can happen, and quantifies resource usage as
accurately as necessary.

3. Resolves resource sharing conflicts when they happen, and makes them visible to
application developers or system administrators.

Contributions

In this thesis, we present three contributions.

We began by investigating ways to prevent resource sharing conflicts between native
applications running in the smart home gateway. The most obvious way to prevent conflicts
is isolation. So we wanted to achieve the highest isolation possible, but without hindering
performance. Among the different isolationmechanisms available, the containers technologies
were the best bet fulfilling our requirements. The Linux containers isolate applications’
memory, network communications, files, users, etc. We created Jasmin: an execution
environment that isolates native component-based and service-oriented applications inside
containers provided by the Linux kernel. Jasmin [4] configures and deploys containers and
runs applications inside them, while controlling applications life cycles. Jasmin also resolves
services between containers and provides transparent service invocation mechanisms.

Some resource sharing conflicts cannot be prevented due to the highly dynamic software
environment envisioned for the smart home, and due to the diverse devices present at home.
Therefore, we also explore approaches to resolve conflicts between applications running in
the smart home gateway. One of the issues we addressed is the problem of stale references,
which is common in platforms that support hot-swapping. Hot-swapping enables updating
or uninstalling applications without restarting the platform. In normal situations, when an
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application is uninstalled, all other applications remove their references to it, in order to
allow the gateway to remove the uninstalled application from memory. However, if a buggy
application keeps holding a reference to the uninstalled application, then that reference is
known as stale reference. The stale reference forces the gateway to keep the uninstalled
application in memory, thus causing a significant memory leak. If the buggy application
tries to use the uninstalled application via its stale reference, then the results are undefined,
and the states of running applications can become inconsistent, because the uninstalled
application does not expect to be invoked after it has executed its termination routines during
its uninstallation event. If the uninstalled application was controlling an actuator, then the
state inconsistency can damage the controlled hardware, therefore threatening the safety
of smart home inhabitants. To solve this problem, we created Incinerator, a system that
pinpoints stale references and removes them. After hot-swapping an application, Incinerator
investigates all references in the gateway, looking for stale references. When a stale reference
is found, Incinerator removes it, and disallows the buggy application from using that reference
in the future, and performs cleanup that should have been done by the buggy application.
By finding stale references, Incinerator helps developers debug this problem which is hard
to perceive. By removing stale references, Incinerator not only lowers the risk of state
inconsistency, but also avoids the memory leak caused by stale references, thus allowing
the gateway to continue working without running out of memory. The Incinerator prototype
was tested using Knopflerfish [81], one of the main open-source OSGi [127] implementations.
Thanks to Incinerator, we discovered and fixed a stale reference bug [8] in Knopflerfish.

In order to maintain a long-running system stable and fully functional, resource usage needs
to be monitored in order to discover situations of resource sharing conflicts, e.g., abusive
resource usage, resource starvation, etc. Being a long-running system, the smart home
gateway needs a monitoring system that supports its openness to multiple service providers,
and that provides accurate memory usage reports. In particular, during an interaction
between two applications, the monitoring system needs to be able to distinguish which
application should be accounted for the memory consumed during the interaction. That is the
reason we developed a monitoring system to report the memory consumed by applications
hosted by different service providers on the gateway. Our monitoring system allows different
applications to communicate to render services, so it does not require special isolation
mechanisms. In most cases of interaction between service providers, the accounting approach
used by the system produces accurate reports of memory usage by application. Furthermore,
we defined a domain-specific language that is used to declare explicit accounting rules that
dictate which application should be accounted for the memory consumed during the specific
interaction. The language is used to declare rules in a simple and readable way. It is also
flexible, as it allows using wildcards to define an interaction in an accounting rule that would
match several interactions at runtime, which helps reduce the number of rules to write
and maintain. Our monitoring system prototype was tested using the Knopflerfish OSGi
implementation.

Document overview

This thesis is structured in four main chapters. The first chapter begins by exploring the
state of the art in order to describe the existing ecosystem of the smart home, focusing on
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the particular properties of this environment, and the challenges they induce. We detail
those challenges in order to illustrate the conceptual and technical locks that still need to be
resolved or whose existing solutions should be enhanced. We illustrate why the dynamicity
of the smart home requires hot-swapping of applications. Then we discuss the distributed
nature of the smart home and its effect on cross-application communication. We argue that
service providers need to rapidly develop smart home applications, and we illustrate how the
component model can help achieve that. Furthermore, we show how the service-oriented
architecture helps simplify the heterogeneity of the smart home. Finally we illustrate the
concepts and efforts needed to support the open and embedded nature of the smart home
gateway.

The second chapter describes our first contribution, i.e., Jasmin. It first describes two
architectures of Jasmin that could be used in different kinds of smart home gateway. Then
we describe the multi-level isolation support provided by Jasmin based on processes and on
Linux containers. Then we discuss the transparent and fast cross-application communication
mechanism provided by Jasmin, and how it helps provide a distributed service-oriented
platform. We finally evaluate Jasmin’s performance and features using micro-benchmarks,
and we discuss the effort needed to port legacy applications to Jasmin using a typical smart
home application.

In the third chapter, we present Incinerator, the second contribution. We recall the bug
of Java stale references introduced in the first chapter, then we explain how Incinerator
detects and resolves this issue. Next, we show the areas that needed modifications in order
to implement Incinerator. We then evaluate the features of Incinerator using ten scenarios
where references become stale. We also demonstrate that stale references can endanger
the smart home inhabitants if a buggy application controls critical home devices. Finally we
evaluate the performance of Incinerator using the DaCapo benchmarks.

Our third contribution is presented in the fourth chapter, where we begin by describing
the problem of accurate and relevant memory monitoring in an OSGi-based platform open
to multiple untrusted service providers. We discuss our design goals and we describe the
algorithm we defined to provide an accurate and relevant memory monitoring system for
the smart home gateway. We also describe the implementation extents of our system, before
evaluating the features and performance of the system using micro-benchmarks and using
the DaCapo benchmarks.

We conclude our thesis by resuming the issues we address and the contributions we propose,
and by suggesting further actions to take and paths that still need exploration.
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This chapter describes the smart home environment, which is the real life domain where our
research and propositions are projected. We begin by defining the smart home and inspecting
its particular properties. We then focus on each property to extract the challenges it implies
and the existing work tackling these challenges. This focus also enlightens areas that still
need to be investigated and problems waiting to be resolved, or needing better solutions.

1. Introducing the Smart Home

The smart home is a home full of communicating electronic devices that collaborate in order to
provide intelligent services to the home inhabitants, as illustrated in Figure 1.1. The devices
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include sensors for temperature, presence detection, gas detection, etc. Different actuators
are also present, e.g., motorized window curtains, controllable gas valves, motorized doors.
Smart phones, smart watches, and different kinds of personal devices can be present at the
smart home from time to time. This wealth of devices offers a new market to many device
manufacturers and software editors (denoted by Æ, ♣ and � in Figure 1.1), allowing them
to create applications targeted at the different inhabitants of the home (see App1...App6
in Figure 1.1), providing services in different domains, e.g., security enforcement, energy
efficiency, comfort and health care, helping with home support, enabling content sharing,
etc.

Smart Home Gateway
Operator Platform

Platform
Operator

Tier Æ
App Store

Tier ♣
App Store

Tier �
App Store

Æ App1 ♣ App2 ♣ App3

� App4 Æ App5 � App6

Air
conditioner

Curtains

Temperature
sensor

Light bulb

Presence
detector

Alarm
siren

Gas
sensor

Smoke detector

TV

Smart
Phone

Smart home environment Internet

Figure 1.1: Smart home structure. Communications between the “Operator Platform” and
App1,...,App6 are omitted to simplify the figure.

The Smart Home Gateway. The smart home, as we envision, includes one or more devices
that host different applications developed by different tiers. As an example, the Home Gateway
Initiative (HGI) [59, 112], which is an industrial alliance of telecommunication operators
targeting the smart home, envisions a gateway device that is connected to the different smart
home devices and to the Internet, known as the smart home gateway. Figure 1.1 illustrates
this gateway. The “Operator Platform” layer provides a middleware and common services
to applications, e.g., persistence, logging, access to smart home devices, network services,
etc. The operator platform notifies applications about different events occurring either on
the platform, or in the smart home environment, or on the internet, e.g., new sensors’ data,
notifications for application start-up, new services available, etc. Every software editor
deploys a set of applications that can communicate, not only with each other, but also with
applications from other vendors, and with the operator platform. Applications communicate
in order to provide integrated services to the end-user.
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The Smart Home Properties

The smart home is a particular hardware and software environment. This section describes
the main properties of the smart home, and describes the challenges introduced by each
property. Each challenge raises a set of issues that need to be tackled. We detail those issues
throughout this chapter, and we present existing solutions addressing them along with their
limits.

Openness. Devices in a typical home are often created by different hardwaremanufacturers.
Along with devices, applications running in the devices or supporting them are also developed
by different software editors. The smart home inhabitants do not need to be locked to a
particular vendor. This openness of the smart home to different tiers raises the need for an
open smart home gateway that is able to host applications from different untrusted tiers.

Dynamicity. The smart home is dynamic at the hardware level, as different devices appear
and disappear all the time, and several devices are movable. We expect the smart home
to be dynamic also at the software level, where applications are installed, updated and
uninstalled at a fast pace compared to the “up time” of the smart home gateway, which is a
long-running system. Therefore, applications need to be designed to cope with this dynamic
nature. Hot-swapping solves this issue by starting and stopping applications as necessary
to cope with, not only hardware changes happening in the smart home, but also relatively
frequent software updates and the continuous end-user desire to install new applications
providing innovative services.

Rapid Development. Thanks to the wealth of devices present in it, the smart home offers
new opportunities to service providers, who long to develop ubiquitous applications that take
advantage of those devices, and of the physical proximity to the end-user. In order to catch the
rising smart home market, and to enable faster innovation pace, the service providers want to
rapidly develop and deploy services at the smart home. Rapid development needs simple tools
and processes to manage applications life cycle, especially development tools and languages,
without forgetting deployment and maintenance tools. Applications need to be easily created
using reusable building blocks that can be composed quickly. These building blocks need to
be loosely coupled in order to allow easy upgrades and maintenance. The component model is
a set of rules and processes to easily compose applications out of basic building blocks called
components, urging for code reuse and encapsulation. A component model also defines what
is a component from what is not, and describes the process of creating individual components.
The logic in each component is highly “encapsulated” inside it, and interaction between
components only happens through interfaces, which implies that components are relatively
independent of each other, making them good candidates for hot-swapping mechanisms. For
these reasons, we believe that smart home applications should be developed based on a
component model.

Heterogeneity. The devices and applications of the smart home have various capabilities
for use by the home inhabitants. Some devices and applications provide different variations
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of the same capability, e.g., voice calling versus video calling. Other devices and applications
provide different implementations of the same capability, e.g., voice calling via the Global
System for Mobile Communications (GSM) network or voice calling via the Voice over Internet
Protocol (VoIP). To cope with this heterogeneity, and in order for smart home applications to
use these capabilities, the features provided by different tiers need to be standardized as
contracts that are independent of their implementation details and vendors. This the reason
smart home applications need to be service-oriented, based on standard interfaces, where a
service can be defined as a contract-based controlled access mechanism to a set of capabilities.
The Service-Oriented Architecture (SOA) [103, 78] allows applications and devices to provide
and consume standard services independently of their vendors, implementations, etc.

Distributed Aspect. In order to provide fully integrated services to the end-user, often
multiple devices and applications need to collaborate and communicate. The smart home
devices and applications are often physically distant, and they are connected via diverse
networking technologies of different scales, ranging from Personal Area Networks (PAN, e.g.,
Infrared, Bluetooth, ZigBee, Z-Wave) to Local Area Networks (LAN, e.g., Ethernet, WiFi) and
even to Internet. This highlights the distributed nature of the smart home, where software
running in devices, in the gateway and in the internet collaborate to offer smart services to
the home inhabitants. This is why applications deployed on the smart home gateway and
delivered by different smart home actors should be able to communicate easily.

Embedded Aspect. Constrained by its cost, the smart home gateway is an embedded
system that has limited hardware resources. We expect the gateway to have a micro-controller
or a micro-processor running at hundreds megahertz, using tens to hundreds megabytes
of volatile and non-volatile memory. Existing affordable single-board computers such as
the “Raspberry Pi” [108] and the “Arduino Yún” [6] already exhibit such performances. This
reduces the choice of technologies allowing agile [17] software development, as some of these
technologies induce high overheads that are not affordable under embedded constraints.
For instance, Java [55] is one of the commonly used Object-Oriented technologies allowing
agile software development. Java has several profiles suitable to different levels of embedded
constraints, e.g., Java Mobile Information Device Profile (MIDP) [110], Java Connected
Device Configuration (CDC) [36, 123], Java ME Embedded Profile [15], etc. One of the main
component-based and service-oriented platforms based on Java and compatible with the
embedded constraints is the OSGi [30, 127, 26, 82, 54] framework, which can be used to
develop smart home applications. We also expect some smart home gateways to be further
constrained, i.e., based on a micro-controller or a micro-processor running at tens megahertz,
using hundreds kilobytes of volatile and non-volatile memory. For these gateways, virtual
machines are often unaffordable, which raises the need for native applications. As an example,
the MIND [92] framework, which is an implementation of the Fractal [29] component model,
can be used to write native component-based applications.
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2. The Dynamicity of the Smart Home

The dynamic nature of the smart home raises the need for hot-swapping applications, i.e.,
loading, unloading and updating applications on the fly without the need to restart the
platform. In order to perform hot-swapping, application code should be loadable into a
running middleware platform, and unloadable when the application is no longer needed. The
exact hot-swapping mechanism depends on the nature of the operator platform middleware
and the applications hosted on it.

In this section, we focus on hot-swapping mechanisms for native and Java applications. First,
we present position-independent code and how it can be used to load a native application into
a running process. Then we define Java class loaders and the structure of Java references,
which justifies the class loader unloading conditions in the Java virtual machine. Finally,
we present a concrete example where these unloading conditions represent a conceptual
and a technical lock for hot-swapping of dynamic Java applications: multi-tenant Java virtual
machines.

2.1. Hot-swapping Native Applications

A native application is an application that directly uses the Instruction Set Architecture
(ISA) [115] of the processors running the computer. By “directly”, we mean that no
interpretation or binary translation is needed in order to run the application. In order
to run a standalone native application, an operating system loads the application into memory
in a dedicated virtual address space, i.e., a process, often at a specific base address dictated by
the application binary meta-data. The machine code contained in the standalone application
assumes that it is always loaded at the specified base address, and uses that assumption to
calculate absolute addresses of functions and variables and embeds them into the application
binary. Embedding of absolute addresses avoids unnecessary calculations of addresses at
runtime, therefore improving application performances.

Position-Independent Code

The constant base address assumption relies on the dedicated address space given by the
process abstraction. Thus, applications that share the same address space generally cannot
assume a constant base address, which obliges them to use relative addressing. Machine
code that does not rely on a constant base address is called a Position-Independent Code
(PIC) [63, 85, 128]. Position-independent code forms the basic mechanism through which
many operating systems provide the ability to load machine code into a running process. The
operating system dynamic loader loads the position-independent code into memory, then it
performs necessary data initialization and linking with other required libraries. Loadable
machine code units are called Shared Objects (.so) in UNIX and Linux, and called Dynamic-
Link Libraries (.dll) in Windows.
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Native applications generated in the form of loadable code units can be loaded by the operator
platform middleware, based on the operating system facilities. Once loaded, the application
code can be executed as any other code in the platform, so it can be started, stopped and
called back when events occur.

2.2. Hot-swapping Java Applications

A Java application is distributed as a set of Java binary classes. A Java binary class is a
collection of intermediate code, called Java byte code, and meta-data describing that byte
code. The meta-data describe Java class name, fields information, methods information, etc.
The Java byte code is a sequence of virtual instructions in the form of a UNiversal Computer-
Oriented Language (UNCOL) [34, 116, 117, 89, 5] that conforms to a Virtual Instruction Set
Architecture (V-ISA) defined by the Java virtual machine specifications [76].

2.2.1. Java Class Loaders

The standard mechanism to load Java binary classes into a running Java virtual machine is
the Java class loader, which is a Java object whose purpose is to return a Java class instance
(i.e., a java.lang.Class object) given a fully qualified class name1. The JVM specifications
assert the existence of a primordial class loader provided by the JVM, and allows applications
to define new class loaders. New class loaders can reuse a part of the functionality provided
by the primordial class loader.

The Java virtual machine identifies a loaded class uniquely by its name and its class loader
object, as follows: LodedCss = 〈CssLoderObject, CssNme〉. This identification
implies that a class loader object defines a name space in which its classes are identified
separately from the classes loaded by other class loaders. Therefore, two classes with the
same name loaded on the same JVM instance using different class loaders are considered
different types. This name space isolation enables loading multiple applications, each within
a dedicated class loader, without risking naming conflicts.

2.2.2. Class Loader Unloading Conditions

In Java [55], an object reference is, by default, strong [119], i.e., the object reference not only
gives access to the pointed-to object, but also guarantees that the object will not be collected
by the garbage collector. In other words, an object will remain in memory as long as there
is one or more strong references to it somewhere in the JVM. As strong references are the
default reference type in Java, we refer to them simply as “references”, unless otherwise
specified.

A garbage collection root is either a Java static reference (e.g., a Java class field, a thread-
local variable) or a Java object reference in a running method (i.e., a method local variable).

1In this document, we refer to “fully qualified class name” simply by “class name”.
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A Java object is reachable if it can be accessed by traversing the object graph in some sort,
starting from a garbage collection root, and following references.

Figure 1.2 shows that a Java object holds a reference to its class, and a class holds a reference
to its class loader. Additionally, a class loader holds references to all the classes it loaded. The
garbage collector [64] can collect an object when it becomes unreachable. Collecting a Java
class C implies reclaiming the byte code of the methods of C, their generated machine code,
and associated information, e.g., C’s fully qualified name, hierarchy, and fields. Therefore:

Property 1.1 (Class loader collecting condition. See Figure 1.2.). A class loader L that loaded
classes C1, ..., CN can only be collected when the graph of objects {L, C1, ..., CN} becomes
unreachable, which implicitly requires that, for each C, all objects of C are unreachable.

O1 is an object of class C1.
O2 and O3 are objects of class C2.
C1 and C2 were loaded by L. Class loader L

Class C1

Class C2

Object O1

Object O3

Object O2

Figure 1.2: Java references graph between objects, classes, and class loaders.

Property 1.2 (Class loader lifetime). In Java [55], the lifetime of a class loader encompasses
the lifetimes of all the classes it loads, i.e., a class loader is created before it can load classes,
and it is collected after all its loaded classes get collected. Moreover, the lifetime of a class
encompasses the lifetimes of all objects of the class, i.e., a class is loaded before any objects of
it are created, and it is collected after all its objects get collected. Consequently, the lifetime
of a class loader encompasses the lifetimes of all the classes it loads, and all objects of those
classes.

2.2.3. Hot-swapping in Multi-Tenant Java Virtual Machines

A Java virtual machine is calledmulti-tenant [62, 11] when it can run multiple Java applications
in the same time. Multi-tenancy is often used when a system needs to run multiple Java
applications, but due to hardware constraints, the system cannot run multiple Java virtual
machines, one for each application.

In multi-tenant Java virtual machines, class loaders are often used to load entire applications.
A given class loader will load every Java binary class composing the application on-demand,
i.e., the first time the class is accessed. Due to Property 1.1, collecting classes only happens
in bulk, i.e., all classes loaded by a class loader must be collected before the class loader
itself can be collected. Practically speaking, a Java application loaded by a class loader can
only be collected as a whole, with all its objects, classes, and the class loader itself, when all
these become unreachable.

Consequently, if an application keeps a stale reference (i.e., an unneeded reference) to a
second application that should be unloaded (for example, because it is being uninstalled),
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then the second application would never be reclaimed from memory, therefore causing a
significant memory leak. This is why a system based on a multi-tenant Java virtual machine is
vulnerable to stale references, especially when the system is required to run for long periods
of time.

3. The Distributed Aspect of the Smart Home

A smart home application often needs to communicate with devices andwith other applications,
in order to compose services and provide an integrated experience to the end-user. Therefore,
communication mechanisms need to be easy to use, and as fast as possible.

Communication mechanisms between applications depend on whether they can share memory
or not. On one hand, applications that can share memory often can communicate using local
procedure calls. On the other hand, applications that can only communicate via messages
typically call each other using remote procedure calls. We briefly describe these two procedure
call mechanisms in this section.

Local Procedure Calls. Two applications running in the same address space can
communicate via local procedure calls. In order for an application to call a local procedure,
the application must adhere to a specific calling convention [7] agreed upon by the procedure,
e.g., standard call convention (stdcall), fast call convention (fastcall), C declaration call
convention (cdecl), Pascal calling convention (pascal), etc. A calling convention describes
the protocol of calling the local procedure, e.g., where and how arguments are passed, what
exceptions can be thrown, what execution context is expected by the procedure, etc. The
calling convention also describes the return protocol, i.e., how the procedure should return
control to its caller. Calling a local procedure generally requires few processor cycles, which is
relatively fast. Local procedure calls require memory sharing between the calling application
and the called application, which is intrinsically possible when both applications run in the
same address space.

Remote Procedure Calls. When applications cannot share memory, they cannot
communicate using local procedure calls, and they rather use message-based communication
mechanisms, such as remote procedure calls. In order for a procedure P1 in an application
App1 to call a remote procedure P2 in an application App2, the following steps are usually
required:

1. P1 calls a remote procedure proxy in App1, passing it the remote procedure information,
e.g., remote application, procedure name, input parameters.

2. App1 serializes all the input parameters of P2 into a buffer Bn. Serialization, a.k.a,
marshaling, is the process of packing a list of parameters into a contiguous buffer
suitable for sending in a message.
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3. App1 sends Bn through a communication channel to App2, and waits for a reply from
App2.

4. App2 receives Bn, then it deserializes the buffer. Deserialization, a.k.a, unmarshaling
is the process of extracting a list of parameters from a serialized buffer.

5. App2 calls P2 via a local procedure call, passing the parameters extracted from Bn.

6. P2 returns control to App2.

7. App2 serializes all the output parameters of P2 into a buffer Bot, then it sends the
buffer through the communication channel to App1.

8. App1 receives Bot, then it deserializes the buffer.

9. App1 then returns control to P1, passing it the output parameters extracted from Bot.

Serialization is usually a significantly slow and expensive operation, especially compared to
merely passingmemory addresses in local procedure calls. In fact, a remote procedure call can
be more than ten times slower than a local procedure call, as illustrated in Table 2.1 page 46.
Examples of remote procedure protocols include Remote Procedure Calls (RPC) [118], Java
Remote Method Invocation (RMI) [133], Distributed Component Object Model (DCOM) [75],
Incommunicado [102], Internet Inter-ORB Protocol (IIOP) [39] based on the Common Object
Request Broker Architecture (CORBA) [91].

4. Rapid Application Development in the Smart Home

Given the numerous devices present in it, the smart home offers new opportunities to many
service providers, who plan to develop ubiquitous applications that take advantage of these
devices, and of the physical proximity to the home inhabitants. To innovate fast, service
providers need to be able to rapidly develop and deploy services at the smart home. This
raises the need for simple tools and processes to manage applications life cycle, including
development tools and languages, and deployment and maintenance tools. Developers should
be able to easily create applications from reusable building blocks that can be composed
quickly. These building blocks need to be loosely coupled in order to allow easy upgrades
and maintenance.

The component model is a set of rules and processes to easily compose applications out of basic
building blocks called components, urging for code reuse and encapsulation. Each component
encapsulates a business logic that interacts with the platform and other components only
through interfaces, therefore components are relatively standalone entities, making them
easily hot-swappable. These are the reasons for choosing the component-based model as a
design approach for smart home applications. In this section, we characterize the component
model, then we present three examples of components models that are suitable for the smart
home gateway.
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4.1. The Component Model

As stated by Crnković et al. [38], different definitions of the concept of a software component
exist in literature. The commonly used definition is the following:

Definition 1.3 (Software component, defined by Szyperski et al. [122]). “A software
component is a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is subject to
composition by third party.”

There are two types of interfaces: (1) operation-based interfaces often used in software design,
and (2) port-based interfaces, often used to design hardware systems [38]. As we focus our
definitions on software design paradigms, we define an interface as a set of operations, a.k.a.,
methods. Each operation is identified by a name and a list of parameters that are input or
output from the component providing the interface. Formally speaking:

Definition 1.4 (Operation-based interface formal structure). An operation-based interface
is a standalone contract that can be described as follows:

nterƒce = 〈dentƒ er,{Operton0, ..., Opertonn}〉
Operton = 〈dentƒ er,∅|{Prmeter0, ..., Prmeterm}〉

An interface is standalone, as it can exist independently of components, in order to formalize
standard contracts that can be fulfilled by components or required by other components.

Definition 1.5 (Software component formal structure). A component C can be formally
characterized as follows:

Component = 〈dentƒ er, Prodednt, Reqrednt, Propertes, mpementton〉

where Prodednt is a set of interfaces provided by the component to its environment,
Reqrednt is a set of interfaces required by the component from another component, or from
the platform, Propertes is a set of properties holding non-functional meta-data describing
different component aspects, mpementton is the implementation of the component
provided interfaces and its internal code.

The mpementton part shown in Definition 1.5 indicates that a component is executable,
either directly on the machine, or through interpretation, or binary translation, etc. Unlike
other executable units, the code of a component encapsulates its responsibilities and business
logic, and it is limited to interacting with other components and with the platform. A
component also includes meta-data describing itself, e.g., its identification, interfaces,
properties, etc.

A component model, not only identifies what is a component from what is not one, but also
describes the process of creating individual components and the rules to connect them to
form a complete system. Figure 1.3 illustrates such a system, where two components are
deployed on the platform. When a set of components also conforms to the component model,
it is called a composite.

Relative to a component model, a component can be defined as follows:
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Definition 1.6 (Software component, defined by Heineman and Councill [56]). “A software
component is a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition
standard.”

Platform

Component 1 Component 2Required
interface

Provided
interface

Bindings

Figure 1.3: A component-based system.

A component can provide an interface P (i.e., an element of Prodednt in Definition 1.5), by
(1) implementing operations of P, and (2) exposing P as a provided interface, as represented
by a in Figure 1.3. A component can also require an interface R (i.e., an element of
Reqrednt in Definition 1.5), by declaring R as a required interface, as represented by
a in Figure 1.3. In order to be deployed on the platform, a component typically needs to
provide a set of standard interfaces required by the platform.

A binding, a.k.a., a wiring, is a one-way channel of communication between a required
interface and a provided interface, enabling invocation of operations defined in the provided
interface. Bindings enable composition of components to build complete component-based
systems. In order for a binding to be established from a required interface R to a provided
interface P, R must be a subset of P, i.e., all operations defined in R must be defined in P.
In object-oriented paradigm, this is formalized as: P = R or P inherits from R. In order for
a component to invoke an operation defined in an interface, it needs to (1) create a binding
from the interface it requires to the interface provided by a component, and (2) invoke the
operation via that binding.

4.2. The Fractal Component Model

Fractal [28, 29, 68] is a hierarchical and reflexive component model to design, implement,
deploy and manage software systems. It is modular, extensible and programming-language-
agnostic. This model can accurately describe, not only low-level resource access mechanisms,
e.g., memory management or CPU schedulers, but also complex high-level applications, e.g.,
Web servers, data base applications, etc. Fractal has several implementations in various
programming languages. Common implementations include Cecilia [31], THINK [3] and
MIND [92] written in C and Julia [33] written in Java.

4.2.1. Component Model Description

In Fractal, an operation-based interface (see Definition 1.4) is represented by an interface
that follows an Interface Definition Language (IDL) defined by Fractal. Operations are
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represented by method signatures. A required interface is called a client interface, and a
provided interface is called a server interface.

The simplest Fractal component (see Definition 1.5) is called a primitive component, and
it is both a design-time and a runtime entity, acting as unit of encapsulation, composition
and configuration. A set of components that conforms to the component model is called a
composite component. By definition, a composite component can hold a set of primitive and
composite components. Component properties are stored into attributes.

A component provides server interfaces as access points to the services it implements, and
expresses its functional dependencies through client interfaces which describe the services
it needs in order to operate. Components interact via bindings between client and server
interfaces. Fractal also defines “controllers” which are optional standard interfaces that
allow discovering and changing the structure and bindings of components at runtime. By
implementing a subset of these standard interfaces, component developers can adjust the level
of visibility of the component structure, and the level of control provided to the platform.

4.2.2. The MIND Component Model – a Fractal Embedded Implementation

MIND [92] is a native framework enabling composition of C components with configurable
reflexive properties, targeted at embedded systems [58]. It is an open source implementation
of the Fractal component model, and it is derived from THINK [3] and Cecilia [31]. Our first
contribution called Jasmin (see Chapter 2) builds on the MIND framework, and enhances its
structure, not only by making it service-oriented, but also by providing isolation support for
components, and enabling transparent communication between isolated components.

The MIND framework is a development tool-chain and a set of reusable component libraries.
MIND provides its own compiler mindc (see Figure 1.4) accepting C source files, architectural
descriptions of components written in Fractal ADL [32] and interface description files. MIND
compiler produces a set of C files2 holding the glue to reify the component architecture
at runtime. Finally, a C compiler and an object linker produce the executable binaries for
the target platform. MIND provides an Operating System Abstraction Layer (OSAL), i.e., a
set of components that provide generic operating system services, which eases porting of
components to different operating systems.

MIND compiler C compiler Object linkerInterface files

ADL files

C files

Executable files

Target-architecture-dependent

Figure 1.4: MIND compilation flow.

MIND also provides a documentation generator called mindoc which parses the different input
files looking for special comments to create HTML files describing the parsed components. The
MIND visual editor is an Eclipse IDE plug-in called mindEd. It enables designing components
using a Graphical User Interface (GUI) that generates the components code automatically.
2mindc produces C89 code to cover most C compilers.
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MIND defines annotations to control several aspects of the compilation flow and to define non-
functional properties of the components. Some annotations are used to add specified Fractal
controllers to components in order to enable discovering and/or changing their structure
at runtime. Other annotations provide support for reuse and integration of legacy code,
including C libraries, through the automatic generation of interface and glue code exposing
the legacy code to other components. Another set of annotations are used to specify command
line options to the C compiler and the object linker for a specific component, for example, to
link the component to a particular library. Finally, the MIND compiler provides extension
points that enable configurable actions to happen at specific times during compilation. This
enables several actions such as controlling the component architecture at compilation time,
and applying specific architectural patterns, and adding new annotations to mindc.

4.3. The OSGi Component Model

OSGi [30, 127, 26, 82, 54] is a component model that enables building component-based
Java applications, and running them side-by-side on the same Java Virtual Machine. The
OSGi framework is a platform that provides various services to running applications, and
enables installing, updating and uninstalling individual applications without restarting the
platform.

4.3.1. Component Model Description

In the OSGi component model, an operation-based interface (see Definition 1.4) is represented
by a Java package, where operations are Java methods defined by the classes belonging to
the package. A required interface is called an imported package, and a provided interface is
called an exported package.

An OSGi component is a Java object, called a bundle, and identified with a positive integer
bundle ID that is unique within the running platform instance. A bundle is loaded from
an archive using a dedicated Java class loader (see Section 2.2.1) that confines the bundle
implementation into a separate Java name space. The archive holds meta-data describing the
bundle, e.g., exported packages, imported packages, name, vendor, version, implementation
entry point, etc. The implementation of a bundle is commonly provided as Java classes (see
Section 2.2) included in the archive, but it can also be platform-specific machine code loaded
by the Java Virtual Machine, i.e., Java native libraries. An OSGi application is merely a set of
bundles, and there is no notion of composite in this component model.

In order for a bundle B1 to invoke a method M2 defined in a class C2 belonging to a package
P2 provided by a bundle B2, three conditions are necessary: (1) B2 exports P2, and (2) B1
imports P2, and (3) if M2 is a static Java method, then B1 calls M2 via a Java reference to C2,
otherwise, B1 calls M2 via a Java reference to an object of C2. If C2 is rather an interface,
then B1 can only call M2 via a Java reference to an object implementing the interface C2. In
fact, OSGi bindings are represented by Java object references.
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4.3.2. Common Details of OSGi Implementations

The OSGi framework is based on Java and it is built to run multiple OSGi bundles on one Java
virtual machine. This gives OSGi the ability to provide fast cross-bundle communication, and
Java code isolation, and hot-swapping support.

Fast Cross-Bundle Communication. All OSGi bundles run in the same JVM inside the
same memory address space. Consequently, communication between bundles happens via
local Java method invocation (local procedure calls), making cross-bundle communication as
fast as internal bundle communication. OSGi avoids the expensive cost of call serialization
performed by common remote procedure call technologies, e.g., RPC [118], RMI [133],
Incommunicado [102].

Code Isolation. At any given time, each bundle is associated to one dedicated Java class
loader that loads the classes contained inside the archive of the bundle. Based on its class
loader, each bundle can define its own security policy for its classes, which defines their
access to system methods and to classes of other bundles. OSGi controls the accessibility
of classes loaded by the class loader of each bundle. A bundle can choose to export some
of its classes, i.e., to make them accessible to other bundles. Classes that are not exported
cannot be accessed from outside the bundle. This control of accessibility is possible due to
the process needed to access a class in Java, which goes as follows: In order for a class C1
loaded by a class loader L1 to access a class C2 loaded by a class loader L2, C1 must access
L2 first, asking it to resolve C2. L2 can forbid access to C2 in order to isolate C2 from C1.

In Java, two classes with the same name, loaded from the same class file using different class
loaders are considered different types, as described in Section 2.2.1. Based on this fact, OSGi
can load classes inside bundles with no risks of name conflicts, as each class loader defines a
private name space, which enable each bundle to define its own version of the classes. This
is particularly useful in OSGi, because it allows loading two versions of the same bundle
simultaneously This allows, for example, to upgrade a bundle and while keeping previous
versions loaded in order to preserve backward compatibility.

Hot-swapping. OSGi implements hot-swapping to load, unload and update archives on
the fly. Archive loading and unloading is based on Java class loaders, which implement lazy
loading, i.e., classes are loaded when they are accessed the first time. In order to update a
bundle B, the following procedure is performed (see Figure 1.5):

1. OSGi creates a new class loader which loads the new version of the archive.

2. OSGi associates B with the new class loader, and it removes the association with the
previous class loader.

3. OSGi broadcasts a message to all bundles indicating that B was updated. Bundles
receiving this message should remove their references to B. Once all references to
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the previous version of the bundle are removed, the previous class loader becomes
unreachable (see Section 2.2.2).

4. The garbage collector should remove the previous version of the bundle from memory.

The updated bundle keeps using the same bundle ID as the previous version.

Each archive A is loaded using a class loader
L. Initially, the bundle B is associated
with the class loader L1.0. Updating B from
version 1.0 to version 2.0 implies creating
L2.0, then loading A2.0 using L2.0, then
associating B with L2.0 instead of L1.0.

Non-volatile
memory

Memory heap
Java Virtual Machine

A1.0

A2.0

L1.0

L2.0 Ar
ch
iv
esClass

loadingB

(B, L)

Figure 1.5: OSGi bundle update.

4.4. The OSGi Declarative Services Component Model

Declarative Services [126] is a component model that is based on the OSGi framework, for
creating components that publish or use services [103]. Being declarative, publishing and
consuming services do not require explicit Java code. Instead, it is specified as component
meta-data and it is automatically handled by the Declarative Services subsystem in the OSGi
framework.

In the Declarative Services component model, an operation-based interface (see Definition 1.4)
is represented by a Java interface, where operations are Javamethods defined by Java interface.
A required interface is called a used service, and a provided interface is called a provided
service.

A Declarative Services component is a Java object, called a component, and identified with
a name. A component is defined by an OSGi bundle, and it is loaded from an OSGi archive
by the Declarative Services subsystem in the OSGi framework. Therefore, the component
lifetime is bounded by the lifetime of the bundle defining it. The archive holds meta-data
describing the component, e.g., name, provided services, used services, implementation
class, etc. The implementation of a component is provided as Java classes (see Section 2.2)
included in the archive. There is no notion of composite, as a non-trivial set of components
rarely conforms to the Declarative Services component model.

In order for a component C1 to invoke a method M2 defined in an interface 2 provided
by a component C2, three conditions are necessary: (1) C2 provides 2, and (2) C1 uses 2,
and (3) C1 calls M2 via a Java reference to an object O2 created by C2, and implementing
2. In fact, bindings are represented by Java object references in the Declarative Services
component model.
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5. The Heterogeneity of the Smart Home

The smart home devices and applications provide services that are very different, not
only functionally, i.e., features provided, but also non-functionally, i.e., quality of service,
performances, etc. In order for applications developed by different service providers to inter-
operate, standardized service contracts need to be defined. The rapid evolution of applications
implies that they need to be upgradable individually without breaking dependent applications,
which requires a low coupling between applications. The Service-Oriented Architecture
(SOA) [103] fulfills these needs by enabling communication between applications via service
contracts, called interfaces. This architecture keeps coupling between applications very
low by dynamically binding applications providing services to applications depending on the
services, allowing service consumers to “roam” between different service implementations
provided by registered service providers. Furthermore, middlewares implementing the
service-oriented architecture are often compatible with various component models, and with
hot-swapping mechanisms.

This section describes the service-oriented architecture, and presents two examples of
middlewares implementing it.

5.1. The Service-Oriented Architecture

To begin, a service can be defined as follows:

Definition 1.7 (Service, defined by MacKenzie et al. [78]). “A service is a mechanism to
enable access to one or more capabilities, where the access is provided using a prescribed
interface and is exercised consistent with constraints and policies as specified by the service
description.” [78]

The service-oriented architecture is based on three parts: (1) a set of tiers providing a set of
services, a.k.a., service providers, and (2) a set of tiers asking for a set of services, a.k.a.,
service consumers, and (3) a service registry. Services are formalized as contracts (a.k.a.,
interfaces) between service consumers and service providers. This architecture decouples
the consumer of a service from its provider by introducing a service registry in between, as
shown in Figure 1.6.

In a service-oriented architecture, every service consumer registers its dependency on a
set of services it needs to invoke, as illustrated in Figure 1.6a. When a service provider
starts providing a service it implements, it registers the service in the service registry, as
shown in Figure 1.6b. The service registry then looks for service consumers that depend
on the provided service, and when such service consumers are found, they are notified of
the availability of the service, and they are provided with bindings that enable invoking the
service.

When a service provider stops providing a service S, it notifies the service registry, which
starts by looking for other service providers that implement the same service S. If such
service providers are found, then the service registry notifies the consumers of the service S
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(a) 1 Service consumers register themselves in
the service registry. 2 Service consumers
then wait to be notified for newly available
service providers.
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(b) 1 Service provider register itsef in the service
registry. 2 Service consumers are notified
for the newly available service provider. 3
Service consumers invoke the service offered
by the service provider.
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Service
Consumer 1

Service
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Service
Provider 1
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(c) 1 Service provider unregister itsef from the service registry. 2 Service consumers are notified
for the unavailability of the service provider. 3 Service consumers detach themselves from the
service provider.

Figure 1.6: Scenario of service discovery and service extinction in the Service-Oriented
Architecture.

that they need to update their references to another service provider implementing S. If no
other service providers provide S, then the service registry notifies the consumers of S that
they need to reset their bindings to S and wait for another service provider. This procedure
is briefly illustrated in Figure 1.6c.

5.1.1. The Service Registry

The service registry is basically an interactive service directory. Each service provider
registers itself in the service registry to expose its provided services (see Figure 1.6b). Each
service consumer asks the registry for services fulfilling certain functional and non-functional
criteria. If the service registry finds a corresponding service, then it returns a service binding
to allow the service consumer to communicate with the service provider and invoke the
operations defined by the service.

When configured, the service registry notifies service consumers when new services are
registered and available for use. Services can appear and disappear at any time in the service
registry (see Figure 1.6c) unless otherwise specified via, for example, Quality of Service
contracts.
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5.1.2. The Whiteboard Design Pattern

Service providers often need to notify service consumer about events happening, in which
case they behave as event sources. Event sources often implement the “Observer” [114, 48]
design pattern in order to notify about events, by allowing listeners to register their event
handlers which will be called when the events occur. For this, an event source would typically
implement a private registry to store references to event handlers that will be called later.
But, as the service-oriented platform already provides a service registry, that registry can
be reused by event sources in order to simplify event notification. Kriens and Hargrave
[72] call this reuse the “Whiteboard” pattern, in which event listeners do not need to track
event sources and register themselves within the event sources. Instead, each event listener
registers its event handling interface as a service in the service registry. When an event
source needs to send an event notification, it invokes the event handling interfaces registered
by all event listeners in the service registry.

5.1.3. The Publish-Subscribe Design Pattern

The service registry abstracts and simplifies service discovery. The whiteboard pattern also
simplifies the implementation of event sources and event handlers by reusing the service
registry. However, in order for an event source to invoke an event handler, the event handler
must implement a specific interface provided, or agreed upon, by the event source. This
coupling is what the publish-subscribe pattern aims to decouple, by defining a messaging
protocol that is more flexible than coupled interfaces. This implies that an event source, called
a publisher, does not need to be aware of the presence of even handlers, called subscribers,
and does not impose when and how these subscribers receive event notifications.

In the publish-subscribe pattern, messages are characterized by topics, a.k.a., classes3.
The publish-subscribe pattern requires a message-oriented middleware that receives event
notifications from publishers and notifies subscribers. A subscriber registers itself with a set
of topics. When a publisher wants to notify about an event, it sends a message associated with
a specific topic into the message-oriented middleware, which, in turn, notifies subscribers for
that particular topic about the event. Notifications can be delivered to subscribers in various
ways, and they can be delivered immediately or deferred.

The publish-subscribe design pattern in illustrated in Figure 1.7, where, for instance, Pub1
sends events tagged with “Lighting” and “Energy” topics to the message-oriented middleware,
which, in turn, routes lighting-tagged events to Sub1 and energy-tagged events to both Sub2
and Sub3.

5.2. OSGi as a Service-Oriented Architecture

In addition to the component model defined by OSGi (see Section 4.3) and by OSGi Declarative
Services (see Section 4.4), OSGi [30, 127, 26, 82, 54] can also be used as a service-oriented

3Not to be confused with object-oriented classes, e.g., Java classes.
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Figure 1.7: Publish-Subscribe Design Pattern.

platform to build and run component-based and service-oriented Java applications. OSGi
not only provides a service registry that is compatible with the whiteboard design pattern,
but also provides a message-oriented subsystem, called EventAdmin, that enables using the
publish-subscribe design pattern.

OSGi. The OSGi framework implements a public service registry for use by all service-
oriented OSGi applications running on the platform, via a service registry API. An OSGi
bundle can register new services at runtime, or unregister services it previously registered.
A bundle that consumes a service can track the registration of that service in order to be
notified when the service is registered by some bundle. The service registry can be queried
for services matching a specified filter involving its name, properties, etc.

OSGi Declarative Services. The OSGi Declarative Services describes a component model
where services are first-class citizens that can be published and consumed merely using
meta-data, and that have a defined life cycle, and that can be automatically configured. The
lifetime of a service is still bounded by the lifetime of the bundle containing it. The service
registry API is no more necessary for service registration or tracking, as that is performed
automatically by the Declarative Services subsystem guided by the meta-data describing the
services, stored in archives.

6. The Open and Embedded Aspects of the Smart Home

The openness of the smart home gateway implies hosting multiple applications delivered
by multiple untrusted tiers and running simultaneously. As tiers are untrusted, some
isolation needs to be achieved between applications developed by different tiers. The
mechanisms needed to achieve this isolation depend on the nature of the applications to
isolate. Furthermore, even when applications are isolated, they still need to be able to
communicate easily and as fast as possible, in order to provide integrated services to the
end-user. Moreover, the limited hardware resources shared between applications running on
the embedded smart home gateway raise the risk of resource conflicts. Resource monitoring
is a necessary mechanism to detect when these resource conflicts happen, as a prior step to
resolving them.
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This section discusses the implications of the openness of the smart home environment on
the design of the gateway, taking into consideration its hardware constraints. We discuss
different isolation mechanisms based on hardware protection, virtualization, exokernels, and
programming language safety. We also discuss mechanisms to monitor resource conflicts in
different software environments. Then we illustrate a concrete resource conflict example:
stale references.

6.1. Isolation based on Hardware Protection and Virtualization

An embedded gateway that needs to run native applications, for example due to hardware
resource constraints, will need a mechanism to isolate the native applications. The mechanism
needs to provide a good level of isolation, while being as lightweight as possible, and allowing
easy and fast communication between isolated applications. This section presents common
mechanisms used to isolate applications based on hardware protection and virtualization
mechanisms.

6.1.1. Process Protection

A process [37, 94] is an operating system abstraction that runs an application in a virtual
memory [42, 61, 49, 69] address space. A program running in a process accesses memory
using virtual addresses which are only meaningful in the context of the process. A memory
region can only be accessed if it was allocated. Memory allocation happens by (1) address
reservation then (2) memory mapping. Because only the operating system kernel can map
memory using Translation Look-aside Buffers (TLB), the kernel ensures that the physical
memory blocks accessed by the processes do not overlap, which effectively isolates the
memory of each process. Figure 1.8 illustrates this memory mapping.
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Non-volatile memory
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Legend: TLB: Translation Look-aside Buffer. VAS: Virtual Address Space.

Figure 1.8: Virtual address translation in processes.

Processes also isolate Input/Output (I/O) to various kind of files, as every process has a
separate file descriptor table. This enables, for example, to dedicate each unnamed file to
the process that created it, e.g., unnamed pipes (FIFO), unnamed sockets.
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6.1.2. Sandboxing

A sandbox is a virtual environment that severely limits the features provided to the sandboxed
program by the operating system and the running programs and the hardware. The
limited features given to the sandboxed program often translate to (1) a limited Application
Programming Interface (API) the program can call, and (2) a limited set of machine instructions
the program is allowed to execute. This effectively reduces the attack surface available to the
program, and consequently increases the overall security of the system running the sandbox.
Generally, a sandbox implements static and runtime security checks, and proxies the calls to
its API toward the API provided by the underlying operating system, and runs the program
code directly on the physical processors. This is illustrated in Figure 1.9.

Program Static &
Runtime checks Sandbox API

calls

CPU
Operating
System API

Sandbox
calls

Safe instructions

Figure 1.9: Sandbox structure.

The notion of sandboxes was introduced by Wahbe et al. [132] in the context of software-based
fault isolation. Goldberg et al. [53] extended the sandbox notion to isolate untrusted helper
applications, whereas the Native Client [135] defines a sandbox subsystem that enables
running untrusted native code inside the Web browser.

6.1.3. Virtual Machines

A virtual machine [115, 111, 43, 94] is a binary translator from a source Instruction Set
Architecture (ISA) to a target Instruction Set Architecture. The general definition of virtual
machines allows for the source and/or target architectures to be virtual (V-ISA). However, this
section discusses virtual machines where the source and target instruction set architectures
are both real, i.e., implemented by real processors. Virtual machines often emulate the whole
source hardware architecture, which makes them very accurate emulators, but often at a
very prohibitive overhead. QEmu [18], VirtualBox [96] and VMWare Workstation [131] are
common examples of virtual machines. Paravirtualization is a mechanism that significantly
reduces the overhead of virtual machines by deferring some frequent virtualization tasks to
a hardware chip that is driven by a hypervisor, i.e., a small software interface between the
real hardware and the virtualized operating systems. Different forms of paravirtualization
hardware chips are included in modern processors, e.g., AMD-V, Intel VT-x, Intel VT-d, VIA VT.
Examples of software hypervisors include Xen [14] and BHyVe [124].

A virtual machine only emulates the source hardware, but it still requires the software
compatible with that hardware to be installed in the virtual machine in order to make use of it.
As all the hardware resources are emulated, virtual machines provide an excellent isolation
level of almost all resource types.
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6.1.4. Containers

A container is a group of processes that has a dedicated container context. The container
context contains a process table, a user table, a network stack, a root file system, etc. This
container context effectively isolates the group of processes from other processes running in
the system outside the container. Therefore, a process inside the container only sees other
processes running inside the container, and users defined inside the container, and network
traffic happening inside the container, and files created inside the container or inherited
from the outside file system. The Figure 1.3 shows the structure of Linux containers [77].
There are other container technologies, e.g., Solaris Zones [95], FreeBSD Jails [106], and
OpenVZ [70, 121].

Hardware
Host Operating System

LXC Manager Privileged
mode

Unprivileged
mode

Host App. 1

Host App. 2

LXC Controller LXC ContainerLXC Container

Guest App. 1

Guest App. 2

Guest App. 3

Figure 1.10: Linux Container (LXC) structure.

It is worth noting that processes running inside the container run on top of the same kernel
as other processes, so there is no binary translation or emulation. This is why applications
running inside containers run at full native speed.

6.1.5. Exokernels and Library Operating Systems

An exokernel [45, 2, 105, 16, 66] is an operating system kernel that separates resource
protection from resourcemanagement. The exokernel architecture is motivated by the simple
fact:

“The lower the level of a primitive, the more efficiently it can be implemented,
and the more latitude it grants to implementors of higher-level abstractions.” [45]

The exokernel securely multiplexes and exports available hardware resources through a low-
level interface to untrusted library operating systems which, in turn, manage those resources
and implement higher-level abstractions such as Virtual Memory Management (VMM), Inter-
Process Communication (IPC), etc. Applications developers select libraries or implement their
own ones. This way, the exokernel OS architecture allows application-level management of
physical resources. This enables application-specific customizations of traditional operating
systems abstractions by extending, specializing and even replacing them, which promises
a faster evolution of operating system features, while maintaining the system integrity.
Examples of the exokernel architecture include the Aegis experimental exokernel [45], the
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ExOS experimental library operating system [45], the DrawbridgeWindows 7 library operating
system [105], the Xok exokernel [66].

Resource Access Control. In order to secure access to physical resources, an exokernel
uses three techniques: (1) Secure binding, i.e., applications securely bind to machine
resources and handle events, and (2) Visible resource revocation, i.e., applications participate
in a resource revocation protocol and know which resources are revoked and when, and
(3) Abort protocol, i.e., the exokernel can break, by force, the secure bindings of uncooperative
applications. In order to allows applications to tailor their resource allocation requests to
available resources, the exokernel exposes book-keeping data structures, in either read-only
or mutable form, such as disk arm positions, cached entries of the Translation Look-aside
Buffer (TLB), etc.

Secure Bindings. A secure binding is a protection mechanism that decouples authorization
from actual use of resources. It enables the exokernel to protect resources without
understanding them, e.g., protect disk access without understanding the file system structure.
A secure binding is a type of capability, i.e., an unforgeable reference to a resource. Secure
bindings are based on (1) hardware mechanisms, e.g., processor privilege levels, hardware
ownership tags, etc., and (2) software caching, e.g., software Translation Look-aside Buffer
(TLB), and (3) downloading application code into the kernel. Downloading application code
into the kernel enables dynamic resource multiplexing without hard-coding management
knowledge into the exokernel. It also enables executing preliminary application logic without
having to schedule the application process, therefore avoiding the kernel boundary crossing
and process context switch.

Arbitration Policy. The exokernel includes a policy to arbitrate between competing library
operating systems. The exokernel needs to determine which allocation requests to grant
and from which applications to revoke resources. This is why it must determine the
absolute importance of different applications, their share of resources, etc. Appropriate
arbitration policies are determined by the environment rather than by the operating system
architecture.

As management is deferred to application-level library operating systems, it is no more
protected inside the kernel, so it can be altered in a buggy or malicious way. Even though
the scope of these alterations remain local to the application, they can cause system-wide
problems by altering stateful hardware resources accessed by other applications. This case
is rarer in traditional systems as they take care in the Hardware Abstraction Layer (HAL)
to manage the hardware resources correctly, and the HAL can only be altered by trusted
applications. This threat becomes more important if the application is of high priority.
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6.1.6. Comparison of Isolation Mechanisms based on Hardware Protection and
Virtualization

In order to choose a mechanism for isolation based on hardware protection and virtualization,
we need to consider at least two key aspects of each mechanism: (1) what is the performance
overhead of using the mechanism, and (2) how much isolation is provided by the mechanism.

On the performance scale, processes are the winner, because (1) they use no extra disk
space, and (2) they use very little extra memory and processing power, i.e., mainly for
processor context switching. Given this fact, we take processes as a baseline when describing
the overhead incurred by other mechanisms. Sandboxes hold the second position on the
performance scale. A sandbox incurs the following overheads: (1) more memory and disk
space to hold the sandbox management software and runtime, and (2) more processing to
perform static and dynamic verification of code and data. Containers occupy the third position,
even though they do not incur any additional processing overhead compared to processes4.
The issue is that a container needs a separate set of user land programs, which requires more
disk space, and a little more memory. This space waste can be avoided using copy-on-write
mechanisms available in memory management subsystems and in recent file systems, e.g.,
ZFS [24], Btrfs [35]. Exokernels and library operating systems hold the fourth position, even
though their performance competes with containers. Like containers, exokernels do not incur
additional processing overhead compared to processes4. However, each application requires
a separate library operating system to be loaded in memory, which implies a memory usage
higher than containers but far lower than virtual machines [105]. Exokernels do not forcibly
need a disk usage higher than processes. On one side, and unlike exokernels, containers
run the hardware resource management logic in the kernel and share it across contained
applications, which provides (1) higher state consistency guarantees, notably for stateful
hardware, and (2) more resource-aware security guarantees, as the exokernel controls access
only to hardware resources. Exokernels, on the other side, give more resource control to
applications, and make the operating system more flexible, as library operating systems are
easier to safely change than traditional operating system kernels. Finally, virtual Machines
hold the last position on the performance scale, as they need more memory and disk space
than all other mechanisms in order to hold the operating system and the applications to
emulate. Virtual Machines also incur a processing overhead that is higher than sandboxes in
most cases, even when paravirtualization is used.

We argue that the protection provided by processes is not enough to run multiple untrusted
applications. The processing and memory and disk overhead incurred by virtual machine
emulation is unaffordable in embedded systems. Sandboxes are less desirable than containers
because they incur a high processing overhead, and they severely limit access to the operating
system Application Programming Interface (API). Exokernels give an interesting promise to a
flexible, yet secure, hardware resource management, but they still lack thorough security and
state consistency analysis in the current state of the art [45, 2, 105, 16, 66]. Furthermore,
exokernels require deep changes in operating system design, and they are not currently
implemented in operating systems commonly used in the embedded industry, e.g., Linux,
NetBSD, FreeBSD, Solaris, Windows, etc. Therefore, we argue that, currently, containers are
the best compromise between these five mechanisms, in terms of isolation and performance,
especially when copy-on-write optimizations are used to significantly reduce disk and memory

4 Initialization time excluded.
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usage. Still, containers do not provide easy and fast communication mechanisms, so such
mechanisms need to be implemented in order to use containers in the smart home gateway.

6.2. Isolation based on Language Type Safety

Some programming language provide safety guarantees that ensure the following: (1) memory
accessed by a program code will always be bounded to a specific region, and (2) memory
blocks are typed, and access to a memory block of a specific type will never perform an
operation that is unsupported by that type. These safety guarantees are enough to provide
a process-like protection of concurrent applications, but without the need for hardware
protection mechanisms such as the Translation Look-aside Buffers (TLB). This software-based
protection combines static and dynamic verification by the compiler and the virtual machine,
and it is used in many existing solutions to isolation, including the Singularity [60] operating
system which is based on the safety of the Sing# programming language derived from C#,
the SPIN [19] operating system which is based on the safety of the Modula-3 programming
language, and the KaffeOS [12] platform which is based on the safety of the Java programming
language.

6.2.1. A Typical Example: The Java Language and the Java Virtual Machine

In this section, we expose details of the Java language [55] and the Java Virtual Machine
(JVM) [76], in order to support the descriptions of our contributions in the Chapters 3
and 4. Even though we used a JVM implementation based on VMKit [51] to prototype our
contributions, the descriptions included in this section also apply to common Java virtual
machines.

Type Safety of the Java language. Java is a programming language that is based on
a static and safe type system. A type system is static when the checking of type related
operations in a program can be performed using static verification of the program source
code. A type-safe programming language does not allow operations or conversions that violate
the type system rules. The Java type system forms the basic security guarantee of programs
running on several platforms, including Android [113], KaffeOS [12] and MVM [40].

Structure of the JVM. The JVM is a High-Level Language Virtual Machine [115] that loads
and executes Java byte code, a.k.a., Java classes (see Section 2.2). Based on Java byte code,
the Java virtual machine offers binary portability across different architectures, and ensures
safe code execution based on static and dynamic (i.e., runtime) verification. Many Java
virtual machine implementations were developed, based on the public JVM specifications [76],
including Hotspot JVM, Jikes Research Virtual Machine [1], Dalvik Virtual Machine [93, 25],
VMKit [51]. A JVM holds many subsystems that interact heavily in order to execute Java byte
code.
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Primordial class loader: This subsystem [98] loads Java byte code, then it verifies its
validity. The verification procedure is essential to guarantee the safety of the code. For
example, accesses to arrays are checked not to exceed the array length. The Java byte
code and meta-data are then fed to the machine code generator in order to produce
executable code. The Java code can also define new class loaders that can be based
on the primordial class loader. This allows Java applications to control how classes are
loaded. It can also be used to ensure name space isolation for a group of classes by
loading them using dedicated class loader.

Machine code generator: This subsystem is either an emulator, or a binary translator, or
a mix of the two [115]. It transforms the internal structures describing the byte code
into an executable machine code that is either run on the fly in the case of emulators,
or run after generation and optimization passes in the case of binary translators. A
binary translator is also called a Just-In-Time compiler (JIT compiler) as it is often a full
compiler built into the JVM to compile Java byte code right before it is executed the
first time.

Garbage collector: It is an automatic memory manager that takes care of terminating
unreachable objects, and reclaiming their memory, and unloading byte code and
machine code that is no more needed. The garbage collector can operate using different
algorithms. Some of those algorithms require the JVM to pause executing all byte code
and native code, in order to reclaim garbage objects. Garbage collectors using these
algorithms are called Stop-the-world garbage collectors, and those that do not require
this are called concurrent garbage collectors.

Objects finalization: This subsystem is responsible of terminating unreachable finalizable
objects that the garbage collector chooses the reclaim. A finalizable object is an object
whose implementation overloads the java.lang.Object.finalize()method. Termination
happens by running the finalize() methods of the specified objects.

Synchronization: This subsystem is responsible of providing synchronization primitives
to the Java byte code, e.g., monitors, locks, semaphores, etc. This subsystem can be
implemented in the JVM [13] or directly in the underlying operating system.

Java runtime: The Java language is based on a set of standard classes providing support
for various programming tasks, and called the Java runtime. The Java runtime supports
the Java object model, Java reflection and persistence, common data structures and
containers, etc.

6.2.2. Multi-Tenancy in the Java Virtual Machine

In order to isolate Java applications, the classic method is running each application in
a dedicated Java virtual machine, which offers a good isolation level between untrusted
applications. In an embedded gateway based on Java, the hardware constraints do not allow
running multiple Java virtual machines. Therefore, one virtual machine needs to be shared
between all the running applications, which raises the need for a multi-tenant [62, 11, 67]
Java virtual machine, where the term “tenant” refers to an application vendor, i.e., a tier.
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A multi-tenant Java virtual machine shares the Java runtime code and the virtual machine
subsystems between all running Java applications. Figure 1.11 illustrates the structure of a
multi-tenant Java-based gateway hosting multiple applications from multiple tenants.

Hardware & Operating System

Java Virtual Machine & RuntimeTenant 0

Operator PlatformTenant 1

Tenant 10 Tenant 30Tenant 20

App10 App11

App13

App20

App21

App30 App31

App32 App33

Legend: App1,...,App33: applications.

Figure 1.11: Multi-tenant Java-based execution environment

Partitioning the JVM. Majoul et al. [79] propose to partition the multi-tenant Java virtual
machine into several isolated execution environments isolated from each another. Applications
are grouped by trust level, and deployed in the partition associated with that trust level.
Applications deployed in different partitions can only communicate using communication
channels which are implemented in a protected isolation layer, which enforces security and
safety policies on those channels. Kächele and Hauck [67] also argue that partitioning is
necessary in the context of Cloud component-based applications, to enable better scalability.
The need for easy and fast communication between different applications is the reason this
mechanism is insufficient for our needs, especially given that neither Majoul et al. [79] nor
Kächele and Hauck [67] discuss the complexity and the performance overhead of cross-
application communications.

Consequently, we argue that multi-tenant virtual machines that use this kind of partitioning
are unsuitable for the smart home gateway, and that tenants running in one JVM should be
able to communicate directly, easily and rapidly.

6.3. Discovering Resource Sharing Conflicts via Monitoring

The smart home applications share the same gateway, thus they share the hardware resources
available on the gateway, e.g., processor power, memory space, network bandwidth, etc. The
gateway is a hardware constrained, long-running system that hosts untrusted applications.
This highers the risk of resource sharing conflicts on the smart home gateway. This section
describes resource sharing conflicts, and describes the mechanisms needed to discover them
in various software environments.
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6.3.1. Resource Sharing Conflicts

Most resources are supposed to be shared by multiple applications at the same time, and
each application is supposed to use a “reasonable” amount of each resource. For resources
that can be held by one application at a time, the holding application is supposed to hold on
the resource for a “reasonable” amount of time, before releasing it. The term “reasonable”
is a complex predicate that depends on many factors, including the nature of the resource,
the nature of running applications, for how long the resource was used, the judgment of the
resource management system (be it human or not), etc. For example, on a system running
ten applications, it might seem unreasonable for one application to use 90% of the available
physical memory for a long duration. An application that reads a configuration file normally
should not lock the file for too long, otherwise a configuration agent might not be able to
modify the file when needed.

A resource sharing conflict happens when an application uses the resource “unreasonably”,
while another application requests the resource. For example, if an application fails to allocate
memory because another application is using the majority of system memory since a long
time, then a memory space sharing conflict is declared. When an application fails to perform a
HTTP request for a long time because another application is using all the network bandwidth,
a network bandwidth sharing conflict is declared.

Resource sharing conflicts are common in constrained systems running untrusted code for
long periods of time. When resource sharing conflicts cannot be prevented, a resource
management system needs to discover when they occur, as a first step toward resolving them.
Discovering resource sharing conflicts raises the need for resource monitoring mechanisms.
A resource monitoring mechanism does not judge if a resource sharing conflict happened.
Rather, the data reported by the monitoring subsystem is used to help decide when a conflict
happens, and what should be done about it. Therefore, it is required that the data reported by
the monitoring subsystem be as meaningful as possible, that is, accurate, sufficiently precise,
at the “right” granularity, etc.

6.3.2. Resource Monitoring in Different Environments

Resource monitoring is implemented in many existing operating systems and software
environments. The Linux kernel provides Control Groups (CGroups) [84] which enable
resource monitoring and reservation based on a hierarchy of processes. Linux CGroups
allow process-based monitoring and reservation of memory space, processor usage, network
bandwidth, etc. FreeBSD provides Performance Monitoring Counters (PMC) [71] that expose
the hardware performance monitoring facilities to the running programs. FreeBSD PMC
enable profiling of, not only kernel resources, e.g., kernel threads and hardware events, but
also applications resources, e.g., processes, call graphs, threads, dynamically loaded code.

Monitoring resources in Java was investigated in many previous works. JRes [41] defines a
framework for resource monitoring and resource limiting, based on runtime configuration
of resources available to threads, and callbacks that run when resources are exceeded.
JRes implementation is based on byte code rewriting and native code. VisualVM [100], Java
Management Extensions (JMX) [52] and Java Virtual Machine Tool Interface (JVM-TI) [99]
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are examples of industrial tools and frameworks providing means to monitor resources in
Java applications.

The method presented by Miettinen et al. [86], and refined in A-OSGi [46] and also in our
previous work on adaptive monitoring [83] address CPU usage monitoring of OSGi bundles.
These solutions show that observing resource consumption at the bundle granularity can
be performed without modifying bundles. The goal of adaptive monitoring was to provide
support for the on-the-fly activation/deactivation of bundle (service) bindings monitoring
without stopping bundles and losing states.

In Chapter 4, we present our third contribution: an OSGi-aware memory monitoring system.
Our monitoring system is transparent to OSGi application developers, and it does not have
any special isolation requirements. It reports monitoring results at tier granularity, and it
accurately accounts for various interactions between tiers.

6.3.3. Direct and Indirect Accounting

When an actor A calls a service provided by another actor B, B consumes an amount of
resources in order to provide the service. We say that A provides the intent to execute the
service, and B provides the logic to execute the service. Therefore, the resources needed to
provide the service are consumed both because (1) A asked for the service, and (2) because
B provided the logic of fulfilling the service. Thus, resource consumption responsibility
is actually shared between both actors. Resource accounting is about determining the
distribution of the shared responsibility of resource consumption among the actors.

Definition 1.8 (Direct Resource Accounting). Direct resource accounting is based on the
following idea: the actor that controls the logic flow and directly consumes resources is
entirely responsible of resource consumption. Simply put, the currently running method is
accounted for the resources it consumes.

For example, the memory allocated by executing code provided by an actor is accounted to
that actor.

Definition 1.9 (Indirect Resource Accounting). Indirect resource accounting is based on
another idea: the actor that asks for a service is entirely responsible for the resources
consumed to fulfill that service. Simply put, the caller of the currently running method is
accounted for the resources consumed by the method.

For example, the memory allocated by executing a service provided by an actor is accounted
to the actor that asked for the service in the first place.

Most existing monitoring mechanisms are not accurate enough, mainly because they perform
either direct accounting or indirect accounting, for all situations. To explain the inaccuracies,
we use the following simple rule (Definition 1.10):

Definition 1.10 (Accurate resource accounting). Resources used to provide a service are
accounted to the bundle that requests the service.
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Direct Accounting Issues. I-JVM [50], for example, accounts for resources inaccurately
in many situations. I-JVM is a Java Virtual Machine that isolates OSGi bundles to a certain
extent, and that enables only direct memory and CPU accounting, i.e., resources consumed
during a method call are always accounted to the called bundle. This method produces
inaccurate monitoring statistics when a bundle calls a service method provided by another
bundle. Direct accounting implies that the called bundle providing the service is accounted
for resources used to provide the service, which is the opposite of the Definition 1.10 for
accurate accounting. In this situation, an accurate accounting should account the bundle
calling the service method for resources used to provide the service.

Indirect Accounting Issues. Miettinen et al. [86] always perform indirect monitoring by
attaching every thread to one bundle and accounting resources consumed by that thread to
the attached bundle, no matter what code the thread actually executes. This method produces
inaccurate monitoring statistics in some cases, such as bundles that manage a thread pool,
and bundles that notify about events. A bundle that creates and manages threads in a pool will
have all the threads attached to it, so resources consumed by the threads will be accounted
to that bundle. This accounting is inaccurate, because a pool thread executes code only when
requested by another bundle to do it. Therefore, it is the other bundle that requests the thread
pool service. This is why an accurate accounting should account resources consumed by the
pool thread to the bundle requesting the code execution. An event source bundle notifies
about events when they occur, often by calling event handlers in a thread that it creates. In
this situation, indirect accounting implies that resources consumed by event handlers will
be accounted to the event source bundle. This accounting is inaccurate, because an event
handler is called only because it was registered by another bundle for that particular event.
Therefore, it is the other bundle that requests the event notification service. This is why an
accurate accounting should account resources consumed by the event handler to the bundle
implementing it.

6.3.4. Accounting for Resources Consumed during Cross-Application Interactions
in OSGi

Authors of existing work about monitoring resources in OSGi [46, 86, 83] admitted that,
during a service method call between two applications, correct resource accounting needs
information related to business logic between the caller application and the service being
called, which is neither provided by OSGi nor Java. This is why existing OSGi-related resource
monitoring systems avoid the problem instead of solving it.

To avoid this problem, I-JVM runs each bundle in a dedicated isolate5, composed of a separate
class loader and a private copy of some Java objects, e.g., static variables, strings and
Java.lang.Class objects. Isolates run in the same address space, and objects are passed by
reference between isolates. Each isolate has a context6 that enables access to its own private
copy of objects. Each time a thread executes code from a given isolate, it sets its isolate
context pointer to access the private objects of that isolate. This particularly happens when
cross-bundle method calls are performed, or when methods return, or when exceptions are
5Not to be confused with Java Isolates defined in the JSR 121 [101]
6Called “Task class mirrors” in I-JVM.

30 Koutheir Attouchi



6. The Open and Embedded Aspects of the Smart Home

thrown/caught. This isolate context switch is the reason only direct resource accounting is
implemented in I-JVM. With only direct accounting possible, the authors of I-JVM avoided
addressing the challenge of identifying which bundle should be accounted for the consumed
resources when a cross-bundle call occurs.

Another approach to avoid this problem is delegating it to application developers. In particular,
Makewave [80, 73] and ProSyst [107] follow this approach in their OSGi implementations,
which was taken as the basis for the OSGi standards established by the OSGi Alliance [23].
The ProSyst solution to memory monitoring requires the framework developer and every
bundle developer to call a standardized API method before performing a cross-bundle method
call. The API method indicates to the monitoring subsystem which entity should be accounted
for the resource consumption during the cross-bundle method call. Of course, access to this
API is granted only to trusted entities, e.g., the OSGi framework and the bundles provided
by the OSGi platform operator. Giving access to this API to untrusted bundles can cause
wrong accounting of resources and cause false monitoring reports. This is why third party
service providers sharing the platform cannot access this standard API. This approach is too
intrusive, as it requires explicit effort from developers. Furthermore, this approach does not
work in an environment where untrusted service providers share the platform and interact
directly via local method calls.

6.4. Stale References – A Typical Source of Memory Conflicts

In this section, we first define stale references. Then, we discuss the reasons that make them
a source of a memory conflicts in Java by illustrating their main consequences. Finally, we
describe several approaches that try to resolve the problems caused by stale references.

6.4.1. Stale Reference Characterization

The lifetime of a Java object or class is defined differently depending on the perspective.
Here, we discuss the Java language perspective, and a business logic perspective that defines
additional states on objects and references.

From the Java point of view, an object starts living once it is created and constructed, i.e.,
after executing the new instruction. A class starts living once it is loaded and constructed,
i.e., the first time it is accessed. Furthermore, an object dies when it is no more referenced,
and a class dies when no code from that class is being executed and the class is no more
referenced. A dead object is likely to be collected in the following garbage collection cycle.

From a business logic perspective, the lifetime could be different. For example, an object
might need to be initialized via a call to an initialization method before it starts being useful.
An object could also require explicit termination via a call to a termination method that
makes it unusable, a.k.a., stale, consequently ending its lifetime. For example, an object
that represents the contents of a file becomes usable after calling an open() method to open
the file, and becomes stale after closing the file via a call to a close() method. Figure 1.12
illustrates the difference between the Java lifetime and the business logic lifetime.
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Definition 1.11. From a business logic
perspective, an object that was terminated
is a stale object. Access to the stale object is
considered an illegal operation. A reference
to the stale object is called a stale reference.

Time+ ++ +
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Business logic lifetime
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Figure 1.12: Java object lifetime from different perspectives.

6.4.2. Consequences of Stale References

In frameworks that run multiple applications in a single JVM (e.g., OSGi), each application is
often associated to a class loader that loads its classes, and terminating an application often
boils down to collecting its class loader. In such architecture, stale references cause mainly
the two following problems:

∙ Because the object pointed by a stale reference is stale, making use of that object is
considered an illegal operation from a business logic perspective, i.e., a bug, and such
an access can result in undefined behavior, which compromises the application state
consistency. For applications that control external devices, state inconsistency can
induce unexpected behavior of controlled devices and even threaten the environment
of the devices.

Hot-swapping is often used to update applications by unloading the previous version
and installing the new one. Code that updates some references to the newer version
and keeps holding some stale references to the old version can result in undefined
behavior if it feeds data or objects retrieved from the newer version of the application
to a method of the older version, or vice versa. This can lead to state inconsistencies in
either or both versions of the application.

∙ Due to Property 1.1, referencing a stale object forces the JVM to keep in memory: the
object, and its class, and its class loader, and all the classes loaded by its class loader.
Keeping all these elements in memory causes a significant memory leak, as is disallows
the JVM from collecting the application loaded with the stale class loader, unless the
entire JVM is shut down. This memory leak hinders the availability of long-running
systems because it highers the risk of random allocation failures, a.k.a., out of memory
exceptions, which often render the JVM unstable.

6.4.3. Stale References in OSGi

When a bundle is uninstalled, OSGi removes all references from the framework to the bundle’s
class loader, and broadcasts an event to other bundles asking them to release their references
to that class loader (see Section 4.3.2). The class loader is subsequently considered stale.
When a bundle is updated, OSGi first uninstalls it, making its class loader stale. OSGi then
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creates a new class loader that loads the new bundle archive. Finally, OSGi updates the
bundle information to make it refer to the new class loader, and broadcasts an event to other
bundles asking them to update their references to point to the new version of the bundle.

A stale class loader should not be referenced anymore, in order for the garbage collector
to end its lifetime and reclaim its memory. But, given the Property 1.2, in order to end the
lifetime of a stale class loader, the garbage collector needs to end the lifetime of all the classes
it loaded and all objects of these classes. Therefore, making a class loader stale is equivalent
to making stale all the classes it loaded and all objects of those classes.

Definition 1.12 (Stale References in OSGi). In OSGi, uninstalling a bundle B or updating
it to a different version B+1 makes B stale. This makes stale the class loader of B, and all
classes it loaded, and all objects of those classes. Based on Definition 1.11, access to that
class loader or those classes or objects is considered an illegal operation, and any reference
to one of them is a stale reference.

Service Coroner [47] is a profiling tool that reveals OSGi stale references in testing and
production environments. Experiments made by Gama and Donsez [47], the authors of
Service Coroner, already showed that many stale references exist in several open source
applications and frameworks, as illustrated in Table 1.1. It is worth mentioning that Service
Coroner detects only stale service references. Because there are also many cases of stale
references that go undetected by Service Coroner, we believe that the real amount of stale
references is even higher than what is shown in the Table 1.1.

Application Number of stale references detected
Newton 1.2.3 / Equinox 3.3.0 58

Jitsi alpha3 / Felix 1.0 19
JOnAS 5.0.1 / Felix 1.0 7

Sling 2.0 / Felix 1.0 3

Table 1.1: Stale references found by Service Coroner [47].

Weak References are Not a Solution. The Java specification defines a weak
reference [119] as a Java reference that enables accessing an object without ensuring that the
object will stay alive. If the garbage collector finds that an object is only accessible by weak
references, then it can choose to set all the remaining weak references to null then collect
the referenced object. Weak references are not adequate in the context of OSGi, because a
cross-bundle reference needs to ensure that the referenced bundle stays alive, at least until
the bundle is uninstalled or updated. That is, a cross-bundle reference needs to behave as a
normal reference (a.k.a., strong reference) before the bundle is uninstalled or updated, and
needs to behave as a weak reference after that. This is why using weak references do not
solve the problem of stale references.

6.4.4. Attempts to Avoid Stale References

The two main causes of stale references are running applications in the same address space
while providing the guarantee given by strong references, i.e., strongly referenced object will
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not be reclaimed. Strong references are the default type of references in many programming
languages with automatic memory management, such as Java. This is why frameworks based
on those languages often choose to isolate applications in different address spaces in order
to avoid the problem of stale references. The Multitasking Virtual Machine (MVM) [40],
Android [113], Singularity [60] and KaffeOS [12] are examples of application frameworks
where processes are fully isolated. Isolation is either achieved at the operating system level
by using distinct address spaces or at the process level by using a single address space
while preventing applications to directly share objects. In these frameworks, communication
between applications involves remote procedure calls, which require data marshaling that
add a significant overhead, especially compared to direct procedure calls inside a single
address space.

Incommunicado [102] proposes an API enabling fast communication between isolated Java
applications running on the Multitasking Virtual Machine. Even though it is ten times faster
that regular Java RMI [133], Incommunicado is still hundreds times slower that direct method
calls, as pointed out by Geoffray et al. [50]. Furthermore, in Incommunicado, cross-application
references are weak references, which are not an acceptable solution in the context of OSGi,
as previously indicated.

Stale References are Hard to Debug. Avoiding stale references is challenging for the
OSGi application developer. From the Java point of view, a stale reference is just a Java
reference like any other. Its only specificity is that it crosses bundle frontiers to refer to
an object previously obtained from a bundle that has since been updated or uninstalled. To
manually detect stale references, the developer must track all cross-bundle references in
the source code and carefully check that these references are always kept consistent when
bundles are updated or uninstalled. Since manual checking is difficult and error-prone, we
argue that an automated approach is required. Because a bundle can be uninstalled or
updated by a user, and this is not necessarily apparent in the application source code, the
validity of cross-bundle references cannot be determined by static analysis. Thus, run-time
analysis is required.

6.4.5. Detecting Stale References

Jump and McKinley [65] defines unnecessary references as “pointers to objects the program
never uses again”. Our definition of stale references implies that they are also unnecessary
references. The problem of detecting unnecessary references was investigated by several
existing tools mostly based on heuristics and unsound program transformations. We describe
here some tools used to detect or resolve stale references. The Chapter 3 presents our second
contribution called Incinerator, which is a Java virtual machine subsystem that detects and
eliminates stale references in OSGi-based applications, with a very low overhead.

Service Coroner. Service Coroner [47] is a profiling tool that reveals OSGi stale references
in testing and production environments. It uses Aspect-Oriented Programming (AOP)
techniques to hook up into the OSGi interface calls and traces objects passed between
bundles using Java weak references. Service Coroner does not identify the bundles retaining
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stale references, but it provides intermediary information to help the user identify the buggy
bundles. Service Coroner can run on the same machine as the profiled JVM, or it can run
in distributed mode, where it is controlled remotely. Service Coroner can be used in active
mode, where the user requests repetitive deployment tasks to happen (stop, update,...). This
use case is useful in test environments. Service Coroner can be used in passive mode, where
the bundles are left running undisturbed and reports are generated on user demand. This
replicates the real behavior of the bundles but needs more time to reveal stale references.
This use case is useful in production environments where availability is crucial.

Cork. Cork [65] is an extension to the garbage collector that monitors the runtime evolution
of the volume of references to Java classes, in order to discover situations where references to
a particular class do not stop growing. The volume of references is the number of references
multiplied by the referenced objects sizes. From Cork perspective, if the number of references
to objects of a given class grows continuously, then it is highly likely that many of the references
to that class are stale references. Interestingly, this heuristic incurs a low overhead to be
calculated, and indicates many situations of stale references. Cork is made for long-running
system because it needs to monitor the evolution of references during multiple garbage
collection cycles. In some situations, references are collected sometimes, but not all the time.
Those references actually cause a memory leak, but that leak might not grow indefinitely.
These types of leaks are not detected by Cork.

LeakBot. LeakBot [87] does a good job at detecting probable stale references using a
multitude of structural and temporal heuristics calculated on the object graph. LeakBot
performs detection in two phases. In the first phase, LeakBot ranks candidate leaks, by
(1) eliminating references which cannot be leaks, based on binary metrics, then (2) ordering
the remaining references by likelihood of being leaks, then (3) applying non-linear gating
functions to differentiate more clearly between ordered candidates, then (4) ranking objects
based on the calculated ranks of objects related to them. The second phase aims to give a
more complete picture, that is why LeakBot spots co-evolving regions based on similarity
of evolution patterns of data structures. Then, each co-evolving region is ranked based on
estimated number of leaks inside it. LeakBot goes beyond offline analysis of object graphs,
by sampling the dynamic evolution of co-evolving regions, in order to update the rankings
of these regions. Highly ranked objects are very probable leaks, and highly ranked regions
are likely to contain multiple memory leaks. LeakBot is mainly targeted at server-scale
long-running applications.

Cyclic Memory Allocation. Nguyen and Rinard [90] finds and eliminates certain memory
leaks by looking for m-bounded allocation sites in the program, then using cyclic memory
allocation at those sites. The tool requires running the program on a set of manually crafted
inputs. The executed program is instrumented to look for m-bounded allocation sites, i.e.,
allocation sites that verify the following: “at any time during the execution of the program,
the program accesses at most only the last m objects allocated at that site”. For each of those
sites, if the difference between the number of allocations and deallocations exceeds m, then
there is a memory leak at the site. This is why the tool replaces the allocation mechanism
at each m-bounded allocation site by a cyclic memory allocation mechanism, which can be
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resumed in four points. (1) The first allocations starts by preallocating a buffer holding m
entries suitable for the type allocated at the allocation site, then returns the first entry in
the buffer. (2) Each subsequent allocation merely returns the next entry in the buffer. (3) At
the end of the buffer, the mechanism wraps around by returning the first entry in the buffer,
again. (4) Deallocation is a no-op. This technique is unsound because it relies on accurate
detection of m, which is performed empirically. Wrong estimation of m causes higher memory
usage if estimated m is greater than the real value, and would cause undefined behavior
if estimated m is less than the real value. Furthermore, given the statistics performed by
Nguyen and Rinard [90], half the allocation sites are m-bounded, so the rest of allocation
sites is unsupported by this approach.

Melt. Melt [22] is a memory leak tolerance mechanism for Java. It is a fine-grained memory
paging mechanism working at object granularity instead of page granularity. Melt defines
stale objects as objects that were not accessed since the last garbage collection cycle. When
it spots a stale object, Melt removes the object from physical memory and stores it on disk, in
order to allow the program to run longer and to give developers more data to fix the leaks.
When a swapped object is used again, Melt reloads it from disk and makes it usable again
without semantic changes.

7. Conclusion

This chapter explores the challenges of the smart home, driven by its particular properties:
open, dynamic, in rapid development, heterogeneous, distributed and embedded. Each
property comes with a set of challenges, and the composition of these properties also requires
some trade-offs to be made, and custom solutions to be studied.

The dynamic aspect of the smart home implies the need for hot-swapping of applications, i.e.,
loading, starting, stopping, updating, unloading applications at runtime without restarting
the software platform. We investigated common mechanisms to hot-swap, not only native
code [63, 85, 128], but also Java byte code [76]. Then, we described the delicate conditions
necessary to unload a Java application loaded with a dedicated Java class loader, which is a
common technique in multi-tenant Java virtual machines. This unveiled the risk implied by
Java stale references on resource-constrained long-running systems, such as the smart home
gateway. The Chapter 3 presents our proposed solution to detect and eliminate Java stale
references with a very low overhead.

Because it is hard to share memory in a distributed environment, we briefly described how
applications can interact, both when they can share memory, and when they cannot. We
therefore described local procedure calls [7], and remote procedure calls [133, 75, 102],
involving expensive serialization routines. The drop in communication performance induced
by remote procedure calls is one of the reasons that encourage running multiple applications
in the same memory addressing space whenever possible, especially when those applications
communicate frequently.
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In order to rapidly develop applications that take advantage of the wealth of devices, sensors
and actuators available at the smart home, we proposed to develop applications based
on reusable components, which led us to describe a generic component model. Then, we
illustrated examples of component models [38, 122] and component model implementations
that are suitable for constrained embedded environments and compatible with other
properties of the smart home, e.g., Fractal7 [29, 68, 28], MIND8 [92], OSGi 7,8 [30, 127,
26, 82, 54], OSGi Declarative Services7,8.

To cope with the heterogeneity of the smart home, we suggested the use of the service-
oriented architecture [103] to design the smart home platform and applications. For this
purpose, we first described the key elements of the service-oriented architecture, with some
commonly used design patterns [114, 48, 72]. Then, we presented examples of service-
oriented middleware implementations, e.g., OSGi, OSGi Declarative Services.

The last, and most problematic properties of the smart home are open and embedded
aspects. In a gateway running numerous applications delivered by multiple untrusted
service providers, isolation becomes necessary to avoid certain security threats and to
enable a basic level of robustness against misbehaving applications. Therefore, we discuss
five mechanisms of isolation based on hardware protection and virtualization approaches,
i.e., processes [37, 94], sandboxes [132, 53, 135], containers [77, 95, 106, 70, 121], virtual
machines [115, 111, 43, 94], exokernels and library operating systems [45, 2, 105, 16, 66].
We compare those based on their performance overhead versus the isolation they provide,
and we argue that container technologies offer the best bet. Chapter 2 describes Jasmin: a
middleware for development, deployment, isolation and administration of component-based
and service-oriented applications targeted at embedded systems. Jasmin is based on the
MIND implementation of the Fractal component model. It provides isolation of applications
based on the Linux containers technology, and it extends the service-oriented architecture to
isolated applications, and it enables transparent and fast communication between isolated
applications. Afterwards, we invoke isolation mechanisms based on language type safety,
e.g., Singularity [60], SPIN [19], KaffeOS [12]. We illustrate the Java language as an example
of a static and safe language, and we briefly describe the major parts of the Java Virtual
Machine. We also discuss techniques to run multiple isolated applications in a single Java
virtual machine, and we argue that partitioning applications [79] is unsuitable for smart home
applications that need to communicate easily and rapidly.

Most isolation approaches are not perfect, leaving room for resource sharing conflicts to
happen. In our quest to solve these conflicts, we need tools to discover them in the first place.
In other words, we need to monitor these sharing conflicts. Thus, we begin by discussing the
notion of “resource conflict”, then we expose different monitoring approaches in different
software environments [84, 71, 41, 100, 52, 99, 86, 46, 83], and we describe fundamental
complementary points of view in resource accounting. Finally, we detail a typical source of
memory conflicts in multi-tenant Java virtual machines, discussing its major implications and
examples of state-of-the-art efforts [47, 65, 87, 22, 90] to tackle it. The contribution presented
in Chapter 4 proposes a memory monitoring mechanism that is aware of the component-based
design of the smart home platform, and which provides monitoring data that is accurate and
relevant to that design.

7 A component model.
8 An implementation of a component model.
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Jasmin [4] is a middleware for development, deployment, isolation and administration
of component-based and service-oriented applications targeted at embedded systems.
Applications running on Jasmin are built using the MIND tool-chain and components (see
Section 4.2.2). Jasmin inherits the Fractal component model implemented by MIND, and
extends it by adding a distributed service registry to provide a service-oriented [103] platform.
Consequently, Jasmin defines a life cycle for applications, and controls that life cycle either
on-demand, or automatically when resolving dependencies. Jasmin supportsmultiple isolation
levels for applications, ranging from no isolation to container-based isolation (see Section 6.1).
This allows platform administrators to choose the suitable isolation level depending on their
constraints. Jasmin enables transparent communication between isolated applications, by
offering automatic proxy setup for application interfaces. It also provides anOperating System
Abstraction Layer (OSAL) that makes applications portable across different architectures,
and that eases porting of the Jasmin middleware itself. Finally, Jasmin provides a scriptable
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administration shell to deploy and control applications at runtime, either manually or via
scripts.

In this chapter, we present the design of Jasmin middleware, by first describing Jasmin
application life cycle, then presenting the basic services provided by the middleware. Then
we illustrate the distributed architecture variant of Jasmin, and how it allows isolating
applications, which continue to communicate transparently thanks to Jasmin proxies.
Afterwards, we evaluate Jasmin features and performance, based on micro-benchmarks
and a typical smart home use case.

1. Jasmin Component-Based and Service-Oriented
Applications

A Jasmin application is a MIND component additionally providing a set of non-functional
interfaces required by Jasmin. Using those interfaces, Jasmin manages the life cycle of
applications, and performs structural exploration (a.k.a., runtime reflection) and adjustments
of the applications internal components. A Jasmin application may also provide some optional
interfaces recognized by Jasmin, in order to enable richer levels of runtime reflection and
deeper automatic resolution of components dependencies. We refer to Jasmin applications
simply as “applications” throughout the rest of this chapter.

Initial Uninstalled Stopping Active

Installed Resolved Starting

Figure 2.1: Jasmin application life cycle.

Jasmin considers applications stored in the repositories it manages. These applications follow
the life cycle described in Figure 2.1 with the specified states:

Uninstalled: Stored in a repository but not loaded into the Jasmin execution environment.

Installed: Loaded into the execution environment, but some of the required interfaces might
still be unbound.

Resolved: Installed, and all required interfaces are bound and resolved.

Starting: Resolved, and the application is currently initializing, possibly invoking other
interfaces.

Active: The application was initialized successfully, it is currently providing its interfaces
and possibly invoking other interfaces.

Stopping Application is currently terminating execution.
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2. The Standalone Jasmin Architecture

This section presents the simplest architecture of Jasmin, the standalone Jasmin architecture,
which can be entirely executed within the same memory addressing space, such as a device
without a Memory Management Unit (MMU), or a single operating system process.

The simplest scenario addressed by Jasmin is grouping multiple Jasmin applications in a
MIND composite called an application container. The application container is controlled by a
Standalone Jasmin execution environment, which is a MIND composite holding components
that provide a set of services to the applications. In the rest of this chapter, we refer to the
Standalone Jasmin execution environment simply as the “standalone Jasmin”. Figure 2.2
illustrates this configuration.

Standalone
Jasmin execution
environment

OSAL Repository management Life cycle management

AdministrationArchitecture discovery & updating

Application
Container

App2App1 App3

Figure 2.2: Standalone Jasmin architecture.

The standalone Jasmin applies the Service-Oriented Architecture (SOA) paradigm inside
the application container, by tracking services provided and required by applications,
and performing dependency resolution inside the application container. Additionally, the
standalone Jasmin provides the following services to the applications:

Repository management: Jasmin handles multiple local or remote repositories, that can
be sorted according to criteria such as provider or domain, and searches them for the
application binaries it is requested to install.

Life cycle management: By defining a service registry, Jasmin handles application states,
and performs transitions between states shown in Figure 2.1, and resolves service
dependencies between applications. Jasmin detects circular dependencies and prevents
circular bindings.

Architecture discovery and updating: Jasmin enables runtime discovery and exploration
of the component-based architectures of loaded applications. It also enables updating
the architecture by adding or removing components or adjusting bindings.

Operating System Abstraction Layer: Jasmin provides an Operating System Abstraction
Layer (OSAL) to help make applications portable to other architectures. The OSAL also
eases porting of the Jasmin execution environment.

Administration: This service monitors and controls all the aspects of the Jasmin execution
environment and exposes the state of loaded applications to administration agents, e.g.,
command-based consoles, script files engines, autonomous management systems.
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3. The Distributed Jasmin Architecture

The process of isolating applications begins by separating them into groups, and running each
group in an application container controlled by a dedicated standalone Jasmin. This simply
means running multiple independent standalone Jasmin execution environments. The limits of
this approach appear when the number of standalone Jasmin execution environments becomes
important. First, platform administration becomes more complex, as each standalone Jasmin
architecture has to be managed separately. Second, communication between applications
deployed in different application containers becomes more difficult as the SOA paradigm and
dependency resolution happen only within one application container.

3.1. Architectural Separation of Jasmin Applications

To overcome the problems invoked above, we created the Root Jasmin execution environment
which is a MIND component responsible of managing several Jasmin execution environments.
In the rest of this chapter, we refer to the Root Jasmin execution environment simply as the
“root Jasmin”. The root Jasmin performs remote administration of multiple Jasmin execution
environments, and remote service discovery, and remote dependency resolution, therefore
effectively extending the SOA paradigm to multiple application containers.

We also redesigned the standalone Jasmin architecture to cope with this new distributed
design, therefore we replaced the standalone Jasmin by a Local Jasmin execution environment,
which, not only provides the features of the standalone Jasmin, but also allows administration
by the root Jasmin, and participates in remote dependency resolution. In the rest of this
chapter, we refer to the Local Jasmin execution environment simply as the “local Jasmin”.
For a given local Jasmin, local applications are applications running inside the application
container it controls. Remote applications are those running inside application containers not
controlled by the local Jasmin itself. Local services are services provided by local applications,
and remote services are provided by remote applications. The resulting architecture is
illustrated in Figure 2.3.

Root Jasmin execution environment

Isolation Container 1 Isolation Container 2

Local Jasmin execution
environment 1

Local Jasmin execution
environment 2

Application Container 1 Application Container 2

App1 App2 App3

Legend: Linux container. Service proxy communication.

Figure 2.3: Distributed Jasmin architecture.
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3.2. Jasmin Distributed Service-Oriented Architecture

This distributed aspect makes communication between remote applications more difficult.
Therefore, we supported communication between applications running in different application
containers using the proxy pattern to enable invoking interfaces implemented by applications,
independently of the applications locations (see Section 5).

In order to allow seamless service-oriented interaction between separated applications, we
created a service registry coordinator in the root Jasmin. The purpose of the service registry
coordinator is to enable applications to consume services easily without having to worry
about the location of the service provider, be it local or remote. Therefore, the service
registry coordinator can be seen as a global service registry that virtually aggregates all
the service registries in the local Jasmin environments managed by the root Jasmin. Using
this coordinator, service dependency resolution can be performed, not only locally, but
also remotely, transparently to the applications providing and requiring the services. The
dependency resolution protocol can be described with the help of Scenarios 2.1 and 2.2.

Scenario 2.1 (Jasmin Local Dependency Resolution). When an application A provides a
service, the local Jasmin running A registers the service in its service registry. If a local
application B requires the service provided by A, then the local Jasmin finds the service in its
service registry, and it binds the applications A and B, allowing B to invoke the service. This
protocol occurs entirely within the local Jasmin.

Scenario 2.2 (Jasmin Remote Dependency Resolution). When an application A provides
a service S, the local Jasmin LA running A registers the service in its service registry. If a
remote application B running in a local Jasmin LB requires the service S, and the local Jasmin
LB cannot find S in its service registry, then LB asks the root Jasmin to find the service S.
The root Jasmin, consequently, asks all the local Jasmin environments it manages (except
LB) to look for the service S. The local Jasmin LA receives a remote request for S from the
root Jasmin, in which case it creates a server proxy PS for the service S in the application A,
and it gives back the proxy reference to the root Jasmin. The root Jasmin, in turn, routes the
proxy reference to LB. LB, then, creates a client proxy PB that has the same interface as S,
and which communicates with PS, then LB binds B to PB. Now, invocations of S’s methods are
automatically routed from B to PB, then to PS which invokes A. The binding B→ PB → PS → A
is known as a complex binding in the Fractal component model.

4. Multi-Level Isolation of Jasmin Applications

The smart home presents several risks due to its openness to different untrusted service
providers. The standalone Jasmin architecture (see Figure 2.2) is vulnerable to multiple
security issues, because applications running in the application container are all exposed
to each other. An application can, for example, monitor another application, or steal
information from it, or corrupt its memory, etc. Therefore, application resources, including
CPU, memory, file system, and network, need to be isolated to provide a robust execution
environment. The distributed Jasmin architecture (see Figure 2.3) already eases this task
by separating application containers while allowing unified administration of local Jasmin
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execution environments and distributed Service-Oriented Architecture (SOA) paradigm and
transparent communication.

Isolating applications goes beyond separating them, and it typically involves making a
compromise between safety and performance. Jasmin implements multiple levels of isolation,
in order to allow platform administrators to adapt this compromise depending on the situation
at hand. The different isolation levels implemented by Jasmin are described next.

4.1. Zero Isolation

In this level, Jasmin applications are merely separated because they are contained in different
MIND components, i.e., in different design units. Remote service invocation is implemented
as local method calls. This level enforces no means of isolation, and executes all applications
within one address space, e.g., a device without a Memory Management Unit (MMU), or a
single operating system process.

This level is suitable for applications that communicate frequently, because it allows local
method calls between applications. The targeted environment is either too constrained, or
very controlled, e.g., development and testing environments.

4.2. Process-based Isolation

In this level, the root Jasmin runs in a dedicated process. Each local Jasmin run in a
dedicated process with its controlled application container, which isolates the address space of
applications belonging to the application container. Remote service invocation is implemented
via Jasmin proxies (see Section 5).

This level is suitable for concurrent applications which seldom communicate.

4.3. Container-based Isolation

In this level, Jasmin runs each local Jasmin with its controlled application container in a
dedicated process which is executed in a dedicated Linux container. The root Jasmin runs
in a dedicated process directly on the host, i.e., outside Linux containers. Remote service
invocation is implemented via Jasmin proxies (see Section 5).

In a nutshell, a Linux container is an isolated group of processes, having a dedicated process
table, and user table, and device table, and file system, and network stack. Therefore, a
process inside a container can neither see (1) processes running outside the container, nor
(2) users defined outside it, nor (3) network transmissions happening outside it, nor (4) files
stored outside its dedicated file system, nor (5) devices not inherited from the host system.
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This isolation level is suitable for untrusted applications running on a kernel that provides
container isolation support, such as the Linux kernel 2.6.29 and above.

5. Transparent and Fast Communication between Jasmin
Applications

Running application containers inside processes or Linux containers makes communication
between isolated applications more complicated, because local method calls are not possible
between different address spaces. This is why we created Jasmin proxies. A Jasmin proxy is a
MIND component that transparently performs data marshaling and transmission, needed to
call an interface method of a remote service. Jasmin automatically loads and binds proxies
to make invocation of service interfaces independent of where the provider application is
actually deployed. As described in Scenarios 2.1 and 2.2, a Jasmin proxy is loaded by the
local Jasmin, either to expose a local service interface (server-side proxy), or to consume a
remote service interface (client-side proxy). The proxy is loaded on requests from the root
Jasmin when performing remote dependency resolution, i.e., when an application requires a
service provided by a remote isolated application.

Transparent Data Marshaling. In order to make remote service invocation transparent to
developers, Jasmin takes advantage of the versatile binding notion of the Fractal component
model (see Section 4.2) by replacing a simple MIND binding, i.e., a simple function reference,
by a complex binding to a Jasmin proxy which serializes the parameters of the method to
invoke, then deserializes the results when the method finishes, as described in Section 3.
What is particular about Jasmin proxies is that they are component-aware, i.e., they take
care of routing interface calls to specific components implementing the interface in the
application providing the service. In other words, Jasmin proxies perform remote double
dispatching, the first dispatching selects the component implementing the interface to call,
and the second dispatching selects the method to call. Jasmin does not perform conversions
of local data representations to/from the network data representation [120], because it is
a useless effort, as the communicating applications run on the same operating system and
the hardware architecture. A Jasmin proxy does not handle data transmission between
applications. Rather, it uses another subsystem in the Jasmin middleware that handles local
communication between Linux containers.

Fast Communication between Containers. Jasmin contains a subsystem that enables
fast communication between Linux containers. The subsystem uses local sockets or
named pipes Inter-Process Communication (IPC) mechanisms, unlike the Remote Procedure
Call [118] (RPC) protocol on Linux which uses the Transport Control Protocol (TCP) over
Internet Protocol version 4 (IPv4). This eliminates the overhead of the networking protocol.
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6. Evaluation

In this section, we evaluate the performance of different Jasmin aspects, e.g., communication
speed, memory and disk footprints. As a macro-benchmark, we evaluate the performance
of a multimedia application. We also evaluate the efforts of porting such application from a
legacy form to Jasmin.

Benchmarks are performed on a computer equipped with 12 gigabytes of RAM and 12
processor cores running at 2.67 GHz. The computer runs the operating system Debian 6.0 on
the Linux kernel version 2.6.39-amd64.

6.1. Communication Speed Benchmarks

Aiming to assess Jasmin remote calls efficiency, we compared Jasmin proxies with the standard
RPC implementation of Linux Debian 6.0. The comparison with an industry standard such as
RPC proves that Jasmin meets common requirements for industrial deployment.

Communication speed evaluation is based on two functions: (1) a simple function taking
no input and producing 4 bytes, and (2) a complex function taking 27 bytes of input and
producing 12 bytes. The main difference between the two functions is the input/output bytes
involved in each function call. We measure time taken to call these functions:

∙ Inside one application container, i.e., a local function call.

∙ Between two Jasmin applications running in different Linux containers and
communicating via Jasmin proxies (see Section 5).

∙ Between two processes communicating via RPC.

The results of this benchmark are given in Table 2.1. RPC achieves poorer performances
than Jasmin proxies but they are in the same order of magnitude compared to local function
calls. The results of RPC calls reveal that the size of input/output parameters has little
effect on call performance, i.e., the overhead is 0.16% per transferred byte. This indicates
a stable marshaling mechanism, but this means that the minimum overhead is already too
high. The significant difference seen between the results of Jasmin proxies calls indicates
that the marshaling mechanism performance highly depends on the input/output parameters
of called functions, as we observe an overhead of 2.08% per transferred byte. Furthermore,
the minimum overhead of Jasmin proxies is 60% less than the minimum RPC overhead.

Simple function
call

Complex function
call

Overhead per
transferred byte

Local call 9 ns 1 421 ns 402.28%
Jasmin Proxies 10 767 ns 19 486 ns 2.08%

RPC 25 842 ns 27 470 ns 0.16%

Table 2.1: Comparison of execution speeds of function calls.
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6.2. Disk Footprint

The disk footprint of Jasmin is composed of several parts: (1) the binaries of the Jasmin
middleware in different forms, and (2) the binaries of Jasmin applications, and (3) the set of
user-land programs local to every Linux container. This section quantifies these parts and
provides optimization opportunities.

The Table 2.2 reports a size on disk of 51 megabytes for the executable files representing the
different parts of Jasmin and of Linux containers created by Jasmin. The major part of disk
space usage is required by the Linux containers, as Jasmin executable files form no more
than 2% of the required disk space. This relatively large disk footprint is due to the need for
a Linux container to have a minimal set of user-land programs installed in a dedicated file
system. However, if Linux containers isolation is not used, then the disk footprint drops to
762 kilobytes for a configuration of a root Jasmin controlling one local Jasmin running zero
Jasmin applications.

Size on disk, in kilobytes
Standalone Jasmin execution environment 398

Root Jasmin execution environment 426
336

51200

«

51536











51962Local Jasmin execution environment
Linux Container

Table 2.2: Jasmin disk footprint.

Optimizing the Disk Footprint

To reduce Linux containers disk footprint, we create the Linux container file system using
a modified version of the multistrap program of the Emdebian [125] project. This results
in disk footprint of 50 Megabytes, as shown in Table 2.2. On an ARM-based machine, the
footprint goes down to 38 megabytes thanks to the high density of the ARM machine code
Thumb-2.

Multiple Linux containers often have many identical files (e.g., programs, libraries) and
few different files (e.g., configuration files, logs). Thus, using a file systems that offers the
Copy-on-Write feature can strip the disk footprint down to a few megabytes. Examples of
these file systems include ZFS [24], Reiser4 [109], and Btrfs [35]. This still ensures correct
file system isolation between Linux containers, because if a file shared between two Linux
containers is altered, then the file content will be duplicated to give each Linux container a
private copy of the file. Using these file systems makes Linux containers better scaled for
embedded systems and for systems running a very large number of Linux containers.

Koutheir Attouchi 47



Chapter 2. Jasmin – Isolating Native Component-based Applications

6.3. Memory Footprint

The Table 2.3 shows the sizes in memory of the processes running different parts of Jasmin and
of Linux containers. For a configuration of one root Jasmin controlling one local Jasmin inside
a Linux container with no Jasmin applications running, the Table 2.3 reports 552 kilobytes
of memory usage, 54% of which is consumed by Jasmin processes. The more local Jasmin
execution environments are run and managed by the root Jasmin, the lower the memory
consumption ratio of Jasmin execution environments becomes.

Size in memory, in kilobytes
Standalone Jasmin execution environment 128

Root Jasmin execution environment 172
124
256

«

380











552Local Jasmin execution environment
Linux Container

Table 2.3: Jasmin memory footprint upon start up.

6.4. Performance and Porting Efforts of a Legacy Multimedia
Application

This section first shows the steps and costs needed to port a legacy multimedia application,
originally written as a simple C application, to Jasmin. Then, it shows the application
deployment steps. Finally, it measures performances of the ported application and compares
them with its legacy version performances. It is worth noting that new applications targeted
at Jasmin are developed directly as MIND components based on OSAL; porting is only needed
for legacy code.

Evaluation Metrics. We evaluate porting costs both in number of lines of code to write
and in number of components to build. We evaluate deployment costs in terms of number
and nature of operations to perform. Then we evaluate performances by measuring CPU
and memory consumption of the application in its legacy version and in its component-based
version targeted at Jasmin execution environment.

Jasmin Player Application. Jasmin Player is a Jasmin multimedia application made for
demonstration purposes of Jasmin. The application displays a window presenting a list
of media files, and enabling selection of a media file to play on the window. The media
files can be local or remote. Some of their meta-data are stored in a media library: an
SQLite [57] database managed by the application. Their contents are decoded and rendered
by libVLC [130] library. The application windows are created and managed via the GTK+ [134]
library.

48 Koutheir Attouchi



6. Evaluation

Porting a Legacy Multimedia Application to Jasmin

First, porting Jasmin Player to Jasmin required redesigning it in terms of components, instead
of procedures. We defined five top-level components, each assigned a simple responsibility.
Then, we defined and implemented interface methods provided by each component, inspired
of the procedures previously defined in the legacy version. Finally, we completed components
dependencies in terms of interfaces.

Porting Legacy Libraries. SQLite and libVLC legacy libraries were partially ported to
Jasmin in matter of minutes. We ported only the parts required by the application:

∙ Porting SQLite required 65 lines of code in 3 files to produce the sqlite.sqlite
component.

∙ Porting libVLC required 53 lines of code in 5 files to produce the libvlc.vlc component.

This shows that porting legacy code in Jasmin applications is fast and can be progressive.
We could also use the MIND @Wrap annotation which automatically wraps entire libraries as
components, but we did the job by hand for demonstration purposes.

The GTK+ library was not wrapped in a Jasmin component. Instead, it was directly used from
interfaces implementations of application components. This illustrates that porting libraries
is an optional task in Jasmin.

Porting Application Legacy Code. Porting the application code is slightly more
complicated as it involves redesigning it in component-oriented paradigm. However, most of
the application code is reused as component interface implementations. Some minor code
changes are required to convert system calls to OSAL method calls, and to convert function
calls into method calls. This produced 3 components:

∙ db.media manages the multimedia database based on sqlite.sqlite.

∙ gui.window manages the application window and GUI events.

∙ player.player manages the media player state and controls libvlc.vlc to decode and
render the media on the window.

Deployment of Jasmin Player. The Jasmin Player application is compiled using the MIND
compiler into 5 binaries that are copied into a Jasmin repository. The Jasmin interactive
administration console exposes a unified set of commands for local Jasmin and standalone
Jasmin. These commands invoke administration services provided by Jasmin. Thus, deploying
the components in a standalone Jasmin (see Section 2) or in a local Jasmin (see Section 3) is
very similar. What is mainly needed is asking the administration console to install each of the
5 components, then resolve gui.window, then start it. Once installed, the Jasmin execution
environment manages dependencies automatically. Because gui.window depends directly or
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indirectly on all remaining components, it is enough to issue resolve and start commands on
it, and let the Jasmin execution environment automatically resolve and start the remaining
components as needed.

Evaluation of Jasmin Player. Figure 2.4 and Figure 2.5 respectively illustrate the CPU
and memory footprint of running Jasmin Player in different deployment environments:

∙ Direct running of legacy application on the host.

∙ Running of component-based Jasmin Player inside a standalone Jasmin.

∙ Running of component-based Jasmin Player inside a local Jasmin execution environment
running directly on the host system and managed by a root Jasmin.

Figure 2.4 shows that Jasmin Player behaves almost identically in the three configurations,
consuming about 4% of CPU to start, and around 6±3% of CPU when playing a sample video
clip, and nearly 1% of CPU to terminate. The difference in CPU consumption patterns is due
to measure imperfection [88] and to other programs running in background.
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Figure 2.4: CPU footprint of running Jasmin Player on different Jasmin execution
environments.

Figure 2.5 illustrates a memory usage behavior that is very similar in the 3 execution
environment configurations. Starting the application consumes roughly 4 megabytes of
memory. The VLC library first allocates around 23 megabytes of memory to start playing the
video clip, then drops to 16 megabytes while playing. But, when the application runs in the
local Jasmin, memory consumption is 3 megabytes higher while playing the video clip. This is
not due to internal management performed by the local Jasmin itself, as it allocates most of
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its data structures when the application starts. This is, most likely, a secondary effect of a
caching mechanism performed by the VLC library.
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Figure 2.5: Memory footprint of running Jasmin Player on different execution environments.

6.5. Summary of Results

The micro-benchmarks of communication speed, memory and disk footprint indicate that
Jasmin has a relatively small overhead, particularly if Linux containers isolation is not used.
If Linux containers are used, then more disk space is required, but the disk footprint can be
stripped down to a few megabytes as described in Section 6.2.

The evaluation of Jasmin Player application shows the easiness of porting legacy applications
and using legacy libraries. The Jasmin administration console makes it easy to deploy Jasmin
applications, automating most of deployment tasks. We also illustrate that CPU and memory
overhead of different types of Jasmin execution environments is negligible compared to the
consumption of the application itself.

7. Conclusion

In this chapter, we presented Jasmin, an open and robust smart home middleware that
hosts applications providing services targeted at the end user. The services offered by the
Jasmin middleware pave the ways to new and attractive business models, such as Business to
Business to Consumer (B2B2C), by opening the smart home platform to any service provider
that aims to expose his services directly inside the end user home.
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Jasmin follows the Service-Oriented Architecture paradigm [103] and enables easy and
dynamic deployment of applications by automating most deployment steps. Jasmin runs
applications based on the MIND framework implementing the Fractal component model
which urges developers to produce cleanly designed services. This allows rapid and easy
development and deployment of services, and thus contributes to making Jasmin an attractive
platform for numerous service providers.

The security and robustness risks introduced by this openness are solved by Jasmin through
isolation containers. Jasmin offers isolation containers in multiple selectable levels suitable for
different applications requirements and trust levels. It implements its highest level of isolation
based on Linux containers, which offer high isolation guarantees at a low performance cost.

In order to build rich services, service providers need to easily invoke existing services. This
implies that isolated applications must still communicate. Jasmin takes care of the complexity
of remote service invocation by automatically loading interface proxies and performing
marshaling and data transfer as needed. This enables services consumers to easily and
seamlessly invoke local and remote services.

Jasmin runs applications on top of an Operating System Abstracting Layer (OSAL). This
enables easy portability of applications to different operating systems, and eases porting of
Jasmin itself to other systems. It is mainly a big step to master the smart home heterogeneity.

Jasmin evaluation shows that Jasmin respects the embedded nature of home devices. In fact,
Jasmin not only has a low resource usage in terms of CPU and memory and disk space, but
also incurs a very low overhead on the applications it hosts.
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This chapter describes Incinerator, our proposed solution to detect and eliminate stale
references in Java. We first describe our prototype in the context of a middleware for the
smart home gateway based on OSGi and Java. We show that stale references represent a
recurring and severe issue in this context. Then we illustrate our solution to the problem,
in terms of design decision, and implementation extents. We illustrate the interaction
between Incinerator, which is implemented inside the Java virtual machine, and the rest of
the subsystems composing the Java virtual machine and the OSGi framework. Following
this, we evaluate Incinerator features using numerous stale reference scenarios to show that
Incinerator detects all stale references. Then, using an example smart home application, we
illustrate the state inconsistencies caused by stale references and the hazards it can cause
to the end-users. We also show how Incinerator enabled us to contribute back to the open
source community by detecting and correcting a stale reference in the Knopflerfish OSGi
framework. Finally, we evaluate the overhead of Incinerator based on DaCapo benchmarks.
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1. Memory Leaks and State Inconsistencies

The Home Gateway Initiative [59] endorses the OSGi framework as a middleware to host
applications running in the smart home gateway. OSGi supports application hot-swapping,
and isolates applications, and allows direct communication between applications by running
them in the same address space (see Section 4.3).

Running all bundles in a single address space makes OSGi prone to inconsistencies and
memory leaks, as described in Sections 6.4.2 and 6.4.3, and as stated by the OSGi
specification [127] and as demonstrated in practice by Gama and Donsez [47]. These problems
may arise when a bundle is uninstalled or updated, if a reference obtained before the bundle
uninstall or update is retained by another bundle. The consequences of memory leaks may
range from user annoyance, for entertainment services, to life critical issues for health care
and security-related home services.

Experiments made by Gama and Donsez [47], the authors of Service Coroner, already showed
that numerous stale references exist in several open source applications and frameworks, as
the Table 1.1 illustrates. Furthermore, because Service Coroner detects only stale service
references, many other types of stale reference go undetected, which is why we believe that
the real amount of stale references is even higher than what is shown in the Table 1.1.

2. Introducing Incinerator

We address the problems raised by OSGi stale references at the Java Virtual Machine level
by proposing Incinerator [9]: an OSGi-aware extension to garbage collector. Incinerator’s
approach is to integrate stale reference detection into the garbage collection phase. This
approach induces low overhead since the garbage collection phase already traverses all live
objects, and checking the staleness of a reference needs few operations. This approach is also
independent of the specific garbage collector algorithm as it only requires the modification
of the function that scans the references and objects contained inside a given object. When
Incinerator finds a reference, it checks whether the referenced object belongs to an uninstalled
bundle or to a previous version of an updated bundle. In this case, the reference is identified
as stale and Incinerator sets it to null. As a consequence, no stale object remains reachable at
the end of the collection and the associated memory is reclaimed by the garbage collector.

Compatibility Notes

Incinerator changes the behavior of the Java Virtual Machine, because it nullifies references
that are found to be stale. We investigated the compatibility issues that could arise from such
change. It should be noted that a correctly written bundle that releases its stale references,
when a bundle is uninstalled or updated, is never affected by Incinerator. When a bundle does
not release some stale reference, our design choice is to minimize the impact of nullification
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while ensuring that the memory is released. Three situations can occur, depending on how
the stale reference is used:

∙ If the stale reference is never used, then nullifying it has no impact on the other bundles.

∙ If the stale reference is only accessed as part of a cleanup operation, i.e., in finalize()
method, then Incinerator executes this cleanup operation in order to avoid other kinds
of leaks.

∙ If the stale reference is used elsewhere, either to access or to synchronize on the
stale object, then the bundle that holds the stale reference is buggy since using the
stale object would lead to possibly conflicting operations. Since the reference has
been nullified, such a buggy bundle receives a NullPointerException, which helps the
developers track down the bug, by making it visible. If a thread is blocked while waiting
for a synchronization on the stale reference, Incinerator also unblocks the thread, in
order to prevent dead locks, or leaking of the thread and its reachable objects.

3. Detecting and Eliminating Stale References

The goal of Incinerator is to eliminate stale references by setting them to null. In order to
do so, Incinerator needs to scan all live references in the Java memory space to determine
whether they are stale. Since such a scan is already done in the garbage collector, we chose
to design Incinerator as an extension to the garbage collector. This approach has a low
performance penalty since in most cases the overhead is limited to the cost of checking the
staleness of each reference during the heap traversal performed by the garbage collector.

In this section, we first present how stale references are identified in class loaders. Then, we
discuss more specifically the other JVM features impacted by stale references: synchronization
and finalization.

3.1. Stale Class Loaders

Based on Definition 1.12, a stale class is a class loaded by a stale class loader. A stale object
is an object of a stale class. And a stale reference is a reference to a stale class loader, or a
stale class, or a stale object. Consequently:

Corollary 3.1. A stale reference is a references to (1) a stale class loader, or (2) a class
loaded by a stale class loader, or (3) an object of a class loaded by a stale class loader.

The Java language and the JVM specifications do not define any notion of stale references.
Stale references are consequence of the additional object states introduced by OSGi. This
is why the JVM cannot distinguish a stale reference or class or object from non-stale ones.
Therefore, we had to store the additional stale state, in order to enable Incinerator to
distinguish stale references from non-stale ones. Thanks to the Corollary 3.1, we know that
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the stale property concerns only class loaders, which is why we added a hidden field in
each class loader to store the stale flag. The stale flag is cleared when the class loader is
constructed. If the class loader is associated to a bundle, then the stale flag is set when
the bundle is uninstalled or updated. When Incinerator analyzes a reference, it accesses its
referenced object, then its class, then its class loader, to finally read the stale flag, which
indicates how Incinerator should treat the reference.

3.2. Synchronization Handling in Incinerator

In Java, each object has an attached monitor, whose purpose is to provide thread
synchronization. The list of the threads blocked while waiting for the monitor is stored
in the monitor structure, which can only be retrieved through the object. Therefore, if a
thread is holding the monitor at the time when the associated object becomes stale and
Incinerator nullifies all references to the object, the holding thread will become unable to
reach the monitor structure to unblock any blocked threads. These threads would remain
blocked, leaking both their thread structures and any referenced objects.

Incinerator addresses this issue by waking up the blocked threads in a cascaded way. To allow
each wakened thread to detect that the monitor is stale, we add a stale flag to the monitor
structure. During a collection, when Incinerator finds a stale object with an associated
monitor, it nullifies the stale reference, marks the monitor as stale, and then wakes up the
first blocked thread. The thread wakes up at the point where it blocked, in the monitor
acquiring function. We thus modify this function so that when a thread wakes up, it checks
the stale flag. If the flag indicates that the monitor is stale, the monitor acquiring function
wakes up the next blocked thread and throws a NullPointerException to report to the current
thread that the object is stale. Note that there is no special treatment of the thread that is
actually holding the monitor. This thread will receive a NullPointerException when it next
tries to access the stale object.

Most modern Java Virtual Machines allocate a monitor structure that is separate from the
object and is managed explicitly [13]. This monitor structure is normally freed during a
collection when the memory of its associated object is reclaimed. With Incinerator, when a
stale object is reclaimed, its monitor structure has to survive the collection, if threads are
blocked on it, so that each thread can wake up the next one. We thus further modify the
monitor acquiring function so that it frees the monitor structure at the end, when it detects
that there are no remaining blocked threads.

3.3. Finalization Handling in Incinerator

In Java, a finalize()1 method defines clean up code that is executed exactly once by
the garbage collector before reclaiming the memory associated with the object [55]. If
a finalize() method accesses a stale reference that was nullified by Incinerator, then it
would encounter a NullPointerException and it would not able to complete the clean up.
This may lead to other kinds of resource leaks, such as never closing a file descriptor or
1java.lang.Object.finalize()
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a network connection. We have encountered this case when a bundle defines finalizable
objects, i.e., objects that implement a finalize() method that has not yet been called. Indeed,
when the bundle is uninstalled or updated, its finalizable objects become unreachable. These
finalizable objects often use cross-bundle references, which are thus stale, and nullifying
these references prevents the execution of the finalize() methods.

3.3.1. Garbage Collector Handling of finalize()

In a standard JVM, a collection is usually performed in two phases. During the first phase,
the garbage collector identifies unreachable objects by scanning the heap. During the second
phase, it manages finalizable objects. The garbage collector does not reclaim the memory
of an unreachable finalizable object at this time because the object can resurrect [97], i.e.,
it can become reachable again during the execution of its finalize() method, for example,
by storing a reference to itself in a reachable object or in a static variable. Instead, during
the second phase, the garbage collector marks each unreachable finalizable object and
its reachable sub-graph as reachable. It also marks the unreachable finalizable objects as
finalized to ensure that their finalize() methods are not executed more than once. Finally,
after the second phase, the garbage collector executes the finalize() methods. Since the
objects are now finalized, they are managed as normal objects by the garbage collector on
the next collection cycle, and their associated memory will be reclaimed later if they are
again detected as unreachable.

3.3.2. Incinerator Handling of Finalizable Objects

Incinerator is designed with the goal of preventing resource leaks. This is the reason
Incinerator allows finalize() methods to run without introducing exceptions due to null
pointers, by deferring the nullification of stale references to the collection following the
execution of the finalize() method. After the marking phase of the garbage collector, we
distinguish two kinds of finalizable objects: reachable objects and unreachable ones.

For a finalizable object that is reachable at the end of a collection, i.e., a resurrected object, it is
not known when and if the finalize()method will be executed. Deferring nullification of stale
references until after the finalize()method is executed may indefinitely prevent Incinerator
from performing nullification, and thus cause memory leaks. In this case, Incinerator avoids
the memory leak by nullifying the reference, at the risk of failing during a later execution of
the finalize() method.

For a finalizable object that is unreachable at the end of a collection, the finalize() method
is run just after the garbage collection. In order to ensure that the finalize() method will
complete its execution successfully in this case, Incinerator defers the nullification of the
stale references reachable from this object to the next collection cycle. To defer nullification,
we have modified the function that scans objects during the collection and added code at
the end of the scanning phase of the collection cycle. Incinerator performs the following
algorithm, illustrated in Figure 3.1:
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1. The first step is performed when the garbage collector initially scans the heap.
Figure 3.1a is an example graph object in the heap. The garbage collector discovers
unreachable objects in this step. For each stale reference scanned, Incinerator (1) saves
the reference address in an internal list (see StaleRefList in Figure 3.1b), and (2) aborts
the scanning of the referenced object, which makes the object and its sub-graph
unreachable. This is case of C, F and H in Figure 3.1b.

2. The second step is performed when the garbage collector marks as reachable each
unreachable finalizable object and its reachable sub-graph, as illustrated for the object
D in Figure 3.1c. Incinerator leverages the scanning of these objects performed by the
garbage collector. For each stale reference scanned, Incinerator removes it from the
internal list. This is demonstrated by removing the reference D→C from StaleRefList in
Figure 3.1c. Furthermore, during this step, Incinerator does not abort the scanning
of the stale reference, and consequently lets the garbage collector scan its reachable
sub-graph, which is the reason C becomes reachable again in Figure 3.1c. After the
garbage collector has marked all the unreachable finalizable objects as reachable, the
internal list of Incinerator contains only references that are both (1) stale, and (2) not
reachable from an unreachable finalizable object.

3. The third step is performed at the end of the scanning phase of the garbage collection
cycle. Incinerator sets to null all references remaining in the internal list, while handling
the issues related to synchronization on stale objects, discussed in Section 3.2. This
renders many stale objects unreachable, which enables the garbage collector to reclaim
their memory in the remaining of this garbage collection cycle. This explains why
objects F and H disappear in Figure 3.1d.

4. After this first garbage collection cycle, the JVM finalization threads execute the
finalize() methods of objects that were unreachable and finalizable in the previous
garbage collection cycle. This is the case of the object D in Figure 3.1e. Once finalize()
executed for each of those objects, the JVM removes its references to the object. If
the object becomes unreachable, then it will be reclaimed in the following garbage
collection cycle, as illustrated in Figure 3.1f. But if the object is still reachable, then
the object was resurrected. If the resurrected object still holds stale references, then
these will be removed in the following garbage collection cycle by Incinerator without
delay, because the object was already finalized, and thus became non-finalizable.

The algorithm presented above is designed to protect against a buggy bundle, but not a
deliberate attack. As such, it is possible to construct a malicious bundle that can keep a
stale object from ever being reclaimed by the garbage collector. As Incinerator defers the
nullification of a stale reference reachable from an unreachable finalizable object, the stale
reference will survive a collection cycle. A finalize() method of a malicious bundle can
force the stale reference to survive one more collection cycle by creating a new unreachable
finalizable object that references the stale object. By repeating the same pattern, the malicious
bundle can indefinitely delay the nullification of a stale reference to the stale object. To
protect against such attacks, Incinerator adds a counter to each stale class loader to indicate
how many collection cycles it survived. Each time a reference is removed from the stale
references internal list, the counter of the class loader of its referenced object is incremented,
if not already done during that collection cycle. When the counter value of a stale class loader
is greater than zero, Incinerator does not delay the nullification of stale references that point
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to objects of that class loader. This ensures that a stale object cannot be resurrected more
than once.
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(b) GC scans memory.
StaleRefList = {B→C,
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(c) GC prepares finalization.
StaleRefList = {B→C, E→F,
G→H}.
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Figure 3.1: Incinerator handling algorithm for finalizable objects.

4. Implementation Extents

We prototyped Incinerator in J3: an experimental Java Virtual Machine based on VMKit [51]
and the Low-Level Virtual Machine (LLVM) [74] and the Memory Management Toolkit
(MMTk) [20]. We tested Incinerator on the Mark&Sweep garbage collector of MMTk, and
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the Knopflerfish [81] 3.5.0 framework, one of the main OSGi implementations. Implementing
Incinerator required adding 1000 lines of code to J3, mostly in C++.

4.1. Changes to the Java Virtual Machine

Within the JVM, Incinerator requires changes in the garbage collector, in the support for class
loading, and in the monitor implementation. The garbage collector is modified as described in
the previous section. Incinerator additionally creates a map in which to store the association
between a bundle ID and its class loader. Such map is needed because OSGi does not provide
an interface to retrieve the class loader of a bundle. Finally, the monitor implementation is
modified to support the algorithm described in Section 3.2.

As an optimization based on Definition 1.12, Incinerator is only enabled when stale references
potentially exist. For this purpose, we have added a global flag that is set when a bundle is
uninstalled or updated, since a new stale reference can only appear under these conditions.
Incinerator clears the flag at the end of a collection when it is certain that all stale references
were eliminated, i.e., if Incinerator did not find any stale references that are reachable from
an unreachable finalizable object. Incinerator checks this flag at the beginning of a collection
and appropriately switches between the original scan function and the Incinerator scan
function.

4.2. Monitoring Bundles Updates and Uninstallations

Incinerator runs an administration bundle that listens to other bundles’ changes. When
a bundle is uninstalled, the administration bundle calls the native method provided by
Incinerator to set the stale flag of the associated class loader. We also modify the OSGi
framework to populate the Incinerator bundle ID association map when a bundle is updated
or a new bundle is installed. These modifications are straightforward and do not alter the
behavior of OSGi. For example, the Knopflerfish OSGi framework 3.5.0 requires only 10 lines
of additional Java code.

4.3. Modifications to the Just-In-Time Compiler

The Java language specification [55] states that, if an exception is raised while holding a
monitor, the Java compiler has to generate an exception handler that releases the monitor.
This introduces the risk of an infinite loop when using Incinerator, as follows:

1. Incinerator nullifies the reference to the object containing the monitor, because the
object is stale.

2. Some Java code accesses the reference and therefore receives a NullPointerException.

3. The execution is transferred to the exception handler created by the compiler.
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4. The exception handler accesses the nullified reference to release the monitor lock, and
consequently receives a NullPointerException, which transfers execution to point 3.

This causes an infinite loop between points 3 and 4.

To avoid this issue, we have modified the Just-In-Time compiler so that the code generated for
a monitor lock release2 simply leaves the block silently when the monitor is null, rather than
raising a NullPointException exception. This workaround does not change the behavior of
programs compiled from Java source code, as the Java compiler caches the reference given
to a synchronized block in a local variable hidden from the Java code, but visible to the JVM.
As a consequence, the argument of the monitor lock release instruction can never be null,
because if it were null, the preceding monitor lock acquire instruction would have thrown a
NullPointerException. However, our workaround is incompatible with the Java specification
and could change the behavior of programs written directly in Java bytecode or generated in
an ad-hoc fashion.

5. Functional Validation and Performance Evaluation

This section presents an evaluation of Incinerator in terms of both the increase in robustness
and the performance penalty. We evaluate robustness from a number of perspectives. First,
we present a test suite of ten micro-benchmarks that we designed to cover the possible
sources of stale references. This test suite is used to compare the behavior of Incinerator with
Service Coroner [47], a tool that instruments the OSGi reference management calls and that
detects stale references by analyzing the object references in a memory dump. Second, we
show the potential impact of bundle conflicts in the context of a simple gas alarm application.
Then, we show the impact of repeated memory leaks caused by stale references. We then
present a concrete case of a stale reference bug found in the Knopflerfish OSGi framework.
Finally, we study the performance overhead of Incinerator by running the DaCapo 2006
benchmark, which is representative of standard Java applications.

We executed all benchmarks on two computers, both of which run Debian 6.0 with a Linux
2.6.32-i386 kernel:

∙ A low-end computer with a 927 Mhz Intel Pentium III processor, 248 megabytes of RAM
and 4 gigabytes of swap space, which has a performance comparable to that of a typical
system in a smart home environment. The swap space is necessary, because J3 requires
1 gigabyte of address space to run the DaCapo benchmark.

∙ A high-end computer having two 2.66 Ghz Intel Xeon X5650 6 core processors,
12 gigabytes of RAM and zero swap space.

Service Coroner was executed using Knopflerfish 3.5.0 on top of Sun JVM 6.

2The MONITOREXIT bytecode instruction.
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5.1. Stale Reference Micro-Benchmarks

In order to assess the scope of the stale reference problem, we designed a test suite of
ten micro-benchmarks that cover the possible sources of stale references and their impact
on the JVM. The scenarios of these micro-benchmarks are classified by four criteria: OSGi
visibility, scope, synchronization, and finalization. We executed the micro-benchmarks using
J3, Hotspot 6, Service Coroner/Hotspot 6, and Incinerator.

Figure 3.2 shows the bundle configurations we used in our scenarios. We consider three
bundles A, B, C. A creates the object S, and B creates the finalizable object F.

Stale Reference OSGi Visibility. OSGi visibility refers to whether the reference is visible
to the OSGi framework, i.e., whether a bundle must call the OSGi framework to obtain the
reference. By instrumenting calls to these API, one could keep track of the references given
to bundles. Service Coroner uses this technique for detecting stale references. We have
developed Scenarios 3.1 and 3.2 to illustrate reference visibility to OSGi.

Scenario 3.1 (OSGi-visible stale reference, see Figure 3.2a). C holds a reference to S which
is managed by OSGi. The reference C→S is made stale by uninstalling A.

Scenario 3.2 (OSGi-invisible stale reference, see Figure 3.2b). C holds a reference to S
which is not managed by OSGi. The reference C→S is made stale by uninstalling A.

Stale Reference Scope. Scope refers to the location of the reference, i.e., in a local
variable, in a global variable, in an object field, or in a thread-local variable. Different
locations are scanned in different ways and orders by the garbage collector. We designed
Scenarios 3.3 to 3.6 in order to check that Incinerator finds stale references in all kinds of
locations.

Scenario 3.3 (Stale reference in local variable, see Figure 3.2b). C holds a reference to S in
a local variable. The reference C→S is made stale by uninstalling A.

Scenario 3.4 (Stale reference in global variable, see Figure 3.2b). C holds a reference to S
in a global variable. The reference C→S is made stale by uninstalling A.

Scenario 3.5 (Stale reference in object field, see Figure 3.2b). C holds a reference to S in
an object field. The reference C→S is made stale by uninstalling A.

Scenario 3.6 (Stale reference in thread-local storage, see Figure 3.2b). C holds a reference
to S in a thread-local variable. The reference C→S is made stale by uninstalling A.

Synchronization on Stale Objects. Synchronization refers to whether the referenced
object monitor is used to synchronize threads. As stated in Section 3.2, if threads are blocked
while waiting to obtain the monitor of a stale object, then Incinerator wakes up the blocked
threads and only releases the memory of the object monitor when the last thread wakes up.
Scenario 3.7 illustrates this situation.
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Scenario 3.7 (Stale reference to a synchronized object, see Figure 3.2c). C runs two threads
T1 and T2 that synchronize on S via two references. Both references T1 →S and T2 →S are
made stale by uninstalling A.

AC S

OSGi

(a) OSGi-visible stale reference.

AC S

OSGi

(b) OSGi-invisible stale
reference.

AC S
T1

T2

OSGi

(c) Stale reference to
synchronized object.

AC S

OSGi

(d) Stale reference to finalizable
object.

A
BC S F

OSGi

(e) Stale ref. reachable from
reachable finalizable object.

A BS F

OSGi

(f) Stale ref. reachable from un-
reachable finalizable object.

Legend:

Active bundle.

Uninstalled bundle.

Non-finalizable object.

Finalizable object.
Stale object.
Finalizable stale object.

Thread.
Java reference.
Stale reference.
Management reference.

Figure 3.2: Stale reference scenarios.

Finalization of Stale Objects. Incinerator allows finalize() methods to run without
introducing NullPointerExceptions by deferring nullification of stale references reachable by
unreachable finalizable objects. To check the possible cases of finalizable objects, we defined
Scenarios 3.8 to 3.10.

Scenario 3.8 (Stale reference to a finalizable object, see Figure 3.2d). C holds a reference
to S which is finalizable. The reference C→S is made stale by uninstalling A.

Scenario 3.9 (Stale reference reachable from reachable finalizable object, see Figure 3.2e).
C holds a reference to F which is finalizable. F retains a reference to S. The reference F→S
is made stale by uninstalling A.

Scenario 3.10 (Stale reference reachable from unreachable finalizable object, see
Figure 3.2f). F is finalizable and unreachable. F retains a reference to S. The reference F→S
is made stale by uninstalling A.
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Results and Conclusions

We executed our scenarios using Hotspot 6, J3, Service Coroner/Hotspot 6, and Incinerator.
We did not evaluate Service Coroner with J3 because it requires a full Java 6 environment,
which J3 does not support currently.

Scenario 3.1 Scenarios 3.2 to 3.10
J3 or Hotspot 6 Undetected

Service Coroner/
Hotspot 6

Detected
Conditions: Service unregistered
& garbage collection

Undetected

Incinerator Detected & Eliminated
Conditions: Bundle uninstalled or updated & garbage collection

Table 3.1: Micro-benchmark execution with standard JVMs, Service Coroner and Incinerator.

Table 3.1 summarizes the behavior. Both J3 and Hotspot 6 suffer from memory leaks caused
by stale references that go undetected in all scenarios. Service Coroner, used with Hotspot 6,
detects OSGi-visible stale references in Scenario 3.1, thanks to the instrumentation of the
OSGi calls transmitting references to the calling bundles. ServiceCoroner detects OSGi-visible
stale references, but it does not eliminate them which leads to memory leaks. Service Coroner
does not, however, detect OSGi-invisible stale references, as demonstrated by Scenarios 3.2
to 3.10.

Furthermore, Incinerator detects and eliminates all the stale references illustrated in the ten
scenarios. In particular, Incinerator handles correctly the case of the stale references used
for synchronization (see Scenario 3.7): the blocked thread is woken up by Incinerator when
the reference to the stale object used for synchronization is nullified. Both threads receive
a NullPointerException: (1) the thread holding the lock when it tries to release the lock,
and (2) the thread blocked in the lock-acquiring method. Incinerator also handles correctly
the three cases of stale references used by a finalizable object (see Scenarios 3.8 to 3.10),
correctly executing the finalize() method as expected. After the execution of the finalize()
methods, the memory of the stale objects is properly reclaimed by the garbage collector.

5.2. Bundle Conflicts

To demonstrate the risk of physical hazards and data corruption that can be caused by
stale references, we prototyped an alarm application that is representative of a typical
smart home system. Figure 3.3 shows an overview of the structure of this application. The
application monitors a gas sensor device and fires a siren if it detects an abnormal gas
level. The application accesses physical devices via two driver bundles: SirenDriver and
GasSensorDriver.

The following experiment is performed:

1. Initially, the bundles SirenDriver 1.0 and GasSensorDriver are installed and started. Each
bundle connects to its physical device (the alarm siren and the gas sensor, respectively)

64 Koutheir Attouchi



5. Functional Validation and Performance Evaluation

and exposes its features to smart home applications. SirenDriver 1.0 saves the alarm
siren configuration in a simple text file describing parameters and their values.

2. When the bundle AlarmApp is installed and started, it obtains references to the services
provided by SirenDriver 1.0 and by GasSensorDriver.

3. We upgrade the bundle SirenDriver from version 1.0 to 2.0. As part of the upgrade, the
siren configuration file is converted to an XML3-based format, to simplify the addition
of new configuration options. SirenDriver 1.0 is stopped and uninstalled, and thus
disconnected from the alarm siren. When SirenDriver 2.0 is started, it connects to the
alarm siren and exposes its new features. After this upgrade, the OSGi framework
broadcasts an event to all bundles indicating that the bundle SirenDriver was updated.

4. We deliberately introduced a bug in AlarmApp so that it does not modify the reference it
holds to the service provided by SirenDriver 1.0 when it receives the broadcast update
event. This reference becomes stale.

Alarm siren
SirenDriver 1.0

SirenDriver 2.0

Siren
configuration

GasSensorDriver

AlarmApp

Gas sensor Stale reference

Figure 3.3: Hardware and software configuration of the Alarm controller application.

After the upgrade, we observed three problems while executing the alarm application:

∙ The memory used by the JVM increased. We executed a garbage collection and observed,
via debug logs, that SirenDriver 1.0 was not collected, thus leaking memory.

∙ We observed that changing the settings of the siren overwrites the XML configuration
file by a file in the old text format. In fact, to change the settings of the siren, the
AlarmApp invokes the service provided by SirenDriver 1.0 via its stale reference to the
bundle. By doing so, SirenDriver 1.0 overrides the XML configuration file that was
previously migrated and saved by the version 2.0. This problem is an example of data
corruption caused by stale references.

∙ After simulating a gas leak to the gas sensor, we observed alarm signals repeatedly
shown by the AlarmApp, but the siren remains silent. Despite the fact that the AlarmApp
knows about the gas alarm reported by the gas sensor via GasSensorDriver, calling
SirenDriver 1.0 does not activate the physical siren because that version is disconnected
from the device, and only SirenDriver 2.0 provides the service. This problem makes the
siren device unusable, and represents a physical hazard to the home inhabitants. This
example is only meant for demonstration purposes, and such a bug would be easy to
identify during the test phase because of the simplicity of the scenario. However, similar
problems can occur in real applications which are more complex and thus harder to
test exhaustively.

3eXtensible Markup Language
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5.3. Memory Leaks

To investigate the memory leaks caused by stale references in quantitative terms, we repeated
Scenario 3.1 (see Section 5.1) multiple times in order to create many stale references. In
this experiment, a bundle C holds a reference to an object S (see Figure 3.2a). For the
sake of clarity, we call S the object created by the th version of A, called A. Each time we
update the bundle A from version A to version A+1, the old object S becomes stale, and C
keeps its reference to S and obtains a new reference to the new S+1 object created by A+1.
The bundle A is a small unit test bundle with 150 lines of Java code distributed over three
classes.

For the baseline, J3, each update of the bundle A makes one more reference stale and costs
the JVM 892 kilobytes of leaked memory. This is due to the need to keep all the bundle
class information, static objects and generated machine code. After only 230 updates of
the bundle A, the amount of leaked memory reaches 200 megabytes and J3 starts raising
OutOfMemoryExceptions on the low-end test machine. Incinerator, however, continues to use
the same amount of memory. These results show that, even stale references in small bundles,
such as A, may leak significant amounts of memory.

5.4. Stale References in Knopflerfish

Knopflerfish is an open source OSGi framework implementation that is commonly used in
smart home gateways because it is stable, and because it can run on the old version 1.4 of
the Java runtime, still commonly used in the embedded market.

HTTP-Server is a bundle delivered with Knopflerfish and used by other bundles that expose
Web-based interfaces. Web-based interfaces are commonly used in the context of smart home
applications to interact with the end user. Therefore, HTTP-Server is a key bundle.

Using Incinerator, we identified a bug in HTTP-Server version 3.1.2. We discovered that, while
updating HTTP-Server, some references to the objects of this bundle are not set to null as
required. HTTP-Server defines a group of threads to handle transactions. When the bundle
is uninstalled or updated, these threads are not destroyed by HTTP-Server as should be. As
these threads reference objects allocated by the HTTP-Server bundle, the stale class loader
stays reachable. HTTP-Server suffers thus from two different leaks: leaked threads, which
silently continues to run, and stale references from these threads.

Stale references in the HTTP-Server bundle of Knopflerfish cause a loss of 6 megabytes of
memory on each bundle update. Indeed, the HTTP-Server bundle contains 46 classes, which
in total contain 8551 lines of Java code. The results also show that Incinerator does an
efficient job by eliminating stale references in the long run, thus avoiding the memory leaks
they cause and increasing the availability of the JVM, even in presence of stale reference
bugs in running applications. When the leaked threads further access a stale reference, they
receive a NullPointerException, which is not caught by HTTP-server, causing the threads to
terminate execution. Therefore, Incinerator simultaneously solves the two leaks: the leaked
thread is terminated and the memory of the stale bundle is reclaimed.
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We sent a bug description and a patch [8] to the Knopflerfish development community. The
patch destroys the leaked threads when the bundle is uninstalled and updated, thus avoiding
the leaked threads and consequently the stale references. The patch was approved and
has been integrated in the framework since the release 4.0.0. This shows that even well-
recognized frameworks can suffer from the problem of stale references.

5.5. Performance Benchmarks

In order to measure the performance impact of Incinerator on real Java applications, we
ran the DaCapo 2006 benchmark suite [21] on J3 and on Incinerator. The DaCapo [21]
benchmarks includes eleven real Java applications stressing many JVM subsystems. We only
use nine of the DaCapo applications, due to the constraints of the low-end computer. We
excluded the “chart” benchmark because it requires an X Windowing Server running, and we
excluded the “pmd” benchmark because of memory constraints.

This evaluation assesses the minimal impact of Incinerator, when there are no bundle updates,
because DaCapo 2006 applications do not define bundles, except for the eclipse benchmark
application. As compared to the baseline J3 JVM, Incinerator introduces an overhead in
the garbage collector for each scanned object in order to determine whether checking for
stale references is required, and for each monitor acquisition in order to check whether the
monitor belongs to a stale object.
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Figure 3.4: Average execution time overhead of DaCapo 2006 benchmark applications
between J3 and Incinerator when executed on a low-end computer. hsqldb has a
standard deviation of 22%, truncated here for clarity.

We performed 20 runs of all DaCapo benchmark applications on J3 and on Incinerator, on
the low-end and the high-end computers described in the beginning of this section. On the
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Figure 3.5: Average execution time overhead of DaCapo 2006 benchmark applications
between J3 and Incinerator when executed on a high-end computer.

low-end computer, Figure 3.4 shows that J3 performs better than Incinerator in 7 out of 9
applications, with a worst slowdown of 3.3%. On the high-end computer, Figure 3.5 shows
that J3 performs better than Incinerator in 4 out of 9 applications, with a worst slowdown of
1.2%. But, as indicated by the standard deviations on Figures 3.4 and 3.5, these comparisons
are inverted in some runs, i.e., Incinerator performed better than J3 in those runs. This is
mostly due to disk and processor cache effects, and measurement bias [88].

Overall, our evaluation shows that Incinerator has only a marginal impact on performance
and that it could be used in a production environment.

6. Conclusion

OSGi is increasingly being used in the smart home environment as a framework to host
service-oriented applications delivered by multiple tiers. This makes the possibility of stale
references a growing threat to the framework and to the running applications. In this chapter,
we present Incinerator, which addresses the problem of OSGi stale references and the memory
leaks they cause by extending the garbage collector of the Java virtual machine to take into
account bundle state information.

Incinerator detects more stale references than the existing stale reference detector, Service
Coroner. Furthermore, while Service Coroner only detects stale references, Incinerator also
eliminates them by setting them to null. This allows the garbage collector to reclaim the
referenced stale objects. Indeed, we have found that stale references can cause significant
memory leaks, such as the 6 megabytes memory leak on each update of the HTTP-Server
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bundle caused by the stale reference bug we discovered in Knopflerfish. Preventing memory
leaks increases the availability of the JVM, which is an important metric in smart home
gateways.

Incinerator is mostly independent of a specific OSGi implementation and, indeed, only 10
lines need to be modified in the Knopflerfish OSGi framework in order to integrate Incinerator.
The CPU overhead induced by Incinerator is always less than 1.2% on the applications of the
DaCapo benchmark suite on a high-end computer, and less than 3.3% on a low-end computer.
The latter result shows that Incinerator is usable in smart home systems that have a limited
computational power.
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This chapter describes the issues of memory monitoring in an open middleware for the smart
home gateway, and proposes a solution for these issues. We present a memory monitoring
system that is mostly transparent to application developers, that provides monitoring reports
that are accurate enough and relevant, with respect to the particular composition of the
gateway middleware. We illustrate the design of the system in addition to the implementation
details of our prototype. Then we evaluate the system on the functional and performance
levels, using micro-benchmarks and real life DaCapo applications.

1. Memory Monitoring Issues

The smart home ecosystem, as conceived by the Home Gateway Initiative [59], is based on
OSGi and Java, in an effort to support the openness of a multi-tenant execution environment
hosting applications collaborating to render services (see Sections 2.2.3 and 6.2.2). All
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tenants deploy their bundles on the same execution environment, as shows the Figure 4.1.
This sharing by untrusted competing tenants raises the need to “protect the box against
badly written bundles” [104, 50]. A badly written bundle is a bundle that consumes resources,
such as CPU power and memory space and network bandwidth, far above normal expected
levels. Therefore, mechanisms that regulate resource consumption at bundle granularity are
necessary, and in particular, resource monitoring mechanisms. Resource monitoring answers
essentially two questions: (1) counting, i.e., how much of the resource is consumed?, and
(2) accounting, i.e., which entity should be charged for using that quantity of the resource?

Hardware & Operating System

Java Virtual Machine & RuntimeTenant 0

Tenant 1
Operator Platform

OSGi framework

Tenant 10 Tenant 30Tenant 20

B1 B2 B3

B10 B11

B13

B20

B21

B30 B31
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Legend: B1,...,B33 are OSGi bundles.

Figure 4.1: Multi-tenant OSGi-based execution environment

Implementing a sufficiently accuratemonitoring system with a minimal performance overhead
is a challenge. The problem is that accurate resource accounting during cross-application
interactions requires information related to business logic between the caller application
and the service being called, which is neither provided by OSGi nor Java. This is why most
existing solutions tend to avoid the problem instead of solving it (see Section 6.3.4), either
by prohibiting direct cross-application communication, or by adopting direct accounting all
the time [50], or by adopting indirect accounting all the time [86] (see Section 6.3.3), or by
delegating the problem to the developers [23, 73]. All in all, existing OSGi-related resource
monitoring approaches do not perform accurate resource accounting when cross-application
interactions occur.

Several monitoring tools were developed for Java-based systems, such as A-OSGi [46],
JMX [52], JVM-TI [99], the method described by Miettinen et al. [86], and our previous
work on adaptive monitoring [83]. All these solutions are designed to monitor low granularity
Java elements, e.g., threads, classes, objects, methods. The problem with these solutions is
that, taken as is, the information they produce is of limited interest in OSGi platforms. This is
why we need to raise the abstraction to, at least, the primitive deployment unit in OSGi, i.e.,
the OSGi bundle. On a higher level, information about OSGi applications (set of bundles) and
application tenants is also useful in industrial OSGi platform.
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2. Our Solution to Memory Monitoring in OSGi

In this chapter, we present an OSGi-aware memory monitoring system [10] that is mostly
transparent to application developers, and that allows collaboration between distinct tenants
sharing the same OSGi execution environment. The system monitors calls between tenants
and provides on-demand snapshots of memory usage statistics for the different tenants.

To solve the problem of resource accounting during interactions between tenants, the
monitoring subsystem has predefined implicit resource accounting rules that describe
correctly most interactions between tenants. For those interactions that are not correctly
accounted for, the system allows specifying explicit accounting rules in the form of simple
configuration files loaded by the monitoring system at JVM start-up. Our prototype requires
the resource accounting rules to remain constant during the lifetime of the JVM. At runtime,
the monitoring system applies implicit and explicit rules to correctly account for memory
used by the bundles in local variables, loaded classes, and created objects. In practice,
most bundles do not need to write accounting rules because implicit rules handle their
interactions correctly. Bundles that need to write explicit accounting rules are mainly those
that generate asynchronous activity, such as those that publish events. Examples include the
OSGi framework, and bundles exposing data of home sensors in real time. However, most
bundles consume services sequentially and provide services only on-demand.

3. Accurate and Relevant Memory Monitoring

In this section, we present the design of a memory monitoring subsystem that is intended to
be a part of a more complete system for resource management inside a long running JVM
running OSGi. The memory usage information reported by this subsystem would indicate
memory leaks and too high memory usage patterns.

Scenario 4.1 (Motivating Scenario: Service Method). Often in practice, a tenant would
require the caller of the service it provides to be accounted for resources consumed by that
service. For example, a tenant that provides a service playRingTone() would require the
tenant calling that service to be accounted for memory consumed in order to play the ring
tone. No rules should be needed in order to fulfill this accounting, i.e., it should be the default
behavior of resource accounting.

Scenario 4.2 (Motivating Scenario: Event Handlers). Less often, a tenant A provides an
interface to notify observers about an event. Another tenant B subscribes to the event and
expects to be called when the event occurs. When the event occurs, A calls B as contracted.
In this case, implicit rules (see the step 3(d) in Section 3.4) specify that A should be accounted
for resources consumed during the call. However, this is unfair given the fact that A calls B
only because B asked for that by subscribing to the event. In this case, A needs to write an
accounting rule for the notification interface, accounting resources for the called entity (see
Section 3.3).
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3.1. Assumptions

We assume a number of preconditions on the system where our monitoring subsystem runs.

No Need for Isolation. We do not suppose any form of isolation beyond what is provided by
OSGi. Therefore, all tenants are able to communicate via service method calls. This enables
different tenants to collaborate to create integrated services and user experience, even when
the user is using sensors and actuators and applications from different manufacturers and
editors.

Constant Monitoring, Infrequent Reporting It is typical for a long-running system to
have a resource manager subsystem that periodically requests memory usage statistics from
a memory monitoring subsystem. In the smart home gateway, memory usage statistics would
be requested once or twice a day in relatively stable configurations, and the period can be as
frequent as every hour when hardware or software configurations change. The memory usage
statistics enable detecting abnormal memory usage situations, e.g., memory leaks. When
such abnormal activity is detected, the resource manager subsystem carries out actions to
restore the system to a normal state by making memory available again, such as terminating
some applications. The resource manager subsystem can be human driven or autonomous.

Our memory monitoring subsystem runs continuously, collecting raw memory usage data on
running applications. This generates a persistent overhead that must be kept to a minimum.
Furthermore, in order to report relevant memory statistics, raw data need to be aggregated
and filtered, generating an overhead every time a memory monitoring report is requested.
We target systems where memory monitoring reports will be requested sparingly in time, in
order to check for abnormal resource usage. This is the case of the smart home gateway,
where memory monitoring reports would be generated from once per hour to once per day.
Therefore, we tolerate the aggregation and filtering overhead needed to generate memory
monitoring reports, and we rather focus on the persistent overhead caused by continuous
monitoring.

Constant Resource Accounting Configuration. In order to simplify our prototype and
keep performance overhead acceptable, we require that resource accounting rules and tenants
list remains constant during the JVM lifetime. This allows performing early calculations in
order to accelerate inference of accounting rules.

3.2. Goals

We designed our monitoring subsystem in order to fulfill the following goals.

Detailed Memory Monitoring. Our prototype monitors memory usage of every tenant
in call stack space and heap space. Call stack space is where most methods variables and
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parameters are stored. The subsystem reports the number of bytes accounted to each tenant,
in the call stacks of all running threads. Heap memory is used to store Java classes and
objects, particularly their static fields and object fields. The subsystem reports the number of
classes loaded by each tenant and the number of bytes used by those classes. It also reports
the number of reachable objects that are accounted to each tenant, in addition to the number
of bytes used by those objects.

Expressive Resource Accounting Rules. The tenants and the platform operator are
required to provide accounting rules that describe how accounting should occur when two
tenants interact. We designed a Domain-Specific Language (DSL) to enable expression of
resource accounting rules.

Only Specify Special Cases. We want our subsystem to require the smallest configuration
possible. The default configuration should work well for most of the cases, and developers and
platform administrators should configure and maintain only the special cases of interactions.
For this, we armed our subsystem with a list of implicit rules to handle most cases correctly.
We also defined a resource accounting algorithm that decides which tenants to account for
resources, so that:

∙ Explicit rules always override implicit rules.

∙ The order of processing rules is from the most specific, to the most generic.

3.3. Domain-Specific Language for Resource Accounting Rules

We defined a DSL that enables developers and platform administrators to specify the rules
to decide which tenant should be accounted for resources consumed during an interaction.
Illustrated in Figure 4.2, the DSL allows rules of varying levels of precision, which allows
factoring the rules, thus writing and maintaining less of them. It also allows correct handling
of all possible cases of bundle interactions.

The DSL describes separately two aspects: a list of tenants, then a list of rules. Each element
in the tenants list describes the identifier assigned to a tenant, and the names of bundles it
deploys. Each element in the rules list describes a method call between two tenants, and
which tenant should be accounted for resources consumed during that call. We reserve 0 as
the tenant ID of the Java runtime and the JVM native code, and we reserve 1 as the tenant ID
of the platform operator (see Figure 4.1). A rule starts with the caller tenant ID (an integer),
which can be “*” to indicate that any caller tenant matches this rule. Then, the called site
is specified, followed by the accounting decision. The called site is (1) a method of (2) an
interface defined in (3) a tenant and implemented by (4) a bundle. The four components are
optional, and omitting a component matches all possible values, e.g., specifying “_” as the
implementation bundle name matches any bundles implementing the specified interface or
method. Finally, the accounting decision specifies which tenant is accounted for resources
consumed during the call. Note that when the called tenant should be accounted for resources,
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configuration tenant rule end

(a) The “configuration” global grammar rule.

tenant tenant tenantID { bundle name
,

} end

(b) The “tenant” grammar rule.

rule account { tenantID

*

, tenantID

*

/ bundle name
_

/ interface name / method name , caller

called

} end

(c) The “rule” grammar rule.

Figure 4.2: DSL of resource accounting configuration

it is the tenant holding the implementation of the called method that is accounted, not the
tenant defining the interface.

tenant 1 { org.knopflerfish.framework }
tenant 20 { tests.A }
tenant 200 { j3mgr }

account { 0, 0/_/java.lang.Runnable/run, called }
account { *, 200/j3mgr/j3.J3Mgr, caller }
account { *, 20/tests.A/tests.A.A, caller }

Figure 4.3: Sample resource accounting configuration

Figure 4.3 shows an example of resource accounting configuration. It first associates bundles
with tenants, then it declares rules, each of which specifies which tenant is accounted for
resources consumed during a given method call. So, first it declares the platform operator
as tenant 1, holding the main framework bundle of the Knopflerfish OSGi implementation. It
declares two other tenants whose identifiers are 20 and 200, with one bundle for each tenant.
Then it declares that a call from the Java runtime to the method run of the java.lang.Runnable
interface implemented by any bundle will be accounted to the tenant of the called bundle,
i.e., the tenant of implementation bundle. Next, a call from any tenant to a method of the
interface j3.J3Mgr implemented in the bundle j3mgr of the tenant 200 is accounted to the
tenant of the caller. Finally, a call from any tenant to a method of the interface tests.A.A
implemented in the bundle tests.A of the tenant 20 is accounted to the tenant of the caller.

Back to the Scenario 4.2 previously described, all what the developer needs to write is the
following accounting rule:

account(42, 42/_/notify.event/happened, called)
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This rule specifies that a call from the tenant 42 (the tenant ID of A) to themethod happened() of
the interface notify.event defined in the tenant 42 (in A) and implemented by any tenant (the
“_”) is accounted to the called tenant implementing the interface, i.e., the tenant subscribed
to the event published by A.

3.4. Resource Accounting Algorithm

This section describes the resource accounting algorithm that decides which tenant is
accounted for resources consumed during an interaction.

The list of tenants described in Section 3.3 is stored in the following data structure associating
each tenant ID with the list of bundles it is responsible of:

mp = {..., (TenantID → {...,BundleNamej, ...}), ...}

The list of resource accounting rules is stored in the following data structure associating
accounting rules with decisions:

mp ={..., (CallConfig → caller|called), ...},where:
CallConfig =([CallerTenantID],CalledSite),where:
CalledSite =(TenantID, [BundleName], [InterfaceName], [MethodName ])

where: [] means  is optional

Given a call configuration λ (a.k.a. CallConfig in the map expression above) as an input, the
algorithm proceeds as follows:

1. The accounting rules map is searched for an exact match for the key λ. If that is found,
then its associated value indicates explicitly which tenant is accounted for the resource
usage, and the process ends.

2. If λ is totally generic, i.e., if its method name and interface name and bundle name are
all missing, then continue to 3, otherwise, continue to 4.

3. No rules are defined for this interaction. Apply the following implicit rules:

(1) If the call is an internal operator platform call, then account resource usage to the
caller, i.e., the platform operator.

(2) If the platform operator is calling a tenant, then account resource usage to the
called entity, i.e., the tenant.

(3) If a tenant is calling the platform operator, then account resource usage to the
caller, i.e., the tenant.

(4) Otherwise, account resource usage to the caller.

And the process ends here.
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4. Make λ more generic, i.e., remove one non-missing piece on information from it, in the
following order: method name, then interface name, then bundle name.

Loop to 1.

The illustrated decision algorithm ensures that:

∙ Accounting rules order is unimportant, i.e., rules are always matched from the most
specific, to the most generic.

∙ Implicit accounting rules account the platform operator only when the interaction is an
internal operator platform call.

∙ Implicit accounting rules between two tenants accounts the caller.

4. Implementation Details

This section describes our implementation of the design we promote in the previous section.
We divided the monitoring subsystem into three major components that run inside the JVM:

∙ OSGi state tracker that acts as a bridge between the JVM subsystems and the OSGi
framework.

∙ Accounting configuration manager that parses accounting rules and performs
accounting decisions.

∙ Monitoring manager that generates, on-demand, snapshots of detailed memory
statistics.

The monitoring subsystem implementation is around 2000 lines of C++ code mostly inside
the J3 JVM based on VMKit [51], LLVM [74] and MMTk [20]. The OSGi framework used is
Knopflerfish 5.0.

4.1. OSGi State Tracker

In resource accounting rules, each bundle is identified by its name. But, at runtime, each
bundle instance is identified by a unique framework-assigned ID that is not reused even if
that instance is uninstalled. The link between the bundle name and the bundle ID enables the
monitoring subsystem to know which rule to apply when two bundles interact. The OSGi state
tracker component makes the links between the static bundle information (e.g., bundle names)
given in the resource accounting rules and the dynamic states of OSGi bundles at runtime
(e.g., bundle ID, bundle class loaders). It tracks the OSGi states (e.g., resolved, uninstalled)
of bundles installed in the OSGi framework running on top of the JVM, by listening to events
of bundle state changes from the JVM and from the OSGi framework.
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This component associates bundle identifiers with their respective bundle information. The
bundle information includes the bundle name, and its current and previous class loaders. The
association map is expressed as:

mp ={..., (BundleID → BundleInfo), ...},where:
BundleInfo =(bundleName,{...,ClassLoaderj, ...})

In order to discover bundle state changes, this component places two hooks in the Knopflerfish
5.0 OSGi framework, which makes it dependent on that particular OSGi implementation.
However, those hooks need no more than 10 lines of code inserted into the framework code.
Therefore, the dependency is fairly limited.

This component encapsulates all the logic necessary to interact with the OSGi framework.
Therefore, porting the monitoring subsystem to another OSGi framework implementation only
requires porting this component. This makes the major part of the subsystem independent of
any particular OSGi framework implementation.

4.2. Accounting Configuration Manager

When the JVM starts up, the accounting configuration manager component loads the resource
accounting configuration, before loading the OSGi framework code. The configuration is
stored in memory in the data structures described in Section 3.4, and it remains constant
during the execution of the JVM. We implemented a parser inside this component, in order to
load the configuration from any text file (e.g., disk files, names pipes, sockets) that conforms
to the DSL described in Section 3.3.

At runtime, each time a bundle calls a method via direct invocation (i.e., invoke*) or object
construction (i.e., new), this component decides which tenant should be accounted for
resources consumed during that call. The decision is based on the algorithm described
in Section 3.4, which takes into account the resource accounting configuration, default
accounting rules, and runtime information. Some runtime information, e.g., states of bundles,
is provided by the OSGi state tracker component previously described. The accounting
decision concerns solely resources consumed in the thread running the called method, and it
remains effective until another method is called in that thread.

For each Java thread, we set a thread-local variable γ holding the thread’s currently accounted
tenant ID. Initially, γ is set to 0: the special tenant ID reserved to the Java runtime. Before
every method call, the resource accounting algorithm decides which tenant is accounted for
the resources consumed during the call. If the algorithm decides that the called tenant shall
be accounted for resources, then γ is set to the tenant ID of the called method. Otherwise,
γ remains unchanged. In all cases, the tenant identified by γ is accounted for resources
consumed by the thread. Most changes needed to track method calls and to invoke the
decision algorithm are implemented in the Just-In-Time (JIT) subsystem of the JVM.

The monitoring subsystem adds, in every Java object, a hidden field that holds the tenant
ID accounted for the object. Every time the JVM creates a new object, i.e., executes a new
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instruction, it reads γ to determine which tenant is accounted for the newly created object.
The object is consequently tagged with the tenant ID set in of γ.

This mode of operation regarding γ ensures that resources are accounted to the caller tenant,
unless otherwise specified by an implicit or declared accounting rule. The notion of the caller
tenant is transitive. Consider the example call sequence:

S1 = ...→ M1 → M2 → M3 → M4 → ...

where M is a method belonging to a tenant T, and arrows indicate method calls. In each
method call, before entering the called method M, the decision algorithm makes the decision
D, which determines the new value of γ. An example of decisions follows:

D1 = ...→ M1: the called tenant is accounted.⇒ γ =T1
D2 = M1 → M2: the caller tenant is accounted.⇒ γ =T1
D3 = M2 → M3: the caller tenant is accounted.⇒ γ =T1
D4 = M3 → M4: the called tenant is accounted.⇒ γ =T4

This example implies that resources consumed during the execution of M1, M2 and M3 are all
accounted to T1, whereas resources consumed in M4 are accounted to T4.

It is worth noticing that γ is restored to its previous value in any scenario that makes the
method return to one of its callers, e.g., when a method returns, or when an exception is
caught outside the method where it is thrown. The previous values of γ are stored in the call
stack, as hidden local variables.

This frequent execution of the decision algorithm in every method call is the primary source
of the permanent overhead added to the normal execution of Java code.

4.3. Monitoring Manager

The monitoring manager component generates, on-demand, snapshots of detailed memory
statistics. In order to do so, this component triggers a special garbage collection cycle,
during which it scans the object graph and call stacks of running threads, while accumulating
statistical counters. This scan is performed by placing hooks in the garbage collector code
which scans objects and threads. The counters accumulate the following information, grouped
by tenants (see Section 3.2):

∙ Number of reachable objects and their size.

∙ Number of loaded classes and their size.

∙ Amount of used stack space.

It is worth noting that the modifications performed on the garbage collector do not depend
on the algorithm used for collection, and do not modify the accessed objects and classes and
threads. We only depend on the fact that the garbage collector can perform a collection cycle
during which it scans the whole objects graph, and during which all threads are suspended.
Otherwise, this component is independent of the garbage collector implementation.
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5. Functional Validation and Performance Evaluation

The benchmarks were executed on a computer running the 32-bits version of the Linux 3.12
kernel, on an Intel Xeon CPU running at 2.7 GHz, with 12 megabytes of cache, 12 gigabytes
of RAM1 and 1 terabyte of disk space.

5.1. Functional Tests

In order to ensure that the monitoring subsystem works as intended, we performed functional
unit tests. To verify correct accounting, we ask the monitoring system to output detailed
accounting calculations.

tenant 1 { org.knopflerfish.framework }
tenant 50 { tests.A }
tenant 60 { tests.B }
tenant 70 { tests.C }
tenant 80 { tests.D }
tenant 90 { tests.E }

Figure 4.4: Tenants declarations in functional tests.

5.1.1. Operator Platform Internal Accounting

A part of the detailed accounting calculation is shown in Figure 4.5, consisting of a thread call
stack prefixed with monitoring information, i.e., T: identifier of the tenant that is accounted
for resources consumed during the method frame, and Size: the total size, in bytes, of the
method frame. For example, in Figure 4.5, 1456 bytes of stack space are accounted to the
Java runtime (tenant 0), and 1120 bytes of stack space are accounted to the operator platform
(tenant 1). The package java.lang belongs to the Java runtime. The line 1 in Figure 4.4 states
that the package org.knopflerfish.framework belongs to the operator platform.

The choice of which tenant is accounted for a particular method frame is based on the
algorithm described in Section 3.4. As specified in Section 4.2, γ denotes the currently
accounted tenant ID. In fact, γ corresponds to T in Figures 4.5 and 4.6. Initially, γ ← 0:
the tenant ID of the Java runtime. If the algorithm decides that the called tenant shall be
accounted for resources, then γ is set to the tenant ID of the called method. Otherwise,
γ remains unchanged. In all cases, the tenant identified by γ is accounted for resources
consumed by the method frame.

In Figure 4.5, the <native> frame is the first code to run in the thread, consisting of operating
system thread initialization routine and JVM routines that prepare for Java code execution.
Initially, the native frame is accounted to the Java runtime, i.e., the tenant 0 (γ ← 0). The
native code calls the java.lang.VMThread.run() method implemented in Java runtime, which
1The kernel allowed addressing the whole RAM via Physical Address Extensions.
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T Size MethodFrameName
1 480 java.lang.VMObject.wait
1 128 java.lang.Object.wait
1 240 org.knopflerfish.framework.Queue.removeWait
1 272 org.knopflerfish.framework.StartLevelController.run
0 96 java.lang.Thread.run
0 304 java.lang.VMThread.run
0 1056 <native>

Legend:
T: Currently accounted tenant ID, i.e., γ.
Size: Stack size, in bytes, of the method frame.

Figure 4.5: Detailed memory accounting calculations on a call stack of a thread internal to
the OSGi framework.

makes it an internal Java runtime call. Step 3(a) in the algorithm described in Section 3.4
accounts the call to the caller, i.e., tenant 0 (γ = 0) which is the Java runtime. The same
accounting goes for the next method frame.

Next, the Java runtime calls themethod run() of the class org.knopflerfish.framework.StartLevelController
defined in the operator platform (tenant 1), and implementing the interface java.lang.Runnable
defined in the Java runtime (tenant 0). This call matches the predefined explicit rule: account
{0, 0/_/java.lang.Runnable/run, called}. This is why the called, i.e., the operator platform
(tenant 1) is accounted for the call, and γ ← 1. The next call is internal to the tenant 1, so
the caller, i.e., tenant 1 (γ = 1) is accounted for it.

Later, the operator platform calls the Java runtime method java.lang.Object.wait(). The
step 3(c) in the algorithm implies that the caller, i.e., tenant 1 (γ = 1), is accounted for the
call. The rest of the calls are internal Java runtime calls, for which the caller tenant, i.e., the
tenant 1 (γ = 1) is accounted for the resources consumed during the calls.

5.1.2. Implicit and Explicit Accounting

To test monitoring of other types of interactions between different tenants, we define five
components tests.A through tests.E, each belonging to a tenant, as declared in Figure 4.4
and illustrated in Figure 4.7. Then we examine a thread that executes methods from these
different components. We execute the thread without defining explicit rules (except a few
predefined explicit rules, such as the one shown in the previous subsection), and we show
the accounting results in Figure 4.6a, then we execute it after adding one explicit rule, and
we show the accounting results in Figure 4.6b.

The Figure 4.6 describes the call stack of a thread that is created by the operator
platform in order to start and stop components. A generic description of the thread
activity goes as follows. The thread begins running operator platform code in method
org.knopflerfish.framework.BundleThread.run(). Later, it starts the component tests.A by
calling the event handler tests.A.Activator.start() that indirectly calls the method e() of the
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class tests.B.C which implements the interface tests.C.C, as shown in Figure 4.7. tests.B.C
performs some processing before notifying the component tests.D of an event by calling
the event handler method handler() of the class tests.D.D which implements the interface
tests.E.E. Next, handler() calls a Java runtime service to sleep.

T Size MethodFrameName
50 480 java.lang.VMObject.wait
50 64 java.lang.Object.wait
50 256 java.lang.VMThread.sleep
50 112 java.lang.Thread.sleep
50 224 tests.D.D.sleep
50 160 tests.D.D.handler
50 144 tests.B.C.someProcessing
50 256 tests.B.C.e
50 144 tests.A.Activator.heavyInitialization
50 128 tests.A.Activator.start
1 384 org.knopflerfish.framework.Bundle.start0
1 272 ...flerfish.framework.BundleThread.run
0 272 java.lang.VMThread.run
0 1056 <native>

T Stack Objects Classes HS HV
0 14816 7964 129 1600 167336
1 4176 35908 154 1597 1107636
50 1968 55525 16 313 666500
60 0 15 13 104 316
80 0 19 14 104 384

(a) Only implicit accounting used.

T Size MethodFrameName
80 480 java.lang.VMObject.wait
80 64 java.lang.Object.wait
80 256 java.lang.VMThread.sleep
80 112 java.lang.Thread.sleep
80 224 tests.D.D.sleep
80 160 tests.D.D.handler
50 144 tests.B.C.someProcessing
50 256 tests.B.C.e
50 144 tests.A.Activator.heavyInitialization
50 128 tests.A.Activator.start
1 384 org.knopflerfish.framework.Bundle.start0
1 272 ...flerfish.framework.BundleThread.run
0 272 java.lang.VMThread.run
0 1056 <native>

T Stack Objects Classes HS HV
0 14816 7964 129 1600 167336
1 4176 35906 154 1597 1107592
50 672 5525 16 313 66496
60 0 15 13 104 316
80 1296 50019 15 168 600388

(b) Implicit and explicit accounting used.

Legend:
T: Currently accounted tenant ID, i.e., γ.
Size: Stack size, in bytes, of the method frame.
HS: Heap size, in bytes, of Static data, e.g., class fields, etc.
HV: Heap size, in bytes, of Virtual data, e.g., object fields, etc.

Figure 4.6: Detailed memory accounting calculations on a thread call stack.

In Figure 4.6a, and starting from the first frame executed by the thread, i.e., <native>, the
three following frames are accounted as previously described for Figure 4.5. Then, the
operator platform (tenant 1) calls method start() of the class tests.A.Activator (tenant
50) which implements the operator platform interface org.osgi.framework.BundleActivator.
Step 3(b) of the algorithm described in Section 3.4 states that the called tenant, i.e., tenant
50, is accounted for resources consumed in the method frame, which sets γ to 50. In the
next five call frames (up to tests.D.D.sleep()), step 3(d) of the algorithm states that the
caller tenant, i.e., tenant 50 (γ = 50), is accounted for resources consumed in method frames.
Then, step 3(c) of the algorithm accounts consumed resources to the caller, i.e., tenant 50
(γ = 50). The remaining method frames are internal Java runtime calls, so step 3(a) of the
algorithm accounts consumed resources to the caller, i.e., tenant 50 (γ = 50).

The problem observed in Figure 4.6a is that tenant 50 is held accounted for resources
consumed during execution of the event handler method handler() and all the methods the
latter executes, even though handler() is being executed only because the component tests.D
requested it. Due to this issue, the monitoring system inaccurately accounts to tenant 50
the following amounts of memory: 1296 bytes of stack space, and 50 000 objects totaling
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600 004 bytes of heap space, even though that memory was consumed by the event handler.
To correct this inaccuracy, we add the following explicit rule: account {*, 90/_/tests.E.E,
called}, which indicates that tests.E.E is an event handling interface (for any caller tenant,
for any implementation component, and for any method in the interface).

Figure 4.6b shows the accounting results after adding the explicit rule and restarting the JVM.
Adding the explicit rule effectively solves the problem by accounting the resource consumed
by tests.D.D.handler() to the called tenant, i.e., tenant 80, which accordingly sets γ to 80.
This boost in accuracy is also visible in the final statistics, as the monitoring system now
accounts tenant 80 for the stack and heap memory that was wrongly accounted to tenant
50.

Java Virtual Machine & RuntimeTenant 0

org.knopflerfish.frameworkTenant 1

tests.A
Tenant 50

tests.D
Tenant 80

tests.E
Tenant 90

tests.B
Tenant 60

tests.C
Tenant 70 Legend:

Service method call.
Event handler call.
Implements an interface.

Figure 4.7: Functional tests components.

5.2. Performance Micro-Benchmarks

In order to show the details of the performance overhead of monitoring, we made four versions
of the monitoring subsystem implementation, as follows:

1. Zero implementation, i.e., a JVM without monitoring.

2. Object tag added, i.e., the only thing modified in the JVM is adding 4 bytes to every Java
object to hold the ID of the tenant accounted for the object.

3. No memory access around invoke, i.e., the whole monitoring subsystem is implemented
in the JVM, except that we do not generate code to save and restore the thread’s
currently accounted tenant ID (6 store and 2 load instructions, see γ in Section 4.2)
around the invoke bytecode instruction.

4. Complete implementation of the monitoring subsystem, i.e., the same as the previous
version, in addition to 6 store and 2 load instructions generated around every invoke
bytecode instruction.

We also performed some micro-benchmarks that test very specific aspects of execution.
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5.2.1. Method Call Micro-Benchmark

This benchmark calls many times one Java method that does nothing special. We are only
interested in the overhead of calling a method, with and without the monitoring subsystem.
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Figure 4.8: Execution overhead of the method call micro-benchmark when run on
partial implementations of the monitoring subsystem, compared to the “Zero
implementation”. Overhead is an average of 10 runs.

Figure 4.8 illustrates the results of this benchmark. A comparison of the results of running
this micro-benchmark on the “No memory access around invoke” version and the “Complete
implementation” version reveals that method invocation performance decreases by 9%. We
did not observe a significant additional loss in performance with other versions, i.e., less than
1%. Therefore, method invocation performance is only affected by the additional memory
access performed by the monitoring subsystem around every invoke instruction.

5.2.2. Object Creation Micro-Benchmark

This benchmark performs numerous creations of objects of the class java.lang.Integer. The
objects themselves are relatively small. We are only interested in the overhead of creating an
object, with and without the monitoring system.

Figure 4.9 illustrates the results of this benchmark. A comparison of the results of running this
micro-benchmark on the “Zero implementation” version and the “Object tag added” version
reveals that object creation performance decreases by 44%. We did not observe a significant
additional loss in performance with other versions, i.e., less than 7%. Therefore, object
creation performance is mostly affected by the addition of 4 bytes to every Java object.
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Figure 4.9: Execution overhead of the small objects micro-benchmark when run on
partial implementations of the monitoring subsystem, compared to the “Zero
implementation”. Overhead is an average of 10 runs.

5.3. DaCapo Benchmarks

In order to measure the overhead of the monitoring subsystem on real life Java applications, we
performed the DaCapo 2006 benchmarks2 [21]. Benchmark results in Figure 4.10 show that
the monitoring subsystem overhead is always below 46% for real life DaCapo applications.

It is worth noticing that the monitoring overhead in Figure 4.10 stays below 6% for all DaCapo
applications (except hsqldb) when we run DaCapo benchmarks using the “No memory access
around invoke” version. This suggests that accessing memory (load, store) in every invoke
bytecode instruction is an expensive operation.

We also notice that the performance of the application hsqldb drops by 33% when we run
it using the “Object tag added” version. This suggests that this application creates many
objects and would suffer from changes to the object structure. The performance of this
application drops by another 13% between the “Object tag added” version and the “Complete
implementation”. This further indicates that hsqldb performs much more objects creations
than method invocations.

2www.dacapobench.org
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Figure 4.10: Execution overhead of DaCapo 2006 benchmark applications when run on partial
implementations of the monitoring subsystem, compared to the original JVM.
Overhead is an average of 10 runs.

6. Conclusion

OSGi gets increasingly adopted in the smart home as a framework to host service-oriented
applications delivered by multiple untrusted tenants. This raises the need for monitoring
systems that can provide useful accurate information about OSGi bundles and applications.

In this chapter, we present a monitoring system that monitors memory usage at the bundle
granularity, without requiring isolation of distinct tenants. Our system is far less intrusive
than existing systems and methods, and it does not assume trusted tenants. It is based on a
list of accounting rules that enables correct resource accounting in all cases. The monitoring
system is modular and mostly independent of the implementations of the OSGi framework
and the garbage collector.

Based on DaCapo benchmarks, we showed that the overhead of our system was below 46%
for real life Java applications. This overhead is acceptable in development and testing time,
and it is tolerable in slow pace applications which are frequent in the Smart Home. Our
thorough investigation of performance overhead showed the specific aspects of monitoring
that caused the most overhead, and the types of applications that would suffer the most from
memory monitoring.
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Throughout this thesis, we described our work on managing resource sharing conflicts in
the smart home environment. We began our quest by describing the smart home hardware
environment, in order to synthesize its main properties, i.e., openness, dynamicity, rapid
development, heterogeneity, distributed and embedded aspects. We investigated each
property to reveal the challenges it entails, then we focused on each of those challenges,
looking for existing work tackling them. Given the particular smart home properties, we
argued that the smart home gateway needs to embed component-based [38] and service-
oriented [103] platform and applications. This led us to consider component models such
as Fractal [29] and OSGi [127], and service-oriented platforms such as OSGi Declarative
Services [126].

In order to manage resource sharing conflicts, one needs to discover them, and to prevent
them as far as possible, and to resolve them when prevention is out of reach. Our first
contribution, called Jasmin [4], is an effort to prevent resource sharing conflicts in the
smart home gateway. Jasmin is a middleware for development, deployment, isolation and
administration of component-based and service-oriented applications targeted at embedded
systems. The Jasmin prototype is based on the MIND [92] implementation of the Fractal
component model. Jasmin provides multiple levels of application isolation, from weak
design-level separation, to strong isolation based on the Linux containers [77] technology
that provides an excellent trade-off between isolation and performance overhead. Jasmin
implements a service-oriented architecture and extends it to isolated applications by defining
a service registry coordinator that enables service dependency resolution independently
of the service location. Furthermore, Jasmin enables transparent communication between
isolated applications by automatically loading and binding of service proxies. These service
proxies are based on a cross-container communication mechanism implemented by Jasmin,
which is 60% faster than machine-local communications via a standard Linux RPC [118]
implementation. As part of the evaluation, we describe the effort required to port a legacy
multimedia application to the Jasmin middleware. We show that the porting effort is relatively
low, and that it can be performed progressively. We also show that the performances of Jasmin
applications are almost identical to the performances of legacy applications.

Given the properties of the smart home, we suggested running a multi-tenant Java virtual
machine on the smart home gateway, which would host multiple smart home applications.
Being a hardware-constrained long-running system, the smart home gateway is vulnerable
to stale references, which cause considerable memory leaks, consequently increasing
the risks of memory conflicts in the gateway and of state inconsistencies in the devices
controlled by the gateway. Our second contribution, called Incinerator [9], resolves the
problem of stale references in Java by detecting and eliminating them, with less than 4%
CPU overhead. Compared to the state-of-the-art stale reference detection tool, Service
Coroner [47], Incinerator detects more stale references, and goes further by eliminating
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them. Incinerator also helped us contribute back to the community by discovering and
resolving a stale reference bug [8] in the Knopflerfish [81] open source OSGi framework
implementation.

Due to the limited amount of memory available in the smart home gateway, memory sharing
conflicts are a significant issue in the gateway, especially when running a multi-tenant Java
virtual machine. The problem of memory monitoring naturally pops up in this context, which
is what our third contribution tackles: memory monitoring in OSGi-based platforms. We
propose an OSGi-aware monitoring system [10] that is mostly transparent to application
developers, and which allows collaboration between the different service providers sharing
the same OSGi execution environment. The system monitors calls between applications and
provides on-demand snapshots of memory usage statistics for the different service providers,
at an overhead lower than 46%. The reported data is accurate enough because the system
switches between direct and indirect accounting depending on the context. This switching
is based on an algorithm that recognizes most call contexts and accurately accounts for
the resources consumed during the call. The algorithm decisions can be overridden by the
platform administrator via a set of simple rules that are fed to the monitoring system. The
rules are written in a simple and versatile Domain-Specific Language defined for the case.

Future Work

We believe that management of resource conflicts in the smart home should be the
responsibility of multiple layers of software and approaches. Given the smart home properties,
we think that security should be discussed during the first stages of development of platforms
and applications targeted at the smart home, as security often have system-wide implications.
Security is a design decision, not an option.

Very close isolation approaches should be analyzed further, such as containers [77, 95, 106,
70, 121], exokernels [45, 2, 105, 16, 66], sandboxes [132, 53, 135], etc. Because relatively few
smart home applications exist, even backward-incompatible solutions can be attempted, such
as operating systems and middlewares based on programming language safety [60, 12, 19].

In order to resolve resource conflicts and regulate resource usage, one might attempt to
migrate applications between the different devices in the smart home [44]. This, not only helps
balance resource usage, but also reduces electrical consumption when very few resources
are needed, by migrating applications into the gateway and “hibernating” other devices.

Jasmin exposes an administration service to administration agents which are currently
exclusively local. Remote administration is becoming a strong requirement in the smart home.
Different remote administration agents could be built, implementing the protocols CWMP,
a.k.a., TR-069 [27], and UPnP-DM [129]. Currently, isolation container implementation is
dependent on the Linux kernel. However, the distributed Jasmin architecture can be adapted
to support other operating system containers, such as FreeBSD Jails [106] and Solaris
Zones [95]. Developers should become able to control or assist dependency resolution
performed by Jasmin. This could be done adding properties and filters to provided or
required interfaces. The extensibility features of the MIND tool-chain are appropriate to add
this support. This might also become handy to avoid circular dependency loops between
applications.
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The prototype of Incinerator defines stale references based on the OSGi component model.
Porting Incinerator to the component model of OSGi Declarative Services should help detect
and eliminate stale references to Declarative Services components, consequently making the
component model more robust.

The relevant information reported by the monitoring system can become an accurate input
to an autonomous resource manager [46, 83], enabling the latter to automatically detect
resource conflicts, as a first step toward resolving them. We are looking for ways to make the
list of accounting rules dynamic while keeping the overhead acceptable. Making the explicit
rules further more generic, for example based on regular expressions, would allow factoring
of many explicit rules, but can reduce performance of matching against rules, so we are still
unsure if more expressiveness would be worth the performance loss. We equally long for
monitoring other relevant resources, e.g., CPU usage, disk usage, and network bandwidth.
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Appendix A.

Résumé de Thèse

Ce chapitre présente un résumé de cette thèse de doctorat en Français.

1. Introduction

Nos maisons sont pleines d’appareils électroniques qui assistent notre vie de diverses façons.
Ces appareils deviennent de plus en plus intelligents, c’est-à-dire, ils sont constamment
équipés de plus de puissance de traitement, plus de capteurs et d’actionneurs et une meilleure
connectivité aux appareils qui l’entourent et à Internet. Ces appareils intelligents sont de
plus en plus populaires à la maison grâce aux services avancés qu’ils fournissent à un coût
abordable. Les services incluent le divertissement, la sécurité de la maison, l’efficacité
énergétique, les soins de santé, le bien-être, confort, et le partage de contenu. Grâce à ces
appareils, nous devenons les habitants des maisons intelligentes.

La maison intelligente offre de nouvelles opportunités aux différents fournisseurs de services,
qui désirent développer et déployer rapidement des services qui profitent de, non seulement
les dispositifs présents à la maison, mais aussi les services offerts par d’autres fournisseurs.
Pour permettre la cohabitation de différents fournisseurs de services, les opérateurs demaison
intelligente conçoivent une passerelle qui héberge des applications fournies par différents
acteurs [59, 112]. La passerelle fournit des services de base aux applications hébergées, y
compris le déploiement, la connectivité, le stockage de données, et la découverte de service.
Afin de permettre le partage des appareils et des services entre les applications hébergées,
les opérateurs de maisons intelligentes standardisent une interface qui est utilisée pour
fournir et accéder aux services fournis par les appareils intelligents et les fournisseurs. Par
exemple, un fournisseur de services peut utiliser l’interface standard pour commander un
appareil fabriqué par un autre fournisseur de service qui est conforme à la même interface.

Les applications s’exécutant sur la passerelle domotique commandent des actionneurs et
des appareils à l’intérieur de la maison, et certains de ces appareils gèrent la sécurité et la
santé des habitants, tels que les détecteurs de gaz, les climatiseurs, les alarmes de portes,
etc. Par conséquent, le redémarrage abrupt de la passerelle peut être dangereux. En fait, la
passerelle domotique est une plate-forme s’exécutant pendant de longues durées et qui doit
être hautement disponible et suffisamment robuste pour gérer les erreurs logicielles sans
avoir à redémarrer abruptement. Cette nature d’exécution de longue durée est la raison pour
laquelle la passerelle domotique prend en charge le remplacement à chaud des applications,
c’est-à-dire, le démarrage et l’arrêt et la mise à jour des applications à la volée, sans avoir
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besoin de redémarrer tout l’environnement. Pour implémenter le remplacement à chaud,
les applications hébergées sont fabriqués à base de composants qui peuvent être démarrés,
arrêtés et remplacés individuellement.

1.1. Problématique

Partager les ressources de la maison intelligente entre les fournisseurs de services est
nécessaire pour fournir des services riches et intégrés à l’utilisateur final, tout en gardant le
choix à l’utilisateur de mélanger librement des appareils intelligents et des services provenant
de différents fabricants de matériel et des éditeurs de logiciels. Toutefois, le partage des
ressources pose naturellement le risque de conflits de ressources entre les fournisseurs de
services, tels que la privation de ressources, l’accès illégal aux ressources, et l’utilisation
abusive des ressources. Ces conflits menacent la confidentialité, ralentissent les performances
de la passerelle, et privent le partage correct des ressources disponibles.

Dans cette thèse, nous étudions le problème des conflits de partage des ressources dans la
passerelle domotique vu de différentes perspectives. Nous confrontons la question de prévenir
les conflits de ressources de se produire en premier lieu. Mais puisque nous ne pouvons pas
éviter tous les conflits de partage de ressources, nous nous concentrons également sur la
résolution des conflits quand ils se produisent ou quand ils sont découverts. Découvrir les
conflits de ressources requiert des approches de surveillance des ressources, qui sont notre
troisième préoccupation.

Les applications déployées par les fournisseurs de services peuvent contenir des bugs. Ces
bugs peuvent entraîner l’injection d’un comportement malicieux au sein des applications.
Ces risques sont les raisons pour lesquelles nous ne faisons pas confiance aux applications
développées par les fournisseurs de services [79], ce qui explique pourquoi les solutions que
nous présentons ont tendance à éviter, autant que possible, de déléguer des responsabilités
supplémentaires aux développeurs d’applications.

Pour résumer, nous argumentons que la passerelle domotique a besoin d’un environnement
logiciel ouvert qui offre les fonctionnalités suivantes:

1. Empêche de ressources autant que possible, en utilisant différentes formes d’isolation
et de protection.

2. Surveille les conflits de ressources qui peuvent encore se produire, et quantifie
l’utilisation des ressources aussi précisément que nécessaire.

3. Résout les conflits de partage de ressources quand ils se produisent, et les rend visibles
aux développeurs d’applications ou aux administrateurs système.

1.2. Contributions

Dans cette thèse, nous présentons trois contributions.
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Nous avons commencé par étudier les moyens de prévenir les conflits de partage de ressources
entre les applications natives s’exécutant dans la passerelle domotique. La manière la plus
évidente d’éviter les conflits est l’isolation. Donc nous voulions obtenir la meilleure isolation
possible, mais sans nuire aux performances. Parmi les différents mécanismes d’isolation
disponibles, les technologies de conteneurs sont le meilleur choix accomplissant nos besoins.
Les conteneurs Linux isolent la mémoire des applications, les communications réseau, les
fichiers, les utilisateurs, etc. Nous avons créé Jasmin: un environnement d’exécution qui
isole les applications natives à base de composants et orientées services à l’intérieur des
conteneurs implémentés par le noyau Linux. Jasmin [4] configure et déploie des conteneurs et
exécute les applications à l’intérieur d’eux, tout en contrôlant les cycles de vie des applications.
Jasmin résout aussi des services entre les conteneurs et offre des mécanismes transparents
d’invocation de services.

Certains conflits de partage de ressources ne peuvent pas être évités à cause de
l’environnement logiciel très dynamique envisagé pour la maison intelligente, et à cause
de des divers appareils présents à la maison. C’est pourquoi nous explorons également des
approches pour résoudre les conflits entre les applications s’exécutant dans la passerelle
domotique. Un des problèmes que nous avons abordés est le problème de références
obsolètes, qui est commun dans les plate-formes qui supportent le remplacement à chaud.
Le remplacement à chaud permet de mettre à jour ou de désinstaller des applications sans
avoir à redémarrer la plate-forme. Dans les situations normales, quand une application est
désinstallée, toutes les autres applications suppriment leurs références à celle-ci, afin de
permettre à la passerelle d’enlever l’application désinstallée de la mémoire. Cependant, si
une application défaillante continue à garder une référence à l’application désinstallée, alors
cette référence est dite référence obsolète. La référence obsolète force la passerelle de garder
l’application désinstallée en mémoire, entraînant ainsi une fuite de mémoire importante. Si
l’application défaillante essaie d’utiliser l’application désinstallée via sa référence obsolète,
les résultats sont indéfinis, et les états des applications en cours d’exécution peuvent devenir
incohérents, car l’application désinstallée ne s’attend pas à être invoquée après avoir exécuté
ses routines de terminaison lors de sa désinstallation. Si l’application désinstallée contrôlait
un actionneur, l’incohérence d’état peut endommager le matériel contrôlé, ce qui menace
la sûreté des habitants de la maison intelligente. Pour résoudre ce problème, nous avons
créé Incinerator, un système qui identifie les références obsolètes et les supprime. Après
le remplacement à chaud d’une application, Incinérateur examine toutes les références
dans la passerelle, à la recherche de références obsolètes. Quand une référence obsolète
est trouvée, Incinérateur la supprime, et interdit l’application défaillante d’utiliser cette
référence à l’avenir, et exécute le nettoyage qui aurait dû être fait par l’application défaillante.
En découvrant les références obsolètes, Incinérateur aide les développeurs à déboguer ce
problème qui est difficile à percevoir. En supprimant les références obsolètes, Incinérateur
non seulement réduit le risque d’incohérence d’état, mais permet également d’éviter la
fuite de mémoire causée par les références obsolètes, permettant ainsi à la passerelle de
continuer à travailler sans manquer de mémoire. Le prototype de l’incinérateur a été testé
avec Knopflerfish [81], l’un des principaux implémentations à source ouverte de OSGi [127].
Grâce à Incinerator, nous avons découvert et corrigé un bug de référence obsolète [8] dans
Knopflerfish.
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1.3. Structure de Document de Thèse

Cette thèse est structurée en quatre chapitres principaux. Le premier chapitre commence
par explorer l’état de l’art pour décrire l’écosystème existant de la maison intelligente, en
focalisation sur les propriétés particulières de l’environnement, et les défis qu’elles induisent.
Nous détaillons ces défis afin d’illustrer les verrous conceptuels et techniques qui doivent
encore être résolus ou dont les solutions existantes devraient être améliorées. Nous illustrons
pourquoi la dynamicité de la maison intelligente nécessite le remplacement à chaud des
applications. Ensuite, nous discutons de la nature distribuée de la maison intelligente et de
son effet sur la communication entre applications. Nous argumentons que les fournisseurs de
services ont besoin de développer rapidement des applications pour la maison intelligente, et
nous montrons comment le modèle à composant peut aider à atteindre cet objectif. Par ailleurs,
nous montrons comment l’architecture orientée service permet de simplifier l’hétérogénéité
de la maison intelligente. Enfin, nous illustrons les concepts et les efforts requis pour
supporter la nature ouverte et embarquée de la passerelle domotique.

Le deuxième chapitre décrit notre première contribution, c’est-à-dire Jasmin. Il décrit
d’abord les deux architectures de Jasmin qui pourraient être utilisées dans différents types
de passerelles domotiques. Ensuite, nous décrivons le support d’isolation multi-niveau fourni
par Jasmin et basé sur les processus et sur les conteneurs Linux. Ensuite, nous discutons le
mécanisme transparent et rapide fourni par Jasmin pour la communication entre applications,
et comment il contribue à fournir une plate-forme orientée services distribuée. Nous avons
enfin évalué les performances et les fonctionnalités de Jasmin à l’aide de micro-tests, et nous
discutons de l’effort nécessaire pour porter les applications existantes vers Jasmin à l’aide
d’une application domotique typique.

Dans le troisième chapitre, nous présentons Incinerator, la deuxième contribution. Nous
rappelons que le bug de des références obsolètes en Java introduites au premier chapitre, puis
nous expliquons comment Incinerator détecte et résout ce problème. Ensuite, nous montrons
les domaines qui nécessitaient des modifications afin de mettre en œuvre Incinerator. Nous
évaluons ensuite les fonctionnalités d’Incinerator à l’aide de dix scénarios où des références
deviennent obsolète. Nous démontrons également que les références obsolètes peuvent
mettre en danger les habitants de la maison intelligente si une application défaillante contrôle
des appareils domotiques critiques. Enfin, nous évaluons les performances de Incinerator en
utilisant la suite de tests DaCapo.

Notre troisième contribution est présentée dans le quatrième chapitre, où nous commençons
par décrire le problème de la surveillance précise et pertinente de mémoire dans une plate-
forme OSGi ouverte à de multiples fournisseurs de services non fiables. Nous discutons de
nos objectifs conceptuels et nous décrivons l’algorithme que nous avons défini pour fournir
un système de surveillance de mémoire précis et pertinent pour la passerelle domotique.
Nous décrivons également l’étendue de l’implémentation de notre système, avant d’évaluer
les fonctionnalités et performances du système à l’aide de micro-tests et en utilisant la suite
de tests DaCapo.

Nous concluons notre thèse en reprenant les problèmes que nous abordons et les contributions
que nous proposons, et en suggérant de nouvelles mesures à prendre et des chemins qui
nécessitent encore de l’exploration.
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2. État de l’Art

Nous explorons les défis de la maison intelligente (voir Figure 1.1), orientés par ses
propriétés particulières: ouvert, dynamique, en développement rapide, hétérogène, distribué
et embarqué. Chaque propriété génère un ensemble de défis, et la composition de ces
propriétés nécessite aussi des compromis à faire, et des solutions personnalisées à étudier.

Passerelle Domotique
Plate-forme d’Operateur

Plate-forme
d’Operateur

Tier
Æ App
Store

Tier
♣ App
Store

Tier
� App
Store

Æ App1 ♣ App2 ♣ App3

� App4 Æ App5 � App6

Climatiseur

Rideaux

Capteur de
temperature

Ampoule
Capteur de
presence

Sirène
d’alarme

Capteur
de gas

Detecteur de fumée

TV

Smart
Phone

Environnement de maison intelligente Internet

Figure 1.1: Structure domotique. Les communications entre la «Plate-forme d’Operateur» et
App1,...,App6 sont omis pour simplifier la figure.

L’aspect dynamique de la maison intelligente implique le besoin pour le remplacement à
chaud des applications, c’est-à-dire, le chargement, le démarrage, l’arrêt, la mise à jour, et le
déchargement des applications en cours d’exécution sans avoir à redémarrer la plate-forme
logicielle. Nous avons étudié les mécanismes communs pour le remplacement à chaud, non
seulement du code natif [63, 85, 128], mais aussi du byte code Java [76]. Ensuite, nous
avons décrit les conditions délicates nécessaires pour décharger une application Java chargé
avec un chargeur de classes Java dédié, ce qui est une technique courante dans plusieurs
machines virtuelles Java multi-locataires. Ceci a dévoilé le risque impliqué par les références
obsolètes Java concernant les systèmes s’exécutant pour de longues durées et à ressources
limitées, tels que la passerelle domotique. Le Chapitre 3 présente notre solution proposée
pour détecter et éliminer les références obsolètes Java avec un coût très faible.

Parce qu’il est difficile de partager la mémoire dans un environnement distribué, nous avons
brièvement décrit comment les applications peuvent interagir, à la fois quand elles peuvent
partager de la mémoire, et quand elles ne le peuvent pas. Nous avons décrit donc les appels
aux procédures locales [7], et les appels aux procédure distantes [133, 75, 102], impliquant
des routines de sérialisation coûteuses. La baisse en performances de communication induite
par les appels aux procédures distantes est une des raisons qui encouragent l’exécution
de plusieurs applications dans le même espace d’adressage mémoire tant que possible, en
particulier lorsque ces applications communiquent fréquemment.

Afin de développer rapidement des applications qui tirent parti de la richesse des équipements,
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de capteurs et d’actionneurs disponibles dans la maison intelligente, nous avons proposé de
développer des applications basées sur des composants réutilisables, ce qui nous a conduit à
décrire un modèle de composant générique (voir Figure 1.2). Ensuite, nous avons illustré
des exemples de modèles à composants [38, 122] et des implémentations de modèles à
composants qui conviennent pour les environnements embarqués contraints et compatibles
avec les autres propriétés de la maison intelligente, par exemple, Fractal1 [29, 68, 28],
MIND2 [92], OSGi1,2 [127, 26], OSGi Declarative Services1,2.

Plate-forme

Composant 1 Composant 2Interface
requise

Interface
offerte

Liaisons

Figure 1.2: Un système à base de composants.

Pour faire face à l’hétérogénéité de la maison intelligente, nous avons proposé l’utilisation de
l’architecture orientée services [103] pour la conception de la plate-forme et des applications
de maison intelligente. Dans ce but, nous avons décrit d’abord les éléments clés de
l’architecture orientée services, avec quelques modèles conceptuels [114, 48, 72] couramment
utilisés. Ensuite, nous avons présenté des exemples d’implémentations d’intergiciels orientées
services, par exemple, OSGi, OSGi Declarative Services.

Les propriétés les plus problématiques de la maison intelligente sont les aspects ouverts et
embarqués. Dans une passerelle exécutant de nombreuses applications livrées par plusieurs
fournisseurs de services non fiables, l’isolation est nécessaire pour éviter certaines menaces
de sécurité et pour permettre un niveau minimum de robustesse contre les applications à
comportement anormal. Par conséquent, nous discutons cinq mécanismes d’isolation basés
sur la protection matérielle et des approches de virtualisation, à savoir, les processus [37, 94],
bacs-à-sable [132, 53, 135], conteneurs [77, 95, 106, 70, 121], machines virtuelles [115,
111, 43, 94], exokernels et systèmes d’exploitation bibliothèques [45, 2, 105, 16, 66]. Nous
comparons ceux-ci en fonction de leur impact sur les performances par rapport à l’isolation
qu’ils fournissent, et nous pensons que les technologies de conteneurs offrent le meilleur
choix. Le Chapitre 2 décrit Jasmin: un intergiciel pour le développement, le déploiement,
l’isolation et l’administration des applications orientées services et à base de composants
ciblant les systèmes embarqués. Jasmin est basé sur l’implémentation MIND du modèle de
composants Fractal. Il fournit une isolation des applications basées sur la technologie des
conteneurs Linux, et il étend l’architecture orientée services aux applications isolées, et il
permet une communication rapide et transparente entre les applications isolées. Ensuite,
nous invoquons des mécanismes d’isolation basés sur la sécurité de types de langages,
par exemple, Singularity [60], SPIN [19], KaffeOS [12]. Nous illustrons le langage Java
comme exemple d’un langage statique et sûr, et nous décrivons brièvement les principales
parties de la machine virtuelle Java. Nous discutons également des techniques pour exécuter
plusieurs applications isolées dans une seule machine virtuelle Java, et nous pensons que le
partitionnement des applications [79] est inappropriée pour les applications domotiques qui
ont besoin de communiquer facilement et rapidement.

1 Un modèle à composants.
2 Une implémentation de modèle à composants.
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Hardware
Système d’exploitation hôte

Gestionnaire LXC Mode
privilégié

Mode non
privilégié

App. Hôte 1

App. Hôte 2

Contrôleur LXC Conteneur LXCConteneur LXC

App. Invitée 1

App. Invitée 2

App. Invitée 3

Figure 1.3: Structure des conteneurs Linux (LXC).

La plupart des approches d’isolation ne sont pas parfaits, laissant place aux conflits de partage
de ressources. Dans notre quête pour résoudre ces conflits, nous avons besoin d’outils pour
les découvrir en premier lieu. En d’autres termes, nous devons surveiller ces conflits de
partage. Ainsi, nous commençons par discuter de la notion de «conflit de ressources», puis
nous exposons les différentes approches de surveillance dans différents environnements
logiciels [84, 71, 41, 100, 52, 99, 86, 46, 83], et nous décrivons les fondamentaux points
de vue complémentaires en comptabilité des ressources. Enfin, nous détaillons une source
typique de conflits de mémoire en machines virtuelles Java multi-locataires, en discutant de
ses implications majeures et des exemples d’efforts de référence [47, 65, 87, 22, 90] pour y
faire face. La contribution présentée au Chapitre 4 propose un mécanisme de surveillance de
mémoire qui est conscient de la conception à base de composants de la plate-forme de maison
intelligente, et qui fournit des données de surveillance qui sont précises et pertinentes à ce
modèle.

3. Jasmin

Nous avons présenté Jasmin, un intergiciel de maison intelligente ouvert et robuste qui
héberge les applications fournissant des services destinés à l’utilisateur final. Les services
offerts par l’intergiciel Jasmin ouvrent des voies à des modèles d’affaires nouveaux et
attrayants tels que «Entreprise à Entreprise au Consommateur» (B2B2C), par l’ouverture de
la plate-forme de la maison intelligente à tout fournisseur de services qui vise à exposer ses
services directement à l’intérieur de la maison de l’utilisateur final.

Jasmin suit le paradigme de l’architecture orienté services [103] et permet un déploiement
facile et dynamique des applications en automatisant la plupart des étapes de déploiement
(voir Figure 1.4). Jasmin exécute des applications basées sur le cadriciel MIND implémentant
le modèle de composants Fractal qui pousse les développeurs à produire des services
proprement conçus. Ceci permet un développement et un déploiement de services rapide
et facile, et contribue ainsi à faire de Jasmin une plate-forme attrayante pour de nombreux
fournisseurs de services.

Les risques de sécurité et de robustesse introduites par cette ouverture sont résolus par
Jasmin via l’utilisation des conteneurs d’isolation. Jasmin propose des conteneurs d’isolation
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Environnement d’Exécution Racine de Jasmin

Conteneur d’Isolation 1 Conteneur d’Isolation 2

Environnement d’Exécution
Local de Jasmin 1

Environnement d’Exécution
Local de Jasmin 2

Conteneur d’Application 1 Conteneur d’Application 2

App1 App2 App3

Légende: Conteneur Linux. Communication via un proxy de service.

Figure 1.4: Architecture distribuée de Jasmin.

dans de multiples niveaux sélectionnables et convenables pour de différentes exigences
d’applications et niveaux de confiance. Il implémente son plus haut niveau d’isolation en se
basant sur les conteneurs Linux, qui offrent des garanties élevées d’isolation à un faible coût
en performance.

Afin de développer des services riches, les fournisseurs de services doivent pouvoir invoquer
facilement des services existants. Cela implique que les applications isolées doivent pouvoir
communiquer. Jasmin se charge de la complexité d’invocation de services distants en
chargeant automatiquement les proxys d’interfaces et en effectuant la sérialisation et le
transfert de données en fonction des besoins. Cela permet aux consommateurs de services
d’invoquer facilement et de façon transparente les services locaux et distants.

Jasmin exécute les applications sur une couche d’abstraction du système d’exploitation
(OSAL). Cela permet une portabilité plus facile des applications aux différents systèmes
d’exploitation, et facilite le portage de Jasmin lui-même aux autres systèmes. C’est surtout
un grand pas pour maîtriser l’hétérogénéité de la maison intelligente.

L’évaluation de Jasmin montre que celui-ci respecte la nature embarquée des appareils de
la maison. En fait, Jasmin non seulement dispose d’une faible utilisation des ressources en
termes de CPU et de mémoire et d’espace disque, mais aussi induit un coût très faible pour
les applications qu’il héberge.

4. Incinerator

OSGi est de plus en plus utilisé dans l’environnement de la maison intelligente comme un
cadriciel pour héberger des applications orientées services délivrés par plusieurs tiers. Cela
rend les références obsolètes une menace croissante au cadriciel et aux applications en cours
d’exécution. Nous présentons Incinerator, qui aborde le problème de références obsolètes
en OSGi et les fuites de mémoire qu’elles provoquent, en étendant le ramasse miettes de la
machine virtuelle Java pour tenir compte des informations d’état des applications.

Nous abordons les problèmes soulevés par les références obsolètes en OSGi au niveau de
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la machine virtuelle Java en proposant Incinerator [9] une extension aux ramasse miettes
consciente d’OSGi. L’approche d’Incinerator est d’intégrer la détection de référence obsolètes
dans la phase de collecte des miettes. Cette approche induit un faible coût puisque la phase
de collecte de miettes traverse déjà tous les objets vivants, et la vérification de l’obsolescence
d’une référence nécessite quelques opérations. Cette approche est également indépendante
de l’algorithme spécifique de ramasse miettes, car il ne nécessite que la modification de la
fonction qui balaye les références et les objets contenus à l’intérieur d’un objet donné. Lorsque
Incinerator trouve une référence, il vérifie si l’objet référencé appartient à une application
désinstallée ou à une version précédente d’une application mise à jour. Dans ce cas, la
référence est identifiée comme obsolète et Incinerator la définit à null. Par conséquence,
aucun objet obsolète ne reste accessible à la fin de la collecte et la mémoire associée est
récupérée par le ramasse miettes.

Incinerator détecte plus de références obsolètes que le détecteur de référence obsolètes
existant, Service Coroner. En fait, alors que Service Coroner ne fait que détecter les références
obsolètes, Incinerator les élimine aussi en les définissant à null. Cela permet au ramasse
miettes de récupérer les objets obsolètes référencés. En effet, nous avons constaté que les
références obsolètes peuvent provoquer des fuites de mémoire importantes, telles que la
fuite de mémoire 6 mégaoctets sur chaque mise à jour du «bundle» HTTP-Server causée par la
défaillance de référence obsolète que nous avons découvert dans Knopflerfish. La prévention
des fuites de mémoire augmente la disponibilité de la machine virtuelle Java, ce qui est une
mesure importante dans les passerelles domotiques.

Incinerator est essentiellement indépendant d’une implémentation spécifique d’OSGi et, en
effet, seulement 10 lignes doivent être modifiées dans le cadriciel OSGi Knopflerfish afin
d’intégrer Incinerator. La surcharge du CPU induite par Incinerator est toujours inférieur à
1,2% sur les applications de la suite de tests DaCapo sur un ordinateur haut de gamme, et
moins de 3,3% sur un ordinateur bas de gamme. Ce dernier résultat montre que Incinerator
est utilisable dans les systèmes de domotiques ayant une puissance de calcul limitée.

Remarques de Compatibilité

Incinerator modifie le comportement de la machine virtuelle Java, parce qu’il annule les
références qu’il trouve obsolètes. Nous avons étudié les problèmes de compatibilité qui
pourraient découler de ce changement. Il convient de noter qu’une application correctement
écrite qui libère ses références obsolètes, quand une application est désinstallée ou mise à
jour, n’est jamais affectée par Incinerator. Quand une application ne libère pas une référence
obsolète, notre choix de conception est de minimiser l’impact de l’annulation, tout en assurant
que la mémoire est libérée. Trois situations peuvent se produire, selon la façon dont la
référence obsolète est utilisée:

∙ Si la référence obsolète n’est jamais utilisée, alors l’annuler n’a aucun impact sur les
autres applications.

∙ Si la référence obsolète est accessible uniquement dans le cadre d’une opération de
nettoyage, c’est-à-dire, dans la méthode finalize(), alors Incinerator exécute d’abord
cette opération de nettoyage afin d’éviter d’autres types de fuites.
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Figure 1.5: Coût moyen en durée d’exécution des applications de la suite de tests DaCapo
2006 entre J3 et Incinerator executées sur un ordinateur bas de gamme. hsqldb
présente un écart-type de 22%, tronqué ici pour la clarté.
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Figure 1.6: Coût moyen en durée d’exécution des applications de la suite de tests DaCapo
2006 entre J3 et Incinerator executées sur un ordinateur haut de gamme.
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∙ Si la référence obsolète est utilisée ailleurs, que ce soit pour accéder ou se synchroniser
sur l’objet obsolète, l’application qui détient la référence obsolète est défaillante
puisque l’utilisation de l’objet obsolète conduirait à des opérations potentiellement
conflictuelles. Puisque la référence a été annulée, une telle application défaillante reçoit
une NullPointerException, ce qui aide les développeurs à identifier la défaillance, en
la rendant visible. Si un fil d’exécution est bloqué en attente d’une synchronisation
sur la référence obsolète, Incinerator débloque aussi le fil d’exécution, afin d’éviter les
interblocages ou les fuites du fil d’exécution et de ses objets accessibles.

5. Surveillance de Mémoire en OSGi

Nous présentons un système de surveillance de mémoire conscient d’OSGi [10] et qui est
principalement transparent aux développeurs d’applications, et qui permet la collaboration
entre les locataires distincts partageant le même environnement d’exécution OSGi. Le système
surveille les appels entre locataires et fournit, sur demande, des captures instantanés de
statistiques d’utilisation de la mémoire pour les différents locataires.

Matériel & Système d’exploitation

Machine Virtuelle Java & Bibliothèque standardLocataire 0

Locataire 1
Plate-forme
d’Opérateur

Cadriciel OSGi

Locataire 10 Locataire 30Locataire 20

B1 B2 B3

B10 B11

B13

B20

B21

B30 B31

B32 B33

Légende: B1,...,B33 sont des «bundles» OSGi.

Figure 1.7: Environnement d’exécution multi-locataire basé sur OSGi.

Nous présentons un système de surveillance qui surveille l’utilisation de mémoire au niveau de
granularité des applications, sans nécessiter l’isolation des locataires distincts. Notre système
est beaucoup moins intrusif que les systèmes et les méthodes existantes, et il n’assume pas des
locataires fiables. Le système de surveillance est modulaire et principalement indépendant
des implémentations du cadriciel OSGi et du ramasse miettes.

Pour résoudre le problème de la comptabilisation des ressources au cours des interactions
entre les locataires, le système de surveillance a des règles implicites prédéfinis de
comptabilité des ressources qui décrivent correctement la plupart des interactions entre les
locataires. Pour les interactions qui ne sont pas correctement comptabilisées, le système
permet de spécifier des règles comptables explicites sous la forme de fichiers de configuration
simples chargés par le système de surveillance au démarrage de la machine virtuelle Java.
Notre prototype nécessite que les règles de comptabilité des ressources restent constants
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pendant la durée de vie de la machine virtuelle Java. Lors de l’exécution, le système de
surveillance applique des règles implicites et explicites pour tenir compte correctement
de la mémoire utilisée par les applications dans les variables locales, les classes chargées,
et les objets créés. En pratique, la plupart des applications n’ont pas besoin d’écrire des
règles comptables parce que les règles implicites gèrent leurs interactions correctement. Les
applications qui doivent écrire des règles comptables explicites sont principalement celles qui
génèrent l’activité asynchrone, telles que celles qui publient des événements. Les exemples
incluent le cadriciel OSGi, et les applications exposant les données de capteurs à la maison
en temps réel. Cependant, la plupart des applications consomment services séquentiellement
et fournissent des services uniquement sur demande.

Basé sur la suite de tests DaCapo, nous avons montré que la surcharge de notre système était
au dessous de 46% pour des applications Java concrètes. Cette surcharge est acceptable
en développement et en test, et elle est tolérable dans les applications à rythme lent qui
sont fréquentes dans la maison intelligente. Notre enquête approfondie sur le coût en
performances a montré les aspects spécifiques de surveillance qui ont causé la majorité du
coût, et les types d’applications qui souffriront le plus de la surveillance de mémoire.
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Figure 1.8: Coût moyen en durée d’exécution des applications de la suite de tests DaCapo
2006 en s’exécutant sur des implémentations partielles du système de surveillance
memoire, comparées à la machine virtuelle Java d’origine (J3/VMKit). Moyenne
de 10 exécutions.

6. Conclusion

Tout au long de cette thèse, nous avons décrit notre travail sur la gestion des conflits de
partage de ressources dans l’environnement de la maison intelligente. Nous avons commencé
notre quête par décrire l’environnement matériel de la maison intelligente, afin de synthétiser
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ses principales propriétés, à savoir, l’ouverture, dynamicité, le développement rapide,
l’hétérogénéité, la distribution et les aspects embarqués. Nous avons étudié chaque propriété
pour révéler les défis qui en découlent, puis nous nous sommes concentrés sur chacun de
ces défis, à la recherche de travaux existants qui y font face. Compte tenu des propriétés
particulières de la maison intelligente, nous avons soutenu l’argument que la passerelle
domotique doit intégrer une plate-forme et des applications à base de composants [38] et
orientée services [103]. Cela nous a conduit à considérer des modèles de composants tels que
Fractal [29] et OSGi [127], et les plates-formes orientées services tels que OSGi Declarative
Services [126].

Afin de gérer les conflits de partage de ressources, il faut les découvrir, les prévenir autant
que possible, et les résoudre lorsque la prévention est hors de portée. Notre première
contribution, appelé Jasmin [4], est un effort pour éviter les conflits de partage de ressources
dans la passerelle domotique. Jasmin est un intergiciel pour le développement, le déploiement,
l’isolation et l’administration des applications orientées services et à base de composants
ciblant les systèmes embarqués. Le prototype de Jasmin est basée sur l’implémentation
MIND [92] du modèle de composants Fractal. Jasmin propose plusieurs niveaux d’isolation
des applications, de la faible la séparation conceptuelle, à la forte isolation basée sur la
technologie des conteneurs Linux [77] qui offrent un excellent compromis entre isolation
et coût en performances. Jasmin implémente une architecture orientée service et l’étend
aux applications isolées en définissant un coordinateur de registre de service qui permet
la résolution des dépendances de service indépendamment de l’emplacement du service.
De plus, Jasmin permet une communication transparente entre les applications isolées en
chargeant automatiquement et liant les proxys de services. Ces proxys de services sont basés
sur un mécanisme de communication entre conteneurs implémenté par Jasmin, qui est 60%
plus rapide que les communications locales à la machine via une implémentation standard
de RPC [118] sous Linux. Dans le cadre de l’évaluation, nous décrivons l’effort nécessaire
pour porter une application multimédia existante à l’intergiciel Jasmin. Nous montrons que
l’effort de portage est relativement faible, et qu’il peut être réalisé progressivement. Nous
montrons également que les performances des applications Jasmin sont presque identiques
aux performances des applications existantes.

Compte tenu des propriétés de la maison intelligente, nous avons proposé l’exécution
d’une machine virtuelle Java multi-locataire dans la passerelle de la maison intelligente,
qui accueillerait plusieurs applications de la maison intelligente. S’agissant d’un système
s’exécutant pour de longues durées, et à capacité matérielle contrainte, la passerelle
domotique est vulnérable aux références obsolètes, qui provoquent des fuites de mémoire
considérables, augmentant par conséquent les risques de conflits de mémoire dans la
passerelle et les incohérences d’état dans les appareils contrôlés par la passerelle. Notre
deuxième contribution, appelée Incinerator [9], résout le problème de références obsolètes
en Java en détectant et en éliminant celles-ci, avec moins de 4% de surcharge CPU. Par
rapport à l’outil de référence en détection de références obsolètes, Service Coroner [47],
Incinerator détecte plus de références obsolètes, et va plus loin en les éliminant. Incinerator
nous a également permis de contribuer à la communauté en découvrant et en résolvant un
bug de référence obsolète [8] dans Knopflerfish [81], une implémentation à source ouverte
d’OSGi.

En raison de la mémoire limitée disponible dans la passerelle domotique, les conflits de
partage de mémoire sont un enjeu important dans la passerelle, en particulier lors de
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l’exécution d’une machine virtuelle Java multi-locataire. Le problème de la surveillance
mémoire apparaît naturellement dans ce contexte, ce qui est abordé par notre troisième
contribution: surveillance mémoire dans les plates-formes OSGi. Nous proposons un système
de surveillance conscient d’OSGi [10] et majoritairement transparent pour les développeurs
d’applications, et qui permet la collaboration entre les différents fournisseurs de services qui
partagent le même environnement d’exécution OSGi. Le système surveille les appels entre
applications et fournit, à la demande, des captures instantanés de statistiques d’utilisation de
la mémoire pour les différents fournisseurs de services, à un coût inférieur à 46%. Les données
rapportées sont suffisamment précises parce que le système bascule entre la comptabilité
directe et indirecte en fonction du contexte. Cette commutation est basée sur un algorithme
qui reconnaît la plupart des contextes d’appels et comptabilise précisément les ressources
consommées au cours de l’appel. Les décisions de l’algorithme peuvent être substituées
par l’administrateur de la plate-forme par l’intermédiaire d’un ensemble de règles simples
qui sont introduits dans le système de surveillance. Les règles sont écrites dans un langage
simple et versatile spécifique au domaine et défini pour l’affaire.

Perspectives

Nous croyons que la gestion des conflits de ressources dans la maison intelligente doit être la
responsabilité de plusieurs couches logicielles et approches. Compte tenu des propriétés de
la maison intelligente, nous pensons que la sécurité doit être discutée au cours des premiers
stades de développement de plates-formes et des applications ciblées à la domotique, comme
la sécurité a souvent des répercussions sur l’ensemble du système. La sécurité est une
décision conceptuelle, pas une option.

Les approches d’isolation très proches doivent être analysées plus loin, tels que les
conteneurs [77, 95, 106, 70, 121], exokernels [45, 2, 105, 16, 66], bacs-à-sable [132, 53, 135],
etc. Vu qu’il y a relativement peu d’applications domotiques, même les solutions non
rétrocompatibles peuvent être tentées, telles que les systèmes d’exploitation et intergiciels
basés sur la sécurité du langage de programmation [60, 12, 19].

Afin de résoudre les conflits de ressources et réguler l’utilisation des ressources, on
pourrait tenter de migrer des applications entre les différents appareils dans la la maison
intelligente [44]. Cela permet non seulement une utilisation équilibrée des ressources, mais
aussi une réduction de la consommation électrique lorsque très peu de ressources sont
nécessaires, en migrant les applications dans la passerelle et en "hibernant" les autres
appareils.

Jasmin expose un service d’administration pour les agents administratifs sur qui sont
actuellement exclusivement locaux. L’administration à distance devient une exigence forte
dans la maison intelligente. Différents agents d’administration à distance pourraient être
construites, implémentant le protocole CWMP appelé aussi TR-069 [27], et UPnP-DM [129].
Actuellement, l’implémentation du conteneur d’isolation dépend du noyau Linux. Cependant,
l’architecture distribuée de Jasmin est adaptée pour supporter d’autres conteneurs des
systèmes d’exploitation, tels que FreeBSD Jails [106] et Solaris Zones [95]. Les développeurs
doivent être en mesure de contrôler ou aider la résolution de dépendances effectuée par
Jasmin. Cela pourrait être fait en ajoutant des propriétés et des filtres pour les interfaces
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fournies ou requises. Les fonctionnalités d’extensibilité de la chaîne d’outils MIND sont
appropriés pour ajouter ce support. Cela pourrait également devenir très pratique pour éviter
les boucles de dépendances circulaires entre applications.

Le prototype d’Incinerator définit les références obsolètes selon le modèle de composant
OSGi. Le portage de Incinerator au modèle de composant de OSGi Declarative Services
devrait aider à détecter et à éliminer les références obsolètes pour les composants de OSGi
Declarative Services, par conséquent rendant le modèle de composant plus robuste.

L’information pertinente communiquée par le système de surveillance peut devenir une
entrée précise à un gestionnaire de ressources autonome[46, 83], permettant à ce dernier
de détecter automatiquement les conflits de ressources, comme un premier pas vers leur
résolution. Nous cherchons de moyens pour rendre dynamiques la liste des règles comptables
tout en gardant le coût acceptable. Rendre les règles explicites encore plus génériques, par
exemple à base d’expressions régulières, permettrait la factorisation de nombreuses règles
explicites, mais peut réduire les performances de correspondance par rapport aux règles,
nous sommes donc encore incertains si plus d’expressivité vaudrait la perte de performance.
Nous voudrons également surveiller d’autres ressources pertinentes, telles que, l’utilisation
du processeur, l’utilisation du disque et de bande passante réseau.
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