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Introduction

This document presents some of the results I obtained in the last few years in the field
of cryptology. They illustrate my main achievements in different aspects of cryptology, as
well as the directions I will investigate in the future. My research concerns mostly the design
and the security analysis of cryptographic schemes, the underlying computational number
theory and the use of these schemes in real-life applications. In this document, I will describe
results in the first and second topics. I will essentially describe the results, without proofs
which can be found in the corresponding articles.

My PhD thesis focused on signatures with special features, in particular the control of
the verification process and anonymity properties. Electronic signatures aim at emulating
the traditional hand-written signatures, but they are conceptually very different. For in-
stance, because of their numerical nature, they must depend on the message to prevent
trivial copies. But also, to satisfy the many (and sometimes contradictory) security require-
ments of complex systems like electronic voting, e-cash, or contract signing, the signature
must be enriched with additional features. For instance, I designed designated verifier sig-
natures [LLQ06], undeniable and directed signatures [LV10, LV05, LPV05] or ring signa-
tures [HL08, ACGL11]. After my PhD, I subsequently got into encryption, especially en-
cryption dedicated for privacy: I worked in particular on attribute-based encryption, proxy
re-encryption [HLR10, CDL11] and plaintext-checkable encryption, which is a new primitive
which universally allows, given a plaintext, a ciphertext and a public key, to check whether
the ciphertext actually encrypts the plaintext under the key.

I am also interested in the applications of such cryptographic primitives to secure par-
ticular systems. For instance, we introduced in [CLM08] the concept of trapdoor redactable
signatures, which allows some designated entities to modify some specific parts of a signed
message and to produce a new signature of the resulting message without any interaction
with the original signer. This new cryptographic tool was needed in protocols for group
content protection, permitting members of a group to legally distribute a protected content
among themselves. In [BHL07], we formalised the aggregation of (identity-based) desig-
nated verifier signatures, and in particular the aggregation of MACs, to efficiently authen-
ticate messages in routing protocols for mobile ad-hoc networks. I was also involved in re-
search on e-cash, within the project PACE funded by the French Agence Nationale de la
Recherche. In particular, in [C+09] we proposed the first fair e-cash system with a compact
wallet that enables users to spend efficiently k coins while only sending to the merchant
O(λ log k) bits (where λ is a security parameter), thanks to a new use of the Batch RSA tech-
nique and a tree-based representation of the wallet.

Many of these cryptographic schemes involve the computation of pairings on elliptic
curves, introduced in cryptography in 2000 in [Jou00]. Elliptic curves are popular in cryptog-
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raphy because, at a fixed level of security, they allow for shorter keys than RSA for instance.
Another reason is that some of these curves are equipped with an efficiently computable bi-
linear map which is cryptographically-friendly, in the sense that it makes possible to achieve
cryptosystems with new functionalities. This very popular tool has nevertheless the reputa-
tion of being computationally costly, but is still indispensable for many primitives. I studied
the algorithmic of this object within the project PACE: we obtained in [BELL10] a generic
improvement of Miller’s algorithm which gives a faster evaluation for odd embedding de-
grees. I worked on another mathematical object for the purpose of cryptanalysis, namely
quadratic forms (or ideals in quadratic fields). In [CL09, CJLN09], we propose a definitive
attack on a large family of very efficient cryptosystems which are based on the arithmetic of
ideals in quadratic fields. This cryptanalysis is based on a factoring algorithm for numbers
of the form pq2 for p and q two large prime numbers.

In this manuscript, the first chapter covers my contributions in the computational num-
ber theory used in cryptography. It includes an exponential-time factoring algorithm ded-
icated to numbers of the form pq2 based on the algorithmic of binary quadratic forms ob-
tained in collaboration with G. Castagnos, A. Joux and P. Q. Nguyen. Its impact on the se-
curity of the NICE family of cryptosystems lying in real quadratic field is then discussed.
An arithmetic cryptanalysis of the variant in imaginary quadratic fields obtained with G.
Castagnos [CL09] is also described. Eventually, a refinement of Miller’s algorithm to com-
pute pairings in elliptic curve, in collaboration with J. Boxall, N. El Mrabet and D.-P. Le.
[BELL10], is presented.

The second chapter is devoted to the design and security analysis of functional cryp-
tographic schemes. In a first part, I will provide a study of the security of identity-based
encryption in terms of anonymity and indistinguishability of ciphertexts, according to the
strength of the attacker. This is a joint work with J. Herranz and C. Ràfols [HLR11]. The two
last parts concern attribute-based cryptography: the first one presents an attribute-based en-
cryption scheme whose ciphertexts have constant size, from a joint work with J. Herranz
and C. Ràfols [HLR10]. The second one directly follows this previous work, since, together
with J. Herranz, B. Libert and C. Ràfols, we use our attribute-based encryption to design an
attribute-based signature scheme with constant-size signature [HLLR11].
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CHAPTER 1
Computational Number Theory

1.1 Introduction

This chapter is devoted to some of my results which concern the algorithmic aspects of
cryptography and it is divided into two different parts.

The first one is related to the numbers of the form pq2 (p and q are two large primes) and
their involvement in cryptography. The starting point of this work was an encryption scheme
based on the arithmetic of ideals of imaginary quadratic fields, whose security is related to
the hardness of the factorisation of such numbers. In cooperation with Guilhem Castagnos
we provide a full cryptanalysis of this system which has been resisting to cryptanalysis for
ten years. Then, Antoine Joux and Phong Nguyen joined us to finally break the variant in
real quadratic field of this encryption scheme, thanks to an original factoring algorithm spe-
cialised for these numbers. I will present this work in the next section; the corresponding
publications are the following ones:

– On the Security of Cryptosystems with Quadratic Decryption: The Nicest Cryptanal-
ysis. G. Castagnos, F. Laguillaumie. Proc. of Eurocrypt’09. Springer LNCS Vol. 5479,
260–277 (2009)

– Factoring pq2 with Quadratic Forms: Nice Cryptanalyses. G. Castagnos, A. Joux, F.
Laguillaumie, P. Nguyen. Proc. of Asiacrypt’09. Springer LNCS Vol. 5912, 469–486
(2009)

The subject of the second part is the computation of pairings on elliptic curves. This
object is very popular to design cryptosystems, but it has the reputation of being pretty
slow. A particular attention is paid to its efficient computation. The work I will present in
this second part is a variant of Miller’s classical algorithm to compute these pairings. It is
a joint work with John Boxall, Nadia El Mrabet and Duc-Phong Le within the project PACE
financed by the Agence National de la Recherche. The corresponding publication is:

– A Variant of Miller’s Formula and Algorithm. J. Boxall, N. El Mrabet, F. Laguillaumie,
D.-P. Le. Proc. of Pairing 2010. Springer LNCS Vol. 6487, 417-434 (2010)

1.2 Cryptography and pq2.

Public key cryptography is a huge consumer of hard algorithmic problems. If they might
be of several flavors (they can be combinatorial like finding a clique in a random graph
or they can arise from discrete structures like error correcting codes or lattices), they are
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historically arithmetic. The most classical (believed) hard problem is the one of factoring a
product of two large (random) primes N = pq. It is the heart of the security of the most
widespread cryptosystem, RSA [RSA78], as well as of many other. The counterpart of the
use of large integers, is their costly manipulation. That is the reason why cryptographers try
to improve the efficiency of these systems. Modulus of the form N = pq2 appear in these
tries to speed up the operation involving the public key (encryption, verification of a signa-
ture) or the secret key (decryption, signature). Among the public-key cryptosystems which
require the hardness of factoring large integers of the special form N = pq2, we can men-
tion Okamoto’s Esign [Oka90], Okamoto and Uchiyama’s encryption [OU98], Takagi’s fast
RSA variants [Tak98], and the large family (surveyed in [BTV04]) of cryptosystems based
on quadratic fields, which was initiated by Buchmann and Williams’ key exchange [BW88],
and which includes NICE 1 cryptosystems [HPT99, PT99, PT00, JSW08] (whose main fea-
ture is a quadratic decryption). These moduli are popular because they allow to reach some
special functionalities (like homomorphic encryption) or to improve efficiency (in particular
compared to RSA). Moreover, no significant weakness has been found compared to stan-
dard RSA moduli of the form N = pq: to the best of our knowledge, the only results on
pq2 factorisation are [PO96, Per01, BDH99]. More precisely, [PO96, Per01] obtained a linear
speed-up of Lenstra’s ECM, and [BDH99, Sect. 6] can factor in time Õ(N1/9) when p and q
are balanced.

Furthermore, it is worth noting that computing the squarefree part of an integer (that
is, given N ∈ N as input, compute (r, s) ∈ N2 such that N = r2s with s squarefree) is a
classical problem in algorithmic number theory (cf. [AM94]), because it is polynomial-time
equivalent to determining the ring of integers of a number field [Chi89].

Designing algorithms dedicated to the factorisation of these specific numbers is there-
fore both an algorithmic challenge, as well as a good indicator on the security of the systems
whose security relies on the hardness of their factorisation. The results on this section illus-
trate these two facets. We provide a generic factoring algorithm for pq2 (which does not affect
the security of systems whose security truly relies on the factorisation of “random” pq2) but
whose impact on the NICE family of cryptosystems, related to these numbers, is dramatic.

After some notations of the mathematical setting, we present a new algorithm to fac-
tor integers of the form N = pq2, obtained in collaboration with Guilhem Castagnos, An-
toine Joux and Phong Q. Nguyen based on binary quadratic forms (or equivalently, ideals of
orders of quadratic number fields). In the worst case, its heuristic running time is exponen-
tial, namely Õ(p1/2).

Then, we will exhibit two full polynomial-time cryptanalysis of the NICE family of cryp-
tosystems: one for the variant in imaginary quadratic fields, obtained in collaboration with
Guilhem Castagnos, and another on the variant in real quadratic fields, which is a direct
application of the factoring algorithm.

1.2.1 Notations concerning Quadratic Fields and Binary Quadratic Forms

We here define the notations and recall some useful results on quadratic fields and binary
quadratic forms.

1. for New Ideal Coset Encryption
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Let D 6= 0, 1 be a squarefree integer and consider the quadratic number field K =
Q(
√

D). If D < 0 (resp. D > 0), K is called an imaginary (resp. a real ) quadratic field. The
fundamental discriminant ∆K of K is defined as ∆K = D if D ≡ 1 (mod 4) and ∆K = 4D
otherwise.

The ring O∆K of algebraic integers in K is the maximal order of K. It can be written as
Z + ωKZ, where ωK = 1

2 (∆K +
√

∆K). If we set q = [O∆K : O] the finite index of any order
O inO∆K , then O = Z + qωKZ. The integer q is called the conductor ofO. The discriminant
of O is then ∆q = q2∆K.

Now, let O∆ be an order of discriminant ∆ and a be a nonzero ideal of O∆, its norm is
N(a) = |O∆/a|. A fractional ideal is a subset a ⊂ K such that da is an ideal of O∆ for d ∈ N.
A fractional ideal a is said to be invertible if there exists an another fractional ideal b such
that ab = O∆. The ideal class group of O∆ is C(O∆) = I(O∆)/P(O∆), where I(O∆) is the
group of invertible fractional ideals of O∆ and P(O∆) the subgroup consisting of principal
ideals. Its cardinality is the class number of O∆ denoted by h(O∆). A nonzero ideal a of O∆
is said to be prime to q if a+ qO∆ = O∆. We denote by I(O∆, q) the subgroup of I(O∆) of
ideals prime to q.

The groupO?
∆ of units inO∆ is equal to {±1} for all ∆ < 0, except when ∆ is equal to −3

and −4 (O?
−3 and O?

−4 are respectively the group of sixth and fourth roots of unity). When
∆ > 0, then O?

∆ = 〈−1, ε∆〉 where ε∆ > 0 is called the fundamental unit. The real number
R∆ = log(ε∆) is the regulator of O∆. The following important bounds on the regulator of a
real quadratic field can be found in [JLW95]:

log
(

1
2
(
√

∆− 4 +
√

∆)
)
≤ R∆ <

√
1
2

∆
(

1
2

log ∆ + 1
)

. (1.1)

The lower bound is reached infinitely often, for instance with ∆ = x2 + 4 with 2 - x. Finally,
this last proposition is the heart of both the imaginary NICE [HPT99, PT99, PT00] and the
real NICE [JSW08].

Proposition 1 ([Cox99, Proposition 7.20][Wei04, Theorem 2.16]) LetO∆q be an order of con-
ductor q in a quadratic field K.

1. If A is an O∆K -ideal prime to q, then A ∩ O∆q is an O∆q -ideal prime to q of the same
norm.

2. If a is an O∆q -ideal prime to q, then aO∆K is an O∆K -ideal prime to q of the same norm.

3. The map ϕq : I(O∆q , q)→ I(O∆K , q), a 7→ aO∆K is an isomorphism.

The map ϕq from Proposition 1 induces a surjection

ϕ̄q : C(O∆q) � C(O∆K)

which can be efficiently computed (see [PT00]). In our settings, we will use a prime conduc-
tor q and consider ∆q = q2∆K, for a fundamental discriminant ∆K. In that case, the order
of the kernel of ϕ̄q is given by the classical analytic class number formula (see for instance
[BV07])

h(O∆q)

h(O∆K)
=

{
q− (∆K/q) if ∆k < −4,
(q− (∆K/q))R∆K /R∆q if ∆k > 0.

(1.2)
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Note that in the case of real quadratic fields, ε∆q = εt
∆K

for a positive integer t, hence
R∆q /R∆K = t and t | (q− (∆K/q)).

The algorithms to compute ϕq and its inverse can be found in [PT00]. The crucial obser-
vation is that these algorithms involve only a constant number of integer multiplications and
centred euclidean divisions, which means that these algorithm have quasi-linear complexity.
These algorithms, which need the conductor q as input, will be used to decrypt a ciphertext
(they indeed constitute the trapdoor τ of the construction from Figure 1.4 presented later).

The following effective lemma is the core of the imaginary NICE system, as well as of
our attack. It actually gives the precise (and computable) structure of the kernel of ker ϕ̄q
whose elements will serve as randomness to hide the message. A representative h of an
element of this kernel is part of the public key in the imaginary NICE: we will show in the
next section that this element actually holds all the information on the factorisation of the
discriminant ∆q.

Lemma 1 Let ∆K be a fundamental negative discriminant, different from −3 and −4, and q
a conductor. Then there exists an effective isomorphism

ψq: (O∆K /qO∆K)
× / (Z/qZ)× ker ϕ̄q.∼

We will denote by φ∆K(q) := q ∏d|q

(
1−

(
∆K
d

)
1
d

)
the order of ker ϕ̄q.

Working with ideals modulo the equivalence relation of the class group is essentially
equivalent to work with binary quadratic forms modulo SL2(Z) (cf. Section 5.2 of [Coh00]).
Moreover, quadratic forms are more suited to an algorithmic point of view. Every ideal a of
O∆ can be written as a = m

(
aZ + −b+

√
∆

2 Z
)

with m ∈ Z, a ∈N and b ∈ Z such that b2 ≡ ∆
(mod 4a). In the remainder, we will only consider primitive integral ideals, which are those
with m = 1. This notation also represents the binary quadratic form ax2 + bxy + cy2, also
denoted [a, b, c], with b2 − 4ac = ∆. This representation of the ideal is unique if the form is
normal (see Definition below).

1.2.2 Factoring pq2 with Quadratic Forms

RELATED WORK. Our algorithm is based on quadratic forms, which share a long history
with factoring (see [CP01]). Fermat’s factoring method represents N in two intrinsically dif-
ferent ways by the quadratic form x2 + y2. It has been improved by Shanks with SQUFOF,
whose complexity is Õ(N1/4) (see [GW08] for a detailed analysis). Like ours, this method
works with the infrastructure of a class group of positive discriminant, but is different in
spirit since it searches for an ambiguous form (after having found a square form), and does
not focus on discriminants of a special shape. Schoof’s factoring algorithms [Sch82] are also
essentially looking for ambiguous forms. One is based on computation in class groups of
complex quadratic orders and the other is close to SQUFOF since it works with real quadratic
orders by computing a good approximation of the regulator to find an ambiguous form. Like
SQUFOF, this algorithm does not takes advantage of working in a non-maximal order and
is rather different from our algorithm. Both algorithms of [Sch82] runs in Õ(N1/5) under
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the generalised Riemann hypothesis. McKee’s method [McK99] is a speedup of Fermat’s al-
gorithm (and was presented as an alternative to SQUFOF) with a heuristic complexity of
Õ(N1/4) instead of Õ(N1/2).

SQUFOF and other exponential methods are often used to factor small numbers (say 50
to 100 bits), for instance in the post-sieving phase of the Number Field Sieve algorithm. Some
interesting experimental comparisons can be found in [Mil07]. Note that the currently fastest
rigorous deterministic algorithm actually has exponential complexity: it is based on a poly-
nomial evaluation method (for a polynomial of the form x(x − 1) · · · (x − B + 1) for some
bound B) and its best variant is described in [BGS07]. Finally, all sieve factoring algorithms
are somewhat related to quadratic forms, since their goal is to find random pairs (x, y) of
integers such that x2 ≡ y2 mod N. However, these algorithms factor generic numbers and
have a subexponential complexity.

Our factoring algorithm makes intensive use of the reduction of indefinite forms f =

[a, b, c] of positive discriminant ∆ which are said to be reduced if
∣∣∣√∆− 2|a|

∣∣∣ < b <
√

∆,

and normal if −|a| < b ≤ |a| for |a| ≥
√

∆, and
√

∆− 2|a| < b <
√

∆ for |a| <
√

∆. The
Lagrange-Gauß process which reduces any indefinite form has a quasi-linear time complex-
ity (see [BV07, Theorem 6.6.4]).

The procedure which transforms a form f = [a, b, c] into a normal one consists in setting
s such that b + 2sa belongs to the right interval (see [BV07, (5.4)]) and producing the form
[a, b + 2sa, as2 + bs + c]. Once a form f = [a, b, c] is normalised, a reduction step consists
in normalising the form [c,−b, a]. We denote this form by ρ( f ) and by Rho a corresponding
algorithm. The reduction then consists in normalising f , and then iteratively replacing f by
ρ( f ) until f is reduced.

It returns a reduced form g which is equivalent to f modulo SL2(Z). We will call ma-
trix of the reduction, the matrix M such that g = f .M. The main difference with forms of
negative discriminant is that there will in general not exist a unique reduced form per class,
but several organised in a cycle structure i. e., when f has been reduced then subsequent
applications of give other reduced forms.

If f is an indefinite binary quadratic form, the cycle of f is the sequence (ρi(g))i∈Z where
g is a reduced form which is equivalent to f .

From Theorem 6.10.3 from [BV07], the cycle of f consists of all reduced forms in the
equivalence class of f . Actually, the complete cycle is obtained by a finite number of appli-
cation of ρ as the process is periodic. It has been shown (in [BTW95] for example) that the
period length ` of the sequence of reduced forms in each class of a class group of discrimi-
nant ∆ satisfies

R∆

log ∆
≤ ` ≤ 2R∆

log 2
+ 1.

A very important form is the following:

Definition 1 Let b be the greatest odd integer less than
√

∆ if ∆ is odd or the greatest even
integer less than

√
∆ if ∆ is even. The reduced form [1, b, (b2 − ∆)/4] of discriminant ∆ > 0

is called the principal form of discriminant ∆, and will be denoted 1∆.

Let us now describe our factoring algorithm.
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Figure 1.1 – Probability that |Mk| < |∆q|1/9 in function of the bit-size λ of p and q

DESCRIPTION OF THE ALGORITHM. Let p and q be two primes of the same bit-size λ and
p ≡ 1 (mod 4). Our algorithm factors the integer ∆ = pq2 thanks to the special normalised,
but not reduced, quadratic forms fk = [q2, kq, (k2 − p)/4] for some odd integers k. It is clear
that if we obtain such a form, we just have to read q2 from its coefficients and we are done.
Here is a solution to find such a form.

First, we prove that R∆q /R∆K forms fk are principal and we exhibit the generators of the
corresponding primitive ideals in the following theorem.

Theorem 1 ([CJLN09]) Let ∆K be a fundamental positive discriminant, ∆q = ∆Kq2 where q
is an odd prime conductor. Let ε∆K (resp. ε∆q ) be the fundamental unit of O∆K (resp. O∆Kq2)
and t such that εt

∆K
= ε∆q . Then the principal ideals ofO∆Kq2 generated by qεi

∆K
correspond to

quadratic forms fk(i) = [q2, k(i)q, (k(i)2 − p)/4] with i ∈ {1, . . . , t− 1} and k(i) is an integer
defined modulo 2q computable from εi

∆K
mod q.

Suppose that we know an indefinite form f̂k, which is the reduction of a form fk =
[q2, kq, (k2 − p)/4] where k is an integer. Then f̂k represents the number q2. More precisely,

if Mk =

(
α β

γ δ

)
∈ SL2(Z) is the matrix of the reduction such that f̂k = fk.Mk, then

f̂k.M−1
k = fk and q2 = fk(1, 0) = f̂k(δ,−γ). Provided they are relatively small compared to

∆q, the values δ and−γ can be found in polynomial time with a new variant of Coppersmith
method. Indeed, our algorithm actually relies on the following heuristic, which is supported
by our experiments (see Figure 1.1) and illustrated in Figure 1.2.

Heuristic 1 (Real case) From the principal form 1∆q , a reduced form f̂k such that the matrix
of the reduction, Mk, satisfy |Mk| < ∆1/9

q , can be found in O(R∆K) successive applications of
Rho.

On the other hand, we proved the following theorem using a slight variant of the Cop-
persmith method (using the LLL algorithm) for the case of homogeneous polynomials. For
more information on LLL and Coppersmith method, see [NV09].

Theorem 2 ([CJLN09], Theorem 2) Let f (x, y) ∈ Z[x, y] be a homogeneous polynomial of
degree δ with f (x, 0) = xδ, N be a nonzero integer and α be a rational number in [0, 1], then
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one can retrieve in polynomial time in log N, δ and the bit-size of α, all the rationals x0/y0,
where x0 and y0 are integers such that gcd( f (x0, y0), N) ≥ Nα and |x0|, |y0| ≤ Nα2/(2δ).

For our purpose, δ = 2, N = ∆q = pq2 with p and q of the same size, α = 2/3 then
λ = 3/2, it states that we will be able to asymptotically recover δ and −γ of certain f̂k under
the condition they are lower than ∆β

q with β = 1
9 . We will call HomogeneousCoppersmith the

algorithm which implements this method.
Our factoring algorithm will actually work in the principal equivalence class since we

can simply exhibit the principal form 1∆q of discriminant ∆q using only this information ∆q
as input (see Definition 1). Our factoring algorithm described in Figure 1.3 can be sketched
as follows:

Start from the principal form 1∆, walk on its cycle (with Rho) until a form f̂k such that the
coefficients of Mk are sufficiently small is found (with HomogeneousCoppersmith), retrieve δ
and −γ and the non-trivial factor q2 of ∆q.

R∆K

fk1

f̂k1

fk2f̂k2

fk3

f̂k3

1∆

Figure 1.2 – Repartition of the forms f̂k(i) along the principal cycle

COMPLEXITY. Assuming Heuristic 1, starting from 1∆q , after O(Rp) iterations, the algorithm
will stop on a reduced form whose roots will be found with our Coppersmith-like method
(for suitable values of m and t) since they will satisfy the expected ∆1/9

q bound. The com-
putation of gcd(h(x0, y0), ∆q) will therefore expose q2 and factor ∆q. The time complexity
of our algorithm is then heuristically O(RpPoly(log ∆q)), whereas the space complexity is
O(log ∆q). The worst-case complexity is O(p1/2 log pPoly(log ∆q)).

1.2.3 Full Cryptanalysis of the NICE Family of Cryptosystems

We describe in this section a family of encryption schemes based on the arithmetic of
ideals of quadratic fields, and demonstrate their full insecurity. These systems somehow fits
the following generic framework formalised in [Gjo04].

This construction relies on the self-reducible splitting problem (see [Gjo04, Proposition
4.4]. It starts from a finite abelian (multiplicative) group G, two of its subgroups M and R
such that MR = G and M ∩ R = {1} and the natural isomorphism G

∼−−→ M × R. The
morphism M× R −→ G: (m, r) 7→ mr is simply the multiplication, the other way might be
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Input: ∆q = pq2, m, t
Output: p, q
1. h← 1∆q

2. while (x0, y0) not found do
2.1. h← Rho(h)
2.2. x0/y0 ← HomogeneousCoppersmith(h, ∆q, m, t)

3. q← Sqrt(Gcd(h(x0, y0), ∆q))

4. return (∆q/q2, q)

Figure 1.3 – Factoring ∆q = pq2

hard to compute. The set of all triple (G, M, R) is associated to a probability space, that we
will ignore for simplicity. Two associated problems are useful to design cryptosystem: the
first is a computational problem, and the second is a decisional one.

SPLITTING PROBLEM. The splitting problem (or projection problem) is exactly the computa-
tion, given as input the instance (G, M, R, c) where c is sampled uniformly at random from
G, of a pair (m, r) such that c = mr. The trapdoor splitting problem has an additional trap-
door τ which allows to solve the splitting problem.

SUBGROUP MEMBERSHIP PROBLEM. Another problem is important to prove the semantic
security of the constructed encryption scheme : it is called subgroup membership problem.
It consists, given an instance (G, R, x), to determine whether x is in R or not.

We can find many examples of these problems in the literature. We mention the following
subgroup membership problems: quadratic (or higher) residue problem, decisional Diffie-
Hellman problem, decision composite residuosity problem, etc. It is possible to implement
these problems in groups of publicly unknown order.

GENERIC FRAMEWORK TO DESIGN HOMOMORPHIC SYSTEMS. The generic framework is
depicted in Figure 1.4, it allows to design homomorphic cryptosystems. The idea is that the
messages live in M and the subgroup R provides the noise to hide the message. We do not
discuss how to embed true messages into M, but it is important to note that this embedding
in M, as well as sampling its elements are not necessarily trivial. The map τ will usually be
the projection πM : G→ M whose kernel ker(πM) is isomorphic to R.

This gives a multiplicative homomorphic encryption scheme which can be turned into
an additive one by replacing m by gm for a g ∈ G if M ⊂ 〈g〉 and if it is efficient to extract
discrete logarithm in M. The corresponding problems have to be modified accordingly. Gjøs-
teen proves the two following security results (see [Gjo04, Proposition 5.2, Theorem 5.4]).

Proposition 2 The public key cryptosystem of Figure 1.4 is one-way if and only if the split-
ting problem is hard.

Theorem 3 The public key cryptosystem of Figure 1.4 is semantically secure if and only if
the subgroup membership problem is hard.
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KeyGen:

– Generate a group instance (G, M, R, τ) of the trapdoor splitting problem. We suppose
that there exists an efficient algorithm to sample elements from R.

– Set pk← (G, M, R) and sk← τ.

Encrypt:

– Pick r $←− R.
– Compute c← mr
– Output c

Decrypt:

– Compute (m, r)← τ(c)
– Output m

Figure 1.4 – General framework for homomorphic encryption

Many cryptosystems fall in this framework. To mention a few, one can cite Goldwasser-
Micali [GM84], Benaloh [Ben94], Elgamal [Elg85], Paillier [Pai99], Naccache-Stern [NS98],
Damgård-Jurik [DJ01] or Boneh-Goh-Nissim [BGN05]. For further discussion, see also the
theses [Gjo04, Cas06].

As already mentioned, another relevant example is the Okamoto-Uchiyama [OU98] cryp-
tosystem, which is the ancestor of Paillier’s encryption scheme. Is it one of these cryp-
tosystems whose security relies on the hardness of the factorisation of integers of the form
N = pq2.

We will now discuss in more details the NICE family of encryption scheme.

Description of the NICE Family of Cryptosystems

Hartmann, Paulus and Takagi proposed the elegantNICE encryption scheme (see [HPT99,
PT99, PT00]), based on imaginary quadratic fields and whose main feature was a quasi-linear
decryption time. Later on, several other schemes, including (special) signature schemes re-
lying on this framework have been proposed. The public key of these NICE cryptosystems
contains a discriminant ∆q = −pq2 together with a reduced ideal h whose class belongs to
the kernel of ϕ̄q. The idea underlying the NICE cryptosystem is to hide the message behind
a random element [h]r of the kernel. Applying ϕ̄q will make this random element disappear,
and the message will then be recovered.

In [JSW08], Jacobson, Scheidler and Weimer embedded the original NICE cryptosystem
in real quadratic fields. Whereas the idea remains essentially the same as the original, the
implementation is very different. The discriminant is now ∆q = pq2, but because of the
differences between imaginary and real setting, these discriminant will have to be chosen
carefully. Among these differences, the class numbers are expected to be small with very high
probability (see the Cohen-Lenstra heuristics [CL84]). Moreover, an equivalence class does
not contain a unique reduced element anymore, but a multitude of them, whose number is
governed by the size of the fundamental unit.

As already mentioned, the original NICE somehow follows Gjøsteen’s framework with

R = ker ϕ̄q and M =
{
[a] ∈ C(O∆q), N(Red(a)) <

√
|∆p|/4

}
. Essentially, the trapdoor τ



18 Chapter 1. Computational Number Theory

would be the prime q needed to compute ϕq, and as it is not trivial to sample elements of R,
one of its generator must be added to the public key. The point is that M is not a subgroup of
C(O∆q) (there is no semidirect product), and the embedding of a message into this set actu-
ally destroys the homomorphic property, so it is not a direct application of this framework.
The main interest of the NICE encryption schemes is the efficiency of the decryption process.
It consists in applying the ϕ̄q surjection to the ciphertext [c] to remove the hiding part com-
ing from ϕ̄q’s kernel. This is done by using algorithm with quasi-linear complexity, which
makes NICE asymptotically faster than RSA (or any system for which this operation is an ex-
ponentiation). This system has actually been implemented on smart cards, with competitive
results (see [PT99]).

Despite this apparent benefit, we demonstrate in the following the dramatic weakness of
the key-generation, for both imaginary and real variants.

Full Cryptanalysis of the Original NICE

We present in this section a key-only total break of the NICE encryption scheme. We
can therefore concentrate on the key generation which outputs an element [h] of ker ϕ̄q as a
part of the public key. The public key consists in the reduced representative h of [h] and a
discriminant ∆q = −pq2, where p and q primes of the same size and q >

√
p/3.

Other encryption schemes which share this key generation can be found in [HPT99, PT00,
BST02, Huh00, PT99], and signature schemes in [Huh01, HM00, BPT04]. All these cryptosys-
tems succumb to our attack.

A previous attempt to break this scheme gave rise to a full cryptanalysis under a chosen-
ciphertext attack by Joux and Jaulmes [JJ00]. Two clever decryption queries allow to recover
the factorisation of the discriminant. This attack uses the fact that the decryption fails (i.e.,
does not recover the plain message) if the norm of the ideal representing the message is
greater than

√
|∆K|/3, so that the decoded message will expectedly be one step from being

reduced. The relation between two pairs original message/decoded message leads to a Dio-
phantine equation of the form k = XY for a known “random” integer k of the size of the
secret primes. The authors suggest to factor this integer to find out X and Y and then factor
∆q. This attack is feasible for the parameters proposed in [HPT99], but can be defeated by
enlarging the key size by a factor of 3. The scheme can resist to this attack by adding redun-
dancy to the message as suggested in [JJ00] and [BST02]. Note that, contrary to ours, Jaulmes
and Joux’s attack also applies to [HJPT98].

While investigating some claims concerning the hardness of the so-called Kernel problem
(given [h] and ∆q, factor ∆q), we experimentally found ideals of the form [q2, kq,−], for an
odd k satisfying |k| < q whose classes belong to the kernel of ϕ̄q. It is actually possible to
build a representative set of this kernel with ideals of norm q2. This is stated in the following
theorem whose proof relies on the effective isomorphism from Lemma 1. This is essentially
the result of Theorem 1 but for negative discriminants.

Theorem 4 ([CL09], Theorem 2) Let ∆K be a fundamental negative discriminant, different
from −3 and −4 and q an odd prime conductor. There exists an ideal of norm q2 in each
nontrivial class of ker ϕ̄q.

This representation of ker ϕ̄q has also been proven useful to obtain q2-isogeny cycles to
compute classical modular polynomials Φq(X, Y) using graphs of q-isogenies, see [BLS11].
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KeyGen:
– Let p and q be two primes such that q >

√
p/3.

– Set ∆K = −p and ∆q = ∆Kq2 = −pq2.
– Let [h] be an element of ker ϕ̄q, where h is a reduced O∆q -ideal.
– Set pk← (∆q, h) and sk← (p, q).

Encrypt:
– A message m is embedded into a reduced O∆q -ideal mwith log2(N(m)) < k.
– Pick randomly r ∈ [[1, |∆q|1/3]] and compute c = Red(m× hr).

Decrypt: Compute ϕ−1
q (Red(ϕq(c))) = m.

Figure 1.5 – Simplified Description of the original NICE

In our setting, this means that there exists an ideal of norm q2 equivalent to the reduced
ideal h given in the public key. A successful strategy to find this ideal is the following:

i Choose a power r of small odd prime large enough to make ideals of norm q2 reduced in
C(O∆qr2).

ii Lift [h′] (where h′ is equivalent to h and prime to r) in this class group C(O∆qr2):

(a) Compute g = h′ ∩O∆qr2 , which is an O∆qr2-ideal.

(b) Compute the reduced element f of the class of g raised to the power φ∆K(r): it has
norm q2.

The algorithm is formally described below.

Algorithm 1: Solving the Kernel Problem

Input: λ ∈ Z, ∆q = −pq2 ∈ Z, h = (a, b) ∈ I(O∆q , q) with [h] ∈ ker ϕ̄q of order > 6
Output: p, q

Initialisation:
1. Set r′ = 3

2. Set δr′ = dλ+3
2

log 2
log r′ e and r = r′ δr′

3. If the order of [h] divides φ∆K(r) then set r′ to the next prime and goto 2.

4. Find h′ ∈ [h] such that h′ ∈ I(O∆q , r′) [HJPT98, Algorithm 1]

Core Algorithm:

5. Compute g = h′ ∩O∆qr2 [PT00, Algorithm 2]

6. Compute f = Red(gφ∆K (r))

7. Return p = ∆q/N(f), q =
√

N(f)

Its correctness comes from the following results which explain this commutative dia-
gram:
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ker ϕ̄q ker ϕ̄qr

(O∆K /qO∆K)
× / (Z/qZ)× (O∆K /qrO∆K)

× / (Z/qrZ)×

ŝ

oψqr

s

ψq o 	

Lemma 2 Let ∆K be a fundamental negative discriminant, different from −3 and −4 and q
an odd prime conductor and r be an odd integer prime to q and ∆K such that r > 2q/

√
|∆K|.

The isomorphism ψqr of Lemma 1 maps the nontrivial elements of the kernel of this natural
surjection

π : (O∆K /qrO∆K)
× / (Z/qrZ)× (O∆K /rO∆K)

× / (Z/rZ)×

to classes of ker ϕ̄qr ⊂ C(O∆Kq2r2), whose reduced element has norm q2.

Theorem 5 Let ∆K be a fundamental negative discriminant, different from −3 and −4 and
q be an odd prime conductor. Let r be an odd integer, prime to both q and ∆K such that
r > 2q/

√
|∆K|. Given a class of ker ϕ̄q and h a representative in I(O∆q , qr) , then the class

[h∩O∆qr2 ]φ∆K (r)

is trivial if the order of [h] divides φ∆K(r) and has a reduced element of norm q2 otherwise.

Again, the proof of correctness of Algorithm 1 is be done by using the effective isomor-
phisms between ker ϕ̄q and (O∆K /qO∆K)

× / (Z/qZ)× and between ker ϕ̄qr

and (O∆K /qrO∆K)
× / (Z/qrZ)×. The integer r is an odd integer prime to q and ∆K such

that r > 2q/
√
|∆K|, i. e., such that ideals of norm q2 are reduced in C(O∆qr2).

First in Lemma 2, we prove that nontrivial elements of a certain subgroup of the quotient
(O∆K /qrO∆K)

× / (Z/qrZ)× map to classes of ker ϕ̄qr whose reduced element has norm q2.
Actually, this subgroup contains the image of a particular lift of (O∆K /qO∆K)

× / (Z/qZ)×

following the Chinese remainder theorem: A class [α] modulo q is lifted to a class [β] modulo
qr such that [β] ≡ 1 (mod r) and [β] ≡ [α]φ∆K (r) (mod q).

Then, in Theorem 5, we prove that the lift computed in steps 4 and 6 of Algorithm 1
corresponds to the lift previously mentioned on the quotients of O∆K . As a result, this lift
evaluated on an element of ker ϕ̄q either gives the trivial class or a class corresponding to
the nontrivial elements of the subgroup of Lemma 2, i. e., a class whose reduced element has
norm q2.

The cost of the initialisation phase is essentially quasi-quadratic in the security param-
eter. The core of the algorithm consists in applying [PT00, Algorithm 2] whose complexity
is quasi-linear in λ, and an exponentiation whose complexity is quasi-quadratic. Finally, we
prove that:

Corollary 1 Algorithm 1 solves the Kernel Problem and totally breaks the NICE family of
cryptosystems in quasi-quadratic time in the security parameter.
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Figure 1.6 – Probability that |Mk| < |∆q|1/9 in function of the bit-size λ of p and q

COPPERSMITH APPROACH. A Coppersmith approach on the quadratic form ĥ correspond-
ing to the ideal h actually works also. The form ĥ is the reduction of a form h = [q2, kq, (k2 +
p)/4] for some integer k (because of Theorem 4), so that there exists a matrix Mk ∈ SL2(Z)
such that ĥ = h.Mk. The following heuristic (also supported by our experiments, see Fig-
ure 1.6) implies that we can recover the entries of this matrix using the same Coppersmith
method as in the previous section, and therefore totally break the scheme.

Heuristic 2 (Imaginary case) Given a reduced element ĥ of a nontrivial class of ker ϕ̄q, the
matrix of reduction Mk is such that |Mk| < |∆q|1/9 with probability asymptotically close to
1.

Full Cryptanalysis of the Real NICE

The core of the design of the REAL-NICE encryption scheme, lightly described in Figure
1.7 is the very particular choice of the secret prime numbers p and q such that ∆K = p and
∆q = pq2. They are chosen such that the ratio R∆q /R∆K is of order of magnitude of q and
that R∆K is bounded by a polynomial in log(∆K). To ensure the first property, it is sufficient

to choose q such that q−
(

∆K
q

)
is a small multiple of a large prime. If the second property is

very unlikely to naturally happen since the regulator of p is generally of the order of mag-
nitude of

√
p, it is indeed quite easy to construct fundamental primes with small regulator.

The authors of [JSW08] suggest to produce a prime p as a so-called Schinzel sleeper, which
is a positive squarefree integer of the form p = a2x2 + 2bx + c with a, b, c, x in Z, a 6= 0
and b2 − 4ac dividing 4 gcd(a2, b)2. Schinzel sleepers are known to have a regulator of the
order log(p) (see [CW05]). Some care must be taken when setting the (secret) a, b, c, x values,
otherwise the resulting ∆q = pq2 is subject to factorisation attacks described in [Wei04]. We
do not provide here more details on these choices since the crucial property for our attack is
the fact that the regulator is actually of the order log(p). The public key consists of the sole
discriminant ∆q. The message is carefully embedded (and padded) into a primitive O∆q -
ideal so that it will be recognised during decryption. Instead of moving the message ideal
m to a different equivalence class (like in the imaginary case), the encryption actually hides
the message in the cycle of reduced ideal of its own equivalent class by multiplication of a
random principal O∆q -ideal h (computed during encryption). The decryption process con-
sists then in applying the (secret) map ϕ̄q and perform an exhaustive search for the padded
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KeyGen:
– Let p and q be two primes and let ∆K = p and ∆q = ∆Kq2 = pq2 with R∆K small

and R∆q large.
– Set pk = ∆q and sk = (p, q).

Encrypt:
– Embed a formatted message m into a primitive O∆q -ideal m prime to q with

N(m) < b
√

∆K/4c
– Generate a random O∆q -ideal h such that [h] ∈ ker(ϕ̄q) and pick randomly r ∈
[[1, |∆q|1/3]]

– Compute c = Red(m× hr).

Decrypt:
– Compute ϕq(c) = C
– Find the reduced ideal M ∈ [C] such that N(M) contains the predetermined bit

pattern of encryption
– Extract m′ from N(M) and m from m′.

Figure 1.7 – Description of NICE in real quadratic fields

message in the small cycle of ϕ̄q([mh]). This exhaustive search is actually possible thanks to
the choice of p which has a very small regulator. Like in the imaginary case, the decryption
procedure has a quadratic complexity and significantly outperforms an RSA decryption for
any given security level (see Table 3 from [JSW08]). Unfortunately, due to the particular but
necessary choice of the secret prime p, the following result states the total insecurity of the
REAL-NICE system.

The cryptanalysis is therefore a direct application of the factoring algorithm presented in
Section 1.2.2.

Result 1 Algorithm 1.3 recovers the secret key of REAL-NICE in polynomial time in the se-
curity parameter under Heuristic 1 since the secret fundamental discriminant p is chosen to
have a regulator bounded by a polynomial in log p.

1.2.4 Recent Improvements and Perspectives

This cryptanalysis which uses the Coppersmith approach lies on some heuristics, and
is therefore not rigorous. These heuristics concern the behaviour of the binary quadratic
forms and their reduction process. One of the main issue is the existence of (rare) unbal-
anced forms, which are forms with unusually unbalanced coefficients. Our Coppersmith
method fails when applied on such forms. Another issue is the bounds on δ and γ after a
reduction with the Gauß algorithm: [BV07] gives

√
|δγ| < q2/

√
∆
(

1 + 1/
√

∆
)

, which is not
sufficient to get the correct bounds for the Coppersmith method. To overcome these prob-
lems, Bernard and Gama propose a new reduction algorithm called RedGL2 which allows
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to obtain (optimal) bounds, described in the following theorem, that are the square root of
those in [BV07].

Theorem 6 ([BG10], Theorem 2) Let f = [a, b, c] be a primary-normalised 1 form of discrim-

inant ∆ > 0. Given f as input, RedGL2 terminates after at most
(

log(|a|/
√

∆)
2 log ω + 4

)
iterations,

where ω = 1+
√

5
2 is the golden ratio. Its outputM =

(
α β

γ δ

)
and fr = f .M = [ar, br, cr]

satisfies:

1. ‖M‖ ≤ 4
√
|a|/|ar|,

2. (|αβγδ|)1/2 ≤ |γδ|1/2 ≤
√

21
√
|a|/
√

∆.

In addition, they tune the Coppersmith method to find the unbalanced solutions that we
do not get with our method. They propose an algorithm called Rational-BDH that allows to
reach the following bounds:

Theorem 7 ([BG10], Theorem 4) Given an integer N = pqr (where p and q are unknown),
and a bound β < 1

4 qlog qr/ log N , Algorithm Rational-BDH terminates in polynomial time, and
finds a solution (if it exists) of the equation x

y (mod q) where (x, y) are unknown integers
satisfying |xy| < β.

This allow to fully prove our heuristic attack.

An significant improvement is possible because our factoring algorithm can also find
forms that represent not q2 but uq2 for small u. Indeed, the reduction matrix of forms
[uq2,−,−] will have its bottom entries γu and δu that will satisfy |γuδu| < 21u∆1/6

q according
to Theorem 6. On the other hand, Theorem 7 insures that Bernard and Gama’s Rational-BDH
will recover these values if 21u∆1/6

q < 1
4 ∆2/9

q allowing for u up to u < 1
84 ∆1/18

q . Now the
proportion of such forms can be roughly approximated by ∆1/18

q /(h(∆K)R(∆K)) which is
essentially ∆−1/9

q . This analysis suggest that our algorithm have a complexity of Õ(∆1/9
q )

instead of Õ(∆1/6
q ), which makes it as competitive as the most efficient exponential time

algorithm dedicated to these numbers.

It might be interesting to understand the algorithm which produces the Schinzel sleepers
in the real NICE setting, in particular, in the light of the algorithm proposed in [CGRW11] and
also to get more families of integers with small regulators.

Designing a subexponential algorithm dedicated to the factorisation of numbers of the
form pq2 would very interesting. Such a method may have to use the fact that this number
is a discriminant of a quadratic field like our exponential method. Discriminants of other
number fields might also have dedicated factoring algorithm.

1. An indefinite binary quadratic form f is primary-normalised if the largest real root ζ+f of f (x, 1) satisfies

0 < ζ+f < 1
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1.3 A Variant of Miller’s Algorithm to Compute Pairings

This section concerns a different topic in computational number theory for cryptography:
it tackles the computation of pairings over elliptic curves.

Since their introduction in a constructive cryptographic context in the early 2000’s, pair-
ings over algebraic curves keep being a key tool for the design of complex cryptosystems,
and they allowed many breakthroughs to reach versatile, dynamic, efficient and secure cryp-
tographic primitives. Example of their usefulness will appear in the next chapter. In this sec-
tion, we focus on the algorithmic aspect of these pairings by giving an efficient variant of
Miller’s algorithm traditionally used to compute them. Ever since it was first described,
Miller’s algorithm [Mil04] has been the central ingredient in the calculation of pairings
on elliptic curves. Many papers are devoted to improvements in its efficiency. For exam-
ple, it can run faster when the elliptic curves are chosen to belong to specific families (see
for example [BLS03, BN06, CHBNW09]), or different coordinate systems (see for example
[IJ08, CLN10, BL]). Another standard method of improving the algorithm is to reduce the
number of iterations by introducing pairings of special type, for example particular optimal
pairings [Ver09, HSV06, Hes08] or using addition chains (see for example [BMX06]).

Together with John Boxall, Nadia El Mrabet and Duc-Phong Le, we adopt another ap-
proach by exhibiting a slight variant of the so-called Miller’s formula which is the heart of
the corresponding algorithm. Our formula is less expensive than the original one and this
modification gives rise to a generically faster algorithm for any pairing-friendly curves.

After a section on some basics on elliptic curves and pairings, we describe our new vari-
ant of Miller’s algorithm and discuss its complexity.

1.3.1 Backgrounds on Pairings

We let r ≥ 2 denote an integer which, unless otherwise stated, is supposed to be prime.
We let (G1,+), (G2,+) and (GT, ·) denote three finite abelian groups, which are supposed
to be of order r. A pairing is a bilinear map

e : G1 ×G2 → GT.

We say that the pairing e is non degenerate if, for all P ∈ G1 with P 6= 1, there exists
Q ∈ G2 with e(P, Q) 6= 1 and if for all Q ∈ G2, Q 6= 1, there exists P ∈ G1 with e(P, Q) 6= 1.

We recall briefly one of the most frequent choices for the groups G1, G2 and GT in pairing-
based cryptography. Here, G1 is the group generated by a point P of order r on an elliptic
curve E defined over a finite field Fq of characteristic different to r. Thus, G1 ⊆ E(Fq) is
cyclic of order r but, in general, the whole group E[r] of points of order dividing r of E is not
rational over E(Fq). Recall that the embedding degree of E (with respect to r) is the smallest
integer k ≥ 1 such that r divides qk − 1. A result of Balasubramanian and Koblitz [BK98]
asserts that, when k > 1, all the points of E[r] are rational over the extension Fqk of degree
k of Fq. The group G2 is chosen as another subgroup of E[r] of order r. Finally, GT is the
subgroup of order r in F×qk ; it exists and is unique, since r divides qk − 1 and F×qk is a cyclic
group.

For cryptographic purposes, Galbraith, Paterson and Smart first noticed in [GPS08] that
three types of pairings have to be implemented:

– Type I: There are efficiently computable isomorphisms α : G2 → G1 and β : G1 → G2,
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– Type II: There is an efficiently computable isomorphism α : G2 → G1, but none is
known in the opposite direction,

– Type III: There is no known efficiently computable isomorphism α : G2 → G1 or β :
G1 → G2.

Let P ∈ E(Fq) be an r-torsion point, let DP be a degree zero divisor with DP ∼ [P]− [OE],
and let fr,DP be such that div fr,DP = rDP. Let Q be a point of E(Fqk) (not necessarily r-torsion)
and DQ ∼ [Q]− [OE] of support disjoint with DP. Consider

eT
r (P, Q) = fr,DP(DQ). (1.3)

Weil reciprocity shows that if DQ is replaced by D′Q = DQ + div h ∼ DQ, then (1.3) is
multiplied by h(DP)

r. So the value is only defined up to r-th powers. Replacing DP by
D′P = DP + div h changes fr,DP to fr,D′P

= fr,DP hr, and the value is well-defined modulo
multiplication by r-th powers. If then Q is replaced by Q + rR, the value changes again by
an r-th power. This leads to adapting the range and domain of eT

r as follows.

Theorem 8 The Tate pairing is a map

eT
r : E(Fq)[r]× E(Fqk)/rE(Fqk)→ F×qk /(F×qk)

r

satisfying the following properties:

1. Bilinearity,

2. Non-degeneracy,

3. Compatibility with isogenies.

The reduced Tate pairing computes the unique rth root of unity belonging to the class of
fr,DP(DQ) modulo (F×qk)

r as fr,DP(DQ)
(qk−1)/r. In practice, we take Q to lie in some subgroup

G2 of order r of E(Fqk) that injects into E(Fqk)/rE(Fqk) via the canonical map. The more
popular Ate pairing [BGOS07] and its variants (see [MKHO09] for instance) are optimised
versions of the Tate pairing when restricted to Frobenius eigenspaces. Besides its use in cryp-
tographic protocols, the Tate pairing is also useful in other applications, such as walking on
isogeny volcanoes [IJ10], which can be used in the computation of endomorphism rings of
elliptic curves.

However, we concentrate on the computation of fn,DP(DQ) (which we write as fn,P(Q) in
the sequel). This is done using Miller’s algorithm described in the next subsection.

1.3.2 Miller’s algorithm

In what follows, F denotes a field (not necessarily finite), E an elliptic curve over F and
r an integer not divisible by the characteristic of F. We suppose that the group E(F) of F-
rational points of E contains a point P of order r. Since r is prime to the characteristic of F,
the group E[r] of points of order r of E is isomorphic to a direct sum of two cyclic groups
of order r. In general, a point Q ∈ E[r] that is not a multiple of P will be defined over some
extension F′ of F of finite degree. If P, P′ are two points in E(F), s and t are two integers, we
denote by

– `P,P′ a function with divisor [P] + [P′] + [−(P + P′)]− 3[OE],
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– vP a function with divisor [P] + [−P]− 2[OE],
– fs,P (or simply fs) a function whose divisor is s[P]− [sP]− (s− 1)[OE].
We abbreviate `sP,tP to `s,t and vsP to vs.
The purpose of Miller’s algorithm is to calculate fs,P(Q) when Q ∈ E[r] is not a multiple

of P. All pairings can be expressed in terms of these functions for appropriate values of s.
Miller’s algorithm is based on the following Lemma describing the so-called Miller’s

formula, which is proved by considering divisors.

Lemma 3 For s and t two integers, up to a multiplicative constant, we have fs+t = fs ft
`s,t

vs+t
.

The usual Miller algorithm makes use of Lemma 3 with t = s in a doubling step and
t = 1 in an addition step. It is described by the pseudocode in Figure 1.8, which presents the
algorithm updating numerators and denominators separately, so that just one inversion is
needed at the end. We write the functions ` and v as quotients (N`)/(D`) and (Nv)/(Dv),
where each of the terms (N`), (D`), (Nv), (Dv) is computed using only additions and mul-
tiplications, and no inversions. Here the precise definitions of (N`), (D`), (Nv), (Dv) will
depend on the representations that are used (we indicate one such choice when short Weier-
strass coordinates and the associated Jacobian coordinates are used). In the algorithm, T is
always a multiple of P, so that the hypothesis that Q is not a multiple of P implies that at the
functions `T,T, `T,P, v2T and vT+P cannot vanish at Q. It follows that f and g never vanish at
Q so that the final quotient f /g is well-defined and nonzero.

Algorithm 2: Miller(P, Q, s) usual

Data: s = ∑l−1
i=0 si2i (radix 2), si ∈ {0, 1}, Q ∈ E(F′) not a multiple of P.

Result: fs,P(Q).
T ← P, f ← 1, g← 1,;
for i = l − 2 to 0 do

f ← f 2(N`)T,T(Dv)2T,;
g← g2(D`)T,T(Nv)2T,;
T ← 2T ;
if si = 1 then

f ← f (N`)T,P(Dv)T+P,;
g← g(D`)T,P(Nv)T+P,;
T ← T + P ;

end
end
return f /g

Figure 1.8 – The usual Miller algorithm

1.3.3 The New Variant of Miller’s Algorithm

Our improvement come from the following simple observation.
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Lemma 4 For s and t two integers, up to a multiplicative constant, we have

fs+t =
1

f−s f−t`−s,−t
.

We shall seek to exploit the fact that here the right hand member has only three terms
whereas that of Lemma 3 has four. Our variant of Miller’s algorithm is described by the
pseudocode in Figure 1.9. It was inspired by the idea of applying Lemma 4 with t = s or
t ∈ {±1}.

In order to fix ideas, we make our counts using Jacobian coordinates (X, Y, Z) associated
to a short Weierstrass model y2 = x3 + ax + b, a, b ∈ F, so that x = X/Z2 and y = Y/Z3. We
suppose that the Jacobian coordinates of P lie in F and that those of Q lie in some extension
F′ of F of whose degree is denoted by k. We denote by ma the multiplication by the curve
coefficient a and we denote respectively by m and s multiplications and squares in F, while
the same operations in F′ are denoted respectively by Mk and Sk if k is the degree of the
extension F′. We assume that F′ is given by a basis as a F-vector space one of whose elements
is 1, so that multiplication of an element of F′ by an element of F counts as k multiplications
in F. We ignore additions and multiplications by small integers.

If S is any point of E, then XS, YS and ZS denote the Jacobian coordinates of S, so that
when S 6= OE, the Weierstrass coordinates of S are xS = XS/Z2

S and yS = YS/Z3
S. As before,

T is a multiple of P, so that XT, YT and ZT all lie in F. Since P and Q are part of the input, we
assume they are given in Weierstrass coordinates and that ZP = ZQ = 1.

The following theorem gives the number of operations involved in our variant of Miller’s
algorithm.

Theorem 9 Suppose E is given in short Weierstrass form y2 = x3 + ax + b with coefficients
a, b ∈ F. Let P ∈ E(F) be a point of odd order r ≥ 2 and let Q be a point of E of order
r with coordinates in an extension field F′ of F of degree k. We assume P and Q given in
Weierstrass coordinates (xP, yP) and (xQ, yQ).

1. Using the associated Jacobian coordinates, the algorithms of Figures 1.8 and 1.9 can
be implemented in such a way that all the denominators (D`)T,T, (D`)T,P, (Dv)2T,
(Dv)T+P and (D`′)−T,−P belong to F.

2. When this is the case:
(a) Each doubling step of the generic usual Miller algorithm takes ma + 8s + (5 +

5k)m + 2Sk + 2Mk operations while in the generic modified Miller algorithm it
requires only ma + 7s + (5 + 3k)m + 2Sk + Mk operations.

(b) Each addition step of the generic usual Miller algorithm takes 4s + (8 + 5k)m +
2Mk operations. On the other hand, the generic modified Miller algorithm re-
quires only 3s + (8 + 2k)m + Mk operations when line 2 is needed and 3s + (8 +
3k)m + Mk operations when line 4 is needed.

1.3.4 Conclusion and Perspectives

Our algorithm is of particular interest to compute the Ate-style pairings (see [BGOS07,
HSV06]) on elliptic curves with small embedding degrees k, and in situations where de-
nominator elimination using a twist is not possible (for example on curves with embedding
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Algorithm 3: Miller(P, Q, r) modified

Data: s = ∑l−1
i=0 si2i, si ∈ {0, 1}, sl−1 = 1, h Hamming weight of s, Q ∈ E(F′) not a

multiple of P
Result: fs,P(Q);
f ← 1, T ← P
if l + h is odd then

δ← 1, g← f−1
end
else

δ← 0, g← 1
end
for i = l − 2 to 0 do

if δ = 0 then1

f ← f 2(N`)T,T
g← g2(D`)T,T
T ← 2T, δ← 1
if si = 1 then2

g← g(N`′)−T,−P
f ← f (D`′)−T,−P
T ← T + P, δ← 0

end
end
else3

g← g2(N`)−T,−T
f ← f 2(D`)−T,−T
T ← 2T, δ← 0
if si = 1 then4

f ← f (N`)T,P
g← g(D`)T,P
T ← T + P, δ← 1

end
end

end
return f /g

Figure 1.9 – Our modified Miller algorithm
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degree prime to 6). A typical example is the case of optimal pairings [Ver09], which by def-
inition only require about log2(r)/ϕ(k) (where r is the group order) iterations of the basic
loop. If k is prime, then ϕ(k ± 1) ≤ k+1

2 which is roughly ϕ(k)
2 = k−1

2 , so that at least twice
as many iterations are necessary if curves with embedding degrees k± 1 are used instead of
curves of embedding degree k. Heß [Hes08] §5, also mentions pairings of potential interest
when k is odd and the elliptic curve has discriminant −4 and when k is not divisible by 3
and the elliptic curve has discriminant−3. We can nevertheless adapt our algorithm for even
embedding degrees (most implementations are actually adapted to curves with embedding
degree 2i3j which allows faster basic arithmetic operations), but the improvement obtained
in the generic case is lost.

Experiments have been done which show that our variant saves between 10 and 40%
in running time in comparison with the usual version of Miller’s algorithm. We have made
no attempt to minimise the number of operations, for example by using tricky formulae, so
there might be room for further improvements also with curves of special families or with
efficient arithmetic.

A study of the impact of our algorithm could be interesting in the case of curves of genus
2. In general, the world of genus 2 pairing friendly curves remains obscure, even in terms of
construction of interesting such curves.





CHAPTER 2
Functional Cryptography

2.1 Introduction

In this chapter, I will describe some results which concern the design and the security
analysis of systems which can be seen as examples of functional cryptography.

This paradigm encompasses the classical public-key cryptography, as well as the identity-
based cryptography, but mainly offers a natural framework to implement different natu-
ral security policies. The recent concept of functional encryption has been formalised in
[BSW11], after it was initiated with Sahai and Waters’ fuzzy identity-based encryption [SW05].
The classical process of encryption transforms a plain message into a ciphertext intended to
a single user. This user, if (and only if) he possesses the secret key can decrypt. If he does not
have this secret key, then, he does not learn any useful information on the message : the de-
cryption procedure is essentially all or nothing. This rigidity is often irrelevant in practice: a
natural way to protect data consists in defining a security policy to authorise several users to
access (part of) this data. In particular, many users may be able to decrypt a ciphertext, and
it might also be desirable that users have the rights to decrypt only a part of some encrypted
message (like a redacted document for instance). Besides, new users may have to decrypt
data that have been encrypted in the past, not necessary for them, and so it must be possible
to generate fresh keys for these users, enabling them to decrypt after while.

The concept of functional encryption naturally captures those of identity-based encryp-
tion [Sha84, BF03], anonymous identity-based encryption [BCOP04], key-policy or ciphertext-
policy attribute based encryption [SW05, GPSW06], hidden vector encryption [BW07] or
inner product encryption [KSW08]. It is a crucial and promising tool for the design of se-
cure complex systems, but the complexity of their expected functionalities makes their con-
struction difficult. The schemes are usually inefficient and secure in models that are not the
strongest, and they rely on strong algorithmic assumptions.

The results of this chapter are first a theoretical study of the security of identity-based
encryption (IBE) in a joint work with Javier Herranz and Carla Ràfols. In the first section 2.2,
I will describe some relations between semantic security and anonymity in different security
scenarios: we explore how an IBE scheme can reach both security properties according to the
strength of the adversary.

The two last sections contain practical constructions of efficient and secure attribute-
based cryptographic schemes. Section 2.3 presents an attribute-based encryption scheme
(ABE) which is the first one having constant size ciphertexts and a reasonable expressivity
(i.e., for threshold policies). This is a joint work with Javier Herranz and Carla Ràfols. Sec-
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tion 2.4 describes two attribute-based signature schemes also having the property of having
constant-size signatures for threshold policies. Both signature schemes inherit the constant
size of their signatures from the constant size of the ciphertexts of an encryption scheme:
those from the preceding section for the first, and those from the key-policy ABE by Attra-
padung, Libert and de Panafieu [ALP11] for the second. This work was done in collaboration
with Javier Herranz, Benoît Libert and Carla Ràfols.

The corresponding articles are:
– Relations between Semantic Security and Anonymity in Identity Based Encryption. J.

Herranz, F. Laguillaumie, C. Ràfols. Information Processing Letters, Volume 111, Issue
10, 453-460 (2011)

– Constant Size Ciphertexts in Threshold Attribute-Based Encryption. J. Herranz, F. La-
guillaumie, C. Ràfols. Proc. of PKC 2010. Springer LNCS Vol. 6056, 19-34 (2010)

– Short Attribute-Based Signatures for Threshold Predicates. J. Herranz, F. Laguillaumie,
B. Libert, C. Ràfols. Submitted, a preliminary version is available at http://hal.
archives-ouvertes.fr/hal-00611651/fr/ (2011)

2.1.1 Identity-based Cryptography

Identity based encryption has been a Grail for cryptographers since the concept was
introduced in 1984 by Shamir [Sha84]. More than 15 years and the involvement of pairings
have been necessary to finally come up with an efficient identity-based encryption scheme
thanks to Boneh and Franklin [BF03]. Cocks independently had a less efficient solution using
a completely different approach based on quadratic residues [Coc01].

In this setting, the information needed to encrypt a message is the sole identity of the
receiver, say ID. This user has therefore to ask a private key generator to extract a secret key
skID from its identity. More formally, the definition of an identity-based encryption scheme
is the following:

Definition 2 Let k be a positive integer and let ID = ID(k) be a set of possible identities. An
identity-based encryption (IBE) scheme Π handling identities in ID is a tuple of probabilistic
polynomial time algorithms (Setup,Extract,Encrypt,Decrypt) defined as follows.

– Setup takes a security parameter 1k as input and produces the system parameters
params and a master key msk.

– Extract takes a security parameter 1k, the system parameters params, the master key
msk and an identity id ∈ ID as inputs. It outputs the secret key skid corresponding to
the identity id.

– Encrypt takes a security parameter 1k, the system parameters params, an identity id ∈
ID and a message m ∈ {0, 1}∗ as inputs and outputs a ciphertext c.

– Decrypt takes a security parameter 1k, the system parameters params, a secret key skid
and a ciphertext c as inputs, and outputs a message m.

These algorithms have to satisfy the correctness property: for all k ∈ N, id ∈ ID and
m ∈ {0, 1}∗,

Pr
[
(params,msk) $←− Setup(1k), skid

$←− Extract(1k, params,msk, id),

c $←− Encrypt(1k, params, id, m) : Decrypt(1k, params, skid, c) = m
]
= 1 .

http://hal.archives-ouvertes.fr/hal-00611651/fr/
http://hal.archives-ouvertes.fr/hal-00611651/fr/
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The security of identity-based encryption scheme follows the security of traditional pub-
lic key encryption. The strongest and accepted security notion for encryption is the indis-
tinguishability under chosen message attacks (IND-CCA). It is natural to extend this notion
to identity-based encryption scheme. The main difference is that the traditional semantic se-
curity concerns a random public key (not chosen by the adversary). In the identity-based
scenario, the protocol must remain secure even if the adversary knows the secret key corre-
sponding to certain identities (these secret keys are computed using the secret master key).
So one has to take into account that the adversary may gain information from private key
extraction queries.

Another important security property is the anonymity, which means that a ciphertext
does not leak any information on the identity of the recipient. It corresponds to the notion of
key-privacy for public key encryption [BBDP01]. Halevi gave in [Hal05] a simple sufficient
condition for public-key encryption that provides data privacy to reach key-privacy. Essen-
tially, this condition means that a random encryption of a random message is independent of
the public key. Abdalla et al. extended this condition to identity-based encryption in [A+08].

Such properties can be defined in either a selective or an adaptive scenario, which differ
on the moment where the attacker chooses the identity that is the target of the attack. In the
selective scenario, the attacked identity is chosen before all by the attacker (at the beginning
of the security game) whereas in the adaptive scenario, this identity is chosen along with the
challenge plaintexts, after some private key extraction queries.

Section 2.2 provides a theoretical study of the relations between these selective and adap-
tive notions, for identity-based encryption schemes enjoying at the same time some security
and anonymity properties.

2.1.2 Attribute-based Cryptography

Attribute-based cryptography has emerged in the last years as a promising primitive for
digital security. For instance, it provides good solutions to the problem of anonymous access
control. In a ciphertext-policy attribute-based encryption scheme, the secret keys of the users
depend on their attributes. When encrypting a message, the sender chooses which subset of
attributes must be held by a receiver in order to be able to decrypt.

ENCRYPTION. The first paper dealing explicitly with attribute-based encryption (ABE) was
[GPSW06]. Two different and complementary notions of ABE were defined there: key-policy
ABE, where a ciphertext is associated to a list of attributes, and a secret key is associated to a
policy for decryption; and ciphertext-policy ABE, where secret keys are associated to a list of
attributes (i.e. credentials of that user) and ciphertexts are associated to policies for decryp-
tion. It seems that ciphertext-policy ABE can be more useful for practical applications than
key-policy ABE. Another related notion is that of fuzzy identity-based encryption [SW05],
which can be seen as a particular case of both key-policy and ciphertext-policy ABE.

A construction of a key-policy ABE scheme was provided in [GPSW06], while the first
ciphertext-policy ABE scheme was proposed in [BSW07], but its security was proved in the
generic group model. Later, a generic construction to transform a key-policy ABE scheme
into a ciphertext-policy ABE scheme was given in [GJPS08], with the drawback that the size
of the ciphertexts is O(s3), if s is the number of attributes involved in the decryption policy.

The most efficient ciphertext-policy ABE schemes in terms of ciphertext size and expres-
sivity can be found in [Wat11, DHMR10], the size of a ciphertext depending linearly on
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the number of attributes involved in the specific policy for that ciphertext. For example, in
the case of (t, s)-threshold decryption policies, where there are s involved attributes and a
user can decrypt only if he holds t or more attributes, the size of the ciphertexts in one of
the schemes in [Wat11] is s + O(1), whereas the size of the ciphertexts in the scheme in
[DHMR10] is 2(s− t) +O(1). Both schemes admit however general policies (general mono-
tonic access structures) and make use of secret sharing techniques. Emura et al. suggested a
scheme with short ciphertexts [EMN09] but, as in the Cheung-Newport realization [CN07],
policies are restricted to a single AND gate.

All the constructions mentioned so far only achieve security under selective attacks, a
model in which the attacker specifies the challenge access structure before the setup phase.
The first CP-ABE scheme with full security has appeared very recently [LO+10]. The size of
the ciphertexts in this scheme is 2s +O(1).

A concept which is more generic than attribute-based encryption is that of predicate en-
cryption [KSW08]: the decryption policy, chosen by the sender of the message, is hidden in
the ciphertext, in such a way that even the receiver gets no information on this policy, other
than the fact that his attributes satisfy it or not. Because of this additional strong privacy
requirement, current proposals for predicate encryption consider quite simple (not very ex-
pressive) policies.

SIGNATURES. Attribute-based signatures (ABS) have been introduced more recently than
encryption in [MPR08] (see also [SS09, L+10, LK10]). They are related to the notion of (thresh-
old) ring signatures [RST01, BSS02] or mesh signatures [Boy07], but offer much more flexi-
bility and versatility to design secure complex systems, since the signatures are linked not to
the users themselves, but to their attributes. As a consequence, these signatures have a wide
range of applications, like private access control, anonymous credentials, trust negotiations,
distributed access control mechanisms for ad hoc networks or attribute-based messaging
(see [MPR08] for detailed descriptions of applications). In terms of security, ABS must first
satisfy unforgeability, which guarantees that a signature cannot be computed by a user who
does not have the right attributes, even if he colludes with other users by pooling together
their secret keys. The other security requirement is the privacy of user’s attributes, in the
sense that a signature should not leak any information about the actual attributes that have
been employed to produce it.

The schemes proposed by Maji, Prabhakaran, Rosulek in [MPR08] support very expres-
sive signing predicates, but their most practical one is only proven secure in the generic
group model. The scheme of [OT11] is claimed to be “almost optimally efficient”, although
its signatures’ length grows linearly in the size of the span program (which is greater than
the number of involved attributes in the signing predicate). Our result shows that specific
families of predicates (e.g., threshold predicates) allow for more compact signatures. Other
instantiations in [MPR08] are secure in the standard model, but are substantially less ineffi-
cient (i. e. signatures consist of a linear number of group elements in the security parameter)
as they use Groth-Sahai proofs for relations between the bits of elements in the group. In the
standard model, Okamoto and Takashima designed [OT11] a fully secure ABS which sup-
ports general non-monotone predicates. The scheme is built upon dual pairing vector spaces
[OT08] and uses proof techniques from functional encryption [LO+10]. Escala, Herranz and
Morillo also proposed in [EHM11] a fully secure ABS in the standard model, with the addi-
tional property of revocability, meaning that a third party can extract the identity of a signer
in case of dispute (thanks to a secret that can be computed by the master entity). As it turns
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out, none of the previous schemes achieves constant-size signatures.
In Section 2.4, we propose the first two attribute-based signature schemes with constant

size signatures. Their security is proven in the selective-predicate and adaptive-message
setting, in the standard model, under chosen message attacks, with respect to some non-
interactive (falsifiable) algorithmic assumptions related to bilinear groups. The described
schemes are for the case of threshold predicates, but they can be extended to admit some
other (more expressive) kinds of monotone predicates.

EXAMPLE OF APPLICATION.
Let us consider for example the case of anonymous access control : a system must be

accessible only to those who have received the appropriate rights, which are defined by
the system administrator. Let us imagine how such a process could be implemented with
a standard public key encryption scheme. First, a user A claims that he is actually user A.
Second, the system sends to this user a challenge: a ciphertext computed with the public key
of A (obtained from a certification authority), for some random plaintext. Third, A decrypts
and sends back the plaintext. Fourth, if the plaintext is correct, the system checks if user A
must have access to the system, and if so, A is accepted. This solution has some weaknesses,
the main one being the lack of anonymity, as user A must reveal his identity to the system.
Furthermore, each time the system wants to change its access control policy, it has to update
the database containing all the users that have the right to access the system.

A more desirable solution, employing encryption, would be as follows. First, in a (pos-
sibly interactive, physical) registration process, every potential user receives a secret key
that depends on his age, his job, his company, his expertise, etc., in short, on his attributes.
Later, the system defines his policy for access control as a (monotonic) family of subsets of
attributes: attributes in one of such subsets must be held by a user in order to have the right
to access the system; in particular, in an extreme case, this policy can contain a unique subset
with the unique attribute ‘right to access system X’. When a user tries to access the system,
he receives as a challenge a ciphertext computed by the system, on a random message, using
the current access policy. If the policy changes, the system administrator just has to take into
account the new policy for generating the future challenges. A user is able to decrypt the
challenge only if his attributes satisfy the considered policy. In this way, if a user answers
such a challenge correctly, he does not leak who he is, only the fact that his attributes satisfy
the access control policy.

2.2 Semantic Security and Anonymity in Identity-Based Encryp-
tion

Identity-based encryption with semantic security and anonymity is not only interest-
ing as a cryptographic primitive, but also because it can be used to design other primitives
such as public key encryption with keyword search, as proved in [BCOP04, A+08]. The first
anonymous IBE scheme is indeed Boneh and Franklin’s [BF03], although that was not ex-
plicitly stated, but its main drawback is the fact that security proofs are carried out in the
random oracle model. The scheme in [AG09] is also fully (or adaptively) anonymous under
the quadratic residuosity assumption (in particular, it does not employ bilinear pairings), but
again in the random oracle model. There exist IBE schemes which are semantically secure
in the standard model (see for instance those from [BB04a, BB04b, Wat05, Nac07, CS05]),
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but achieving anonymity at the same time seems considerably harder. The first identity-
based schemes enjoying anonymity in the standard model are those in [BW06] and [Gen06].
The first fully anonymous hierarchical identity-based encryption scheme was provided in
[LO+10] (from the construction of their inner product encryption supporting delegation).
The first one with constant size ciphertext comes from [DIP10] as a modification of the
scheme from [LW10]. These schemes are mainly based on bilinear maps. Recently, some
constructions of (hierarchical) identity-based encryption schemes in a lattice setting have
been proposed [CHKP10, ABB10a, ABB10b], achieving selective or adaptive security in the
standard model.

There exist generic conversions from a selectively secure/anonymous IBE scheme to an
adaptively secure/anonymous IBE scheme, either in the random oracle model or when the
size of the space of identities is small [BB04a]. However, in general there is a separation
between the two models. For example, Galindo proved [Gal06] a separation result regarding
semantic security: any IBE scheme which has selective semantic security can be transformed
into another scheme which also has selective semantic security, but does not even enjoy
one-wayness against adaptive attacks. The idea of this transformation is to choose a special
identity id∗ in the setup phase, and add the secret key for id∗ in the public parameters.

Similar separation results can be easily proven for the case of anonymity. However,
note that the transformation by Galindo leads to a quite artificial IBE scheme, which in
particular is not anonymous against adaptive attacks, because ciphertexts addressed to id∗

can be easily told apart from the rest of ciphertexts. This observation motivates this work.
We want to investigate the relation between selective and adaptive semantic security (re-
spectively, anonymity) for IBE schemes which are not so artificial, for example because
they also enjoy some anonymity (respectively, semantic security) property. It is interesting
to note that the existing identity-based encryption schemes in the literature which enjoy
both semantic security and anonymity have either both properties proved in the selective
setting [BW06, BW07, Duc10, ABB10a] or both properties proved in the adaptive setting
[Gen06, CKRS09, DIP10].

We provide both negative and positive results, which are summarised in Table 2.1. On the
negative side, we prove that an IBE scheme which is at the same time semantically secure and
anonymous in front of selective attacks is not necessarily semantically secure nor anonymous
in front of adaptive attacks. Then, we prove that there is a separation between selective
anonymity and adaptive anonymity even for IBE schemes which are fully (i.e. adaptively)
semantically secure. On the positive side, we prove that the symmetric situation is different:
for IBE schemes which are fully (i.e. adaptively) anonymous, the notions of selective and
adaptive semantic security are equivalent.

2.2.1 Security of Identity-based Encryption

We recall here the security definition we are interested in. To simplify, We give the defi-
nitions and describe our results for chosen-plaintext attacks.

Semantic Security.

Definition 3 (IND-CPA) Let Π = (Setup,Extract,Encrypt,Decrypt) be an identity-based en-
cryption scheme. Let k ∈ N and let ID = ID(k) be a set of identities. Let A = (A f ,Ag)
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Anonymity ANO-sID-CPA ANO-CPA

Indistinguishability
IND-sID-CPA ; IND-CPA (Thm. 10), ⇒ IND-CPA (Thm. 12),

; ANO-CPA (Thm. 11) ⇒ ANO-CPA (trivial)
IND-CPA ; ANO-CPA (Thm. 11), ⇒ ANO-CPA (trivial),

⇒ IND-CPA (trivial) ⇒ IND-CPA (trivial)

Table 2.1 – Taxonomy of the notions of IND-sID-CPA, IND-CPA, ANO-sID-CPA and ANO-CPA

for IBE.

Expind-cpa
Π,A (k, ID)
(params,msk)← Π.Setup(1k)

(m0, m1, idch, st)← AOExtract(·)
f (1k, params)

b $←− {0, 1}
c← Π.Encrypt(1k, params, idch, mb)

b′ ← AOExtract(·)
g (1k, c, st)

Return (b′ = b)

(a) IND-CPA

Expind-sid-cpa
Π,A (k, ID)
(idch, st)← Ainit(1k, ID)
params← IBE.Setup(1k)

(m0, m1, st′)← AOExtract(·)
f (1k, st)

b $←− {0, 1}
c← Π.Encrypt(1k, params, idch, mb)

b′ ← AOExtract(·)
g (1k, c, st′)

Return (b′ = b)

(b) IND-sID-CPA

Figure 2.1 – Random Experiments for Semantic Security
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be an adversary that runs in two stages with access to an extraction oracle OExtract(·). We
consider the random experiments (a) from Figure 2.1.

During the two stages, A f and Ag run under the restriction that they do not query their
extraction oracle on idch. The advantage of A is defined as

Adv
ind-cpa
Π,A (k, ID) =

∣∣∣∣Pr
[
Expind-cpa

Π,A (k, ID) = 1
]
− 1

2

∣∣∣∣ .

The scheme Π is said to be indistinguishable under a chosen plaintext attack if the func-
tion Adv

ind-cpa
Π,A is negligible for any adversary A whose time complexity is polynomial in k.

The notion of IND-CPA security for identity-based encryption schemes can be weakened,
by forcing the adversary to select the challenge identity idch ∈ ID at the first stage of the
previous experiment. In some sense, the adversary commits to the identity he will try to
attack in the future.

Definition 4 (IND-sID-CPA) Let Π = (Setup,Extract,Encrypt,Decrypt) be an identity-based
encryption scheme. Let k ∈ N. Let A = (Ainit,A f ,Ag) be an adversary that runs in three
stages with access to an extraction oracle OExtract(·). We consider the random experiments
(b) from Figure 2.1.

During the two stages, A f and Ag run under the restriction that they do not query their
extraction oracle on idch. The advantage of A is defined as

Adv
ind-sid-cpa
Π,A (k, ID) =

∣∣∣∣Pr
[
Expind-sid-cpa

Π,A (k, ID) = 1
]
− 1

2

∣∣∣∣ .

The scheme Π is said to be indistinguishable under a chosen plaintext attack for selective
identity if the function Adv

ind-sid-cpa
Π,A is negligible for any adversaryAwhose time complexity

is polynomial in k.

In contrast to this weakened selective security notion for identity-based encryption, we
will sometimes refer to the standard IND-CPA security notion as full security.

Anonymity.

Definition 5 (ANO-CPA) Let Π = (Setup,Extract,Encrypt,Decrypt) be an identity-based en-
cryption scheme. Let k ∈ N and let ID = ID(k) be a set of identities. Let D = (D f ,Dg)
be an adversary that runs in two stages with access to an extraction oracle OExtract(·). We
consider the random experiments (a) from Figure 2.2.

During the two stages, D f and Dg run under the restriction that they do not query their
extraction oracle on id0, id1. The advantage of D is defined as

Adv
ano-cpa
Π,D (k, ID) =

∣∣∣∣Pr
[
Expano-cpa

Π,D (k, ID) = 1
]
− 1

2

∣∣∣∣ .

The scheme Π is said to be anonymous under a chosen plaintext attack if the function
Adv

ano-cpa
Π,D is negligible for any adversary D whose time complexity is polynomial in k.

Again, this notion of adaptive (or full) anonymity, ANO-CPA, can be weakened if the
adversary is forced to select the two challenge identities at the first stage of the attack. The
resulting notion of selective anonymity is formally defined as follows.



2.2 Semantic Security and Anonymity in Identity-Based Encryption 39

Expano-cpa
Π,D (k, ID)
(params,msk)← Π.Setup(1k)

(m, id0, id1, st)← DOExtract(·)
f (1k, params)

b̃ $←− {0, 1}
c← Π.Encrypt(1k, params, idb̃, m)

b̃′ ← DOExtract(·)
g (1k, c, st)

Return (b̃′ = b̃)

(a) ANO-CPA

Expano-sid-cpa
Π,D (k, ID)
(id0, id1, st)← Dinit(1k, ID)
params← IBE.Setup(1k)

(m, st′)← DOExtract(·)
f (1k, st)

b̃ $←− {0, 1}
c← Π.Encrypt(1k, params, idb̃, m)

b̃′ ← DOExtract(·)
g (1k, c, st′)

Return (b̃′ = b̃)

(b) ANO-sID-CPA

Figure 2.2 – Random Experiments for Anonymity

Definition 6 (ANO-sID-CPA) Let Π = (Setup,Extract,Encrypt,Decrypt) be an identity-based
encryption scheme. Let k ∈ N. Let D = (Dinit,D f ,Dg) be an adversary that runs in three
stages with access to an extraction oracle OExtract(·). We consider the random experiments
(b) from Figure 2.2.

During the two last stages, D f and Dg run under the restriction that they do not query
their extraction oracle on id0, id1. The advantage of D is defined as

Adv
ano-sid-cpa
Π,D (k, ID) =

∣∣∣∣Pr
[
Expano-sid-cpa

Π,D (k, ID) = 1
]
− 1

2

∣∣∣∣ .

The scheme Π is said to be anonymous under a selective identity chosen plaintext at-
tack if the function Adv

ano-sid-cpa
Π,D is negligible for any adversary D whose time complexity is

polynomial in k.

We assume that the size of ID (the set of possible identities) is at least exponential in k
because otherwise adaptive and selective scenario are actually equivalent.

2.2.2 Relations among IND-sID-CPA, IND-CPA, ANO-sID-CPA and ANO-CPA

Again, we describe our results in the scenario of chosen-plaintext attackers who cannot
make decryption queries for ciphertexts of their choice, but our results extend directly to a
chosen-ciphertext attack scenario. The same results are also valid for hierarchical identity-
based encryption, as well.

Negative Results

The first of the following results state that an IBE scheme which is at the same time se-
mantically secure and anonymous against selective attacks is not necessarily semantically
secure nor anonymous against adaptive attacks. The other one proves that there is a sepa-
ration between selective and adaptive anonymity even for schemes which enjoy adaptive
semantic security.
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Theorem 10 ([HLR11], Theorem 1) There exist identity-based encryption schemes that are
secure under IND-sID-CPA and ANO-sID-CPA attacks, but are not secure under IND-CPA at-
tacks.

Theorem 11 ([HLR11], Theorem 2) There exist identity-based encryption schemes that are
secure under IND-CPA and ANO-sID-CPA attacks, but are not secure under ANO-CPA attacks.

To prove the theorem, the idea is to explicitly exhibit the scheme that is claimed to ex-
ist. The constructions are ad-hoc and serve only to state these separations. For instance, the
scheme of Theorem 10 is built from a scheme Π secure in the sense IND-sID-CPA and ANO-

sID-CPA as follows: a specific identity id? is added to the global parameters, and the encryp-
tion of a message is regularly done with Π.Encrypt for any identity different from id?, and the
bit 0 is concatenated to the ciphertext. For the identity id?, the encryption consists in given
the plaintext concatenated to the bit 1. This new scheme essentially inherits the security of
Π, but is clearly not IND-CPA.

Theorem 11 gives a stronger result, since even if we strengthen the semantic security, a
scheme does not necessary benefit from a stronger anonymity. The construction is quite sim-
ilar to the previous one: the idea is still to distinguish an encryption to a specific identity id?

from an encryption to any other. An attacker in the stronger model will choose this identity
for its attack.

Positive Results

Eventually, we prove, in a game-based proof, that if we strengthen the anonymity notion,
from ANO-sID-CPA to ANO-CPA, then the weaker (selective) indistinguishability notion of
IND-sID-CPA becomes equivalent to the adaptive notion of IND-CPA.

Theorem 12 ([HLR11], Theorem 3) Let k be an integer and let ID = ID(k) be a set of pos-
sible identities. For any IND-CPA adversary A against an identity based encryption scheme
Π, there exists an IND-sID-CPA adversary A′ and an ANO-CPA adversary D such that

Adv
ind-cpa
Π,A (k, ID) ≤ qE + 1

#ID + 2 · Advano-cpaΠ,D (k, ID) + Adv
ind-sid-cpa

Π,A′ (k, ID)

where qE denotes A’s number of queries to its extraction oracle, and #ID is the cardinality
of the set ID.

2.2.3 Conclusion and Perspectives

We provide a theoretical study of the relations between selective and adaptive security
properties for identity-based encryption schemes which enjoy at the same time some level
of anonymity and semantic security.

The security analysis of the anonymous identity-based encryption schemes that exist in
the literature seem to suggest that proving adaptive anonymity is as hard as proving adap-
tive semantic security. Indeed, either semantic security and anonymity are both proved in
the selective model [BW06, BW07, SKOS09, Duc10, ABB10a] or they are both proved in the
adaptive model [Gen06, CKRS09, DIP10]. This probably responds to the fact that similar
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challenges appear when proving full anonymity and full semantic security, namely the prob-
lem that the partition strategy (which is really useful in the selective case) is much harder to
apply in the adaptive case.

Our study suggests that another approach to proving that a scheme is fully anonymous
and fully secure is possible. Once adaptive anonymity is proved for a scheme, then semantic
security can be proved in a selective scenario. We believe that these theoretical relations may
have an impact in the design or in the analysis of anonymous (hierarchical) identity-based
encryption schemes.

Our positive result may be useful to simplify the proofs of some existing (H)IBE schemes
that are adaptively secure. For instance, it is interesting to study whether it can help to get a
simpler proof or scheme in the case of [DIP10]. Therein, De Caro et al. use the dual system
encryption technique of Waters to obtain a fully secure and fully anonymous HIBE. Using
our approach, if one could argue independently that the scheme is IND-sID-CPA secure, full
anonymity would imply full security. Potentially this could result in a scheme based on
less computational assumptions, although arguably this would depend on the hypothesis
needed to prove selective security.

The same argument could be applied if, for instance, the HIBE scheme of Boyen-Waters
[BW06], which is only selectively anonymous and selectively semantically secure, could be
proven anonymous against an adaptive adversary, for example using the new dual encryp-
tion techniques of Waters [Wat09].

2.3 Constant Size Ciphertexts in Attribute-Based Encryption

We propose in this section, the first collusion-resistant ABE scheme which produces
constant size ciphertexts and which admits reasonably expressive decryption policies. Our
scheme is inspired by the dynamic threshold (identity-based) encryption scheme from [DP08],
in which the ciphertext’s size was constant as well. As we have just said, this scheme directly
leads to a weak ABE scheme, without the collusion resistance property. The challenge was to
modify this scheme in order to achieve collusion resistance without losing the other security
and efficiency properties, in particular that of constant size ciphertexts. The resulting scheme
works for threshold policies: the sender chooses ad-hoc a set S of attributes and a threshold t,
and only users who hold at least t of the attributes in S can decrypt. An extension is possible
in order to support also weighted threshold policies.

Our new scheme achieves security against selective chosen plaintext attacks (sCPA), in
the standard model, under the assumption that the augmented multi-sequence of exponents
decisional Diffie-Hellman (aMSE-DDH) problem is hard to solve. This is essentially the same
level of security that was proved for the scheme in [DP08].

2.3.1 Definitions

We capture the notions of ciphertext-policy attribute-based encryption by providing def-
inition and security notion for functional encryption with public index ([BSW11]).

SYNTAX. Let R : ΣK × ΣE → {0, 1} be a Boolean function where ΣK and ΣE denote “key
index" and “ciphertext index” spaces. A functional encryption (FE) scheme for the relation
R consists of algorithms:
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Setup(k, des)→ (mpk,msk): The setup algorithm takes as input a security parameter k and
a scheme description des and outputs a master public key mpk and a master secret key
msk.

KeyGen(msk, X)→ skX: The key generation algorithm takes the master secret key msk and a
key index X ∈ ΣK as inputs. It outputs a private key skX.

Encrypt(mpk,M, Y)→ C: This algorithm takes as input a public key mpk, the message M,
and a ciphertext index Y ∈ ΣE. It outputs a ciphertext C.

Decrypt(mpk, skX, X, C, Y)→ M or ⊥: The decryption algorithm takes the public parameters
mpk, a private key skX for the key index X and a ciphertext C for the ciphertext index
Y as inputs. It outputs the message M or a symbol ⊥ indicating that the ciphertext is
not in a valid form.

Correctness mandates that, for all k, all (mpk,msk) produced by Setup(k, des), all X ∈ ΣK,
all keys skX returned by KeyGen(msk, X) and all Y ∈ ΣE,

– If R(X, Y) = 1, then Decrypt(mpk, skX, X,Encrypt(mpk,M, Y), Y) = M.
– If R(X, Y) = 0, then Decrypt(mpk, skX, X,Encrypt(mpk,M, Y), Y) = ⊥.

SECURITY NOTION. We now give the standard security definition for functional encryption
schemes. Constructions satisfying this security property are sometimes called payload hid-
ing in the literature.

A stronger property, called attribute-hiding, guarantees that ciphertexts additionally hide
their underlying attributes Y and it will not be considered here. To date, this property has
only been obtained (e.g., [KSW08]) for access policies that are less expressive than those
considered here. We henceforth consider FE systems with public index (according to the
terminology of [BSW11]), where ciphertext attributes Y are public.

Definition 7 A FE scheme for relation R is fully secure (or payload-hiding) if no probabilistic
polynomial time (PPT) adversary A has non-negligible advantage in this game:

Setup. The challenger runs (mpk,msk)← Setup(k, des) and gives mpk to A.
Phase 1. On polynomially-many occasions, the adversary A chooses a key index X and

obtains a private key skX = Keygen(msk, X). Such queries can be adaptive in that each
one may depend on the information gathered so far.

Challenge. A chooses messages M0,M1 and a ciphertext index Y? such that R(X, Y?) = 0
for all key indexes X that have been queried at step 2. Then, the challenger flips a fair
binary coin b ∈ {0, 1}, generates a ciphertext C? = Encrypt(mpk,Mb, Y?), and hands it
to the adversary.

Phase 2. A is allowed to make more key generation queries for any key index X such
that R(X, Y?) = 0.

Guess. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.
The advantage of the adversary A is measured by Adv(k) := |Pr[b′ = b] − 1

2 | where the
probability is taken over all coin tosses.

A weaker notion of selective security can also be defined as in the above game with the
exception that the adversary A has to choose the challenge ciphertext index Y? before the
setup phase but private key queries X1, . . . , Xq can still be adaptive. A dual notion called
co-selective security [AL10], in contrast, requires A to declare q key queries for key indexes
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X1, . . . , Xq before the setup phase, but A can adaptively choose the target challenge cipher-
text index Y?.

CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION. In a ciphertext-policy attribute-based
encryption scheme, ciphertexts are associated with access structures over the subsets of at
most n attributes of the space of attributes, for some specified n ∈N. Decryption works only
if the attribute set ω associated to a certain secret key is authorised in the access structure A

(i.e., ω ∈ A). We formally define it as an instance of FE as follows.

Definition 8 (CP-ABE) Let U be an attribute space. Given some n ∈N, letAS be any collec-
tion of access structures over U such that for any A ∈ AS , there exists some subset B ⊂ U
with |B| ≤ n and such that every minimal set ω of A satisfies that ω ⊂ B. A ciphertext-
policy attribute-based encryption (CP-ABE) for the collection AS is a functional encryption
for RCP : 2U × AS → {0, 1} defined by RCP(ω, A) = 1 iff ω ∈ A (for any ω ⊆ U and
A ∈ AS). Furthermore, the description des consists of the attribute universe U and the
bound n, whereas ΣCP

K = 2U and ΣCP
E = AS .

Our construction is only for threshold access structures, i.e. when each access structure
A in the collection AS is of the threshold type, and admits also some weighted threshold
access structures, as we discuss in subsection 2.3.4. We describe our new scheme in the next
paragraph.

2.3.2 Description of The Scheme

Let us describe hereafter our ciphertext-policy attribute-based encryption scheme, which
supports threshold decryption policies.

In the decryption process, we will use the algorithm Aggregate of [DPP07, DP08]. Given
a list of values {g

r
γ+xi , xi}1≤i≤n, where r, γ ∈ (Z/pZ)? are unknown and xi 6= xj if i 6= j, the

algorithm computes the value

Aggregate({g
r

γ+xi , xi}1≤i≤n) = g
r

∏n
i=1(γ+xi) .

using O(n2) exponentiations.
Although the algorithm Aggregate of [DPP07, DP08] is given for elements in GT, it is

immediate to see that it works in any group of prime order. Running Aggregate for elements
in G results in our case in a more efficient decryption algorithm.

Concretely, the algorithm proceeds by defining Λ0,η = gr/(γ+xη) for each η ∈ {1, . . . , n}
and observing that, if we define

Λj,η = g
r

(γ+xη )·∏
j
i=1(γ+xi) with 1 ≤ j < η ≤ n,

these values satisfy the recursion formula

Λj,η =
(Λj−1,j

Λj−1,η

)1/(xη−xj)
. (2.1)

Therefore, as long as elements x1, . . . , xn are pairwise distinct, (2.1) allows sequentially com-

puting Λj,η for j = 1 to n− 1 and η = j + 1 to n in order to finally obtain Λn−1,n = g
r

∏n
i=1(γ+xi) .

DESCRIPTION.
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– Setup(k, U, n): the trusted setup algorithm chooses a suitable encoding τ : U → (Z/pZ)?

sending each of the m attributes at ∈ U onto a (different) element τ(at) ∈ (Z/pZ)?. It
also chooses groups (G, GT) of prime order p > 2k with a bilinear map e : G×G→ GT

and generators g, h $← G. Then, it chooses a set D = {d1, . . . , dn−1} consisting of n− 1
pairwise different elements of (Z/pZ)?, which must also be different to the values
x = τ(at), for all at ∈ U. For any integer i lower or equal to n − 1, we denote as
Di the set {d1, . . . , di}. Next, the algorithm picks at random α, γ ∈ (Z/pZ)? and sets
u = gαγ and v = e(gα, h). The master secret key is then msk = (g, α, γ) and the public
parameters are

params =
(

U, n, u, v,
{

hαγi
}

i=0,...,2n−1
,D, τ

)
.

– Keygen(msk, ω): to generate a key for the attribute set ω ⊂ U, pick r, z $← Z/pZ∗ and
compute the private key

skω =
( {

g
r

γ+τ(at)

}
at∈ω

,
{

hrγi
}

i=0,...,n−2
, h

r−z
γ , z

)
.

– Encrypt(params, S, t,M): given a subset S ⊂ U with s = |S| attributes, s ≤ n, a threshold
t satisfying 1 ≤ t ≤ s, and a message M ∈ GT, the sender picks at random κ ∈ (Z/pZ)?

and computes 
C1 = u−κ,

C2 = h
κ·α· ∏

at∈S
(γ+τ(at)) ∏

d∈Dn+t−1−s

(γ+d)
,

K = vκ = e(gα, h)κ.

The value C2 is computed from the set {hαγi}i=0,...,2n−1 that can be found in the public
parameters. The ciphertext is then C = (C1, C2, C3), where C3 = K ·M.

– Decrypt(params, skω, ω, C, (S, t)): given C = (C1, C2, C3) ∈ G2×GT, any user with a set
of attributes ω such that |ω∩ S| ≥ t can use the secret key skω to decrypt the ciphertext,
as follows. Let ωS be any subset of ω ∩ S with |ωS| = t. The user computes, from all
at ∈ ωS, the value

Aggregate({g
r

γ+τ(at) , τ(at)}at∈ωS) = g
r

∏at∈ωS (γ+τ(at)) .

With the output of the algorithm Aggregate, the decryption algorithm also computes

χ = e(g
r

∏at∈ωS (γ+τ(at)) , C2) = e(g, h)
κ·α·r· ∏

at∈S\ωS

(γ+τ(at)) ∏
d∈Dn+t−1−s

(γ+d)
.

For simplicity, let τ(d) = d for all d ∈ D and define P(ωS,S)(γ) as

P(ωS,S)(γ) =
1
γ

 ∏
y∈(S∪Dn+t−1−s)\ωS

(γ + τ(y))− ∏
y∈(S∪Dn+t−1−s)\ωS

τ(y)

.

The crucial point is that, since |ωS| ≥ t, the degree of the polynomial P(ωS,S)(X) is lower
or equal to n − 2. Therefore, from the values included in skω, the user can compute
hrP(ωS ,S)(γ).
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After that, the user calculates

e(C1, hrP(ωS ,S)(γ)) · χ = e(g, h)κ·α·r·∏y∈(S∪Dn+t−1−s)\ωS
τ(y) (2.2)

and
e(C1, h

r−z
γ ) = e(g, h)−κ·α·r · e(g, h)κ·α·z (2.3)

From Equation (2.2), the decryption algorithm obtains

e(g, h)κ·α·r =
(

e(C1, hrP(ωS ,S)(γ)) · χ
)1/ ∏y∈(S∪Dn+t−1−s)\ωS

τ(y)

and multiplies this value in Equation (2.3). The result of this multiplication leads to
e(g, h)κ·α·z. This value is raised to z−1 to obtain K = e(g, h)κ·α. Finally, the plaintext is
recovered by computing M = C3/K.

2.3.3 Security Result

Our new scheme achieves security against selective chosen plaintext attacks, in the stan-
dard model. This security relies on the hardness of a problem that we call the augmented
multi-sequence of exponents decisional Diffie-Hellman problem - aMSE-DDH (see [HLR10]),
which is a slight modification of the multi-sequence of exponents decisional Diffie-Hellman
problem considered in [DP08]. The generic complexity of these two problems is covered
by the analysis in [BBG05], because the problems fit their general Diffie-Hellman exponent
problem framework. Using well-known techniques, it is possible to obtain security against
chosen ciphertext attacks (CCA), in the random oracle model.

Theorem 13 ([HLR10], Theorem 1) Let k be an integer. For any adversary A against the se-
lective security of our CP-ABE scheme, for a universe U of m attributes and maximal size
n ≥ |S̃| for any decryption policy (S̃, t̃), there exists a solver B of the ( ˜̀, m̃, t̃)-aMSE-DDH

problem such that

AdvaMSE-DDH
B (k) ≥ 1

n2 ·AdvABE-sCPAA (k).

2.3.4 Further Improvements and Perspectives

MORE GENERAL POLICIES. Our scheme can support another family of access structures,
namely the weighted threshold ones. A family A ⊂ 2U is a weighted threshold access struc-
ture if there exist a threshold t and an assignment of weights wt : U → Z+ such that ω ∈
A⇐⇒ ∑at∈ω wt(at) ≥ t. Of course, there are many access structures which are not weighted
threshold, for example A = {{at1, at2}, {at2, at3}, {at3, at4}} in the set U = {at1, at2, at3, at4}.
The same extension proposed in [DP08] works for our threshold ABE scheme. Let K be an
upper bound for wt(at), for all at ∈ U and for all possible assignments of weights that realise
weighted threshold decryption policies. During the setup of the ABE scheme, the new uni-
verse of attributes will be U′ = {at1||1, at1||2, . . . , at1||K, . . . , atm||1, . . . , atm||K}. During the
secret key request phase, if an attribute at belongs to the requested subset ω ⊂ U, the secret

key skω will contain the elements g
r

γ+τ(at(j)) corresponding to at(j) = at||j, for all j = 1, . . . , K.
Later, suppose a sender wants to encrypt a message for a weighted threshold decryption

policy A, defined on a subset of attributes S = {at1, . . . , ats} (without loss of generality). Let
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t and wt : S → Z+ be the threshold and assignment of weights that realise A. The sender
can use the threshold ABE encryption routine described previously, with threshold t, but
applied to the set of attributes S′ = {at1||1, . . . , at1||wt(at1), . . . , ats||1, . . . , ats||wt(ats)}. In
this way, if a user holds a subset of attributes ω ∈ A, he will have wt(at) valid elements
in his secret key, for each attribute at ∈ ω. In total, he will have ∑at∈ω wt(at) ≥ t valid
elements, so he will be able to run the decryption routine of the threshold ABE scheme and
decrypt the ciphertext.

DELEGATIONS OF KEYS. Our attribute-based encryption scheme admits delegation of secret

keys: from a valid secret key skω =
( {

g
r

γ+τ(at)

}
at∈ω

,
{

hrγi
}

i=0,...,n−2
, h

r−z
γ , z

)
it is possible

to compute a valid secret key skω′ for any subset ω′ ⊂ ω, as follows: take ρ ∈ (Z/pZ)? at
random and compute

skω′ =
( {(

g
r

γ+τ(at)

)ρ}
at∈ω′

,
{(

hrγi
)ρ}

i=0,...,n−2
,
(

h
r−z

γ

)ρ
, z · ρ

)
.

Our ABE scheme can be therefore viewed as a hierarchical ABE scheme with the natural
hierarchy: a user holding attributes ω is over a user holding attributes ω′, if ω′ ⊂ ω. Then,
the techniques developed in [CHK04] can be applied to transform our hierarchical ABE
scheme, which enjoys selective security under chosen plaintext attacks, into an ABE scheme
which enjoys selective security under chosen ciphertext attacks, in the standard model. The
price to pay is an increase in the size of the secret keys skω, that must contain 2l additional
elements, where l is the bit-length of the verification keys of a (one-time) signature scheme
that is used in the transformation. The size of the ciphertexts remains constant.

OPEN PROBLEMS. Many directions can be investigated concerning attribute-based encryp-
tion, and more generally functional encryption, with as target the triptych efficiency/expres-
sivity/security. It would be interesting to maintain the short size of the ciphertexts while the
decryption policy describes attribute set satisfying more complex Boolean formulae speci-
fied by an access structure. Very expressive ABE schemes with constant-size ciphertexts and
full security are still missing. Even though this might be achieved at the expense of more
complex underlying algorithmic assumptions, the simplification of these assumptions is an
interesting and important problem regarding both security and efficiency. The fact that the
security relies on an ad-hoc problem like the augmented multi-sequence of exponents de-
cisional Diffie-Hellman problem is not satisfactory. Providing weaker assumptions for the
security is an interesting issue. A possible way to answer this question is to design lattice-
based attribute-based schemes: some attempts have been done in [A+11, AFV11], which are
good starting points, but they need many improvements to become practical.

2.4 Short Attribute-Based Signatures for Threshold Predicates

We describe the first two threshold ABS schemes featuring constant-size signatures and
with security in the selective-predicate setting (i.e., as opposed to the full security setting) in
the standard model. The new schemes are built (non-generically) on two different constant-
size attribute-based encryption schemes. In both schemes, n denotes the maximum size of
the admitted signing predicates.
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– Our first scheme supports (weighted) threshold predicates for small 1 universes of at-
tributes. Its design relies on the constant-size ciphertext-policy ABE scheme from Sec-
tion 2.3, in the sense that the signer implicitly proves his ability to decrypt a ciphertext
by using the Groth-Sahai proof systems [GS08], and by binding the signed message
(and the corresponding predicate) to the signature using a technique suggested by
Malkin, Teranishi, Vahlis and Yung [MTVY11]. The signature consists of 15 group ele-
ments, and the secret key of a user holding a set Ω of attributes has |Ω|+ n elements.
Our scheme is selective-predicate and adaptive-message unforgeable under chosen
message attacks if the augmented multi-sequence of exponents computational Diffie-
Hellman assumption [HLR10] and the Decision Linear assumption [BBS04] hold. The
privacy of the attributes used to sign is proved in the computational sense under the
Decision Linear assumption [BBS04].

– The second scheme supports threshold predicates (as well as compartmented and
hierarchical predicates) for large universes of attributes, which can be obtained by
hashing arbitrary strings. It is built upon a key-policy ABE scheme proposed by At-
trapadung, Libert and de Panafieu [ALP11] and has signatures consisting of only 3
group elements. The secret keys are longer than in the first scheme, as they include
(2n + 2) × (|Ω| + n) group elements. On the other hand, its selective-predicate and
adaptive-message unforgeability relies on the more classical n-Diffie-Hellman expo-
nent assumption. Moreover, the scheme protects the privacy of the involved attributes
unconditionally.

2.4.1 Background and Definitions

NOTATIONS. We will treat a vector as a column vector. For any−→α = (α1, . . . , αn)> ∈ Z/pZn,
and any element g of a group G, g

−→α stands for (gα1 , . . . , gαn)> ∈ Gn. The inner product of
−→a ,−→z ∈ Z/pZn is denoted as 〈−→a ,−→z 〉 = −→a >−→z . Given g

−→a and −→z , (g
−→a )
−→z := g〈

−→a ,−→z 〉

is computable without knowing −→a . For equal-dimension vectors
−→
A and

−→
B of exponents

or group elements,
−→
A · −→B stands for their component-wise product. We denote by In the

identity matrix of size n. For any set U, we define 2U = {S | S ⊆ U}. Given a set S ⊂ Z/pZ,
and some i ∈ S, the i-th Lagrange basis polynomial is ∆S

i (X) = ∏j∈S\{i}(X− j)/(i− j).

SETTING. Our two schemes work in the setting of bilinear groups. That is, we use a pair
of multiplicative groups (G, GT) of prime order p with an efficiently computable and non-
degenerate pairing e : G×G→ GT.

The security of our first scheme is partially based on the hardness of the computational
version of the problem previously mentioned in Section 2.3.3 under the name of augmented
multi-sequence of exponents decisional Diffie-Hellman problem (see [HLR10] for its pre-
cise definition). The security analysis of our first scheme also appeals to the (now classical)
Decision Linear assumption, described below.

Definition 9 (DLIN – [BBS04]) In a group G of order p, the Decision Linear Problem (DLIN)
is to distinguish the distributions (g, ga, gb, ga·δ1 , gb·δ2 , gδ1+δ2) and (g, ga, gb, ga·δ1 , gb·δ2 , gδ3),

with a, b, δ1, δ2, δ3
$← Z/pZ.

1. i.e. polynomial in the security parameter, which is sufficient for many applications.
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This problem is to decide if vectors−→g1 = (ga, 1, g)>,−→g2 = (1, gb, g)> and−→g3 = (gaδ1 , gbδ2 , gδ3)>

are linearly dependent in the (Z/pZ)?-module G3 formed by entry-wise multiplication.

The security of our second scheme is based on a non-interactive and falsifiable [Nao03]
assumption, the hardness of n-Diffie-Hellman Exponent problem, proven to hold in generic
groups in [BBG05].

Definition 10 (n-DHE – [BGW05]) In a group G of prime order p, the n-Diffie-Hellman Ex-

ponent (n-DHE) problem is, given a tuple (g, gγ, gγ2
, . . . , gγn

, gγn+2
, . . . , gγ2n

) where γ
$← Z/pZ,

g $← G, to compute gγn+1
.

GROTH-SAHAI PROOF SYSTEMS. Our first scheme uses Groth-Sahai proofs based on the
DLIN assumption and symmetric pairings, although instantiations based on the symmetric
external Diffie-Hellman assumption are also possible. In the DLIN setting, the Groth-Sahai
proof systems [GS08] use a common reference string comprising vectors −→g1 ,−→g2 ,−→g3 ∈ G3,
where −→g1 = (g1, 1, g)>, −→g2 = (1, g2, g)> for some g1, g2, g ∈ G. To commit to X ∈ G, one

sets
−→
C = (1, 1, X)> · −→g1

r · −→g2
s · −→g3

t with r, s, t $← Z/pZ. In the soundness setting (i.e., when

proofs should be perfectly sound), −→g3 is set as −→g3 = −→g1
ξ1 · −→g2

ξ2 with ξ1, ξ2
$← Z/pZ∗. Com-

mitments
−→
C = (gr+ξ1t

1 , gs+ξ2t
2 , X · gr+s+t(ξ1+ξ2))> are then Boneh-Boyen-Shacham (BBS) ci-

phertexts [BBS04] that can be decrypted using a = logg(g1), b = logg(g2).
In contrast, defining−→g3 = −→g1

ξ1 · −→g2
ξ2 · (1, 1, g−1)> gives linearly independent {−→g1 ,−→g2 ,−→g3}

and
−→
C is a perfectly hiding commitment. Moreover, proofs are perfectly witness indistin-

guishable (WI) in that two proofs generated using any two distinct witnesses are perfectly
indistinguishable. Under the DLIN assumption, the WI and the soundness setting are com-
putationally indistinguishable.

To prove that committed group elements satisfy certain relations, the Groth-Sahai tech-
niques require one commitment per variable and one proof element (made of a constant
number of group elements) per relation. Such proofs are available for pairing-product rela-
tions, which are of the type

n

∏
i=1

e(Ai,Xi) ·
n

∏
i=1
·

n

∏
j=1

e(Xi,Xj)
aij = tT, (2.4)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT, A1, . . . ,An ∈ G, aij ∈ (Z/pZ)?, for
i, j ∈ {1, . . . , n}.

At some additional cost (typically, auxiliary variables have to be introduced), pairing-
product equations admit non-interactive zero-knowledge (NIZK) proofs (this is the case
when the target element tT has the special form tT = ∏t

i=1 e(Si, Ti), for constants {(Si, Ti)}t
i=1

and some t ∈ N): on a simulated common reference string (CRS), prepared for the WI set-
ting, a trapdoor makes it possible to simulate proofs without knowing the witnesses. Linear
pairing product equations (where aij = 0 for all i, j in (2.4)) consist of only 3 group elements
and we only need linear equations here.

SYNTAX OF THRESHOLD ATTRIBUTE-BASED SIGNATURES AND THEIR SECURITY. We de-
scribe the syntax and security model of attribute-based signatures with respect to threshold
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signing predicates Γ = (t, S), but the algorithms and security model for more general signing
predicates can be described in a very similar way. In the threshold case, every message Msg
is signed for a subset S of the universe of attributes and a threshold t such that 1 ≤ t ≤ |S|
of the sender’s choice.

An attribute-based signature scheme

ABS = (ABS.TSetup,ABS.MSetup,ABS.Keygen,ABS.Sign,ABS.Verify)

consists of five probabilistic polynomial-time (PPT) algorithms:
– TSetup(λ,P , n): is the randomised trusted setup algorithm taking as input a secu-

rity parameter λ, an attribute universe P and an integer n ∈ poly(λ) which is an
upper bound on the size of threshold policies. It outputs a set of public parameters
params (which contains λ, P and n). An execution of this algorithm is denoted as
params← ABS.TSetup(1λ,P , n).

– MSetup(params): is the randomised master setup algorithm, that takes as input params
and outputs a master secret key msk and the corresponding master public key mpk. We
write (mpk,msk)← ABS.MSetup(params) to denote an execution of this algorithm.

– Keygen(params,mpk,msk, Ω): is a key extraction algorithm that takes as input the pub-
lic parameters params, the master keys mpk and msk, and an attribute set Ω ⊂ P . The
output is a private key SKΩ. We write SKΩ ← ABS.Keygen(params,mpk,msk, Ω) to de-
note an execution of this algorithm.

– Sign(params,mpk, SKΩ,Msg, Γ): is a randomised signing algorithm which takes as in-
put the public parameters params, the master public key mpk, a secret key SKΩ, a mes-
sage Msg and a threshold signing policy Γ = (t, S) where S ⊂ P and 1 ≤ t ≤ |S| ≤
n. It outputs a signature σ. We denote the action taken by the signing algorithm as
σ← ABS.Sign(params,mpk, SKΩ,Msg, Γ).

– Verify(params,mpk,Msg, σ, Γ): is a deterministic verification algorithm taking as input
the public parameters params, a master public key mpk, a message Msg, a signature σ
and a threshold predicate Γ = (t, S). It outputs 1 if the signature is deemed valid and 0
otherwise. We write b ← ABS.Verify(params,mpk,Msg, σ, Γ) to refer to an execution of
the verification protocol.

For correctness, it is required that for any λ ∈ N, any integer n ∈ poly(λ), any universe P ,
any set of public parameters params ← ABS.TSetup(1λ,P , n), any master key pair
(mpk,msk) ← ABS.MSetup(params), any subset Ω ⊂ P and any threshold policy Γ = (t, S)
where 1 ≤ t ≤ |S|, then

ABS.Verify
(
params,mpk,Msg,ABS.Sign(params,mpk, SKΩ,Msg, Γ), Γ

)
= 1

whenever SKΩ ← ABS.Keygen(params,mpk,msk, Ω) and |Ω ∩ S| ≥ t.

Unforgeability and privacy are the typical requirements for attribute-based signature
schemes.

Unforgeability. An ABS scheme must satisfy the usual property of unforgeability, even
against a group of colluding users that pool their secret keys. We consider a relaxed notion
where the attacker selects the signing policy Γ? = (t?, S?) that he wants to attack at the
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beginning of the game. However, the message Msg? whose signature is eventually forged is
not selected in advance. The attacker can ask for valid signatures for messages and signing
policies of his adaptive choice. The resulting property of selective-predicate and adaptive-
message unforgeability under chosen message attacks (sP-UF-CMA, for short) is defined by
considering the following game.

Definition 11 Let λ be an integer. Consider the following game between a probabilistic poly-
nomial time (PPT) adversary F and its challenger.

Initialisation. The challenger begins by specifying a universe of attributes P as well
as an integer n ∈ poly(λ), which are sent to F . Then, F selects a subset S? ⊂ P
of attributes such that |S?| ≤ n and a threshold t? ∈ {1, . . . , |S?|}. These define a
threshold predicate Γ? = (t?, S?).

Setup. The challenger runs the setup algorithm params ← ABS.TSetup(1λ,P , n) and
(mpk,msk)← ABS.MSetup(params), and sends params,mpk to the forger F .

Queries. F can interleave private key and signature queries.
- Private key queries. F adaptively chooses a subset of attributes Ω ⊂ P under the re-

striction that |Ω∩S?| < t? and must receive SKΩ ← ABS.Keygen(params,mpk,msk, Ω)
as the answer.

- Signature queries. F adaptively chooses a pair (Msg, Γ) consisting of a message Msg
and a threshold predicate Γ = (t, S) such that 1 ≤ t ≤ |S| ≤ n. The challenger
chooses an arbitrary attribute set Ω ⊂ P such that |Ω ∩ S| ≥ t,
runs SKΩ ← ABS.Keygen(params,mpk,msk, Ω) and computes 2 a signature
σ← ABS.Sign(params,mpk, SKΩ,Msg, Γ) which is returned to F .

Forgery. At the end of the game, F outputs a pair (Msg?, σ?). We say that F is successful
if:

– ABS.Verify(params,mpk,Msg?, σ?, Γ?) = 1, and
– F has not made any signature query for the pair (Msg?, Γ?).

The forger’s advantage in breaking the sP-UF-CMA security is defined as SuccsP-UF-CMA
F ,ABS (λ) =

Pr[F wins]. A threshold attribute-based signature schemeABS is said to be selective-predica-
te adaptive-message unforgeable (or sP-UF-CMA unforgeable) if, for any PPT adversary F ,
SuccsP-UF-CMA

F ,ABS (λ) is a negligible function of λ.

Privacy (of Involved Attributes). This property ensures that a signature leaks nothing
about the attributes that have been used to produce it beyond the fact that they satisfy the
signing predicate. Privacy must hold even against attackers that control the master entity
and is defined via a game between an adversary D and its challenger. Depending on the
resources allowed to D and on its success probability, we can define computational privacy
and perfect (unconditional) privacy.

2. Since a given attribute set Ω may have many valid private keys SKΩ, a generalisation of the definition
could allow F to obtain many signatures from the same private key SKΩ. However, due to the signer privacy
requirement, which is formalised hereafter, this does not matter.
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Definition 12 Let λ ∈ N and consider this game between a distinguisher D and its chal-
lenger.

Setup. The adversary D specifies a universe of attributes P and an integer n ∈ poly(λ),
that are sent to the challenger. The challenger runs params ← ABS.TSetup(1λ,P , n)
and sends params to D. The adversary D runs (mpk,msk)← ABS.MSetup(params) and
sends (mpk,msk) to the challenger (who must verify consistency of this master key
pair).

Challenge. D outputs a tuple (Γ, Ω0, Ω1,Msg), where Γ = (t, S) is a threshold predicate
such that 1 ≤ t ≤ |S| ≤ n and Ω0, Ω1 are attribute sets satisfying |Ωb ∩ S| ≥ t for each

b ∈ {0, 1}. The challenger picks a random bit β
$← {0, 1}, runs

SKΩβ
← ABS.Keygen(params,mpk,msk, Ωβ) and computes the challenge signature

σ? ← ABS.Sign(params,mpk, SKΩβ
,Msg, Γ), which is sent as a challenge to A.

Guess. D outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The advantage of D is measured in the usual way, as the distance AdvPrivD,ABS(λ) := |Pr[β′ =
β]− 1

2 |.
A threshold attribute-based signature scheme ABS is said computationally private if

AdvPrivD,ABS(λ) is a negligible function of λ for any PPT distinguisher D and it is said per-
fectly/unconditionally private if AdvPrivD,ABS(λ) = 0 for any (possibly computationally un-
bounded) distinguisher D.

2.4.2 A First Short Attribute-Based Signature Scheme

We present here our first scheme to produce attribute-based signatures with constant
size, for threshold predicates. The secret key skΩ for a user holding a set of attributes Ω
contains |Ω|+ n elements, where n is the maximum size of the attribute set for any signing
policy. This construction is for “small" universes of attributes P = {at1, . . . , atη}, for some
integer η ∈ N, as public parameters have linear size in η; therefore, η must be polynomial
in the security parameter of the scheme. Attributes {ati}

η
i=1 are arbitrary strings which some

encoding function ς maps to Z∗p. Since the scheme is a small universe construction, we may
set n = η in the description hereafter.

The construction is based on the ABE scheme described in Section 2.3. The intuition is to
have the signer implicitly prove his ability to decrypt a ciphertext corresponding to that ABE
scheme. This non-interactive proof is generated using the Groth-Sahai proof systems [GS08],
by binding the signed message (and the corresponding predicate) to the non-interactive
proof using a technique suggested by Malkin et al. [MTVY11]. In some sense, this technique
can be seen as realising signatures of knowledge in the standard model: it consists in em-
bedding the message to be signed in the Groth-Sahai CRS by calculating part of the latter
as a “hash value” of the message. As noted in [MTVY11], Waters’ hash function [Wat05] is
well-suited to this purpose since, in the security proof, it makes it possible to answer sign-
ing queries using simulated NIZK proofs. At the same time, with non-negligible probability,
adversarially-generated signatures are produced using a perfectly sound Groth-Sahai CRS
and they thus constitute real proofs, from which witnesses can be extracted.

In [MTVY11], the above technique was applied to an instantiation of Groth-Sahai proofs
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based on the Symmetric eXternal Diffie-Hellman assumption (and thus asymmetric pair-
ings). In this section, we adapt this technique so as to get it to work with symmetric pairings
and the linear assumption.

In the notations of the verification algorithm, when
−→
C = (C1, C2, C3)> ∈ G3 is a vec-

tor of group elements and if g ∈ G, we denote by E(g,
−→
C ) the vector of pairing values(

e(g, C1), e(g, C2), e(g, C3)
)>.

DESCRIPTION.

– TSetup(λ,P , n): the trusted setup algorithm conducts the following steps.

1. Choose groups (G, GT) of prime order p > 2λ with an efficiently computable bilin-

ear map e : G×G → GT. Select generators g, h $← G and also choose a collision-
resistant hash function H : {0, 1}∗ → {0, 1}k, for some k ∈ poly(λ).

2. Define a suitable injective encoding ς sending each one of the n attributes at ∈ P
onto an element ς(at) = x ∈ Z/pZ?. Choose a set D = {d1, . . . , dn−1} consisting of
n− 1 pairwise different elements of Z/pZ∗, which must also be different from the
encoding of any attribute in P . For any integer i lower or equal to n− 1, we denote
as Di the set {d1, . . . , di}.

3. Generate Groth-Sahai reference strings by choosing random generators g1, g2
$← G

and defining vectors −→g1 = (g1, 1, g)> ∈ G3 and −→g2 = (1, g2, g)> ∈ G3. Then, for

each i ∈ {0, . . . , k}, pick ξi,1, ξi,2
$← Z/pZ at random and define a vector −→g3,i =

−→g1
ξi,1 · −→g2

ξi,2 =
(

gξi,1
1 , gξi,2

2 , gξi,1+ξi,2
)>. Exponents {(ξi,1, ξi,2)}k

i=0 can then be discarded
as they are no longer needed.

The resulting public parameters are

params =
(
P , n, λ, G, GT, g, h, −→g1 , −→g2 , {−→g3,i}k

i=0, H, ς, D
)

.

– MSetup(params): picks at random α, γ
$← Z/pZ∗ and sets u = gαγ and v = e(gα, h).

The master secret key is msk = (α, γ) and the master public key consists of

mpk =
(

u, v, gα,
{

hαγi
}

i=0,...,2n−1

)
.

Keygen(params,mpk,msk, Ω): given an attribute set Ω and msk = (α, γ), pick

r $← Z/pZ∗ and compute

SKΩ =
( {

g
r

γ+ς(at)

}
at∈Ω

,
{

hrγi
}

i=0,...,n−2
, h

r−1
γ

)
. (2.5)

– Sign(params,mpk, SKΩ,Msg, Γ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ = (t, S), where
S ⊂ P is an attribute set of size s = |S| ≤ n and 1 ≤ t ≤ s ≤ n, the algorithm returns
⊥ if |Ω ∩ S| < t. Otherwise, it first parses SKΩ as in (2.5) and conducts the following
steps.
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1. Let ΩS be any subset of Ω ∩ S with |ΩS| = t. From all at ∈ ΩS, compute the value

A1 = Aggregate({g
r

γ+ς(at) , ς(at)}at∈ΩS) = g
r

∏at∈ΩS
(γ+ς(at))

using the algorithm Aggregate of [DP08]. From A1, compute

T1 = A
1

∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)

1 .

2. Define the value P(ΩS,S)(γ) as

P(ΩS,S)(γ) =
1
γ

(
∏

at∈(S∪Dn+t−1−s)\ΩS

(γ + ς(at))− ∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at)

)
.

Since |ΩS| = t, the degree of P(ΩS,S)(X) is n − 2. Therefore, from the private key

SKΩ, one can compute hr·P(ΩS ,S)(γ)/(∏at∈(S∪Dn+t−1−s)\ΩS
ς(at)) and multiply it with the last

element h
r−1

γ of SKΩ to obtain

T2 = h
r−1

γ · h
r

P(ΩS ,S)(γ)

∏
at∈(S∪Dn+t−1−s)\ΩS

ς(at) .

Note that the obtained values T1, T2 ∈ G satisfy the equality

e(T2, u−1) · e
(

T1, h
α· ∏

at∈(S∪Dn+t−1−s)
(γ+ς(at)))

= e(gα, h) (2.6)

and that, in the terms in the left-hand-side of equality (2.6), the second argument of
each pairing is publicly computable using params and mpk.

3. Compute M = m1 . . . mk = H(Msg, Γ) ∈ {0, 1}k and use M to form a message-
specific Groth-Sahai CRS gM = (−→g1 ,−→g2 ,−→g 3,M). Namely, for i = 0 to k, parse −→g3,i as
(gX,i, gY,i, gZ,i)

> ∈ G3. Then, define the vector

−→g 3,M =
(

gX,0 ·
k

∏
i=1

gmi
X,i, gY,0 ·

k

∏
i=1

gmi
Y,i, gZ,0 ·

k

∏
i=1

gmi
Z,i

)>.

4. Using the newly defined gM = (−→g1 ,−→g2 ,−→g 3,M), generate Groth-Sahai commitments

to T1 and T2. Namely, pick r1, s1, t1, r2, s2, t2
$← Z/pZ and compute

−→
C Tj = (1, 1, Tj)

> · −→g1
rj · −→g2

sj · −→g tj
3,M

for j ∈ {1, 2}. Then, generate a NIZK proof that committed variables (T1, T2) satisfy
the pairing-product equation (2.6). To this end, we introduce an auxiliary variable

Θ ∈ G (with its own commitment
−→
C Θ = (1, 1, Θ)> · −→g1

rθ · −→g2
sθ · −→g tθ

3,M, for rθ , sθ , tθ
$←

Z/pZ), which takes on the value Θ = h, and actually prove that

e(T1, HS) = e(gα, Θ) · e(T2, u) (2.7)
e(g, Θ) = e(g, h), (2.8)
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where HS = h
α· ∏

at∈(S∪Dn+t−1−s)
(γ+ς(at))

. The proofs for relations (2.7) and (2.8) are called
−→π1 and −→π2, respectively, and they are given by

−→π 1 = (π1,1, π1,2, π1,3)
> =

(
Hr1

S · (gα)−rθ · u−r2 , Hs1
S · (gα)−sθ · u−s2 , Ht1

S · (gα)−tθ · u−t2
)>

−→π 2 = (π2,1, π2,2, π2,3)
> =

(
grθ , gsθ , gtθ

)>.

Finally, output the signature σ =
(−→

C T1 ,
−→
C T2 ,

−→
C θ ,−→π 1,−→π2

)
∈ G15.

– Verify(params,mpk,Msg, σ, Γ): it first parses Γ as a pair (t, S) and σ as(−→
C T1 ,

−→
C T2 ,

−→
C θ ,−→π 1,−→π2

)
.

It computes M = m1 . . . mk = H(Msg, Γ) ∈ {0, 1}k and forms the corresponding vector

−→g 3,M =
(

gX,0 ·
k

∏
i=1

gmi
X,i, gY,0 ·

k

∏
i=1

gmi
Y,i, gZ,0 ·

k

∏
i=1

gmi
Z,i

)>
∈ G3.

Then, parse the proofs −→π1 and −→π2 as vectors (π1,1, π1,2, π1,3)
> and (π2,1, π2,2, π2,3)>, re-

spectively. Define HS = h
α· ∏

at∈(S∪Dn+t−1−s)
(γ+ς(at))

and return 1 if and only if these relations
are both satisfied:

E(HS,
−→
CT1) = E(gα,

−→
Cθ) · E(u,

−→
CT2) · E(π1,1,−→g1 ) · E(π1,2,−→g2 ) · E(π1,3,−→g 3,M) (2.9)

E(g,
−→
Cθ) = E

(
g, (1, 1, h)

)
· E(π2,1,−→g1 ) · E(π2,2,−→g2 ) · E(π2,3,−→g 3,M). (2.10)

SECURITY RESULTS. This first scheme is selective-predicate and adaptive-message unforge-
able by reduction to the hardness of the ( ˜̀, m̃, t̃)-aMSE-CDH. It enjoys a computational pri-
vacy under the DLIN assumption.

Theorem 14 ([HLLR11], Theorem 1) The scheme is selective-predicate and adaptive-message
unforgeable under chosen-message attacks assuming that (1) H is a collision-resistant hash
function; (2) the DLIN assumption holds in G; (3) the ( ˜̀ , m̃, t̃)-aMSE-CDH assumption holds
in (G, GT).

Theorem 15 ([HLLR11], Theorem 2) This scheme has computational privacy, assuming that
DLIN holds in G.

2.4.3 A Second Short Attribute-Based Signature Scheme

The idea of our second scheme is that a (threshold) attribute-based signature can be com-
puted only if the signer holds t attributes in S which, combined with n− t dummy attributes,
lead to n attributes at such that PS(at) = 0 for a certain polynomial PS(Z). This makes it pos-
sible to interpolate a polynomial QΩ(X) with degree n− 1 whose constant term is a secret
α of the authority, recover in some way the value gα (also known only by the authority) and
produce a valid signature, by manipulating polynomials “in the exponent”.

The main advantage of our second ABS scheme over the previous one is that signatures
are much shorter, since they have only three group elements. This comes at the cost of longer
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secret keys skΩ, containing (2n + 2)× (|Ω|+ n) group elements. Another advantage is that
the size of the considered universe of attributes may be much larger, even exponential in the
security parameter λ; we only need that all attributes in the universe P as different elements
of Z/pZ∗.

DESCRIPTION.

– TSetup(λ,P , n): chooses a collision-resistant hash function H : {0, 1}∗ → {0, 1}k, for
some integer k ∈ poly(λ), as well as bilinear groups (G, GT) of prime order p > 2λ

with g $← G. It also picks u0, u1, . . . , uk
$← G and sets

−→
U = (u0, u1, . . . , uk)

>. It fi-
nally chooses a set D = {d1, . . . , dn} of n distinct elements of Z/pZ that will serve as
dummy attributes.

The resulting public parameters are params =
(
P , n, λ, G, GT, g,

−→
U , D, H

)
.

– MSetup(params): randomly chooses α, α0
$← Zp, −→α = (α1, . . . , αN)

> $← ZN
p , where

N = 2n + 1. It then computes e(g, g)α, h0 = gα0 ,
−→
H = (h1, . . . , hN)

> = g
−→α .

The master secret key is defined to be msk = gα and the master public key is mpk =(
e(g, g)α, h0,

−→
H
)

.

– Keygen(params,mpk,msk, Ω): to generate a key for the attribute set Ω, the algorithm

picks a polynomial QΩ[X] = α + β1X + · · ·+ βn−1Xn−1 where β1, . . . , βn−1
$← Z/pZ.

Then, it proceeds as follows.

1. For each attribute ω ∈ Ω, choose a random exponent rω
$← Zp and generate a key

component skω = (Dω,1, Dω,2, Kω,1, . . . , Kω,N−1) where

Dω,1 = gQΩ(ω) · hrω
0 , Dω,2 = grω ,

{
Kω,i =

(
h−ωi

1 · hi+1
)rω
}

i=1,...,N−1
. (2.11)

2. For each d ∈ D, generate a private key component skd = (Dd,1, Dd,2, Kd,1, . . . , Kd,N−1)
in the same way as in (2.11), by choosing a fresh random value rd ∈ Z/pZ and com-
puting

Dd,1 = gQΩ(d) · hrd
0 , Dd,2 = grd ,

{
Kd,i =

(
h−wi

1 · hi+1
)rd
}

i=1,...,N−1
. (2.12)

The private key finally consists of SKΩ =
(
{skω}ω∈Ω, {skd}d∈D

)
.

– Sign(params,mpk, SKΩ,Msg, Γ): to sign Msg ∈ {0, 1}∗ w.r.t. the policy Γ = (t, S), where
S is an attribute set of size s = |S| ≤ n and t ∈ {1, . . . , s}, the algorithm first computes
M = H(Msg, Γ) ∈ {0, 1}k and parses the private key SKΩ as

(
{skω}ω∈Ω, {skd}d∈D

)
.

1. It considers the subset Dn−t ⊂ D containing the n− t first attributes of D (chosen
in some pre-specified lexicographical order). It also chooses an arbitrary subset St ⊂
Ω ∩ S such that |St| = t and defines

−→
Y = (y1, . . . , yN)

> as the vector containing the
coefficients of the polynomial

PS(Z) =
n−t+s+1

∑
i=1

yiZi−1 = ∏
ω∈S

(Z−ω) · ∏
d∈Dn−t

(Z− d). (2.13)
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Since n− t + s + 1 ≤ 2n + 1 = N, the coordinates yn−t+s+2, . . . , yN are all set to 0.

2. For each ω ∈ St, use skω = (Dω,1, Dω,2, {Kω,i}N−1
i=1 ) to compute

D′ω,1 = Dω,1 ·
N−1

∏
i=1

Kyi+1
ω,i = gQΩ(ω) ·

(
h0 ·

N

∏
i=1

hyi
i

)rω . (2.14)

The last equality comes from the fact that PS(ω) = 0 for all ω ∈ S.
3. Likewise, for each dummy attribute d ∈ Dn−t, use skd = (Dd,1, Dd,2, {Kd,i}N−1

i=1 ) to
compute

D′d,1 = Dd,1 ·
N−1

∏
i=1

Kyi+1
d,i = gQΩ(d) ·

(
h0 ·

N

∏
i=1

hyi
i

)rd . (2.15)

4. Using {D′ω,1}ω∈St and {D′d,1}d∈Dn−t and the corresponding Dω,2 = grw , Dd,2 = grd ,
compute

D1 = ∏
ω∈St

D′ω,1
∆

St∪Dn−t
ω (0) · ∏

d∈Dn−t

D′d,1
∆

St∪Dn−t
d (0)

= gα · (h0 ·
N

∏
i=1

hyi
i )

r (2.16)

D2 = ∏
ω∈St

Dω,2
∆

St∪Dn−t
ω (0) · ∏

d∈Dn−t

Dd,2
∆

St∪Dn−t
d (0) = gr, (2.17)

where r = ∑ω∈St
∆St∪Dn−t

ω (0) · rω + ∑d∈Dn−t
∆St∪Dn−t

d (0) · rd.

5. Parse M ∈ {0, 1}k as a string m1 . . . mk where mj ∈ {0, 1} for j = 1, . . . , k. Then,

choose z, w $← Z/pZ and compute

σ1 = D1 ·
(
h0 ·

N

∏
i=1

hyi
i

)w ·
(
u0 ·

k

∏
j=1

u
mj
j

)z, σ2 = D2 · gw, σ3 = gz.

Return the signature σ = (σ1, σ2, σ3) ∈ G3.

– Verify(params,mpk,Msg, σ, Γ): it parses Γ as a pair (t, S). It computes M = H(Msg, Γ) ∈
{0, 1}k and considers the subset Dn−t ⊂ D containing the n− t first dummy attributes
of D. Then, it defines the vector

−→
Y = (y1, . . . , yN)

> from the polynomial PS(Z) as per
(2.13). The algorithm accepts the signature σ = (σ1, σ2, σ3) as valid and thus outputs 1
if and only if

e(g, g)α = e(σ1, g) · e
(
σ2, h0 ·

N

∏
i=1

hyi
i

)−1 · e
(
σ3, u0 ·

k

∏
j=1

u
mj
j

)−1. (2.18)

The correctness of the scheme follows from the property that for each attribute ω ∈ St ⊂
S ∩Ω, the vector

−→
X N

ω = (1, ω, ω2, . . . , ωN−1) is orthogonal to
−→
Y , so that we have

D′ω,1 = Dω,1 ·
N−1

∏
i=1

Kyi+1
ω,i = gQΩ(ω) ·

(
h0 · h−(〈

−→
X N

ω ,
−→
Y 〉−y1)

1

N

∏
i=2

hyi
i

)rω

= gQΩ(ω) ·
(

h0 ·
N

∏
i=1

hyi
i

)rω

,
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which explains the second equality of (2.14) and the same holds for (2.15). In addition, the
values (D1, D2) obtained as per (2.16)-(2.17) satisfy e(D1, g) = e(g, g)α · e(h0 ·∏N

i=1 hyi
i , D2),

which easily leads to the verification equation (2.18).

SECURITY RESULTS. This second scheme is selective-predicate and adaptive-message un-
forgeable by reduction to the hardness of the n-Diffie-Hellman Exponent (n-DHE) problem.
This scheme also enjoys unconditional privacy, which is another advantage over our first
scheme.

Theorem 16 ([HLLR11], Theorem 3) The scheme is selective-predicate and adaptive-message
unforgeable under chosen-message attacks if H is collision-resistant and if the (2n + 1)-DHE
assumption holds in G, where n is the maximal number of attributes in the set S.

Theorem 17 ([HLLR11], Theorem 4) This second ABS scheme enjoys perfect privacy.

2.4.4 Extensions and Perspectives

The first signature scheme, as the encryption scheme of Section 2.3, can support weighted
threshold predicates. Furthermore, since the final form of the signatures is that of a Groth-
Sahai non-interactive proof, one could consider signing predicates which are described by a
monotone formula (OR / AND gates) over threshold clauses. The Groth-Sahai proof would
be then a proof of knowledge of some values that satisfy a monotone formula of equations.
The size of such a proof (and therefore, the size of the resulting attribute-based signatures)
would be linear in the number of threshold clauses in the formula. We stress that this is
still better than having size linear in the number of involved attributes, as in all previous
constructions.

Concerning the second scheme, we can use similar ideas for other families of predi-
cates which are realised with a secret sharing scheme with properties which resemble those
of Shamir’s. The ideas underlying this extension are quite related to those in [DHMR10],
where dummy attributes were used to design attribute-based encryption schemes for gen-
eral decryption predicates. For instance, we could achieve hierarchical threshold predicates
(following [Tas07]) and compartmented access structures (defined in [Bri89]). The resulting
ciphertexts are not constant size anymore, but their size is less than linear in the number of
involved attributes, and thus, in this aspect the resulting schemes still outperform previous
constructions.

Like encryption schemes, attribute-based signatures must achieve the best possible ex-
pressivity, the highest security while being efficient, in terms of signature size or computa-
tional complexity. In any case, if the expressivity is very high, compressing signatures (or
ciphertexts in the case of ABE) will imply longer secret keys. Our results may inspire ideas
leading to the design of fully secure ABS schemes with constant-size signatures and support-
ing more expressive predicates. The scheme from [EHM11] is the example of a fully-secure
scheme with general signing policies, but its efficiency is not satisfactory: it uses Groth-Sahai
proof system, composite order bilinear groups and the size of the signatures grows with the
size of the signing policy. The construction form [OT11] has also long signatures. Interesting
ideas are contained in this paper, and adaptations in the lattice world could be possible.
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