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7.2 ĤFK on a page . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.1 The knot �ltration on the page . . . . . . . . . . . . . . 112
7.2.2 The homology . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Φ and the degree �ltrations . . . . . . . . . . . . . . . . . . . . 117
7.3.1 Properties of the Φ-curves near ∂S . . . . . . . . . . . . 118
7.3.2 Φ is �ltered . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 126



Acknowledgments

� Dum loquimur, fugerit invida aetas:
carpe diem, quam minimum credula postero. �

First I would like to thank my advisors Paolo Ghiggini and Vincent Colin
for the patient and constant help and the trust they accorded to me during the
years I spent in Nantes working on this thesis. Their hints and their di�erent
ways to guide me into the world of research have been a source of constant
inspiration.

I am grateful to Paolo Lisca for introducing me to the study of low di-
mensional topology and for suggesting that I applied for a Ph.D. position in
Nantes.

Thanks to the referees, Christine Lescop and Timothy Perutz, for reporting
this thesis. I thank Christine Lescop for the interest she showed in this work
and for my short visit at the Institut Fourier, where she gave me many useful
suggestions about the form and the exposition of this thesis.

Thanks to Emmanuel Giroux, Thomas Guyard, Vinicius Gripp, François
Laudenbach, Samuel Lisi, Alexandre Quesney, Margherita Sandon, Anne Vau-
gon and Vera Vértesi for all the advice, support or stimulating conversations
we had. Thanks to all my colleagues, with whom I shared all the satisfactions
and the frustrations, the hopes and the fears of a Ph.D. student.

Thanks to my family, who always supported me as much as they could.
Even from an island. Thanks to Skype too...

I really owe a lot to all my friends: without them I would have worked much
more and with more constancy. But without them I would have forgotten that
passion should be the reason and the aim of everything I do.

Merci Nantes pour m'avoir donné le mieux de toi et de moi-même.

5





Introduction

Version française

Un entrelacs avec n composantes dans une variété Y de dimension 3 est
l'image par un plongement lisse tni=1S

1 ↪→ Y de copies du cercle. Deux en-
trelacs L1 et L2 sont dit équivalents si il existe une isotopie ambiante de Y
qui envoie L1 sur L2. Une multitude d'invariants d'entrelacs ont été dé�nis et
ils peuvent être de beaucoup de types di�érents. Le plus simple est peut-être
le nombre n de composantes connexes d'un entrelacs : un entrelacs avec une
seule composante connexe est appelé n÷ud. Un exemple d'invariant plus so-
phistiqué, mais encore classique, est le polynôme d'Alexander, qui associe à un
entrelacs L de S3 un polynôme de Laurent.

Durant les quinze dernières années, de nouvelles méthodes, impliquant l'uti-
lisation de structures géométriques additionnelles sur les variétés, ont mené à
la découverte de nouveaux types d'invariants pour les entrelacs, ainsi que pour
les variétés de dimension trois et quatre. Une structure symplectique sur une
variété M orientée de dimension paire 2n consiste en une 2-forme ω telle que
(ω)2n est une forme de volume positive sur M . Étant donnée une variété Y
fermée et orientée, Ozsváth et Szabó dans [42] ont construit une variété sym-
plectique auxiliaire (M(Y ), ω) équipée d'une structure presque complexe J ; en-
suite ils ont dé�ni quatre Z-modules CF ∗(M(Y ), J, ω), avec ∗ ∈ {∞,+,−,̂},
munis de di�érentielles obtenues en comptant certaines courbes holomorphes
dansM(Y ). Les groupes d'homologie associés ne dépendent pas des choix faits
pour la variété auxiliaire ni des structures géométriques et sont des invariants
topologiques de Y :

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

Ces groupes sont les homologies de Heegaard Floer respectivement en version
in�nie, plus, moins et chapeau.

De plus Ozsváth et Szabó dans [44] et Rasmussen dans [50] prouvent qu'un
n÷ud homologiquement trivialK dans Y induit une �ltration sur les complexes
de chaînes de Heegaard Floer. La première page de chaque suite spectrale
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8 Introduction

associée (dans les versions relatives) s'avère être un invariant topologique de
K : ce sont les groupes bigradués

HFK∞(K,Y ), HFK+(K,Y ), HFK−(K,Y ), ĤFK(K,Y ),

nommés homologies de Heegaard Floer pour les n÷uds (dans les versions res-
pectives). Ces homologies sont des invariants puissants pour le couple (K,Y ).
Par exemple dans [44] et [50], il a été prouvé que ĤFK(K,S3) catégori�e le
polynôme d'Alexander de K. C'est-à-dire la chose suivante.
Si C := {(C∗,i, ∂i)}i∈Z est une collection de complexes de chaînes, sa caractéris-
tique d'Euler graduée est χ(C) :=

∑
i χ(C∗,i)t

i, où χ(C∗,i) est la caractéristique
d'Euler standard de C∗,i et t est une variable formelle. Par les propriétés de la
caractéristique d'Euler, ce polynôme est invariant si on le calcule à partir de
l'homologie de C. Comme nous l'avons mentionné, ĤFK(K,Y ) est un groupe
bigradué : le fait qu'il catégori�e le polynôme d'Alexander signi�e que

χ(ĤFK(K,S3))
.
= ∆K ,

où
.
= veut dire que les deux côtes sont égaux à multiplication par un monôme

monique près. Cela a été la première catégori�cation du polynôme d'Alexan-
der ; une seconde (en homologie de Seiberg-Witten-Floer) a été découverte plus
tard par Kronheimer et Mrowka ([35]).

Dans [46] Ozsváth et Szabó développent une construction similaire pour
les entrelacs L dans S3 et obtiennent les invariants

HFL−(L, S3) et ĤFL(L, S3),

les homologies de Heegaard Floer pour les entrelacs de L. Ces homologies sont
dotées d'un Zn-degré additionnel, où n est le nombre des composantes connexes
de L. De plus ils prouvent que HFL−(L, S3) catégori�e le polynôme d'Alexan-
der à multivariables, qui est une généralisation du polynôme d'Alexander clas-
sique. En particulier ils montrent que :

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) si n > 1

∆L(t)/(1− t) si n = 1.
(0.0.1)

En général la théorie d'Heegaard Floer a fourni une grande quantité d'infor-
mations sur la topologie des n÷uds et des variétés de dimension trois. De plus
elle donne de puissants instruments pour la compréhension de certaines struc-
tures géométriques sur les variétés. Un exemple est la présence d'un invariant
de structures de contact dans Heegaard Floer ([45]). Une forme de contact sur
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une variété Y orientée est une 1-forme lisse α telle que α ∧ dα est une forme
de volume positive. Une structure de contact sur Y est une distribution de
plans ξ pour laquelle il existe une forme de contact α avec ξ = kerα. Deux
structures de contact ξ1 et ξ2 sont dites équivalentes s'il existe une isotopie de
Y dont la di�érentielle envoie ξ1 sur ξ2.

Un ingrédient clé pour la dé�nition de l'invariant de structures de contact
dans Heegaard Floer est la correspondance de Giroux entre structures de
contact et les décompositions en livre ouvert. De manière informelle, une dé-
composition en livre ouvert d'une variété Y de dimension trois consiste en un
triplet (L, S, φ), où L est un entrelacs dans Y , S est une surface compacte
orientée avec bord et φ : S → S est un di�éomorphisme préservant l'orienta-
tion, tel que si N (L) est un petit voisinage tubulaire de L, alors Y \N (L) est
homéomorphe à S×[0,1]

(x,1)∼(φ(x),0)
. Alors L, S et φ sont respectivement la reliure, la

page et la monodromie du livre ouvert. Si l'entrelacs L est la reliure d'un livre
ouvert, on dit que L est un entrelacs �bré.

Étant donnée une décomposition en livre ouvert (L, S, φ) de Y , Thurston et
Wilkenkemper ([57]), ont décrit une méthode pour construire une structure de
contact �adaptée� à (L, S, φ). Plus tard, dans [19], Giroux a découvert une façon
d'associer à une structure de contact ξ sur Y une décomposition en livre ouvert
de Y adaptée (à isotopie près) à ξ. Par conséquent, il a montré qu'il existe une
correspondance biunivoque entre classes d'isotopie de structures de contact et
(classes d'équivalence de) décompositions en livre ouvert. Ce résultat est un
apport fondamental à l'étude des interactions entre la géométrie de contact et
la topologie en basse dimension.

Les livres ouverts ont été utilisés dans une série d'articles par Colin, Ghig-
gini et Honda pour prouver l'équivalence entre l'homologie de Heegaard Floer
et l'homologie de contact plongée pour les trois-variétés. Celle-ci est une autre
théorie homologique, dé�nie par Hutchings, qui associe à une variété de contact
(Y, α) deux modules gradués ECH(Y, α) et ÊCH(Y, α). Une forme de contact
α détermine de façon unique un champ de vecteurs non singulier Rα, appelé
champ de Reeb. Les générateurs des complexes de chaînes des homologies ECH
sont alors certains produits formels d'orbites de Reeb, c'est-à-dire des orbites
fermées de Rα.

Théorème 0.0.1 (Colin, Ghiggini, Honda).

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

où −Y est la variété Y avec l'orientation opposée.

Après ce théorème, il est naturel de chercher un analogue en homologie de
contact plongée de l'homologie de Heegaard Floer pour les n÷uds. Dans [13]
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les auteurs dé�nissent une version suturée de l'homologie de contact plongée,
en analogie avec l'homologie de Heegaard Floer suturée développée par Juhász
dans [32]. Celle-ci peut être pensée comme une version relative de ECH pour
les variétés à bord. En particulier, étant donné un n÷ud K dans une variété Y
de dimension trois, ils ont dé�ni une version chapeau de l'homologie de contact
plongée pour les n÷uds

ÊCK(K,Y, α).

De manière informelle, celle-ci est l'homologie ECH dans la version chapeau de
la variété de contact (Y \N (K), α), où N (K) est un petit voisinage tubulaire
de K dans Y et α est une forme de contact convenable. Dans [13] la conjecture
suivante est énoncée :

Conjecture 0.0.2.

ĤFK(−K,−Y ) ∼= ÊCK(K,Y, α).

L'objectif principal de ce travail est de donner des indices sur la véracité de
cette conjecture. Tout d'abord on dé�nit une version complète de homologie
de contact plongée

ECK(K,Y, α)

pour les n÷uds K dans des variétés Y de dimension trois munies d'une forme
de contact α convenable. Puis on généralise les dé�nitions au cas des entrelacs
L avec plusieurs composantes connexes et on obtient des homologies

ECK(L, Y, α) et ÊCK(L, Y, α).

Conjecture 0.0.3. Pour chaque n÷ud K ou entrelacs L dans Y , il existe une
forme de contact α telle que :

ECK(K,Y, α) ∼= HFK−(K,Y )

et

ÊCK(L, Y, α) ∼= ĤFK(−L,−Y ),

ECK(L, Y, α) ∼= HFK−(L, Y ).

Ensuite on calcule les caractéristiques d'Euler graduées des homologies
ECK pour les n÷uds et entrelacs dans les sphères d'homologie et on montre
le résultat suivant :

Théorème 0.0.4. Soit L un entrelacs avec n composantes dans une sphère
d'homologie Y . Alors il existe une forme de contact α pour laquelle

χ(ECK(L, Y, α))
.
= ALEX(Y \ L).
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Ici ALEX(Y \L) est le quotient d'Alexander du complémentaire de L dans
Y . Ce théorème est prouvé en utilisant une reformulation dynamique de ALEX
due à Fried ([16]). Des relations classiques entre ALEX(S3\L) et ∆L impliquent
le résultat suivant.

Théorème 0.0.5. Soit L un entrelacs dans S3 avec n composantes. Alors il
existe une forme de contact α telle que :

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1

et

χ
(
ÊCK(L, S3, α)

)
.
=


∆L(t1, . . . , tn) ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.

Cela implique que l'homologie ECK est une catégori�cation du polynôme
d'Alexander à multivariables.
Une comparaison entre ces formules et l'equation 0.0.1 (et les expressions ana-
logues pour les versions chapeau de HFK et HFL prouvées en [46]), implique
en plus le corollaire suivant.

Corollaire 0.0.6. Dans S3 les conjectures 0.0.2 et 0.0.3 sont vraies au niveau
des caractéristiques d'Euler.

Dans le dernier chapitre de cette thèse on commence à examiner la Conjec-
ture 0.0.2 au niveau de l'homologie. Comme remarqué ci-dessus ĤFK∗,∗(K,Y )

et ÊCK∗,∗(K,Y, α) sont des modules bigradués. Le degré �ltré vient d'une �l-
tration induite par K sur des complexes des chaînes convenables ĈF ∗(Y ) et
ÊCC∗(Y, α) pour ĤF ∗(Y ) et, respectivement, ÊCH∗(Y, α).

Dans leur série d'articles, Colin, Ghiggini et Honda dé�nissent des mor-
phismes de complexes des chaînes

Φ : ĈF ∗(−Y ) → ÊCC∗(Y, α)

et

Ψ : ÊCC∗(Y, α) → ĈF ∗(−Y )

qui induisent des isomorphismes en homologie, inverse l'un de l'autre. Ici les
complexes ĈF ∗(−Y ) et ÊCC∗(Y, α) sont dé�nis de façon appropriée à partir
d'une décomposition en livre ouvert (K,S, φ) de Y avec reliure connexe. Soit H
(resp. G) une homotopie de chaînes entre Ψ ◦Φ (resp. Φ ◦Ψ) et le morphisme
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identité sur ĈF (−Y ) (resp. ÊCC(Y, α)). Tous ces morphismes sont dé�nis
en comptant certaines courbes holomorphes dans des variétés symplectiques
avec bord. Par des résultats classiques sur les suites spectrales, si l'on prouve
que tous les morphismes ci-dessus préservent les �ltrations données par K sur
ĈF ∗(−Y ) et ÊCC∗(Y, α), alors la conjecture 0.0.2 est vraie pour les n÷uds
�brés.

En section 7.3 on prouvera le résultat suivant :

Théorème 0.0.7. Soit (K,S, φ) une décomposition en livre ouvert de Y . Alors
il existe α pour laquelle Φ préserve la �ltration du n÷ud donnée par K sur les
complexes.

Une des di�cultés principales dans la preuve du théorème 0.0.7 vient du
fait que les courbes holomorphes comptées par Φ n'intersectent jamais K :
par conséquent on ne peut pas appliquer certains arguments standards utilisés
normalement dans des contextes similaires, comme par exemple dans la preuve
que la di�érentielle de ECH respecte la �ltration du n÷ud ([13]).

Notre stratégie consistera tout d'abord à modi�er la monodromie et la
forme de contact près du bord de Y \ N (K), a�n de pouvoir dé�nir les �l-
trations du n÷ud en HF et en ECH d'une façon similaire. Ensuite nous
appliquerons des arguments de Wendl à propos de feuilletages holomorphes
([59]) pour véri�er que Φ′ ne compte pas certaines courbes holomorphes qui ne
respectent clairement pas la �ltration. Finalement nous prouverons que toutes
les courbes holomorphes comptées par Φ′ préservent la �ltration.

Ainsi le théorème 0.0.7 peut être considéré comme la première étape d'une
preuve de la conjecture 0.0.2.



English version

A link with n components in a 3-manifold Y is the image of an embedding
tni=1S

1 ↪→ Y . Two links L1 and L2 are said equivalent if there exists an ambient
isotopy of Y carrying L1 to L2. A multitude of link invariants of di�erent types
has been de�ned and they can be of very di�erent types. The simplest to de�ne
is perhaps the natural number n of the connected components of a link: a 1-
component link is called a knot. An example of more sophisticated, but still
�classical� invariant is the Alexander polynomial ∆K , which associates to any
link L in S3 a Laurent polynomial.

In the last �fteen years new methods involving additional geometric struc-
tures on manifolds led to the discovery of new invariants of links, as well as of
three and four manifolds.

A symplectic structure on an oriented even dimensional manifold M con-
sists in a closed two form ω such that ω ∧ . . . ∧ ω is a positive volume form
on M . Given a closed oriented three-manifold Y , in [42] Ozsváth and Szabó
built an auxiliary even dimensional manifoldM(Y ) equipped with a symplectic
form ω and an almost complex structure J ; then they de�ned four Z-modules
CF ∗(M(Y ), J, ω), with ∗ ∈ {∞,+,−,̂}, endowed with di�erentials, ob-
tained by counting certain holomorphic curves in M(Y ). The associated ho-
mology groups do not depend on the choices made for the auxiliary manifold
and the geometric structures and are topological invariants of Y , indicated

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

These groups are the Heegaard Floer homologies of Y in the in�nity, plus,
minus and hat version respectively.

Moreover Ozsváth and Szabó in [44] and Rasmussen in [50] proved that any
homologically trivial knot K in Y induces a �knot �ltration� on the Heegaard
Floer chain complexes. The �rst pages of the associated spectral sequences (in
each versions) result then to be topological invariants of K: these are bigraded
homology groups

HFK∞(K,Y ), HFK+(K,Y ), HFK−(K,Y ), ĤFK(K,Y )

called Heegaard Floer knot homologies (in the respective versions). These ho-
mologies are powerful invariants for the couple (K,Y ). For instance in [44]
and [50], it has been proved that ĤFK(K,S3) categori�es the Alexander poly-
nomial of K. This means the following. Given a collection of �nite dimen-
sional chain complexes C = {(C∗,i, ∂i)}i∈Z, its graded Euler characteristic is
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χ(C) =
∑

i χ(C∗,i)t
i, where χ(C∗,i) is the standard Euler characteristic of

C∗,i and t is a formal variable. By the properties of the Euler characteris-
tic, this polynomial does not change by taking the homology of C. As said,
ĤFK(K,Y ) is a bigraded collection of moduli: the fact that it categori�es the
Alexander polynomial of K means that:

χ(ĤFK(K,S3))
.
= ∆(K),

where
.
= means that the two sides are equal up to change sign and multiply by

a monic monomial. This was the �rst categori�cation of the Alexander poly-
nomial; a second one (in Seiberg-Witten-Floer homology) has been discovered
later by Kronheimer and Mrowka ([35]).

In [46] Ozsváth and Szabó developed a similar construction for any link L
in S3 and got invariants

HFL−(L, S3) and ĤFL(L, S3)

for L, which they called Heegaard Floer link homologies. Now these homologies
come with an additional Zn degree, where n is the number of the connected
components of L. Ozsváth and Szabó proved moreover that HFL−(L, S3) cat-
egori�es the multivariable Alexander polynomial of L, which is a generalization
of the classic Alexander polynomial. They found in particular that:

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1.
(0.0.2)

In general, Heegaard Floer homology theory can give a huge amount of
information about the topology of links and three-manifolds. Moreover it
turned out to provide powerful tools in the understanding of certain geometric
structures on the underling manifolds. One example is the presence of an
invariant of contact structures in Heegaard Floer ([45]). A contact form in an
oriented three manifold Y is a smooth one form α such that α∧dα is a positive
volume form. A contact structure on Y is a plane �eld ξ for which there exists
a contact form α such that ξ = kerα. Two contact structures ξ1 and ξ2 are
equivalent if there exists an isotopy of Y whose di�erential carries ξ1 to ξ2.

A key ingredient in the de�nition of the invariant of contact structures
in Heegaard Floer is the Giroux one-to-one correspondence between contact
structures and open book decompositions. Roughly speaking, an open book
decomposition of a three manifold Y consists in a triple (L, S, φ), where L is
a link in Y , S is a compact oriented surface with boundary and φ : S → S is
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an orientation preserving di�eomorphism such that, if N (L) is a small tubular
neighborhood of L, then Y \N (L) is homeomorphic to S×[0,1]

(x,1)∼(φ(x),0)
. In this case

L, S and φ are called the binding, the page and, respectively, the monodromy
of the open book. If the knot K is the binding of some open book, then it
is called a �bered knot. Given an open book decomposition (L, S, φ) for Y ,
Thurston and Wilkenkemper ([57]) described how to get a contact structure
�adapted� to (L, S, φ). In [19], Giroux discovered a way to associate to a
contact structure ξ on Y an open book decomposition of Y adapted (up to
isotopy), in the sense of Thurston and Wilkenkemper, to ξ. By consequence he
showed that there exists a one-to-one correspondence between isotopy classes of
contact structures and (equivalence classes of) open book decompositions. This
result gave a fundamental contribution to the study of the deep interactions
intercurring between contact geometry and low dimensional topology.

Open book decompositions were used in a series of papers by Colin, Ghig-
gini and Honda to prove the equivalence between Heegaard Floer homology
and embedded contact homology for three manifolds. The last one is another
Floer homology theory, �rst de�ned by Hutchings, which associates to a con-
tact manifold (Y, α) two graded modules

ECH(Y, α) and ÊCH(Y, α).

A contact form α determines univocally a non singular vector �eld Rα,
called Reeb vector �eld. The generators of the ECH chain groups are then
certain formal products of Reeb orbits, i.e. closed orbits of Rα.

Theorem 0.0.1 (Colin, Ghiggini, Honda, [8]-[12]).

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

where −Y is the manifold Y with the inverted orientation.

In light of Theorem 0.0.1, it is a natural problem to �nd an embedded
contact counterpart of Heegard Floer knot homology. In analogy with the
sutured Heegaard Floer theory developed by Juhász ([32]), in [13] the authors
de�ne a sutured version of embedded contact homology. This can be thought
of as a version of embedded contact homology for manifolds with boundary.
In particular, given a knot K in a contact three manifold (Y, ξ), using sutures
they de�ne a hat version of embedded contact knot homology

ÊCK(K,Y, α).



16 Introduction

Roughly speaking, this is the hat version of ECH homology for the contact
manifold with boundary (Y \N (K), α), where N (K) is a suitable thin tubular
neighborhood of K in Y and α is a contact form for ξ satisfying speci�c
compatibility conditions with K. In [13] the following conjecture is stated:

Conjecture 0.0.2.

ÊCK(K,Y, α) ∼= ĤFK(−K,−Y ).

The aim of this thesis is to provide evidences of the veracity of this conjec-
ture. The �rst thing we do is to de�ne a full version of embedded contact knot
homology

ECK(K,Y, α)

for knots K in any contact three manifold (Y, ξ) endowed with a (suitable)
contact form α for ξ. Moreover we generalize the de�nitions to the case of
links L with more then one components to obtain homologies

ECK(L, Y, α) and ÊCK(L, Y, α).

We state then the following:

Conjecture 0.0.3. For any knot K and link L in Y , there exist contact forms
for which:

ECK(K,Y, α) ∼= HFK−(K,Y )

and

ÊCK(L, Y, α) ∼= ĤFK(−L,−Y ),

ECK(L, Y, α) ∼= HFK−(L, Y ).

Next we compute the graded Euler characteristics of the ECK homologies
for knots and links in homology three-spheres and we prove the following:

Theorem 0.0.4. Let L be an n-component link in a homology three-sphere Y .
Then there exists a contact form α such that

χ(ECK(L, Y, α))
.
= ALEX(Y \ L).

Here ALEX(Y \L) is the Alexander quotient of the complement of L in Y .
The theorem is proved using Fried's dynamic reformulation of ALEX ([16]).
Classical relations between ALEX(S3 \ L) and ∆L imply the following result:
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Theorem 0.0.5. Let L be any n-component link in S3. Then there exists a
contact form α for which:

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1

and

χ
(
ÊCK(L, S3, α)

)
.
=


∆L(t1, . . . , tn) ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.

This implies that the homology ECK is a categori�cation of the multivari-
able Alexander polynomial.
Moreover comparing last theorem with Equation 0.0.2 (and the analogue ex-
pressions for the hat versions of HFK and HFL proved in [46]), it follows
that

Corollary 0.0.6. In S3, Conjectures 0.0.2 and 0.0.3 hold at level of Euler
characteristics.

In the last chapter of this thesis we begin to investigate Conjecture 0.0.2 at
the homology level. As mentioned, both ĤFK∗,∗(K,Y ) and ÊCK∗,∗(K,Y, α)
are bigraded modules. The further Z-degree comes from a �ltration induced
by K on suitable chain complexes ĈF ∗(Y ) and ÊCC∗(Y, α) for ĤF ∗(Y ) and,
respectively, ÊCH∗(Y, α).

In their series of papers, Colin-Ghiggini-Honda de�ne chain maps

Φ : ĈF ∗(−Y ) −→ ÊCC∗(Y, α)

and

Ψ : ÊCC∗(Y, α) −→ ĈF ∗(−Y )

that induce isomorphisms in homology, which are the inverse of one another.
Let H (resp. G) be chain homotopies between Ψ ◦ Φ (resp. Φ ◦ Ψ) and the
identity map of ĈF (−Y ) (resp. ÊCC(Y, α)). All these maps are de�ned by
counting certain holomorphic curves in symplectic four manifolds with bound-
ary. By standard results about spectral sequences, if one can prove that all
the maps above are �ltered with respect of the knot �ltrations on ĈF ∗(−Y )

and ÊCC∗(Y, α), then conjecture 0.0.2 is true at least for the �bered knots.
In section 7.3 we prove the following:
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Theorem 0.0.7. Let (K,S, φ) be an open book decomposition of a three man-
ifold Y . Then, there exists a contact form α for which Φ preserves the knot
�ltrations given by K on the complexes.

One of the main di�culties in proving Theorem 0.0.7 comes from the fact
that the holomorphic curves counted by Φ never cross K, so that we can not
directly apply some standard argument common in this kind of situation and
used, for example, in [13] to prove that the ECH-di�erential respects the knot
�ltration.

Our strategy will consist �rst in modifying the monodromy and the contact
form near the boundary of Y \ N (K) in order to de�ne the knot �ltrations
in HF and ECH in a similar way. Then we will apply Wendl's arguments
about holomorphic foliations ([59]) to check that some speci�c holomorphic
curve that evidently do not respect the knot �ltrations are not in fact counted
by Φ. Finally we will prove that all the remaining holomorphic curves counted
by Φ respect the �ltrations

For what said before, Theorem 0.0.7 can be viewed as the �rst step of a
proof of conjecture 0.0.2.
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Chapter 1

Contact geometry and

holomorphic curves

In this chapter we give basic de�nitions and results about contact geom-
etry, open book decompositions of three manifolds and holomorphic curves.
Moreover in Section 1.3 we recall some notions about Morse Bott theory in
contact geometry.

1.1 Contact geometry

Let us begin by introducing some basic objects in three dimensional contact
geometry. We refer the reader to [20] and the other cited references for the
details.

A (co-oriented) contact form on a three dimensional oriented manifold Y is
a α ∈ Ω1(Y ) such that α∧dα is a positive volume form. A contact structure is
a smooth plane �eld ξ on Y such that there exists a contact form α for which
ξ = kerα. The Reeb vector �eld of α is the (unique) vector �eld Rα determined
by the equations dα(Rα, ·) = 0 and α(Rα) = 1. A simple Reeb orbit is a closed
oriented orbit of R = Rα, i.e. it is the image δ of an embedding S1 ↪→ Y such
that RP is positively tangent to δ in any P ∈ δ. A Reeb orbit is an m-fold
cover of a simple Reeb orbit, with m ≥ 1.
The form α determines an action A on the set of its Reeb orbits de�ned by
A(γ) =

∫
γ
α. By de�nition A(γ) > 0 for any non empty orbit γ.

A basic result in contact geometry asserts that the �ow of the Reeb vector
�eld (abbreviated Reeb �ow) φ = φR preserves ξ, that is (φt)∗(ξP ) = ξφt(P ) for
any t ∈ R (see [20, Chapter 1]). Given a Reeb orbit δ, there exists T ∈ R+

such that (φT )∗(ξP ) = ξP for any P ∈ δ; if T is the smallest possible, the

22
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isomorphism Lδ := (φT )∗ : ξP → ξP is called the (symplectic) linearized �rst
return map of R in P .

The orbit δ is called non-degenerate if 1 is not an eigenvalue Lδ. There are
two types of non-degenerate Reeb orbits: elliptic and hyperbolic. δ is elliptic if
the eigenvalues of Lδ are on the unit circle and is hyperbolic if they are real. In
the last case we can make a further distinction: δ is called positive (negative)
hyperbolic if the eigenvalues are both positive (resp. negative).

De�nition 1.1.1. The Lefschetz sign of a non-degenerate Reeb orbit δ is

ε(δ) := sign(det(1− Lδ)) ∈ {+1,−1}.

Observation 1.1.2. It is easy to check that ε(δ) = +1 if δ is elliptic or negative
hyperbolic and ε(δ) = −1 if δ is positive hyperbolic.

To any non-degenerate orbit δ and a trivialization τ of ξ|δ we can associate
also the Conley-Zehnder index µτ (δ) ∈ Z of δ with respect to τ . Even if we do
not give a precise de�nition (that can be found for example in [14] or [23]) we
will provide an explicit description of this index (see [28, section 3.2]).

Given P ∈ δ, using the basis of ξ|δ determined by τ we can regard the
di�erentials φt∗ : ξP → ξφt(P ) of the Reeb �ow as a path in t ∈ [0, T ] of 2 × 2
symplectic matrices. In particular φ0∗ : ξP → ξP is the identity matrix and, if
T is as above, φT ∗ : ξP → ξP is a matrix representation for Lδ.

If δ is elliptic, following this path for t ∈ [0, T ], φT ∗ will represent a rotation
by some angle 2πθ with θ ∈ R \ Z (since δ is non degenerate). Then µτ (δ) =
2bθc+ 1, where bθc is the highest integer smaller then θ.

Otherwise, if δ is hyperbolic, then the symplectic matrix of φT ∗ rotates the
eigenvectors of Lδ by an angle kπ with k ∈ 2Z if δ is positive hyperbolic and
k ∈ 2Z+ 1 if δ is negative hyperbolic. Then µτ (δ) = k.

Observation 1.1.3. Even if µτ (δ) depends on τ , its parity depends only on
δ. Indeed, if δ is elliptic, then µτ (δ) ≡ 1 mod 2. Moreover suppose that δ
is hyperbolic and µτ (δ) = k; if τ ′ di�ers from τ by a twist of an angle 2nπ
with n ∈ Z, the rotation by kπ on the eigenvectors will be composed with a
rotation by 2nπ. Then µτ ′(δ) = k + 2n ≡ k mod 2.

Corollary 1.1.4. If δ is non-degenerate then for any τ

(−1)µτ (δ) = −ε(δ).

De�nition 1.1.5. Given X ⊆ Y , we will indicate by P(X) the set of simple
Reeb orbits of α contained in X. An orbit set (or multiorbit) in X is a formal
�nite product γ =

∏
i γ

ki
i , where γi ∈ P(X) and ki ∈ N is the multiplicity of

γi in γ, with ki ∈ {0, 1} whenever γi is hyperbolic. The set of multiorbits in
X will be denoted by O(X).
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Note that the empty set is considered as an orbit, called empty orbit and
it is indicated by ∅.

An orbit set γ =
∏

i γ
ki
i belongs to the homology class [γ] =

∑
i ki[γi] ∈

H1(Y ) (unless stated otherwise, all homology groups will be taken with integer
coe�cients). Moreover the action of γ is de�ned by A(γ) =

∑
i ki
∫
γi
α.

1.2 Holomorphic curves

In this section we recall some de�nitions and properties about holomorphic
curves in dimension 4. We refer the reader to [38] and [39] for the general
theory and [28] and [9]-[12] for an approach more specialized to our context.

Let X be an oriented even dimensional manifold. An almost complex struc-
ture on X is an isomorphism J : TX → TX such that J(TPX) = TPX and
J2 = −id. If (X1, J1) and (X2, J2) are two even dimensional manifolds en-
dowed with an almost complex structure, a map u : (X1, J1) → (X2, J2) is
pseudo-holomorphic if it satis�es the Cauchy-Riemann equation

du ◦ J1 = J2 ◦ du.

De�nition 1.2.1. A pseudo-holomorphic curve in a four-dimensional manifold
(X, J) is a pseudo-holomorphic map u : (F, j) → (X, J), where (F, j) is a
Riemann surface.

Note that here we do not require that F is connected.
In this thesis we will be particularly interested in pseudo-holomorphic

curves (that sometimes we will call simply holomorphic curves) in �symplec-
tizations� of contact three manifolds. Let (Y, α) be a contact three-manifold
and consider the four-manifold R×Y . Call s the R-coordinate and let R = Rα

be the Reeb vector �eld of α. The almost complex structure J on R × Y is
adapted to α if

1. J is s-invariant;

2. J(ξ) = ξ and J(∂s) = R at any point of R× Y ;
3. J |ξ is compatible with dα, i.e. dα(·, J ·) is a Riemannian metric.

For us, a holomorphic curve u in the symplectization of (Y, α) is a holo-
morphic curve u : (F, j)→ (R× Y, J), where:

i. J is adapted to α;

ii. (Ḟ , j) is a Riemann surface obtained from a closed surface F by removing
a �nite number of points (called punctures);
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iii. for any puncture x there exists a neighborhood U(x) ⊂ F such that
U(x) \ {x} is mapped by u asymptotically to a cover of a cylinder R× δ
over an orbit δ of R in a way that limy→x πR(u(y)) = ±∞, where πR is
the projection on the R-factor of R× Y .

We say that x is a positive puncture of u if in the last condition above the limit
is +∞: in this case the orbit δ is a positive end of u. If otherwise the limit is
−∞ then x is a negative puncture and δ is a negative end of u.

If δ is the Reeb orbit associated to the puncture x, then u near x determines
a cover of δ: the number of sheets of this cover is the local x-multiplicity of δ
in u. The sum of the x-multiplicities over all the punctures x associated to δ
is the (total) multiplicity of δ in u.

If γ (γ′) is the orbit set determined by the set of all the positive (negative)
ends of u counted with multiplicity, then we say that u is a holomorphic curve
from γ to γ′.

Example 1.2.2. A cylinder over an orbit set γ of Y is the holomorphic curve
R× γ ⊂ R× Y .
Observation 1.2.3. Note that if there exists a holomorphic curve u from γ to
γ′, then [γ] = [γ′] ∈ H1(Y,Z).

We state now some result about holomorphic curves that will be useful
later.

Lemma 1.2.4 (see for example [58]). If u is a holomorphic curve in the sym-
plectization of (Y, α) from γ to γ′, then A(γ) ≥ A(γ′).

This lemma follows by applying the Stokes' theorem and using the fact
that dα is always non negative on a holomorphic curve.

Theorem 1.2.5 ([39], Lemma 2.4.1). Let u : (F, j) → (R × Y, J) be a non-
constant holomorphic curve in (X, J), then the critical points of πR ◦ u are
isolated. In particular, if πY denotes the projection R × Y → Y , πY ◦ u is
transverse to Rα away from a set of isolated points.

From now on if u is a map with image in R × Y , we will set uR := πR ◦ u
and uY := πY ◦ u.

Holomorphic curves also enjoy the following property, which will be impor-
tant for us: see for example [21].

Theorem 1.2.6 (Positivity of intersection; Gromov, McDu�, Micallef-White).
Let u and v be two distinct holomorphic curves in a four manifold (W,J).
Then #(Im(u)∩ Im(v)) <∞. Moreover, if P is an intersection point between
Im(u) and Im(v), then its contribution mP to the algebraic intersection number
〈Im(u), Im(v)〉 is strictly positive, and mP = 1 if and only if u and v are
embeddings near P that intersect transversely in P .



26 1.3. Morse-Bott theory

When the almost complex structure does not play an important role or is
understood it will be omitted from the notations.

1.3 Morse-Bott theory

The Morse-Bott theory in contact geometry has been �rst developed by
Bourgeois in [3]. We present in this section some basic notions and applica-
tions, mostly as presented in [9].

De�nition 1.3.1. A Morse-Bott torus (brie�y M-B torus) in a 3-dimensional
contact manifold (Y, α) is an embedded torus T in Y foliated by a family
γt, t ∈ S1, of Reeb orbits, all in the same class in H1(T ), that are non-
degenerate in the Morse-Bott sense. Here this means the following. Given
any P ∈ T and a positive basis (v1, v2) of ξP where v2 ∈ TP (T ) (so that v1 is
transverse to TP (T )), then the di�erential of the �rst return map of the Reeb
�ow on ξP is of the form (

1 0
a 1

)
for some a 6= 0. If a > 0 (resp. a < 0) then T is a positive (resp. negative)
M-B torus.

We say that α is a Morse-Bott contact form if all the Reeb orbits of α are
either isolated and non-degenerate or come in S1-families foliating M-B tori.

As explained in [3] and [9, section 4] it is possible to modify the Reeb vector
�eld in a small neighborhood of a M-B torus T preserving only two orbits, say
e and h, of the S1-family of Reeb orbits associated to T .

Moreover, for any �xed L > 0, the perturbation can be done in a way that
e and h are the only orbits in a neighborhood of T with action less then L.

If T is a positive (resp. negative) M-B torus and τ is the trivialization of ξ
along the orbits given pointwise by the basis (v1, v2) above, then one can make
the M-B perturbation in a way that h is positive hyperbolic with µτ (h) = 0
and e is elliptic with µτ (e) = 1 (resp. µτ (e) = −1).

The orbits e and h can be seen as the only two critical points of a Morse
function fT : S1 → R de�ned on the S1-family of Reeb orbits foliating T and
with maximum corresponding to the orbit with higher C-Z index. Often M-B
tori will be implicitly given with such a function.

Observation 1.3.2. It is important to remark that, before the perturbation,
T is foliated by Reeb orbits of α and so these are non-isolated. Moreover the
form of the di�erential of the �rst return map of the �ow of ξ implies that
these orbits are also degenerate.
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After the perturbation, T contains only two isolated and non degenerate
orbits, but other orbits are created in a neighborhood of T and these orbits
can be non-isolated and degenerate. See Figure 1.1 later for an example of
M-B perturbations.

Proposition 1.3.3 ([3], Section 3). For any M-B torus T and any L ∈ R
there exists a M-B perturbation of T such that, with the exception of e and h,
all the periodic orbits in a neighborhood of T have action greater then L.

A torus T foliated by Reeb orbits all in the same class of H1(T ) (like
for example a Morse-Bott torus) can be used to obtain constraints about the
behaviour of a holomorphic curve near T .

Following [9, Section 5], if γ is any of the Reeb orbits in T , we can de�ne
the slope of T as the equivalence class s(T ) of [γ] ∈ H1(T,R) − {0} up to
multiplication by positive real numbers.

Let T × [−ε, ε] be a neighborhood of T = T × {0} in Y with coordinates
(ϑ, t, y) such that (∂ϑ, ∂t) is a positive basis for T (T ) and ∂y is directed as a
positive normal vector to T .

Suppose that u : (F, j)→ (R×Y, J) is a holomorphic curve in the symplec-
tization of (Y, α); by Theorem 1.2.5, there exist at most �nitely many points
in T × [−ε, ε] where uY (F ) is not transverse to Rα. Then, if Ty := T ×{y} and
u(F ) intersects R× Ty, we can associate a slope sTy(u) to uY (F )∩ Ty, for any
y ∈ [−ε, ε]: this is de�ned exactly like s(T ), where uY (F ) ∩ Ty is considered
with the orientation induced by ∂ (uY (F ) ∩ (T × [−ε, y])).

Observation 1.3.4. Note that if u has no ends in T × [y, y′], then

∂(uY (F ) ∩ T × [y, y′]) = uY (F ) ∩ Ty′ − uY (F ) ∩ Ty

and sTy(u) = sT ′y(u).

The following Lemma is a consequence of the positivity of intersection in
dimension four (see [9, Lemma 5.2.3]).

Lemma 1.3.5 (Blocking Lemma). Let T be linearly foliated by Reeb trajecto-
ries with slope s = s(T ) and u a holomorphic curve be as above.

1. If u is homotopic, by a compactly supported homotopy, to a map whose
image is disjoint from R× T , then uY (F ) ∩ T = ∅.

2. Let T × [−ε, ε] be a neighborhood of T = T ×{0}. Suppose that, for some
y ∈ [−ε, ε]\{0}, u has no ends in T × (0, y] if y ∈ (0, ε] or in T × [y, 0) if
y ∈ [−ε, 0). If sTy(u) = ±s(T ) then u has an end which is a Reeb orbit
in T .
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Let now x be a puncture of F whose associated end is an orbit γ in T ; if
there exists a neighborhood U(x) of x in F such that uY (U(x) \ {x}) ∩ T = ∅
then γ is a one sided end of u in x. This is equivalent to requiring that
uY (U(x)) is contained either in T × (−ε, 0) or in T × (0, ε).

The following is proved in [9] (Lemma 5.3.2).

Lemma 1.3.6 (Trapping Lemma). If T is a positive (resp. negative) M-B
torus and γ ⊂ T is a one sided end of u associated to the puncture x, then x
is positive (resp. negative).

Even if we do not give here the proofs of the last two lemmas, we will
extensively use similar arguments later (in particular in Chapter 7).

1.4 Open books

De�nition 1.4.1. Given a surface S and a di�eomorphism φ : S → S, the
mapping torus of (S, φ) is the three dimensional manifold

N(S, φ) :=
S × [0, 2]

(x, 2) ∼ (φ(x), 0)
.

In this paper we use the following de�nition of open book decomposition of
a 3-manifold Y . This is not the original de�nition but a more speci�c version
based on [9].

De�nition 1.4.2. An open book decomposition for Y is a triple (L, S, φ) such
that

� L = K1 t . . . tKn is an n-component link in Y ;
� S is a smooth, compact, connected, oriented surface with an n-components
boundary;

� φ : S → S is an orientation preserving di�eomorphism such that on a
small neighborhood {1, . . . , n}× [0, 1]×S1 of ∂S = {1, . . . , n}×{1}×S1,
with coordinates (y, ϑ) near each component, it acts by

(y, ϑ)
φ7−→ (y, ϑ− y + 1) (1.4.1)

(and in particular φ|∂S = id∂S);
� for each Ki there exists a tubular neighborhood N (Ki) ⊂ Y of Ki such
that Y is di�eomorphic to N(S, φ) tni=1 N (Ki) where the union symbol
means that for any i, {i} × {1} × S1 × [0,2]

0∼2
is glued to N (Ki) in a way

that, for any ϑ ∈ S1, {i}×{1}×{ϑ}× [0,2]
(0∼2)

is identi�ed with a meridian
of Ki in ∂N (Ki).



1.4. Open books 29

The link L is called the binding, the surfaces S×{t} are the pages and the
di�eomorphism φ is the monodromy of the open book.

When we are interested mostly in the mapping torus part of an open book
decomposition we will use a notation of the form (S, φ), omitting the reference
to its binding. Sometimes we will call (S, φ) an abstract open book.

Following [9], we will often consider each N (Ki) as a union of a copy of
[0,2]

(0∼2)
× [1, 2]×S1, endowed with the extension of the coordinates (t, y, ϑ), glued

along {y = 2} to a smaller neighborhood V (Ki) of Ki. The gluing is done in
a way that the sets {ϑ = const.} are identi�ed with meridians for K and the
sets {t = const.} are identi�ed to longitudes.

By the Giroux's work in [19] there is a one to one correspondence between
contact structures (up to isotopy) and open book decompositions (up to Giroux
stabilizations) of Y . In order to simplify the notations, we consider here open
books with connected binding.

Given (K,S, φ) we can follow the Thurston-Wilkenkemper construction
([57]) to associate to it an adapted contact form α on Y as explained in [9,
section 2]. In N the resulting Reeb vector �eld R = Rα enjoys the following
properties:

� R is transverse to the pages S × {t} ∀t ∈ [0, 2];
� the �rst return map of R is isotopic to φ;
� each torus Ty = S1 × [0,2]

(0∼2)
× {y}, for y ∈ [0, 1], is linearly foliated by

Reeb orbits and the �rst return map of R on Ty is

(y, ϑ) 7→ (y, ϑ− y + 1).

The last implies that when the set of orbits foliating Ty comes in an S1-
family, T is Morse-Bott.

To explain the behaviour of R on N (K), let us extend the coordinates
(ϑ, t, y) to V \ K ∼= [0,2]

(0∼2)
× [2, 3) × S1, where K = {y = 3}. For y ∈ [0, 3)

set Ty = [0,2]
(0∼2)

× {y} × S1. Given a curve γ(x) = (γt(x), y, γϑ(x)) in Ty we can
de�ne the slope of γ in x0 by

sTy(γ, x0) =
γ′t(x0)

γ′ϑ(x0)
∈ R ∪ {±∞}.

In particular if a meridian has constant slope, this must be +∞ and ∂S has
slope 0. Note that the slope of Ty as given by

s(Ty) =
γt(x)

γϑ(x)
∈ R ∪ {±∞},
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where now γ is a parametrization of a Reeb trajectory in Ty and x ∈ Im(γ).
Note in particular that if s(Ty) is irrational then Ty does not contain Reeb
orbits, and if Ty is foliated by meridians (like T1) then s(Ty) = +∞.

On [0,2]
(0∼2)

× [1, 2]×S1 the contact form will depend on a small real constant
δ > 0: call αδ the contact form on all Y . Let fδ : [1, 3) → R be a smooth
function such that:

� fδ has minimum in y = 1.5 of value −δ;
� fδ(1) = fδ(2) = 0;
� fδ(y) = −y + 1 near {y = 1};
� f ′δ(y) < 0 for y ∈ [1, 1.5) and f ′δ(y) > 0 for y ∈ (1.5, 3).
Then the Reeb vector �eld R of αδ in N (K) \ int(V ) is such that:

� R is transverse to the annuli {t} × [1, 2]× S1 ∀t ∈ [0,2]
0∼2

;
� the tori Ty, y ∈ [1, 2] are foliated by Reeb orbits with constant slope and
�rst return map given by (y, ϑ) 7→ (y, ϑ+ fδ(y)).

Finally in V each torus Ty is linearly foliated by Reeb orbits whose slope
vary in (C,+∞] for y going from 3 (not included) to 2 and, where C is a
positive real number. Moreover K is also a Reeb orbit.

Note that for every δ, T1 is a negative M-B torus foliated by orbits with
constant slope +∞. As explained in 1.3 we can perturb the associated S1-
family of orbits into a pair of simple Reeb orbits (e, h), where e is an elliptic
orbit with C-Z index −1 and h is positive hyperbolic with index 0 (the indexes
are computed with respect to the trivialization given by the torus).

Similarly the positive M-B torus T2 is also foliated by orbits with constant
slope +∞ and a M-B perturbation gives a pair of simple Reeb orbits (e+, h+)
in T2, where e+ is elliptic of index 1 and h+ is hyperbolic of index 0 (in the
papers [9]-[12] the orbits e+ and h+ are called e′ and h′ respectively).

In the rest of the paper, if not stated otherwise, when we talk about contact
forms and their Reeb vector �elds adapted to an open book we will always refer
to them assuming the notations and the properties explained in this subsection.
In particular the M-B tori T1 and T2 will be always assumed to be perturbed
into the respective pairs of simple orbits.

Observation 1.4.3. In the case of open books with non-connected binding L,
the Reeb vector �eld of an adapted contact form satis�es the same properties
above near each component of L.

We saw that to any open book decomposition (L, S, φ) of Y it is possible
to associate an adapted contact form. Let us now say something about the
inverse map of the Giroux correspondence.
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Figure 1.1: Reeb dynamic before and after a M-B perturbation of the tori T1

and T2. Both pictures take place in a page of the open book. Each �ow line
represents an invariant subset of S under the Reeb �ow near K; the orientation
gives the direction in which any point is mapped under the �rst return map of
the �ow.

Theorem 1.4.4 (Giroux). Given a contact three-manifold (Y, ξ), there exists
an open book decomposition (L, S, φ) of Y and an adapted contact form α such
that ker(α) = ξ.

Sketch of the proof. Given any contact structure ξ on Y , in [19] Giroux ex-
plicitly constructs an open book decomposition (L, S, φ) of Y for which there
exists a compatible contact form α such that ker(α) = ξ. Following [6, Section
3], the proof can be carried on in three main steps.

The �rst step consists in providing a cellular decomposition D of Y that
is, in a precise sense, �compatible with ξ�. It is important to remark that, up
to take a re�nement (in a way that each 3-cell is contained in a Darboux ball)
any cellular decomposition of Y can be isotoped to make it compatible with ξ.

In the second step, D is used to explicitly build (L, S, φ). We describe now
some of the properties of S, seen as the embedded 0-page of the open book.
Let Di be the i-skeleton of D and let N (D1) be a tubular neighborhood of
D1. Suppose that N (D0) ⊂ N (D1) is a tubular neighborhood of D0 such that
N (D1) \ N (D0) is homeomorphic to a tubular neighborhood of D1 \ N (D0).
Then:

1. S ⊂ N (D1), L := ∂S ⊂ ∂N (D1) and D1 ⊂ int(S);

2. S∩(N (D1)\N (D0)) is a disjoint union of strips which are di�eomorphic
to (D1\N (D0))×[−1, 1] withD1\N (D0) corresponding to (D1\N (D0))×
{0};



32 1.4. Open books

The fact that D is compatible with ξ implies that L intersects each 2-simplex
exactly twice and it is possible to use this fact to prove that the complement
of L in Y �bers in circles over S, which implies that L is the binding of an
open book with 0-page the complement in S of a small neighborhood of S.

The third step consists �nally in de�ning the contact form α with the
required properties.

Theorem 1.4.5 (Giroux correspondence). Let α and α′ be contact structures
on Y that are adapted to the open books (L, S, φ) and, respectively, (L′, S ′, φ′).
Then α and α′ are isotopic if and only if (L′, S ′, φ′) can be obtained from
(L, S, φ) by a sequence of Giroux stabilizations and destabilizations.

A Giroux stabilization of an open book is an operation that associates to
an open book decomposition (L, S, φ) of Y another open book decomposition
(L′, S ′, φ′) of Y , obtained as follows. Choose two points P1 and P2 in ∂S
(not necessarily in the same connected component) and let γ be an oriented
embedded path in S from P1 to P2. Let now S ′ be the oriented surface obtained
by attaching a 1-handle to S along the attaching sphere (P1, P2). Consider the
closed oriented loop γ̄ ⊂ S ′ de�ned by γ̄ := γ t c, where c is the core curve of
the 1-handle, oriented from P2 to P1, and the gluing is done along the common
boundary (P1, P2) of the two paths.

By the de�nition of monodromy of open book that we gave, the φ is the
identity along ∂S. So φ extends to the identity map on the handle: we keep
calling φ the resulting di�eomorphism on S ′. If τγ̄ is a positive Dehn twist
along γ̄, de�ne φ′ = τγ̄ ◦ φ.

It results that N ′ := N(S ′, φ′) embeds in Y and that Y \ N ′ is a disjoint
union of solid tori. Then, if L′ is the set of the core curves of these tori,
(L′, S ′, φ′) is an open book decomposition of Y , which is said to be obtained
by Giroux stabilization of (L, S, φ) along γ.

There is an obvious inverse operation of the stabilization: with the no-
tations above, we say that (L, S, φ) is obtained by Giroux destabilization of
(L′, S ′, φ′) along γ′.

Note that a Giroux stabilization does not change the components of L that
do not intersect the attaching sphere. Moreover it is not di�cult to see that
the number of connected components of L and L′ di�ers by 1: if P1 and P2

are chosen in the same component then L′ has one component more than L;
otherwise L′ has one component less then L.



Chapter 2

Embedded contact homology

This chapter is devoted to recalling some basic facts about embedded con-
tact homology theory.

In the �rst section we brie�y remind the Hutchings' original de�nition
of ECH(Y, α) and ÊCH(Y, α) for a closed contact three-manifold (Y, α).
In Section 2.2 we summarize some de�nitions and results given in [9]. We
present in particular the de�nition of the embedded contact homology groups
ECH(N,α) and ÊCH(N,α) for contact three-manifolds (N,α) with torus
boundary. Moreover, if N is the complement of a neighborhood of a knot
K in a closed three manifold Y , we recall the de�nition of the relative ver-
sions ECH(N, ∂N, α) and ÊCH(N, ∂N, α), which are proved (still in [9]) to
be isomorphic to the homologies ECH(Y, α) and ÊCH(Y, α) respectively.

In Section 2.3 we remind the de�nition of the periodic Floer homology
groups for open books. As we will see their de�nition is closely related to that
of ECH.

Finally in Section 2.4 we remind the de�nition of the version of ÊCH for
homologically trivial knots. We will not give the original de�nition in terms of
sutures as appears in [13] but the reinterpretation given in the end of Chapter
9 of [8].

2.1 ECH for closed three-manifolds

Let (Y, α) be a closed contact three-manifold and assume that α is non-
degenerate (i.e., that any Reeb orbit of α is non-degenerate).

For a �xed Γ ∈ H1(Y ), de�ne ECC(Y, α,Γ) to be the free Z2-module

33
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generated by the orbit sets of Y in the homology class Γ and pose

ECC(Y, α) =
⊕

Γ∈H1(Y )

ECC(Y, α,Γ).

This is the ECH chain group of (Y, α).
The ECH-di�erential ∂ECH (called simply ∂ when no risk of confusion

occurs) is de�ned in [27] in terms of holomorphic curves in the symplectization
(R× Y, dα, J) of (Y, α) as follows.

Given γ, δ ∈ O(Y ), letM(γ, δ) be the set of (possibly disconnected) holo-
morphic curves u : (Ḟ , j) → (R × Y, J) from γ to δ, where (Ḟ , j) is a punc-
tured compact Rieamannian surface. It is clear that u determines a relative
homology class [Im(u)] ∈ H2(R× Y ; γ, δ) and that if such a curve exists then
[γ] = [δ] ∈ H1(Y ).

If ξ = ker(α) and a trivialization τ of ξ|γ∪δ is given, to any surface C ⊂
R× Y with ∂C = γ − δ it is possible to associate an ECH-index

I(C) := cτ (C) +Qτ (C) + µIτ (γ, δ),

which depends only on the relative homology class of C. Here
� cτ (C) := c1(ξ|C , τ) is the �rst relative Chern class of C;
� Qτ (C) is the τ -relative intersection paring of R× Y applied to C;
� µIτ (γ, δ) :=

∑
i

∑ki
j=1 µτ (γ

j
i ) −

∑
i

∑ki
j=1 µτ (δ

j
i ), where µτ is the Conley-

Zehnder index de�ned in Section 1.1.
We refer the reader to [28] for the details about these quantities. If u is
a holomorphic curve from γ to δ set I(u) = I(Im(u)) (well de�ned up to
approximating Im(u) with a surface in the same homology class).

De�ne Mk(γ, δ) := {u ∈ M(γ, δ) | I(u) = k}. The ECH-di�erential is
then de�ned on the generators of ECC(Y, α) by

∂ECH(γ) =
∑

δ∈O(Y )

]

(
M1(γ, δ)

R

)
· δ (2.1.1)

where the fraction means that we quotient M1(γ, δ) by the R-action on the
curves given by the translation in the R-direction in R × Y . In [28, Section
5] Hutchings proves that M1(γ,δ)

R is a compact 0-dimensional manifold, so that
∂ECH(γ) is well de�ned.

The (full) embedded contact homology of (Y, α) is

ECH∗(Y, α) := H∗(ECC(Y, α), ∂ECH).

It turns out that these groups do not depend either on the choices J in the
symplectization or the contact form for ξ.
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The index ∗ denotes a relative index induced on the generators by I. On the
other hand it is possible to endow ECH(Y, ξ) also with a canonical absolute
Z/2-grading as follows. If γ =

∏
i γ

ki
i set

ε(γ) =
∏
i

ε(γi)
ki ,

where ε(γi) is the Lefschetz sign of the simple orbit γi. Note that ε(γ) is given
by the parity of the number of positive hyperbolic simple orbits in γ.

If u is a holomorphic curve from γ to δ, by simple computations it is
possible to prove the following index parity formula (see for example Section
3.4 in [28]):

(−1)I(u) = ε(γ)ε(δ). (2.1.2)

It follows then that the Lefschetz sign endows embedded contact homology
with a well de�ned absolute grading.

Fix now a generic point (0, z) ∈ Im(u) ⊂ R × Y . Given two orbit sets γ
and δ, let

Uz : ECC∗(Y, α) −→ ECC∗−2(Y, α)

be the map de�ned on the generators by

Uz(γ) =
∑

δ∈O(Y )

# {u ∈M2(γ, δ) | (0, z) ∈ Im(u)} · δ.

Hutchings proves that Uz is a chain map that counts only a �nite number of
holomorphic curves and that this count does not depend on the choice of z.
So it makes sense to de�ne the map U := Uz for any z as above. This is called
the U-map.

The hat version of embedded contact homology of (Y, α) is de�ned as the
homology ÊCH(Y, α) of the mapping cone of the U-map. By this we mean
that ÊCH(Y, α) is de�ned to be the homology of the chain complex

ECC∗−1(Y, α)⊕ ECC∗(Y, α)

with di�erential de�ned by the matrix(
−∂∗−1 0
U ∂∗

)
where the element of the complex are thought as columns. Also ÊCH(Y, α)
has the relative and the absolute gradings above.
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Observation 2.1.1. Note that ∂ECH and U respect the homology class of the
generators of ECC∗(Y, α). This implies that there are natural splits:

ECH(Y, ξ) =
⊕

Γ∈H1(Y ) ECC(Y, ξ,Γ);

ÊCH(Y, ξ) =
⊕

Γ∈H1(Y ) ÊCH(Y, ξ,Γ).
(2.1.3)

We end this section by stating the following result (see for example [28]).

Theorem 2.1.2. Let ∅ be the empty orbit. Then [∅] ∈ ECH(Y, ξ) is an
invariant of the contact structure ξ.

The class [∅] is called ECH contact invariant of ξ.

2.2 ECH for manifolds with torus boundary

In order to de�ne ECH for contact three-manifolds (N,α) with nonempty
boundary, some compatibility between α and ∂N should be assumed. In this
paper we are particularly interested in three-manifolds whose boundary is a
collection of disjoint tori.

In [9, Section 7] Colin, Ghiggini and Honda analyze this situation when
∂N is connected. If T = ∂N is homeomorphic to a torus, then they prove that
the ECH-complex and the di�erential can be de�ned almost as in the closed
case, provided that R = Rα is tangent to T and that α is non-degenerate in
int(N).

If the �ow of R|T is irrational they de�ne ECH(N,α) = ECH(int(N), α)
while, if it is rational, they consider the case of T Morse-Bott and do a M-B
perturbation of α near T ; this gives two Reeb orbits h and e on T and, since α
is now a M-B contact form, the ECH-di�erential counts special holomorphic
curves, called M-B buildings.

De�nition 2.2.1. Let α be a Morse-Bott contact form on the three manifold
Y and J a regular almost complex structure on R×Y . Suppose that any M-B
torus T in (Y, α) comes with a �xed a Morse function fT . Let P(Y ) be the
set of simple Reeb orbits in Y minus the set of the orbits which correspond to
some regular point of some fT .

A nice Morse-Bott building in (Y, α) is a disjoint union of objects u of one
of the following two types:

1. u is the submanifold of a M-B torus T corresponding to a gradient �ow
line of fT : in this case the positive and negative end of u are the positive
and, respectively, the negative end of the �ow line;
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2. u is a union of curves ũ ∪ u1 ∪ . . . ∪ un of the following kind. ũ is a
J-holomorphic curve in R×Y with n ends {δ1, . . . , δn} corresponding to
regular values of some {fT1 , . . . , fTn}. Then, for each i, ũ is augmented
by a gradient �ow trajectory ui of fTi : ui goes from the maximum ε+i of
fTi to δi if δi is a positive end and goes from δi to the minimum ε−i of fTi
if δi is a negative end. The ends of u are obtained from the ends of ũ by
substituting each δi with the respective ε+i or ε−i .

Suppose now that Y is closed and N ∼= D2 × S1 is a solid torus embedded
in Y . If N = Y \ int(N ), under some assumption on the behaviour of α in a
neighborhood of N , in [9] the authors de�ne relative versions ECH(N, ∂N, α)

and ÊCH(N, ∂N, α) of embedded contact homology groups and prove that

ECH(N, ∂N, α) ∼= ECH(Y, α); (2.2.1)

ÊCH(N, ∂N, α) ∼= ÊCH(Y, α). (2.2.2)

The notation suggests that these new homology groups are obtained by count-
ing only orbits in N and quotienting by orbits on ∂N . Let us see the de�nition
of these homologies in more details.

As mentioned above, to de�ne these versions of embedded contact homology
and prove the isomorphisms above, some compatibility between α and N is
required. We refer the reader to [9, Section 6] for the details. Essentially two
conditions are required. The �rst one �xes α near N in a way that R behaves
similarly to the Reeb vector �eld de�ned in Section 1.4 near N (K), where K
was the binding of an open book decomposition of Y .
Brie�y, this means that there exists a smaller closed solid torus V ⊂ N and a
neighborhood T 2 × [0, 2] of ∂N = T 2 × {1} in Y such that:

1. T 2 × [0, 1] ⊂ N , N = (T 2 × [1, 2]) ∪ V and ∂V = T 2 × {2};
2. T 2 × {y} is foliated by Reeb trajectories for any y ∈ [0, 2];

3. if K = {0} × S1 ⊂ N , then K is a Reeb orbit and int(V ) \K is foliated
by concentric tori, which in turn are linearly foliated by Reeb trajectories
that intersect positively a meridian disk for K in V .

4. T1 := T 2×{1} and T2 := T 2×{2} are negative and, respectively, positive
M-B tori foliated by Reeb orbits which are meridians of K.

As in Section 1.4, the families of Reeb orbits in T1 and T2 are perturbed into
two pairs of Reeb orbits (e, h) and, respectively, (e+, h+): here e and e+ are
elliptic and h and h+ are positive hyperbolic (see �gure 1.1). If α satis�es the
conditions above we say that α is adapted to K.

The second condition of compatibility is that there must exist a Seifert
surface S ⊂ Y for K such that R is positively transverse to int(S). In this
case we say that α is adapted to S.
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Lemma 2.2.2. (see Theorem 10.3.2 in [9]) Given a null-homologous knot K
and a contact structure ξ on Y there exists a contact form α for ξ and a genus
minimizing Seifert surface S for K such that:

1. α is adapted to K;

2. α is adapted to S.

Proof. We give here only the proof of 1), referring the reader to [9] for 2).
Up to isotopy, we can assume that K is transverse to ξ and let α′ be any

contact form for ξ. Up to isotopy of α′ we can suppose that K is a Reeb orbit.
Since the compatibility condition with K can be arranged on a neighborhood
of K, by the Darboux-Weinstein neighborhood theorem (see for example [20])
there exists a contact form α which is compatible with K and contactomorphic
to α′.

Example 2.2.3. If (K,S, φ) is an open book decomposition of Y and α is a
contact form adapted to (K,S, φ), then it is adapted also to K and to any
page of (K,S, φ).

In [9] the authors prove that it is possible to de�ne the ECH-chain groups
without taking into account the orbits in int(V ) and in T 2 × (1, 2), so that
the only interesting orbits in N (K) are the four orbits above (plus, obviously,
the empty orbit). Moreover the only curves counted by the (restriction of
the) ECH-di�erential ∂ have projection on Y as depicted in �gure 2.1. These
curves give the following relations:

∂(e) = 0
∂(h) = 0
∂(h+) = e+ ∅
∂(e+) = h.

(2.2.3)

Note that the two holomorphic curves from h to e, as well as the two from e+

to h+, cancel one each other since we work with coe�cients in Z/2.
Observation 2.2.4. The compacti�cation of the projection of the holomorphic
curve that limits to the empty orbit is topologically a disk with boundary h+,
which should be seen as a cylinder closing on some point of K. This curve
contribute to the �∅ part� of the third of the equations above, which gives
[e] = [∅] in ECH-homology. In the rest of this manuscript the fact that this
disk is the only ECH index 1 connected holomorphic curve that crosses K will
be essential.

Notation. From now on we will use the following notation. If (Y, α) is un-
derstood, given a submanifold X ⊂ Y and a set of Reeb orbits {γ1, . . . , γn} ⊂
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Figure 2.1: Orbits and holomorphic curves near K. Here the marked points
denote the simple Reeb orbits and the �ow lines represent projections of the
holomorphic curves counted by ∂ECH . The two �ow lines arriving from the
top on e and h are depicted only to remember that, by the Trapping Lemma,
holomorphic curves can only arrive to T1.

P(Y \X), we will denote ECCγ1,...,γn(X,α) the free Z/2-module generated by
orbit sets in O(X t {γ1, . . . , γn}).

Unless stated otherwise, the group ECCγ1,...,γn(X,α) will come with the
natural restriction, still denoted ∂ECH , of the ECH-di�erential of ECC(Y, α):
if this restriction is still a di�erential the associated homology is

ECHγ1,...,γn(X,α) := H∗(ECC
γ1,...,γn(X,α), ∂ECH).

This notation is not used in [9], where the authors introduced a speci�c
notation for each relevant ECH-group. In particular with their notation:

ECC[(N,α) = ECCe(int(N), α);

ECC](N,α) = ECCh(int(N), α);

ECC\(N,α) = ECCh+(N,α).

As mentioned before, even if in N there are other Reeb orbits, it is possible
to de�ne chain complexes for the ECH homology of (Y, α) only taking into
account the orbits {e, h, e+, h+}.

The Blocking and Trapping lemmas and the relations above imply that
the restriction of the full ECH-di�erential of Y to the ECH-chain group
ECHe+,h+(N,α) is given by:

∂(ea+h
b
+γ) = ea−1

+ hb+hγ + ea+h
b−1
+ (1 + e)γ + ea+h

b
+∂γ, (2.2.4)



40 2.2. ECH for manifolds with torus boundary

where γ ∈ O(N) and a term in the sum is meant to be zero if it contains some
elliptic orbit with negative total multiplicity or a hyperbolic orbit with total
multiplicity not in {0, 1} (see [9, Section 9.5]). We remark that the Blocking
Lemma implies also that ∂γ ∈ O(N).

The further restriction of the di�erential to ECHh+(N,α) is then given by

∂(hb+γ) = hb−1
+ (1 + e)γ + hb+∂γ. (2.2.5)

Combining the computations of sections 8 and 9 of [9] the authors get the
following result.

Theorem 2.2.5. Suppose that α is adapted to K and there exists a Seifert
surface S for K such that α is adapted to S. Then

ECH(Y, α) ∼= ECHe+,h+(N,α); (2.2.6)

ÊCH(Y, α) ∼= ECHh+(N,α). (2.2.7)

Observation 2.2.6. It is important to remark that the empty orbit is always
taken into account as a generator of the groups above. This implies that if
orbit sets with h+ are considered, ∂ECH counts also the holomorphic �plane�
that contributes to the third of relations 2.2.3. Later we will give the de�nition
of another di�erential, that we will call ∂ECK , which is obtained from ∂ECH

by simply deleting that plane.

De�ne now the relative embedded contact homology groups of (N, ∂N) by

ECH(N, ∂N, α) =
ECHe(int(N), α)

[eγ] ∼ [γ]

ÊCH(N, ∂N, α) =
ECH(N,α)

[eγ] ∼ [γ]
.

Since here h+ is not counted in the de�nition of the chain complexes, the ECH-
di�erentials count only holomorphic curves in N . This �lack� is balanced by
the quotient by the equivalence relation

[eγ] ∼ [γ]. (2.2.8)

The reason behind this claim lie in the third of the relations 2.2.3. Indeed we
can prove the following:

Lemma 2.2.7.

ECHe+,h+(N,α) ∼=
ECHe+(N,α)

[eγ] ∼ [γ]
.
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Proof. Using the fact that h+ can have multiplicity at most 1, it is not di�cult
to see that the long exact homology sequence associated to the pair(

ECCe+(N,α), ECCe+,h+(N,α)
)

is
. . . −→ ECHe+(N,α)

i∗−→ ECHe+,h+(N,α)
π∗−→

π∗−→ H(h+ECC
e+(N,α), ∂)

d−→ ECHe+(N,α)
i∗−→ . . .

where:
� i : ECCe+(N,α) ↪→ ECCe+,h+(N,α) is the inclusion map;
� h+ECC

e+(N) is the module generated by orbit sets of the form h+γ with
γ ∈ O(N t e+);

� π : ECCe+,h+(N,α) � h+ECC
e+(N) is the quotient map sending to 0

all generators having no contributions of h+;
� d is the standard connecting morphism, that in this case is de�ned by

d([h+γ]) = [γ + eγ].

We can then extract the short exact sequence

0 −→ coker(d)
i∗−→ ECHe+,h+(N,α)

π∗−→ ker(d) −→ 0

where

coker(d) =
ECHe+(N,α)

[eγ] ∼ [γ]
.

Since ker(d) = {0}, the map i∗ is an isomorphism.

Similarly, the fourth line of Equation 2.2.3 �explains� why we can avoid
considering h in the full ECH(Y, α). In fact with similar arguments of the
proof of last lemma, we can prove:

Lemma 2.2.8 ([9], Section 9). ECHe+(N,α) ∼= ECHe(int(N), α).

Observe that since ∂(eγ) = e∂(γ), the di�erential is compatible with the
equivalence relation. So, instead of take the quotient by [eγ] ∼ [γ] of the
homology, we could take the homology of the quotient of the chain groups
under the relation eγ ∼ γ, and we would obtain the same homology groups.
We will use this fact later. Note moreover that for every k, [ek] = [∅].

Equations 2.2.1 and 2.2.2 follow then from last two lemmas and Theorem
2.2.5.
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2.2.1 ECH and ÊCH from open books

An important example of the situation depicted above is when K is the
binding of an open book decomposition (K,S, φ) of a closed three manifold Y ,
and N is the associated mapping torus considered in section 1.4. Using the
same notations, de�ne the extended pages of (S, φ) to be the surfaces

S ′ × {t} := (S × {t}) t∂S×{t} (S1 × {t} × [1, 3)), t ∈ [0, 2]

0 ∼ 2
.

Let α be a contact form on Y compatible with (K,S, φ). In particular α is
adapted to both K and any page of (K,S, φ).

De�nition 2.2.9. If γ is a Reeb orbit in Y \K, de�ne the degree of γ by

deg(γ) = 〈γ, S ′ × {0}〉

If γ =
∏

i γ
ki
i is some orbit set, we de�ne deg(γ) =

∑
i kideg(γi). If X ⊂

(Y \K), we indicate by Oi(X) (resp. O≤i(X)) the set of multiorbits in X with
degree equal (resp. less or equal) to i.

Note that deg(γ) depends only on the homology class of γ in Y \K. In this
context the relative embedded contact homology groups can also be de�ned in
terms of limits as follows.

De�ne ECCe
j (int(N), α) to be the free Z2-module generated by orbit sets

in Oj(int(N) ∪ {e}). Similarly let ECCj(N,α) be generated by orbit sets in
Oj(N). De�ne the inclusions

Iej : ECCe
j (int(N), α)→ ECCe

j+1(int(N), α)

Ij : ECCj(N,α)→ ECCj+1(N,α)

given by the map γ 7→ eγ. Each of these chain groups can be endowed with
(the restriction of) the ECH-di�erential, which counts M-B buildings in N .
Let ECHe

j (N,α) and ECHj(N,α) be the associated homology groups. Then
the relative embedded contact homology groups above can be de�ned also by

ECH(N, ∂N, α) = lim
j→∞

ECHe
j (int(N), α);

ÊCH(N, ∂N, α) = lim
j→∞

ECHj(N,α).

Observation 2.2.10. If ECC≤k(N,α) :=
⊕k

j=0ECCj(N,α), let ECH≤k(N,α)
be the homology of ECC≤k(N,α) with the ECH-boundary map. The �stabi-
lization� Theorem 1.0.2 of [11] implies that for the de�nition of ÊCH(N, ∂N, α)
it is su�cient to take into account just orbit sets in O≤2g(N). Then:

ÊCH(N, ∂N, α) ∼=
ECH≤2g(N,α)

[eγ] ∼ [γ]
. (2.2.9)
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2.3 Periodic Floer homology for open books

Another Floer homology theory closely related to ECH is the periodic
Floer homology, denoted by PFH, and de�ned by Hutchings (see [26]). Given
a symplectic surface (S, ω) (here with possibly empty boundary) and a sym-
plectomorphism φ : S → S, consider the mapping torus

N(S, φ) =
S × [0, 2]

(x, 2) ∼ (φ(x), 0)
.

Then PFH(N(S, φ)) is de�ned in an analogous way than ECH for an open
book but replacing the Reeb vector �eld with a stable Hamiltonian vector �eld
R parallel to ∂t, where t is the coordinate of [0, 2]: we refer the reader to [26]
or [31] for the details.

The chain group PFC(N(S, φ)) is the free Z2 module generated by orbit
sets of R and the boundary map counts index 1 holomorphic curves in the
symplectization; then, under some condition on φ, the associated homology
PFH(N(S, φ)) is well de�ned. Homology groups PFHi(Y (S, φ)) associated
to the chain groups PFCi(N(S, φ)) generated by degree-i multiorbits are also
well de�ned.

If (S, φ) is an open book as in the sections above, ∂S is connected and N
is the associated mapping torus, in [10] the following is proved:

Theorem 2.3.1. If α is a contact form adapted to (S, φ) then there exists a
stable Hamiltonian structure such that for any i ≥ 0,

PFHi(N) ∼= ECHi(N,α) (2.3.1)

(here we are using a simpli�ed notation which is di�erent from that used in
[10]).

De�ning

P̂FH(N, ∂N) =
PFH≤2g(N)

[eγ] ∼ [γ]
,

then
P̂FH(N, ∂N) ∼= ÊCH(N, ∂N, α),

where contact form and stable Hamiltonian structure are as in the last theorem.
It is interesting to remark that PFC1(N(S, φ)) is generated by orbits of

period 1, which are in bijective correspondence with the set Fix(φ) of the �xed
points of φ via the map

O1(int(N)) −→ Fix(φ)
γ 7−→ γ ∩ S, (2.3.2)
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which moreover evidently respects the Lefschetz signs. Then this correspon-
dence induces an isomorphism between PFC1(N(S, φ)) and the chain complex
SC(S, φ) of the standard symplectic Floer homology SH(S, φ) of (S, φ) (see for
example [7] and [17]). Indeed the following holds (see for example [31]):

Proposition 2.3.2. The correspondence above induces an isomorphism

PFH1(N(S, φ)) ∼= SH(S, φ).

2.4 ÊCH for knots

Let K be a homologically trivial knot in a contact three-manifold (Y, α).
In this section we recall the de�nition of a hat version of contact homology
for the triple (K,Y, α). This was �rst de�ned in [13, Section 7] as a particular
case of sutured contact homology. On the other hand, following [9, Section
10], it is possible to proceed without dealing directly with sutures: we follow
here this approach.

Let S be a Seifert surface for K. By standard arguments in homology, it
is easy to compute that

H1(Y \K) −→ H1(Y )× Z
[a] 7−→ (i∗[a] , 〈a, S〉) (2.4.1)

is an isomorphism. Here i : Y \ K → Y is the inclusion and 〈a, S〉 denotes
the intersection number between a and S: this is a homological invariant of
the pair (a, S) and is well de�ned up to a slight perturbation of S (to make it
transverse to a). Note that a preferred generator of Z is given by the homology
class of a meridian for K, positively oriented with respect to the orientations
of S and Y .

Example 2.4.1. If Y is a homology three-sphere, the number 〈a, S〉 depends
only on a and K. This is the linking number between a and K and it is usually
denoted by lk(a,K).

If γ =
∏

i γ
ki
i is a �nite formal product of closed curves in Y \ K, then

〈γ, S〉 =
∑

i ki〈γi, S〉.
Example 2.4.2. If (K,S, φ) is an open book decomposition of Y and α is an
adapted contact form, then 〈γ, S〉 = deg(γ) for any orbit set γ ∈ O(Y \ K),
where deg is given in De�nition 2.2.9.

Proposition 2.4.3 (See Proposition 7.1 in [13]). Suppose that K is an orbit
of Rα and let S be any Seifert surface for K. If γ and δ are two orbit sets in
Y \K and u : (F, j)→ (R× Y, J) is a holomorphic curve from γ to δ, then

〈γ, S〉 ≥ 〈δ, S〉.
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Proof. Let û be the compacti�cation of u in [−1, 1]× Y . Since u has no limits
in K, then

〈û, [−1, 1]×K〉 = 〈u,R×K〉 ≥ 0, (2.4.2)

where the inequality follows by the positivity of intersection in dimension 4
(since K is a Reeb orbit, R×K is holomorphic). Consider the two surfaces

L−1 = {−1} × S and L1 = {1} × −S

and de�ne the closed surface

L = L−1 ∪ ([−1, 1]×K) ∪ L1

where the �rst gluing is made along {−1} ×K and the second along {1} × −K.
Since 0 = [L] ∈ H2([−1, 1]× Y ), then:

0 = 〈û, L〉 =
= 〈û, L−1〉+ 〈û, [−1, 1]×K〉+ 〈û, L1〉 =
= 〈δ, S〉+ 〈û, [−1, 1]×K〉 − 〈γ, S〉.

The result then follows by observing that the last equation implies that

〈γ, S〉 − 〈δ, S〉 = 〈û, [−1, 1]×K〉 ≥ 0. (2.4.3)

Suppose that α is adapted to K in the sense of Section 2.2; a choice of
(a homology class for) the Seifert surface S for the orbit K de�nes a knot
�ltration on the chain complex (ECCh+(N,α), ∂ECH) for ÊCH(Y, α), where,
recall, N is the complement of a neighborhood N (K) of K in which the only
�interesting� orbits and holomorphic curves are the ones represented in Figure
2.1.

Let ECCh+

d (N,α) be the free sub-module of ECCh+(N,α) generated by
orbit sets γ in O(N t {h+}) such that 〈γ, S〉 = d. De�ne moreover

ECC
h+

≤d (N,α) :=
⊕
j≤d

ECC
h+

j (N,α).

Observation 2.4.4. The direct sum above is not in general �nite. On the
other hand if α is adapted to S then 〈γ, S〉 ≥ 0 for any γ and the sum is �nite
for any d.

Even if α is not adapted to S, the intersection number induces an exhaustive
�ltration

. . . ⊆ ECC
h+

≤d−1(N,α) ⊆ ECC
h+

≤d (N,α) ⊆ ECC
h+

≤d+1(N,α) ⊆ . . .

on ECCh+(N,α).
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De�nition 2.4.5. The �ltration above is the knot �ltration induced by K. If
γ is a generator of ECCh+

d (N,α), the integer d is the �ltration degree of γ.

Corollary 2.4.6. The di�erential ∂ECH of ECCh+(N,α) respects the knot
�ltration.

Proof. Proposition 2.4.3 applied to the M-B buildings counted by ∂ECH implies
immediately that

∂ECH
(
ECC

h+

≤d (N,α)
)
⊆ ECC

h+

≤d (N,α)

for any d and the result follows.

Suppose now that α is adapted to S. By standard arguments in algebra,
the �ltration above induces a spectral sequence whose page ∞ is isomorphic
to ECHh+(N,α) ∼= ÊCH(Y, α) and whose page 0 is the chain complex⊕

d

(
ECC

h+

d (N,α), ∂ECKd

)
(2.4.4)

where ECCh+

d (N,α) should be seen as
ECC

h+
≤d (N,α)

ECC
h+
≤d−1(N,α)

and

∂ECKd : ECC
h+

d (N,α)→ ECC
h+

d (N,α)

is the map induced by ∂ECH on the quotient, i.e, it is the part of ∂ECH |
ECC

h+
d (N,α)

that strictly preserves the �ltration degree.

Observation 2.4.7. The proof of Proposition 2.4.3 implies that the holomor-
phic curves counted by ∂ECH that strictly decrease the degree are exactly
the curves that intersect K. So we can interpret ∂ECK as the restriction of
∂ECH (given by Equation 2.2.4) to the count of curves that do not cross a
thin neighborhood of K. This is indeed the proper ECH-di�erential of the
manifold Y \ int(V (K)) (and not the restriction of the ECH-di�erential of Y
to the orbit sets in Y \ int(V (K))).

Note that, by de�nition of ECCh+(N,α), all the holomorphic curves con-
tained in R × N strictly preserve the �ltration degree. In fact the only holo-
morphic curve that contributes to ∂ECH |ECCh+ (N,α) and decreases the degree
(by 1) is the disk from h+ to ∅. Equation 2.2.5 gives then

∂(hd+γ) = hd−1
+ eγ + hd+∂γ. (2.4.5)

where γ ∈ O(N) and any term is meant to be zero if it contains some orbit
with total multiplicity that is negative or not in {0, 1} if the orbit is hyperbolic
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De�nition 2.4.8. The hat version of embedded contact (knot) homology of the
triple (K,Y, α) is

ÊCK∗(K,Y, α) := H∗
(
ECCh+(N,α), ∂ECK

)
.

Observation 2.4.9. In [9] ÊCK(K,Y, α) is called ECH(M(K), α) and in
Theorem 10.3.2 it is proved that

ÊCK(K,Y, α) = ECH](N,α)

where, recall, with our notation ECH](N,α) = ECHh(int(N), α). On the
other hand, by using exactly the same arguments of Lemma 2.2.7, it is easy to
see that

ECHh(int(N), α) ∼= H∗
(
ECCh+(N,α), ∂ECK

)
.

Observation 2.4.10. Note that in order to de�ne ÊCK(K,Y, α), we supposed
that α is compatible with S. This hypothesis is not present in the original
de�nition (via sutures) in [13]. Indeed, without this condition we can still
apply all the arguments above and de�ne the knot �ltration on ECCh+(N,α)
exactly in the same way. The page 1 of the spectral sequence is again the well
de�ned homology in the de�nition above, and the page ∞ is still isomorphic
to ECHh+(N,α).

The only di�erence is that now we do not know that ECHh+(N,α) ∼=
ÊCH(Y, α), since in Theorem 2.2.5 the hypothesis that α is adapted to S is
assumed.

This homology comes naturally with a further relative degree, inherited by

the �ltered degree: if ÊCK∗,d(K,Y, α) := H∗

(
ECC

h+

d (N,α), ∂ECKd

)
then

ÊCK∗(K,Y, α) =
⊕
d

ÊCK∗,d(K,Y, α).

Sometimes, in analogy with Heegaard Floer, we will call this degree the Alexan-
der degree.

Example 2.4.11. Suppose that (K,S, φ) is an open book decomposition of Y
and that α is an adapted contact form. Since any non-empty Reeb orbit in
Y \K has strictly positive intersection number with S,

ÊCK∗,0(K,Y, α) ∼= 〈[∅]〉Z/2.

This is the ECH-analogue of the fact that if K is �bered, then

ĤFK∗,−g(K,Y ) ∼= 〈[c]〉Z/2,

where g is the genus of K and c is the associated contact element (see [45]).
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Observation 2.4.12. We remark that the Alexander degree can be considered
as an absolute degree only once a relative homology class in H2(Y,K) for S
has been �xed, since the function 〈·, S〉 de�ned on H1(Y \ K) changes if [S]
varies.

On the other hand, suppose that [γ] = [δ] ∈ H1(Y \K) and let F ⊂ Y be
a surface such that ∂F = γ − δ. Computations analogue to that in the proof
of Proposition 2.4.3 imply that

〈γ, S〉 − 〈δ, S〉 = 〈F,K〉, (2.4.6)

and the Alexander degree, considered as a relative degree, does not depend on
the choice of a homology class for S.

Obviously if H2(Y ) = 0, the Alexander degree can be lifted to an absolute
degree.

In [13] the authors conjectured that their sutured embedded contact homol-
ogy is isomorphic to sutured Heegaard-Floer homology. Both the hat version
of embedded contact knot homology and of Heegaard Floer knot homology can
be de�ned in terms of sutures. In this case their conjecture becomes

Conjecture 2.4.13. For any knot K in Y :

ÊCK(K,Y, α) ∼= ĤFK(−K,−Y ),

where α is a contact form on Y adapted to K.



Chapter 3

Heegaard Floer homology and

Alexander polynomial

Heegaard-Floer homology was developed by Ozsváth and Szabó in an at-
tempt to provide a more combinatorial version of Kronheimer and Mrowka's
Seiberg-Witten-Floer homology ([33]). Heegaard-Floer theory has been able
to yield powerful invariants for closed three and four manifolds, as well as for
knots and links in three-manifolds.

In section 3.1 we introduce Heegaard-Floer theory for three-manifolds. Be-
cause of the abundance of literature about the argument we will show only
some of the aspects of the construction. We refer the reader to the original pa-
pers by Ozsváth and Szabó ([42], [43]) for all the details. Other presentations
of the subject can be found in [48] and [53].

In addition to the original de�nition , there exists also another possible
de�nition of Heegaard Floer homology. This is the �cylindrical formulation� of
HF , which is due to Lipshitz ([36]). This has been used by Colin, Ghiggini and
Honda to prove the equivalence between ECH and HF . Only in Chapter 4 we
will shortly recall this alternative construction in the special case of Heegaard
diagrams arising from open books, as presented in [10].

In Section 3.2 we brie�y recall de�nition and basic properties of Heegaard
Floer homology for knots and links in three-manifolds. Some details will be
provided about the relations with the Alexander polynomial.

Finally, in Section 3.3 we recall the interpretation of the multivariable
Alexander polynomial ∆L of a link L ⊂ S3 in terms of the dynamics of suitable
vector �elds in S3 \ L. This characterisation of ∆L originates from the work
of Franks (see e.g. [15]), later generalised by Fried ([16]). This will be a key
ingredient for the results in Chapter 6.

Even if Heegaard Floer homologies can be de�ned using integer coe�cients,

49
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in this chapter, as well as in the rest of the paper, we will always use coe�cients
in Z/2.

3.1 HF for three manifolds

Let Y be a closed, compact and oriented three-manifold. Heegaard-Floer
theory assigns to Y four homology groups

HF∞(Y ), HF+(Y ), HF−(Y ), ĤF (Y ).

Let (Σ,α,β, w) be a pointed Heegaard diagram for Y . This means that:
� Σ is an oriented compact and closed surface of genus g, called �Heegaard
surface for Y �;

� there exists a Heegaard decomposition Y = Y1 ∪ Y2 of Y , where Y1 and
Y2 are handlebodies such that ∂Y1 = ∂Y2 = Σ;

� α = {α1, . . . , αg} and β = {β1, . . . , βg} are sets of attaching circles for
Y1 and, respectively, Y2;

� w is a point in Σ \ (α ∪ β).
Let Symg(Σ) be the g-fold symmetric product of Σ. If Σ is endowed with a

�xed almost complex structure, Symg(Σ) inherits a product complex structure
J . The two g-dimensional submanifolds

Tα := α1 × . . .× αg Tβ := β1 × . . .× βg.

of Symg(Σ) are Lagrangian (see [49]). Any point x ∈ Tα ∩Tβ can be seen as a
g-tuple of points {x1, . . . , xg} in Σ for which there exists a permutation σ ∈ Sg
such that xi ∈ αi ∩ βσ(i).

De�ne the associated (in�nite version of) Heegaard Floer chain group by

CF∞(Σ,α,β, w) := 〈{[x, i] | x ∈ Tα ∩ Tβ, i ∈ Z}〉Z/2.

This chain group can be endowed with a di�erential ∂HF de�ned by

∂HF ([x, i]) =
∑

y∈Tα∩Tβ

∑
[u]∈M1([x,y])/R

([y, i− nw(u)]),

where nw(u) is the intersection number 〈u, {w}×Symg−1(Σ)〉 andM1(x,y)/R
is the set of equivalence classes (modulo R-translations) of holomorphic strips
u : [0, 1]× R→ Symg(Σ) from x to y such that:

� u({1} × R) ⊂ Tα and u({0} × R) ⊂ Tβ;
� lims→−∞ u(t, s) = x and lims→∞ u(t, s) = y;
� u has Maslov index 1 (see [42] for the details).
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Since we are working with Z/2 coe�cients, the sum above is understood to be
taken modulo 2.

The associated homology group is the (in�nite version of) Heegaard Floer
homology HF∞(Y ) of Y .

Since u and {w} × Symg−1 are both holomorphic, the positivity of inter-
section implies nw(u) ≥ 0 and

CF−(Σ,α,β, w) := 〈{[x, i] | x ∈ Tα ∩ Tβ, i ∈ Z<0}〉Z/2
endowed with the (restriction of) ∂HF is a subcomplex of the in�nite version.
The associated homology HF−(Y ) is the minus version of Heegaard Floer
homology of Y .

The quotient

CF+(Σ,α,β, w) :=
CF∞(Σ,α,β, w)

CF−(Σ,α,β, w)

gives rise to the plus version of the Heegaard Floer homology of Y , denoted by
HF+(Y ).

Finally, de�ne

ĈF (Σ,α,β, w) := 〈{x | x ∈ Tα ∩ Tβ}〉Z/2
and endow it with the restriction of the di�erential ∂HF that counts only
holomorphic curves u with nw(u) = 0. The associated homology group ĤF (Y )
is the hat version of Heegaard Floer homology of Y .

A priori all homologies de�ned depend on the choice of the pointed Hee-
gaard diagram and on the almost complex structure J on Symg(Σ), but Ozsváth
and Szabó proved in fact the following:

Theorem 3.1.1 ([42]). All the Heegaard Floer homology groups of Y do not
depend on any of the choices made and are topological invariants of Y .

Observation 3.1.2. It is important to say that to any x ∈ Tα∩Tβ it is possible
to associate a well de�ned sx ∈ Spinc(Y ). It is possible to prove that if there
exists a surface like the ones counted by ∂HF and whose limits are x and y,
then sx = sy. This is a kind of Poincaré-dual version of the fact that ∂ECH

respects the �rst homology of the generators of the ECH chain groups.
If CF∞(Σ,α,β, w, s) is the submodule of CF∞(Σ,α,β, w) generated by

the elements x such that sx = s, then its homology HF∞(Y, s) is well de�ned.
Moreover there is a natural splitting

HF∞(Y ) =
⊕

s∈Spinc(Y )

HF∞(Y, s). (3.1.1)

Analogous splittings exist also in the other versions of HF (Y ).
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3.2 Heegaard Floer homology for knots and links

In this section we brie�y recall the de�nition of Heegaard-Floer homology
for knots and links in a three manifolds Y . These can be seen as the �rst page
of a spectral sequence arising from a �ltration de�ned by the knot (or link) on
a suitable complex for HF (Y ).

Heegaard-Floer homology for knots has been de�ned independently in [44]
by Ozsváth and Szabó and by Rasmussen in his Ph.D. thesis ([50]). The link
version has been de�ned later in [46].

3.2.1 The knot �ltration

Let us begin with the case of knots. Let K be a homologically trivial
knot in a three-manifold Y . We say that a doubly pointed Heegaard diagram
(Σ,α,β, w, z) is compatible with K if:

� (Σ,α,β, w) is a pointed Heegaard diagram for Y ;
� z ∈ Σ\ (α∪β) is a second marked point, di�erent from w and such that,
if a1 (resp. a2) is an oriented arc in Σ \ α (resp. Σ \ β) from z to w
(resp. from w to z), then the oriented loop a1 ∪ a2 is isotopic in Y to K.

As recalled in last section, a Heegaard-Floer chain complex for Y splits into a
direct sum over the set Spinc(Y ) of the Spinc-structures of Y , and the di�er-
ential ∂HF respects this splitting.

Now the corresponding Heegaard Floer chain groups also split into direct
sums over Spinc(Y0(K)), where Y0(K) is the 3-manifold obtained by 0-surgery
of Y alongK. In fact, given a doubly pointed Heegaard diagram (Σ,α,β, z, w)
compatible with K, to any generator x = (x1, . . . , xg) of CF (Σ,α,β, z, w) it
is possible to associate (almost canonically) a generator x′ of a Heegaard-Floer
chain group for Y0(K) and a well de�ned Spinc-structure sw(x) := sw(x′) ∈
Spinc(Y0(K)) depending only on x. One can check that

Spinc(Y0(K)) ∼= Spinc(Y )× Z. (3.2.1)

and the projection on the second factor is the integer 1
2
〈c1(sw(x)), [F̂ ]〉 where

c1 denotes the �rst Chern class, F is a Sifert surface for K and F̂ is the surface
obtained by capping o� F along K in Y0(K).

This integer can be computed as follows. Let {Ri}i be the set of the
connected components (called regions) of Σ \ (α ∪ β). If a projection of F to
Σ is the domain P =

∑
imiRi, then (see [43, Proposition 7.5]):

〈c1(sw(x)), [F̂ ]〉 = χ(P) + 2

g∑
i=1

nxi(P) (3.2.2)
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where:
� χ(P) is the Euler measure of P (see [43, Section 7.1] or [36, Section 4.1]);
� ny(P) =

∑
iminy(Ri) with ny(Ri) = n

4
, where n is the number of vertices

of Ri which are identi�ed with y.

Observation 3.2.1. Equation 3.2.1 can be viewed just as a Poincaré-dual of
the version in Y0(K) of Equation 2.4.1.

Lemma 3.2.2 ([44], Lemma 2.5). Let (Σ,α,β, w, z) be a doubly pointed Hee-
gaard diagram for (Y,K). Given x, y ∈ Tα ∩Tβ, for any holomorphic strip u
from x to y counted by ∂HF :

sw(x)− sw(y) = (nz(u)− nw(u))PD([µ]) (3.2.3)

where [µ] is the homology class in Y0(K) of the (positively oriented) meridian
µ and PD denotes the Poincaré dual.

Note that nz(u), nw(u) ≥ 0 by the positivity of intersection.
Let CFK∞(Σ,α,β, w, z) be the free Z/2-module generated by triples [x, i, j]
with x ∈ Tα ∩ Tβ and i, j ∈ Z. The HF -di�erential is then given by

∂HF ([x, i, j]) =
∑

y∈Tα∩Tβ

∑
[u]∈M1(x,y)/R

([y, i− nw(u), j − nz(u)]),

whereM1(x,y)/R is the set of equivalence classes (modulo R-translations) of
holomorphic disks with Maslov-index 1 from x to y.

Let ∂HFK be the part of ∂HF that preserves the PD([µ]) component in
Equation 3.2.3, that is, the map that restricts the sum in ∂HF to the holomor-
phic curves u such that nz(u) − nw(u) = 0. The (full) Heegaard Floer knot
homology of K is then

HFK∞(K,Y ) = H
(
CFK∞(Σ,α,β, w, z), ∂HFK

)
.

This homology naturally inherits a relative degree induced by the di�erence
between the PD([µ])-components of the Spinc-structures in Y0(K) associated
to the generators. Then HFK∞∗,∗(K,Y ) is a bigraded homology: the �rst
degree is the usual homological degree, while we will call Alexander degree the
further Z-degree given by the �ltration.

Suppose now that u is a holomorphic curve counted by ∂HF in the hat
version. Then nw(u) = 0 and Equation 3.2.3 becomes

sw(x)− sw(y) = nz(u)PD[µ], (3.2.4)

where nz(u) ≥ 0 by positivity of intersection. De�ne the hat version of Hee-
gaard Floer knot homology of K as follows. Let ĈFK(Σ,α,β, w, z) be the free
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Z/2-module generated by g-tuples x ∈ Tα ∩Tβ where, as usual, g is the genus
of Σ. Let now ∂HFK be the part of ∂HF that preserves the �ltration given by
Equation 3.2.4, which is in this case the map that restricts the count of ∂HF

to the holomorphic curves u with nz(u) = nw(u) = 0. We call the associated
homology ĤFK(K,Y ).

A further version of HFK is obtained by taking the homology of the sub-
complex CFK−(Σ,α,β, w, z) of CFK∞(Σ,α,β, w, z) freely generated by the
triples [x, i, j] with i < 0. Endowed with the restriction of the di�erential, this
gives the minus version of Heegaard Floer knot homology of K HFK−(K,Y ).

Finally, like in the case of closed three-manifolds, the plus version of Hee-
gaard Floer knot homology HFK+(K,Y ) ofK is de�ned to be the homology of
the quotient CFK+(Σ,α,β, w, z) of CFK∞(Σ,α,β, w, z) by the submodule
CFK−(Σ,α,β, w, z).

Obviously also these homologies inherit the additional Alexander degree.
This degree induces a splitting of ĤFK(K,Y ):

ĤFK∗(K,Y ) =
⊕
d

ĤFK∗,d(K,Y ) (3.2.5)

where ĤFK∗,d(K,Y ) is the homology of the subcomplex ĈFKd(Σ,α,β, w, z)

of ĈFK(Σ,α,β, w, z) generated by the x such that sw(x) is sent to (sw(x), d)
by the isomorphism 3.2.1, i.e., the x with

1

2
〈c1(sw(x)), [F̂ ]〉 = d.

Similar splits hold also for the other versions of HFK.

Observation 3.2.3. Like in ECK, also here the Alexander degree is in general
only a relative degree and is de�ned only up an overall shift.

Theorem 3.2.4 ([44],[50]). HFK∞(K,Y ), HFK−(K,Y ), HFK+(K,Y ) and
ĤFK(K,Y ) are topological invariants of the pair (K,Y ).

In [46], using the Lipshitz's cylindrical reformulation of HF , Ozsváth and
Szabó generalize the �ltration above to the case of links in S3 with a generic
number of components. We give here just the idea of the construction. Given
an n-component oriented link L = K1 t . . . tKn ⊂ Y , let µi be a positively
oriented meridian of Ki. Then there is an isomorphism

H1(S3 \ L) −→ Z[µ1] ⊕ . . .⊕ Z[µn]

[a] 7−→ (lk(a,K1), . . . , lk(a,Kn)) ,
(3.2.6)
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where Z[µi] is the direct summand generated by [µi] ∈ H1(Y \ L). This is just
the generalization, for Y = S3, of Equation 2.4.1 and, by taking the Poincaré
dual, of Equation 3.2.1.

By arguments similar to the case of knots, Equation 3.2.6 induces a Zn-
�ltration on suitable Heegaard-Floer complexes CF−(S3) and ĈF (S3) de�ned
using special Heegaard diagrams for S3 compatible with L. The �rst pages of
the spectral sequences in the two versions are the Heegaard-Floer link homolo-
gies HFL−(L, S3) and ĤFL(L, S3).

Now these homology groups inherit (from Equation 3.2.6) a Zn grading,
or, analogously, n Z-gradings, one for each component of L. We will keep to
call this Zn-degree the Alexander degree.

Theorem 3.2.5 ([46]). HFL−(L, S3) and ĤFL(L, S3) are topological invari-
ants of the couple (L, S3). Moreover if n = 1 and we write L = K1 = K,
then:

HFL−(K,S3) ∼= HFK−(K,S3) and ĤFL(L, S3) ∼= ĤFK(K,S3)

as bigraded modules.

Knot and link Floer homologies enjoy many interesting properties. For
example, under a suitable choice of a lifting of the relative degree:

� if g is the genus of K, ĤFK∗,d(K,S3) 6= {0} only if d ∈ {−g, . . . , g} and
in particular ĤFK(K,S3) ∼= Z if and only if K is the unknot ([44]);

� ĤFK∗,g(K,S
3) ∼= Z if and only if K is �bered; the generator is the

homology class of the contact element on HF (see [45] for the �if� part,
[18] for the �only if� in the case g = 1 and [41] in general);

� ĤFK(K,S3) gives a bound for the slice genus of knots in S3 ([47]).

3.2.2 HFL and Alexander polynomial

Another beautiful property of Heegaard Floer knot homology is that it
categori�es the Alexander polynomial of knots and links in S3.

Given a collection of chain complexes

(C, ∂) = {(C∗,(i1,...,in), ∂(i1,...,in))}(i1,...,in)∈Zn ,

where ∗ denotes a relative homological degree, its graded Euler characteristic
is

χ(C) =
∑
i1,...,in

χ
(
C∗,(i1,...,in)

)
ti11 · · · tinn ∈ Z[t±1

1 , . . . , t±1
n ]
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where χ
(
C∗,(i1,...,in)

)
is the standard Euler characteristic of C∗,(i1,...,in) and the

tj's are formal variables. By de�nition, χ(C) is a Laurent polynomial and the
properties of the standard Euler characteristic imply

χ(C) = χ (H(C, ∂)) .

In this case the homology H(C, ∂) is a categori�cation of the polynomial χ(C).

Given any link L = K1t. . .tKn in S3 we can associate to it itsmultivariable
Alexander polynomial

∆L(t1, . . . , tn) ∈ Z[t±1
1 , . . . , t±1

n ]

±ta1
1 · · · tann

.

with ai ∈ Z. The quotient means that the Alexander polynomial is well de�ned
only up to multiplication by monomials of the form ±ta1

1 · · · tann .
A slightly simpli�ed version is the (classical) Alexander polynomial ∆L(t),

de�ned by setting t1 = . . . = tn = t, i.e.:

∆L(t) := ∆L(t, . . . , t).

If L is a knot the two notions obviously coincide.

Observation 3.2.6. The fact that the Alexander polynomial is de�ned up to
multiplication of terms of the form ±ta1

1 · · · tann depends on the choice of a lifting
of a basis of H1(S3 \ L) to a basis for the homology of the universal abelian
cover of S3 \ L. An equivalent ambiguity appears also in HFL and HFK
when a lifting of the relative degrees to absolute degrees must be chosen.

From now on we will use the equivalence symbol �
.
=� to indicate that two

polynomials coincide up to a factor of the form ±ta1
1 · · · tann , ai ∈ Z.

Alexander polynomial is a �classical� invariant, and was �rst introduced by
Alexander in 1928 ([2]). It enjoys a quantity of beautiful properties and admits
many possible de�nitions. In the next section we will remind a de�nition of ∆L

in terms of the dynamic of certain vector �elds de�ned in the link complement.
We also refer the reader to [51] for a beautiful treatment of ∆L.

Theorem 3.2.7 (Ozsváth, Szabó). For any link L = K1 t . . . tKn in S3:

χ
(
HFL−(L, S3)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(3.2.7)

and

χ
(
ĤFL(L, S3)

)
.
=

 ∆L ·
∏n

i=1(t
1
2
i − t

− 1
2

i ) if n > 1

∆L(t) if n = 1.

(3.2.8)
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This theorem has been proved in [44] and [50] in the case n = 1: this came
from a direct application of a skein exact sequence in HFK, analogous to the
skein relation for ∆K . The result has been then generalized in [46] to any
link: in this case the proof utilizes the Reidemeister-Franz torsion τ(L) of the
universal abelian cover of the link complement (see for example [56]). Indeed,
for links in S3

τ(L)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(3.2.9)

and Equation 3.2.7 can be restated as

χ
(
HFL−(L, S3)

) .
= τ(L). (3.2.10)

3.3 A dynamical formulation of ∆(t)

As remarked before, given a link L ∈ S3, there are many possible de�nitions
of ∆L. In this section we give a formulation of ∆L in terms of the dynamics of
suitable vector �elds in S3 \ L. The details about the proof of the statements
can be found in the references.

The fact that the Alexander polynomial is related to dynamical properties
of its complement in S3 origins with the study of �brations of S3. For example
in [1] A'Campo studied the twisted Lefschetz zeta function of the monodromy
of an open book decomposition (S, φ) of S3 associated to a Milnor �bration of
a complex algebraic singularity. More in general, if (K,S, φ) is any open book
decomposition of S3, one can easily prove (see for example [51]) that

∆K(t)
.
= det(1− tφ1

∗),

where 1 and φ1
∗ are the identity map and, respectively, the application induced

by φ, on H1(S,Z). The basic idea in this context is to express the right-hand
side of equation above in terms of traces of iterations of φ1

∗; then to apply the
Lefschetz �xed point theorem to get expressions in terms of periodic points,
(i.e. periodic orbits) for the �ow of some vector �eld in S3 \ K whose �rst
return on a page is φ.

Suppose now that L is not a �bered link, so that its complement is not
globally �bered over S1 and let R be a vector �eld in S3 \ L. If one wants to
apply arguments like above, it is necessary to decompose S3\L in ��bered-like�
pieces with respect to R, in which it is possible to de�ne at least a local �rst
return map of the �ow φR of R. Obviously some condition on R is required. For
example, in his beautiful paper [15], Franks consider Smale vector �elds, that
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is, vector �elds whose chain recurrent set is one-dimensional and hyperbolic
(cf. [52]).

Here we are more interested in the approach used by Fried in [16]. Con-
sider a three-dimensional manifold X. Any abelian cover X̃

π→ X with deck
transformations group isomorphic to a �xed abelian group G is uniquely de-
termined by the choice of a class ρ = ρ(π) ∈ H1(X,G) ∼= Hom (H1(X,Z), G).
Here ρ is determined by the following property: for any [γ] ∈ H1(X), if
γ̃ : [0, 1] → X̃ is any lifting of the loop γ : [0, 1] → X, then ρ([γ]) is de-
termined by ρ([γ])(γ̃(0)) = γ̃(1).

Since the correspondence between Abelian covers and cohomology classes
is bijective, with abuse of notation sometimes we will refer to an abelian cover
directly by identifying it with the corresponding ρ.

Example 3.3.1. The universal abelian cover of X is the abelian cover with
deck transformation group G = H1(X,Z) and corresponding to ρ = id.

Example 3.3.2. Let L = K1 t . . . t Kn be an n-components link in a three
manifold Y such that Ki is homologically trivial for any i and �x a Seifert
surface Si for Ki. Let moreover µi be a positive meridian for Ki. If i : Y \L ↪→
Y is the inclusion, the isomorphism

H1(Y \ L) −→ H1(Y )⊕ Z[µ1] ⊕ . . .⊕ Z[µn]

[γ] 7−→ (i∗([γ]), 〈γ, S1〉, . . . , 〈γ, Sn〉)
(3.3.1)

gives rise naturally to the abelian cover

ρL ∈ Hom (H1(Y \ L,Z),Zn)

of Y \ L de�ned by

ρL([γ]) = (〈γ, S1〉, . . . , 〈γ, Sn〉) .

Setting ti = [µi] ∈ H1(Y \ L,Z), we can regard ρL([γ]) as a monomial in the
variables ti:

ρL([γ]) = t
〈γ,S1〉
1 · · · t〈γ,Sn〉n .

In the rest of the paper we will often use this notation.
Note �nally that if Y is a homology three-sphere, ρL coincides with the

universal abelian cover of Y \ L.
If R is a vector �eld on X satisfying some compatibility condition with ρ

(and with ∂X if this is non-empty), the author relates the Reidemeister-Franz
torsion of (X, ∂X) with the twisted Lefschetz zeta function of the �ow φR.
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3.3.1 Twisted Lefschetz zeta function of �ows

Let R be a vector �eld on X and γ a closed isolated orbit of φR. Pick any
point x ∈ γ and let D be a small disk transverse to γ such that D ∩ γ = {x}.
With this data it is possible to de�ne the Lefschetz sign of γ exactly like we did
in Section 1.1 for orbits of Reeb vector �elds associated to a contact structure
ξ, but using now TxD instead of ξx. Indeed it is possible to prove that the
Lefschetz sign of γ does not depend on the choice of x and D and it is an
invariant ε(γ) ∈ {−1, 1} of φR near γ.

De�nition 3.3.3. The local Lefschetz zeta function of φR near γ is the formal
power series ζγ(t) ∈ Z[[t]] de�ned by

ζγ(t) := exp

(∑
i≥1

ε(γi)
ti

i

)
.

Let now X̃
π→ X be an abelian cover with deck transformation group G

and let ρ = ρ(π) ∈ H1(X,G). Suppose that all the periodic orbits of φR are
isolated.

De�nition 3.3.4. We de�ne the ρ-twisted Lefschetz zeta function of φR by

ζρ(φR) :=
∏
γ

ζγ (ρ([γ])) ,

where the product is taken over the set of simple periodic orbits of φR.

When ρ is understood we will write directly ζ(φR) and we will call it twisted
Lefschetz zeta function of φR.

We remark that in [16] the author de�nes ζρ(φR) in a slightly di�erent way
and then he prove (Theorem 2) that, under some assumptions that we will
state in next subsection, the two de�nitions coincide.

Notation. Suppose that ρ ∈ H1(X,Zn) is an abelian cover of X and chose a
generator (t1, . . . , tn) of Zn. Then, with a similar notation to that of Example
3.3.2, we can see ζρ(φR) as an element of Z[[t±1

1 , . . . , t±1
n ]].

3.3.2 Torsion and �ows

In [16] Fried relates the Reidemeister torsion of an abelian cover ρ of a (non
necessarily closed) three-manifold X with the twisted Lefschetz zeta function
of certain �ows. In particular in Section 5 he considers a kind of torsion that
he calls Alexander quotient and denotes by ALEXρ(X): the reason for the
�quotient� comes from the fact that Fried uses a de�nition of the Reidemeister
torsion only up to the choice of a sign (this is the �re�ned Reidemeister torsion�
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of [56]), while ALEXρ(X) is de�ned up to an element in the Abelian group of
deck transformations of ρ (see also [5]).

In fact one can check that ALEXρ(X) is exactly the Reidemister-Franz
torsion τ considered in [46]. In particular, when X is the complement of an
n-component link L in S3 and ρ is the universal abelian cover of X, then

ALEX(S3 \ L)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
. (3.3.2)

where we removed ρ = idH1(S3\L,Z) from the notation (see [16, Section 8] and
[56]).

Since the notation �τ � is ambiguous, we follow [16] and we refer to the
Reidemeister-Franz as the Alexander quotient, that will be indicated ALEXρ(X).

In order to relate ALEXρ(X) to the twisted Lefschetz zeta function of the
�ow φR of a vector �eld R, Fried assumes some hypothesis on R.

The �rst condition that R must satisfy is the circularity.

De�nition 3.3.5. A vector �eld R on X is circular if there exists a C1 map
θ : X → S1 such that dθ(R) > 0.

If ∂X = ∅ this is equivalent to say that R admits a global cross section.
Intuitively, the circularity condition on R allows to de�ne a kind of �rst return
map of φR.

Suppose R circular and consider S1 ∼= R
Z with R-coordinate t. The coho-

mology class
uθ := θ∗([dt]) ∈ H1(X,Z)

is then well de�ned.

De�nition 3.3.6. Given an abelian cover X̃
π→ X with deck transformations

group G, let ρ = ρ(π) ∈ H1(X,G) be the corresponding cohomology class. A
circular vector �eld R onX is compatible with ρ if there exists a homomorphism
v : G→ R such that v ◦ ρ = uθ, where θ and uθ are as above.

Example 3.3.7. The universal abelian cover corresponds to ρ = id : H1(X,Z)→
H1(X,Z), so it is automatically compatible with any circular vector �eld on
X.

The following theorem is not the most general result in [16] but it will be
enough for our purposes:

Theorem 3.3.8 (Theorem 7, [16]). Let X be a three manifold and ρ ∈ H1(X,G)
an abelian cover. Let R be a non-singular, circular and non degenerate vector
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�eld on X compatible with ρ. Suppose moreover that, if ∂X 6= ∅, then R is
transverse to ∂X and pointing out of X. Then

ALEXρ(X)
.
= ζρ(φR),

where the symbol .= denotes the equivalence up to multiplication for an element
±g, g ∈ G.

An immediate consequence is the following

Corollary 3.3.9. If L is any n-component link in S3, let N (L) be a tubular
neighborhood of L and pose N = S3 \ N (L). Let R be a non-singular circular
vector �eld on N , transverse to ∂N and pointing out of N . Then

ζ(φR)
.
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
. (3.3.3)



Chapter 4

The equivalence between ÊCH
and ĤF

In their series of papers [8]-[12], Colin, Ghiggini and Honda proved an equiv-
alence between Heegaard Floer homology and embedded contact homology for
three manifolds.

Theorem 4.0.10 (Colin, Ghiggini, Honda). Given a closed, oriented, three
dimensional contact manifold (Y, ξ),

HF+(−Y ) ∼= ECH(Y, α)

ĤF (−Y ) ∼= ÊCH(Y, α),

where −Y is the manifold Y with the inverted orientation and α is a suitable
contact form for ξ.

In this thesis we are mostly interested in the second line. A key ingredient in
the proof is the Giroux equivalence between contact structures and open book
decompositions. In Section 4.1 we present how to de�ne the ĤF (Y ) using
an open book decomposition of Y . In Section 4.2 we remind the de�nition of
some symplectic cobordisms de�ned in [10]. Finally in Section 4.3 we recall
the de�nition of the chain map Φ that induces an isomorphism from ĤF (−Y )

to ÊCH(Y, α): this chain map is de�ned by a certain count of holomorphic
curves in one of the symplectic cobordisms de�ned in the preceding section.

4.1 ĤF for open books

As shown in [25], to an open book decomposition (S, φ) of Y it is possible
associate a particular Heegaard diagram. Let us recall the slightly di�erent
construction given in [10]. Another construction can be found in [45].

62
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Let us denote by St the page S×{t} of the open book. Take a basis of arcs
a = {a1, . . . , a2g} in the page S 1

2
, that is, a set of properly embedded arcs in

S 1
2
such that S 1

2
\ {a1, . . . , a2g} is a topological disk (see �gure 4.1 for a g = 1

example).

Figure 4.1: ai's and bi's in S 1
2
.

Let ι : S 1
2
→ S0 be the map (x, 1

2
) 7→ (x, 0) where (x, t) ∈ S×S1 and de�ne

the surface
Σ = S 1

2
t∂S0 S0

and the set α of 2g closed curves in Σ by

αi = ai q∂ai ι(ai), i = 1, . . . , 2g.

Consider now the set of arcs φ(ι(ai)) ⊂ S0, for i = 1, . . . , 2g and de�ne new
arcs bi in S 1

2
as obtained by modifying ai by a little isotopy relative to the

boundary, such that
� ai t bi = {Ci} in the interior of S 1

2
;

� ai ∩ bj = ∅ for i 6= j;
� if we orient ai and bi has the orientation induced from the one of ai then
{Ci} has negative sign;

� in a neighborhood of ∂S0 in Σ, bi is a smooth extension of φ(ι(ai)) to S 1
2
.

Note that since φ is the identity map on ∂S, for every i, αi ∩ βi ∩ ∂S consists
of a pair of points, that we will call xi and x′i.

De�ne the set of 2g curves β by βi = biq∂bi φ(ι(ai)) and choose a basepoint
w ∈ S 1

2
outside of the little strips given by the isotopies from ai's to bi's.

(Σ,α,β, w) is the required Heegaard diagram for Y .
For us it will be convenient to work on −Y and so we will use the diagram

(Σ,β,α, w).
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It is easy to see that this diagram is weakly admissible, that is, every
periodic domain has both positive and negative components of Σ \ {α ∪ β}
(this condition is required in the de�nition of ĤF , see [42, Section 4]). Indeed
if a periodic domain involves αi, then the sign in the thin strip between αi and
βi given by isotopy must change when the domain crosses Ci.

When it is clear from the context that we are working only on S0 we will
omit the use of ι and we will refer to ai and φ(ai) as arcs in S0.

The Heegaard Floer chain complex
(
ĈF (Σ,β,α, w), ∂HF

)
in the hat ver-

sion is then de�ned as in section 3.1.
From now on we will often switch to the Lipshitz's four-dimensional de�ni-

tion of HF (see [36] for a complete dissertation or directly [10, Section 4] for
the case we are treating here). About this reformulation we recall only a few
things in the setting we have in hand.

If g is the genus of S, then in Lipshitz's formulation of our situation the
auxiliary manifold Sym2g(Σ) is replaced by the the four-dimensional manifold
R × [0, 1] × Σ. First of all recall that a point y ∈ Tα ∩ Tβ can be seen as a
2g-tuple of points in α ∩ β, where now g is the genus of S (so that 2g is the
genus of Σ). In the new formulation y is identi�ed with the set of 2g chords
[0, 1]× y ⊂ [0, 1]×Σ: these are the new generators (over Z/2) of the complex
ĈF (Σ,β,α, w).

Endow R × [0, 1]× Σ with an admissible almost complex structure J (see
[10, De�nition 4.2.1]) and the symplectic form

ds ∧ dt+ ω

where s and t are the coordinates of R and, respectively, [0, 1] and ω is a
symplectic form on Σ. From now on we will assume that R× [0, 1]×Σ comes
with these data.

For every i ∈ {1, . . . , 2g}, call Lαi and Lβi the Lagrangian submanifolds
R×{1}×αi and, respectively, R×{0}× βi of R× [0, 1]×Σ. De�ne moreover
Lα =

⊔2g
i=1 Lαi and Lβ =

⊔2g
i=1 Lβi .

Let (F, j) be a compact (possibly disconnected) Riemann surface with two
sets of punctures p+ = {p+

1 , . . . , p
+
k } and p− = {p−1 , . . . , p−k } on ∂F such that

(i) every component of F has nonempty boundary, (ii) every component C of
∂F contains at least one element of p+ and one of p− in a way that these
alternate along C. Let Ḟ denote F with the sets of punctures removed.

De�nition 4.1.1. Let y = {y1, . . . , yk} and y′ = {y′1, . . . , y′k} be two k-tuple
(k ≤ 2g) of points in Σ with yi ∈ αi ∩ βσ(i) and y′i ∈ αi ∩ βσ′(i) for some
permutations σ, σ′ ∈ Sk.

A degree-k multisection of R× [0, 1]×Σ from y to y′ is a holomorphic map

u : (Ḟ , j) −→ (R× [0, 1]× Σ, J)
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satisfying the following conditions:

1. (Ḟ , j) is a punctured Riemann surface as above;

2. u is a multisection of degree k of the �bration π : R×[0, 1]×Σ→ R×[0, 1];

3. u(∂Ḟ ) ⊂ Lα ∪ Lβ and maps each connected component of ∂Ḟ to a dif-
ferent Lαi or Lβi ;

4. limw→p+
i
uR(w) = +∞ and limw→p−i

uR(w) = −∞;

5. near p+
i (resp. p−i ), u converges to the strip over [0, 1] × {yi} (resp.

[0, 1]× {y′i});
6. the energy of u given by Equation 4.1.1 below is �nite.

De�nition 4.1.2. Let (Ḟ , j) be as above. De�ne the energy of the holomorphic
multisection u : (Ḟ , j)→ (R× [0, 1]× Σ, J) by

E(u) =

∫
Ḟ

u∗ω + sup
ζ∈C

∫
Ḟ

u∗d(ζ(s)dt), (4.1.1)

where C is the set of non-decreasing smooth functions ζ : R→ [0, 1].

If J is generic, the HF -di�erential (in the hat version) is then de�ned by

∂HF (y) =
∑
y′

∑
[u]∈M̂1([y,y′])/R

y′ mod (2),

where the �rst sum is taken over the set of generators of ĈF (Σ,β,α, w) and
M̂1(y,y′)/R is the set of equivalence classes (modulo R-translations) of holo-
morphic multisections u : (Ḟ , j) −→ (R× [0, 1]× Σ, J) of degree 2g from y to
y′ such that:

1. nw(u) := 〈u(Ḟ ),R× [0, 1]× {w}〉 = 0 ;

2. u has ECH-index 1.

See [10] for details.

Observation 4.1.3. The positivity of intersection in dimension 4 and the con-
dition 1 above imply that if u is a holomorphic curve counted by ∂HF with a
chord at the positive end associated to xi or x′i, then a connected component
of u is a trivial strip over that chord. See Section 4.9 of [10].

If N = N(S, φ), in order to de�ne a map from a chain complex for ĤF (Y )

to a chain complex for P̂FH(N, ∂N), in [10] the authors rede�ne ĤF (Y ) using
only the 0-page S0 of (S, φ) (roughly speaking this is the half of Σ containing
the information about φ).
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Let CF ′(S, a, φ(a)) be the submodule of ĈF (Σ,β,α, w) generated by the
2g-tuples of intersection points contained in S0 and endow it with the restric-
tion of ∂HF . By Observation 4.1.3 and the property 1 that M̂1(y,y′)/R must
satisfy, this is a subcomplex of

(
ĈF (Σ,β,α), ∂HF

)
. In particular, if u is a

holomorphic curve counted by this restriction of ∂HF to CF ′(S, a, φ(a)), the
projection of Im(u) on Σ gives a domain completely contained in S0.

Let ∼ be the equivalence relation on CF ′(S, a, φ(a)) induced on the gener-
ators by the relation

y ∼ y′ if ∃i | y = {y1, . . . , xi, . . . , y2g} and y′ = {y1, . . . , x
′
i, . . . , y2g}, (4.1.2)

where, recall, xi and x′i are the intersection points in αi ∩ βi ∩ ∂S0. De�ne

ĈF (S, a, φ(a)) =
CF ′(S, a, φ(a))

∼
.

In [10, Section 4.9] the authors prove that ĈF (S, a, φ(a)) is a chain complex
if endowed with the di�erential induced by the one of CF ′(S, a, φ(a)). Call
ĤF (S, a, φ(a)) its homology.

Theorem 4.1.4. (see [10, Theorem 4.9.4])

ĤF (S, a, φ(a)) ∼= ĤF (Σ,β,α, w).

We end this section by recalling the following theorem, which is an adap-
tation to this context of the results in [45] and [25].

Theorem 4.1.5. Let x be (the equivalence class under ∼ of) the 2g-tuple
{x1, . . . , x2g}. Then [x] ∈ ĤF (S, a, φ(a)) depends only on the contact structure
ξ compatible with (S, φ).

The generator x is in fact the HF -contact element mentioned in the end
of Subsection 3.2.1 and [x] is the HF -contact invariant of ξ.

4.2 Symplectic cobordisms

In this section we recall the de�nitions of some symplectic cobordisms useful
to de�ne the chain map Φ giving the isomorphism from ĤF (S, a, φ(a)) to
P̂FH(N, ∂N), where N is the mapping torus

N =
S × [0, 2]

(x, 2) ∼ (φ, 0)
.
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Let ω be a symplectic form on S as the one de�ned in [10, section 3] and
consider the stable Hamiltonian structure (dt, ω) on N ; let us indicate R the
associated Hamiltonian vector �eld.

Consider now the following trivial cobordisms:

W = R× [0, 1]× S and W ′ = R×N

and de�ne
B = R× [0, 1] and B′ = R× S1.

The �rst cobordism can be viewed as a (trivial) �bration πB : B × S → B,
while the second as a �bration πB′ : R ×N → B′, naturally extending to the
R-component the �bration N → S1 de�ned by (x, t) 7→ t.

Note that ∂HF is de�ned by counting ECH-index 1 holomorphic multi-
sections of the �bration πB, while ∂ECH is de�ned by counting ECH-index 1
holomorphic curves in W ′.

We will indicate by πR the projection on the �rst component of the cobor-
disms above.

Consider now the subset Bc
+ := [2,∞)× (1, 2) of B′ ∼= R× [0,2]

0∼2
with all the

corners smoothed and de�ne B+ = (R× S1) \Bc
+ (see �gure 4.2).

Figure 4.2: B+.

The surface B+ can be seen as the union of its cylinder-part {s < 2} and its
strip-part {s > 2}.

We can then de�ne the cobordism:

W+ = π−1
B′ (B+)

Like before, W+ can be viewed as a �bration with base B+ and �ber S. Ob-
viously W+ is a submanifold with boundary of W ′. The cylinder-part and
the strip-part of W+ are the counter-images under πB′ of the cylinder-part
and, respectively, the strip-part of B+. We will continue to indicate by πR the
restriction to W+ of the projection to the R-component of W ′.
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If R is parametrized by s, the 2-form Ω = ds∧ dt+ ω on W ′ is symplectic.
Moreover this induces, by restriction, a symplectic form Ω+ on W+.

Endowed with this symplectic structures, the cobordisms de�ned can be
seen as symplectic �brations over their bases. Consider now in particular the
symplectic �bration

πB+ : (W+,Ω+) −→ (B+, ds ∧ dt).

This de�nes the symplectic connection given by the Ω+-orthogonal of the tan-
gent space of the �bers: on W+ ∩ {s > 2} this is then spanned by ∂s and
∂t.

Take a copy of a in π−1
B+

(3, 1) and call L+
a the trace of the parallel transport

of a along ∂B+ using the symplectic connection; L+
a is Lagrangian and

L+
a ∩ {s ≥ 3, t = 0} = {s ≥ 3} × {t = 0} × φ(a);

L+
a ∩ {s ≥ 3, t = 1} = {s ≥ 3} × {t = 1} × a.

(4.2.1)

Note that L+
a has 2g connected components L+

ai
, one for each component ai of

a.

The following de�nitions will be useful later.

De�nition 4.2.1. Given a point P in S, χP := [0, 1] × {P} will denote the
Reeb chord in [0, 1]× S passing through P . Moreover σP := [0, 1]× R× {P}
will denote the trivial section of W → R× [0, 1] on the chord χP .

De�nition 4.2.2. Given a simple orbit δ in N , σδ = R × δ will denote the
trivial section of W ′ over δ and σ+

δ its restriction to W+.

4.3 The chain map Φ

Because of the huge amount of notations and results necessary, we give
here only a rough explanation and refer again the reader to sections 5 and 6
of [10] for any detail.

Let (K,S, φ) be an open book decomposition of a three-manifold Y and
consider the mapping torus N = N(S, φ). In [10], the authors de�ne two chain
maps

Φ : ĈF (S, a, φ(a)) −→ PFC2g(N)

Ψ : PFC2g(N) −→ ĈF (S, a, φ(a))
(4.3.1)

and in [11] they prove that they induce isomorphisms in homology, one the
inverse of the other. In this thesis we will be mostly interested in Φ.

The chain map Φ is de�ned by counting multisections of the symplectic
�bration πB+ : (W+,Ω+) −→ (B+, ds ∧ dt).
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Let J+ be a suitable almost complex structure on W+ (see [10, section 5]).
Let (F, j) be a compact (possibly disconnected) Riemann surface with two
sets of punctures p = {p1, . . . , pl} in the interior and q = {q1, . . . , qk} in the
boundary of F such that (i) every connected component of F contains at least
an element of p and a connected component of ∂F and (ii) every connected
component of ∂F contains at least an element of q. We will set Ḟ = F \{p∪q}.
De�nition 4.3.1. Let y = {y1, . . . , yk} be a k-tuple (k ≤ 2g) of a ∩ φ(a) and
γ =

∏
j γ

mj ∈ Ok(N). A degree k multisection of (W+, J+) is one between:
(i) a holomorphic multisection

u : (Ḟ , j) −→ (W+, J+)

of degree k of the �bration πB+ : W+ → B+, where (F, j) is a Riemann
surface endowed with two sets of punctures p and q as above, and u is
such that

1. u(∂Ḟ ) ⊂ L+
a and maps each connected component of ∂Ḟ to a dif-

ferent L+
ai
;

2. limw→qi πR ◦ u(w) = +∞ and limw→pi πR ◦ u(w) = −∞;

3. near qi, u converges to a strip over [0, 1]× {yi};
4. near each pi, u converges to a cylinder over a multiple of some γj

so that the total multiplicity of γj over all the pi is mi;

5. the energy of u given by Equation 4.1.1 is �nite ;

(ii) a M-B building in W+ that, after a perturbation of R and J+, becomes
a degree k multisection of π+ satisfying 1-5 of (i).

A (W+, J+)-curve is a degree 2g multisection of (W+, J+).

In practice holomorphic multisections in W+ interpolates between multi-
sections in W and W ′. Moreover in [10, Section 5], the authors de�ne an
ECH index for holomorphic multisections of W+ which interpolates between
the Lipshitz's index for holomorphic curves in W and the ECH-index in W ′.
See Observation 4.3.2 below

As in [10], we will call irreducible component of u a connected component
of Im(u(Ḟ )).

De�ne the chain map

Φ′ : CF ′(S,a, φ(a)) −→ PFC2g(N)
y 7−→

∑
γ∈O2g(N)〈Φ′(y), γ〉 · γ (4.3.2)

where 〈Φ′(y), γ〉 is the modulo 2 count of degree 2g, ECH-index 0 multisections
of (W+, J+) from y to γ.
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Observation 4.3.2. Intuitively Φ′ counts holomorphic curves that:

1. �start� in a collection of 2g chords and in the strip-like part {s > 2} ofW+

is topologically like a holomorphic multisection of πB (with boundary)
counted by ∂HF ;

2. when the curve �arrives� in {s = 2} ⊂ W+ the components of its bound-
ary (contained in L+

a ) are glued together using the map φ;

3. the curve in the cylinder-like part is topologically like a holomorphic mul-
tisection of πB′ counted by ∂ECH , which limits to a degree 2g multiorbit
in N .

Given P ∈ ∂S, let δP = [0,2]×{x}
(2,P )∼(0,P )

be the simple Reeb orbit containing P .
In the following theorem we summarize some of the results about Φ proved

in [10]:

Theorem 4.3.3. The following hold:

1. if u is a holomorphic curve counted by Φ′ which has a xi (resp. x′i) at
the positive end, then it must have σ+

δxi
(resp. σ+

δx′
i

) as an irreducible

component, so that at the negative end u must have a copy of e for each
xi or x′i lying at the positive end;

2. Φ′ respects the equivalence relation 4.1.2 and the passage to the quotient
induces a map

Φ : ĈF (S,a, φ(a))→ PFC2g(N),

which send the HF -contact element to the ECH-contact element;

3. let sξ be the Spinc-structure of the plane �eld ξ; then Φ splits into a direct
sum of chain maps

ΦΓ : ĈF (S,a, φ(a); sξ + PD(Γ))→ PFC≤2g(N, ∂N,Γ),

for Γ ∈ H1(Y ;Z), where PD indicates the Poincaré dual.
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Chapter 5

Generalizations of ÊCK

Let K be a homologically trivial knot in a contact three-manifold (Y, α).
As recalled in 2.4, if α is adapted to K, a choice of a Seifert surface S for K
induces a �ltration on the chain complex

(
ECCh+(N,α), ∂ECH

)
, where int(N)

is homeomorphic to Y \K. Moreover if α is also adapted to S, the homology of(
ECCh+(N,α), ∂ECH

)
is isomorphic to ÊCH(Y, α), and the �rst page of the

spectral sequence associated to the �ltration is the hat version of embedded
contact knot homology ÊCK(K,Y, α).

In this chapter we generalise the knot �ltration in two natural ways.

In Section 5.1 we extend the �ltration induced by K on the chain com-
plex

(
ECCh+,e+(N,α), ∂ECH

)
. This �ltration is de�ned in a way completely

analogue to the hat case. We de�ne the full version of embedded contact knot
homology of (K,Y, α) to be the �rst page ECK(K,Y, α) of the associated
spectral sequence. Moreover we remove the condition that α must be com-
patible with S, in order to consider a wider class of contact forms: the knot
spectral sequence is still well de�ned, but at the price of renouncing to a proof
of the existence of an isomorphism between ECH(Y, α) and the page∞ of the
spectral sequence.

In Section 5.2 we generalise the knot �ltration to n-components links L.
The resulting homologies, de�ned in a way analogue to the case of knots, are
the full and hat versions of embedded contact knot homologies of (L, Y, α),
which will be still denoted ECK(L, Y, α) and, respectively, ÊCK(L, Y, α).
Similarly to Heegaard-Floer link homology, these homologies come endowed
with an Alexander (relative) Zn-degree.

74
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5.1 The full ECK

Let K be a homologically trivial knot in a contact three-manifold (Y, α)
and suppose that α is adapted to K in the sense of Section 2.2. Recall in
particular that there exist two concentric neighborhoods V (K) ⊂ N (K) of
K whose boundaries are M-B tori T1 = ∂N (K) and T2 = ∂V (K) foliated by
orbits of Rα in the homology class of meridians for K. These two families
of orbits are modi�ed into the two couples of orbits {e, h} and, respectively,
{e+, h+}. Let moreover N = Y \ int(N (K)).

Consider the chain complex
(
ECCe+,h+(N,α), ∂ECH

)
where, recall, the

chain group is freely generated on Z/2 by the orbit sets γ in O(N)t {h+, e+}
and ∂ECH is the ECH-di�erential (obtained by restricting the di�erential on
ECC(Y, α)) given by Equation 2.2.4.

A Seifert surface S for K induces an Alexander degree 〈·, S〉 on the gen-
erators of ECCh+,e+(N,α) exactly like in the case of ECCh+(N,α). Let
ECC

h+,e+
d (N,α) be the submodule of ECCh+,e+(N,α) generated by the γ ∈

O(N) t {h+, e+} with 〈γ, S〉 = d. If

ECC
h+,e+
≤d (N,α) :=

⊕
j≤d

ECC
h+,e+
j (N,α),

we have the exhaustive �ltration

. . . ⊆ ECC
h+,e+
≤d−1 (N,α) ⊆ ECC

h+,e+
≤d (N,α) ⊆ ECC

h+,e+
≤d+1 (N,α) ⊆ . . .

of ECCh+,e+(N,α). Proposition 2.4.3 again implies that ∂ECH preserves the
�ltration. Let

∂ECKd : ECC
h+,e+
d (N,α) −→ ECC

h+,e+
d (N,α)

be the part of ∂ECH that strictly preserves the �ltration degree d, that is, the
di�erential induced by ∂ECH |

ECC
h+,e+
≤d (N,α)

on the quotient

ECC
h+,e+
≤d (N,α)

ECC
h+,e+
≤d−1 (N,α)

= ECC
h+,e+
d (N,α).

Set
∂ECK :=

⊕
d

∂ECKd : ECCe+,h+(N,α) −→ ECCe+,h+(N,α).

De�nition 5.1.1. We de�ne the full embedded contact knot homology of (K,Y, α)
by

ECK(K,Y, α) := H∗
(
ECCe+,h+(N,α), ∂ECK

)
.



76 5.1. The full ECK

Note that, as in the hat case, the only holomorphic curves counted by ∂ECH

that do not strictly respect the �ltration degree are the curves that contain the
plane from h+ to ∅ (see Observation 2.4.7). Recalling the expression of ∂ECH

given in Equation 2.2.4, it follows that ∂ECK is given by

∂ECK(ea+h
b
+γ) = ea−1

+ hb+hγ + ea+h
b−1
+ eγ + ea+h

b
+∂γ, (5.1.1)

where γ ∈ O(N) and any term is meant to be 0 if it contains an orbit with
total multiplicity that is negative or not in {0, 1} if the orbit is hyperbolic.

Again the homology comes with an Alexander degree, which is well de�ned
once the an homology class for S is �xed. In fact we have the natural splitting:

ECK∗(K,Y, α) ∼=
⊕
d∈Z

ECK∗,d(K,Y, α) (5.1.2)

where
ECK∗,d(K,Y, α) := H∗(ECC

h+,e+
d (N,α), ∂ECKd ).

Recalling that Y \ N (K) is homeomorphic to Y \ K, it is interesting to
state the following:

Lemma 5.1.2. If N (K) is a neighborhood of K as above then

ECK(K,Y, α) ∼= ECH(Y \ N (K), α).

Proof. By arguments similar to those in the proof of Lemma 2.2.7 it is easy to
prove that:

ECK(K,Y, α) ∼= H∗
(
ECCe+,h+(N,α), ∂ECK

)
∼= H∗

(
ECCe,h+(int(N), α), ∂ECK

)
∼= H∗

(
ECC(int(N), α), ∂ECK

)
∼= ECH(int(N), α),

where the last comes from the fact that ∂ECK(γ) = ∂ECH(γ) for any γ ∈
O(N).

Observation 5.1.3. Note that so far we only assumed that α is compatible
with K, while we did not suppose the condition

(♠) α is compatible with a Seifert surface S for K.
As remarked in Observation 2.4.10, without ♠ we can not prove theorem 2.2.5,
and so we do not know if the spectral sequence whose 0-page is the ECK-chain
complex limits to ECH(Y, α). On the other hand, this spectral sequence is in
any case well de�ned, as well as ECK(K,Y, α).
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Even if, in light of Lemma 2.2.2 we could assume♠ here without restrictions
on K, we prefer to avoid it in the general de�nition of ECK(K,Y, α) in order
to consider a wider class of contact forms.

We remark that, reading carefully [9], we feel that the requirement ♠ could
be not really necessary to prove Theorem 2.2.5. We try to roughly motivate
our feeling.

By direct limit arguments the orbits in the no man's land int(N (K))\V (K)
can be avoided also if ♠ is not assumed, so that we can still write

ECC(Y, α) ∼= ECC(V, α)⊗ ECC(N,α)

(up to some restriction on the action of the orbits, see [9, Section 9]). The
computations for ECH(V, α) in [9, Section 8] do not use ♠, and in fact here
the hypothesis is not even assumed. Similarly, ECH(N,α) is still well de�ned
as in [9, Subsection 7.1] and does not depend on the choice of S. Moreover the
Blocking Lemma still implies that holomorphic curves with positive limit in N
can not cross ∂N , so that ECC(N,α) is again a subcomplex of ECC(Y, α).
This suggests that what happens in N should not in�uence the direct limits
computations in V .

An even more basic motivation behind our perception comes from the in-
tuitive approach to Theorem 1.1.1 presented in Subsection 9.1 of [9]: this
argument is evidently local near K and ♠ is not used.

In analogy with Conjecture 2.4.13 we state the following:

Conjecture 5.1.4. For any knot K in Y :

ECK(K,Y, α) ∼= HFK+(−K,−Y ),

where α is any contact form on Y adapted to K.

5.2 The generalization to links

In this section we extend the de�nitions of ECK and ÊCK to the case of
homologically trivial links with more than one component. For us a (strongly)
homologically trivial n-link in Y is a disjoint union of n knots, each of which
is homologically trivial in Y .

Suppose that
L = K1 t . . . tKn

is a homologically trivial n-link in Y . We say that a contact form α on Y is
adapted to L if it is adapted to Ki for each i.
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Lemma 5.2.1. For any link L and contact structure ξ on Y there exists a
contact form compatible with ξ which is adapted to L.

Proof. The proof of part 1) of Lemma 2.2.2 is local near the knot K and can
then be applied recursively to each Ki.

Fix L = K1 t . . . t Kn homologically trivial and α an adapted contact
form. Since α is adapted to each Ki, there exist pairwise disjoint tubular
neighborhoods

V (Ki) ⊂ N (Ki)

of Ki where α behaves exactly like in the neighborhoods V (K) ⊂ N (K) in
Section 2.2.

In particular, for each i, the tori Ti,1 := ∂N (Ki) and Ti,2 := ∂V (Ki) are
M-B and foliated by families of orbits of Rα in the homology class of a meridian
of Ki. We will consider these two families as perturbed into two pairs {ei, hi}
and {e+

i , h
+
i } in the usual way.

Let
V (L) :=

⊔
i

V (Ki) and N (L) :=
⊔
i

N (Ki)

and set
N := Y \ int(N (L)).

De�ne moreover ē :=
⊔
i ei and let h̄, ē+ and h̄+ be similarly de�ned.

Consider now ECC ē+,h̄+ (N,α) endowed with the restriction ∂ECH of the
ECH di�erential of (Y, α) and let ECH ē+,h̄+ (N,α) be the associated homol-
ogy.

Lemma 5.2.2. ECH ē+,h̄+ (N,α) is well de�ned and the curves counted by
∂ECH inside each N (Ki) are given by expressions analogue to those in 2.2.3.

Proof. The Blocking and Trapping lemmas can be applied locally near each
component of ∂N and the proofs of lemmas 7.1.1 and 7.1.2 in [9] work immedi-
ately in this context too. This imply that the homology of

(
ECC(N,α), ∂ECH

)
is well de�ned.

Again the Blocking and Trapping lemmas together with the local homologi-
cal arguments in lemmas 9.5.1 and 9.5.3 in [9], imply that the only holomorphic
curves counted by ∂ECH inside each N (Ki) are as required (see Figure 2.1),
and so that ECH ē+,h̄+ (N,α) is well de�ned.

An explicit formula for ∂ECH can be obtained by generalizing Equation
2.2.4 in the obvious way.
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For each i ∈ {1, . . . , n}, �x now a (homology class for a) Seifert surface
Si for Ki. These surfaces are not necessarily pairwise disjoint and it is even
possible that Si ∩Kj 6= ∅ for some i 6= j.

Consider then the Alexander Zn-degree on ECC ē+,h̄+ (N,α) given by the
function

ECC ē+,h̄+ (N,α) −→ Zn
γ 7−→ (〈γ, S1〉, . . . , 〈γ, Sn〉).

(5.2.1)

Observation 5.2.3. Last expression is in fact the generalization to any mani-
fold of Equation 3.2.6 for S3 and inducing the Alexander �ltration in Heegaard-
Floer.

De�ne the partial ordering on Zn given by

(a1, . . . , an) ≤ (b1, . . . , bn)⇐⇒ ai ≤ bi ∀ i.

Proposition 2.4.3 applied to each Ki implies that if γ and δ are two orbit sets
in O(N t {ē+, h̄+}), then for any k

Mk(γ, δ)

R
6= 0 =⇒ (〈δ, S1〉, . . . , 〈δ, Sn〉) ≤ (〈γ, S1〉, . . . , 〈γ, Sn〉) .

This implies that ∂ECH does not increase the Alexander degree, which induces

than a Zn-�ltration on
(
ECC ē+,h̄+(N,α), ∂ECH

)
.

Reasoning as in the previous section, we are interested in the part of ∂ECH

that strictly respects the �ltration degree. This can be de�ned again in terms
of quotients as follows.

Let d ∈ Zn and let ECC ē+,h̄+

d (N,α) be the submodule of ECC ē+,h̄+(N,α)
freely generated by orbit sets γ ∈ O(N t {ē+, h̄+}) such that

(〈γ, S1〉, . . . , 〈γ, Sn〉) = d.

De�ne
ECC

ē+,h̄+

≤d (N,α) :=
⊕
j≤d

ECC
ē+,h̄+

d (N,α)

and let ECC ē+,h̄+

<d (N,α) be similarly de�ned.
De�ne the full ECK-di�erential in degree d to be the map

∂ECKd : ECC
ē+,h̄+

d (N,α) −→ ECC
ē+,h̄+

d (N,α)

induced by ∂ECH |
ECC

ē+,h̄+
≤d (N,α)

on the quotient

ECC
ē+,h̄+

≤d (N,α)

ECC
ē+,h̄+

<d (N,α)
∼= ECC

ē+,h̄+

d (N,α).
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De�ne then the full ECK-di�erential by

∂ECK :=
⊕
d

∂ECKd : ECC ē+,h̄+(N,α) −→ ECC ē+,h̄+(N,α).

Observation 5.2.4. Observing the form of ∂ECH , it is easy again to see that
the only holomorphic curves that are counted by ∂ECH and not by ∂ECK are
the ones containing a holomorphic plane from some h+

i to ∅.
De�nition 5.2.5. The full embedded contact knot homology of (L, Y, α) is

ECK(L, Y, α) := H∗

(
ECC ē+,h̄+(N,α), ∂ECK

)
.

The fact that ECK(L, Y, α) is well de�ned is a direct consequence of the
good de�nition of ECH ē+,h̄+(N,α) and the fact that ∂ECH respects the Alexan-
der �ltration.

Note that also for links we have a natural splitting

ECK∗(L, Y, α) =
⊕
d∈Zn

ECK∗,d(L, Y, α) (5.2.2)

where
ECK∗,d(L, Y, α) = H∗

(
ECC

ē+,h̄+

d (N,α), ∂ECKd

)
.

The proof of the following lemma is the same of that of the analogous
Lemma 5.1.2 for knots applied to each component of L.

Lemma 5.2.6. If N (L) is a neighborhood of L as above then

ECK(L, Y, α) ∼= ECH(Y \ N (L), α).

Consider now the submodule ECC h̄+(N,α) of ECC ē+,h̄+(N,α) endowed
with the restriction of ∂ECH . Again its homology ECH h̄+(N,α) is well de�ned.

Proceeding exactly like above, the choice of a Seifert surface Si for each
component Ki of L gives (up to small perturbations of S) an Alexander degree
on the orbit sets de�ned by Equation 5.2.1. This induces a Zn-�ltration on the

chain complex
(
ECC h̄+(N,α), ∂ECH

)
.

For any d ∈ Zn, de�ne ECC h̄+

d (N,α) and

∂ECKd : ECC
h̄+

d (N,α) −→ ECC
h̄+

d (N,α)

exactly as above.
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De�nition 5.2.7. The hat version of embedded contact knot homology of (L, Y, α)
is

ÊCK(L, Y, α) := H∗

(
ECC h̄+(N,α), ∂ECK

)
.

Observation 5.2.4 and a splitting like the one in equation 5.2.2 hold also
for ÊCK(L, Y, α). Moreover it is easy to see that if L has only one connected
component we get the same theories of sections 2.4 and 5.1.

We state the following

Conjecture 5.2.8. If L is a link in Y :

ECK(L, Y, α) ∼= HFK−(L, Y ),

ÊCK(L, Y, α) ∼= ĤFK(L, Y ),

where α is any contact form on Y adapted to L.

Observation 5.2.9. Note that the analogous conjectures stated before, as well
as Theorem 4.0.10, suggest that we should use the plus version ofHFL and not
the minus one. The problem is that in [46] the authors de�ne Heegaard-Floer
homology for links only in the hat and minus versions.

On the other hand this switch is not really signi�cant. Indeed one could
de�ne Heegaard-Floer cohomology groups by taking the duals, with coe�cients
in Z/2, of the chain groups ĈF ∗(Y ), CF+

∗ (Y ) and CF−∗ (Y ) in the usual way
and get cohomology groups (for the three-manifold Y )

ĤF
∗
(Y ), HF ∗+(Y ), HF ∗−(Y ).

Since we are working in Z/2 we have that each of this cohomology group is
isomorphic to its respective homology group.

On the other hand one can prove also that (see Proposition 2.5 in [43]):

ĤF
∗
(Y ) ∼= ĤF ∗(−Y ) and HF ∗±(Y ) ∼= HF∓∗ (−Y ).

Analogous formulae hold for knots also. The conjecture above is then consis-
tent with those stated in the previous sections.

Observation 5.2.10. As in the de�nition of ÊCK(K,Y, α) and ECK(K,Y, α)
also here we used the hypothesis that α is adapted to L, while we dropped
condition ♠ of last section. One could wonder if it is possible to further relax
the assumptions and get still a good de�nition of the ECK homology groups.

The onjectures above suggest indeed that ECK(L, Y, α) (as well as the
other homologies) would be independent from α and so, in particular, that we
could be able to de�ne it simply as the ECH homology of the complement of
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(any neighborhood of) L, provided that L is a disjoint union of Reeb orbits of
α. Indeed, even if we could not have an easy description of the curves counted
by ∂ECH that cross L, Proposition 2.4.3 still holds in this more general case.

On the other hand, technical aspects about contact �ows and holomorphic
curves suggest that the components of L should be at least elliptic orbits.
This property will be necessary even in computing Euler characteristics in
next chapter, where we will need a circularity property of Rα near L that
cannot be assumed in an evident way if a component of L is hyperbolic.

Notations. In order to simplify the notation, in the rest of the paper we
will indicate the ECH chain groups for the knot embedded contact homology
groups of links and knots by:

ECC(L, Y, α) := ECC ē+,h̄+(N,α),

ÊCC(L, Y, α) := ECC h̄+(N,α),

where N and α are as above. In particular, if not stated otherwise, we will
always assume that the contact form α is adapted to L. These groups will
implicitly come endowed with the di�erential ∂ECK .

We end this chapter by saying some word about a further generalization
of ECK to weakly homologically trivial links. We say that L ⊂ Y is a weakly
homologically trivial (or simply weakly trivial) n-component link if there exist
surfaces with boundary S1, . . . , Sm ⊂ Y , withm ≤ n and such that ∂Si∩∂Sj =
∅ if i 6= j and

⊔m
i=1 ∂Si = L. Also here we do not require that Si or even ∂Si

is disjoint from Sj for j 6= i.
Clearly L is a strongly trivial link if and only if it is weakly trivial with

m = n.
In this case we cannot in general de�ne a homology with a �ltered n-degree.

If L is a weakly trivial link with m � n and α is an adapted contact form,
then there exists S ∈ {S1, . . . , Sm} such that ∂S has more then one connected
component. Suppose for instance that ∂S = K1 t K2. The arguments of
proposition 2.4.3 say then that if u : (F, j) → (R × Y, J) is a holomorphic
curve from γ to δ, then

〈γ, S〉 − 〈δ, S〉 = 〈Im(u),R× (K1 tK2)〉 ≥ 0.

So in this case we can still apply the arguments above and get well de�ned
ECH invariants for L. However this time they will come only with a �ltered
(relative) Zm-degree on the generators γ of an ECH complex of Y , which is
given by the m-tuple (〈γ, S1〉, . . . , 〈γ, Sm〉).
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Example 5.2.11. Let (L, S, φ) be an open book decomposition of Y with,
possibly, disconnected boundary. Using a (connected) page of (L, S, φ) to
compute the Alexander degree and, with the notations of Subsection 2.2.1, we
get

ECKd(L, Y, α) ∼= ECHd(int(N), α)

for any d ∈ Z.



Chapter 6

Euler characteristics

In this chapter we compute the graded Euler characteristics of the embed-
ded contact homology groups for knots and links in homology three spheres
Y with respect to suitable contact forms. The computations will be done in
terms of the Lefschetz zeta function of the �ow of the Reeb vector �eld.

In the particular case of Y = S3 we relate the resulting expressions to the
corresponding multivariable Alexander polynomial:

Theorem 6.0.12. Let L be any n-link in S3. Then there exists a contact form
α adapted to L such that:

χ
(
ECK(L, S3, α)

) .
=


∆L(t1, . . . , tn) if n > 1

∆L(t)/(1− t) if n = 1
(6.0.1)

and

χ
(
ÊCK(L, S3, α)

)
.
=


∆L ·

∏n
i=1(1− ti) if n > 1

∆L(t) if n = 1.
(6.0.2)

An immediate consequence of theorem above and Theorem 3.2.7 is:

Corollary 6.0.13. For any link L in S3 there exists a contact form α such
that:

χ(ECK(L, S3, α))
.
= χ(HFL−(L, S3)), (6.0.3)

χ(ÊCK(L, S3, α))
.
= χ(ĤFL(L, S3)). (6.0.4)

The last corollary implies that conjecture 5.2.8 (which generalizes conjec-
tures 2.4.13 and 5.1.4) holds for links in S3 at least at the level of Euler
characteristic.

84
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As recalled in Section 3.2, graded Euler characteristics are polynomials:
when we want to highlight the variables of these polynomials we will indicate
them as subscripts of the symbol χ. For example if L is an n-link and we want
to express its Euler characteristic by a polynomial in the n variables t1, . . . , tn,
we will write χ (ECK(L, Y, α)) = χt1,...,tn (ECK(L, Y, α)).

Theorem 6.0.12 is in e�ect a consequence of the following more general
result. Recall that an n-link L ⊂ Y determines the abelian cover ρL ∈ H1(Y \
L,Zn) of Y \ L given in Example 3.3.2. When Y is a homology three-sphere,
we have

ρL ≡ 1 : H1(Y \ L) −→ H1(Y \ L) ∼= Zn.

In order to simplify the notations, we remove ρL from the notations of the
Alexander quotient and of the twisted Lefschetz zeta function:

ALEX(Y \ L) := ALEX1(Y \ L);

ζ(φ) := ζ1(φ).

Let (t1, . . . , tn) be a basis for H1(Y \ L), where [µi] = ti for µi positively
oriented meridian of Ki.

Theorem 6.0.14. Let L be an n-link in a homology three-sphere Y . Then
there exists a contact form α such that

χt1,...,tn(ECK(L, Y, α))
.
= ALEX(Y \ L).

Last two theorems imply that the homology ECK categori�es the Alexander
quotient of knots and links in homology three-spheres. This is the third known
categori�cation of this kind, after the ones in Heegaard-Floer homology and
in Seiberg-Witten-Floer homology (see [34] and [35]).

The proofs of theorems 6.0.12 and 6.0.14 will be carried on in two main
steps: in Section 6.1 we will prove the theorems in the case of �bered links,
while the general case will be treated in Section 6.2.

6.1 Fibered links

In this section we prove theorems 6.0.12 and 6.0.14 for �bered links. Let
(L, S, φ) be an open book decomposition of a homology three-sphere Y and
let α be an adapted contact form on Y . In particular, with our de�nition, α
is also adapted to L.

In order to prove the theorems above we want to express the Euler charac-
teristic χt1,...,tn(ECK(L, Y, α)) in terms of the twisted Lefschetz zeta function
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of the Reeb �ow φR of R = Rα and then apply Theorem 3.3.8. The �rst thing
that one should do is then to check if φR and ρL satisfy the hypothesis of that
theorem. Unfortunately this is not the case. The needed properties are in fact
the following:

1. R is non-singular and circular;

2. R is compatible with ρL;

3. R is non-degenerate;

4. R is transverse to ∂V (L) and pointing out of Y \ V̊ (L),

where V̊ (L) = int(V (L)).
In our situation only properties 1 and 2 are satis�ed. Indeed, by the de�-

nition of open book decomposition, there is a natural �bration θ : Y \ V̊ (L)→
S1 ∼= R

Z such that the surfaces θ−1(t) are the pages of the open book. The fact
that α is adapted to (L, S, φ) implies that R is always positively transverse to
the pages. This evidently implies that dθ(R) > 0 so that R is circular.

The fact that R is compatible with ρL (that coincides with the universal
abelian cover of Y \ V̊ (L)) comes from Example 3.3.7.

However properties 3 and 4 above are not satis�ed. Indeed, after the M-B
perturbation of T2, R is tangent to ∂V (L) on ē+ and h̄+. Moreover, as observed
in Section 1.3, the M-B perturbations near the two tori T1 and T2 may create
degenerate orbits.

What we will do is then to perturb R to get a new vector �eld R′. This
vector �eld will be de�ned in Y \V ′(L), where V ′(L) ⊂ V̊ (L) is an open tubular
neighborhood of L de�ned by V ′(L) = V ′(K1)t . . .tV ′(Kn), where, using the
coordinates of Section 1.4, ∂(V ′(Ki)) = {y = 2.5}.

Lemma 6.1.1. There exists a (non-contact) vector �eld R′ such that:

(i) R′ coincides with R outside a neighborhood of N (L);

(ii) R′ satis�es properties 1-4 above with V (L) replaced by V ′(L);

(iii) the only periodic orbits of R′ in N (V ) \ V ′(L) are the four sets of non-
degenerate orbits ē, h̄, ē+, h̄+.

Observe that Property (i) implies that the twisted Lefschetz zeta functions
of the restrictions of the �ows φR and φR′ to Y \N (K) coincide, while Property
(ii) allows to apply Theorem 3.3.8 to φR′ .

Proof. A perturbation of R into an R′ satisfying the conditions (i)-(iii) can be
obtained in more than one way. An example is pictured in Figure 6.1 (cf. also
Figure 1.1). We brie�y explain how it is obtained. Since the modi�cation of R
is non trivial only inside disjoint neighborhoods of each Ki, we will describe it
only for a �xed component K of L. The characterization of the perturbation
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will be presented in terms of perturbation of the lines in a page S of (L, S, φ)
that are invariant under the �rst return map φ of φR: we will refer to these
curves as to φ-invariant lines on S. Note that these curves are naturally
oriented by the �ow.

Outside a neighborhood of ∂V ′ one can see this perturbation in terms of a
perturbation of φ into another monodromy φ′, and R′ is the vector �eld ∂t in
Y \ V ′(L) ∼= S×[0,1]

(x,1)∼(φ′(x),0)
, where t is the coordinate of [0, 1].

Figure 6.1: The dynamics of the vector �elds R and R′ near N (V ) \ V ′(L).
Each oriented line represents an invariant subset of a page of (L, S, φ) under
the �rst return map φ at the left and φ′ at the right (the invariant lines a1 and
a2 are stressed). The situation at the left is the same depicted in Figure 1.1.

Observe �rst that the only periodic orbit in the (singular) φ-invariant line
a1 containing h (in correspondence to the singularity) is exactly h. Similarly,
the only periodic orbit in the φ-invariant singular �ow line a2 containing h+

is precisely h+. Denote Ai ⊂ Y the mapping torus of (ai, φ|ai), i = 1, 2. We
modify R separately inside the regions of (Y \ V ′(K)) \ (A1 t A2) as follows.

In the region containing e (and with boundary A1), the set of φ-invariant
lines (the elliptic lines in the picture at left) is perturbed in a set of φ′-invariant
spiral-kind lines (at right), each of which is negatively asymptotic to a1 and
positively asymptotic to e. It is easy to see that after the perturbation the
only periodic orbit in the interior of this region is e. Moreover, we can arrange
the perturbation in a way that the di�erential LR

′
e of the �rst return map on

S of φR′ along e, coincides, up to a positive factor smaller then 1, with LRe , so
that the Lefschetz sign ε(e) of e is still +1.

A similar perturbation is done in the region of (Y \ V ′(K)) \ (A1 t A2)
containing e+, in a way that e+ is the only periodic orbit of the perturbed
vector �eld R′, with still ε(e+) = +1.

The perturbation in the region between A1 and A2 is done by slightly
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pushing the monodromy in the positive y-direction in a way that the set of
φ-invariant lines is perturbed into a set of φ′-invariant lines, each of which is
negatively asymptotic to a1 and positively asymptotic to a2 (and so in partic-
ular there can not exist periodic orbits in this region).

A similar perturbation is done also inside the region between A2 and
∂V ′(K), but in this case each φ′-invariant line is negatively asymptotic to
a2 and intersects ∂V ′(K) pointing out of the three-manifold.

Finally we leave R′ = R in the rest of the manifold, where R was supposed
having only isolated and non degenerate periodic orbits.

Note that the two basis of eigenvectors of LRh and LRh+
are contained in the

tangent spaces of the curves a1 and, respectively, a2. Since on these curves
φR = φR′ , the Lefschetz signs of the two orbits are not changed by the pertur-
bation.

It is easy to convince ourselves that R′ satis�es the properties i-iii above.

Call ζ = ζ1. Since the Lefschetz zeta function of a �ow depends only on
its periodic orbits and their signs, we have the following:

Corollary 6.1.2. If R′ is obtained from R as above, then

ζ(φR′) = ζ(φR′ |(Y \N (K)t{ē,h̄,ē+,h̄+})) =

= ζ(φR|(Y \N (K)
) ·

∏
γ∈{ē,h̄,ē+,h̄+}

ζγ([γ])).

where [γ] is the homology class of γ in H1(Y \ N (K)).

Now we want to compute more explicitly the twisted Lefschetz zeta function
ζ(φR′). Let us begin with the local Lefschetz zeta function of the simple orbits
(see De�nition 3.3.3).

Lemma 6.1.3. Let γ be an orbit of R or R′. Then:

ζγ(t) =


(1− t)−1 = 1 + t+ t2 + . . . if γ elliptic;

1− t if γ positive hyperbolic;
1 + t if γ negative hyperbolic;

(6.1.1)

Proof. Remember that the Lefschetz number of γ is ε(γ) = +1 if γ is elliptic
or negative hyperbolic and ε(γ) = −1 if γ is positive hyperbolic.
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γ elliptic: all the iterated are elliptic, so that ε(γi) = +1 for every i > 0.
Then:

ζγ(t) = exp

(∑
i≥1

ti

i

)
=

= exp

(
−
∑

i≥1(−1)i+1 (−t)i

i

)
=

= exp (− log(1− t)) =
= (1− t)−1.

γ positive hyperbolic: all the iterated are positive hyperbolic, so that ε(γi) =
−1 for every i > 0. Then:

ζγ(t) = exp

(∑
i≥1−

ti

i

)
=

= exp

(∑
i≥1(−1)i+1 (−t)i

i

)
=

= exp (log(1− t)) =
= 1− t.

γ negative hyperbolic: the odd iterated are negative hyperbolic while the
even iterated are positive hyperbolic, so that ε(γi) = (−1)i+1 for any
i > 0. Then:

ζγ(t) = exp

(∑
i≥1(−1)i+1 t

i

i

)
=

= exp (log(1 + t)) =
= 1 + t

Observation 6.1.4. Note that the equations above are exactly the generating
functions given by Hutchings in [28, Chapter 2].

Let µi be a positive meridian of Ki for i ∈ {1, . . . , n} and set ti = [µi] ∈
H1(Y \ K); �x moreover a Seifert surface Si for each Ki. Recall that, for a
given X ⊂ Y , P(X) denotes the set of simple Reeb orbits contained in X.

Corollary 6.1.5. The twisted Lefschetz zeta function of φR|(Y \N (L))
is

ζ(φR|(Y \N (L))
) =

∏
γ∈P(Y \N (L))

ζγ([γ]),

where ζγ([γ]) is determined as follows:
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• if γ is elliptic then:

ζγ(ρL(γ)) =

(
1−

n∏
i=1

t
〈γ,Si〉
i

)−1

=
∞∑
l=0

(
n∏
i=1

t
〈γ,Si〉
i

)l

;

• if γ is positive hyperbolic then:

ζγ(ρL(γ)) = 1−
n∏
i=1

t
〈γ,Si〉
i ;

• if γ is negative hyperbolic then:

ζγ(ρL(γ)) = 1 +
n∏
i=1

t
〈γ,Si〉
i .

Proof. This is an easy computation. It su�ces to substitute the monomial
representation of ρL([γ)] = [γ] given in Example 3.3.2 in the expression of the
Lefschetz zeta function of Lemma 6.1.3.

Proof. (of Theorem 6.0.14 for �bered links). To �nish the proof it remains es-
sentially to prove that

χt1,...,tn (ECC(L, Y, α)) = ζ(φR|(Y \N (L)
) ·

∏
γ∈{ē,h̄,ē+,h̄+}

ζγ([γ])). (6.1.2)

This is easy to verify recursively on the set of simple orbits. Suppose δ =
∏

j δ
kj
j

is an orbit set and let γ be an orbit such that γ 6= δj for any j. Then the set
of all multiorbits that we can build using δ and γ can be expressed via the
product formulae:

δ · {∅, γ, γ2, . . .} if γ is elliptic;
δ · {∅, γ} if γ is hyperbolic.

(6.1.3)

As remarked in Section 2.1, the index parity formula 2.1.2 implies that the
Lefschetz sign endows the ECH-chain complex with an absolute degree and
it coincides with the parity of the ECH-index. Then the contribution to the
graded Euler characteristic of δ ·γl, for any l (l ∈ N if γ is elliptic and l ∈ {0, 1}
if γ is hyperbolic) is:

ε(δ)
n∏
i=1

t
〈δ,Si〉
i ·

(
ε(γ)

n∏
i=1

t
〈γ,Si〉
i

)l

.

Substituting the last formula in Expressions 6.1.3, the total contribution
of the product formulae to the Euler characteristic are:
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• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

∑∞
l=0

(∏n
i=1 t

〈γ,Si〉
i

)l
if γ is elliptic,

• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

(
1−

∏n
i=1 t

〈γ,Si〉
i

)
if γ is positive hyperbolic,

• ε(δ)
∏n

i=1 t
〈δ,Si〉
i ·

(
1 +

∏n
i=1 t

〈γ,Si〉
i

)
if γ is negative hyperbolic,

that is

ε(δ)
n∏
i=1

t
〈δ,Si〉
i · ζγ([γ]).

Starting from δ = ∅, Equation 6.1.2 follows by induction on the set of γ ∈
P
(
(Y \ N (L)) t {ē, h̄, ē+, h̄+}

)
.

The theorem follows then by applying Corollary 6.1.2 and Theorem 3.3.8
to the �ow of R′.

Proof. (of Theorem 6.0.12 for �bered links). Theorem 6.0.14 and Equation 3.3.2
immediately imply Equation 6.0.1.

To prove the result in the hat version we reason again at the level of chain
complexes. Recall that, if N := Y \ N̊ (L), by the de�nition of the ECK-chain
complexes:

ECC(L, Y, α) = ECC ē+,h̄+(N,α) =

= ECC h̄+(N,α)
n⊗
i=1

〈∅, e+
i , (e

+
i )2, . . .〉 =

= ÊCC(L, Y, α)
n⊗
i=1

〈∅, e+
i , (e

+
i )2, . . .〉

where the second line comes from the product formula 6.1.3 and the fact that
e+
i is elliptic for any i. Taking the graded Euler characteristics as above we
have:

χ(ECC(L, Y, α)) = χ(ÊCC(L, Y, α)) ·
n∏
i=1

ζe+i ([e+
i ]) =

= χ(ÊCC(L, Y, α)) ·
n∏
i=1

1

1− ti
,

where the last equality comes from the fact that [e+
i ] = [µi] = ti ∈ H1(Y \L). If

Y = S3, last equation and Equation 6.0.1 evidently imply Equation 6.0.2.

Note that if (L, S, φ) is an open book decomposition of Y , one can think
of ECK(L, Y, α) and ÊCK(L, Y, α) as invariants of the pair (S, φ) and the
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adapted α. It is interesting to note that the Euler characteristic ofECK1(L, Y, α)
with respect to the surface S (see Example 5.2.11) coincides with the sum of
the Lefschetz signs of the Reeb orbits of period 1 in the interior of S, i.e. the
Lefschetz number Λ(φ) of φ.

In fact, given Y (not necessarily an homology three-sphere) we can say even
more by relating ECK1(L, Y, α) to the Hamiltonian Floer homology SH(S, φ),
whose Euler characteristic is precisely Λ(φ). Here we are considering the ver-
sion of SH(S, φ) for surfaces with boundary that is slightly rotated by φ in
the positive direction, with respect to the orientation induced by S on ∂S (see
for example [7] and [17]).

Proposition 6.1.6. Let (L, S, φ) be an open book decomposition of a three-
manifold Y and let α be an adapted contact form. Then

ECK1(L, Y, α) ∼= SH(S, φ),

where the degree of ECK(L, Y, α) is computed using a page of the open book.

Proof. This is an easy consequence of the de�nitions and of some results in
Chapter 2. By Lemma 5.2.6 and using the notations of Subsection 2.2.1,

ECK1(L, Y, α) ∼= ECH1(int(N), α).

Observing that the proof of Theorem 2.3.1 in [10] (Theorem 3.6.1) works also
if ∂S is disconnected we get

ECK1(L, Y, α) ∼= PFH1(N(S, φ)).

The result then follows applying Proposition 2.3.2.

We get an interesting consequence of this fact when also the Alexander
degree of Heegaard-Floer knot homology of a �bered knot is computed with
respect to (the homology class of) a page of the associated open book. In-
deed, using the symmetrized degree adopted by Ozsváth and Szabó, we know
that HFK−−g(K,Y ) is isomorphic to a copy of Z/2 generated by the class of
the corresponding contact element. Moreover, whenever χ(ECK(K,Y, α)) =
χ(HFK−(K,Y )), we have also that HFK−−g+1(K,Y ) categori�es Λ(φ). Obvi-
ously, if the conjectures we stated in last chapter hold, thenHFK−−g+1(K,Y ) ∼=
SH(S, φ).
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6.2 The general case

In this section we prove theorems 6.0.12 and 6.0.14 in the general case.
The �rst approach that one could attempt to apply Theorem 3.3.8 to a

general link L ⊂ Y is to look for a contact form on Y that is compatible
with L and whose Reeb vector �eld is circular outside a neighborhood of L.
Unfortunately we will not be able to �nd such a contact form. The basic idea
to solve the problem consists in two steps:

Step 1. �nd a contact form α on Y which is compatible with L and for which
there exists a �nite decomposition Y \ L =

⊔
iXi for which R = Rα is

circular in each Xi;

Step 2. apply Theorem 3.3.8 separately in each Xi to get the result: this can be
done using the (more general results) in Sections 6 of [16].

On the other hand the special decomposition of Y \ L that we �nd in Step 1
will allow us to follow an easier way and we will substitute Step 2 by:

Step 2′. apply repeatedly the Torres formula for links to get the result.

Torres formula, �rst proved in [55], is a classical result about Alexander polyno-
mial, which essentially explains how, starting from the Alexander polynomial
of a given link L, to compute the Alexander polynomials of any sub-link of L
. We will recall the formula in the next subsection.

6.2.1 Preliminary

The key ingredient to solve the Step 1 of our strategy is the following:

Proposition 6.2.1. Let L = K1 t . . .tKn ⊂ Y be an n-components link and
let ξ be any �xed contact structure on Y . Then there exists an m-components
link L′ ⊂ Y with m ≥ n and such that:

1. L′ = L tKn+1 t . . . tKm;

2. L′ is �bered and the associated open book decomposition of Y supports ξ.

This result has been proved in the case of knots by Guyard in his Ph.D.
thesis (in preparation, [24]). Using part of his arguments, we give here a proof
for the case of links.

Proof. As recalled in Section 1.4, given a contact structure ξ on Y , in [19]
Giroux explicitly constructs an open book decomposition of Y that supports
a contact form α such that ker(α) = ξ. In the proof of Theorem 1.4.5 we saw
that such an open book decomposition is built starting from a cellular decom-
position D of Y that is compatible with ξ. Moreover we recalled that, up to
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taking a re�nement, any cellular decomposition of Y can be made compatible
with ξ by an isotopy.

Using the simplicial approximation theorem, it is possible to choose a tri-
angulation D of Y in a way that, up to isotopy, L is contained in the 1-skeleton
D1 of D. Up to take a re�nement, we can suppose moreover that D is adapted
to ξ.

Let S be the 0-page of the associated open book built via Theorem 1.4.4:
properties 1 and 2 of S reminded during the proof of that theorem, imply that
L ⊂ int(S) and that, if N (D0) is a suitable neighborhood of D0, then it is
possible to push L \ N (D0) inside S to make it contained in ∂S. Note that
in each strip composing S \ N (D0) we have only one possible choice for the
direction in which to push L \N (D0) to ∂S in a way that the orientation of L
coincides with that of ∂S.

We would like to extend this isotopy also to L∩N (D0) to make the whole
L contained in ∂S. Suppose that B is a connected component (homeomorphic
to a ball) of N (D0). In particular we suppose that B ∩ S is connected. Then
L∩ ∂B consists of two points Q1 and Q2. The extension is done di�erently in
the following two cases (see �gure 6.2):

Figure 6.2: Making L contained in ∂S in N (D0): easy case at the left and
general case at right. The dotted lines are 1-simplexes in D1, while the bold
segments from Q1 to Q2 represent the push-o�s of L in N (D0).

1. Easy case: this is when Q1 and Q2 belong to the same connected com-
ponent of ∂S ∩B. The isotopy is then extended to B by pushing L ∩B
to ∂S ∩B inside S ∩B (�gure at left);

2. General case: if Q1 and Q2 belong to (the boundary of) di�erent con-
nected components a1 and a2 of ∂S ∩B we proceed as follows.
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Let Pi be a point in the interior of ai, i = 1, 2. Let γ be a simple arc in
S∩B from P1 to P2 (there exists only one choice for γ up to isotopy). Let
S ′ be obtained by positive Giroux stabilization of S along γ (see �gure
at the right).
Now we can connect Q1 with a2 by an arc in ∂S ′ crossing once the belt
sphere of the 1-handle of the stabilization; let Q′2 be the end point of
this arc. Since a Giroux stabilization is compatible with the orientation
of ∂S, Q′2 and Q2 are in the same connected component of a \ {P2}, so
that we can connect them inside ∂S ∩B and we are done.

Pushing L to ∂S (and changing L and S as before where necessary) gives a
link L that is contained in ∂S. To see that L is isotopic to L we have to prove
that, for any B as before, the two kinds of push-o�s we use do no change the
isotopy class of L.

Clearly the isotopy class of L is preserved in the easy case. For the general
case, it su�ces to show that substituting the arc L ∩ S ∩ B from Q1 to Q2

with an arc crossing once the belt sphere of the handle does not change the
isotopy class of L. This is equivalent to proving that, if γ is the path of the
Giroux stabilization and γ̄ = γ ∪ c, where c is the core curve of the handle,
then γ̄ bounds a disk in Y \ L. This can be proved for example by using the
particular kind of Heegaard diagrams presented in Section 4.1. Observe that,
if b is the co-core of the handle, then γ̄ is isotopic in S to b ∪ φ′(b), where
φ′ is the monodromy on S ′ given by the Giroux stabilization. We �nish by
observing that, up to a small perturbation near ∂S, b ∪ φ′(b) is isotopic to an
attaching curve of a Heegaard diagram of Y .

We recall now the Torres formula that we will use in the second step of our
proof of Theorem 6.0.14. Since we need to consider the Alexander quotient as
a polynomial, we will use the same convention adopted for the graded Euler
characteristic and we will express the variables as subscripts of the symbol
ALEX.

Theorem 6.2.2 (Torres formula). Let L = K1 t . . . t Kn be an n-link in a
homology three-sphere Y , Kn+1 a knot in Y \ L and L′ = L tKn+1. Let Si be
a Seifert surface for Ki, i ∈ {1, . . . , n+ 1}. Then

ALEXt1,...,tn,1(Y \ L′) .
= ALEXt1,...,tn(Y \ L) ·

(
1−

n∏
i=1

t
〈Kn+1,Si〉
i

)
,

where ALEXt1,...,tn,1(Y \L′) indicates the polynomial ALEXt1,...,tn+1(Y \L′) eval-
uated in tn+1 = 1.
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We refer the reader to [55] for the original proof. See also [15] for a proof
making use of techniques of dynamics. We also mention that in [4] a proof
of this theorem is provided making use only of elementary techniques about
Seifert surfaces; moreover a generalization of the formula to links in any three-
manifold is given in [56].

Sketch of the proof. Apply Theorem 3.3.8 to ALEX(Y \ L) using a �ow φ for
which

1. Kn+1 is the only periodic orbit of φ contained in a neighborhood of Kn+1;

2. Kn+1 is elliptic.

The factor

1−
n∏
i=1

t
〈Kn+1,Si〉
i =

(
ζKn+1(ρL(Kn+1))

)−1
(6.2.1)

expresses then the fact that Kn+1 is the only orbit counted in ALEX(Y \ L)
and not in ALEX(Y \ L′).
The condition tn+1 = 1 comes from the fact that, if µn+1 is a meridian for
Kn+1, so that tn+1 = [µn+1], then ζµn+1(ρL([µn+1])) = 1.

Observation 6.2.3. One can see the condition tn+1 = 1 also from a purely
topological point of view. Image to take the manifold Y \ L′ and then to glue
back Kn+1. The e�ect on H1(Y \ L′) is that the generator [µn+1] is killed and
now the homology class of a loop γ ⊂ Y \L′ is determined only by the numbers
〈γ, Si〉, Si ∈ {1, . . . , n} (i.e. by ρL(γ)).

6.2.2 Proof of the results

Proof of Theorem 6.0.14. Let L = K1 t . . .tKn be a given link in Y . Propo-
sition 6.2.1 implies that there exists an open book decomposition (L′, S, φ) of
Y with binding

L′ = L tKn+1 t . . . tKm

for some m ≥ n. Let α be a contact form on Y adapted to (L′, S, φ). Let
R = Rα be its Reeb vector �eld. As remarked in Section 6.1, and using the
same notations, R is circular in Y \ V̊ ′(L′) where, recall, V ′(L) is an union of
tubular neighborhoods V ′(Ki) ( V (Ki), i ∈ {1, . . . ,m} of L.

Since α is also adapted to L′, then each V̊ (Ki) is, by de�nition, foliated by
concentric tori, which in turn are linearly foliated by Reeb orbits that intersect
positively a meridian disk for Ki in V (Ki). Now, we can choose α in a way that
for each i ∈ {n+1, . . . ,m} the tori contained in V ′(Ki) are foliated by orbits of
R with �xed irrational slope. This condition can be achieved by applying the
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Darboux-Weinstein theorem in V (Ki) to make α|V ′(Ki) like in Example 6.2.3
of [9].

This implies that, for each i ∈ {n + 1, . . . ,m}, the only closed orbit of R
in V ′(Ki) is Ki. De�ne U(L′) =

⊔m
i=1 U(Ki), where

U(Ki) =

{
V (Ki) if i ∈ {1, . . . , n};
V ′(Ki) if i ∈ {n+ 1, . . . ,m};

We have:

χ(ECC(L, Y, α)) = ζρL(φR|Y \V (L))

= ζρL(φR|Y \U(L′))) ·
m∏

i=n+1

∏
γ∈P(V ′(Ki))

ζγ(ρL([γ]))

= ζρL(φR|Y \U(L′))) ·
m∏

i=n+1

ζKi(ρL([Ki]))

= ζρL′ (φR|Y \U(L′)))|t1,...,tn,1,...,1 ·
m∏

i=n+1

ζKi(ρL([Ki]))

.
= ALEXt1,...,tn,1,...,1(Y \ L′) ·

m∏
i=n+1

ζKi(ρL([Ki]))

= ALEXt1,...,tn,1,...,1(Y \ L′) ·
m∏

i=n+1

(
1−

n∏
j=1

t
〈Ki,Sj〉
j

)−1

= ALEXt1,...,tn(Y \ L),

where:
lines 1 and 2 follow reasoning like in the proof of Equation 6.1.2;
line 3 hold since Ki, for i ∈ {n+ 1, . . . ,m}, is the only Reeb orbit of α in
V ′(Ki);

line 4 comes from the idea in Observation 6.2.3: ρL and ρL′ coincide on the
generators ti of H1(Y \L) for i ∈ {1, . . . , n} and ti = [µi] = 1 ∈ H1(Y \L)
for i ∈ {n+ 1, . . . ,m};

line 5 ρL′ and R|Y \U(L′) satisfy hypothesis of Theorem 3.3.8, up to slightly
perturb R near ∂U(Ki), i ∈ {1, . . . , n}, to make it non degenerate trans-
verse to the boundary like in the proof in Section 6.1;

line 6 is due to the fact that the Ki's are elliptic;
line 7 is obtained by applying repeatedly the Torres formula on the com-
ponents Kn+1, . . . , Km.
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Observation 6.2.4. As mentioned at the beginning of this section, we could
also apply the more general results in [16] using the fact that the Reeb vector
�eld R used is circular in each U(Ki), since here R is positively transverse to
any meridian disk of Ki in V̊ (Ki).

The proof of Theorem 6.0.12 works exactly like in the �bered case.



Chapter 7

A �ltered isomorphism

In this chapter we start to investigate the relations between ECK and
HFK at the homology level. In light of the proof of the equivalence between
ECH and HF given by Colin, Ghiggini and Honda, it is natural to start with
the �bered knots.

Let (K,S, φ) be an open book decomposition of a three manifold Y , α an
adapted contact form and N the mapping torus of (S, φ). Let (ĈF (S, φ), ∂HF )

be a chain complex for ĤF (Y ) as de�ned in Section 4.1. We ask then how the
chain map

Φ: ĈF (S, φ) −→ PFC≤2g(N, ∂N)

recalled in Section 4.3, and inducing an isomorphism in homology, behaves
with respect to the �ltrations induced by K on the chain complexes. The
main result of this chapter (see Theorem 7.3.8) is

Theorem 7.0.5. For a suitable choice of the Hamiltonian structure, the chain
map Φ respects the knot �ltrations.

The proof of this theorem is carried on in several steps. The main problem
to face is that essentially the di�erentials of ĈF (S, φ) and PFC≤2g(N, ∂N) are
both de�ned in the complement of a neighborhood of K in Y . The same thing
holds also for Φ: this implies that none of the holomorphic curves counted by
these maps crosses K, and so we cannot directly apply the methods used to
de�ne the knot �ltrations inHF and ECH (see for example Proposition 2.4.3).
To solve the problem we modify φ by an isotopy into another monodromy φ̃
that will allow us to �see� the knot �ltrations in the complement of K. We do
this in Section 7.1 on the ECH-PFH side and in Section 7.2 on the HF side.
In Section 7.3 we will be �nally ready to study the holomorphic curves counted
by Φ with respect to the knot �ltrations and we will prove the theorem above.
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7.1 Adapting the monodromy to the binding

From now on (Y, ξ) will be a contact 3-manifold and K ⊂ Y an oriented
�bered knot which is the binding of the open book decomposition (S, φ) of Y
compatible with ξ, where S is of �xed genus g. Moreover we will assume all the
conventions given in Chapters 1-4. In particular we use the same conventions
for the parametrization near the neighborhood N (K).

7.1.1 Monodromy and contact form near the binding

In this subsection we want to slightly modify the monodromy φ and the
associated contact form α near ∂S. Before doing this we recall the construction
of a family of contact forms in [a, b] × T 2 given in [9, Section 6], where a < b
are real numbers.

Parametrize [a, b]× S1 × [0,2]
0∼2

by (y, ϑ, t) and consider the 1-form

α = cydϑ+ (C − cF (y))dt (7.1.1)

depending on c, C ∈ R and F : [a, b]→ R smooth. Then

dα = cdy ∧ dϑ− cF ′(y)dy ∧ dt

and, taking C � c > 0, the 3-form

α ∧ dα = c(C − cF (y) + cyF ′(y))dy ∧ dϑ ∧ dt

is a positive volume form and so α is contact. By simple calculations we �nd
a basis for the associated contact structure:

ξα = ker(α) = 〈∂y, (C − cF (y))∂ϑ − cy∂t〉

and for the Reeb vector �eld

Rα =
1

Pα(y)
(F ′(y)∂ϑ + ∂t)

with Pα(y) = α(F ′(y)∂ϑ+∂t) = C+ c(yF ′(y)−F (y)), which is always positive
since C � c > 0.

Call f(y) = F ′(y). All the tori Ty = {y} × S1 × [0,2]
0∼2

are foliated by orbits
of Rα and the �rst return map of Rα is

(y, ϑ) 7→ (y, ϑ+ f(y)). (7.1.2)
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If Ty is linearly foliated by closed orbits, de�ne the degree deg(Ty) ∈ N∗∪{∞}
of the torus Ty to be the degree of any of the orbits foliating Ty. The di�erential
of the �rst return map of the �ow of Rα on ξ(y,ϑ) is(

1 0
deg(Ty)f ′(y)

Pα(y)
1

)
(7.1.3)

(cf. Section 1.3). Since deg(Ty), Pα(y)  0, the torus Ty is M-B negative if
f ′(y) < 0 and positive if f ′(y) > 0.

Example 7.1.1. The restriction to [0, 3) × S1 × [0,2]
0∼2

of the contact form on
Y \ K used in Section 1.4 can be obtained as above by using the function
fδ : [0, 3)→ R.

Let S̃ be the surface obtained by removing [2, 3) × S1 from the extended
page and then gluing a copy of [2, 4]×S1 along {2}×S1. Now extend fδ|[0,2] to a
new smooth function fδ,ε : [0, 4]→ R depending on a new constant 0 < ε� 2π
and such that:

1. fδ,ε coincides with fδ in [0, 2];

2. fδ,ε has maximum in y = 3 of value ε;

3. fδ,ε(4) = 0;

4. dfδ,ε(y) > 0 in [2, 3) and dfδ,ε(y) < 0 in (3, 4];

5. fδ,ε = −y + 4 in a small neighborhood of {y = 4}.
See Figure 7.1. Call φ̃δ,ε the monodromy on S̃ obtained by extending φ from
S to S̃ via the di�eomorphism given by equation 7.1.2 using fδ,ε.

Let Ñ be the mapping torus of (S̃, φ̃). Moreover let α̃δ,ε be a contact form
on Ñ obtained by extending αδ to [0, 4] × S1 × [0,2]

0∼2
using the equation 7.1.1

with F primitive of fδ,ε. When we are not interested in a particular choice of
(δ, ε) we will write simply φ̃ and α̃.

Observation 7.1.2. In the region [2, 4]× S1 × [0,2]
∼ , the torus Ty is a positive

M-B for y ∈ [2, 3) and negative for y ∈ (3, 4]. In particular T4 is a negative
M.B. torus foliated by Reeb orbits with slope ∞, exactly like T1. Moreover
the condition 5 above implies that the behavior of the monodromy and the
contact form near ∂Ñ is the same as near ∂N . In fact we can observe that
Ñ is di�eomorphic to N and that we can see φ̃ as a slight modi�cation of
φ by an isotopy which is the identity outside a neighborhood ({y ∈ (1, 4]})
of the boundary and inside a smallest neighborhood of the boundary (where
the monodromy is given by condition 5). Actually we can consider φ̃ just to
be a modi�cation of φ, obtained by composing the latter with a small ��nger
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Figure 7.1: The function fδ,ε on [0, 4].

move� along {y = 1, 5} in the positive K-direction and another �nger move
along {y = 3} in the opposite direction. It will be useful to keep in mind both
interpretations of Ñ .

Throughout the rest of the chapter we will always assume that δ, ε � 2π
2g
:

this will guarantee that, for any y ∈ [0, 4], deg(Ty) � 2g except for the tori
T1, T2 or T4, which have degree 1.

If (S̃, φ̃) is obtained as above we say that it is adapted to the binding.

7.1.2 ÊCH for open books adapted to the binding

In this subsection we analyze the embedded contact homology of (Ñ , α̃).
Let ECH≤2g(Ñ , α̃) be the homology of the chain complex ECC≤2g(Ñ , α̃) with
the ECH boundary (cf. subsection 2.2.1).

Doing the M-B modi�cation on the tori T1, T2 or T4 we get three couples
of degree 1 Reeb orbits:

(e, h) ⊂ T1;
(e+, h+) ⊂ T2;
(e−, h−) ⊂ T4.

These are the only simple Reeb orbits in Ñ ∩ {y ∈ [0, 4]} with degree less or
equal then 2g and their C-Z indices are µ(e) = µ(e−) = −1 and µ(e+) = 1 for
the elliptic orbits and µ(h) = µ(h+) = µ(h−) = 0 for the hyperbolic orbits.
Moreover we have the immediate identi�cation:

ECH≤2g(Ñ , α̃) ≡ ECH
e+,h+,e−,h−
≤2g (N, α̃). (7.1.4)

Observation 7.1.3. We remark that the two orbits e+ and h+ are not the
orbits with the same name in last chapters. On the other hand we decided to
call them in the same way because they will play a somewhat analogue role in
the de�nition of the knot �ltration.
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By Observation 7.1.2 we can see e− ⊂ ∂Ñ as the analogue of e ⊂ ∂N , so
that, by equation 2.2.9, we have

ÊCH(Ñ , ∂Ñ , α̃) ∼=
ECH≤2g(Ñ , α̃)

e−γ ∼ γ
.

Since embedded contact homology does not change under isotopy of the
monodromy, we have

Corollary 7.1.4. ÊCH(Ñ , ∂Ñ , α̃) ∼= ÊCH(N, ∂N, α).

For what follows it is convenient to construct a speci�c isomorphism be-
tween the two homology groups.

Proposition 7.1.5. The ECH boundary map on {e, h, e+, h+, e−, h−} acts as
follows:

∂e = ∂e− = 0
∂h = ∂h− = 0
∂h+ = e− + e
∂e+ = h− + h

(7.1.5)

Figure 7.2: Relevant orbits and holomorphic curves in Ñ ∩ {y ∈ [0, 4]} (cf.
Figure 2.1).

The proof of Proposition 7.1.5 is similar to that of Equations 2.2.3 and we
discuss it in the next subsection with some critical details which will be useful
later. For the moment we focus on the consequences.

Any equivalence class of orbit sets γ in Ñ under the relation e−γ ∼ γ is
determined by its element in which e− has exponent 0. If γ ∈ O(Ñ), the

equivalence class [γ] ∈ ECC≤2g(Ñ)

e−γ∼γ will be often denoted simply by γ.
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Corollary 7.1.6. The ECH di�erential ∂ on ÊCH(Ñ , ∂Ñ) is given by:

∂(ea+h
b
−h

c
+γ) = ea−1

+ hb−(h− + h)hc+γ + ea+h
b
−h

c−1
+ (e− + e)γ + ea+h

b
−h

c
+∂γ,

where the terms are understood to be 0 if they contain factors with negative
exponent or hyperbolic orbits with total multiplicity grater then 1.

Proof. Any orbit in {y ∈ ([1, 4]\{1, 2, 4})} ⊂ Ñ has degree grater then 2g and
so it does not contribute to the generators of ECC≤2g(Ñ). This fact and the
Blocking and Trapping lemmas prevent holomorphic curves from crossing Ti
along curves with slope ∞, for i ∈ {1, 2, 4}. Moreover applying homological
arguments (like in the proof of Lemma 9.5.1 of [9] or in Lemma 7.3.7 below)
on holomorphic curves crossing some Ti along di�erent slope, one can see that
these curves would not be contained in Ñ . This implies in particular that our
contact form is nice, i.e. that any ECH-index 1 M.B. building has at most one
connected component of ECH-index grater then 0 (see De�nition 4.4.1 and
Corollary 9.5.2 in [9]). The result then follows applying Proposition 7.1.5.

Observation 7.1.7. Note in particular that if γ ∈ O(N), then deg(∂γ) =
deg(γ).

In the rest of this subsection it will be more convenient to write (equivalence
classes of) orbit sets in Ñ in the form ea+h

b
−γ, with now γ ∈ O(N ∪{h+}) and,

again, a, b natural numbers with b ∈ {0, 1}.
Note now that

(
ECC

h+,e−
≤2g (N, α̃), ∂

)
is a sub-complex of

(
ECC≤2g(Ñ , α), ∂

)
.

Lemma 7.1.8. Consider the chain map

i : ECC
h+,e−
≤2g (N, α̃) −→ ECC≤2g(Ñ , α̃)

de�ned on the generators by
i(γ) = γ.

Then i is a homotopy equivalence with homotopy inverse

π : ECC≤2g(Ñ , α̃) −→ ECC
h+,e−
≤2g (N, α̃)

de�ned on the generators by

π(ea+h
b
−γ) =

{
0 if a > 0
hbγ if a = 0

.
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Proof. It is evident that π◦i is the identity map on ECCh+,e−
≤2g (N, α̃). It remains

to prove that i ◦ π is homotopy equivalent to the identity on ECC≤2g(Ñ , α̃),
that we will call simply id. Let

H : ECC≤2g(Ñ , α̃) −→ ECC≤2g(Ñ , α̃)

be the map de�ned on the generators by

H(ea+h
b
−γ) =

{
0 if b = 0

ea+1
+ γ if b = 1

.

We want to prove that H is a homotopy between i and π, i.e.

(∂ ◦H +H ◦ ∂)|ker ∂ = (id+ i ◦ π)|ker ∂ (7.1.6)

We check relation 7.1.6 for a > 0 and leave to the reader the similar calculation
for a = 0.

a > 0 and b = 0

(∂ ◦H +H ◦ ∂)(ea+γ) = H
(
ea−1

+ (h+ h−)γ + ea+∂γ
)

= ea+γ

(id+ i ◦ π)(ea+γ) = ea+γ

a > 0 and b = 1

(∂ ◦H +H ◦ ∂)(ea+h−γ) = ∂(ea+1
+ γ) +H

(
ea−1

+ hh−γ + ea+h−∂γ
)

= ea+(h+ h−)γ + ea+1
+ ∂γ + ea+hγ + ea+1

+ ∂γ

= ea+h−γ

(id+ i ◦ π)(ea+h−γ) = ea+h−γ

7.1.3 Holomorphic curves near ∂N

This subsection is devoted to the proof of Proposition 7.1.5. The key ingre-
dients are results in [60, Section 4.2] and [59, Chapter 3]: we can summarize
what we need as follows.

Consider [a, b]×T 2 with 0 < a < b, parametrized by (y, ϑ, t) as in subsection
7.1.1 and endowed with a contact form

λ = g(y)dϑ+ h(y)dt. (7.1.7)
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The contact condition is g′h− gh′ > 0 and the associated Reeb vector �eld is

Rλ =
1

g′h− gh′
(g′∂t − h′∂ϑ).

Then any torus {y0} × T 2 is foliated by Reeb orbits. Suppose that:

1. g′ is a positive function;

2. g(a), g(b) 6= 0;

3. h′(a) = h′(b) = 0 and h′(y) 6= 0 ∀y ∈ (a, b).

These imply that Ta and Tb are the only tori foliated by Reeb orbits with slope
g′

2πh′
=∞.
Let Cϑ0 be the cylinder {ϑ = ϑ0} ⊂ [a, b] × T 2. For the following two

lemmas see [59, Chapter 3].

Lemma 7.1.9. There exists a family of �nite energy holomorphic cylinders

{Zs,ϑ}s∈R,ϑ∈S1

that foliate R× [a, b]× T 2 and such that, if πR : R× [a, b]× T 2 −→ [a, b]× T 2

is the projection along the R direction, then ∀(s0, ϑ0)

πR(Zs0,ϑ0) = int(Cϑ0) (7.1.8)

and
∀s1 ∈ R, Zs0+s1,ϑ0 is the s1-translate of Zs0,ϑ0 . (7.1.9)

Moreover:

1. if h′′(a) < 0 and h′′(b) > 0, each Zs,ϑ is positively asymptotic to Ta and
negatively asymptotic to Tb;

2. if h′′(a) > 0 and h′′(b) < 0, each Zs,ϑ is positively asymptotic to Tb and
negatively asymptotic to Ta.

The tori Ta and Tb are M-B and their perturbation behaves nicely with
respect to the foliation, in the following sense (see [59, 3.3]). Suppose we
are in the case 1 of Lemma above. Then Ta is a positive M-B torus and the
corresponding S1-family of Reeb orbits is perturbed into the couple (ea, ha);
similarly a perturbation near the negative M-B torus Tb produces a couple of
orbits (eb, hb). Here µCZ(ea) = 1, µCZ(ha) = µCZ(hb) = 0 and µCZ(eb) = −1.

Lemma 7.1.10. The perturbation near Ta and Tb induces a perturbation of
the family {Zs,ϑ}s∈R,ϑ∈S1 which gives: a Fredholm index 1 holomorphic cylinder
from ea to hb; another index 1 holomorphic cylinder from ha to eb; an in�nite
family of holomorphic cylinders of index 2 from ea to eb.
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The case corresponding to situation 2 of Lemma 7.1.9 is analogue: Ta is
now negative M.B. and Tb is positive and the Conley-Zehnder indices of (ea, ha)
and (eb, hb) are exchanged, as the orientation of the holomorphic cylinders.

A priori there could be other holomorphic curves with image in [a, b]× T 2;
under some conditions on the curves this can not happen.

Lemma 7.1.11 (Lemma 8.4.8, [9]). Suppose we are in the situation 1 (resp.
2) of Lemma 7.1.9. Let u : (F, j)→ (R× [a, b]×T 2, J) be a holomorphic curve
with some ends in {b} × T 2 (resp. {a} × T 2) and without ends in (a, b)× T 2;
then u(F ) is equal to Zs,ϑ for some (s, ϑ).

Proof. Suppose �rst that πR(u(F )) * Cϑ for any ϑ. Then there exists ϑ0

such that u does not have any end contained in Cϑ0 or crossing it. Let L :=
πR(u(F )) t int(Cϑ0) 6= ∅. L is a closed 1-dimensional immersed submanifold
of Cϑ0 and π−1

R (L) is a compact submanifold of u(F ) and this implies that

for s large enough Zs,ϑ0 ∩ u(F ) = ∅. (7.1.10)

On the other hand, since L 6= ∅, ∃s0 ∈ R such that u(F ) intersects nontrivially
Zs0,ϑ0 and the intersection is strictly positive by holomorphicity. By property
7.1.9 it follows that

∀s1 > 0 #(u t Zs0+s1,ϑ0) = #(u t Zs0,ϑ0) > 0,

which contradicts condition 7.1.10.
Suppose now that πR(u(F )) ⊆ Cϑ0 for some ϑ0. The 3-dimensional sub-

manifold R × Cϑ0 of R × [a, b] × T 2 is foliated by {Zs,ϑ0}s and must contain
u(F ). If u(F ) 6= Zs,ϑ0 for any s then there exists s0 such that u(f) intersects
transversely and non-trivially Zs0,ϑ0 . The dimension of this intersection must
be 1, which is absurd since u(F ) and Zs0,ϑ0 are both holomorphic.

Proof of Proposition 7.1.5. The contact form α̃ on [1, 4]×T 2 satis�es the con-
ditions at the beginning of this subsection. By the Blocking Lemma and the
fact that all the orbits in [1, 4] × T 2 \ (T1 ∪ T2 ∪ T4) have degree grater than
2g, no curve counted by ∂ECH can cross Ti, i ∈ {1, 2, 4}.

Lemma 7.1.10 corresponding to case 1 of Lemma 7.1.9 applied to [2, 4]×T 2

implies that there exist two Fredholm index 1 families of cylinders, one from
h+ to e− and one from e+ to h−; these cylinders are embedded and the ECH
index inequality (see [27]) implies that also their ECH index is 1. For the
same reason all the other cylinders of the foliation are of ECH index 2 and
are not counted by ∂.
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Similarly, applying the lemmas 7.1.9 (case 2) and 7.1.10 to [1, 2] × T 2 we
see that there exist other two ECH-index 1 cylinder, one from h+ to e and
one from e+ to h, and no other cylinder of the foliation is counted by ∂. By
Lemma 7.1.11, since none of the curves can cross T4, these four cylinders are
the only curves counted by ∂ECH and the result follows.

7.1.4 The knot �ltration inside the open book

In order to drop the x̃x in the notations, from now on we will assume that
an open book decomposition comes already adapted to its binding, i.e. it is
already like (S̃, φ̃) in last subsections. More precisely:

De�nition 7.1.12. Let (S, φ) be an open book decomposition. If there exists
a neighborhood [0, 4]× ∂S of ∂S in S where φ can be expressed in terms of a
function fδ,ε as above, we say that (S, φ) is adapted to the binding. Moreover
the mapping torus of the neighborhood [0, 4] × ∂S will be called adaptation
neighborhood.

Notation. Let ∂S × [0, 4] be the neighborhood (of the adaptation) of ∂S in
S as in last sections. Given y ∈ [0, 4], we will call Sy the surface S \ (y, 4].
Moreover let Ny denote the mapping torus of (Sy, φ|Sy), so that ∂Ny = Ty. In
particular now N = N(S, φ) = N4 is the whole mapping torus (containing the
adaptation neighborhood too).

Let (S, φ) be an open book decomposition of Y whose monodromy is
adapted to the bindingK. In this section we explain how to de�ne ÊCK(K,Y, α)
in N . This is obtained essentially by identifying the orbits e+ and h+ with
their counterpars in the de�nition of ÊCK(K,Y, α) that we gave in Section
2.4. By de�nition of the knot �ltration, the Alexander degree will be given by
the degree of the orbits as in De�nition 2.2.9.

Consider

ECCh+,e−(N1, ∂N, α) :=
ECCh+,e−(N1, α)

e−γ ∼ γ
.

Endow it with the restriction of the di�erential ∂ECH given by Corollary 7.1.6:
it is easy to see that this is a chain complex whose homologyECHh+,e−(N1, ∂N, α)

is isomorphic to ÊCH(N, ∂N, α).
The isomorphism is obtained by using Lemma 7.1.8 and Theorem 2.2.5,

identifying e− with the orbit ∅: this makes sense in light of the quotient by
the equivalence relation e−γ ∼ γ.

Using the second interpretation it is easy to see that, if ∂ECK is the di�er-
ential on ECCh+,e−(N1, ∂N, α) de�ned by

∂ECK(ha+γ) = ha−1eγ + ha∂ECHγ, (7.1.11)
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then
H
(
ECCh+,e−(N1, ∂N, α), ∂ECK

) ∼= ÊCK(K,Y, α) (7.1.12)

Similarly to what done for closed manifolds in Section 2.3, we can switch
from contact structures and Reeb orbits to stable Hamiltonian structures and
periodic orbits. Since the de�nitions are the same of the case of ECH we avoid
the details. If PFCh+,e−(N1) and PFCh+,e−(N1, ∂N) are de�ned in the same
way as their counterparts in ECH and the di�erential ∂PFK is de�ned by an
expression analogue to Equation 7.1.11, then the hat version of the periodic
Floer knot homology of the open book (K,S, φ) is:

P̂FK(K,S, φ) := H
(
PFCh+,e−(N1, ∂N), ∂PFK

)
.

Obviously this homology is de�ned only for �bered knots and indeed it should
be considered as an invariant of the couple (S, φ). In order to simplify the
notations we are avoiding to refer to the stable Hamiltonian structure in the
formulas.

Observation 7.1.13. Note that the quotient by the relation e−γ ∼ γ is not
compatible with the degree de�ned in Subsection 2.2.1, since deg(e−γ) =
deg(γ) + 1. However, since the orbit e− can be interpreted formally as the
empty orbit, the most reasonable de�nition for the degree of an orbit set γ is

deg(γ) = min
δ∈[γ]∼

{deg(δ)}.

This is obviously the degree of the (unique) orbit set in [γ]∼ that belongs
to O(N3) and

deg(γ) = 〈γ, S ′〉. (7.1.13)

Note that for every k, [ek−]∼ = [∅]∼ and, with the last de�nition of deg, these
are the only orbits with degree 0.

7.2 ĤFK on a page

In Section 7.1 we modi�ed the monodromy of an open book in order to
adapt it to the binding K: this allowed us to �see� the �ltration given by K
inside the mapping torus of the open book (and then in the codomain of the
chain map Φ).

In this section we want to do something similar in spirit for Heegaard Floer
homology. The classical de�nition of the knot �ltration for HF should require
a stabilization of the Heegaard diagram, as done for example in [25, Section
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3.2]: we want to avoid this stabilization in order to get a diagram compatible
with K and contained in a page of the open book.

Remember the construction of an Heegaard diagrams adapted to an open
book decomposition (K,S, φ) of Y given in Section 4.1. Without loss of gen-
erality we can assume that near ∂S the curves ai are such that

ai ∩ ∂S × [0, 1] = ({r(2i− 1)} ∪ {r(2i+ 1)})× [0, 1] if i odd,
ai ∩ ∂S × [0, 1] = ({r(2i− 2)} ∪ {r(2i)})× [0, 1] if i even,

(7.2.1)

where r is a real number such that, for a �xed metric for which ∂S has length
2π, 0 < r << π

2g
where g is the genus of S (see �gure 7.3).

Figure 7.3: The curves ai near ∂S.

Note in particular that, for any i, ai ∩ ∂S × [0, 1] is an union of two arcs
a−i and a+

i where a−i = rl × [0, 1] and a+
i = r(l + 2)× [0, 1] for some integer l.

Suppose that (S, φ) is adapted to K in the sense of De�nition 7.1.12: in
particular S1× [0, 4] is a neighborhood of ∂S, S ′ = S3 and φ depends on a fδ,ε
as in 7.1.1.

Fixed δ and ε, choose r such that 4gr < ε and the diagram (S, a, φ(a))
near ∂S is like in �gure 7.4 (cf. �gure 7.1).

Note in particular that φ acts on the arcs ai ∩ {y ∈ [2, 4]} as a �nger move
of length ε in the direction of K: this creates a new bigon in S \ (a ∪ φ(a)) in
which we pick a marked point z. If we choose δ rational, the orbit of z under
the action of φ consists of deg(T3) � 2g points (see 7.1.1) and z is the only
one of them belonging to the bigon, while all the others belong to the region
of the diagram where we put the marked point w. In particular we can assume
that w = φ(z).

De�nition 7.2.1. Let x = (x1, . . . , x2g) be a generator of ĈF (S, a, φ(a)).
De�ne the degree of x by

deg(x) := 〈x, S ′〉 = #{j | xj ∈ S ′}.
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Figure 7.4: The diagram (S, a, φ(a)) near ∂S. Note the new bigon in the
diagram containing the marked point z.

Observation 7.2.2. Note that last de�nition can be seen as an analogue for
set of chords of the Equation 7.1.13 for orbit sets.

Observation 7.2.3 (Orientations). We remark that (K,S, φ) is given as open
book decomposition of Y ; since we are working on −Y , K is now oriented as
the boundary of S in −Y . Since the arc connecting z to w in Σ \ a is oriented
as ∂S, the conventions about the role of z and w in the orientations given in
subsection 3.2.1 imply then that ĈF (S, a, φ(a), z, w) is a Heegaard diagram
for (−Y,−K).

Recall the de�nition of the cobordism W given in Section 4.2. De�ne
moreover K ′ = {y = 3} = ∂S ′; note that K ′ is a closed curve on S isotopic to
K.

The proof of the following is analogue to that of Lemma 2.4.3, avoiding the
considerations about the signs of the intersections.

Lemma 7.2.4. Let u : F → W be a degree k ≤ 2g holomorphic multisection
of W with positive end x and negative end y. Then for any t0 ∈ (0, 1):

deg(x)− deg(y) = 〈u,R× {t0} ×K ′〉.

We want to prove that this degree coincides, up to a shift, with the Alexan-
der degree de�ned using the Spinc-structures.
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7.2.1 The knot �ltration on the page

Let (Σ,β,α) be the Heegaard diagram for Y compatible with (S, φ) built
in Subsection 4.1. Recall in particular that Σ = S0t∂S0

S 1
2
and (S, a, φ(a)) can

be identi�ed with (S0,α ∩ S0,β ∩ S0). We will place the marked points later.
Let U1 be a small open disk in the bigon created by the �nger move along

K ′ and such that it non trivially intersects K ′. De�ne U2 = φ(U1) and stabilize
S0 (resp. Σ) by removing U1 and U2 and gluing a handle [0, 1]× S1 as showed
in �gure 7.5; let S0 (resp. Σ) be the resulting surface. See [25, Section 3] for
an analogous stabilization.

Figure 7.5: The stabilized Heegaard diagram with the multiplicities of P .

K ′ \ (U1 ∪ U2) has two connected components, one intersecting the curves
a and not φ(a) and the other one intersecting φ(a) and not a. De�ne:

� β0 = {1
2
} × S1 contained in the handle [0, 1]× S1;

� α0 obtained by closing the component of K ′ \ (U1∪U2) intersecting φ(a)
with an arc in the handle crossing β0 only once;

� λ′ obtained by closing the component of K ′ \ (U1 ∪ U2) intersecting a
with an arc in the handle intersecting β0 only once and disjoint from α0.
Then modify λ′ by a �nger move twisting twice along β0 and call λ the
resulting curve.

Note that α0 does not intersect the other α-curves and that λ does not
intersect the β-curves. Place the marked points z and w near β0 like in the
picture. Then (Σ,β ∪ β0,α ∪ α0, w, z) is a Heegaard diagram for (−Y,−K)
with λ and β0 respectively longitude and meridian of a close copy of K in Y .
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We remark that this stabilization is necessary to de�ne a Heegaard diagram
for the three-manifold −Y0(−K) obtained by 0-surgery on −Y along −K: this
will allow us to associate to any generator x of ĈF (Σ,β,α) a Spinc-structure
sx ∈ Spinc(−Y0(−K)) (see Section 3.2).

Let CF (Σ,β ∪ β0,α∪α0, w) be the free Z2-module generated by (2g+ 1)-
tuples of intersection points as usual and let ĤF (Σ,β ∪ β0,α ∪ α0, w) be
the associated Heegaard Floer homology. By the invariance of HF under
stabilizations of Heegaard diagrams (Theorem 10.1, [42]), we have

ĤF (Σ,β ∪ β0,α ∪ α0, w) ∼= ĤF (Σ,β,α, w).

The isomorphism is induced by the isomorphism between the chain com-
plexes de�ned on the generators by

ĈF (Σ,β,α, w) −→ ĈF (Σ,β ∪ β0,α ∪ α0, w)

x = (x1, . . . , x2g) 7−→ x := (x0, x1, . . . , x2g),

where x0 is the unique point in β0∩α0. Indeed, since x0 is the only intersection
point between {αi}i and µ, this must be a component of all the generators of
ĈF (Σ,β ∪ β0,α ∪ α0, w), and in particular, in any generator, no other point
in µ or α0 can exist.

Now, if v is one of the two points in λ ∩ α0 nearest to x0, to each x we
can univocally associate the (2g + 1)-tuple x′ = (v, x1, . . . , x2g) of intersection
points in the diagram (Σ,β ∪ λ,α ∪ α0, w) for −Y0(−K)

Let P be the periodic domain on (Σ,β ∪ λ,α ∪ α0, w) with boundary
α0 ∪ λ with multiplicity 2 in all the regions of S0 \ {y ∈ [3, 4]}, 1 in those of
{y ∈ [3, 4]} ∪ S 1

2
and as in �gure 7.5 in the handle. P is a periodic domain

representing the homology class of Ŝ, obtained by capping o� S along K
(actually K ′) in −Y0(−K).

In 3.2.1 we recalled that to this data we can associate a �ltration on the
Floer complex, whose degree is given by the integer 1

2
〈c1(sw(x)), [Ŝ]〉, where

sw(x) = sw(x′) is the Spinc structure in −Y0(−K) determined by x′. This
quantity can be calculated in terms of P by using equation 3.2.2:

〈c1(sw(x′)), [Ŝ]〉 = χ(P) + 2
(
nu(P) +

2g∑
i=1

nxi(P)
)
.

Recalling that we de�ned S ′ = S \ {y ∈ [3, 4]}, in our case we have:
� nu(P) = 1

4
(0 + 1 + 0− 1) = 0.

� n̄xi(P) =

{
1 if xi ∈ Σ \ S ′
2 if xi ∈ S ′
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� χ(P) is calculated by dividing Σ into pieces corresponding to regions
with di�erent multiplicity, we compute (see for example [45, Section 3])
χ(P) =

∑2
i=−1 iχ(Ri) = −6g.

Substituting in the formula above, we have:

〈c1(sw(x)), [Ŝ]〉 = 2
(
− 3g + #

{
i | xi ∈ Σ \ S ′

}
+ 2#

{
i | xi ∈ S ′

})
.

where we consider S ′ as contained in Σ. The following is then straightforward:

Lemma 7.2.5. Let x = (x1, . . . , x2g) be a generator of ĈF (S, a, φ(a)) with
(S, φ) adapted to K and x = (x0, x1, . . . , x2g). Then

1

2
〈c1(sw(x)), [Ŝ]〉 = deg(x)− g.

7.2.2 The homology

Consider the (non-stabilized) diagram (Σ,β,α, z, w), with z and w placed
as in Figure 7.4. Note that the placement of w is di�erent from that in Section
4.1, but since they are in the same connected component of Σ \ (β ∪ α) the
two choices give the same constraints on the holomorphic curves counted by
the HF -di�erential.

De�ne ĈFK∗,i(Σ,β,α, z, w) to be the subcomplex of CF∗(Σ,β,α, w) gen-
erated by 2g-tuples x of intersection points with deg(x) = i. Note that this is
not the standard symmetrized Alexander grading of knot Floer homology: our
convention di�ers from the last just by a shift of −g on the degrees. The com-
putation of last subsection implies that ĈFK∗,i(Σ,β,α, z, w) is isomorphic (as
Z2-module) to the standard knot Floer complex as de�ned in 3.2.

Notation. Given y0 ∈ [0, 4], we will denote by Ay0 the annulus ([0, 1]×{y0}×
S1) ⊂ [0, 1]× Σ. For example [0, 1]×K ′ = A3.

Recall that W = R × [0, 1] × Σ and for any P ∈ Σ, χP = [0, 1] × {P} is
the Reeb chord in [0, 1]× Σ passing through P . De�ne σP = R× χP ⊂ W . If
u : Ḟ → W is a holomorphic curve, call nz(u) the algebraic intersection number
〈u, σz〉. Since u and σz are holomorphic, every intersection point between them
has positive sign.

De�ne moreover

G3 := R× [0, 1]×K ′ ⊂ R× [0, 1]× S 1
2
.

Σ is the non-stabilized Heegaard surface, so that G3 is connected.

Proposition 7.2.6. If u : (Ḟ , j)→ (W,J) is a holomorphic curve counted by
∂HF , which tends to x for s→ +∞ and to y for s→ −∞ then

deg(x)− deg(y) = nz(u). (7.2.2)
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Proof. This result is the analogue of Equation 3.2.4 and can be recovered using
the fact that the �ltration given by deg is just a translation of the Alexander
�ltration, for which the result holds. However it will be convenient for us to
proceed reasoning as follows.

Since the set of the branched points of u is �nite, up to slightly pushing K ′

in the y direction, by Theorem 1.2.5 we can suppose that u is always transverse
to ∂t|G3 and that it has no branched points in G3. By Lemma 7.2.4, we have

deg(x)− deg(y) = 〈u,R× {t0} ×K ′〉 (7.2.3)

up to choosing t0 ∈ (0, 1) such that all the intersections are transverse. Let us
prove that

〈u,R× {t0} ×K ′〉 = nz(u). (7.2.4)

Since in G3 the image of u is always transverse to ∂t, by holomorphicity it
is also transverse to ∂s. Then u intersects G3 transversely along a �nite set of
curves C(u) = {c1, . . . , ch} with

∂ci ⊂ (R× {0} × φ(a)) t (R× {1} × a)

for any i. Then ci can be of one of the following two kinds (see Figure 7.6):

1. ∂ci ⊂ R× {0} × (φ(a) ∩K ′) or ∂ci ⊂ R× {1} × (a ∩K ′);
2. ci goes from R× {0} × (φ(a) ∩K ′) to R× {1} × (a ∩K ′).

Figure 7.6: Examples of curves ci ∈ C(u) projected on [0, 1] × K ′. Note the
curve crossing [0, 1]× {w} can not exists if nw(u) = 0.

Consider the homology

H∗(G3) := H∗(G3,R× {0, 1} × (K ′ \ P )),

where P is a point in K ′ inside the region of w.
Fix the basis (µ, λ) of H1(G3) ∼= Z2 with generators given, in order, by a

copy of a Reeb chord and of K ′. If [ci] = (mi, li), then for the two cases above
we have respectively
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1. (mi, li) = (0, 0);

2. (mi, li) = (1, 0).

Indeed, since u is a positive multisection and nw(u) = 0, then ∀i mi ≥ 0 and
li = 0. Moreover in case 1 ci is homotopic, relatively to its boundary, to a curve
contained either in R×{0}×K ′ or in R×{1}×K ′ so that mi = 0. Finally in
case 2 ci is simple (since u has no branched points in G3) and connected and
so mi = 1.

Note now that the curves of type 1 do not give contributions to either
of sides of Equation 7.2.4. Suppose that ci is of type 2. Since u is always
transverse to ∂t|G3 , the placement of z implies #{ci∩σz} = 1 and the positivity
of intersections between holomorphic curves gives

nz(u) =
∑

{i|ci of type 2}

1.

On the other hand, by the position of the curves of the diagram, we can
parametrize ci in a way that ċi = (cs, ct, 0, cϑ) has cϑ always strictly negative,
where the coordinates are expressed in terms of the positive basis (∂s, ∂t, ∂y, ∂ϑ)
for TW . If P ∈ ci ∩ (R×{t0}×K ′) then (∂s, ∂ϑ, ċi, J(ċi)) is a positive basis of
TPW if and only if ct > 0 and so

〈u,R× {1} ×K ′〉 =
∑

{i|ci of type 2}

( ∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

)
.

But the fact that ci has a homology class (mi, li) with mi = 1 implies that∑
{P∈ci∩(R×{t0}×K′)}

sign(ct) = 1

for any i and the result follows.

Since the signs of the intersections in equation 7.2.4 are all positive, ∂HF

respects the �ltration given by deg. Let ∂HFK be the part of ∂HF that strictly
preserves the (�ltration) degree, i.e. ∂HFK counts the holomorphic curves u of
∂HF such that nz(u) = nw(u) = 0. We can see ∂HFK as a family of di�erentials

∂HFKi : ĈFK∗,i(Σ,β,α, z, w) −→ ĈFK∗,i(Σ,β,α, z, w) (7.2.5)

for i ∈ {−g, . . . , g}.

Corollary 7.2.7. H
(
ĈFK∗,i(Σ,β,α, z, w), ∂HFKi

) ∼= ĤFK∗,i(−K,−Y ).



7.3. Φ and the degree �ltrations 117

Proof. For any i, Lemma 7.2.5 implies that the map x 7→ x induces a bijec-
tion between ĈFK∗,i(Σ,β ∪ β0,α ∪ α0, z, w) and ĈFK∗,i(Σ,β,α, z, w). The
constraints imposed by z, w ∈ Σ on the curves counted by ∂HFK imply that
the di�erential counts holomorphic curves u which are a disjoint union of a
trivial strip on x0 (of index 0) and a 2g-multisection u of index 1 not inter-
secting the regions containing z or w. So u can be seen as a curve counted
by ∂HFKi . Then there is a bijection u 7→ u between the curves counted by the
di�erentials, which is compatible with the bijection on the complexes (in the
sense that if u �ows from x to y then u �ows from x to y).

In order to de�ne the knot Floer complex on a page (and not on the en-
tire Σ) it is su�cient to take into account only 2g-tuples in S0 and quotient the
groups by relation 4.1.2 as done in Section 4.1. We will call ĈFK∗,i(S,a, φ(a), z)
the resulting groups. The proof that the homology does not change under the
quotient is the same of that for HF in [10, Section 4.9]. Then we have

ĤFK∗,i(S,a, φ(a), z, w) := H∗(ĈFKi(S,a, φ(a), z), ∂HFKi )
∼= ĤFK∗,i(−K,−Y )

(7.2.6)

Notation. Similarly to the notation used for ÊCK and P̂FK, we will de�ne

ĈFK∗,≤i(S,a, φ(a), z) =
⊕
j≤i

ĈFK∗,i(S,a, φ(a), z)

7.3 Φ and the degree �ltrations

In this section we prove that Φ respects the knot �ltrations described. Let
us begin with some de�nition and notation.

De�nition 7.3.1. We say that ϑ0 is far from the curves of the diagram (S, a, φ(a))
(or simply far from the curves) if ([0, 4] × {ϑ0}) ∩ φ(a) = ∅. In this case we
say also that, for any y0, P = (y0, ϑ0) is far from the curves.

Observation 7.3.2. Note that, if φ = φδ,ε and r is like in the de�nition of the
curves a of the diagram given in Section 4.1, then ϑ0 is far from the curves of
the diagram if and only if ϑ0 ∈ (4gr + ε, 2π − δ).

From now on we consider the M-B perturbations of the tori Ty, y = 1, 2, 4,
such that the orbits h, e+, h− cross S0 far from the curves. By this we mean
that, if

h ∩ S0 = (ϑh, 1),
e+ ∩ S0 = (ϑe+ , 2),
h− ∩ S0 = (ϑh− , 4),

(7.3.1)
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then ϑh, ϑe+ and ϑh− are far from the curves.
Let us introduce some other notations that we will use in this and the next

sections.

Notations. � Given ϑ0 ∈ [0, 2π] and j = 1, 2, 4, let δjϑ0
denote the simple

orbit {ϑ = ϑ0} contained in the M.B. torus Tj (e.g. h = δ1
ϑh
).

� Given X, u : F → R×X and s0 ∈ R, we denote u≤s0 the restriction of
u to u−1({s ≤ s0}). Similarly de�ned are the functions u≥s0 , u=s0 , etc.

� Sometimes, given a manifold X and a coordinate x on some subset of X,
we will denote by X{x∈[x0,x1]} the subset of points of X with coordinate
x included in [x0, x1]. Similarly de�ned are X{x=x0}, X{x∈(x0,x1)} etc. We
will use a similar notations for subsets ofX de�ned by conditions on more
then one coordinate like X{x∈[x0,x1],z=z0}, etc. (for example W{t=t0,y=3} =
R× {t0} ×K ′ ⊂ W and N{y=y0} = Ty0 ⊂ N).

� Given y0 ∈ [0, 4], in analogy with the submanifoldG3 ofW of last section,
we call G+

y0
the 3-dimensional proper submanifold W+{y=y0} of W+.

7.3.1 Properties of the Φ-curves near ∂S

In this subsection we describe some properties about the curves counted
by Φ in N{y∈[1,4]}. We will refer to these curves simply as Φ-curves.

Fix a basis ([µ], [λ]) for H1(N{y∈[0,4]}) where µ is a meridian for K and λ is
a longitude contained in S0. For any y0, consider the chain of maps

G+
y0
↪→ W+{y∈[0,4]} ↪→ W{y∈[0,4]} � N{y∈[0,4]},

where the �rst two maps are the natural inclusions and the last one is the
projection along the coordinate s. The chain above induces then the following
one in homology:

H1(G+
y0

)→ H1(W+{y∈[0,4]})→ H1(W{y∈[0,4]})→ H1(N{y∈[0,4]}).

These maps are all isomorphisms: we will keep to call ([µ], [λ]) the pre-images
of the generators of H1(N{y∈[0,4]}) in each of the groups above.

Let u : (Ḟ , j) → (W+, J+) be a degree k multisection and let y0 ∈ [0, 4]
be such that u is always transverse to ∂t|G+

y0
and does not have any branched

point or limit in G+
y0

(the set of the allowed y0 is dense in [0, 4] by Theorem
1.2.5). By holomorphicity, u is transverse to G+

y0
and Im(u) ∩G+

y0
consists in

a �nite (possibly empty) collection of properly embedded curves

Cy0(u) = {c1, . . . , ch}

of the following two kinds:
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� a curve with boundary in

G+
y0
∩
(
(2,+∞)×

(
(φ(a)× {0}) ∪ (a× {1})

))
⊂ ∂G+

y0

called b-component ;
� a close curve, called c-component.

Consider the homology

H∗(G
+
y0

) := H∗(G
+
y0
, {s > 2} × {0, 1} × (K ′ \ P )),

with P a point far from the curves. To any (b- or c-) component ci we can
associate its homology class [ci] = (mi, li) ∈ H1(G+

y0
) with respect to the basis

([µ], [λ]).
Recall that in section 7.1 we saw that N{y∈[2,4]} and N{y∈[1,2]} are foliated

by two families of holomorphic cylinders Zs,ϑ. In N{y∈[2,4]} the cylinders are
such that, ∀(s0, ϑ0):

1. πR(Zs0,ϑ0) = C((2,4),ϑ0);

2. ∀s1 ∈ R Zs0+s1,ϑ0 is the s1-translate of Zs0,ϑ0 ;

3. lims→+∞ Zs0,ϑ0 = δ2
ϑ0
;

4. lims→−∞ Zs0,ϑ0 = δ4
ϑ0
.

De�ne
Z+
s,ϑ := Zs,ϑ ∩W+.

The proof of the following Lemma uses similar arguments of that in Lemma
6.6.5 in [10].

Lemma 7.3.3. Let u be a Φ-curve. Then, for any y0 ∈ [1, 4], u intersects G+
y0

in a set of curves, each with homology class of the form (m, 0) with respect to
the basis ([µ], [λ]).

Proof. We prove the result for y0 ∈ [2, 4] using the holomorphic foliation in
N{y∈[2,4]}. The proof in y0 ∈ [1, 2] is analogue.

Note �rst that, since u can not cross T4, the result is true for y0 = 4.
Suppose there exists y0 ∈ (2, 4] for which the statement is false. Then there
exists c ∈ Cy0(u) with homology class (m, l) ∈ H1(G+

y0
) in the coordinates

([µ], [λ]) with l 6= 0. Then for any ϑ0 such that P = (y0, ϑ0) is far from the
curves of the diagram, there exists s0 ∈ R such that u intersects Z+

s0,ϑ0
and

〈u, Z+
s0,ϑ0
〉 > 0

by the positivity of the intersection.
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Since we are far from the curves, for any s < s0 Z
+
s0,ϑ0

is homotopic to Z+
s,ϑ0

through an homotopy whose image Z does not intersect the Lagrangian La,
so that Z does not cross the boundary of u or the chords at the positive ends
of u. Since moreover u can not have negative limits in N{y∈(2,4)} we have

〈u, Z+
s,ϑ0
〉 = 〈u, Z+

s0,ϑ0
〉 > 0

for any s < s0. Since each Z+
s,ϑ0

has negative limit in T4, this forces u to
intersect all the G+

y for y ∈ [y0, 4). The argument applied to all the ϑ far from
the curves implies that the result is false also for T4, contradiction.

Corollary 7.3.4. Let u be a Φ-curve. Then, for any y0 ∈ [0, 4], u intersects
G+
y0

in a set of curves whose homology class is either (1, 0) or (0, 0).

Proof. By the last lemma any c ∈ Cy0(u) has homology class [c] = (m, 0).
Moreover since c is connected and always transverse to ∂t, then either m = 0
or m = 1.

Observation 7.3.5. Note that [c] = (0, 0) only if c is a curve with either
∂c ⊂ R×{0}× (φ(a)∩K ′) or ∂c ⊂ R×{1}× (a∩K ′) (cf. the curves of type
1 in the proof of Proposition 7.2.6).

Corollary 7.3.6. Let u be a Φ-curve. Any negative end of u in T2 is in h+.

Proof. Let u′ be the restriction of u to a neighborhood of the puncture asso-
ciated to a negative end in T2. If Im(u′) crosses a torus T2±ε along a closed
curve, then last lemma implies that it must have slope∞ and Trapping Lemma
should force the puncture to be positive. The only possibility is that Im(u′)
contains a �ow trajectory of the Morse function of T2, which can have only h+

as negative end.

Let us continue to study how Φ-curves can approach the orbits on Ti for
i ∈ {1, 2, 4}. Now we will use arguments similar to that in the proof of Lemma
9.5.1 in [9].

Fix an orbit δ = δiϑ0
⊂ Ti (we are using the notation introduced at the

beginning of this section). Suppose that u contains δ at its negative limit.
Given a thin tubular neighborhood N (δ) of δ in N , look at

Im(u) ∩ {s = s̄} ⊂ W+{s=s̄}, (7.3.2)

where s̄� 2 is �xed. If s̄ is small enough, this is a braid around δ contained in
N (δ) with connected components, say, {b1, . . . , bk}, each of which is associated
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to an end in δ. Fix the longitude l ⊂ ∂N (δ) for δ, obtained by taking one of
the two curves of the intersection ∂N (δ)∩N{y∈[0,4],ϑ=ϑ0}, oriented as a positive
meridian for K. If m = ∂N (δ)∩S0 oriented in some way, ([m], [l]) is a basis for
H1(∂N (δ)). Suppose [bj] = (fj, gj) ∈ H1(∂N (δ)) with respect to this basis.

Lemma 7.3.7. Let u be a Φ-curve having some negative end tending to δ = δiϑ0

and let N (δ) and let ([m], [l]) be de�ned as above. If {b1, . . . , bk} is the bride
given by Equation 7.3.2 then for any j:

[bj] = (0, gj).

Proof. To prove that fj = 0 we argue as follows. If 0 < ε << 1, consider the
thickened torus Ti,ε = S1 × {y ∈ [i − ε, i + ε]} × S1 ⊂ N and suppose that
N (δ) is thin enough to be contained in int(Ti,ε). Let ([µ±], [λ±]) be a basis of
H1(G+

i±ε) like the basis ([µ], [λ]) de�ned in the last subsection. Call H the �rst
homology group of

(
R× (Ti,ε \ N (δ))

)
∩W+ (this can be seen as the product

of B+ with the annulus S{y∈[i−ε,i+ε]} with a small disk near δ ∩ S removed).
Then in H we have the relations

[m] = ±([λ+]− [λ−]) (7.3.3)

[l] = [µ]. (7.3.4)

where the sign in the �rst depends on the choice of the orientation of m. Let
Aj be the connected component of u ∩

(
R × (Ti,ε \ N (γ))

)
∩ W+ such that

bj ⊂ Aj. Then obviously
[∂Aj] = 0 ∈ H.

So if fj 6= 0 for some j and ε is small enough, u should cross both G+
i+ε and

G+
i−ε along curves with non trivial homology along the components λ+ or λ−,

which contradicts Lemma 7.3.3.

7.3.2 Φ is �ltered

We are �nally ready to prove that the chain map

Φ : ĈF (S, a, φ(a))→ PFC2g(N, ∂N)

of Subsection 4.3 is �ltered with respect to the degrees on the knot chain
complexes.

Theorem 7.3.8. For any i ∈ {0, . . . , 2g}:

Φ
(
ĈFK≤i(S, a, φ(a), z)

)
⊂ PFC

h+,e−
≤i (N1, ∂N).
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Observation 7.3.9. There is here a slight disambiguation in the use of the
degree, due to the fact that we changed de�nition in this chapter (see Obser-
vation 7.1.13). Indeed in the de�nition of the chain complex PFC2g(N, ∂N),
the number �2g� refers to the total intersection of the orbit sets with S, while
in the theorem the �≤ i� refers to the intersection with S ′. In the rest of
this section, unless stated otherwise, we will always refer to the degree deg
as to the second interpretation (which gives the knot �ltration in PFH as
de�ned in Subsection 7.1.4). This degree is then di�erent from the degree of
the multisections of W+ counted by Φ (which is always 2g).

The �rst problem to face is the good de�nition of Φ in the theorem. In
fact the image of Φ is contained in PFC≤2g(N, ∂N) but not a priori in the
subcomplex PFC

h+,e−
≤2g (N1, ∂N). We have then to prove that there are no

Φ-curves with some negative end that is asymptotic to either {e+} or {h−}.
So far we made assumptions only on the orbits h−, e+ and h+, requiting

that they must be far from the curves of the diagram. Now we need to make
an assumption also on the position of h+, imposing that it must be near the
curves of the diagram: by this we mean that ϑh+ ∈ (0, 4gr), where r is the
value used in Section 4.1 in the de�nition of the diagram.

Proposition 7.3.10. Let u : Ḟ → R×N be a Φ-curve negatively asymptotic to
some γ ∈ O≤2g(N). Under the hypothesis made on the orbits and the Heegaard
diagram in N{y∈[0,4]}, we have

γ ∈ O≤2g(N1 ∪ {h+, e−}).

Proof. By Corollary 7.3.6 u can not have e+ as negative end. Let us prove now
that u can not even have h− as negative end. The proof uses again Wendl's
holomorphic foliations of [59] and is similar to that of Lemma 7.3.3.

Let u′ be an irreducible component of u which limits to h− and study the
intersections of u′ with the holomorphic submanifolds Z+

s,ϑ of W+ de�ned in
the previous section.

Note �rst that πR(u′ ∩ {y ∈ [2, 4]}) can not contain the entire cylinder
C([2,4],ϑh− ). Indeed, since ϑh− is far from the curves, the only possibility is that
u′ contains a �ow trajectory of the Morse function associated to T2 �owing
from some chords in the direction of ϑh− . This is not possible because of the
fact that e+ is far from the curves and h+ is the minimum of the Morse function
of T2 and it is near the curves of the diagram. In fact the proof of Corollary
7.3.6 shows that u′ should contain a gradient line of T2 �owing from the curves
of the diagram in the direction of ϑh+ ; but this is not possible since h+ is near
the curves and so the �ow line can not glue with C([2,4],ϑh− ) ∩ T2 along δ2

ϑh−

(which is far from the curves).
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Since ϑh− is far from the curves of the diagram, there exists then ϑ0 close
to ϑh− (and far from the curves) such that:

1. u′ does not have any end in C([2,4],θ0);

2. Q := πR(Im(u′) ∩ {s ≤ 2}) t C((2,4),ϑ0) 6= ∅.

Figure 7.7: The projection of Q to N . The image of u should approach
C([2,4],ϑh− ) for s tending to −∞ but also to some ϑ near the curves of the
diagram for s tending to 2.

By 2 there exists s0 such that

〈u′, Z+
s0,θ0
〉 > 0

(since u′ and Z+
s0,θ0

are both holomorphic), while 1 implies that π−1
R (Q) is

compact in u(Ḟ ) and
Im(u′) ∩ Z+

s1,θ0
= ∅

for s1 � s0.
On the other hand, for any s′ < s0, Z

+
s′,θ0

is homotopic to Z+
s0,θ0

through a
homotopy whose image Z is the union of the submanifolds Z+

s,θ0
, s ∈ [s′, s0].

Since θ0 is far from the curves and Z does not intersect any end of u′

〈u′, Z+
s′,θ0
〉 = 〈u′, Z+

s0,θ0
〉 > 0

and for s′ = s1 we get a contradiction.

Before giving the �nal part of the proof of Theorem 7.3.8 we need a last
lemma, whose proof is very similar to that of Lemma 2.4.3 (avoiding the con-
siderations about the positivity of intersections).
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Lemma 7.3.11. Let u : Ḟ → W+ be a degree k ≤ 2g holomorphic multisec-
tion of W+ with positive end x and negative end γ. Suppose that u is always
transverse to ∂t|G+

3
and does not have any branched point in G+

3 . Then

deg(x)− deg(γ) = 〈u,R× {t0} ×K ′〉

for any t0 ∈ (0, 1) such that the intersections above are transverse.

Proof. of Theorem 7.3.8
The proof is very similar to that of Proposition 7.2.6. By the last Lemma

we need just to prove that

〈u,R× {t0} ×K ′〉 ≥ 0.

Since u is always transverse to ∂t, by holomorphicity it is also transverse to ∂s.
Then u intersects G+

3 transversely along a �nite set of simple curves C3(u) =
{c1, . . . , ch} of the following three kinds

1. ∂ci ⊂ R× {0} × (φ(a) ∩K ′) or ∂ci ⊂ R× {1} × (a ∩K ′);
2. ci goes from R× {0} × (φ(a) ∩K ′) to R× {1} × (a ∩K ′);
3. ci is a closed curve.

By Observation 7.3.5 ci is homologically trivial in H1(G+
3 ) if it is of type 1

and a meridian for K if it is of type 2 or 3. In any case we can parametrize
ci in a way that ċi = (cs, ct, 0, cϑ) has cϑ always strictly negative, where the
coordinates are expressed in terms of the positive basis (∂s, ∂t, ∂y, ∂ϑ) for TW :
since fδ,ε is positive on {y = 3}, this orientation makes curves of type 2 and 3
homologically equivalent to positively oriented meridians. Then

〈u,R× {t0} ×K ′〉 =
∑
i

∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

=
∑

{i|ci of type 2 or 3}

∑
{P∈ci∩(R×{t0}×K′)}

sign(ct)

=
∑

{i|ci of type 2 or 3}

1 ≥ 0

and the result follows.

We end the chapter by observing that Theorem 7.3.8 is not only interesting
by itself, but it can be seen as a �rst step in the proof of Conjecture 2.4.13
in the case of �bered knots. Indeed, let Ψ : ÊCC∗(Y, α) → ĈF ∗(−Y ) be the
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chain map that induces in homology the inverse isomorphism of Φ. Let H (G)
be chain homotopies between Ψ ◦Φ (Φ ◦Ψ) and the identity map of ĈF (−Y )

(ÊCC(Y, α)). All these maps are de�ned (in [10] and [11]) by counting certain
holomorphic curves in symplectic four manifolds with boundary. By standard
results about spectral sequences, if one can prove that all the maps above are
�ltered with respect of the knot �ltrations on ĈF ∗(−Y ) and ÊCC∗(Y, α), then
conjecture 0.0.2 for �bered knots is true. Finally, in light of Proposition 6.2.1,
it should be possible to generalize the result to any knot.
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Résumé : Soit (Y, α) une 3-variété de contact et ĤF (Y ), ÊCH(Y, α) respectivement les
homologies de Heegaard Floer et de contact plongée associées. Dans une serie d'articles,
Colin, Ghiggini et Honda prouvent qu'il existe un morphisme de chaînes Φ qui induit un
isomorphisme Φ∗ : ĤF (Y ) → ÊCH(Y, α) en homologie. Étant donné un n÷ud K dans Y ,
une version chapeau ÊCK(K,Y, α) de l'homologie de contact plongée pour les n÷uds est
dé�nie dans [13] et un isomorphisme avec l'homologie de Heegaard Floer ĤFK(K,Y ) est
conjecturé. Ces deux homologies peuvent être dé�nies comme la première page de suites
spectrales déterminées par des �ltrations induites par K sur des complexes de chaînes pour
ÊCH(Y, α) et ĤF (Y ).
Le but de cette thèse est de fournir des indices sur la véracité de cette conjecture. On dé�nie
une version complète ECK de l'homologie ÊCK et on généralise les dé�nitions de ECK
et ÊCK aux entrelacs. On calcule ensuite les caractéristiques d'Euler de ces homologies
pour les n÷uds et entrelacs dans les trois-sphères d'homologie (munies d'une forme de con-
tact convenable) et on prouve que, dans S3, l'homologie ECK est une catégori�cation du
polynôme d'Alexander à multivariables. Ce fait, associé à un résultat bien connu analogue
en HFK, implique que la conjecture est vraie au niveau de caractéristiques d'Euler en S3.
Finalement, nous montrons que, à homotopies de chaînes près, le morphisme Φ préserve les
�ltrations du n÷ud. Ceci peut être considéré comme la première étape d'une preuve de la
conjecture pour les n÷uds �brés.

Mots clés : Théorie des n÷uds, homologie de Heegaard Floer, homologie de contact
plongée, polynôme d'Alexander.

Abstract : Given a contact 3-manifold (Y, α), let ĤF (Y ) and ÊCH(Y, α) be the associated
Heegaard Floer and, respectively, embedded contact homologies. In a series of papers Colin,
Ghiggini and Honda proved that there exists a chain map Φ that induces an isomorphism
Φ∗ : ĤF (Y ) → ÊCH(Y, α) in homology. Given a knot K in Y , in [13] a hat embedded
contact knot homology ÊCK(K,Y, α) is de�ned and an isomorphism with the hat Heegaard
Floer knot homology ĤFK(K,Y ) is conjectured. These two homologies can be de�ned as
�rst pages of spectral sequences arising from �ltrations induced by K on chain complexes
for ÊCH(Y, α) and ĤF (Y ).
The aim of this thesis is to provide some evidences about the veracity of this conjecture. We
de�ne a full ECK homology and we generalize the de�nitions of ÊCK and ECK to any
link. We compute then the Euler characteristics of these homologies for knots and links in
homology three-spheres (endowed with a suitable contact form) and we prove that in S3 the
ECK homology is a categori�cation of the multivariable Alexander polynomial. This fact,
together with a well known analogous result in HFK, implies that the conjecture is true at
the level of Euler characteristics in S3. Finally we show that, up to chain homotopies, the
chain map Φ preserves the knot �ltrations. This can be considered as a �rst step of a proof
of the conjecture for �bered knots.

Keywords : Knot theory, Heegaard Floer homology, embedded contact homology, Alexan-
der polynomial.


