
HAL Id: tel-01082637
https://hal.science/tel-01082637v1

Submitted on 14 Nov 2014 (v1), last revised 23 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Perception of Outdoor and Dynamic Environment
using Laser Scanner

Asma Azim

To cite this version:
Asma Azim. 3D Perception of Outdoor and Dynamic Environment using Laser Scanner. Robotics
[cs.RO]. Universite de Grenoble I - Joseph Fourier, 2013. English. �NNT : �. �tel-01082637v1�

https://hal.science/tel-01082637v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathmatique, Informatique (Robotique)

Arrêté ministérial : 7 août 2006

Présentée par

Asma AZIM

Thèse dirigée par Olivier AYCARD

préparée au sein du Laboratoire d’Informatique de Grenoble
et de Mathmatiques, Sciences et Technologies de l’Information,
Informatique

3D Perception of Outdoor and
Dynamic Environment using
Laser Scanner

Thèse soutenue publiquement le 17 décembre 2013,
devant le jury composé de :

M. Thierry FRAICHARD
Chargé de Recherche, INRIA Rhône-Alpes, Président
M. François CHARPILLET
Directeur de Recherche, INRIA Nancy, Rapporteur
M. Michel DEVY
Directeur de Recherche, LAAS-CNRS Toulouse, Rapporteur
M. Yassine RUICHEK
Professeur, Université de Technologie de Belfort-Montbéliard, Examinateur
M. Olivier AYCARD
MCF HDR, Université de Grenoble, Directeur de thèse

i

ii

Abstract

With an anticipation to make driving experience safer and more convenient, over

the decades, researchers have tried to develop intelligent systems for modern ve-

hicles. The intended systems can either drive automatically or monitor a human

driver and assist him in navigation by warning in case of a developing dangerous

situation. Contrary to the human drivers, these systems are not constrained by

many physical and psychological limitations and therefore prove more robust in

extreme conditions.

A key component of an intelligent vehicle system is the reliable perception of the

environment. Laser range finders have been popular sensors which are widely

used in this context. The classical 2D laser scanners have some limitations which

are often compensated by the addition of other complementary sensors including

cameras and radars. The recent advent of new sensors, such as 3D laser scanners

which perceive the environment at a high spatial resolution, has proven to be an

interesting addition to the arena. Although there are well-known methods for per-

ception using 2D laser scanners, approaches using a 3D range scanner are relatively

rare in literature. Most of those which exist either address the problem partially or

augment the system with many other sensors. Surprisingly, many of those rely on

reducing the dimensionality of the problem by projecting 3D data to 2D and using

the well-established methods for 2D perception.

In contrast to these approaches, this work addresses the problem of vehicle per-

ception using a single 3D laser scanner. First contribution of this research is made

by the extension of a generic 3D mapping framework based on an optimized oc-

cupancy grid representation to solve the problem of simultaneous localization and

mapping (SLAM). Using the 3D occupancy grid, we introduce a variance-based el-

evation map for the segmentation of range measurements corresponding to the

ground. To correct the vehicle location from odometry, we use a grid-based in-

iii

iv

cremental scan matching method. The resulting SLAM framework forms a basis

for rest of the contributions which constitute the major achievement of this work.

After obtaining a good vehicle localization and a reliable map with ground segmen-

tation, we focus on the detection and tracking of moving objects (DATMO). The second

contribution of this thesis is the method for discriminating between the dynamic

objects and the static environment. The presented approach uses motion-based de-

tection and density-based clustering for segmenting the moving objects from 3D

occupancy grid. It does not use object specific models but enables detecting arbi-

trary traffic participants. Third contribution is an innovative method for layered

classification of the detected objects based on supervised learning technique which

makes it easier to estimate their position with time. Final contribution is a method

for tracking the detected objects by using Viterbi algorithm to associate the new

observations with the existing objects in the environment.

The proposed framework is verified with the datasets acquired from a laser scanner

mounted on top of a vehicle moving in different environments including urban,

highway and pedestrian-zone scenarios. The promising results thus obtained show

the applicability of the proposed system for simultaneous localization and mapping

with detection, classification and tracking of moving objects in dynamic outdoor

environments using a single 3D laser scanner.

Keywords: Intelligent vehicles, 3D laser scanner, perception, SLAM, DATMO, clas-

sification, occupancy grid

Résumé

Depuis des décennies, les chercheurs essaient de développer des systèmes intel-

ligents pour les véhicules modernes, afin de rendre la conduite plus sûre et plus

confortable. Ces systèmes peuvent conduire automatiquement le véhicule ou assis-

ter un conducteur en le prévenant et en l’assistant en cas de situations dangereuses.

Contrairement aux conducteurs, ces systèmes n’ont pas de contraintes physiques

ou psychologiques et font preuve d’une grande robustesse dans des conditions ex-

trêmes.

Un composant clé de ces systèmes est la fiabilité de la perception de l’environnement.

Pour cela, les capteurs lasers sont très populaires et largement utilisés. Les capteurs

laser 2D classiques ont des limites qui sont souvent compensées par l’ajout d’autres

capteurs complémentaires comme des caméras ou des radars. Les avancées ré-

centes dans le domaine des capteurs, telles que les capteurs laser 3D qui perçoivent

l’environnement avec une grande résolution spatiale, ont montré qu’ils étaient une

solution intéressante afin d’éviter l’utilisation de plusieurs capteurs. Bien qu’il y

ait des méthodes bien connues pour la perception avec des capteurs laser 2D, les

approches qui utilisent des capteurs lasers 3D sont relativement rares dans la lit-

térature. De plus, la plupart d’entre elles utilisent plusieurs capteurs et réduisent le

problème de la 3ème dimension en projetant les données 3D sur un plan et utilisent

les méthodes classiques de perception 2D.

Au contraire de ces approches, ce travail résout le problème en utilisant unique-

ment un capteur laser 3D et en utilisant les informations spatiales fournies par ce

capteur. Notre première contribution est une extension des méthodes génériques

de cartographie 3D fondée sur des grilles d’occupations optimisées pour résoudre

le problème de cartographie et de localisation simultanée (SLAM en anglais). En

utilisant des grilles d’occupations 3D, nous définissons une carte d’élévation pour

la segmentation des données laser correspondant au sol. Pour corriger les erreurs

v

vi

de positionnement, nous utilisons une méthode incrémentale d’alignement des

données laser. Le résultat forme la base pour le reste de notre travail qui constitue

nos contributions les plus significatives.

Dans la deuxième partie, nous nous focalisons sur la détection et le suivi des ob-

jets mobiles (DATMO en anglais). La deuxième contribution de ce travail est une

méthode pour distinguer les objets dynamiques des objets statiques. L’approche

proposée utilise une détection fondée sur le mouvement et sur des techniques de re-

groupement pour identifier les objets mobiles à partir de la grille d’occupations 3D.

La méthode n’utilise pas de modèles spécifiques d’objets et permet donc la détec-

tion de tout type d’objets mobiles. Enfin, la troisième contribution est une méthode

nouvelle pour classer les objets mobiles fondée sur une technique d’apprentissage

supervisée. La contribution finale est une méthode pour suivre les objets mobiles

en utilisant l’algorithme de Viterbi pour associer les nouvelles observations avec

les objets présents dans l’environnement.

Dans la troisième partie, l’approche proposée est testée sur des jeux de données

acquis à partir d’un capteur laser 3D monté sur le toit d’un véhicule qui se déplace

dans différents types d’environnement incluant des environnements urbains, des

autoroutes et des zones piétonnes. Les résultats obtenus montrent l’intérêt du sys-

tème intelligent proposé pour la cartographie et la localisation simultanée ainsi que

la détection et le suivi d’objets mobiles en environnement extérieur et dynamique

en utilisant un capteur laser 3D.

Mots clés: véhicules intelligents, capteur laser 3D, perception, SLAM, DATMO,

apprentissage et classification, grille d’occupation

Contents

1 Introduction 1

1.1 Intelligent Vehicles . 4

1.2 Sensors . 7

1.2.1 Vision-based Sensors . 7

1.2.2 Telemetry/Range Sensors . 7

1.3 Perception for Intelligent Vehicles and the Challenges 10

1.3.1 Problem Statement . 11

1.3.2 Simultaneous Localization and Mapping 13

1.3.3 Detection, Classification and Tracking of Moving Objects . . . 14

1.3.4 SLAM with DATMO . 16

1.4 Contributions . 16

1.5 Thesis Organization . 18

2 Simultaneous Localization and Mapping 19

2.1 Introduction . 19

2.2 Background . 21

2.2.1 Map Representations . 21

2.2.2 Mathematical Formulation . 24

2.3 Related Work . 28

2.3.1 Direct mapping SLAM . 29

2.3.2 Feature-based SLAM . 30

vii

viii CONTENTS

2.3.3 Grid-based SLAM . 31

2.3.4 Synthesis . 34

2.4 Adopted Approach for Map Representation: Probabilistic 3D Occu-

pancy Grid based on Octrees . 37

2.4.1 OctoMap 3D Occupancy Grid Mapping – Overview 37

2.4.2 Advantages of OctoMap . 43

2.4.3 Limitations of OctoMap . 45

2.5 Contributions: 3D Occupancy Grid SLAM 47

2.5.1 General Architecture . 48

2.5.2 Ground Segmentation . 49

2.5.3 Grid-based SLAM . 54

2.6 Conclusions . 60

3 Detection, Classification and Tracking of Moving Objects 61

3.1 Introduction . 61

3.2 Mathematical Formulation . 63

3.2.1 Single Object Tracking . 64

3.2.2 Multiple Object Tracking . 67

3.3 Related Work . 68

3.3.1 Detection of Moving Objects 71

3.3.2 Tracking of Moving Objects . 73

3.3.3 Classification of Moving Objects 76

3.3.4 Synthesis . 78

3.4 Contributions: 3D Occupancy Grid DATMO 80

3.4.1 General Architecture . 80

3.5 Detection of Moving Objects . 80

3.5.1 Motion-based Detection . 81

3.5.2 Density-based Clustering . 82

3.6 Classification of Moving Objects . 91

CONTENTS ix

3.6.1 Approach Overview . 91

3.6.2 Object Segmentation in Layers 93

3.6.3 Feature Extraction . 94

3.6.4 Supervised Learning of Classifier 96

3.6.5 Sequential Multi-class Classification 98

3.7 Tracking of Moving Objects . 100

3.7.1 Object Representation and Dynamic Models 100

3.7.2 Viterbi Data Association . 101

3.7.3 Track Maintenance . 105

3.8 Conclusion . 112

4 Experimental Results 115

4.1 Introduction . 115

4.2 Sensor System . 116

4.3 SLAM Results . 117

4.3.1 Datasets . 117

4.3.2 SLAM with Ground Segmentation 118

4.4 DATMO Results . 126

4.4.1 Datasets . 126

4.4.2 Detection of Moving Objects 127

4.4.3 Classification of Moving Objects 133

4.4.4 Multiple Object Tracking . 141

4.5 Conclusion . 154

5 Conclusion and Perspectives 157

5.1 Conclusion . 157

5.2 Perspectives . 159

References 161

x CONTENTS

List of Figures

1.1 Two different environments where a robot may evolve which contain very different

kind of geometry: urban with a lot of poles and Mars with sand desert. 3

1.2 Advance Driving Assistance Systems (ADAS): Parking assistance system (left) and

collision warning system (right). 5

1.3 A goal of the vehicle perception with 2D lidar. Right: a real road scenario. Left:

internal belief of the vehicle about it. 8

1.4 An illustration of the data provided by a single scan of Velodyne HDL-64E, a high

definition lidar system for environment perception which consist of 64 laser beams

rotating at 10Hz and covering a range of up to 120m. 9

1.5 Modern robotic paradigm: Perception, decision and action. The decisions are based

on the environment model provided by perception module, hence perception is the

base of robotic decisions and actions in PDA architecture. 10

1.6 The general perception process. Z represents the perception measurements, U rep-

resents the motion measurements, X is the vehicle state, M is the map of stationary

objects and O represents the states of moving objects. 12

2.1 Simultaneous Localization and Mapping (SLAM). 19

2.2 Simultaneous Localization and Mapping: Generic steps. 20

2.3 Example of different map representations built from the same set of range measure-

ments acquired from a 2D laser scanner. 22

2.4 A graphical model for generic Bayesian filter, where the observed states oi are de-

pendent on the hidden states hi. 25

xi

xii LIST OF FIGURES

2.5 Example of an octree structure (center) with the corresponding tree representation

(right) in comparison to a uniform 3D grid (left). While a uniform grid (left) must

represent every cell, each level of an octree divides the remaining volume into eight

octants (center) and the octree can efficiently represent sparse volumes because the

tree structure (right) does not have to be fully expanded. 38

2.6 Sensor modelling for laser scanner. (Left) Ray tracing technique to update an occu-

pancy grid using Bresenham algorithm. (Right) Inverse sensor model showing the

occupancy probability of voxels along a beam measuring a distance of 4m. 43

2.7 Octree-based Occupancy grid representation. (Top) A point cloud generated by

Velodyne HDL-64E laser scanner. (Center) The occupancy grid representation cor-

responding to the point cloud, showing the occupied voxels only. (Bottom) Occu-

pancy grid showing both occupied and free voxels in grey and green colors respec-

tively. 44

2.8 Architecture of proposed method for SLAM. 49

2.9 3D Occupancy grid representation (bottom) of an outdoor scenario (top) that we

will use to illustrate our approach for ground segmentation 50

2.10 The image on the top represents the variance-based elevation map of the grid shown

in Fig. 2.9 while the image in the bottom shows the same variance map after apply-

ing threshold. After thresholding and clustering, the remaining cells belong to the

ground. 53

2.11 The final output of ground segmentation. All ground voxels are displayed in grey

while all other occupied voxels are in blue. 54

2.12 An illustration of our grid-based scan matching method. We consider two consecu-

tive scans. (Top) The 3D occupancy grid corresponding to the first scan, represented

in red, is used as the meta scan or the existing map Mt−1. The next scan is also con-

verted in to the occupancy grid map, represented by blue voxels to distinguish from

the previous map. It is transformed using the odometry information to illustrate the

error in the registration. (bottom) The two maps are aligned by our ICP based ap-

proach resulting in the updated map M. 59

3.1 Detection and Tracking of Moving Objects (DATMO). 61

3.2 Detection and Tracking of Moving Objects: Generic steps. 62

LIST OF FIGURES xiii

3.3 Graphical model representation of single object tracking using single motion model

(left) and multiple motion models (right). The clear squares represent a hidden

discrete variable µt that describes the motion of the object at each time step. 64

3.4 Data association problem. Given N existing tracks and N new measurements, there

exist N! possible ways to associate the measurements with tracks. 68

3.5 Architecture of proposed method for DATMO. 81

3.6 Examples of directly density-reachable (left), density-reachable (center) and density-connected

(right) in DBSCAN. Assume that the minimum number of points required to form

a cluster is 3 i.e. minPts = 3. The dots represent the points to be clustered, and the

black circles define the area of radius ε around the points in red, the arrows denote

the relation of direct density-reachability. In the figure on left, point p is the core point,

while q is directly density-reachable from p, similar to all the other blue points. In the

figure in center, point q is density-reachable from the point p. In figure on right, point

q is density-connected to p whereas o (the point in green) is a point such that both p

and q are density reachable from o. 84

3.7 Occupancy grid map corresponding to a scan obtained by the vehicle in an urban

road scene with multiple moving objects. The static occupied voxels are shown in

grey and ground voxels in blue. The ego-vehicle is represented by the ‘+’ symbol in

mustard color. 87

3.8 An illustration of detection of moving objects after two scans. All the dynamic vox-

els detected from inconsistencies between the scans are shown in red (3.8a). After

clustering, different dynamic object hypotheses are shown in different colors (3.8b).

The static occupied voxels are hidden for better visibility of the dynamic voxels. . . 88

3.9 An illustration of detection of moving objects after ten scans. In Fig. 3.9a, detected

dynamic voxels are accumulated over ten previous scans while in Fig. 3.9b, many

of those voxels are ignored as noise at each time step when clustering is performed.

Static occupied voxels are hidden for better visibility of the dynamic voxels. 89

3.10 The results of detection of moving objects provided from Fig. 3.9: a closer view. . . 90

3.11 Classification Algorithm: The shaded box represents learning and the dashed box

represents the classification. 92

3.12 The layered representation of a car. Each layer is represented by a different color. . 93

xiv LIST OF FIGURES

3.13 The layered representation of a pedestrian (left) and the illustration of a specific

layer (right). 94

3.14 Illustration of L-shaped and I-shaped layers with object box models used by (Vu,

2009). 95

3.15 Trellis diagram of Viterbi Algorithm. 102

3.16 Trellis diagram of Viterbi data association for single target tracking. 103

3.17 Multiple object tracking with Viterbi data association: Trellis for track 1 and 2. . . . 106

3.18 Multiple object tracking with Viterbi data association: Trellis for track 3 and 4. . . . 107

3.19 A complete trellis showing the paths for all four tracks in Fig. 3.17 and 3.18. 108

3.20 Multiple object tracking with Viterbi data association: Track continuation. 109

3.21 Multiple object tracking with Viterbi data association: Track creation. 110

3.22 Multiple object tracking with Viterbi data association: Track deletion. 111

3.23 Multiple object tracking with Viterbi data association: Track merge. 112

3.24 Multiple object tracking with Viterbi data association: Track split. 113

3.25 Multiple object tracking with Viterbi data association: Track split with creation of a

new track. 113

4.1 Velodyne HDL-64E sensor (left) and a sample of the data (right). 116

4.2 Sample of the Velodyne data stored in PNG distance image. 117

4.3 Ground segmentation results for a single scan in an outdoor scenario with a grid

resolution of 0.1m. Ground voxels are displayed in blue and other occupied voxels

in grey. The ‘+’ symbol represents the position of the laser scanner. 119

4.4 Ground segmentation results for a single scan in an outdoor scenario with a grid

resolution of 0.2m. 120

4.5 Ground segmentation results for a single scan in an outdoor scenario with a grid

resolution of 0.3m. 121

4.6 SLAM with ground segmentation results for first 400 scans in Scenario 2. 124

4.7 A comparison of the scan matching results with odometry. 125

4.8 Detection of moving objects. The scene at the start of the sequence, t = 0 s, consist-

ing of multiple moving objects represented by green rectangles. 129

LIST OF FIGURES xv

4.9 Detection of moving objects. Results after two scans. All the dynamic voxels de-

tected from inconsistencies between the scans are shown in red and all other occu-

pied voxels in grey while the ground voxels are in blue. 130

4.10 Detection of moving objects. Results after two scans. Only dynamic occupied vox-

els are shown (in red) for a clear representation. 130

4.11 Detection of moving objects. Results after two scans with clustering of the dynamic

voxels. Different dynamic object hypotheses are shown in different colors. 131

4.12 Detection of moving objects. Results after ten scans, showing all detected dynamic

voxels accumulated over the ten previous scans. 132

4.13 Detection of moving objects. Results after ten scans showing different object hy-

potheses as clusters of different colors. Some of these object hypotheses are not

dynamic objects such as the clusters in cyan and mustard colors near the vehicle. . 132

4.14 A comparison of the real data generated by Velodyne (left) and the virtual scan data

generated from the 3D model of a car in google’s 3D Warehouse (right). 134

4.15 An illustration of the data labeling process. Results of the dynamic object detection

step (bottom) are compared with the image of the scene (top) and appropriate class

labels are assigned to the clusters of voxels. The rectangular boxes represent the de-

tected objects matched with the camera image. In addition to the objects appearing

in the camera image, there are some other moving objects which can be identified

based on their positions in the previous frames. For instance, the yellow object

cluster on the left of the screen is not visible in the camera image but it can still be

labeled as a pedestrian as we have already observed it in the previous frames. Sim-

ilarly, the orange cluster of voxels behind the sensor is identified and labeled as a

bicycle. 136

4.16 Some examples of the hand-labeled data used for training the car classifier. First

four rows contain the positive examples while the last two rows contain the nega-

tive examples. 138

4.17 Some examples of the hand-labeled data used for training different classifiers. . . . 139

4.18 Tracking results at t = 0.5 s. There is only one moving object which is correctly

detected and classified as a car. A track is initialized and confirmed for this car,

marked as car_1. 143

xvi LIST OF FIGURES

4.19 Tracking results continued from Fig. 4.18 at t = 13.0 s and t = 15.8 s. Car_4 is not

identified at t = 13.0 s as it is far from the sensor and generates small number of

voxels but correctly identified at t = 15.8 s despite being visible partially from behind.144

4.20 Tracking results continued from Fig. 4.18 at t = 20.4 s and t = 23.0 s. The vehicle

has reached at an intersection with many cars crossing in front of it. 145

4.21 Tracking results continued from Fig. 4.18 at t = 24.8 s and t = 29.4 s. The cars

which stopped (car_1 and car_4) are not tracked any more until they start moving

again. 146

4.22 Tracking results continued from Fig. 4.18 at t = 32.4 s and t = 38.4 s. In addition to

many cars, a bus is also detected and tracked. 147

4.23 Tracking results at t = 0.6 s. There are three moving objects correctly detected and

classified as two bikes and a pedestrian. 148

4.24 Tracking results continued from Fig. 4.23 at t = 1.0 s and t = 2.4 s. Another object

(bike_4) is detected and tracked in addition to the previously tracked objects. 149

4.25 Tracking results continued from Fig. 4.23 at t = 7.2 s and t = 10.2 s. This shows the

case of a false alarm generated as pedestrian_4 (Fig. 4.25a) and a new track (bike_6)

initialized for an existing object (bike_5) due to a sequence of missed detections (Fig.

4.25b). 150

4.26 Tracking results continued from Fig. 4.23 at t = 13.4 s and t = 16.8 s. 151

4.27 Tracking results continued from Fig. 4.23 at t = 20.0 s and t = 21.8 s. 152

5.1 An illustration of object segmentation based on ground identification. Different

static objects such as light poles, sign boards, traffic signs, façades of the buildings

and parked cars are separated from each other. A proximity based clustering of the

occupied voxels can result in the individual clusters corresponding to these objects

which can be used for classification as well as object based localization. 160

List of Tables

1.1 Characteristics of different perception sensors 10

4.1 SLAM Dataset . 118

4.2 Map statistics before and after ground segmentation 122

4.3 Comparison of scan matching results with odometry 123

4.4 Average number of dynamic voxels before and after clustering 128

4.5 Training datasets for different classes of moving objects 137

4.6 Classification results for the individual binary classifiers 137

4.7 Estimated error from the training data for the individual binary clas-

sifiers . 140

4.8 Classification of moving objects: Quantitative results 140

4.9 Multiple object tracking: Quantitative results 153

4.10 Processing times for different components 154

xvii

Chapter 1

Introduction

Building the artificial beings to replace humans for performing exhausting and dan-

gerous tasks has been an aspiration since a long time. Literature reflects the efforts

by many ancient civilization such as Chinese, Greeks and Egyptians who attempted

to build the self-operating machines including the artificial people (Needham, 1991;

Rosheim, 1994). Motivation behind all these efforts has been the comfort, conve-

nience and safety of human beings.

In the last couple of decades, field of robotics has seen a huge transformation both

in scope and dimensions. The reason behind this evolution is the maturity of the

field as well as the general development in technology in recent years. The up-

coming robots appear to meet the challenges of cohabiting dependably with the

humans, both indoor and outdoor, facilitating them with the services as well as en-

tertainment (Burgard et al., 2000; Clodic, 2005; Jensen et al., 2005). Moreover these

intelligent machines can be used to perform tasks which are inherently dangerous

for human such as cleaning the explosive mines, rescue operations in the disaster

sites etc. All these things are possible because machines are not constrained by

human limitations like eating, sleeping, breathing, temperature and pressure con-

straints and psychological limitations.

This recent advancement in robotics has impacted a wide range of research areas

including automotive engineering, haptics, neuroscience, surgery, virtual simula-

tion and sensor technology. On the other hand, the advancement in these and other

newly emerging areas provides the incentives for further exploration in the field of

robotics. Thus, the onset of new technologies opens new horizons for the research

in this field.

1

2

One of these technologies which is a fundamental requirement for all the robotic

applications and highly impacts their capabilities is the sensor technology. In order

to perform its tasks, a robot must have a clear knowledge about its environment.

This knowledge, commonly known as environment perception, includes information

about the infrastructure as well as the entities which are temporarily present in

the environment. The previously built maps can help in this regard but they are

definitely not sufficient to define the actions of the robot as they lack information

about the temporarily present entities (e.g. cars, humans, animals etc.) and they

may not be up-to-date. For example, a recent change in the infrastructure, which

is not updated in the map, can lead to a huge difference in traversable area of the

environment. Thus, the robot’s knowledge about the environment should never

rely on the pre-built maps alone and it must have a mechanism to gather a precise

and up-to-date information. This mechanism is ensured through the sensors.

Every robot, whether operating autonomously or semi-autonomously, is equipped

with one or multiple sensors. There is a wide range of sensors available in mar-

ket which vary in their type, dimension (2D/3D), range, resolution and price. The

choice of sensors depends upon the environment in which the robot has to oper-

ate and the tasks it requires to perform. For instance, in the robotic applications

operating indoor, such as tour guides or domestic robots, a short range sensor pro-

vides sufficient information while the outdoor applications, such as intelligent cars

or planetary rovers require the long range sensors instead.

Other than range, a very important characteristic of the sensor is the dimension of

its output. In robotics, state-of-the-art techniques for perception have been relying

on the use of two dimensional sensors. These sensors scan the environment and

capture information about a 2D slice of the world. One of the landmark advance-

ments in sensor technology during the last decade is the introduction of three di-

mensional sensors for environment perception. These are the sensors that provide

dense 3D point clouds corresponding to the environment surrounding a robot.

A question that strikes the mind is that in the presence of so many successful robotic

applications with the help of 2D sensors, why do we need the expensive 3D sen-

sors at all? Imagine the situation when a mobile robot crashes into an open drawer

just because it is higher than the scan plane of the robot’s collision detection sen-

sor. This makes us realize that we live in a 3D world. To make this belief firm,

assume a robot heading towards a flight of stairs. The robot’s horizontal 2D scan-

Chapter 1. Introduction 3

ner depicts the area in the front as unobstructed and navigable. As a result, it will

possibly continue in its heading direction and crash down the stairs. Furthermore,

the targeted environments in which the robots are supposed to operate now-a-days

no longer remain limited to the structured dedicated spaces. They vary from the

urban streets to the barren and unpredictable landscapes of Mars, as illustrated in

Fig. 1.1. None of these environments can be modeled fully and robustly with a

flat-world assumption of the 2D sensors.

Figure 1.1: Two different environments where a robot may evolve which contain very different kind

of geometry: urban with a lot of poles and Mars with sand desert.

These and other similar cases show that the sensors which scan the environment in

2D are not sufficient to serve the purpose for a robot. An extensively exploited so-

lution to this problem has been the use of multiple sensors. Many research groups

have combined several sensors to achieve an improved and relatively complete

perception of the environment (Baig, 2012; Darms et al., 2008; Nedevschi et al., 2009;

Petrovskaya, 2011). The disadvantage of this approach is that it introduces an extra

overhead of sensor calibration and fusion of the data from multiple sensors. More-

over, such multi-sensor systems have their own limitations regarding the range,

density, field of view (FoV) etc. Thus, some of the research groups in the automa-

tion industry have recently turned their interest towards exploring the perception

with 3D sensors (Leonard et al., 2008; Moosmann and Stiller, 2011; Nüchter et al.,

2007a; Urmson et al., 2008).

An intended field for the deployment of these sensors is the autonomous vehicle1

driving. Autonomous vehicles are highly safety critical applications and require a

sufficiently large amount of data to perceive the environment. This is the reason

1In this dissertation, the terms autonomous vehicle, intelligent vehicle and driver less cars are

used in the same sense.

4 1.1. Intelligent Vehicles

why all such applications have been using multiple sensors as the information pro-

vided by a single 2D sensor is never enough to navigate safely. However, there

are as yet many challenges to overcome in this field, especially related to extrac-

tion, combination and interpretation of the useful information from sensors’ data

to understand the external world. The emergence of 3D sensors has opened a new

corridor for the research in this field.

We have also used a 3D laser range sensor2 in this work and proposed a solution

for the challenging problem of environment perception in the context of intelligent

vehicles. It is the only perception sensor that we utilized in contrast to some recent

approaches which have used the 3D laser sensor in collaboration with the other sen-

sors. As the targeted applications for our work are the intelligent vehicles therefore,

in the rest of the chapter, we first provide an introduction to the area of intelligent

vehicles and the sensors they commonly use for gathering information about their

environment. Then we detail the problem of perception for intelligent vehicles, its

importance and its components. The chapter ends with a list of contributions of

this work and organization of the rest of the dissertation.

1.1 Intelligent Vehicles

In the modern society, cars (vehicles) have become an essential part of our life

which provide transportation with convenience. Vehicle industry is competing to

provide modern facilities to make journey safer and more enjoyable. At the same

time, rapid growth of the number of vehicles on road has increased the ratio of

traffic accidents considerably. Numerous factors such as traffic signs, speed, over-

taking, arrogance, driving skills, mechanical faults, tailgating, pedestrians, animals,

overloading, etc. are involved in the road accidents that need to be considered care-

fully to improve the road safety.

This problem has captured the attention of not only the competitive vehicle indus-

try but also the educational and research institutes. Over the decades, researchers

from different fields of automotive engineering, robotics and other associated do-

mains are trying to develop the intelligent systems for modern vehicles to make the

driving experience safer and more convenient. The aspired systems can be divided

into two categories; i) the monitoring applications designed to assist human drivers

2The terms laser range sensor, laser range scanner and lidar are used interchangeably.

Chapter 1. Introduction 5

in navigation and ii) the fully autonomous vehicles.

The first type of intelligent vehicles, known as the advanced driving assistance sys-

tems (ADAS), have already hit the market with the latest automotive technologies,

as illustrated in Fig. 1.2. Toyota was the first to introduce a radar-based adaptive

cruise control (ACC) system on a commercial vehicle sold in Japan in 1998 which

was further refined by adding “break control” in 2000. Soon after, in 1999, Daimler

also introduced their radar-based ACC in the market with their premium class ve-

hicles. The systems such as lane departure warning, collision warning, lane change

assistance, automatic parking, traffic sign recognition, parking assistance, driver

drowsiness detection etc. are also commercially available now in the modern vehi-

cles.

Figure 1.2: Advance Driving Assistance Systems (ADAS): Parking assistance system (left) and col-

lision warning system (right).3

The second type of intelligent vehicles are the fully autonomous vehicles. The

term fully autonomous is defined as “a mode of operation wherein the unmanned

system (UMS) is expected to accomplish its mission without human intervention”

(Huang et al., 2005). A fully autonomous vehicle must possess the level of cogni-

tion to be able to reason about a designated mission and devise and execute a plan

of action. However, building a vehicle with these capabilities is extremely difficult

therefore fully autonomous vehicles have not been able to make to the market yet

and they are still in the process of research. With the availability of very accurate

positioning systems, and highly precise range-finders, such as the lasers, that can

provide an abundant information about the surrounding of the vehicle at a suffi-

ciently good frequency, the dream of achieving a fully autonomous vehicle does

3http://www.teach-ict.com/, http://rb-kwin.bosch.com/

6 1.1. Intelligent Vehicles

not seem far from the sight. An illustration of this fact can be seen in the DARPA

Urban Challenge4 of 2007 where six of the participating autonomous vehicles suc-

cessfully finished the entire course despite the challenging circumstances. These

vehicles obeyed all the traffic rules as well as detecting and avoiding the other par-

ticipants and moving obstacles on the road. The drawback of these vehicles that

is a hindrance to their commercialization is the huge number of costly sensors that

they used. Another addition to the newly developed, but not yet commercialized,

autonomous vehicles has been the VIAC challenge of VisLab5 and Google’s self-

driving car6. VisLab vehicles used vision cameras as main perception sensors to

follow a man-driven car while the Google cars used multiple sophisticated sensors.

As of today, the intelligent vehicle systems mentioned above are not capable of

dealing with all possible scenarios that can be encountered while driving, espe-

cially on busy city roads. A substantial hindrance to this capability is the required

amount of information about the environment that may suffice for dealing with

such situations successfully. To get that abundant information from the sensors is

yet a challenge for the researchers. It is generally accepted that a single 2D sen-

sor, due to its limitations and uncertainty (detailed in section 1.2), is not capable

enough to provide all necessary information required for this complicated task.

Using multiple sensors is a potential solution, however, combining information

optimally from these sensors is a challenge (Durrant-Whyte et al., 1990; Hall and

Garga, 1999). Moreover, the individual limitations of the sensors further reduce the

capability of these systems. The use of reliable 3D sensors seems to be an ideal so-

lution due to the ample amount of information they provide at a reasonably high

frequency. However, there are a number of problems that must be overcome to

achieve the goal of perception with a 3D sensor. We have addressed those prob-

lems and proposed some possible solutions in this work.

In summary, we can say that the degree of autonomy of the intelligent vehicle de-

pends on its capability of understanding the external environment using its sen-

sors’ data. Following section gives an overview of commonly used sensors with an

analysis of their performance in the context of intelligent vehicles.

4http://archive.darpa.mil/grandchallenge/
5http://www.vislab.it
6http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-

car-works

Chapter 1. Introduction 7

1.2 Sensors

The sensors used in intelligent vehicle perception are generally divided into two

categories: vision-based sensors (cameras) and telemetry/range sensors (lidar and radar).

In this section, we discuss these sensors with their capabilities and limitations.

1.2.1 Vision-based Sensors

Vision-based sensors or cameras are the most widely used sensors owing to their

high information content and low cost. Generally, in comparison to the range sen-

sors, cameras provide high-resolution images at a high frame rate with low energy

consumption. However, their biggest limitation is that they do not directly capture

the distance to the objects. Another drawback is the high impact of lighting condi-

tions, shadows and other ambient effects. Thus, unlike the range sensors, cameras

do not provide useful information in the absence of sufficient lighting. In order to

overcome these limitations, several special camera configurations are available. For

instance, stereo cameras use two or more cameras to obtain binocular vision which

generates the range data in addition to the images. This setup is very sensitive to

calibration errors and has a small accuracy at larger distances. To avoid the impact

of lighting conditions, infrared cameras are an alternative but they suffer from a high

signal-to-noise ratio and a short range in comparison to the laser sensors.

1.2.2 Telemetry/Range Sensors

The commonly used telemetry sensors in intelligent vehicles are the radar and lidar.

Radar

Radar emits the radio signals and finds the distance to the obstacles by measuring

the time delay or phase shift of the reflected signals. Radars are very precise for ve-

locity estimation and perform well in bad weather conditions, however, they have

narrow field of view and low resolution. Although they possess a long distance

range but the measured range to the targets can suffer from echoes from the objects

in the path of the wave thus corrupting the bearing to the objects. A possible solu-

tion to this problem is to use the vision sensors in addition to radars for improving

the accuracy (Lundquist C, 2008; Richter E, 2008). Alternatively, the static returns

8 1.2. Sensors

Figure 1.3: A goal of the vehicle perception with 2D lidar. Right: a real road scenario. Left: internal

belief of the vehicle about it.

are filtered out to avoid the effect of echoes from the static targets and infrastructure

but this reduces their suitability for the urban driving applications.

Lidar

Lidar uses the laser beams and measures their time-of-flight to retrieve the range.

An advantage of this technique is that it works reliably in all lighting conditions.

The available types of lidars are categorized as 2D, multilayer 2D, and 3D lidar.

2D Lidar: A 2D lidar uses a rotating mirror which deflects a laser beam into a plane.

A receiver circuit detects this reflected beam and calculates the distance by comput-

ing the time elapsed between the emission and detection of the beam. It gives a very

wide field of view (at least 120 degrees), however, the retrieved information is lim-

ited to a 2D slice of the world. Figure 1.3 is an illustration of the data produced by a

2D SICK lidar7 mounted horizontally on a vehicle. The red dots represent the laser

hits. A limitation of these sensors is that they scan the environment at a specific

height. Any object above or below that height does not get detected. Hence, using

a single 2D lidar proves insufficient for the purpose of vehicle perception.

Multilayer 2D Lidar: In order to avoid the problem mentioned above, multilayer

7http://www.sick.com/

Chapter 1. Introduction 9

Figure 1.4: An illustration of the data provided by a single scan of Velodyne HDL-64E, a high

definition lidar system for environment perception which consist of 64 laser beams rotating at 10Hz

and covering a range of up to 120m.

2D lidars are introduced which produce more slices of information by using mul-

tiple laser beams and receiving circuits. For example, IBEO LUX8 sensors produce

four scan lines. These sensors can be used to construct an abridged 3D representa-

tion of the environment with a very low vertical resolution and density. To obtain

a higher resolution and density, 3D lidars are a preferred choice.

3D Lidar: These sensors capture a dense 3D point cloud corresponding to the envi-

ronment surrounding the vehicle. A highly appreciated example of such sensors is

the Velodyne HDL-64E9. It retrieves the data at a frequency of 5-15Hz and a single

scan contains more than 50,000 points (see Fig. 1.4). Thus it can provide the data

at the rate of up to two million points per second. This sensor has all the afore-

mentioned advantages of a range device, as illustrated in Table 1.1. It has 64 lasers

aligned at different vertical angles mounted on a cylinder which rotates around the

vertical axis. In each rotation, the lasers sweep the space and generate a 3D point

cloud. This sensor was successfully used for vehicle detection in DARPA Urban

Challenge 2007 for the first time. With the rich data generated by this sensor, the

vehicle perception can be made more reliable in all scenarios. Moreover, 3D lasers

8http://www.ibeo-as.com/index.php/en/ibeproducts/sensorsv
9http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx

10 1.3. Perception for Intelligent Vehicles and the Challenges

Table 1.1: Characteristics of different perception sensors

Sensor 3D Data Range Resolution FoV Light Impact Cost

Camera
Mono - + + + - +

Stereo + + + + - +

Radar - + - - + +

Lidar

2D - + - + + +

Multilayer 2D - + - + + -

3D (Velodyne) + + + + + -

provide data at high frame rates and with high information content. Unlike cam-

eras, lasers give range information for every data point and can work in the dark.

In this work, We have used the 3D lidar for the environment perception for intel-

ligent vehicles as it is far better in performance then the other sensors described

above. The only question mark on the choice of this sensor is its cost but it becomes

acceptable when we consider the criticality of the process of perception for an intel-

ligent vehicle. In the following, we detail the problem of perception, emphasizing

on its position and importance in the framework of an intelligent vehicle. We will

also explain the different components of environment perception.

1.3 Perception for Intelligent Vehicles and the Challenges

Environment perception is an elementary task for reliable performance of the in-

telligent vehicle. It is one of the three components of fundamental robotic system

architecture, also known as the modern robotic paradigm (Baum and Petrie, 1966).

The three components of this architecture include Perception, Decision and Action,

hence called the PDA architecture (see Fig. 1.5). This architecture implies that an

intelligent system must be able to perform three main tasks:

Figure 1.5: Modern robotic paradigm: Perception, decision and action. The decisions are based

on the environment model provided by perception module, hence perception is the base of robotic

decisions and actions in PDA architecture.

Chapter 1. Introduction 11

• Perceiving or modeling of the environment for scene understanding.

• Reasoning about the actions to perform, depending on perceived situation.

• Realizing those actions through the actuators.

Analogous to the humans, who perceive the surroundings using their senses, in-

telligent vehicles use their sensors to gather information about the environment.

Human beings can assess the situation based on the sensory information thanks to

their brains but the vehicles cannot do so. For instance, the raw information pro-

vided by a laser scanner is simply a set of ranges (red dots in Fig. 1.3) or a range

image in the case of 3D sensor (Fig. 1.4). A human can possibly look at that image

and identify different entities in it but for a machine, this information is useless un-

til it is converted into some form which is understandable to it. Thus the purpose of

perception systems in the intelligent vehicles is to transform that raw data acquired

by the sensors into useful information and interpret it to understand the situation

surrounding the vehicle.

The output of perception task is a representation of the scene surrounding the ve-

hicle (e.g. position on the road, presence of obstacles, road signs, pedestrians and

other vehicles etc.) which is further used to make the decisions (e.g. change of tra-

jectory or speed over time). Those decisions finally become the base for the action

for physically controlling the vehicle in order to navigate smoothly. Thus, the envi-

ronment perception is the key to successful navigation of an intelligent vehicle and

an erroneous and inaccurate environment model can lead towards wrong decisions

consequently leading to the dangerous situations such as collisions.

1.3.1 Problem Statement

The perception problem is defined as the process which takes inputs from the sen-

sors and outputs the internal state of the vehicle X, a static map of the environment

M and a list of moving objects O around the vehicle (see Fig. 1.6). The sensor inputs

include the measurements from perception sensors such as cameras or laser scan-

ners as well as the measurements from motion sensors such as odometry or inertial

measurements. The perception and motion measurements are denoted by Z and U

respectively. Further, the vehicle state X comprises of the variables related to the

vehicle such as its speed and relative pose with respect to the map M. The static

map of the environment M consists of the information about the stationary objects

12 1.3. Perception for Intelligent Vehicles and the Challenges

Figure 1.6: The general perception process. Z represents the perception measurements, U represents

the motion measurements, X is the vehicle state, M is the map of stationary objects and O represents

the states of moving objects.

and their locations in the map. The list of moving objects O consists of the infor-

mation related to the dynamic objects including their locations as well as dynamic

states such as direction of motion, velocity etc.

In order to represent the states which change with time, specific variables are used

to show their values at certain times. For instance, xt represents the vehicle state at

time t. Thus the trajectory of the vehicle can be represented by:

X = x0:t = {x0, x1, ..., xt} (1.3.1)

As the vehicle moves, its state xt evolves, the motion sensors give the control mea-

surement ut for the evolved state whereas the perception sensors give the environ-

ment measurements zt. These measurements up to time t are defined as:

Z = z0:t = {z0, z1, ..., zt} (1.3.2)

U = u1:t = {u1, u2, ..., ut} (1.3.3)

The static map M of the environment comprises of the stationary objects and the

information related to them:

M = {m1, m2, ..., mk} (1.3.4)

Here, K is the total number of stationary objects, and mk represents the location and

properties of each object with 1 ≤ k ≤ K. The list of moving objects O up to time t

is denoted by:

O = O1:t = {O1, O2, ..., Ot} (1.3.5)

where Ot is the list of moving objects at time t consisting of a finite set of N objects:

Ot = {o1
t , o2

t , ..., on
t } (1.3.6)

Here, each on
t with 1 ≤ n ≤ N contains the information regarding the locations and

dynamic states of each moving object at time t.

Chapter 1. Introduction 13

Thus the perception problem is defined as the estimation of the vehicle state X, the

static map M and the state of moving objects O given the sensor measurements Z

and U over time. This problem is also called Simultaneous Localization and Mapping

(SLAM) with Detection and Tracking of Moving Objects (DATMO).

A mathematical framework to solve SLAM with DATMO was introduced by Wang

et al. (2003). The SLAM with DATMO problem was defined as a joint posterior

over all unknown states (related to ego-vehicle, static and dynamic objects) given

all sensor measurements (both perception and control measurements):

P(X, M, O|Z, U) (1.3.7)

However, Wang et al. (2003) showed that estimating this joint posterior is compu-

tationally demanding and generally infeasible due to high dimension of the joint

state variable. Therefore, they proposed to solve this problem by decomposing the

measurements Z into static (Z(s)) and dynamic (Z(d)) measurements and thus de-

coupling the SLAM and DATMO problems such that:

P(X, M, O|Z, U) = P(X, M|Z(s), U)P(O|Z(d)) (1.3.8)

where Z = Z(s) + Z(d). This decomposition of measurements corresponds to the

detection of moving objects and the two terms in the posterior (1.3.8) correspond to

SLAM (P(X, M|Z(s), U)) and moving object tracking (P(O|Z(d))).

Maintaining separate posteriors for static and dynamic objects reduces the dimen-

sionality of the problem of estimating SLAM with DATMO in (1.3.8) considerably

as compared to the direct estimation of SLAM with DATMO in (1.3.7). We give a

brief background in to the SLAM and DATMO problems in the next sub-sections.

1.3.2 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM), first introduced by Smith and

Cheeseman (1986), allows robots to operate in an unknown environment and in-

crementally build a map of this environment and concurrently use this map to lo-

calize themselves. However, if the map is incomplete or the environment is very

symmetrical then the robot cannot be certain of its position. One popular solu-

tion for outdoor applications is the use of Global Positioning System (GPS). GPS

allows a robot to estimate its global position in the world easily and quite accu-

rately . However, it suffers from problems with noise and errors caused by large

structures, such as the buildings in urban areas.

14 1.3. Perception for Intelligent Vehicles and the Challenges

In most SLAM applications, initial estimate of the pose is given by odometry or

some other mechanism which is corrected using observations from the environ-

ment and the stored map. On the other hand, the corrected pose helps to update

the map by aligning the previous and current information. Thus, classically, the

problem of SLAM consists of two steps: environment representation and map as-

sociation. There are three general approaches to the environment representation:

grid-based (Elfes, 1989), feature-based (Dissanayake et al., 2001), and direct meth-

ods (Cole and Newman, 2006). These approaches are further discussed in Chapter

2. When a 3D range sensor is used, a considerable amount of the acquired infor-

mation corresponds to the ground (see Fig. 1.4). This introduces the demand for

another crucial step for mapping, known as the ground identification and segmen-

tation (B. Douillard, 2010; Himmelsbach, 2010).

In the last couple of decades, the SLAM problem has been explored immensely

(Moosmann and Stiller, 2011; Nüchter et al., 2007b; Wang and Thorpe, 2004), and

SLAM techniques have become the base of many successful robotic applications

(Nüchter et al., 2007a; Thrun et al., 2006). However, due to the static environment

assumption, SLAM alone has proven to perform badly in the crowded urban envi-

ronments and, as explained by Wang and Thorpe (2002), an intelligent vehicle must

also be capable of detecting and avoiding the moving obstacles.

1.3.3 Detection, Classification and Tracking of Moving Objects

Many approaches for moving object tracking suppose that the measurements cor-

respond uniquely to moving objects, however, most of the real applications include

static objects and spurious elements in the measures. The approaches that assume

the absence of static objects track all the objects in the environment, regardless of

being static or dynamic. As a result, they suffer from an unneeded complexity in

the system. To simplify the problem, some approaches filter out the objects that do

not fit the expected criteria for moving objects. For instance, Labayrade et al. (2005)

propose to remove the objects which are not on the road from the consideration for

dynamic objects while Nashashibi and Bargeton (2008) ignore the objects which are

too large. Despite reducing some objects, these approaches still have a high com-

plexity, specially in the context of crowded environments. Therefore, the preferred

approaches for the intelligent vehicles are the ones that discriminate the dynamic

objects from static environment.

Chapter 1. Introduction 15

Differentiating between the static and dynamic objects is a critical aspect of a mov-

ing object tracking system. Moving object detection in crowded urban environ-

ments is not easy because of a wide variety of targets. Vision-based applications

use feature-based or appearance-based recognition approaches to detect moving

objects (Taleghani et al., 2009; Viola and Jones, 2001). When laser is used, motion-

based approaches (Vu, 2009; Wang et al., 2003) are usually the preferred solution

since both appearance-based and feature-based methods rely on prior knowledge

of the targets. These approaches are further discussed in Chapter 3.

After moving objects are identified, multiple object tracking problem arises in order

to estimate dynamic states of each object. It has to deal with the data association

problem and maintenance of a list of objects currently present in the environment

as well as their dynamic models (Bar-Shalom and Fortmann, 1988). In general, clut-

ters, occlusions or missed detections from the detector could cause more challeng-

ing situations to the data association step. In addition, changing motion behaviors

of moving objects make defining a suitable motion model of the tracked objects

more difficult. Identifying the class of the objects can be of help in this regard for

the choice of the appropriate dynamic model.

In the computer vision literature, algorithms for object classification have been at-

tained in a mature stage, however, so far very few researchers have addressed this

problem with laser sensors. Since all data returned by laser scanner are discrete

points of impact on moving objects (see Fig. 1.3), it is hard to define distinguished

features to identify different kinds of objects. The dimensions of the detected ob-

jects, line segments, or rectangular bounding boxes are the most commonly used

features in the classification process in 2D. Typical length and width values are

usually compared against the modeled bounding boxes to choose an object class

(Petrovskaya, 2011; Vu, 2009). Moreover, in case of 2D, this step is mostly avoided

by performing the object tracking directly after detection. A useful clue is often the

use of estimated velocities of moving objects. However, in the case of 3D range

data, it is not that implicit as the detected objects usually consist of the partial point

clouds. These point clouds can neither be tracked directly nor can be classified by

using the dimensions of the bounding box alone. Therefore, a more sophisticated

approach for classification is required to identify the objects from 3D laser data.

The existing approaches range from the vision-based classification from range im-

ages (Lee et al., 2010) to the feature-based classification (Himmelsbach et al., 2008)

from raw 3D point clouds. The problem with the former method is that it converts

16 1.4. Contributions

the data to 2D image, hence losing the valuable detail of the 3D point cloud. On

the other hand, the latter methods usually consume a generous amount of time

for feature extraction and representation from the raw point clouds. As a result,

they become less interesting for the time critical application of object tracking for

intelligent vehicles. Chapter 3 provides a detail about the existing approaches for

classification and tracking of moving objects as well as a novel approach proposed

for classification and tracking in 3D.

1.3.4 SLAM with DATMO

Since Wang (2004) combined the SLAM and DATMO into a single problem known

as SLAMMOT10 and demonstrated its feasibility using laser sensor, it has attracted

extensive research interest in the robotics literature. It proves to be a basic com-

ponent for the robotic systems exploring in the unknown and unstructured envi-

ronments. Vu (2009) provided a promising framework to solve this problem using

2D laser sensor. Recently, the trend has been moving to using cameras in addition

to laser. The successful illustrations include the work of Petrovskaya (2011) and

Baig (2012) who used stereo-vision cameras with laser while Chavez-Garcia et al.

(2012) complemented it with mono-vision and radar. Stereo-vision is also used to

perform SLAM with DATMO in 3D (Nedevschi et al., 2009) but a more attractive

and emerging area in this regard is the use of 3D laser. Many recent works have

utilized it with a combination of other sensors (Montemerlo et al., 2008; Moosmann

and Stiller, 2011; Nüchter et al., 2007a).

1.4 Contributions

Intelligent vehicle perception in 3D is becoming a hot area of research. The 3D laser

range scanner has turned out to be a sensor of choice for many mobile applications

in the last few years. The first successful illustration of this technology was the

DARPA Urban challenge 2007 where five of the six teams which managed to finish

the complete course of the race were equipped with the Velodyne HDL-64E 3D

laser scanner (Schwarz, 2010). A more recent example is the Google’s driver-less

car, which used the same sensor. A limitation for these vehicles is that they used

a number of sensors (cameras, radars, 2D lidars, GPS etc.) in addition to the 3D

10Simultaneous localization and mapping with moving object tracking

Chapter 1. Introduction 17

lidar, which increase the cost as well as processing complexity. For instance, in

the DARPA Urban challenge, the winning vehicle “Boss” of the team Tartan Racing

(Urmson et al., 2008) was equipped with a combination of 18 laser and radar sensors

besides a Velodyne HDL-64E. The vehicle “Talos” of Team MIT (Leonard et al., 2008)

used a combination of 12 planar lidars, 12 radars and a Velodyne HDL-64E for

environment perception. Similarly, the sensors on the Google cars include four

radars, a camera and a GPS in addition to the 3D Velodyne laser scanner and high-

resolution maps of the world11.

In contrast to these approaches, we propose that a single 3D laser range scanner is

sufficient to deal with the problem of vehicle perception. The use of other sensors,

in addition, creates redundancy and workload. To address this problem, we started

by exploring the methods of vehicle environment representation focusing on using

3D laser scanner as the main perception sensor. Further, we explored the methods

for detection, classification and tracking of moving objects as well. We review the

state-of-the-art approaches to SLAM and DATMO briefly in terms of the environ-

ment representations in this thesis. The main contributions of this research are as

follows:

First contribution of this research is made by a baseline solution to the problem of

SLAM in 3D based on an optimized occupancy grid to represent the environment.

In order to extend a generic 3D mapping framework to use it for solving the SLAM

problem, we introduce a variance-based elevation map technique for the detection

and segmentation of the ground. To correct the vehicle location from odometry,

we introduce a grid-based incremental scan matching method. Our approach ex-

tends the traditional Iterative Closest Points (ICP) algorithm to work reliably and

efficiently in 3D environment. Experimental results on datasets collected from dif-

ferent scenarios demonstrate the validity of the method.

Second and more important contribution follows the first results. After obtaining

a good vehicle localization and a reliable map with ground segmentation, we focus

on the dynamic objects in the environment. We make the hypothesis about the

dynamic voxels based on the inconsistencies between the constructed grid map

and the newly received scans. These hypotheses are then refined by performing

the density-based clustering of the voxels and the classification into the known

object categories. We introduce a novel layered approach using boosting for the

11http://www.youtube.com/watch?v=YXylqtEQ0tk

18 1.5. Thesis Organization

supervised classification of the 3D dynamic objects. We test the proposed algorithm

on real-life data of urban traffic and present promising results.

Third contribution is a method for robust tracking of dynamic objects. The position

of the dynamic objects is predicted by using Kalman filter (KF). For data associa-

tion, we have proposed to use the Viterbi Algorithm to find the most likely associ-

ations between the detected moving objects and the newly acquired observations.

The algorithm is implemented and tested on real environment for the tracking of

both single as well as multiple objects.

1.5 Thesis Organization

The remaining of this dissertation is organized as follows:

Chapter 2 starts with an overview of the background and state-of-the-art tech-

niques used for simultaneous localization and mapping in the context of intelligent

vehicles. Then we detail the 3D octree-based occupancy grid mapping approach we

adopted for environment representation. Finally, we present our method to extend

this approach for SLAM by introducing ground segmentation and localization.

Chapter 3 covers the topics of detection, classification and tracking of dynamic ob-

jects from the grid map. The detection is achieved through scan comparison and

density-based clustering while the classification relies on converting the problem

to 2D, splitting each dynamic cluster into the horizontal layers. Each layer is then

used to compute the weak classifier. The resulting strong classifier is obtained from

the combination of the weak classifiers through boosting. Finally we present our

method for multiple object tracking using Viterbi data association with a descrip-

tion of the method for track maintenance.

Chapter 4 provides the implementation details and the experimental evaluations

performed to test our framework for perception in dynamic outdoor environments.

Both qualitative and quantitative results are presented for different components of

the framework.

Chapter 5 concludes the dissertation with a summary of our work, and thoughts

about the future perspectives of research.

Chapter 2

Simultaneous Localization and

Mapping

2.1 Introduction

Simultaneous Localization and Mapping (SLAM), also known as Concurrent Mapping

and Localization (CML), is the process of building a map of the environment from

sensor data and at the same time using that map to determine the vehicle’s location.

The sensor data includes the information from both internal or proprioceptive sen-

sors as well as external or exteroceptive sensors (see Fig. 2.1). As the term implies,

SLAM is composed of two sub-problems: localization and mapping. Localization is

the problem of estimating the pose of the vehicle given a map and a sequence of

sensor measurements whereas mapping addresses the problem of building a map

given the poses of the vehicle and a sequence of sensor measurements. Thus an

accurate map is essential for reliable localization and an accurate localization is a

prerequisite for constructing a consistent map. Consequently, in practice, these two

problems cannot be solved independent of each other.

Figure 2.1: Simultaneous Localization and Mapping (SLAM).

In most applications, the initial position estimate is known using the propriocep-

19

20 2.1. Introduction

Figure 2.2: Simultaneous Localization and Mapping: Generic steps.

tive sensors. The vehicle starts the mapping process incrementally by translating its

external sensor measurements into the map representation. In the next step, when

the vehicle moves, it predicts its pose using the internal sensors and integrates the

newly observed exteroceptive information into the existing map thus updating the

map and the pose at the same time. This process is repeated for each new set of

measurements as shown in Fig. 2.2. As explained in chapter 1, if the static mea-

surements can be differentiated from the dynamic measurements, then SLAM and

DATMO can be handled as independent processes. In this chapter, we assume that

we have the static measurements only and address the problem of SLAM alone.

The dynamic measurements and the problem of detection and tracking of moving

objects will be addressed in chapter 3.

There are a number of methods developed to perform SLAM in both indoor and

outdoor environments. The underlying methods to solve the SLAM problem de-

Chapter 2. Simultaneous Localization and Mapping 21

pend on the type of the sensor and the constraints imposed by the application

scenario. Along with this, these methods also differ in their representation of the

environment as well as their dimensionality (2D/3D). The first part of this chap-

ter describes the important solutions proposed for the SLAM problem in last two

decades. First, in section 2.2, we give the background and mathematical formu-

lation of the SLAM problem. A review of the related work on SLAM follows in

section 2.3 which provides a baseline for the contributions of this chapter. The

second part of the chapter starts with a description of the approach that we have

adopted for 3D mapping in this work. After providing an overview and mathe-

matical formulation of the adopted framework in section 2.4, we discuss its merits

as well as limitations. Section 2.5 gives a summary of our contributions in the con-

text of SLAM based on the selected mapping framework. Our methods for ground

segmentation and localization are detailed in section 2.5.2 and 2.5.3 respectively.

2.2 Background

In this section we provide a background study of the SLAM problem. In section

2.2.1, we introduce the popular methods for map representation as they highly in-

fluence the choice of relevant method for SLAM. Next, we introduce the probabilis-

tic framework for SLAM and its common implementations in section 2.2.2.

2.2.1 Map Representations

Th map representation methods are generally characterized in four categories –

grid-based approaches (Elfes, 1989), feature-based approaches (Dissanayake et al.,

2001), direct approaches (Cole and Newman, 2006) and topological approaches

(Choset and Nagatani, 2001). We give a brief introduction of each of these methods

in the following.

Direct Representation

Direct approach represents the environment using raw data measurements without

simplification or extraction of features. This representation is often used with the

range sensors such as laser scanners. In this case, each data measurement, known

as a scan, is a set of points (2D or 3D) which are impacts of laser beam with the obsta-

22 2.2. Background

(a) Point cloud map (b) Feature map

(c) Grid map

Figure 2.3: Example of different map representations built from the same set of range measurements

acquired from a 2D laser scanner.

cles in the environment. Data association between two scans is usually performed

by using iterative closest point (ICP) algorithm or its variants (Lu and Milios, 1997;

Nüchter et al., 2005). The resulting representation is a point cloud map as shown in

Fig. 2.3a. It is a simple approach, however, it requires significant amount of mem-

ory and processing power to handle the large size of point clouds. Further, it does

not provide a direct mechanism to identify the objects.

Feature-based Representation

Feature or landmark-based approaches compress raw data into a set of features

defined in accordance with the operating environment. The features are usually

geometric primitives such as points, lines, circles etc. The common choice of fea-

tures for indoor and structured outdoor environments are line segments due to the

presence of many straight edges (Siadat et al., 1997) while circles are often used to

represent the tree trunks and tree-like objects, such as pillars, present in the semi-

Chapter 2. Simultaneous Localization and Mapping 23

structured, outdoor environments (Zhang et al., 2003). Figure 2.3b is an illustration

of the two-dimensional geometric feature map. A limitation of this approach is not

being able to model complex outdoor environments as well as the spaces between

the features. A method proposed to overcome this limitation is to use artificial

landmarks and add recognizable features to the environment. This approach is not

feasible in real life situations such as intelligent vehicles as it requires major changes

in the infrastructure.

Grid-based Representation

Grid-based approaches discretize the environment into a a series of cells (or voxels

in 3D), known as occupancy grid or evidence grid (Wang and Thorpe, 2004). Each

cell is assigned a value based on its occupancy inferred from the sensor data. In a

simple binary occupancy grid, the cell can be either occupied or free but in a more

sophisticated approach, value of the cell represents the probability of occupancy.

This probability is updated whenever the new sensor measurements arrive. In the

literature, many methods are proposed for this update including Bayesian filtering

(Elfes, 1992; Thrun et al., 2005), Dempster-Shafer theory (Gambino et al., 1997; Pa-

gac et al., 1998) and Fuzzy Logic (Oriolo et al., 1997). Figure 2.3c is an example of

an occupancy grid map representation, free cells are shown in white and occupied

cells in black. A big merit of this approach is the compensation for sensor uncer-

tainty by probabilistic modelling of the occupancy. Moreover, sensor fusion is also

straightforward as multiple sensors can be used to update the occupancy of a cell.

Topological Representation

Topological maps represent the environment as adjacency-graph (either 2D or 3D)

composed of a finite number of nodes and links. Nodes represent the particular

locations in the environment, called distinctive places, that the system can recog-

nize while the links represent the paths between those nodes and contain proce-

dural information to go from one node to another (Choset and Nagatani, 2001).

The assumption is that the distinctive places can be locally distinguished from the

surrounding area. These maps are usually developed on top of the grid-based or

feature-based maps by partitioning them into coherent regions, and thus termed

structured feature maps.

24 2.2. Background

2.2.2 Mathematical Formulation

As the data provided by the sensors is inherently uncertain and corrupted by noise,

uncertainty modelling is the principal problem for any SLAM algorithm. Different

sensors have different noise and accuracy characteristics which must be modelled

appropriately. This can be done by using probabilistic approaches. Csorba (1997)

developed a probabilistic method to solve the problems of localization and map-

ping simultaneously. He proposed to explicitly model the spatial-relationships be-

tween landmarks in an environment while simultaneously estimating the pose of

a robot. Since its introduction, a probabilistic approach is considered as the stan-

dard method for modelling the SLAM problem and has stimulated a considerable

amount of research.

In the probabilistic form, the goal of a SLAM algorithm is to estimate the following

probability distribution:

P(xt, M|z0:t, u1:t) (2.2.1)

This probability distribution, known as the SLAM posterior, describes the joint prob-

ability density of the map M and vehicle state xt at time t given the measurements

z0:t and control inputs u1:t up to time t. As the measurements sequentially arrive

over time, a recursive solution to SLAM is desirable. Bayesian filtering (Anderson

and Moore, 1979), also called Bayesian Sequential Estimation, provides this solution

by recursive estimation of the state of a system and it is the foundation of most

of the SLAM approaches. In this section, we will provide the basic formulation of

Bayesian filter as derived by Montemerlo et al. (2007), and then discuss its major

implementations practically used in the SLAM applications.

Bayesian Filter

Bayesian filter is a general probabilistic framework to estimate the dynamic states

of a system evolving in time given sequential observations about that system. If

the general state space model is defined by the dynamic states as hidden variables

ht = {h0, h1, ..., ht} and observed variables ot = {o0, o1, ..., ot}, the goal is to perform

inference on the hidden variables given the observed variables. This inference relies

on the joint posterior distribution P(ht|ot). The graphical model corresponding to

this problem, called the Bayesian belief network, is shown in Fig. 2.4.

Two important assumptions of this framework are that the states follow a first order

Chapter 2. Simultaneous Localization and Mapping 25

Figure 2.4: A graphical model for generic Bayesian filter, where the observed states oi are dependent

on the hidden states hi.

Markov process (i.e. the current state depends only on the previous state) and

the observations are independent of the given states. Thus, assuming an initial

distribution of the hidden variables P0(h0) and a state transition model P(ht|ht−1),

we can use the Bayesian filter to derive a recursive expression for the posterior:

P(ht|ot) = P(ht−1|ot−1)
P(ot|ht)P(ht|ht−1)

P(ot|ot−1)
(2.2.2)

In case of the SLAM problem, hidden variables are the vehicle position xt and the

map M, while the observed variables are the perception sensor measurements zt

and motion measurements ut. This leads to the SLAM posterior (2.2.1):

P(ht|ot) = P(xt, M|z0:t, u1:t) (2.2.3)

In order to derive the recursive expression for this posterior, we expand it by using

Bayes’ rule:

P(xt, M|z0:t, u1:t) = ηP(zt|xt, M, z0:t−1, u1:t)P(xt, M|z0:t−1, u1:t) (2.2.4)

Here, η is the normalization constant ensuring that Eq. 2.2.4 correctly represents a

probability distribution.

As the perception measurement zt is independent of the prior perception measure-

ments z0:t−1 and the motion measurements u1:t given the pose xt and the map M,

Eq. 2.2.4 can be simplified to:

P(xt, M|z0:t, u1:t) = ηP(zt|xt, M)P(xt, M|z0:t−1, u1:t) (2.2.5)

26 2.2. Background

Using the Total Probability Theorem,

P(x) =
∫

P(x|y)P(y)dy (2.2.6)

the rightmost term of Eq. 2.2.5 can be conditioned on the prior pose by integrating

over all poses at time t− 1. Thus:

P(xt, M|z0:t, u1:t)

= ηP(zt|xt, M)
∫

P(xt, M|xt−1, z0:t−1, u1:t)P(xt−1|z0:t−1, u1:t)dxt−1 (2.2.7)

Using the definition of conditional probability to expand the first term in the inte-

gral, we get:

P(xt, M|xt−1, z0:t−1, u1:t) = P(xt|M, xt−1, z0:t−1, u1:t)P(M|xt−1, z0:t−1, u1:t) (2.2.8)

Moreover, according to our assumption, xt only depends on xt−1 and ut, therefore:

P(xt|M, xt−1, z0:t−1, u1:t) = P(xt|xt−1, ut) (2.2.9)

and Eq. 2.2.8 can be rewritten as:

P(xt, M|xt−1, z0:t−1, u1:t) = P(xt|xt−1, ut)P(M|xt−1, z0:t−1, u1:t) (2.2.10)

Now, using the definition of conditional probability:

P(M|xt−1, z0:t−1, u1:t)P(xt−1|z0:t−1, u1:t) = P(xt−1, M|z0:t−1, u1:t) (2.2.11)

Replacing Eq. 2.2.10 and 2.2.11 in Eq. 2.2.7:

P(xt, M|z0:t, u1:t)

= ηP(zt|xt, M)
∫

P(xt|xt−1, ut)P(xt−1, M|z0:t−1, u1:t)dxt−1 (2.2.12)

The last motion measurement ut does not provide any information about xt−1 with-

out the perception measurement zt. By eliminating it from the above relation, we

get the recursive formulation of SLAM posterior similar to the recursive Bayesian

filter equation (Eq. 2.2.2):

P(xt, M|z0:t, u1:t)︸ ︷︷ ︸
posterior at t

= η P(zt|xt, M)︸ ︷︷ ︸
measurement model

∫
P(xt|xt−1, ut)︸ ︷︷ ︸

motion model

P(xt−1, M|z0:t−1, u1:t−1)︸ ︷︷ ︸
posterior at t−1

dxt−1 (2.2.13)

The posterior density, as given in Eq. 2.2.13, is described by the following three

terms:

Chapter 2. Simultaneous Localization and Mapping 27

• Previous posterior P(xt−1, M|z0:t−1, u1:t−1): For the first iteration, this proba-

bility needs to be defined as an initial distribution known as prior. For each

subsequent iteration, it is deduced from the posterior of the previous itera-

tion.

• Motion model1 P(xt|xt−1, ut): It describes where the vehicle might be at time

t, given that it was previously at location xt−1. This model strongly depends

on the information provided by the odometry measurements for the estima-

tion.

• Measurement model2 P(zt|xt, M): This model describes the likelihood of

making observation zt given that the vehicle is at location xt in map M. It is

usually considered as a property of the given sensor technology. It depends

on the type of the sensor and captures its error characteristics.

Any implementation of the Bayesian filter needs to explicitly define these mod-

els according to the capabilities of the vehicle and its environment. Moreover, the

Bayesian filter in Eq. 2.2.13 contains an integral over all previous vehicle positions

which is usually intractable to compute and requires to be approximated. The most

popular approximations involve using Kalman filters (Kalman et al., 1960) and par-

ticle filters (Arulampalam et al., 2002).

Kalman filter is the most widely used variant of Bayesian filters which uses the

Gaussians to represent the posteriors (Bar-Shalom et al., 2001). It relies on the as-

sumption that the motion model and measurement model are linear functions with

added Gaussian noise and the initial distributions are also Gaussian (Kalman et al.,

1960). As most systems are not strictly linear, there are variations of Kalman filters

proposed to accommodate the non-linearities from the real world. The Extended

Kalman Filter (EKF) (Gordon et al., 1993) is an extension which linearizes the sys-

tem using first-order Taylor series expansions of the non-linear distributions. In

case of highly non-linear and non-Gaussian systems, particle filters (Arulampalam

et al., 2002) are a better choice than Kalman filters in terms of accuracy. Particle

filters represent the posterior distribution with a set of samples that have weights

associated to them.

1Also known as state transition function and dynamics model
2Also known as likelihood function, sensor model and perceptual model

28 2.3. Related Work

2.3 Related Work

Simultaneous localization and mapping is a crucial component of a mobile robot.

It allows the robot to navigate from an unknown location, building the map of an

unknown environment from the measurements of perception sensors and concur-

rently estimating its pose with respect to that map. The general problems of mobile

robot navigation were summarized by Leonard and Durrant-Whyte (1991a). The

navigation strategies started with line following in 1970s and evolved to beacon-based

systems in 1990s. Those systems were extremely limited in the context of their de-

pendence on the specific features introduced in the infrastructure and could not

be used in unknown and unstructured environments. The development of SLAM

frameworks has made the mobile robots capable of overcoming these limitations.

In the early work, researchers addressed the localization and mapping as two inde-

pendent problems. The systems thus introduced assumed that some part of SLAM

was performed manually. For instance, the localization algorithms were usually

based on the pre-built maps while the mapping was done using known or guided

localization. The amount of human effort required for such systems can be as-

sessed by the example of creating a map of the museum in Bonn for the robot

RHINO which, according to Thrun (1998), took one week of hard work. The major

breakthrough in this regard was provided by the seminal work of Smith, Self, and

Cheeseman (1988). They proposed a feasible solution for SLAM by establishing

a powerful statistical framework for probabilistic treatment of uncertainty in geo-

metric relationships and parametrization. Other pioneering work is considered to

be that of Leonard and Durrant-Whyte (1991b). Since then, the field of SLAM has

been generally dominated by probabilistic techniques.

The underlying difficulties of SLAM have been addressed relentlessly in last couple

of decades and several solutions are proposed. At a theoretical level, SLAM can be

considered a solved problem even in a populated environment (Hahnel et al., 2002).

However, the issues still remain in realizing the general SLAM solutions practically

and building perceptually rich frameworks. The proposed methods differ in vari-

ous aspects therefore it is hard to cluster and categorize them. Map representation

is an attribute which is common to all the proposed methods therefore, in this sec-

tion, we review them on the basis of commonly used map representations in mobile

robot navigation (A slightly outdated classification on the basis of map representa-

tion is provided in (Thrun, 2002)). Although there is an ample amount of research

Chapter 2. Simultaneous Localization and Mapping 29

and literature relevant to SLAM in robotics community, in this section a few of

those will be considered in connection to the approach presented in this thesis.

2.3.1 Direct mapping SLAM

Direct mapping is an approach proposed by Lu and Milios (1997) to avoid the is-

sue of feature detection for localization. Lu and Milios (1997) used the odometry

measurements and raw scan data acquired by a 2D laser scanner to build a sparse

network of constraints between vehicle poses which are solved with batch-iterative

optimization methods. Gutmann and Konolige (1999) extended this batch method

by allowing incremental updates and updating the map with every new sensor

input. They also introduced the method to close the loops in indoor environments.

Some recent works have shown the success of direct mapping with the sensors

such as 3D laser scanner and stereo cameras (Cole and Newman, 2006; Nüchter

et al., 2007a). These sensors provide dense point clouds which are stored directly to

represent the occupied space in the environment. The point clouds can be aligned

pairwise using Iterative Closest Points (ICP) algorithm or its variants (Besl and

McKay, 1992). This algorithm is applied sequentially to the scans as they are col-

lected through the course of the robot (Nüchter et al., 2007a). Despite being sim-

ple to describe, dense alignment algorithms have demonstrated impressive perfor-

mance by producing accurate results under normal conditions.

The main idea of ICP is to search for the pairs of closest points in two different

scans and iteratively calculate their optimal transformation by minimizing the error

function. Thus it performs the localization in addition to scan registration. For

minimizing the error function, four direct methods are listed in literature (Eggert

et al., 1997): singular value decomposition (SVD) based method (Arun et al., 1987),

quaternion method (Horn, 1987), an algorithm using orthonormal matrices (Horn

et al., 1988) and a calculation based on dual quaternions (Walker et al., 1991). Eggert

et al. (1997) have shown that all four methods demonstrate a similar performance

and stability in the context of noisy data.

The major issue with the ICP based algorithms is that they require an initial esti-

mate to initialize the algorithm. Thus the quality of alignment is highly dependent

on the initial estimate. In general, this estimate is provided by the odometry of the

vehicle and then refined iteratively through ICP. The odometry measurements are

30 2.3. Related Work

usually uncertain over long distances thus making the initial estimate unreliable.

An obvious solution to limit this uncertainty is to reduce the spacing between the

scans which leads to the incremental mapping scenario. King et al. (2005) proposed

to improve the quality of the initial estimate by using a feature-based method for

initial alignment and dense point cloud for further refinement. They use an inten-

sity camera associated with the laser scanner to obtain the intensity images and

extract a combination of interest points from them. These interest points are used

as features to generate transformation hypothesis. Then a region growing variant

of ICP is used to align the two scans. A similar alignment approach incorporat-

ing point features for initial estimate, called coarse-to-fine scan registration is used by

Brenner et al. (2008) for outdoor urban environments.

Another issue with direct alignment of the point clouds arises for the large datasets

where dense data can prove to be computationally intractable (Pulli, 1999). Fair-

field et al. (2010) use the segmentation of point cloud into metric sub-maps and a

topological map of the relationships between the sub-maps to limit the growth of

computational requirements. In order to resolve the inconsistencies between the

pairwise associations of the points, Borrmann et al. (2008) present a global relax-

ation technique by distributing the error over the entire map. Though this approach

resolves the inconsistencies, however, the performance is still dependent on the ini-

tial estimate.

2.3.2 Feature-based SLAM

Feature-based approaches were the first methods used in the early days of SLAM.

Features were extracted from the sensor data and combined with motion controls

using an Extended Kalman Filter (EKF) approach (Smith et al., 1990). Moutarlier

and Chatila (1990) used the line-segment features extracted from the laser scans

while Leonard and Durrant-Whyte (1991a) used the geometric features extracted

from the sonar data and both used EKF for localization of the robot. A major

advantage of using EKF is that it ensures the association between the features by

maintaining a complete covariance matrix and mean vector for all the features.

The choice of features depends on the sensor as well as the environment in which

the robot operates. In indoor and structured outdoor environments, line segments

are a popular choice due to many straight edges. There are three major techniques

Chapter 2. Simultaneous Localization and Mapping 31

for line extraction; Successive Edge Following, Line Tracking and Iterative End Point Fit

(IEPF) (Siadat et al., 1997). According to the comparison made by Siadat et al. (1997),

IEPF generates a better environment representation than the others. Nguyen et al.

(2005) compare a variant of IEPF, known as Split and Merge algorithm, and the Line

Tracking algorithm against some other methods such as Hough transform, Expec-

tation Maximization (EM) algorithm and Random Sample Consensus (RANSAC)

algorithm and conclude that the Split and Merge performs best in the context of

SLAM applications using 2D laser scanner.

Another popular feature in SLAM applications are circles. Zhang et al. (2003) pro-

pose algorithms to extract circles, in addition to line-segments, for representing

trunks of the trees and pillars in semi-structured outdoor environments. The algo-

rithm clusters the points using an EKF to estimate the position of the next point

as long as the difference between estimated and actual position of the next point

is within a threshold. Then a line is fit to the points in the cluster and fitting error

is calculated. If the error is greater than the threshold, then a circle is fit. Adams

et al. (2004) use the same approach to extract circles and associate them in the con-

secutive time frames using nearest neighbour search. The position of the vehicle is

estimated by a particle filter and compared to the estimate made by the association

of features for validation.

Garulli et al. (2005) perform the SLAM using linear features extracted from the

range scans whereas they compute the corresponding covariance matrices from the

statistical properties of the raw data. Again, EKF is used for performing simultane-

ous update of the pose and estimation of line feature associations.

Weingarten and Siegwart (2006) perform feature-based 3D SLAM using a rotating

laser scanner. The selected features for this approach are planar segments com-

posed of plane model parameters. The associated planar segment information is

considered to be a set of polygons corresponding to each plane. They also use EKF

for incrementally building 3D map of the environment with high detail and local-

izing the robot in that map.

2.3.3 Grid-based SLAM

The occupancy grid representation was proposed by Elfes (1989) for 2D mapping of

the environment. Later, Moravec (1996) extended this representation to discretize

32 2.3. Related Work

the environment in 3D. Elfes had used sonar for the validation of his approach

while Moravec used a stereo vision system to generate 3D data. Moreover, in con-

trast to the Bayesian filtering approach of Elfes to update the probability of oc-

cupancy of a cell, Moravec proposed a new method based on evidence theory of

Dempster-Shafer. The 3D grid hence produced was called evidence grid where each

cell contained the value indicating the evidence of its occupation. An alternative

representation of the grid was presented by Oriolo et al. (1997). The authors pro-

posed that the uncertainty based perception and planning problems can be formu-

lated and solved using the set theory or fuzzy logic. The map is defined as a fuzzy

set in which each point is associated to a real number quantifying the possibility

that the map pertains to an obstacle. A merit of this approach, as illustrated by

Noykov and Roumenin (2007), is that it can use different types of fuzzy operators

for uncertainty modelling and fusion of information from different sensors. A com-

parison of the three approaches mentioned above is given in (Ribo and Pinz, 2001)

for building a sonar-based occupancy grid in indoor environments.

Another variation of the approach, called MUltiple Representation Independent

Evidence Log (MURIEL) was proposed by Konolige (1997) which is a mathemati-

cal refinement of the method proposed by Elfes (1989). This method addressed the

problems intrinsic to the sonar such as reflection multiples and redundant read-

ings. A recent variation to the approach was proposed by Yguel et al. (2006) which

addresses the problems of representation and data storage for large maps. They

introduce a compact multi-scale occupancy grid representation based on wavelets,

termed Wavelet Occupancy Grids (WavOGs).

In 2D, occupancy grid is a well-established and explored framework which is a base

of some of the most impressive navigation systems including the ones described in

(Eliazar and Parr, 2003; Grisettiyz et al., 2005; Murphy, 1999; Vu, 2009). The direct

extension of 2D occupancy grid to 3D, as proposed by the early work of Moravec

(1996) and Roth-Tabak and Jain (1989), is to discretize the mapped area into a grid

of equally sized cubic volumes, known as voxels. These approaches modelled the

environment using rigid grid of voxels which required to be initialized according to

the size of the mapped area. This implementation is impractical in outdoor scenar-

ios due to an immense requirement of memory and computational power that in-

creases with the size and resolution of the map. Moreover, the extent of the mapped

area should be known in advance.

Chapter 2. Simultaneous Localization and Mapping 33

Triebel et al. (2006) and Rivadeneyra et al. (2009) utilized a relatively compact data

structure called multi-level surface maps (MLS) for outdoor mapping. These surface

maps use a horizontal grid and represent the 3D structures as height values in that

grid, allowing for the storage of vertical objects. In this representation, although the

memory requirement is reduced than a pure 3D occupancy grid, but a drawback is

that only positive sensor data is recorded and the occupancy values of the objects

cannot decrease thus effecting the updatability of the map. As a result, a false

positive recorded on the map in one scan cannot be removed in the subsequent

scans and stays on the map.

An optimization of the 3D grid is possible by using a tree-based approach such as

octrees. As a data structure, octrees are a popular choice for the applications such

as storing dense point clouds (Elseberg et al., 2011), compression of point clouds

(Kammerl et al., 2012) and rendering in computer graphics (Botsch et al., 2002; Laine

and Karras, 2011). Using octrees for 3D grids overcomes the problem of rigid grid

structure as it delays the initialization of the voxels until a measurement needs to be

integrated. Thus we do not need to know the size of the mapping area in advance.

Also, the memory is required to store only those voxels which are already measured

(either occupied or free). Another advantage of this method is that it can be used

for a multi-resolution environment representation by incorporating the pruning of

tree at any level. Octrees were first used by Meagher (1982) for geometric modelling

of the objects. Payeur et al. (1997) introduced the octrees for adapting probabilistic

occupancy grid mapping from 2D to 3D. Recently, many researchers have used this

technique for mapping and exploration of the environment (Fairfield et al., 2007;

Fournier et al., 2007; Pathak et al., 2007; Wurm et al., 2010).

Fournier et al. (2007) presented an approach for generating local 3D models of the

environment stored in octree and updated using ray tracing. A similar approach

was used by Pathak et al. (2007) with a reformulated forward sensor model instead

of the commonly used inverse sensor models. Both the approaches do not explic-

itly deal with the issues of data compression and map adaptability in dynamic en-

vironments. Wurm et al. (2010) addressed these issues by providing a method for

lossless compression and bounded confidence by clamping update policy of Yguel

et al. (2008). However, all the mentioned approaches are limited to mapping with-

out localization.

An important contribution to octree-based SLAM is proposed by Fairfield et al.

34 2.3. Related Work

(2007). The approach is based on a map structure called Deferred Reference Counting

Octree and a particle filter based SLAM algorithm which allows for efficient up-

dates in the map. A drawback of their approach is that they use lossy maximum-

likelihood compression periodically to ensure the compactness of the map which

results in discarding the probability information for future updates. The approach

does not allow for the multi-resolution queries as well.

2.3.4 Synthesis

Despite being a simple method, the direct approach has the ability to represent all

kinds of environments. However, a major drawback of all the direct mapping ap-

proaches is that they provide information about the occupied areas only and do

not differentiate between free space and unknown areas. Consequently, they are

suitable only for highly precise sensors and in static environments where unknown

areas are not needed to be modelled. Further, there is no direct mechanism to deal

with the sensor noise as well as identifying the temporarily present dynamic ob-

jects. Also, generally in this approach each point is treated independently and not

grouped implicitly to represent the objects. Moreover, the memory consumption

for storing and processing large amounts of data in the point clouds requires con-

siderable amount of resources and lacks efficiency in a large environment. The

resulting maps are usually very complex as they consist of as many as several mil-

lion data points. This becomes a hindrance to the applicability of these maps for

high level robotic tasks such as scene understanding or path planning.

Feature-based approaches perform data compression and generally require less

storage space in comparison to the direct or grid-based approaches. It is an ad-

vantage of these approaches but it also makes the representation sparse. Further,

the free space is not represented in this approach which makes it difficult to de-

tect dynamic objects directly as well as to perform path planning. Moreover, if bad

features are selected, it affects the consistency of the map by introducing error into

it as well as affecting the pose estimate. A solution is to use artificial landmarks

which is only feasible in indoor or limited structured outdoor environments. Thus

the feature-based approaches are limited to be used in the environments in which

the observed objects can be depicted by geometric feature models which is not

the case in large-scale outdoor environments. In these environments, objects can

consist of arbitrary curves instead of the distinct points, lines or circles. For such

Chapter 2. Simultaneous Localization and Mapping 35

environments, parametric feature models must be described instead of the simple

geometric models for identifying the objects.

Occupancy grid mapping, in general, has several advantages over its counterparts.

By probabilistic modelling of occupancy, it can compensate for the sensor uncer-

tainty as well as ensuring the fusion of information from different sensors. Fur-

ther, it can represent any object and can be used in indoor as well as outdoor en-

vironments. A considerable advantage as compared to the other methods is that

it explicitly models the free areas of environment which serves as a basis for the

identification of moving objects. Moreover, the resolution of the grid can be ad-

justed according to the sensor and environment thus providing the level of detail

accordingly while some approaches even provide a multi-resolution representa-

tion as well (Wurm et al., 2010; Yguel et al., 2007). The trade-off between the res-

olution and computational complexity is an important consideration for the occu-

pancy grid (Bailey, 2002). A small grid resolution corresponds to a fine and detailed

environment representation as well as accurate pose estimation but a high compu-

tational cost and storage requirement. Thus, a method to model the environment

at different levels of granularity is a huge advantage for this case. Despite the re-

search efforts dedicated to improving this representation in recent years, amount

of data required to store and process the grid still remains a major drawback of this

approach as compared to some other methods such as feature-based approaches.

Regardless of this drawback, occupancy grid has still become a preferred represen-

tation due to its advantages over other representations specially in the context of

outdoor environments (Baig, 2012; Fairfield et al., 2007; Pathak et al., 2007; Vu, 2009;

Wang, 2004). Furthermore, when the sensors such as 3D laser scanners are used

which generate a huge amount of data, normally an imperative expectation is to

have a full and perceptually rich representation. Consequently, the required pro-

cessing time and memory are expected to be high. Occupancy grids provide a full

and rich representation for any environment as compared to feature-based meth-

ods, as well as the compactness with optimized implementation as compared to

the direct approaches. Our approach to 3D perception is also based on occupancy

grid representation. We have used the octree-based probabilistic occupancy grid

approach proposed by Wurm et al. (2010) for environment representation which is

a generic mapping approach and does not address the problem of localization. It

assumes that the trajectory of the robot is known.

36 2.3. Related Work

In order to perform localization with mapping, Kalman filter is the most common

choice. The main attraction of Kalman filter SLAM lies in the estimation of a fully

correlated posterior over feature maps and robot poses. However, as mentioned

earlier, KF makes a strong assumption that the motion model and measurement

model are linear functions with Gaussian noise and the initial distributions are also

Gaussian. Moreover, KF SLAM is practically effective only with the feature-based

environment representation which is not an ideal choice for unstructured outdoor

environments. Another popular approach for SLAM is the incremental maximum

likelihood (ML) method which incrementally builds a single map from the sensor

measurements instead of performing a full posterior estimation over all poses and

maps. As a result, it is a simple and computationally effective method which can be

used with any map representation. The disadvantage of this paradigm is that due

to keeping the most likely map at each time step, it is unable to perform loop clos-

ing in cyclic environments. This problem can be addressed by using an alternative

method called FastSLAM which maintains the full posterior using particle filter in-

stead of Kalman filter to represent non-linear models and non-Gaussian noise. This

method is applicable to both feature-based and grid-based mapping and it is much

faster as compared to the classical KF SLAM, however, it still becomes too costly

in the context of dense 3D maps with 6D poses. Consequently, a periodical lossy

maximum-likelihood compression is often used in order to ensure the tractability of

the algorithm and compactness of the map which results in discarding the probabil-

ity information. In practice, this approach is suitable for the applications in which

a consistent global map is mandatory such as those constructing the accurate maps

for later use. However, in the context of applications where an instantaneous map

serves the purpose such as the applications focusing on obstacle avoidance, maxi-

mum likelihood SLAM is a better choice.

We describe the approach that we adopted for environment representation in the

next subsection and propose how to extend it with ground segmentation (section

2.5.2)and localization (section 2.5.3) in order to adapt it to the problem of simulta-

neous localization and mapping in 3D.

Chapter 2. Simultaneous Localization and Mapping 37

2.4 Adopted Approach for Map Representation: Probabilis-

tic 3D Occupancy Grid based on Octrees

In this work, we have used the octree-based occupancy grid approach presented in

(Wurm et al., 2010) for environment representation. Its implementation is available

as an open-source library, named OctoMap3, to generate volumetric 3D environ-

ment models. It is purely a mapping approach and does not perform localization.

The assumption is that the trajectory of the robot is known.

In the following subsection, we provide an overview of the OctoMap and its map-

ping methodology. Then we describe the merits of this approach for mapping in

section 2.4.2 with its limitations in section 2.4.3 which provide a context for our

contributions in this chapter.

2.4.1 OctoMap 3D Occupancy Grid Mapping – Overview

OctoMap (Wurm et al., 2010) is an open source library for probabilistic occupancy

grid modeling of three dimensional environments based on octrees. It provides a

multi-resolution representation of arbitrary environments as full 3D models includ-

ing occupied, free and unknown areas. The tree-based implementation provides

maximum flexibility regarding the area and resolution of the map as well as allow-

ing for efficient probabilistic update of the grid. The memory consumption is also

improved by a great deal as compared to a rigid grid. The following subsection

provides an introduction to the octrees and how they are used for occupancy grid

mapping in OctoMap. Next, we describe the method for updating the occupancy

probability of the grid map given the sensor inputs followed by the sensor model

used for computation of occupancy.

Octrees for Occupancy Grid Mapping

An occupancy grid map is a uniform discretization of the space in cells where each

cell stores a probabilistic estimate of its occupancy (Moravec, 1996). In 3D, the cells

are cubic units of volume, called voxels. Assuming that the occupancy states of

individual cells are independent, the grid can be considered as a simple Markov

Random Field. The accumulated occupancy probabilities of the cells are estimated

3http://octomap.github.com

38
2.4. Adopted Approach for Map Representation: Probabilistic 3D Occupancy

Grid based on Octrees

Figure 2.5: Example of an octree structure (center) with the corresponding tree representation (right)

in comparison to a uniform 3D grid (left). While a uniform grid (left) must represent every cell, each

level of an octree divides the remaining volume into eight octants (center) and the octree can effi-

ciently represent sparse volumes because the tree structure (right) does not have to be fully expanded.

whenever new data is received and inserted in the grid. In addition to inserting

new information, querying to simulate measurements and copying the map are the

primary operations performed on a grid. The main issues in 3D occupancy grids

arise from the cost of these operations and the storage requirements which increase

with the map size. In a regular grid, the whole space is subdivided and stored re-

gardless of the fact that it contains any information or not. To solve these issues,

we require an efficient data structure which may store only those parts which con-

tain relevant information besides ensuring efficient query and update. Octree is a

suitable data structure for this purpose.

An octree is a tree data structure in which each internal node has exactly eight chil-

dren. It is a generalization of binary trees and quad trees in one and two dimensions

respectively. Octrees are used to partition a three dimensional space by recursively

subdividing it into eight octants or cubic volumes (voxels), as shown in Fig 2.5. This

subdivision continues recursively until a desired minimum voxel size is reached

which determines the resolution of the octree. Being a hierarchical data structure,

the tree can be cut at any level to obtain a coarser subdivision. This ensures that the

subdivision is not applied in the empty nodes, that is the nodes that do not contain

any data. Thus a large contiguous part of the environment which is empty, can be

efficiently represented by a single node.

In occupancy grid mapping, octree is used to model probabilistic occupancy of a

Chapter 2. Simultaneous Localization and Mapping 39

volume based on the sensor measurements. If a certain volume in the grid is mea-

sured as occupied, the corresponding node in the octree is initialized. The uninitial-

ized nodes can correspond to free as well as unknown areas. To resolve this ambi-

guity, free voxels are explicitly represented as free nodes in the tree. These are the

voxels identified by ray-casting between the sensor and the measured end point of

the ray. The remaining uninitialized nodes implicitly correspond to the unknown

areas only. The next subsection describes the method for updating the occupancy

probability of the grid in this approach.

Updating Occupancy Grid

The goal of mapping algorithm is to estimate the distribution of maps M given

the history of sensor measurements z1:t and vehicle locations x1:t i.e P(M|x1:t, z1:t).

In occupancy grid formulation, as mentioned earlier, the occupancy states of indi-

vidual cells are assumed to be independent. Thus the problem of estimating the

distribution over maps is decomposed into estimating the occupancy state of each

voxel m of the grid, i.e the leaf node of the octree, given by P(m|x1:t, z1:t).

For each sensor reading, the occupancy probability is recursively estimated using

Bayes’ theorem:

P(m|x1:t, z1:t) =
P(zt|x1:t, z1:t−1, m)P(m|x1:t, z1:t−1)

P(zt|x1:t, z1:t−1)
(2.4.1)

This update equation is further simplified using the important assumption that the

sensor measurements are conditionally independent of each other and the previous

vehicle positions x1:t−1 given the cell m. That is:

P(zt|x1:t, z1:t−1, m) = P(zt|xt, m) (2.4.2)

Further, using Bayes’ theorem:

P(zt|x1:t, z1:t−1, m) = P(zt|xt, m) =
P(m|xt, zt)P(zt|xt)

P(m|xt)
(2.4.3)

Substituting this in Eq. 2.4.1, we get:

P(m|x1:t, z1:t) =
P(m|xt, zt)P(zt|xt)P(m|x1:t, z1:t−1)

P(m|xt)P(zt|x1:t, z1:t−1)
(2.4.4)

where P(m|xt) is the prior probability of occupancy of the cell m and is independent

of the current position, i.e. P(m|xt) = P(m). Hence:

P(m|x1:t, z1:t) =
P(m|xt, zt)P(zt|xt)P(m|x1:t, z1:t−1)

P(m)P(zt|x1:t, z1:t−1)
(2.4.5)

40
2.4. Adopted Approach for Map Representation: Probabilistic 3D Occupancy

Grid based on Octrees

Again using Bayes’ theorem to expand P(m|x1:t, z1:t−1) :

P(m|x1:t, z1:t−1) =
P(xt|x1:t−1, z1:t−1, m)P(m|x1:t−1, z1:t−1)

P(xt|x1:t−1, z1:t−1)
(2.4.6)

Substituting it in Eq. 2.4.5:

P(m|x1:t, z1:t) =
P(m|xt, zt)P(zt|xt)P(xt|x1:t−1, z1:t−1, m)P(m|x1:t−1, z1:t−1)

P(m)P(zt|x1:t, z1:t−1)P(xt|x1:t−1, z1:t−1)
(2.4.7)

Equation 2.4.7 gives the probability for an occupied cell. By analogy, the probability

of a free cell is given by:

P(m|x1:t, z1:t) =
P(m|xt, zt)P(zt|xt)P(xt|x1:t−1, z1:t−1, m)P(m|x1:t−1, z1:t−1)

P(m)P(zt|x1:t, z1:t−1)P(xt|x1:t−1, z1:t−1)
(2.4.8)

Dividing Eq. 2.4.7 by Eq. 2.4.8:

P(m|x1:t, z1:t)

P(m|x1:t, z1:t)
=

P(m|xt, zt)

P(m|xt, zt)

P(m)

P(m)

P(xt|x1:t−1, z1:t−1, m)

P(xt|x1:t−1, z1:t−1, m)

P(m|x1:t−1, z1:t−1)

P(m|x1:t−1, z1:t−1)
(2.4.9)

As the current position xt is known, P(xt|x1:t−1, z1:t−1, m) = P(xt|x1:t−1, z1:t−1, m).

Therefore, Eq. 2.4.9 reduces to:

P(m|x1:t, z1:t)

P(m|x1:t, z1:t)
=

P(m|xt, zt)

P(m|xt, zt)

P(m)

P(m)

P(m|x1:t−1, z1:t−1)

P(m|x1:t−1, z1:t−1)
(2.4.10)

Usually the probability values are very small and division makes them even smaller

therefore the logOdds values are used rather than the raw probabilities due to a

better numerical representation. Moreover, the Bayesian update of logOdds for a

particular voxel becomes a simple addition (Moravec, 1996). Using the definition

of Odds ratio:

Odds(x) =
P(x)

1− P(x)
=

P(x)
P(x)

(2.4.11)

Equation 2.4.10 can be written as:

Odds(m|x1:t, z1:t) = Odds(m|xt, zt)Odds(m)−1Odds(m|x1:t−1, z1:t−1) (2.4.12)

Taking log of Eq. 2.4.12:

log Odds(m|x1:t, z1:t)

= log Odds(m|xt, zt)− log Odds(m) + log Odds(m|x1:t−1, z1:t−1) (2.4.13)

Chapter 2. Simultaneous Localization and Mapping 41

In this equation, the first term on the right-hand-side corresponds to the inverse

sensor model and the second to the map prior. Considering a uniform prior proba-

bility leads to P(m) = P(m) = 0.5. Therefore, Odds(m) = 1 and log Odds(m) = 0

and Eq. 2.4.13 simplifies to:

log Odds(m|x1:t, z1:t) = log Odds(m|xt, zt) + log Odds(m|x1:t−1, z1:t−1) (2.4.14)

This formulation ensures that the update of each voxel can be reduced to simply

adding the log Odds of inverse sensor model to the log Odds of previous belief of

the voxel. In case of precomputed sensor models, the logarithms do not need to be

computed during the update step. Computation of the sensor model for the used

sensor is detailed in section 2.4.1.

For a 3D map, a threshold is applied on the occupancy probability and a voxel

is considered to be occupied when the threshold is reached and free otherwise.

Equation 2.4.14 indicates that, in order to change the state of a voxel (e.g. from

free to occupied), as many observations should be integrated as have been used to

define its state previously. This implies that if a voxel is observed free for k times,

it must be observed occupied for at least k times to be considered as occupied. In

dynamic environments, this property effects the consistency of the map in case of

temporarily appearing objects as the map should adapt to the changes quickly. This

adaptability is ensured in OctoMap using the clamping update policy of Yguel et al.

(2008). This policy defines an upper and lower bound on the occupancy estimate.

The occupancy is updated using the following equation, instead of Eq. 2.4.14:

log Odds(m|x1:t, z1:t)

= max(min(log Odds(m|xt, zt) + log Odds(m|x1:t−1, z1:t−1), lmax), lmin) (2.4.15)

Where lmin and lmax are the predefined lower and upper bounds on the log Odds

values. In addition to ensuring the reversibility for the states of voxels, clamping

update policy enables to compress the neighboring voxels by pruning. Whenever

the log Odds value of a voxel reaches either the bound lmin or lmax, the voxel is

considered to be stable, and thus measured free or occupied with high confidence.

If all children of a node are stable leafs with the same occupancy state, then they

can be pruned leading to a considerable reduction in the total number of nodes. In

case of the future measurements which contradict the occupancy state of the node,

its children are regenerated and updated accordingly. This compression leads to

42
2.4. Adopted Approach for Map Representation: Probabilistic 3D Occupancy

Grid based on Octrees

the loss of information only close to P(m) = 0 and P(m) = 1 while the probabilities

are preserved for all other values in between those.

Each voxel of the OctoMap stores log Odds value instead of its raw occupancy prob-

ability. However, the original probabilities can be recovered from these values us-

ing:

P(x) =
Odds(x)

1 + Odds(x)
(2.4.16)

Using this law in Eq. 2.4.12 leads to:

P(m|x1:t, z1:t) =

[
1 +

1− P(m|xt, zt)

P(m|xt, zt)

P(m)

1− P(m)

1− P(m|x1:t−1, z1:t−1)

P(m|x1:t−1, z1:t−1)

]−1

(2.4.17)

This is the generic equation for updating the occupancy probability of a voxel.

Here, P(m), as described above, is the prior occupancy probability (which is set to

0.5) and P(m|x1:t−1, z1:t−1) is the previously estimated occupancy probability value

of the voxel. The term P(m|xt, zt) is the current belief, known as inverse sensor

model (Thrun, 2003), which is specific to the sensor used.

Sensor Modeling

As measurements are received, the evidence they provide about the occupancy

of each voxel is integrated into the grid according to the inverse sensor model,

P(m|xt, zt). This model is called inverse since it maps from the measurement to the

physical world. It specifies the probability that a voxel m is occupied given a single

sensor measurement zt at the location xt.

OctoMap can be used with any type of sensor knowing the corresponding sensor

model. In our case, a laser scanner is used as the main perception sensor. For this

type of sensors, OctoMap employs a beam-based inverse sensor model which as-

sumes that the endpoints of a measurement correspond to the obstacles whereas

the line of sight between the sensor origin and endpoint contains no obstacles. To

insert the new measurements given by the laser scanner, a ray tracing is performed

to determine the voxels along a beam from the sensor origin to the measured point.

The beam is approximated by an efficient 3D variant of the classic Bresenham algo-

rithm (Amanatides et al., 1987) (Fig. 2.6). Each voxel which falls within the beam

needs to be updated with the value of the sensor model at that point according to

Chapter 2. Simultaneous Localization and Mapping 43

ω

hz

Figure 2.6: Sensor modelling for laser scanner. (Left) Ray tracing technique to update an occupancy

grid using Bresenham algorithm. (Right) Inverse sensor model showing the occupancy probability of

voxels along a beam measuring a distance of 4m.

the Bayesian update equation (Eq. 2.4.15) using:

log Odds(m|xt, zt) =

locc if beam is reflected within the volume

l f ree if beam traversed the volume
(2.4.18)

Here, locc and l f ree are the log Odd values of occupied and free voxels respectively. In

practice, we have set locc = 1.39 and l f ree = −1.39 corresponding to the probabilities

Pocc = 0.8 and Pf ree = 0.2 respectively. The clamping thresholds are set to lmin = −2

and lmax = 3.5 corresponding to minimum probability of 0.12 and maximum 0.97.

An illustration of the OctoMap representation is presented in Fig. 2.7 which shows

the occupied as well as free voxels. In the following subsections, we present an

evaluation of this technique describing both its advantages as well as limitations.

2.4.2 Advantages of OctoMap

OctoMap has certain advantages as a 3D mapping approach. In this section, we

summarize the main advantages of this approach.

Probabilistic Representation

In order to navigate, the robot relies on its sensors to provide the 3D range mea-

surements. These measurements are inherently uncertain and noisy. This sensor

uncertainty and noise is compensated by probabilistic modelling of the occupancy

in OctoMap. Further, multiple uncertain measurements are integrated to obtain a

robust estimate of the actual state of the environment. Moreover, the probabilis-

tic representation allows for the multiple sensor fusion to combine the data from

44
2.4. Adopted Approach for Map Representation: Probabilistic 3D Occupancy

Grid based on Octrees

Figure 2.7: Octree-based Occupancy grid representation. (Top) A point cloud generated by Velo-

dyne HDL-64E laser scanner. (Center) The occupancy grid representation corresponding to the point

cloud, showing the occupied voxels only. (Bottom) Occupancy grid showing both occupied and free

voxels in grey and green colors respectively.

Chapter 2. Simultaneous Localization and Mapping 45

multiple sensors as well as multiple robots.

Modeling of Free Areas

A considerable advantage of this approach is that it explicitly models the free areas

of the environment in addition to the occupied areas. In autonomous navigation

tasks, a robot can plan collision-free paths only for those areas that are detected to

be free. The unknown areas need to be avoided and therefore the map has to repre-

sent these areas. In this approach, the areas about which no information is available

are differentiated from the ones which are observed as free. This distinction helps

in navigation and path planning for autonomous exploration of the environment

along with serving as a basis for the identification of moving objects.

Efficiency

The map is a fundamental component of a robotic system as most of its capabil-

ities such as path planning, collision avoidance etc depend on the consistency of

the map. Thus, the map should be efficient both in access time as well as mem-

ory usage. In 3D representations, memory usage is often considered as the main

impediment. In this approach, the tree-based method reduces the access time in

addition to the pruning based on bounded per-voxel confidence which ensures a

compression scheme leading to substantial reduction in the memory consumption.

Flexibility

Finally, another considerable advantage of this approach, in comparison to the rigid

grid approaches, is that the extent of the map does not need to be known in ad-

vance. Rather, the map is dynamically expanded depending on the observed area

which makes it suitable for large outdoor environments.

2.4.3 Limitations of OctoMap

The main limitation of this approach, as mentioned above, is that it is only a map-

ping approach and not a complete perception framework. In the context of SLAM

as well as that of a complete perception framework, following are the limitations of

this approach that need to be addressed.

46
2.4. Adopted Approach for Map Representation: Probabilistic 3D Occupancy

Grid based on Octrees

Localization

An important assumption in this approach is that the vehicle positions are known

at all instances. In reality, this is not always true. Although the vehicle is usually

equipped with various sensors to measure its own motion (e.g. odometer, wheel

encoder etc.) as well as position (e.g. GPS) but the information provided by these

sensors, known as dead reckoning, is inevitably noisy and uncertain. Thus, each

pose estimate has a component of error which accumulates with the integration

of scan measurements. As a result, the uncertainty in the pose estimate increases

monotonically with time and eventually the pose estimate becomes so erroneous

that it can not serve any useful purpose. However, the dead reckoning can still be

used as a supplementary source of information in conjunction with another method

for localization.

In order to correct the dead reckoning pose estimate errors in parallel to construct-

ing a consistent map of the environment, we need to perform simultaneous local-

ization and mapping (SLAM). Thus, this approach lacks a method for localization

essential for real robot applications.

Ground Segmentation

As this approach uses 3D range data, a 3D laser scanner can be considered a sensor

of choice to be used in this context. When a 3D range sensor is used, a considerable

amount of the acquired information corresponds to the ground (see Fig. 1.4) which

influences the process of localization. Moreover, in the dynamic environments, this

ground information affects the detection, classification and tracking processes too.

This introduces the demand for another crucial step for mapping, known as the

ground identification and segmentation (B. Douillard, 2010; Himmelsbach, 2010).

Although the OctoMap approach provides the heights of the voxels but that is not

sufficient for ground identification in real outdoor environments due to uneven-

ness of the surface. Thus, a sophisticated method must be provided for ground

segmentation.

In literature, there are three categories of methods for ground identification from

3D point clouds: cell-based methods (B. Douillard, 2010; Thrun et al., 2006), line-

based methods (Himmelsbach, 2010), and fitting plane methods (Douillard et al.,

2011; Lam et al., 2011; Vasudevan et al., 2011; Vosselman et al., 2004). Cell-based

Chapter 2. Simultaneous Localization and Mapping 47

methods are widely used in recent applications where the point cloud is divided in

a 2D Cartesian grid and height for each cell of the grid is computed. Commonly,

the height value is either computed as the difference between the minimum and

maximum height of the returns falling in each cell of the grid (Thrun et al., 2006)

or as the mean of the heights (B. Douillard, 2010). In line-based methods, the point

cloud is divided in a polar grid and line extraction algorithms such as incremen-

tal algorithms, ANSAC algorithm or Hough transform are used to represent the

ground surface (Himmelsbach, 2010). Fitting plane methods assume the ground to

be flat and determine the planar surfaces from the point cloud by using the algo-

rithms such as plane ANSAC algorithm (Lam et al., 2011) and 3D Hough transform

(Vosselman et al., 2004).

Detection of Moving Objects

In natural outdoor scenarios, dynamic objects constitute an important part of the

environment. For the mobile robots that require to operate in such scenarios, it

is imperative to identify and track the motion of these objects. In addition to the

limitations of the OctoMap approach as a SLAM system, it does not provide any

information about the dynamic objects as well.

Object Classification

Another important remark is that in the mentioned approach, the environment is

represented by individual voxels. There is no method to group those voxels in order

to represent and classify the relevant objects. Object classification is very important

for extracting perceptually rich information and also for tracking of moving objects.

2.5 Contributions: 3D Occupancy Grid SLAM

In this section, we present the method that we have developed for the grid-based

maximum likelihood SLAM using 3D laser scanner. We have used the OctoMap

approach described in section 2.4 as a base for the environment representation and

adapted it for the SLAM problem by introducing a 3D grid-based scan matching

method for localization along with ground identification and segmentation. In the

48 2.5. Contributions: 3D Occupancy Grid SLAM

next section, we give an overview of our SLAM framework followed by the ap-

proach for ground segmentation in section 2.5.2 and scan matching in section 2.5.3.

2.5.1 General Architecture

Scan matching approaches align consecutive scans taken by the vehicle at different

locations and thereby they estimate the trajectory of the vehicle as well as creating

a consistent map of the environment. In case of the data acquired by a 3D laser

scanner, the general problem for scan matching is the consistent alignment of over-

lapping 3D point clouds into a complete map. This process is known as registration.

In other words, registration is the process of finding the relative position and orien-

tation of one 3D scan (known as the scene D), to another (known as the model scan

M). A famous method for solving this problem is the iterative closest points algo-

rithm (ICP). This algorithm searches for the pairs of closest points in two different

scans and iteratively minimizes their relative transform. In this work, we use a fast

variant of the ICP algorithm for 3D grid-based scan matching.

An important observation in the case of 3D laser scanner, as mentioned in previous

section, is that the lower layers of the scanner give the points corresponding to the

ground. These ground points do not provide any useful information for the task

of registration and rather affect the performance of scan matching methods. Thus,

it is necessary to identify these points by performing ground segmentation before

scan matching. Another contribution of this chapter is our method for an efficient

segmentation of the ground using the variance-based elevation maps.

Figure 2.8 illustrates the general flow of our method. The octree occupancy grid

map mt generated from the new scan measurement is first projected to 2 1
2 D grid

map. Then the features are computed for each cell in the 2 1
2 D grid to identify the

ground cells. These ground cells are then used to determine the ground voxels in

the original 3D grid of current scan measurement. This results in the separation of

the voxels into ground and non-ground. The non-ground voxels are then passed

to the localization module which generates the point cloud corresponding to those.

In the next step, ICP based scan matching is performed between the sub-sampled

point cloud and the stored occupancy grid map Mt−1 constructed from the previous

measurements. This gives the estimated transformation which is applied on the

occupied voxels to obtain the updated map and vehicle state. The ground voxels

are also transformed to integrate them in the updated map.

Chapter 2. Simultaneous Localization and Mapping 49

Figure 2.8: Architecture of proposed method for SLAM.

Next section describes the proposed method for ground segmentation followed by

the grid-based scan matching for localization explained in section 2.5.3.

2.5.2 Ground Segmentation

The simplest solution for ground segmentation problem, when using a 3D laser

scanner, is to use a height window and mark all the points inside that window

as ground. This window is computed by using the height of the vehicle h as the

standard reference. If the vertical component of a 3D point is between −h−4 and

−h +4, then this point is considered as ground point. We used this technique as

a preliminary method for ground segmentation, however, we observed that this

method is not useful if the surface of the ground is sloped or rough where the

vehicle does not move smoothly and the height of 3D sensor relative to the ground

is not constant.

Alternatively, as described in section 2.4.3, there are three categories of methods for

ground identification from 3D point clouds: cell-based methods, line-based meth-

ods and fitting plane methods. In this work, we propose a variance-based ground

50 2.5. Contributions: 3D Occupancy Grid SLAM

Figure 2.9: 3D Occupancy grid representation (bottom) of an outdoor scenario (top) that we will use

to illustrate our approach for ground segmentation

segmentation method which can be categorized in the cell-based methods. The ap-

proach most similar to our work is used for object segmentation in (B. Douillard,

2010) from the data acquired by a stationary Riegl sensor. The main difference,

other than using a moving sensor, is that we have used the variance as the defin-

ing feature for ground points as it indicates the tendency of variable dispersion in

comparison to the mean used by Douillard. Moreover, our approach makes use

of the octree-based occupancy grid which is a sub-sampled form of the original

point cloud. Consequently, we need to identify the ground voxels instead of all the

ground points which makes it more efficient. Figure 2.9 is an example of the occu-

pancy grid representation of an outdoor environment that we will use to illustrate

our approach for ground segmentation. The image on the top shows an outdoor

scenario with some parked cars, trees and buildings. The image on the bottom

is the octree-based occupancy grid representation showing the occupied voxels in

blue. The ego-vehicle is represented by a mustard ‘+’ sign in the middle. The free

Chapter 2. Simultaneous Localization and Mapping 51

Algorithm 1 Ground segmentation

1: Input: newOG, mapRes, varianceThresh, meanThresh, heightThresh

2: Output: groundVoxels

3: elevationMap← Generate_Elevation_Map (newOG, mapRes)

4: for all cells ci in elevationMap do

5: σi = Compute_Height_Variance (ci)

6: assign σi to (ci)

7: end for

8: clusters← Cluster_Flat_Cells (elevationMap, varianceThresh, meanThresh)

9: largestCluster ← Find_Largest_Cluster (clusters)

10: groundHeight← Get_Mean_Height (largestCluster)

11: groundClusters← Get_Ground_Clusters (clusters, groundHeight, heightThresh)

12: groundVoxels← Retrieve_Voxels (newOG, largestCluster, groundClusters)

voxels are not shown for the purpose of a clear representation.

In order to separate the voxels representing the ground from all occupied voxels,

we first convert the 3D occupancy grid into a 2 1
2 D grid, known as elevation map,

constructed such that we keep track of the heights of the voxels falling in each

cell of the 2 1
2 D grid. Then we compute variance (σ) for each cell of the elevation

map as it indicates the tendency of variable dispersion which is a good feature to

determine the flatness of a surface. In the next step, neighboring cells are clustered

on the base of the variance and mean height of the returns falling therein. Finally,

we find the largest cluster and consider it to correspond to the ground. The other

locally flat surfaces that do not belong to the ground are then filtered out. This

process is illustrated in Algorithm 1 and detailed in the following.

Variance-based Elevation Map

Elevation maps are a compact 2 1
2 -dimensional representation of the environment

which allow the storage of the 3D data in a 2D grid while preserving a certain

amount of information corresponding to the third dimension. An elevation map

can be generated from a 3D occupancy grid map by projecting its occupancy infor-

mation to 2D. The idea is to consider the 3D grid as a 2D grid consisting of columns

of voxels along the z-axis. Each column corresponds to a single cell in the eleva-

52 2.5. Contributions: 3D Occupancy Grid SLAM

tion map whose state is computed from the values of the voxels in that column.

In a simple elevation map, each cell of the grid contains a single value which may

correspond to the maximum height of the voxels falling in that cell (contained in

the corresponding column), the difference between the maximum and minimum

height or the mean of all the heights.

A standard approach for computing the elevation map is to take the mean or av-

erage of the heights of the returns falling in each cell of the grid and save it as the

value of that cell. The map generated by this method is thus called a mean elevation

map. We propose to use a an alternative approach for generating elevation map us-

ing the variance of the heights of the returns falling in each cell instead of the mean.

The reason for preferring variance over mean is that it is a rich feature concerning

the dispersion and identification of the flatness of a cell.

For our implementation of the elevation map, instead of storing the mean of the

heights only, we keep track of all the heights corresponding to each grid cell. In

order to do so, we first define a horizontal 2D grid corresponding to the existing 3D

occupancy grid with the same resolution as that of the 3D grid and populate it by

using a flood-fill algorithm. In our representation of the 3D occupancy grid, each

voxel is defined by its center (x, y, z) and the length l of its side. For computing

the 2D grid, we consider the centers of all the voxels in the 3D occupancy grid as

the sub-sampled input point cloud. We put all these 3D points into a 2D occupancy

grid data structure aligned to the (X, Y)-axis of the coordinate system. We associate

an additional field with each of these cells that consists of the heights z of all the

voxels in 3D that correspond to that cell in 2D.

In the next step, we compute the variance (σ) of height for the points in each cell

using:

Var(z) = E[z2]− (E[z])2 (2.5.1)

where E[z] = µ(mean) is the expected value of the variable z. If the variance of the

cell is below a certain threshold, it is considered as a flat cell. These flat cells are

candidates for the ground but they might correspond to the locally flat surfaces too.

Therefore, in the next step, we eliminate such locally flat surfaces and segment the

ground cells from them. Figure 2.10(top) represents the variance-based elevation

map of the occupancy grid in Fig. 2.9. The color of each cell in this elevation map

represents the value of the variance in that cell. The lower variance values are

represented by blue while the higher are represented by green, yellow and red.

Chapter 2. Simultaneous Localization and Mapping 53

Figure 2.10: The image on the top represents the variance-based elevation map of the grid shown in

Fig. 2.9 while the image in the bottom shows the same variance map after applying threshold. After

thresholding and clustering, the remaining cells belong to the ground.

Ground Identification

After computing the variance for each cell of the elevation map and applying a

threshold on it, the neighboring cells identified as flat are connected to form clus-

ters of flat cells. An additional criterion, other than the neighborhood, is the mean

height of each cell. For clustering the cells, the 2D grid is traversed and the same

cluster ID is assigned to the flat cells which are neighboring to each other and their

mean heights are within a specified threshold.

Next, the largest cluster is identified which is considered to be the reference for the

ground. The mean height of this cluster is considered as a reference height of the

ground. This height is used to decide if the other smaller clusters belong to the

54 2.5. Contributions: 3D Occupancy Grid SLAM

Figure 2.11: The final output of ground segmentation. All ground voxels are displayed in grey while

all other occupied voxels are in blue.

ground or not. If the height of a cluster is within a threshold of the height of the

ground cluster, then it is marked as ground and ignored otherwise. The results of

this step are shown in Fig. 2.10(bottom).

Finally, all the voxels in the 3D occupancy grid whose centres fall in the cells iden-

tified as ground in the elevation map are retrieved. These voxels are maintained

separately as ground voxels and removed from the occupied voxels. Figure 2.11

shows the result of ground segmentation where the ground voxels are represented

in grey and all other occupied voxels in blue.

After ground segmentation, we perform the maximum likelihood based simultane-

ous localization and mapping to correct vehicle location from odometry. We explain

this process in the following subsection.

2.5.3 Grid-based SLAM

We have implemented occupancy grid-based incremental maximum likelihood SLAM

approach for solving the problem of simultaneous localization and mapping. The

main idea of this algorithm is to incrementally build a single map of the environ-

ment based on the set of measurements received at each time step. It does not keep

track of any residual uncertainty in the vehicle pose. The incremental maximum

likelihood method consists in maximization of the marginal likelihood of t-th pose

Chapter 2. Simultaneous Localization and Mapping 55

and map relative to the (t− 1)-th pose and map for the estimation of a sequence of

poses x̂1, x̂2... while updating the maps M̂1, M̂2... incrementally. Thus the pose x̂t is

defined as:

x̂t = arg max
xt

{P(zt|xt, M̂t−1)P(xt|x̂t−1, ut)} (2.5.2)

In this equation, the first term P(zt|xt, M̂t−1) represents the measurement model

which defines that how probable a sensor measurement zt is given the vehicle pose

xt and the map M̂t−1 constructed from the previous measurements {z1, ..., zt−1}
at their corresponding poses {x̂1, ..., x̂t−1} which were estimated earlier. The term

P(xt|x̂t−1, ut) represents the motion model of the vehicle which is defined as the

probability of the vehicle being at position xt knowing that it was at position x̂t−1

at the previous time step and executed the action ut.

The x̂t computed from Eq. 2.5.2 is then used along with the corresponding set of

measurements zt for generating the new map M̂t using the incremental process for

map update described in subsection 2.4.1 (Eq. 2.4.17):

M̂t = M̂t−1 ∪ {〈x̂t, zt〉} (2.5.3)

Maximizing Eq. 2.5.2 is equivalent to finding the vehicle pose xt which satisfies the

motion model of the vehicle according to which the measurement zt best fits the

previously constructed map Mt−1. In this context, the maximum likelihood SLAM

approach is also termed as scan matching SLAM.

The method for scan matching depends on the map representation. Generally, in

the outdoor environments where the features are difficult to define and extract,

direct scan matching approaches such as Iterative Closest Point algorithm (ICP) are

used. Our approach for scan matching is also based on the classical ICP algorithm

and we use different known methods for improving its performance. Our solution

to the SLAM problem maintains a single robot pose estimate at each time step. The

reason for maintaining only one pose hypothesis is that combining 3D ICP scan

matching and multiple poses in a multi-hypotheses approach is computationally

very demanding.

Grid-based Scan Matching with ICP

In this section we detail our implementation of the ICP algorithm for scan match-

ing in the context of a 3D occupancy grid with the optimizations that we achieve.

56 2.5. Contributions: 3D Occupancy Grid SLAM

The ICP algorithm is commonly used for registering two sets of points in a com-

mon coordinate system. The input to the algorithm is two independently generated

sets of 3D points M and D corresponding to a single shape where M is called the

model set and D is called the data set. The purpose of ICP is to compute an optimal

transformation between the two sets which minimizes the cost function:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1

wi,j ‖ mi − (Rdj + t) ‖2 (2.5.4)

Here, (R, t) defines the transformation consisting of a rotation R and a translation

t. Nm and Nd are the number of points in the set M and D respectively, i.e. Nm =

|M| and Nd = |D|. wi,j is the weight function which is assigned 1 if i-th point of

M describes the same point in space as the j-th point of D and 0 otherwise. In

order to minimize the error function, we need to compute two things: the point

correspondences and transformation (R, t) which minimizes the function E(R, t)

based on the computed point correspondences.

The point correspondences are calculated iteratively by the ICP algorithm. In each

iteration, the closest points in the two sets are selected as correspondences and a

transformation (R, t) is computed to minimize Eq. 2.5.4. It is assumed that in the

last iteration the exact point correspondences are achieved. However, in our case,

the exact correspondences are not possible as the two sets of points can overlap only

partially. Therefore we use a maximum tolerable distance dmax as a termination

condition for the iterations.

The basic ICP algorithm that we have described above for registering 3D scans

is known as pairwise matching. In this method, each new scan is aligned with a

previously acquired scan. However, we need to register each new scan with the

existing map constructed from the previous sets of scans. In order to do so, we use

an incremental matching method in which each new scan is registered with the union

of previously received and aligned scans. This union of scans which constitutes the

map of the environment on the previous time step M̂t−1 is also called the metascan.

As in our case the scans to be registered are the 3D range measurements converted

to occupancy grid maps therefore our method is directly based on aligning the grid

maps. In order to register a sequence of scans, we construct an occupancy grid

map for each scan, separate the ground measurements and align it with the previ-

ously constructed map using incremental ICP algorithm. As we have mentioned

Chapter 2. Simultaneous Localization and Mapping 57

before, our optimized octree-based representation of the 3D occupancy grid maps

considerably reduces the size of the data which is further reduced by our method

for ground segmentation. Whenever a new scan arrives, we convert it to the 3D oc-

cupancy grid representation. The center of each voxel of the 3D occupancy grid is

used as a point to generate a sub-sampled point cloud. This point cloud is then reg-

istered with the existing occupancy grid map formed from all previous scans. For

initial estimate of the transformation, we use the odometry information provided

by the proprioceptive sensors of the vehicle.

One of the major problems in ICP is to efficiently find the point correspondences

in order to minimize the cost function. For this purpose, we used an approximate

nearest-neighbor search algorithm proposed by Arya and Mount (1997) which is

available as an open source library named ANN4. This algorithm is implemented

with k-d trees to accelerate the nearest neighbor search. Moreover, instead of search-

ing for the true nearest neighbors, this algorithm searches for the approximate nearest

neighbors within a clipping threshold ε i.e. it allows for the distance between two

approximate neighboring points to exceed the distance between the true nearest

neighbors by a factor of (1 + ε). Adjusting the value of ε can further accelerate the

search process. Setting the value of ε to 0 corresponds to the true nearest neighbors.

With the calculation of the point correspondences, the optimal transformation (R, t)

can be computed which minimizes Eq. 2.5.4. The error function in Eq. 2.5.4 can be

reduced to:

E(R, t) ∝
1
N

N

∑
i=1
‖ mi − (Rdi + t) ‖2 (2.5.5)

where N = ∑Nm
i=1 ∑Nd

j=1 wi,j. Moreover, the point correspondences can be described

as a vector v which contains the point pairs:

v = ((d1, m f (d1)), (d2, m f (d2)), ..., (dN , m f (dN))) (2.5.6)

Here, di and mi are the corresponding points in set D and M respectively and f (di)

is the search function which yields the closest point. Thus by the definition of ICP, it

is assumed that in the last iteration, the point correspondences, and thus the vector

v, are correct.

In order to minimize E(R, t) in (2.5.5), we have used the singular value decompo-

sition (SVD) based method due to its robustness and ease of implementation. This

4http://www.cs.umd.edu/ mount/ANN/

58 2.5. Contributions: 3D Occupancy Grid SLAM

method enforces the orthonormality of the rotation matrix R. In order to do so,

the first step is to use the centroids of the points in the matching to decouple the

calculation of rotation R from the translation t. We compute the centroids cm and

cd of the two sets M and D by:

cm =
1
N

N

∑
i=1

mi, cd =
1
N

N

∑
i=1

di (2.5.7)

In the next step, we compute the sets of points M′ and D′ by subtracting the cen-

troids from each point in their corresponding set M and D, i.e.:

M′ = {m′i = mi − cm, i = 1, ..., N}, D′ = {d′i = ci − cm, i = 1, ..., N} (2.5.8)

Next, we replace Eq. 2.5.7 and 2.5.8 in Eq. 2.5.5 and the error function E((R, t)

reduces to:

E(R, t) ∝
N

∑
i=1
‖ m′i − Rd′i ‖2 with t = cm − Rcd (2.5.9)

Now, the optimal rotation R is calculated by R = VUT where the matrices V and U

are derived by the singular value decomposition (SVD) of a 3× 3 correlation matrix

H i.e. H = UΛVT. The matrix H is defined as:

H =
N

∑
i=1

d′im
′T
i =

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (2.5.10)

where Sxx = ∑n
i=1 m′ixd′ix, Sxy = ∑n

i=1 m′ixd′iy, Sxz = ∑n
i=1 m′ixd′iz etc. After calculating

rotation, we calculate the translation t by using t = cm − Rcd.

Once we find the optimal rotation R and translation t, we apply it to the occupancy

grid voxels generated from the current scan including the ground voxels thus reg-

istering them with the existing grid map. As a by product, we obtain the corrected

pose of the vehicle too. Figure 2.12 is an illustration of the results we obtain after

matching a scan with a grid map.

Our approach has reduced the computing time for ICP by two methods. First, we

use the octree occupancy grid for scan matching which is a sub-sampled version of

the original point cloud. After segmenting the ground voxels, the remaining voxels

(which serve as the point cloud for scan matching) are further reduced by a large

factor. Second, we employ a fast approximation of the point correspondences in ICP

Chapter 2. Simultaneous Localization and Mapping 59

Figure 2.12: An illustration of our grid-based scan matching method. We consider two consecutive

scans. (Top) The 3D occupancy grid corresponding to the first scan, represented in red, is used as

the meta scan or the existing map Mt−1. The next scan is also converted in to the occupancy grid

map, represented by blue voxels to distinguish from the previous map. It is transformed using the

odometry information to illustrate the error in the registration. (bottom) The two maps are aligned

by our ICP based approach resulting in the updated map M.

60 2.6. Conclusions

algorithm by using kd-tree based implementation for approximate nearest neigh-

bor search. We down-sample the original point clouds to approximately 30,000

points and adapt the clipping threshold for optimization. This improves the per-

formance of the ICP and makes it feasible to be used in our framework. Moreover,

we use the singular value decomposition (SVD) method for minimizing the mean

square error (mse) function. The reason for the choice of SVD is that it is robust

and easy to implement as compared to the other methods of minimization. As a re-

sult, we obtain an implementation of ICP which yields an acceptable performance

baseline for localization. However, since we consider the odometry as the initial

estimation for the ICP scan matching, it is likely that further specialization in cal-

culating a heuristic initial estimation can make the framework more robust.

2.6 Conclusions

In this chapter, we have presented a background of the SLAM problem and the re-

lated work in last few years. In addition to that, we presented a method to perform

SLAM with ground segmentation in 3D. In the proposed method, we assumed that

the static measurements are separated from the dynamic measurements and we ad-

dressed the problem of SLAM only. This separation of measurements is done by the

moving object detection step which will be detailed in the next chapter. For SLAM,

we used a 3D grid-based representation of the environment and grid-based scan

matching is performed which allows estimating vehicle location as well as building

a consistent map of the surrounding. As a preliminary step, the ground voxels are

detected and separated from the occupied voxels in the grid. In order to perform

the scan matching, we used an efficient variant of incremental ICP algorithm and

applied it on the reduced point cloud obtained from the occupied voxels other than

the ground voxels. As a result, we obtained the updated estimate of the position

as well as an updated grid map with a precise differentiation between the ground

and non-ground voxels. The ground identification precisely divides the different

objects such as walls, parked cars and trees into separate groups of voxels. These

groups of voxels can later be clustered and classified to identify the corresponding

objects. Our method for ICP based localization requires the odometry for initially

estimating the transition and it can be improved by using a heuristic based initial

estimation. However, in the given circumstances, it provides a reasonably good

performance baseline.

Chapter 3

Detection, Classification and

Tracking of Moving Objects

3.1 Introduction

In Chapter 2, we described the modelling of the static environment, focusing on the

first perception problem of SLAM with ground segmentation. The outdoor envi-

ronments cannot be modelled with a static world assumption therefore the intelli-

gent vehicles operating in these environments must be able to perceive the dynamic

objects, such as other vehicles, pedestrians and bicyclists, in addition to the static

environment. For each dynamic object, the goal is to determine its state, which

commonly includes the location and the velocity, in order to predict its position in

the nearby future for path planning and obstacle avoidance. Thus, in contrast to

the static entities, detection of the dynamic objects is not sufficient; one must also

track them where tracking refers to the process of estimating their trajectories to be

able to predict their future locations. This gives rise to the second main problem of

intelligent vehicle perception referred to as Detection and Tracking of Moving Objects

(DATMO) (Fig. 3.1).

Figure 3.1: Detection and Tracking of Moving Objects (DATMO).

61

62 3.1. Introduction

Figure 3.2: Detection and Tracking of Moving Objects: Generic steps.

The two subtasks of DATMO, detection and tracking, are closely related. Although

there are some exceptions such as the tracking-before-detection approaches mentioned

in (Davey et al., 2008), most of the successful applications at present follow the

tracking-by-detection paradigm in which the output of moving object detection serves

as an input for the tracking part. A generalized framework for DATMO is out-

lined in Fig. 3.2 where the tracking part is further subdivided into four steps: gat-

ing, data association, track management and filtering. Gating defines the area around

the predicted position of a track where the new observations from the detector

are searched to be associated to the track while data association is the process in

which the actual observation-to-track association hypotheses are computed within

the gate area. Track management is the step in which the association hypotheses

computed in the previous step are used to update the list of tracks. Based on these

hypotheses, new tracks are initialized while the existing ones are maintained or

deleted. Finally, filtering is performed to recursively estimate the state of the tracks

from given observations over time. A more general architecture for tracking consid-

ers only two steps, filtering and data association, considering that gating is controlled

by the predictions made by filtering while track management depends on the selected

technique for data association (Bar-Shalom and Fortmann, 1988).

In the next section, we provide the mathematical formulation of DATMO followed

by a description of the solutions presented in literature in section 3.3. Section 3.4

gives a summary of our contributions and an overview of the system we developed

Chapter 3. Detection, Classification and Tracking of Moving Objects 63

in the context of DATMO in 3D using laser scanner. Our approach for detection,

classification and tracking of moving objects is detailed in the sections 3.5, 3.6 and

3.7 respectively. A brief summary is provided in section 3.8 to conclude.

3.2 Mathematical Formulation

Considering the SLAM derivations provided in chapter 2, we believe to have a

reasonably precise self-localization and a map of the environment. Moreover, as

described in the previous section, the detection and tracking can be handled as two

separate problems. In this section we provide the basic mathematical formulation

for tracking of multiple moving objects assuming that we know how to separate

from the sensor data all the measurements originated by the moving objects.

Although there exist some non-probabilistic algorithms for tracking (Kluge et al.,

2001; Krishna and Kalra, 2002; Lindstrom and Eklundh, 2001), most of the com-

mon and successful algorithms are based on statistical methods to deal with the

uncertainty in the measurements (Bar-Shalom and Fortmann, 1988; Burlet et al.,

2007; Ess et al., 2010; Montemerlo et al., 2008; Nashashibi and Bargeton, 2008; Petro-

vskaya, 2011; Schulz et al., 2003; Vu, 2009; Wang et al., 2007; Yu et al., 2008). The

idea is, usually, to implement the general recursive Bayesian filter for keeping track

of moving objects. Implementations of Bayesian filtering for tracking include the

parametric methods (such as Kalman filter (KF), extended Kalman filter (EKF), un-

scented Kalman filter (UKF)) and non-parametric methods (such as particle filter

(PF)) (Arulampalam et al., 2002). Parametric filters are considered to be more effi-

cient and their computational cost is polynomial in the dimensionality of the state

vector. However, they lack in representing complex beliefs arising due to ambigu-

ities in the data. On the other hand, non-parametric methods are able to represent

arbitrary beliefs but suffer from the curse of dimensionality i.e. their computational

cost increases exponentially with the dimensionality of the state (MacKay, 1998).

For the moving object tracking problem, at a specific time t, the system consists of

a set of moving objects {o1
t , o2

t , ..., okt
t }. The number of objects kt can be different

at different time steps due to the objects entering and leaving the scene. In the

following, we first describe the basic formulation of Bayesian filter for single object

tracking followed by the tracking of multiple objects.

64 3.2. Mathematical Formulation

Figure 3.3: Graphical model representation of single object tracking using single motion model

(left) and multiple motion models (right). The clear squares represent a hidden discrete variable µt

that describes the motion of the object at each time step.

3.2.1 Single Object Tracking

The moving object tracking problem for a single target can be formalized proba-

bilistically as a posterior using the recursive update equation of the Bayesian filter

(Eq. 2.2.13) derived in section 2.2.2:

P(ot|z1:t) = ηP(zt|ot)
∫

P(ot|ot−1)P(ot−1|z1:t−1)dot−1 (3.2.1)

Here, ot is the state vector describing the quantities to be estimated/tracked for

an object. These quantities are usually kinematic comprising of the position, ve-

locity and sometimes the acceleration of the object and can be constrained by the

limits such as a maximum speed or acceleration. The other quantities may include

the identity, class (e.g. pedestrian, bicycle, car etc.) or other features (e.g. motion

characteristics) of the object. z1:t is the set of measurements received up to time t.

Note that the state ot is inferred only from the previous state ot−1 and exterocep-

tive measurements z1:t as we do not have access to the control inputs of the tracked

object. Thus P(ot|z1:t) is a probability distribution that describes our belief about

the state of the tracked object at time t given the measurements up to time t. The

dynamic Bayesian network corresponding to the tracking of a moving object is shown

in Fig. 3.3. The three terms describing the posterior, analogous to the SLAM poste-

rior (Eq. 2.2.13), are motion model of the moving object (P(ot|ot−1)), measurement

model (P(zt|ot)) and the posterior at time t − 1 which becomes the prior at time

t (P(ot−1|z1:t−1)). The prior P(o0) describes the initial knowledge about the state

of the tracked object represented by a stochastic process. The sample paths of this

process correspond to the possible target paths through the state space. The other

Chapter 3. Detection, Classification and Tracking of Moving Objects 65

two terms are detailed in the following.

Motion Model

The motion model P(ot|ot−1) describes how the state of the object evolves over time.

As there is no a priori information about the trajectory as well as the control inputs

of the moving object, a stochastic model is used to predict the possible motion of the

object. In tracking literature, different motion models are used including Brownian

motion, constant velocity and constant acceleration model. The simplest model is the

Brownian motion model. It is often used for tracking pedestrians as they can change

their velocity and direction of motion rapidly. In this model, pose of the object

is predicted with an addition of zero-mean Gaussian noise whose variance grows

with time. Though it does not assume any knowledge about the future evolution

of the object but the predicted distribution can be confined by including physical

constrains such as maximum velocity.

A more commonly utilized motion model is the constant velocity model which esti-

mates the position and velocity of the object using an acceleration noise to model

the changes in velocity. In this model, the pose usually evolves via linear mo-

tion model which is often used when the exact dynamics of tracked objects are not

known. In this case, the motion is estimated by perturbing the orientation of the

object by ∆θ1, then translating forward by a distance vt∆t where vt is the current

velocity and finally, making an adjustment to the orientation by ∆θ2. Here, ∆θ1

and ∆θ2 are either sampled uniformly from [−dθmax∆t, dθmax∆t] or from a normal

distribution N (0, dθmax∆t). A more complete but rather complex model for pose

evolution is bicycle motion model. This model assumes a constant angular velocity

in addition to the linear velocity which defines estimated trajectory of the object in

the form of an arc.

In practice, the objects can change their dynamics behaviors over time (e.g. stopped,

moving, accelerating, turning etc.) and the motion models for each of these behav-

iors are quite different. This consideration leads to the requirement for a more

complex method such as Interacting Multiple Models (Bar-Shalom et al., 2001). This

method makes the assumption that, at a given time, the object moves according

to one model from a predefined set of models. In this case, at each time step, we

need to estimate the corresponding motion model in addition to the state of the ob-

ject. Figure 3.3 graphically illustrates the difference between single motion model

66 3.2. Mathematical Formulation

and multiple motion model approach for solving the object tracking problem. The

discrete variables µt are the switches to select appropriate motion model at each

point in time. Although using multiple models improves the prediction of the pose

with a more powerful representation but it increases the complexity of the system

(Burlet et al., 2007; Vu, 2009; Wang, 2004).

Measurement Model

Another important term in the posterior (3.2.1) is the measurement model, P(zt|ot)

which defines the measurement process probabilistically. In context of object track-

ing, the measurement model describes the probability to obtain a specific set of

measurements zt given a state ot of the tracked object. Measurement models are

specific to the sensors used and capture the uncertainty or un-modeled effects of

the sensor as noise in the measurements.

There exist two generic approaches in DATMO to model the measurements: using

raw data provided by the sensor (physical sensor models) and extracting higher order

features from the data (virtual sensor models). In case of raw data, the main idea is to

model the operation of physical sensor directly by taking into account the physical

phenomena which occur when the sensor interacts with the world. An example

is the modeling of laser beams which is often done using either independent beam

model (IB) or likelihood field model (LF) (Thrun et al., 2005).

The second methods enhance the raw data by performing some sort of prepro-

cessing techniques and use the enhanced data for modeling the sensor virtually.

The resulting preprocessed data could range from the extracted features to the

centroids of the measurements corresponding to the moving objects (Schulz et al.,

2003). In case of range data, the common approaches for preprocessing include

sub-sampling the rays, readjusting origin point of rays, projecting from 3D to 2D,

filtering out ground as well as segmenting the measurements specific to the moving

objects. However, the preprocessing or segmentation to extract the measurements

specific to the moving objects can produce false positives therefore it is necessary to

ascertain this process in more than one time steps. For vision sensors, the common

approaches include converting the image to grey scale, applying Gaussian blur and

obtaining 3D point clouds corresponding to the pairs of images (for stereo-vision)

(Labayrade et al., 2005).

Chapter 3. Detection, Classification and Tracking of Moving Objects 67

3.2.2 Multiple Object Tracking

The framework described in the previous section can be used to track several mov-

ing objects at the same time. For this, we can directly extend the state vector to

include all moving objects. However, there are two additional problems to solve:

motion model for several moving objects and data association between the mea-

surements and objects to identify which measurement is generated by which object.

Considering the set of kt objects {o1
t , o2

t , ..., okt
t } at time t, a state vector Ot is defined

for all the objects. The dynamic model for this state vector, denoted by P(Ot|Ot−1),

must define the joint evolution of all the objects. In order to simplify this problem,

it is often assumed that the motion of different objects is independent. Thus the

joint distribution can be computed by:

P(Ot|Ot−1) =
kt

∏
i=1

P(oi
t|oi

t−1) (3.2.2)

where P(oi
t|oi

t−1) is the motion model for object i. In practice, the independence

assumption is not always true as the motion of the objects is not completely in-

dependent especially in the cluttered environments. For example, there can be

situations when the objects change their trajectories as they approach each other.

Consequently, there exist the motion models which take into account the interac-

tion between the objects (del Blanco et al., 2011; Frank et al., 2003; Khan et al., 2005)

but those models involve very complex computations as compared to the simple

relation described above.

Regarding the measurement model, it again depends on the type of the sensor and

the information provided by it. If the sensor provides information about the iden-

tity of the object such as its color, texture etc, then the objects can be distinguished

from the sensor measurements directly. But, in general, it is often not possible to

perfectly identify or distinguish the objects from each other. Thus arises the prob-

lem of data association which makes it difficult to directly extend the solution for

single object tracking to the problem of tracking multiple objects. Figure 3.4 is an

illustration of the data association problem in the simple case of two objects (o1 and

o2) and two observations (z1 and z2) received at a particular time step. There can

be two possibilities for data association in this case: (o1 − z1, o2 − z2) or (o1 − z2,

o2− z1). In case of N objects and N observations, the possibilities of association can

be as much as N!. Moreover, the number of observations may not directly corre-

spond to the number of existing tracks. In this case, there must exist a method for

68 3.3. Related Work

Figure 3.4: Data association problem. Given N existing tracks and N new measurements, there exist

N! possible ways to associate the measurements with tracks.

track management to ensure the correct associations as well as initialization and

termination of the tracks. A considerable amount of research is done in this regard

and there exist several methods to solve the problem of data association such as

global nearest neighbor (GNN) (Blackman and Popoli, 1999), multiple hypothesis

tracking (MHT) (Reid, 1979) and joint probabilistic data association (JPDA) (Bar-

Shalom and Fortmann, 1988). These methods are further discussed in section 3.3.

3.3 Related Work

Tracking of moving objects is a critical component of perception which provides the

situational awareness for the intelligent vehicles to make safe decisions in dynamic

environments. The breakthrough exploratory work on DATMO for intelligent ve-

hicles emerged from the projects such as PROMETHEUS1 launched in 1986 by the

then Daimler-Benz AG in cooperation with several European partners from both

industry and academia (Hellaker, 1990). This research project was followed by a

number of initiatives in United States and Japan (Bertozzi et al., 2000; Sun et al.,

2006). Since then, a large number of DATMO approaches have been developed, es-

pecially in the context of DARPA Grand and Urban Challenges (Darms et al., 2008;

1Short for “Program for European Traffic with Highest Efficiency and Unprecedented Safety”

Chapter 3. Detection, Classification and Tracking of Moving Objects 69

Leonard et al., 2008; Montemerlo et al., 2008; Stiller et al., 2008; Urmson et al., 2008).

Traditional tracking methods, initially proposed for radar and sonar applications

for air and ocean surveillance systems, operated on the point observations and as-

sumed that all the observations correspond to moving targets uniquely (Fortmann

and Baron, 1978; Singer and Stein, 1971). However, this is not the case in real road

scenarios where, together with the dynamic objects, static objects and spurious ele-

ments are in abundance. This makes the discrimination between static and dynamic

objects, namely moving object detection, a critical requirement for a tracking system.

Generally, DATMO approaches follow the standard tracking pipeline, illustrated in

Fig. 3.2, with the three major stages: object detection, data association and Bayesian fil-

ter update (as described in section 3.1). This pipeline separates the tracking stage

from the detection stage and thus has the advantage of reduced computational

complexity. Further, it allows to use various sensors in parallel. However, it re-

quires a reliable and reproducible detection stage. This is the reason why many of

the tracking works use object class specific detectors and hence track only the ob-

jects of a certain class e.g. cars (Petrovskaya, 2011; Wender and Dietmayer, 2008) or

pedestrians (Schulz et al., 2003; Spinello et al., 2008) which may result in ignoring

other important objects such as a cyclist. There exist a few vision-based generic

approaches for detection but they require the objects to be relatively large and well

separated from the background (Fardi et al., 2006; Schamm et al., 2008). These con-

ditions may not be satisfied for all the scenarios in autonomous driving. An al-

ternative method is to combine the object tracking with SLAM to detect and track

generic objects. These approaches often use the 2D occupancy grids and track the

generic objects by taking into account the parts of grid which change their occu-

pancy (Vu et al., 2008; Wang, 2004). The results presented by these approaches are

highly promising but are limited to the 2D environments only.

An alternative paradigm to the standard tracking pipeline considered by a few re-

searchers recently is the track before detect methodology (Davey et al., 2008). It post-

pones the detection stage and quantizes the sensor data to use for tracking directly.

Examples in 2D include the stixels quantization of images at fixed columns (Pfeif-

fer and Franke, 2010) and Bayesian occupancy filtering for tracking the cells of an

occupancy grid (Brechtel et al., 2010). The mentioned approaches only provide in-

formation about the occupied areas of environment and do not provide an object

level representation. Moosmann and Fraichard (2010) use this methodology for

70 3.3. Related Work

segmentation of the objects from the range images corresponding to the 3D laser

range data and track those segments. A drawback of this paradigm is that it does

not differentiate between the static and dynamic objects and therefore all the de-

tected objects or segments need to be tracked. Due to this fact, the standard tracking

pipeline still remains the popular methodology for DATMO.

Recent research works emphasized on the need of identifying the object class as an

important step for DATMO in urban environments where there are many kinds of

objects with considerably different motion dynamics (Ess et al., 2010; Himmelsbach,

2010; Vu et al., 2008). They claim that in such environments the object state vector

must include the object semantics (whether the tracked object is a car, bicycle or a

pedestrian) in order to achieve reliable tracking. This classification allows to make

use of appropriate motion models for different types of objects.

In the context of sensors, many of the proposed DATMO approaches focus on us-

ing the vision exclusively (Ess et al., 2010; Katz et al., 2008; Xu et al., 2011) while

others use laser scanners (Moosmann and Fraichard, 2010; Nashashibi and Barge-

ton, 2008; Petrovskaya, 2011; Schulz et al., 2003; Streller and Dietmayer, 2004; Vu

et al., 2008; Wang et al., 2007) sometimes in addition to vision (Baig, 2012; Fayad and

Cherfaoui, 2007; Labayrade et al., 2005; Spinello et al., 2008; Wender and Dietmayer,

2008). Vision-based methods, considered to be the most frequently used methods

for DATMO, are discussed and summarized in (Yilmaz et al., 2006). The authors

give an overview of different object representations and features along with the fre-

quently used techniques for object detection including point detectors (e.g. Harris

point detector (Harris and Stephens, 1988) or SIFT detectors (Lowe, 2004)), back-

ground subtraction and supervised learning (e.g. AdaBoost (Freund and Schapire,

1995) or Support Vector Machines (Boser et al., 1992)). The main disadvantage of

pure vision-based approaches is that they do not provide the depth information

directly. Stereo-vision can be used for obtaining the extrapolated depth informa-

tion but it does not match the accuracy of a laser scanner as well as not being ro-

bust to the changing light conditions. Consequently, the vision-based systems are

sometimes augmented by using 2D laser scanners which introduces an additional

overhead of sensor fusion (Wender and Dietmayer, 2008). Moreover, visual clas-

sification does not help to distinguish between the moving objects and stationary

objects (e.g. a moving car and a parked car). Many approaches for DATMO rely on

2D laser scanner alone (Streller and Dietmayer, 2004; Vu et al., 2008; Wang, 2004) but

it provides only a limited amount of information about the objects being tracked.

Chapter 3. Detection, Classification and Tracking of Moving Objects 71

The field of 3D DATMO is relatively new as the fully three-dimensional laser scan-

ners have been introduced only recently. Some recent works, including most of

the successful teams in the DARPA Urban challenge, used a rotating 3D lidar but,

surprisingly, many of these reduce the dimension of the 3D data to 2D by either pro-

jecting it to a ground plane or to a virtual image plane called range image. In the first

case, data is projected to an estimated ground plane combined with an occupancy

grid and then DATMO is performed using established 2D methods (Montemerlo

et al., 2008; Stiller et al., 2008; Urmson et al., 2008). Density of the points within a

grid cell is considered to be its occupancy value and the objects are extracted by

clustering the cells on the base of this occupancy value (Himmelsbach et al., 2008).

This approach assumes the ground to be level and the objects to be vertical, there-

fore it is not suitable for the outdoor environments with slopes and non-vertical

structures. Moreover, a considerable amount of information is discarded due to

projecting from 3D to 2D. In the second method, 3D data is projected onto a cylin-

der with axis same as the rotational axis of the scanner (Moosmann and Fraichard,

2010). The resulting projection is a range image in which the pixel values corre-

spond to the original distance measurements. The detection and tracking can then

be performed on this image using the vision-based methods. This approach, again,

lacks the detail of the full 3D data and gives a 2D representation only.

In the following, we describe some recent solutions proposed for the detection,

classification and tracking of moving objects with a laser scanner.

3.3.1 Detection of Moving Objects

Moving object detection algorithms are often classified into two groups: model-

based and model-free methods. Model-based methods detect the objects using

explicit models and are tuned for the specific object classes. Model-free methods

perform more generic detection and are further categorised into appearance-based,

feature-based and motion-based methods. Appearance-based methods are used with

the vision sensors and not directly applicable to the laser data.

Feature-based methods extract the features from the 2D or 3D scan data and use them

for the classification of data points into known classes (Arras et al., 2007; Schulz

et al., 2001). The extracted features can be motion features or geometric features

including lines, circles or a combination of both. Moreover, the features can be pre-

defined or learned. For example, Schulz et al. (2001) use the predetermined features

72 3.3. Related Work

of local minima in the distance profile of the range scan to detect the people in in-

door environments. On the other hand, Arras et al. (2007) use the approach to learn

the features from the hand-labeled data. With a 3D laser scanner, as mentioned

above, a common practice is to use the 2D projection into range images and apply

computer vision techniques. Stiene et al. (2006) use this approach to apply a silhou-

ette extraction method to the range images. They use a fast eigen-CSS method to

extract the features and support vector machines (SVM) to perform the supervised

learning and classification. The results are compared to the standard methods for

object detection from range images. A more recent example of the application of

computer vision algorithms to the range image is proposed in (Moosmann and

Fraichard, 2010). The goal was to develop a class-independent approach similar to

optical flow in intensity images. They used the range image to segment the data

with a local convexity criterion and then use the corresponding 3D data to track the

motion of those segments. A similar approach is used in (Morris et al., 2008) with

a combination of 2D and 3D scans instead of the range images. They use 2D scans

to generate the hypothesis for moving vehicles and 3D scans for further examin-

ing those hypotheses. A linear support vector machine is used to discriminate the

vehicles from the background.

Motion-based methods are often used with the range sensors where the main idea is

to detect the moving objects by detecting occupation of the previously unoccupied

space. A popular approach is to construct an occupancy grid map incrementally

and apply the techniques similar to the background subtraction method of com-

puter vision (Burlet et al., 2007; Vu et al., 2008; Wang et al., 2003). The constructed

occupancy grid serves as the background modeling process. At each time step, new

data is compared with the occupancy grid map and the inconsistencies between

them are identified. These inconsistencies give the individual measurements pos-

sibly corresponding to the moving objects which are further clustered together to

represent the objects. An alternative approach proposed in (Yu et al., 2008) is to

first cluster the measurements obtained from the 2D laser scanner using k-nearest

neighbors and then compute the movement parameters of the clusters by local grid

map matching.

Vu et al. (2008) and Petrovskaya and Thrun (2009) have discussed the problems

posed by the model-free detection approaches in the context of laser scanners. For

instance, an object can be divided into several segments due to partial occlusions as

well as glassy or black surfaces. Moreover, at any specific time, only parts of the ob-

Chapter 3. Detection, Classification and Tracking of Moving Objects 73

ject facing the sensor are visible which makes it difficult to identify and track these

objects correctly. They state that a geometric model of the objects can improve the

object detection and consequently the tracking results by handling disjoint point

clusters. Vu et al. (2008) use fixed models to represent four different classes of mov-

ing objects namely bus, car, bike and pedestrian with 2D laser data. Petrovskaya

and Thrun (2009), though use 3D laser data but reduce it to a 2D projection, which

they call a virtual scan, to apply the efficient and well-established 2D methods. They

perform the detection only for the vehicles using flexible box model which adapts

to the size of the vehicle during tracking. Presence of a digital map of the road

is also assumed which reduces the search area for the new tracks but limits the

approach only to the structured environments. An extension to the unstructured

environments is proposed in (Wojke and Haselich, 2012) which uses the tempo-

ral and geometric clues to separate the vehicles from the background. However,

as mentioned before, all these motion-based detection methods either use the 2D

laser data or the 2D projection of 3D laser data and none of them uses the 3D data

directly.

3.3.2 Tracking of Moving Objects

As mentioned in section 3.1, multiple object tracking problem consists of two main

steps: filtering and data association. The most common tracking methodologies use

Kalman filter for estimating new state of the tracked objects from given observa-

tions over time (Fayad and Cherfaoui, 2007; Mendes et al., 2004; Moosmann and

Fraichard, 2010; Nashashibi and Bargeton, 2008; Premebida and Nunes, 2006; Stiller

et al., 2000; Streller and Dietmayer, 2004; Streller et al., 2001). The estimated posi-

tions of the objects are compared to the observations through gating process using a

distance measure (Fayad and Cherfaoui, 2007; Lindstrom and Eklundh, 2001; Stiller

et al., 2000; Yu et al., 2008) or a validation region (Premebida and Nunes, 2006). Some

tracking approaches augment the Kalman filter method by using interacting mul-

tiple models (IMM) for describing multiple motion modes of the objects where a

separate Kalman filter is defined for each motion model (Burlet et al., 2007; Vu et al.,

2008; Wang et al., 2007).

Although tracking literature is dominated by the variants of Kalman filter, there

exists a significant amount of literature using particle filters too which is capable of

estimating the evolution of non-linear models with non-Gaussian noise (Arulam-

74 3.3. Related Work

palam et al., 2002). Särkkä et al. (2007) use a Rao-Blackwellized particle filter for

tracking unknown number of targets. A similar approach is used in (Vihola, 2007)

with the finite set statistics for multi target tracking. Rao-Blackwellization is used

to improve the efficiency of particle sampling. However, its application for the high

dimensionality of 3D tracking problem is limited due to the large number of simu-

lations required. Recently, some methods are proposed for GPU implementation of

the particle filter tracking to overcome this limitation (Brown and Capson, 2012).

Filtering estimates the state of exactly one object and requires observations to up-

date the estimated state. Association between the estimated state and observations,

considered as the most challenging stage of DATMO, has been studied extensively

in last couple of decades. It is a complex task as the observations generally do not

correspond to the number of objects. Moreover, the number of objects is difficult

to estimate since an object might be temporarily occluded or unobserved. The data

association for multi-target tracking comprises of deducing the number of true ob-

jects and identifying if each observation corresponds to a tracked object, a spurious

measure or a new object in the scene. The complexity of the problem increases

exponentially with the number of objects in the scene.

The simplest data association method is global nearest neighbor (GNN) (Blackman

and Popoli, 1999) which associates the measurement to the nearest object accord-

ing to a given metric such as Euclidean or Mahalanobis distance. A validation gate

is used to limit the maximum distance for an association. The main advantage of

this method lies in its smallest cost of calculation. However, it is a purely sequential

method and the decision of the association is immediate and irrevocable: the hy-

pothesis having highest probability is considered as true (Rong Li and Bar-Shalom,

1996). Thus it makes a hard decision at each point in time. Once an association is

established, it gets fixed and unchangeable.

A possible solution for this problem is to use the suboptimal Bayesian data associa-

tion such as the joint probabilistic data association (JPDA) filter (Bar-Shalom and Fort-

mann, 1988). JPDA is a method that considers all possible associations but main-

tains a single filter. At each time step, instead of finding a single best association

between observations and existing tracks, JPDA estimates the probability of each

possible association. The state of each target is estimated by a filter which takes

into account all possible associations weighted by their probability. Though this

approach was originally proposed with the Kalman filter (Bar-Shalom and Fort-

Chapter 3. Detection, Classification and Tracking of Moving Objects 75

mann, 1988) but it can also be used in the sample-based frameworks (Schulz et al.,

2003). Recently, Svensson et al. (2011) proposed an optimization of the JPDA ignor-

ing the identity of the tracked objects. They assume that the only important thing is

the existence of the track and not its identity (or labeling). This assumption can not

be valid in the applications where the object class is used to deduce the dynamics of

the tracked objects. In comparison to GNN, JPDA has proven to be more efficient in

cluttered environments but still the possibility of erroneous decision exists as only

a single scan is considered for association. Moreover, as in the case of GNN, the

association made in the past is not reversible.

A more robust technique for association is multiple hypothesis tracking (MHT). Orig-

inally proposed by (Reid, 1979), it is affluently used and still proves to be an ex-

cellent approach for multiple object tracking (Blackman, 2004; Burlet et al., 2007;

Koller and Ulmke, 2005; Lau et al., 2010; Ryoo and Aggarwal, 2008; Thomaidis et al.,

2010). Unlike the previous strategies, MHT is a multi-scan algorithm which retains

all possible association hypotheses until there is enough information to resolve the

ambiguities which occurred in the previous time steps (Thomaidis et al., 2010). The

main disadvantage of this approach is its complexity in the pure form due to the

exponential growth of association hypotheses in the presence of ambiguities. Vari-

ous methods exist which implement the prune and merge operations to reduce the

number of hypotheses but they result in compromising the maximum a posteriori

(MAP) property of the method (Blackman, 2004).

Another solution to preserve the MAP property in data association is to use an op-

timisation technique. The Viterbi algorithm (VA) (Forney Jr, 1973) is an established

optimisation method for discrete Markovian systems which has been extensively

used in speech recognition. It is actually a batch algorithm, although in practice it

may be used in a fixed-lag processing mode due to merging of paths in the trellis

(Forney Jr, 1973). The application of Viterbi algorithm to the data association prob-

lem in the single target case was proposed in (Gad and Farooq, 2003). The essential

idea is to create a trellis based on the measurements rather than the states. Any path

through the trellis corresponds to a sequence of data associations. The Viterbi algo-

rithm is harnessed to determine the shortest or lowest cost path through the trellis.

This technique is not optimal for tracking because the sequence of data associa-

tions conditioned on the estimated states is not Markov. Nonetheless, convincing

results have been achieved over existing single-scan approaches such as JPDA (Gad

and Farooq, 2003). The so-called Viterbi data association (VDA) approach has been

76 3.3. Related Work

used for multiple object tracking for widely separated targets (Pulford, 2006) and

for pedestrians in a cluttered environment (Azim and Aycard, 2010).

3.3.3 Classification of Moving Objects

Classification of moving objects is an interesting addition to the DATMO process

which often becomes essential in the case of 3D range data. Each detected object

is compared against a possible list of classes, consisting of the frequently observed

objects (e.g. cars, pedestrians, bicycles) and the appropriate class is assigned to

it. The dynamics of the assigned class are used for filtering which improves the

performance of tracking. Most of the methods use vision sensors (Premebida and

Nunes, 2006), sometimes coupled with the laser scanners (Premebida et al., 2007), to

perform classification of objects with well-established methods of computer vision.

With 2D laser range data, the simplest methods for classification fit the bound-

ing boxes to the clusters corresponding to the detected objects. The dimensions of

these boxes are then used to identify the class of the object (Dietmayer et al., 2001;

Petrovskaya and Thrun, 2009; Vu et al., 2008). Dietmayer et al. (2001) used the prior

knowledge about the typical road users for the classification of detected objects.

Predefined length and width values for each object class are compared against the

bounding box of each detected object and appropriate class is selected. An addi-

tional verification phase is introduced to verify the class assignment using expected

dimensions and dynamic constraints of that class. If the probability of a different

class increases, then the class assignment is changed. Mendes et al. (2004) proposed

a similar approach with additional features used for classification which contribute

a weighted vote towards a class. The class with the highest score is assigned to the

object. However, these approaches can not be directly extended in the context of

3D data as the point cloud corresponding to the object varies highly with its posi-

tion relative to the range scanner (Mendes et al., 2004). Moreover, the approaches

that use the object dimensions for classification suffer from the problem of occlu-

sion. The dimensions for partially occluded objects can not be calculated correctly.

Nashashibi and Bargeton (2008) address this problem by considering the occlusion

while computing the votes. The probabilistic formulation of this approach is pro-

vided in (Zhao et al., 2006). Vu et al. (2008) and Petrovskaya and Thrun (2009) use

model-based detection to handle the partial occlusion which is again limited to the

case of 2D data only.

Chapter 3. Detection, Classification and Tracking of Moving Objects 77

A hybrid approach for classification uses laser scanner to detect the objects and to

specify a region of interest (ROI) in the camera image. The ROI reduces the area

to be searched in the image and consequently the processing time. Premebida et al.

(2007) apply an AdaBoost classifier to the ROI in the image and a Gaussian mixture

model classifier to the laser data. The results of the two classifiers are combined

using a sum decision rule to generate the final classification.

Some of the existing classification approaches using 3D range data alone tend to

label the scene directly into regions corresponding to the object classes, possibly

including a background class. These methods use the repetitive instances of sim-

ilar objects to define a class. For instance, Anguelov et al. (2005) use a supervised

approach based on Markov random fields (MRF) to compute local features from

individual data points and produce globally consistent class labels. Triebel et al.

(2010) employ an unsupervised method by using conditional random fields (CRF)

to build a neighbourhood graph of planes segmented from the 3D point clouds

where each plane is considered to be an object part. Subsequently, the combinations

of segments (object parts) which occur multiple times are searched and assigned a

class label. These methods work on 3D indoor-data which makes the segmentation

relatively simple. An unsupervised approach for outdoor scenarios is presented by

Moosmann and Sauerland (2011) where the objects are first segmented by a region

growing algorithm and a feature vector is calculated for each segment. The similar

feature vectors are then clustered to form groups of segments which have similar

geometric properties. Finally, the clusters are analysed in order to define the object

classes. These approaches provide a good segmentation of the data along with the

labeling of repeated instances of objects without predefined classes or object mod-

els. However, they are only capable of discovering frequently occurring geometric

structures and none of them provides a semantic information about the type of the

objects (e.g. car, bicycle, tree, wall, etc.). Thus they are not suitable to be used for

tracking of moving objects directly.

Alternatively, some other approaches for 3D range data assume that either the point

clouds corresponding to the objects have already been segmented (Teichman et al.,

2011) or can be segmented from the ground projection of the data (Douillard et al.,

2011; Himmelsbach et al., 2008) and focus only on classification. Himmelsbach et al.

(2008) build a ground projection based 2D occupancy grid from 3D data and clus-

ter the grid cells not belonging to the ground to represent the object hypotheses.

In the next step, the 3D point clouds corresponding to the segmented objects are

78 3.3. Related Work

back-projected which are then used for feature extraction and classification by a

support vector machine (SVM). The SVM is trained with the hand-labeled data and

the objects are classified into two classes namely vehicles and non-vehicles. Another

approach for segmentation based on ground identification is proposed by (Douil-

lard et al., 2011).

A different approach of classification in conjunction to tracking is presented in Te-

ichman et al. (2011) which classifies the complete tracks instead of the individual

segments of the objects. The first step, similar to the above mentioned approaches,

is the 2D grid-based local ground plane removal and segmentation by connected

components clustering of the remaining points. The segments are then tracked by

Kalman filter based tracker. The track classification is done by two boosting clas-

sifiers: one based on the shape of the object at each frame, and second on motion

descriptors of the entire track. The two predictions are combined by a discrete

Bayes filter. The approach assumes a perfect segmentation and the discrimination

between the static and dynamic objects is only made on the base of tracking.

3.3.4 Synthesis

The problem of DATMO has been extensively studied by the robotic community for

several decades but accomplishing this task from a ground vehicle in outdoor en-

vironments still remains difficult. Proposed strategies use different sensors where

the vision-based approaches have been most prevalent thanks to the greater field

of view and lower cost of the cameras. Moreover, the additional color information

used for identifying the specific objects outweighs the disadvantages of low pre-

cision in depth information. In order to improve the precision, some approaches

use a combination of camera and laser range finder. However, this might strongly

affect the computational complexity by introducing additional problem of fusion

between the sensors. Furthermore, the field of view and range of the two sen-

sors is not the same and therefore not all the information available can be utilised.

Although there are well-known methods for DATMO using 2D laser scanners, ap-

proaches using a 3D range scanner are relatively rare in literature. Most of those

which exist, rely on reducing the dimensionality of the problem by projecting 3D

data to 2D. Others which utilize the full 3-dimensional data, usually depend on a

segmentation of the point cloud in to individual objects, regardless of distinguish-

ing between the static (e.g. walls, trees, fences etc) and dynamic objects (e.g. cars,

Chapter 3. Detection, Classification and Tracking of Moving Objects 79

bicycles, pedestrians etc). This differentiation is later made either on the base of

classification using known models of the objects of interest, for instance other road

users, or by tracking the possible motion of each object. For the first case, the classi-

fication yields all the instances of a specific class (e.g. cars) whether they are moving

or not. Moreover, the classification considers all the object hypothesis generated by

segmentation including the static objects which can amount to a large number in

unstructured outdoor scenarios. Consequently, the classification needs to handle

too many of the objects which are not of a specific interest for DATMO. Same is

the problem for the tracker in the second case. A possible solution for 3D DATMO

can be a hybrid approach using motion-based detection and then classification into

the predefined objects of interest. A motion-based approach for detection, similar

to the ones which exist for 2D data, will return only the objects which are possi-

bly moving at a specific time and thus reduce the number of objects to consider.

Then, those detected objects can be classified for tracking. In the context of multi-

ple object tracking, we have observed that MHT is considered to be the best option.

However, it suffers from the problem of computational complexity due to expo-

nentially growing number of hypotheses. The prune and merge methods which

attempt at reducing the number of hypotheses result in the loss of the MAP prop-

erty of MHT. A possible solution is to use an optimisation method such as Viterbi

algorithm. Our approach for DATMO with a 3D laser scanner uses motion-based

detection and density-based clustering for segmenting the moving objects from the

3D occupancy grid. As established in some other recent works, we also posit that

in order to successfully navigate in outdoor dynamic scenarios and to correctly es-

timate the objects’ motion paths and future locations, an environment model must

include the object semantics i.e. whether a moving object is a car or a pedestrian.

Therefore, a key component of our approach is the classification of detected ob-

jects into known categories namely: pedestrian, bicycle, car and bus. We propose

a novel approach to classification in 3D range data based on supervised learning

technique. The detected object is divided into layers to define a set of weak clas-

sifiers for different height levels of the object. The division of the objects to layers

allows to apply 2D methods to each layer for defining the weak classifier. Subse-

quently, a strong classifier is trained from the features extracted at each layer by

applying AdaBoost which returns the eventual classification of the objects. Finally,

we present a new solution to the problem of multiple objects tracking using the

Viterbi data association.

80 3.4. Contributions: 3D Occupancy Grid DATMO

3.4 Contributions: 3D Occupancy Grid DATMO

In this section, we present the method that we have developed for the grid-based

detection and tracking of moving objects. The detected objects are classified into

four classes: pedestrian, bicycle, car and bus and tracked using Viterbi data associ-

ation.

3.4.1 General Architecture

Motion-based approaches detect the moving objects by detecting occupation of the

previously unoccupied space. In this work, we have used an occupancy grid based

approach for motion detection which is often used with 2D range sensors. The basic

idea is to use the octree-based Occupancy Grid representation of the environment

that we presented in chapter 2 and to detect moving objects based on inconsisten-

cies between the scans. The proposed method for discrimination between moving

and stationary objects without a priori knowledge of the targets is the first main

contribution of this chapter. Second main contribution is our method for classifi-

cation of the detected moving objects into four classes: pedestrian, bicycle, car and

bus. Since we have knowledge of the object classes of interest, and the set of those

classes is comparatively small, we apply a supervised approach for classification.

Moreover, a preliminary binary classification is already done by the detection step

which separated the possibly dynamic data from the rest. As a final contribution,

we present an extension of the Viterbi algorithm to solve multiple objects tracking

in cluttered environments. The complete end-to-end framework of DATMO is il-

lustrated in Fig. 3.5. Next section describes the proposed method for grid-based

detection of moving objects. The classification and tracking of those objects are

explained in section 3.6 and 3.7 respectively.

3.5 Detection of Moving Objects

In this section, we describe our approach for detection of moving objects from the

octree occupancy grid map presented in chapter 2. We first describe the method for

detecting the voxels which possibly belong to the dynamic objects in section 3.5.1.

Section 3.5.2 describes our method for clustering the individual dynamic voxels to

represent the objects.

Chapter 3. Detection, Classification and Tracking of Moving Objects 81

Figure 3.5: Architecture of proposed method for DATMO.

3.5.1 Motion-based Detection

After the construction of a consistent local map of the vehicle from SLAM, moving

objects can be detected when new measurements arrive. The principal idea of our

approach for the hypothesis of a moving object is based on the inconsistencies be-

tween observed free space and occupied space in the local grid map. This method

borrows idea from background-subtraction methods in computer vision. Our pro-

cess for the detection of moving objects is carried out in two steps: detection of

dynamic voxels and there segmentation into individual dynamic objects.

The first step is to detect the voxels that might be containing measurements ob-

tained from dynamic objects. This can be considered as a background modeling

process. In this step, we construct a 3D occupancy grid map incrementally from

laser measurements, as explained in chapter 2, and based on the constructed grid

map we are able to make a hypothesis about the voxels of the grid occupied by

moving objects when new measurements arrive. For this, we maintain a list of

voxels whose states are inconsistent between the current and previous scan.

Let St−1 and St be the states of a voxel in previous scan and current scan respec-

tively. If the transition between these two states for a specific voxel of the grid is

such that St−1 = f ree and St = occupied then this is the case when an object is

82 3.5. Detection of Moving Objects

detected on a location previously seen as f ree space and it is possibly a moving ob-

ject. We add it to the list of possible dynamic voxels. In contrary, if St−1 = occupied

and St = f ree, it means that the location which was previously being observed

as occupied is f ree now. This can possibly be caused by a missed detection by the

sensor or it was a voxel occupied by a dynamic object which may have displaced

now. We search this voxel in our list of dynamic voxels maintained from previous

scans. If it is found, we wait for the next few scans instead of removing it from the

dynamic voxels list immediately. If it is observed as f ree in next scans as well, then

we delete it from the list.

If St−1 = occupied and St = occupied, it means that an object is observed on a

location previously occupied then it probably is static. If an object appears in a pre-

viously not observed location, then we can say nothing about that object. For such

measurements, a priori we will suppose that they are static until later evidences

come. As a result of this step, all the inconsistencies between the two measure-

ments are identified as dynamic voxels. These include a large number of sparsely

situated voxels generated as noise. Further steps deal with this issue by differenti-

ating between the noise and measurements corresponding to the possible dynamic

objects.

Once we have maintained the list of all possible dynamic voxels, the next step con-

sists of the segmentation of detected dynamic measurements into regions. It is car-

ried out by clustering these dynamic voxels into separate groups where each group

represents a single object. The criterion used for deciding whether the voxels be-

long to the same cluster is the Euclidean distance between their centers.

3.5.2 Density-based Clustering

We can intuitively expect that all voxels belonging to a specific cluster are neighbor-

ing or at least spatially very close to each other. Thus, we do not require to exhaus-

tively compare the voxels pairwise to check whether they belong to a cluster or not.

The clustering can be performed using an approach similar to a region-growing al-

gorithm. In this approach, we examine the neighboring voxels of initial seed point

voxel and determine whether the neighbors should be added to the region or not.

The seed points are selected from the detected dynamic voxels randomly.

In this work, we have used a highly cited algorithm for clustering known as density-

Chapter 3. Detection, Classification and Tracking of Moving Objects 83

based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996). DB-

SCAN defines a cluster based on the notion of density reachability. In order to ex-

plain the term density reachability, we use the concept of ε-neighborhood Nε(p) of a

point p which consists of all the points q which are within a distance ε of p, i.e.:

Nε(p) = {q ∈ D | dist(p, q) ≤ ε} (3.5.1)

The point q is defined to be directly density-reachable from the point p if it is a part of

the ε-neighborhood of p and p has sufficient number of points in its ε-neighborhood

to be considered as part of a cluster. On the other hand, if q is not within the ε-

neighborhood of p, however, there exists a sequence p1, . . . , pn of points with p1 = p

and pn = q such that each pi+1 is directly density-reachable from pi, then q is called

density-reachable from p.

It is important to note that the density-reachability is not a symmetric relation. For

instance, the point q may lie at the edge of a cluster and it may not have sufficient

number of neighbors. If the recursive process of clustering starts from this point

then it will stop immediately as it will not find enough density in the neighbor-

hood. However, if the process starts from the point p, it would lead to the point

q and would stop there. Thus q would be density-reachable from p but not the vice

versa. This asymmetric relation leads to another notion of density-connectedness:

two points p and q are density-connected if there exists a point o such that both p and

q are density-reachable from o. All these notions are illustrated by an example in Fig.

3.6.

Thus, by definition of DBSCAN, a cluster must satisfy two constraints:

• All points in the cluster should be density-connected to each other.

• If a point is density-connected to any point of a specific cluster, it is part of that

cluster as well.

The main concept of this algorithm is to continue expanding a cluster as long as the

density of the ε-neighborhood is greater than a threshold. Thus the neighborhood

distance threshold (ε) and the minimum number of points (minPts) required to

define a cluster are the two main parameters of this algorithm.

In our implementation of the grid-based DBSCAN, as described above, all possible

dynamic voxels are stored in a data list. Our clustering algorithm starts with step-

84 3.5. Detection of Moving Objects

Figure 3.6: Examples of directly density-reachable (left), density-reachable (center) and density-connected

(right) in DBSCAN. Assume that the minimum number of points required to form a cluster is 3 i.e.

minPts = 3. The dots represent the points to be clustered, and the black circles define the area of

radius ε around the points in red, the arrows denote the relation of direct density-reachability. In the

figure on left, point p is the core point, while q is directly density-reachable from p, similar to all the other

blue points. In the figure in center, point q is density-reachable from the point p. In figure on right,

point q is density-connected to p whereas o (the point in green) is a point such that both p and q are

density reachable from o.

ping through this list. A voxel is defined by the position of its center and the length

of its side. The centers of the detected dynamic voxels define the set of points for

which we have to perform clustering. We start with an arbitrary dynamic voxel in

the list which is not yet assigned to any cluster. The ε-neighborhood of this voxel

is retrieved and if it contains at least as many dynamic voxels as the minPts, we

initialize a new cluster. In other case, we label that voxel as noise. However, this

voxel might later be discovered in a sufficiently sized ε-environment of a different

voxel and hence be included in a cluster. If a voxel is a dense part of a cluster then

its ε-neighborhood is also included in that cluster. Thus the search continues with

all those voxels recursively. This process continues until the complete cluster is

discovered. Afterwards, a new unvisited voxel is retrieved from the list and pro-

cessed to start a new cluster or to be marked as noise. The details of our method

for clustering of dynamic voxels are given in Algorithm 2 and 3.

At the end, all the dynamic voxels are either assigned to a cluster or marked as

noise. The noise voxels are discarded which results in getting rid of the false alarms

and spurious elements in the environment which were wrongly identified as sparse

dynamic object voxels. The remaining dynamic voxels in the list have a higher pos-

sibility of corresponding to moving objects which is further improved in the next

section of classification. The clusters corresponding to those voxels are maintained

as the dynamic object hypotheses which are forwarded to the classification system

to assign the appropriate classes.

Chapter 3. Detection, Classification and Tracking of Moving Objects 85

Algorithm 2 DBSCAN for clustering dynamic voxels

1: Input: List of dynamic voxels D, ε, minPts

2: Output: Cluster id assigned to each voxel (or NOISE)

3: mark all voxels as UNVISITED

4: ClusterId← 1

5: for all voxels vi in D do

6: if vi is UNVISITED then

7: mark vi as VISITED

8: if Expand_Cluster(D, vi, ClusterId, ε, minPts) then

9: ClusterId← ClusterId + 1

10: end if

11: end if

12: end for

Figure 3.7, 3.8 and 3.9 are an illustration to explain the two steps described above

for the detection of moving objects in the same scenario at two different instances.

Figure 3.7 shows the occupancy grid map for the point cloud corresponding to a

situation where the vehicle is moving on the road having dynamic objects around

it. The ground voxels are shown in blue while the other occupied voxels are in

grey. This local static map of the environment is incrementally constructed from

the point clouds after each scan. Figure 3.8a and 3.9a show the voxels for dynamic

object hypothesis detected on the base of the inconsistencies between the scans dis-

played in red. Here, you can see the amount of noise detected as the sparse red

points. Figure 3.8b and 3.9b represent the result of clustering of the dynamic vox-

els. Applying the DBSCAN with an appropriate value of the minimum acceptable

density for defining a cluster has eliminated quite a large number of wrongly de-

tected dynamic voxels. However, there remain some clusters that do no belong to

the dynamic objects which will be handled in the next step. Figure 3.10 provides a

closer look at the detection results shown in Fig. 3.9a to show the different types of

objects detected in the surrounding.

86 3.5. Detection of Moving Objects

Algorithm 3 Expand_Cluster

1: Input: List of dynamic voxels D, vi ∈ D, ClusterId, ε, minPts

2: Output: true if a new cluster is created, f alse otherwise

3: SeedVoxels← Retrieve_Neighbors(vi, ε)

4: if then|SeedVoxels| < minPts . Insufficient voxels in neighborhood

5: mark vi as NOISE

6: return false

7: else . vi is a core point of ClusterId

8: for all voxels vj in SeedVoxels do

9: assign vj to ClusterId

10: end for

11: delete vi from SeedVoxels

. Identify density-reachable voxels for vi

12: for all vj in SeedVoxels do

13: mark vj as VISITED

14: NeighbourVoxels(vj)← Retrieve_Neighbors(vj, ε)

15: if |NeighbourVoxels(vj)| ≥ minPts then . vj is also a core point

16: for all vk in NeighbourVoxels(vj do

17: if vk is UNVISITED or NOISE then

18: if vk is UNVISITED then

19: add vk to SeedVoxels

20: end if

21: assign vk to ClusterId

22: end if

23: end for

24: end if

25: delete vj from SeedVoxels

26: end for

27: return true

28: end if

Chapter 3. Detection, Classification and Tracking of Moving Objects 87

Figure 3.7: Occupancy grid map corresponding to a scan obtained by the vehicle in an urban road

scene with multiple moving objects. The static occupied voxels are shown in grey and ground voxels

in blue. The ego-vehicle is represented by the ‘+’ symbol in mustard color.

88 3.5. Detection of Moving Objects

(a) Results of detection after two scans: Identification of dynamic voxels.

(b) Results of detection after two scans: Clustering of dynamic voxels.

Figure 3.8: An illustration of detection of moving objects after two scans. All the dynamic voxels

detected from inconsistencies between the scans are shown in red (3.8a). After clustering, different

dynamic object hypotheses are shown in different colors (3.8b). The static occupied voxels are hidden

for better visibility of the dynamic voxels.

Chapter 3. Detection, Classification and Tracking of Moving Objects 89

(a) Results of detection after ten scans: Identification of dynamic voxels.

(b) Results of detection after ten scans: Clustering of dynamic voxels.

Figure 3.9: An illustration of detection of moving objects after ten scans. In Fig. 3.9a, detected

dynamic voxels are accumulated over ten previous scans while in Fig. 3.9b, many of those voxels are

ignored as noise at each time step when clustering is performed. Static occupied voxels are hidden

for better visibility of the dynamic voxels.

90 3.5. Detection of Moving Objects

Figure 3.10: The results of detection of moving objects provided from Fig. 3.9: a closer view.

Chapter 3. Detection, Classification and Tracking of Moving Objects 91

3.6 Classification of Moving Objects

After detecting all possible hypotheses of the dynamic objects, we address the prob-

lem of classification to identify different kinds of objects in order to infer about their

characteristics such as motion dynamics. In general, there exist numerous kinds of

objects in traffic scenes, however, only a few of those are considered to be of inter-

est in the context of intelligent vehicles. These are the objects which occur most fre-

quently in these scenarios. We consider four such classes namely pedestrian, bike, car

and bus. Generally, each of these objects vary in their sizes and structures. Thus the

simplest approach, which we employed as a naive classification method in (Azim

and Aycard, 2012), is to use the size of the object to identify its class. The idea

was to use a cluster of dynamic voxels provided by the detection step and fix a 3D

bounding box to it. The classification was done based on the properties of this box

such as the ratio between its length, width and height. A benefit of this method is

that it is very simple and time efficient as compared to any complex classification

technique, however, it requires the object to be visible in such a way that its size

may be correctly estimated. This is usually not the case with the objects detected

by the range sensors. For example, over a period of time, an object might be ob-

served from the front, side or the back and thus its visible size may differ largely

from the actual size. Therefore, we require a more sophisticated and robust method

for classification which can deal with these situations.

In this section, we present a novel layered approach for 3D classification of moving

objects based on supervised learning. A description of our methods for prepro-

cessing of the data, feature extraction, training and classification is given in the

following.

3.6.1 Approach Overview

Figure 3.11 provides an overview of our classification and learning method. The

input data are the clusters of 3D voxels corresponding to the object hypotheses de-

tected in the previous step. The main idea is to divide the 3D object into different

height levels, termed as layers. For example, the layered representation of a car is il-

lustrated in Fig. 3.12 where different colors represent different layers. These layers

serve as the 2D slices of the object. In the next step, simple features are extracted

from each layer. In generating the training dataset, where the class of the object

92 3.6. Classification of Moving Objects

Figure 3.11: Classification Algorithm: The shaded box represents learning and the dashed box rep-

resents the classification.

is known or hand-labeled, the extracted features are added as new sample to the

training set along with their class label. Otherwise, these features are used as input

for the classification process where trained classifiers are used to infer about the

class of the object. In the training step, different classifiers are trained and stored

using a supervised approach based on AdaBoost, a known method to train a strong

classifier from the extracted features. These learned classifiers are applied to the

features of the detected objects and the appropriate classes are assigned to them.

Different stages of our association algorithm are detailed in the following subsec-

tions.

Chapter 3. Detection, Classification and Tracking of Moving Objects 93

Figure 3.12: The layered representation of a car. Each layer is represented by a different color.

3.6.2 Object Segmentation in Layers

As outcome of dynamic object detection, we have a cluster of 3D voxels correspond-

ing to each object hypothesis. As described earlier, each voxel of the occupancy grid

is defined by its center and the length of its side. Thus we can consider each cluster

of dynamic voxels as a sub-sampled 3D point cloud formed by the centers of the

voxels. Further, this 3D point cloud can be considered as a collection of 2D points

arranged in layers or slices.

As a first step in our approach for classification, we divide each cluster into a set

of 2D layers at different heights. We aim to characterize the 3D shape of the object

by computing features in each of its 2D layers. We select this subdivision method

as the 2D layers at different heights can describe the local shape properties of the

objects. Moreover, it provides a more flexible class representation where occluded

objects can also be identified. We consider an object X as consisting of the layers

Li = {xi
j} where xi

j are the voxels in the i-th layer and each voxel in our map is

represented by its center, (x, y, z). For a specific layer Li, height of the layer is

computed by averaging the heights of all the voxels contained in that layer. As a

result, the voxels in the layer are represented by their x and y components only,

xi
j = (xi

j, yi
j). A layered representation of a pedestrian is shown in Fig. 3.13 along

with an illustration of the voxels in a layer at a specific height.

94 3.6. Classification of Moving Objects

Figure 3.13: The layered representation of a pedestrian (left) and the illustration of a specific layer

(right).

3.6.3 Feature Extraction

After segmenting the individual object into layers, we compute the features for each

layer which describe its appearance. A feature f is defined as a function f : Li → R

which takes a layer Li containing ni voxels and returns a real number. We con-

sider two types of features which are often used in the context of classification with

2D range sensors: geometric and statistical (Arras et al., 2007). Most of the features

we compute are simple single-valued features instead of the high-level features re-

quired for 3D classification.

For each layer Li, we first compute a minimum, axis-aligned 2D bounding box and

then compute the following features:

• Number of voxels: This feature represents the cardinality of Li defined as

ni =| Li |.

• Height of the layer: It is defined by the average height of all the voxels in that

layer: hi =
1
ni

Σjz
j
i .

• Width: This feature measures the length of the shorter side of the 2D bounding

box corresponding to the voxels in that layer.

• Length: This feature measures the length of the longer side of the bounding

box.

• Area: This features describes the area Ai of the bounding box.

Chapter 3. Detection, Classification and Tracking of Moving Objects 95

Figure 3.14: Illustration of L-shaped and I-shaped layers with object box models used by (Vu, 2009).

• Density: It is the density of the voxels with respect to the area of the 2D bound-

ing box: ρi =
ni
Ai

• Standard deviation: This feature represents the compactness of the voxels in

the layer. The smaller is the standard deviation σ, the more compact is the

layer. It is computed by:

σ =

√
1
ni

Σj ‖ xj − x ‖2 (3.6.1)

where x is the center of gravity of the layer Li.

• Mean deviation from median: This feature is often used for shape analysis as it

represents the data compactness more robustly than σ and it is less sensitive to

the outliers. The median x̃ is the numerical value which separates the higher

half of a distribution from its lower half. For a 2D distribution, it can be

computed by x̃ = (x̃, ỹ). The mean deviation from median is then computer

by:

ς =
1
n

Σj ‖ xj − x̃ ‖ (3.6.2)

• Shape: We have defined this feature following the 2D model-based classifica-

tion method of (Vu, 2009) (Fig. 3.14). The idea is that at a specific time instant,

maximum two sides of an object can be observed by the range sensor. Con-

sidering the sides of 2D bounding box, the layer is classified as L-shaped if

both its sides are longer than a threshold, I-shaped if one side is longer than

threshold and mass-point otherwise. We represent these three shape hypothe-

ses as numerical values of 2, 1 and 0 for the L-shape, I-shape and mass-point

respectively.

This collection of features constitutes a profile of each layer and all the layers to-

gether define a profile of the object.

96 3.6. Classification of Moving Objects

3.6.4 Supervised Learning of Classifier

Once the features are extracted, they can be used to classify the objects using a

classifier. Our approach to define the classifier is based on supervised learning.

For the learning process, we used the labeled object samples to generate a training

dataset and trained the classifiers offline. The process is shown in Fig. 3.11.

As a first step, we generate the training dataset by extracting the features from the

positive as well as negative examples of a class. For instance, in case of the car class,

clusters corresponding to a car are considered as positive examples while those cor-

responding to all other objects such as pedestrians, bikes, bus, trees, fences, walls

and unknown objects as negative examples. The extracted features are stored as

a training vector. These training vectors and their labels are then used to create

a classifier. Our approach for supervised training and classification is based on a

boosting method.

Boosting is a general method which creates an accurate strong classifier by linearly

combining the performance of many weak classifiers. The weak classifiers, also

known as base classifiers, are required to be slightly correlated to the true classi-

fication. In other words, the accuracy of each weak classifier only needs to be better

than a random guess thus they can be very simple and computationally efficient.

We use the popular method for boosting known as AdaBoost which is detailed in

Algorithm 4. It takes a set of labeled training examples (x1, y1), ..., (xN , yN) as in-

put where xi ∈ X is an example and yi ∈ Y is the corresponding class label. The

original AdaBoost is a binary classifier which means that Y = {+1,−1} where +1

corresponds to a positive example and −1 to a negative example. All the training

examples are initially assigned the weights according to a distribution D. Subse-

quently, in a series of iterations 1, ..., T, AdaBoost repeatedly selects a weak classifier

ht(x) using the weighted distribution over the examples. It takes the best weak clas-

sifier which has a small classification error at each step and adds it to the final set

of selected classifiers. It modifies the weight distribution Dt on each iteration to

assign more importance to the examples which were incorrectly classified by the

previously selected weak classifier. The final strong classifier H is a weighted ma-

jority sum of the T weak classifiers selected in each iteration. Finally, the good weak

classifiers are assigned larger weights as compared to the poor ones.

We use the AdaBoost algorithm presented in (Viola and Jones, 2001) in which each

Chapter 3. Detection, Classification and Tracking of Moving Objects 97

Algorithm 4 AdaBoost algorithm for classifier learning

1: Input: A set of labeled training examples (x1, y1), ..., (xn, yn) where xi is an ex-

ample and yi is the class label which is equal to +1 or −1 for positive and

negative examples respectively.

2: Initialize weights w1,i ← 1
2m , 1

2l for the positive and negative examples of the

object respectively where m and l are the total number of positive and negative

examples in the training set respectively.

3: for t← 1 to T do

4: Normalize the weights: wt,i ← wt,i
Σn

j=1wt,j

5: for each feature f j do

6: Train a weak classifier hj which uses a single feature.

7: Determine the error εj of hj with respect to the weights wt,1, ..., wt,n:

εj ← Σiwt,i|hj(xi)− yi|

8: end for

9: Select the best classifier ht for this iteration with the lowest error εt.

10: Update the weights for next iteration:

wt+1,i ← wt,iγ
1−ei
t

11: where ei = 0 if the example xi is correctly classified by ht and 1 otherwise.

12: Also, γt =
εt

1−εt
.

13: end for

14: The final strong classifier is a linear combination of the T selected classifiers

given by:

H(x) =

{
1 if ΣT

t=1αtht(x) ≤ 1
2 ΣT

t=1αt

0 otherwise

where αt = log(1
γt
).

98 3.6. Classification of Moving Objects

single-valued feature computed from the layers is used as a weak classifier. The

weak classifiers are defined as:

hj(x) =

{
+1 if pj f j(x) < pjθj

−1 otherwise
(3.6.3)

where pj ∈ {+1,−1} and θj is a threshold. In each iteration, AdaBoost learns the

values of pj and θj in order to minimize the classification error in the weighted

training dataset. The resulting strong classifier H(x) is obtained by a weighted

combination of the selected weak classifiers. These selected classifiers actually cor-

respond to the best (most highly voted) possible features for classification. As the

features in the feature vector are arranged according to the layers from which they

were extracted, we can get information about the best features corresponding to

each layer as well as the layers which contribute the most towards classification

by providing most of the best features. For example, in the case of pedestrians, we

observe that the layers corresponding to the shoulders provide more of the selected

features as compared to those corresponding to the feet or head. This can help to

extend our approach by extracting a mix of different features from different layers.

The output of this algorithm is either +1 (for positive example) or −1 (for negative

example) as it is a binary classifier. In our case, we need to categorize the objects

into four known classes. For this, we use the two-class algorithm described above

and extend it to multi-class by employing one-against-all approach. In this approach,

we train a separate binary classifier for each class of the objects. Thus we obtain

four classifiers corresponding to each class which distinguish between the samples

of one class and the samples of all other classes. In the following, we explain our

method for inferring about the class of a detected object using these classifiers.

3.6.5 Sequential Multi-class Classification

After training the individual classifier for each object class, we use them in our sys-

tem to infer the class of the detected objects. Our approach is based on a sequential

implementation of AdaBoost classifiers. This method performs the multi-class clas-

sification by arranging several binary classifiers sequentially. In our case with four

possible classes Y = {pedestrian, bike, car, bus}, we construct a decision list with

four binary classifiers which are trained individually, as described in the previous

section. Each of these classifiers provides a binary hypothesis Hk(x) about the clas-

sification of the object, with k = 1, ..., 4. The detected object is passed to each of

Chapter 3. Detection, Classification and Tracking of Moving Objects 99

Algorithm 5 Sequential classification of dynamic objects

1: Input: List of dynamic object hypotheses Ot, set of class labels Y = {yk}, set of

binary classifiers C = {ck} with k = 1, ..., 4

2: Output: Class labels assigned to each object hypothesis

3: for all object hypotheses oi in the list do

4: for k← 1, ..., 4 do

5: if hk(oi) = 1 then

6: assign label yk to oi

7: break

8: end if

9: end for

10: if No label is assigned to oi then

11: assign label UNKNOWN to oi

12: end if

13: end for

the classifiers in order. If any of the classifiers returns a positive result, such that

Hk(x) = 1 then the label of that classifier is assigned to the object. Otherwise, it is

passed to the next classifier in the list. If none of the classifiers returns a positive

result then the object is considered to be an unknown object. Algorithm 5 gives the

general procedure used for classifying an object after detection.

The order in which the classifiers are arranged is of real importance in this imple-

mentation and it can affect the performance of the overall classification system. The

recommended approach is to arrange the classifiers according to their estimated er-

ror. The classifiers with the lower error (higher accuracy) should be arranged before

the ones with higher error in order to keep the overall error low. Another check that

we use for the selection of classifiers is the size of the cluster. For example, we re-

mark that if the bounding box of a cluster is larger than a specific size than it is not

a good candidate for a pedestrian. As a result, it is not tested with the pedestrian

classifier and it is directly passed to the next class, if any.

After performing this step, all of the detected objects are either assigned a valid

class label or marked as unknown. These objects are then tracked in order to esti-

mate their position sequentially.

100 3.7. Tracking of Moving Objects

3.7 Tracking of Moving Objects

The tracking of multiple moving objects is a complex problem which, as described

earlier, is generally divided into two parts: filtering and data association. Filtering is

the sequential estimation of the state of a dynamic object. It is usually performed

using Bayesian filters which require a specific motion model for tracked objects to

predict their positions in environment. After predicting the positions of existing

tracks, next we perform data association to assign the observations to the existing

tracks. In the following, we explain the method we adopted for filtering and data

association for tracking multiple objects.

3.7.1 Object Representation and Dynamic Models

The detection and classification steps presented in the previous sections produce

dynamic object hypotheses along with their class labels. These hypotheses can be

further exploited to infer different geometric parameters of the objects. We compute

the centroid of each object cluster and its principal orientation to represent each

detected dynamic object in the environment. Generally, we represent the models

of the objects parametrized by M = {c, x, y, z, θ} where c is the class of the object,

(x, y, z) is the centroid of the cluster corresponding to the object and θ is its principal

orientation. The other attributes such as velocity of the object can be derived from

these parameters over time.

In order to track these objects, we need to estimate their state sequentially. The class

information of the objects helps us in selecting the appropriate motion parameters

for the state estimation and consequently selecting the appropriate motion model.

In this work, we use the constant velocity model for car, bus and bicycle assuming that

their velocities remains constant for the duration of each time interval from t− 1 to

t. However, this assumption is not made in the case of pedestrians as their motion

may change abruptly at any time. Therefore we use the Brownian motion model for

tracking of pedestrians. The state of the object is updated with the Kalman filter.

The next subsection defines our method for data association followed by the track

management for multiple object tracking.

Chapter 3. Detection, Classification and Tracking of Moving Objects 101

3.7.2 Viterbi Data Association

The Viterbi algorithm (Forney Jr, 1973) is a recursive algorithm that provides a so-

lution to the discrete linear optimization problem. It is used for finding the most

likely sequence of hidden states – called the Viterbi path – that results in a sequence

of observed events, especially in the context of hidden Markov models.

The implementation of the Viterbi algorithm is based on a trellis. A trellis diagram

is a type of directed graph (N, A) that consists of a set of nodes N and a set of di-

rected arcs A. The nodes nk
i are partitioned into ordered sets with the k-th set being

denoted as N(k), where k represents stages in the trellis (k = 1, 2, ...T). The num-

ber of nodes at each stage is denoted by nk. An important assumption underlying

the use of the trellis diagram is that the state can be modeled by a Markov process.

Hence, in dealing with the trellis diagram, the set of directed arcs A is a collection

of ordered pairs {ni(k− 1), ni(k)} where k = 2, ..., T. A path P is a collection of

directed arcs that connects an element at stage 1 to an element at stage T. Each

directed arc is associated with a metric or a distance label aij(k). A path metric is

defined as the sum of the metrics of all the arcs contained in the path P as:

d(P) =
T

∑
k=2

aij(k); {ni(k− 1), ni(k)} ∈ P (3.7.1)

where d(P) is the total metric of the path P.

Starting from the initial stage, the Viterbi algorithm successively labels all the nodes

in the trellis until the final stage is reached. The optimal state sequence in the trellis

is then retrieved by backtracking, starting from the node in the final stage with the

smallest metric. An illustration of the trellis diagram for Viterbi algorithm is shown

in Fig. 3.15 where the Viterbi path is represented by the solid arrows.

Single Object Tracking

In order to use Viterbi algorithm to resolve the data association problem for sin-

gle target tracking, we assume that each node in the trellis represents an obser-

vation (Gad and Farooq, 2003). The collection of measurements at k-th scan Zk

corresponds to the set of nodes at k-th stage of the trellis. Arcs of the trellis are de-

fined as the metric d on the basis of which we can associate the observation to the

corresponding track.

102 3.7. Tracking of Moving Objects

Figure 3.15: Trellis diagram of Viterbi Algorithm.

Using the notations defined above, we can summarize the Viterbi algorithm for

single object tracking as follows:

Step 1 – Initialization: Assign a value of zero to the label of each node in first stage:

di(1) = 0, 0 ≤ i ≤ n1 (3.7.2)

ψi(1) = 0, 0 ≤ i ≤ n1 (3.7.3)

Step 2 – Recursion: Repeat the following steps for each stage k, where k = 2, .., T:

• For each node i = 0, .., nk−1 (at stage k − 1), calculate the predicted position

using Kalman filter:

x̂i(k/k− 1) = φx̂i(k− 1/k− 1) (3.7.4)

Pi(k/k− 1) = φPi(k− 1/k− 1)φT + Q(k− 1) (3.7.5)

Si(k/k− 1) = HPi(k− 1/k− 1)HT + R(k− 1) (3.7.6)

• For each node j = 0, .., nk (at stage k), calculate the distance metric aij(k) of

the arc joining nodes ni(k− 1) and nj(k).

• Assign node nj(k) with the smallest label as follows:

i∗ = arg{ min
0≤i≤nk−1

{di(k− 1) + aij(k)}} (3.7.7)

Scorej(k) = di∗(k− 1) + aij(k) (3.7.8)

ψj(k) = i∗ (3.7.9)

Chapter 3. Detection, Classification and Tracking of Moving Objects 103

Figure 3.16: Trellis diagram of Viterbi data association for single target tracking.

• Update the target state at each node in stage k:

Kj(k) = Pi∗(k/k− 1)HT[HPi∗(k/k− 1)HT + R(k)]−1 (3.7.10)

Pi∗(k/k) = [I − Kj(k)H]Pi∗(k/k− 1) (3.7.11)

x̂j(k/k) = x̂i∗(k/k− 1) + Kj(k)[zj(k)− Hx̂i∗(k/k− 1)] (3.7.12)

Step 3 – Final selection: Determine the node with the minimum score in the final

stage.

i∗ = arg{ min
0≤i≤nT

{di(k)}} (3.7.13)

x̂(T) = x̂(T/T) (3.7.14)

Step 4 – Backtracking: Recover the measurement sequence that terminates with

the minimum node score in the final stage. For each stage k:

i∗(k− 1) = ψi∗(k), k = T, T − 1, ..., 2 (3.7.15)

The notation used in the above algorithm are as follows:

• di(k) is the metric of node ni(k)

• ψj(k) is the predecessor function of the node nj(k)

104 3.7. Tracking of Moving Objects

• i, j are indices of elements in N(k)

• d∗(T) is the metric of the shortest path in the trellis diagram.

Each of the nodes in our trellis contains the information about the observations. For

the first scan, we obtain the first set of observations z(1). We create a node for each

of these observations and assign a value of zero to its accumulated distance metric.

For all the later scans (k), we use Kalman filter to calculate the predicted position

for each of the observations in the previous state (k− 1) and calculate the Euclidean

distance between this predicted position and the new observations obtained in the

current scan. This is the distance metric for each of the arcs in the trellis. We find

the previous observation node ni(k− 1) for which this distance metric is minimum

and add this metric to the accumulated distance label of the current node n(k). If

the current scan is the final scan (k = T), we find the minimum of the distance

labels in this stage. The final state of the target is the observation associated with

the minimal node. After obtaining this final state, we start to backtrack through the

trellis to recover the measurement sequence that ends at this state. This sequence is

the Viterbi path or the Viterbi track for the observed object.

Multiple Object Tracking

In order to implement Viterbi algorithm for multiple target tracking, we create a

separate instance of Viterbi data association for each of the objects. Thus there is a

separate Viterbi trellis for each object. At each time step, we use Kalman filter to es-

timate and update the positions of the tracks. In each scan, when we receive a new

set of observations, we first perform the gating to find the likely observations to be

associated with the existing tracks. We have used Mahalanobis distance between

the predicted positions of the track and the newly received observation as a mea-

sure for gating. Moreover, as we perform classification of moving objects before

tracking, we use the classification information as an additional criterion to find the

likely associations between the tracks and the observations. For all existing tracks,

we have the class labels corresponding to them. When we perform gating, we con-

sider only those observations which have the same class label as the corresponding

track with which the association is to be made.

After applying gating, the observations that fall outside the prescribed gate can

possibly be the potential candidates for new tracks or the false alarms. We perform

Chapter 3. Detection, Classification and Tracking of Moving Objects 105

the data association for each track with all the observations within the prescribed

gates by using Eq. 3.7.13 and 3.7.14. The observation that gets associated to any of

the tracks is marked associated and the remaining observations that are not associ-

ated to any of the existing tracks are marked un-associated. These un-associated ob-

servations might correspond to a new object or a false alarm. All such observations

are handled in the track maintenance described in section 3.7.3. For the associated

tracks, we use the observation node with the minimum metric to update the posi-

tion of the track. An important observation is that our approach inherently handles

the temporary occlusions as the paths in different trellises can traverse through the

same nodes.

Figure 3.17, 3.18 and 3.19 are an illustration of the VDA for multiple object track-

ing. The example consists of four tracks which were initialized at t = 1, 2, 3 and 4

respectively. Figure 3.17, and 3.18 show the separate trellises maintained by each

of the four tracks. The Viterbi path for each track is shown by the solid arrows in

different colors corresponding to the tracks. The colored nodes represent the start

of a track while the nodes surrounded by the squares represent the termination of

a track. Figure 3.19 shows the combined trellis for the four tracks.

3.7.3 Track Maintenance

As the number of observations may not always correspond directly to the number

of existing tracks in a dynamic environment, we have implemented the mechanism

for the creation, suppression and maintenance of the tracks. We have also dealt with

the classical problem of split and merge for tracking in cluttered environments.

Track Continuation

We illustrate the Viterbi data association technique for multiple objects tracking

using the following example. In the start, we received two observations for moving

objects and initialized two instances of VDA, VDA1 and VDA2 corresponding to

each of these observations. In the next scan, we received 2 observations again.

We made the associations of both the tracks VDA1 and VDA2 with each of these

observations. We first associated VDA1 to each of the observations and computed

corresponding distance metrics for each association to find the best association at

this time step. Then we associated VDA2 to each observation and found the best

106 3.7. Tracking of Moving Objects

(a) Track 1.

(b) Track 2.

Figure 3.17: Multiple object tracking with Viterbi data association: Trellis for track 1 and 2.

Chapter 3. Detection, Classification and Tracking of Moving Objects 107

(a) Track 3.

(b) Track 4.

Figure 3.18: Multiple object tracking with Viterbi data association: Trellis for track 3 and 4.

108 3.7. Tracking of Moving Objects

Figure 3.19: A complete trellis showing the paths for all four tracks in Fig. 3.17 and 3.18.

Chapter 3. Detection, Classification and Tracking of Moving Objects 109

Figure 3.20: Multiple object tracking with Viterbi data association: Track continuation.

association for that as well. This process is shown in Fig. 3.20 where the Viterbi

association is represented by the solid arrows and the others by dashed arrows.

Track Creation/Initialization

After iterating the new observations for all the existing tracks, we look for the ob-

servations which are not associated to any track yet. These unused observations

are potential candidates for new tracks. We create a new track for each of these

unused observations but those tracks are not confirmed yet. If those newly cre-

ated tracks get associated to the observations for 3 consecutive scans then those

are marked as confirmed objects and are displayed on the occupancy grid. In the

other case, those observations are assumed to be false alarms and are suppressed

subsequently. Using the same example as in the previous section, in the next few

time steps, we assume that we received 2 observations each and associated them

with the current tracks similarly. After a few scans we received 3 observations in-

stead of two at the kth stage. We associated each of the tracks VDA1 and VDA2 with

these observations. Two observations got associated to the existing tracks while

the third observation remained un-associated. We created a third instance of VDA,

track VDA3 for this observation but this newly created track is tentative and not

confirmed yet.

Figure 3.21 illustrates this process. We have omitted the initial stages and shown

the previous and current stage only to make the figure look clearer. For the next

scans, we associate all the tracks, including VDA3, with each of the observations

received. If there are observations which are associated to VDA3 for 3 consecutive

110 3.7. Tracking of Moving Objects

Figure 3.21: Multiple object tracking with Viterbi data association: Track creation.

scans, as shown in Fig. 3.21, then we confirm its status that it is the track for an

object. Otherwise, if no observations are received for this track in next 3 scans, it is

considered as a false alarm and suppressed by discarding the VDA instance.

Track Deletion

Similar to the track creation mechanism, a track deletion or suppression mecha-

nism is also implemented in our approach. If at any stage, we find no observation

associated to a track, we mark it as not observed. We predict the position of the ob-

ject from its previous observations. This predicted position is considered to be the

current position of that object. If the object is not observed for 3 consecutive scans,

we assume that it has moved out of the scanning area and its track is deleted.

Continuing with the same example, we assume that after a few more scans, we did

not receive any observation associated to track VDA2. We estimated the position

of VDA2 using Kalman filter and considered this estimated position to be actual

position of this track and marked it as not observed. The reason for doing so is that

the object to which this track corresponds may be temporarily occluded by some

other object and may become visible again after a short while. But, if we do not

receive the observations associated to VDA2 for 3 consecutive scans, we conclude

that this object is no more in the viewing area therefore we delete the track VDA2

as shown in Fig. 3.22.

Chapter 3. Detection, Classification and Tracking of Moving Objects 111

Figure 3.22: Multiple object tracking with Viterbi data association: Track deletion.

Track Merge and Split

The problems of track merge and split usually occur in the case of pedestrians as

they may come so close to each other that they may not be distinguished. We as-

sume that initially we have two independent tracks for a couple of objects. Then,

at some later stage, they come so close to each other that we receive only one ob-

servation for both of them. In this case, keeping the previous record, and using

the filtering technique for predicted positions, we associate the single observation

with both the tracks thus to get a merged track for two objects. Figure 3.23 is an

illustration of this problem. In scan k − 1, we had tracks for two objects, VDA1

and VDA2. In scan k, we received only one observation z1(k). We used Viterbi

algorithm to make the associations and found that both VDA1 and VDA2 got asso-

ciated to z1(k). Then we found the predicted positions for both the objects. In the

next scan, we again received a single observation and associated it with both tracks

similarly. Thus we obtained a merged track for the two objects.

Splitting of tracks is the case opposite to merging. In the situations when there

are two objects, such as pedestrians, moving very close to each other such that one

might be hiding the other, we receive only one observation for both. As a conse-

quence, only one track is created for both. Later, when they split their paths, we

start receiving separate observations for them. In this case, we split their track in to

two and the previous observations are associated to history of both tracks. Figure

3.24 is an illustration of the split problem. At scan k− 1, we had a single observation

112 3.8. Conclusion

Figure 3.23: Multiple object tracking with Viterbi data association: Track merge.

for the two objects with merged tracks VDA1 and VDA2. At scan k, we received a

couple of observations z1(k) and z2(k) and found the best associations between the

existing tracks and those new observations. We found that VDA1 got associated to

the observation z1(k) and VDA2 to z2(k). Thus we split the merged tracks for two

objects as illustrated in Fig. 3.24.

A relatively complex situation of track splitting arises in the case when both the

objects are moving in the same direction and with same speed from the very start.

In this case, we receive a single observation for both the objects from the first scan

thus we create only one instance of VDA corresponding to that observation. It car-

ries on to be a single instance as long as we keep on receiving a single observation.

But, at the instance when at least one of the objects (or both) deviates from its path,

we get two separate observations corresponding to them. Then we calculate the

best association for the existing track and the other observation is used to create a

new instance of VDA. Thus, in this case, we have the track for the second object

only from the instance we received a separate observation for it. We used the same

example to illustrate this with the help of Fig. 3.25.

3.8 Conclusion

In this chapter, we have presented an introduction to the DATMO problem and

the related work in last few years. We also presented a new method to perform

DATMO with classification of moving objects in 3D based on the occupancy grid

representation of the environment. Whenever a new measurement arrives, the

moving object hypotheses are detected by finding the inconsistencies between the

Chapter 3. Detection, Classification and Tracking of Moving Objects 113

Figure 3.24: Multiple object tracking with Viterbi data association: Track split.

Figure 3.25: Multiple object tracking with Viterbi data association: Track split with creation of a new

track.

existing grid map and the new measurement. The voxels in the grid which change

from free to occupied are considered as the possible dynamic voxels. We use the

DBSCAN algorithm to cluster the individual inconsistent voxels into groups. Each

of these groups represents a possible dynamic object hypothesis. However, in order

to identify the corresponding dynamic object, it is necessary to perform classifica-

tion in addition to clustering. Thus the clustered voxels are further classified by

a supervised learning approach into four predefined classes. Our algorithm for

classification divides the object into layers of different heights and extracts features

from each layer. In comparison to other approaches for object classification, this

method does not require the pre-defined routines to extract high-level features. In-

stead, we extract the single-valued features from each layer and use the AdaBoost

algorithm to boost these simple features to strong classifiers for object identifica-

114 3.8. Conclusion

tion. Moreover, using a supervised learning method results in assigning the se-

mantic labels to the objects corresponding to the pre-defined classes of road users

with known dynamics. Finally, we track each of those objects by using the Viterbi

data association which results in robust tracking of the objects even in complex and

crowded scenarios. An important aspect of this approach is the handling of tem-

porary occlusions or missed detections as well as the problems of track split and

merge. A detailed evaluation of the proposed framework will be presented in the

following chapter.

Chapter 4

Experimental Results

4.1 Introduction

This chapter presents the results obtained from the implementation of methods

described in chapter 2 and chapter 3 with a set of experiments in real environ-

ments. The approach presented in this work can be used with different types of

range sensors in different environments (both indoor and outdoor), however, we

have focused on the problem of perception for outdoor environments with a 3D

laser scanner. The proposed methods are verified by using the datasets acquired

by a vehicle equipped with multiple sensors. The only information that we used,

other than the odometry of the vehicle, is the 3D data provided by the laser scanner

mounted on top of the vehicle. The scenarios in which the datasets are acquired

range from the highways to the urban and pedestrian zone environments. In sec-

tion 4.2, we describe the sensor system used for data acquisition. The experimental

results are then arranged in two groups based on the two main components of per-

ception: SLAM and DATMO. First we describe the results obtained for SLAM with

ground segmentation in section 4.3. These results serve as the base for our method

to detect, classify and track the moving objects. Section 4.4 describes the related

results that we obtained for DATMO with classification of moving objects in dy-

namic outdoor scenarios. Finally, the chapter ends with a summary of the results

in section 4.5.

115

116 4.2. Sensor System

Figure 4.1: Velodyne HDL-64E sensor (left) and a sample of the data (right).

4.2 Sensor System

The data used for the evaluation of the approach presented for perception in 3D is

provided by Velodyne HDL-64E, a high definition laser scanner (Schwarz, 2010). It

is a sensor designed for obstacle detection and navigation for ground vehicles as

well as marine vessels1. Soon after its introduction, this sensor attracted immense

interest specially in the context of the DARPA urban challenge 2007 where it was

used by five of the six teams which managed to finish the complete course of the

race (Schwarz, 2010). However, those teams had used this sensor in combination

with several other sensors including multiple 2D lidars, radars and cameras. Our

approach differs in this respect by using the data acquired by a Velodyne alone.

Velodyne HDL-64E is a rotating laser scanner which consists of a column of 64

single lasers, covering a pitch range of approximately 28◦. Each laser emits a beam

in a specific direction allowing the measurement of reflected light upto a range

of 120m. The scanner rotates at a rate of 10Hz sweeping the complete horizontal

ground plane and producing up to 180000 points per turn. Each chunk of data

generated in a 360◦ turn is treated separately as a scan. Thus the complete scanning

system has a 360◦ horizontal FoV, 28◦ vertical FoV and 120m maximum distance

range. The sensor is shown in Fig. 4.1 with a sample of the data acquired in a

single scan.

The data acquired by the sensor consists of the range measurements which can be

represented as a 3D point cloud where each point (x, y, z) corresponds to a range

1http://www.velodyneLiDAR.com/LiDAR/hdlproducts/hdl64e.aspx

Chapter 4. Experimental Results 117

Figure 4.2: Sample of the Velodyne data stored in PNG distance image.

measurement. In addition to the 3D point cloud, Velodyne HDL-64E also provides

the reflection intensity for each measurement. This intensity represents the strength

of the reflected laser beam thus providing information about the surface of obstacle

(e.g. shiny/matte, smooth/rough etc) from which it is reflected. Though useful for

object identification, this information is not as precise as the range measurement

itself therefore we have not considered it in this work.

4.3 SLAM Results

In this section, we present the results obtained for simultaneous localization and

mapping with ground segmentation. For this section, we assume that the environ-

ment consists of the static entities only. Section 4.3.1 describes the used datasets

followed by the details of the parameters used for implementation and illustration

of the results in section 4.3.2.

4.3.1 Datasets

In order to evaluate the framework for SLAM with ground segmentation, which

subsequently served as a base for the detection, classification and tracking of mov-

ing objects, we used the publicly available dataset consisting of two complex out-

door scenarios (Moosmann and Stiller, 2011). This dataset was captured with an

experimental vehicle named AnnieWay which was equipped with a Velodyne laser

scanner. The vehicle was manually driven in the streets of the residential area

in Karlsruhe, Germany to obtain the data. Each 360◦ revolution of the Velodyne

scanner was stored as a 16 bit PNG distance image as shown in Fig. 4.2. The

scanner turned clockwise and filled the image from the leftmost to the rightmost

column, where the leftmost and rightmost columns give the view behind the ve-

118 4.3. SLAM Results

Table 4.1: SLAM Dataset

Dataset Duration in Seconds Number of Scans

Scenario 1 251 2513

Scenario 2 190 1900

hicle. The distance values can be converted from the image pixels to meters by

using a setup provided in the configuration file “img.cfg”. In addition to the point

cloud, the odometry information is also provided for each dataset as a configura-

tion file “imu.cfg”. Each row in this file gives the position of the center of rear axis

of the vehicle in 6D. Both the datasets are predominantly static with a very few

dynamic objects. Moreover, the odometry information provided with the data is

fairly inaccurate which makes it suitable to use for testing a localization method in

comparison to the other datasets that we used for evaluation of DATMO where the

odometry information is quite accurate. Details of the data are given in Table 4.1.

4.3.2 SLAM with Ground Segmentation

In order to test our algorithm for SLAM with ground segmentation, we experi-

mented with different parameters and thresholds to achieve the desirable results.

The first and most important parameter is the resolution of the 3D occupancy grid.

We experimented with different resolutions to find the optimal voxel resolution.

Figure 4.3, 4.4 and 4.5 illustrate the results obtained for the grid resolutions of 0.1m,

0.2m and 0.3m respectively. Here, the voxels identified as ground are displayed in

blue while the other occupied voxels (non-ground voxels) are displayed in grey.

The current location of the vehicle is represented by the ‘+’ sign in mustard color.

Comparing the performance for different grid resolutions, we observe that larger

resolutions (such as 0.3m) have an advantage of better speed but lack in the envi-

ronment representation and the level of detail required for outdoor scenarios. We

obtained sufficiently good results at the resolution of 0.2m with a differentiation

between the ground and non-ground areas as shown in Fig. 4.4. However, the grid

resolution of 0.1m was found to be most precise in the context of visual represen-

tation of the environment as well as the robustness to detect the occupied areas at

a cost of the processing speed and storage requirement for the grid map. As we do

not expect the system to be real time at the moment, therefore, for most of the ex-

periments, we preferred to use the grid with 0.1m resolution due to its robustness.

Chapter 4. Experimental Results 119

Figure 4.3: Ground segmentation results for a single scan in an outdoor scenario with a grid resolu-

tion of 0.1m. Ground voxels are displayed in blue and other occupied voxels in grey. The ‘+’ symbol

represents the position of the laser scanner.

120 4.3. SLAM Results

Figure 4.4: Ground segmentation results for a single scan in an outdoor scenario with a grid resolu-

tion of 0.2m.

Chapter 4. Experimental Results 121

Figure 4.5: Ground segmentation results for a single scan in an outdoor scenario with a grid resolu-

tion of 0.3m.

122 4.3. SLAM Results

Table 4.2: Map statistics before and after ground segmentation

Dataset
Average Number of Average Number of Voxels Percentage of

Points per Scan Total Ground Non-Ground Ground

Scenario 1 55680 27171 7799 19371 28.7

Scenario 2 55680 30818 10764 20053 34.9

As mentioned in chapter 2, the first step we perform after acquiring each scan is

the ground segmentation using elevation map with variance. The two important

parameters for this step are the resolution of the elevation map and the variance

threshold used for detecting the flatness of the cell. For elevation map, we used the

2D occupancy grid with the same resolution as that of the 3D occupancy grid while

the variance threshold was calculated experimentally. For the grid resolutions of

0.1m and 0.2m, the variance threshold is set to 0.015 and 0.023 respectively.

After finding the flat cells in the elevation map, we identify the largest connected

area consisting of these cells and use it as the ground reference. Then we com-

pare it with the other locally flat regions based on their mean height. We set a

height threshold of 0.5 which compensates for the slight slopes or unevenness of

the ground.

An interesting observation that we have after this step is that a considerable per-

centage of the voxels correspond to the ground. This percentage varies with the

type of the environment. For the two scenarios that we used for validation, the

average percentage of the ground voxels is computed to be 29% and 35% of all the

occupied voxels with a grid resolution of 0.1m as shown in Table 4.2. However,

both these datasets are gathered from the environments consisting of the urban

streets with many objects around them. We observe that this percentage can grow

to as large as 60% in the scenarios with less structures and objects which is usually

the case on highways. Thus excluding these voxels, the number of the occupied

voxels reduces considerably.

For scan matching, we use odometry information of the vehicle provided by its

inertial measurement unit (IMU) as the initial transformation between the new scan

and the grid map constructed from the previous scans. As the used sensor system

has a high scan rate, the inaccuracy in the odometry information is not very high

which makes it an acceptable choice for the initial transformation estimate. After

constructing the 3D grid representation of each new scan and removing the ground

Chapter 4. Experimental Results 123

Table 4.3: Comparison of scan matching results with odometry

Dataset
Difference between Scan Matching Results and Odometry

Minimum Average Standard Deviation

Scenario 1 0.43 3.55 2.74

Scenario 2 0.32 2.17 1.41

voxels, we perform the grid-based ICP based scan registration of the grid map of

new scan with the existing grid map. The point cloud used for ICP registration is a

sub-sampled version of the original point cloud due to the grid representation and

ground segmentation. Table 4.2 provides an example of the level of reduction in

the number of points achieved by these two steps. The average number of points

in each scan of the two datasets used in this section is 55680. Originally, a single

scan of the Velodyne laser scanner generates as many as 125000 points. However,

in these datasets Moosmann and Stiller (2011) have used a PNG image of 870× 64

pixels to store each scan of data as a range image. The data points are stored as the

intensity values of the pixels. Thus each scan has a maximum of 870× 64 = 55680

points. When this scan is converted to the grid representation, the number of points

which now correspond to the centers of the voxels in the grid are reduced by almost

half of the original number. Further, the ground segmentation reduces these points

to almost one-third of the point cloud.

We use these sub-sampled 3D point clouds for incremental scan matching. For ICP,

we set the maximal allowed point-to-point distance threshold to 0.5m. Moreover,

we set a convergence threshold where the change in translation becomes less that

0.01m or the change in rotation becomes less than 0.01rad. For the nearest neighbor

search, we use an efficient approximate nearest neighbour library called ANN.

Figure 4.6 shows an example of the results obtained by this method for a subset

of the scans from Scenario 2 of the dataset. The red line shows the estimated tra-

jectory of the vehicle. The mapped area is of 170× 134m2 consisting of the urban

streets with many cars parked on the sides. In the absence of the ground truth in-

formation, we have compared the results of our localization method with the pose

obtained from IMU. Table 4.3 and Fig. 4.7 give the quantitative results obtained by

this comparison. As shown in Fig. 4.7, the difference between the pose estimates is

very small in the start but it increases significantly with time. This indicates the im-

portance of a localization method to correct the pose obtained by the proprioceptive

sensors of the vehicle.

124 4.3. SLAM Results

Figure 4.6: SLAM with ground segmentation results for first 400 scans in Scenario 2.

Chapter 4. Experimental Results 125

(a) Scenario 1.

(b) Scenario 2.

Figure 4.7: A comparison of the scan matching results with odometry.

126 4.4. DATMO Results

4.4 DATMO Results

This section presents the experimental results we obtained for detection, classifi-

cation and tracking of moving objects in dynamic outdoor scenarios. After intro-

ducing the datasets used for the evaluation (section 4.4.1), we describe the results

obtained for detection of moving objects by inconsistencies between existing map

and the new scan (section 4.4.2). We illustrate the effect of using different parame-

ters for clustering the individual voxels into objects. After detection, the next step

is to perform the classification of the objects by a supervised learning method. This

method requires to train the classifiers using labeled datasets and then use them

to distinguish between different types of objects. The experimental details are pro-

vided in section 4.4.3. Finally, the detected objects are tracked to estimate their

positions with time. Section 4.4.4 provides the illustration of the tracking results in

different scenarios.

4.4.1 Datasets

In order to evaluate our method for detection, classification and tracking of mov-

ing objects, we used a recently published dataset (Geiger et al., 2012) which is pub-

licly available at http://www.cvlibs.net/datasets/kitti/. The dataset, called The

KITTI Vision Benchmark Suite, is obtained from a vehicle moving in different sce-

narios including highways, urban areas as well as pedestrian zones. The vehicle

is equipped with multiple sensors including cameras, 2D laser scanners and a 3D

Velodyne laser scanner. In this work, we have performed the evaluation only using

the raw data from the Velodyne scanner, however, we have also used the camera

images to manually label the data for training the classifiers as explained in section

4.4.3. The individual datasets consist of the sequences of data obtained by driving

the vehicle in difference scenarios at different times. The number of frames in the

sequences vary from 25 to 1000, however, most of the sequences consist of 200 to

300 frames. The 3D point cloud obtained in each frame consisting of a 360◦ scan of

the Velodyne sensor is stored in a separate file as a binary float matrix which needs

to be parsed using C++ or MATLAB code. In this file, each point is stored with four

coordinates (x, y, z, r) where (x, y, z) give the position of the point and r gives the

reflectance value of the laser at that point. We have only used the position and not

the reflectance information in this work. Contrary to the dataset described in sec-

Chapter 4. Experimental Results 127

tion 4.3.1, here the number of points in a scan is not constant. The average number

of points in a scan is approximately 120,000. In addition to the 3D point cloud, we

have used the odometry information provided with the dataset. This information is

obtained by an advanced precision inertial and GPS navigation system called OXTS

RT30032 which combines the best attributes of inertial navigation system (INS) with

a high quality GPS to provide the accurate positioning information. For each frame,

30 values of GPS/IMU are stored in a separate text file including position, orienta-

tion, velocities, accelerations, angular rates and satellite information. The position

is stored in the form of latitude, longitude and altitude. We first convert it to the

(x, y, z) coordinates and then transform it from the IMU coordinate frame to Velo-

dyne coordinate frame by using the calibration matrix given with each sequence of

data. For the evaluation of different components of our system, we have used the

sequences of data obtained from three different types of scenarios: highway, urban

and pedestrian zone. The obtained results are detailed in the following subsections.

4.4.2 Detection of Moving Objects

After constructing the 3D grid map, we detect the possibly dynamic voxels from

the inconsistencies between the grid map of the new scan and that of the previous

scans. The detected dynamic voxels are then clustered using DBSCAN to represent

the individual dynamic object hypotheses. As described in section 4.2, the Velo-

dyne laser scanner has a range upto 120m. However, in our implementation for the

DATMO, we set a maximum range of 50m as the points become very sparse at fur-

ther distances. Those sparse points, and thus the sparse voxels, cannot be clustered

together to represent the objects and to perform classification.

For DBSCAN, we experimented with the different values of minimum acceptable

density to start a cluster as well as different sizes of ε-neighborhood. For the choice

of ε, it is important to note that the distance between the points in a scan increases

with the distance from the sensor. Thus the objects closer to the sensor have denser

clusters in comparison to those far away. Therefore, in order to cluster the dis-

tant objects correctly, we need to have a larger value of ε. In our implementation,

we use an ε-neighborhood value of 0.65m. A disadvantage of this choice is that it

results in an over-segmentation of the dynamic voxels where many of the clutter

points which are close to the sensor are clustered together to form the object hy-

2http://www.oxts.com/products/rt3000-family/

128 4.4. DATMO Results

Table 4.4: Average number of dynamic voxels before and after clustering

Dataset
Average Number of Dynamic Voxels Percentage of Dynamic Voxels

Before Clustering After Clustering After Clustering

Highway Scenario 8728 1971 23%

Urban Scenario 6315 2422 39%

Pedestrian Zone Scenario 7377 2808 38%

pothesis. However, in the safety critical applications such as autonomous driving,

over-segmentation is considered safer than the under-segmentation as it results in

avoidance of all the risky situations by detecting all potential objects. Moreover, in

our case, this problem is dealt with in the next step of object classification.

We illustrate the results of our method for detection of moving objects from the

scenario in Fig. 4.8. The vehicle is stopped at an intersection with the moving ob-

jects around it. The moving objects, represented by the green rectangles, include

four pedestrians crossing the road in front of the vehicle, a car passing from left

to right on the front road and two bicyclists coming from behind the vehicle. Fig-

ure 4.9 shows the same scenario after two scans. The detected dynamic voxels are

displayed in red while the static and ground voxels are displayed in grey and blue

respectively. Figure 4.10 is another representation of the same results where we

have hidden the static occupied voxels for a clearer representation. It can be seen

that the detected voxels contain a large amount of clutter in addition to the actual

dynamic objects. After clustering, the remaining objects are shown in Fig. 4.11 with

different colors representing the individual clusters.

Figure 4.12 and 4.13 are the illustration of the results of dynamic object detection

from the same scenario after ten scans. Figure 4.12 shows all the dynamic voxels ac-

cumulated over the previous scans. However, when we perform clustering at each

time step, the voxels which are detected as noise are discarded from the dynamic

voxels and therefore they do not appear in the subsequent time steps. This reduces

the number of wrongly detected dynamic voxels by a huge amount as illustrated

in Table 4.4. Despite this fact, the results contain many of the clusters which do

not belong to the dynamic voxels as illustrated in Fig. 4.13. To identify the real dy-

namic objects from these clusters of voxels, we perform the classification of moving

objects.

Chapter 4. Experimental Results 129

Figure 4.8: Detection of moving objects. The scene at the start of the sequence, t = 0 s, consisting of

multiple moving objects represented by green rectangles.

130 4.4. DATMO Results

Figure 4.9: Detection of moving objects. Results after two scans. All the dynamic voxels detected

from inconsistencies between the scans are shown in red and all other occupied voxels in grey while

the ground voxels are in blue.

Figure 4.10: Detection of moving objects. Results after two scans. Only dynamic occupied voxels

are shown (in red) for a clear representation.

Chapter 4. Experimental Results 131

Figure 4.11: Detection of moving objects. Results after two scans with clustering of the dynamic

voxels. Different dynamic object hypotheses are shown in different colors.

132 4.4. DATMO Results

Figure 4.12: Detection of moving objects. Results after ten scans, showing all detected dynamic

voxels accumulated over the ten previous scans.

Figure 4.13: Detection of moving objects. Results after ten scans showing different object hypotheses

as clusters of different colors. Some of these object hypotheses are not dynamic objects such as the

clusters in cyan and mustard colors near the vehicle.

Chapter 4. Experimental Results 133

4.4.3 Classification of Moving Objects

The task is to classify the detected objects in to the following four classes: pedes-

trian, bike, car and bus. Here, bike class contains both bicycles and motorbikes, car

contains cars and vans and bus contains buses and trucks. In order to test the object

classification, we first trained four separate classifiers for each object class. For this

purpose, we required the labeled datasets which are quite rare in the context of the

used sensor. Therefore, we introduced a method to manually label the data to train

the classifiers. In the following section, we detail the different datasets that we used

for training as well as the process used to label the data. We then demonstrate the

results obtained by our method for object classification in outdoor environments.

Data Labeling and Training Datasets

Our approach for classification is based on four separate classifiers corresponding

to the four object classes. As explained in chapter 3, we used the supervised Ad-

aboost algorithm to define each classifier. Adaboost requires the features from a set

of positive and negative examples of the class as an input to train the classifier.

Therefore, we first create the training dataset for each class which consists of both

positive as well as negative examples of that class. For example, to train the car

classifier, the set of positive examples consists of the clusters of voxels representing

the cars while the set of negative examples contains all other clusters. We trained

each classifier by computing several features from these clusters as described in

section 3.6.3. The same training algorithm is used for all four classes with the only

difference being the dataset used for training the classifiers.

Due to the unavailability of sufficient labeled data, we relied on defining our own

databases corresponding to the examples of each class. We first tried to use the

synthetic data generated from the object models in Google’s 3D Warehouse3, as

described in (Lai and Fox, 2010). The idea is to use a simulated laser scan for gener-

ating the data in the form of 3D point cloud corresponding to the object model. The

merit of using this publicly available dataset was the variety and the large number

of objects that it contains. However, the main problem in this context was that the

point clouds generated from these objects were quite different than those produced

by a laser scanner in the real environments. As an illustration, Fig. 4.14 shows

3http://sketchup.google.com/3dwarehouse/

134 4.4. DATMO Results

Figure 4.14: A comparison of the real data generated by Velodyne (left) and the virtual scan data

generated from the 3D model of a car in google’s 3D Warehouse (right).

the cluster of points generated from the 3D model of a car in the 3D Warehouse in

comparison to that generated from a real car by a Velodyne laser scanner. It can be

clearly seen that the point cloud of the synthetic object is quite regular and dense at

all height levels as compared to that of the real object scanned by real laser scanner.

Moreover, it does not model the transparent surfaces of the object such as the glass

of the windows or windscreen. Thus this model is too complete and dense to be

considered for realistic environments.

Based on this experience, we decided to generate the training datasets directly from

the Velodyne data. In order to do so, we used the scans obtained from the different

scenarios containing the moving objects of interest and hand-labeled those objects.

As the performance of the classification module depends on the offline learning of

AdaBoost classifiers therefore we ensured a variety of data for each class by taking

the scans from diverse outdoor scenarios ranging from highways to urban traffic

scenes. We used our method for detection of moving objects as the preprocess-

ing step for filtering the raw data to label the objects. An advantage of using this

method is that the extracted object samples are closely related to the objects that the

intelligent vehicle is expected to come across in the real outdoor scenarios.

We selected the sets of scans from the dataset described in section 4.4.1 and passed

those to our moving object detection module. The selected scans contained dy-

namic objects including, but not limited to, the pedestrians, bikes, cars and buses

and also some static objects of interest such as trees, light poles, street signs etc.

which were often wrongly detected by our detection module as dynamic. The re-

sults of detection were displayed as the clusters of different colors on our GUI, as

described in section 4.4.2. We used the camera images provided with the dataset as

Chapter 4. Experimental Results 135

the ground truth to visually identify the moving objects from the clusters as shown

in Fig. 4.15. Thus each cluster was manually assigned a label according to the object

class. Taking the consecutive laser scans to extract and label the objects provided

us with different views of the objects as they evolve with time thus giving a variety

for each class. Additionally, it helps in labeling other objects than those appearing

in the camera image by identifying them based on their positions in the previous

frames. As a result, the object clusters such as the yellow cluster in Fig. 4.15 is iden-

tified as a pedestrian despite the fact that it does not appear in the camera image.

All other clusters which were visible in the camera images but did not belong to

any of the four classes were labeled as background to be used as negative training

examples later.

We selected 10 different sequences of data including 3 sequences each from urban

environments and road environments and 4 sequences from the pedestrian zones

to ensure the diversity of the data. We selected the scenes with relatively larger

number of objects to obtain a reasonably large dataset. We extracted 50 scans from

each scene for labeling. The selected scenes totalled to 3550 exemplars of the four

object classes of interest with a large number of other objects.

In the next step, we formed four training sets corresponding to these classes. In

order to do so, we first extracted the features from each object cluster (as explained

in section 3.6.3). We saved the feature vector of each object along with its class label

in a common database. Then, for defining a training dataset for a specific class

(e.g. car), we took the exemplars of that class as the positive examples and all other

classes (e.g. pedestrians, bikes, bus, trees, fences, poles and unknown objects) as

the negative examples and formed a new training set. In this way, we defined four

different training sets corresponding to the four classes. As the number of positive

examples for bus class were too few in the selected scans, therefore we augmented

the corresponding training set by using the examples of bus and truck provided in

the Velodyne dataset of (Lai and Fox, 2010). The details about each training set are

given in Table 4.5.

To get an impression about the visual appearance of this training data, Fig. 4.16

shows some of the extracted examples for the car class. The complete training set

contains a total of 3723 examples which are split into 1231 positive and 2492 neg-

ative examples. As illustrated in this figure, the training set contains the positive

examples observed from a variety of viewing directions as well as distances. Fig-

136 4.4. DATMO Results

Figure 4.15: An illustration of the data labeling process. Results of the dynamic object detection step

(bottom) are compared with the image of the scene (top) and appropriate class labels are assigned to

the clusters of voxels. The rectangular boxes represent the detected objects matched with the camera

image. In addition to the objects appearing in the camera image, there are some other moving objects

which can be identified based on their positions in the previous frames. For instance, the yellow

object cluster on the left of the screen is not visible in the camera image but it can still be labeled as

a pedestrian as we have already observed it in the previous frames. Similarly, the orange cluster of

voxels behind the sensor is identified and labeled as a bicycle.

Chapter 4. Experimental Results 137

Table 4.5: Training datasets for different classes of moving objects

Object Class Total Examples Positive Examples Negative Examples

Pedestrian 3114 1038 2076

Bicycle 2715 895 1820

Car 3723 1231 2492

Bus 1176 386 790

ure 4.17 is another illustration to show some of the positive examples for different

classes of interest.

Classifier Learning and Classification Results

After defining the training datasets for each class, the next step is to learn the classi-

fiers by using AdaBoost training procedure. In order to do so, we randomly divided

the complete set of labeled training examples for each class into the training and

validation sets according to a ratio of 2 : 1. For each of the four classes, the training

set was used to learn a strong classifier using AdaBoost whereas the test set was

used for the evaluations.

An important parameter of the AdaBoost algorithm is the number of weak classi-

fiers T used to form the final strong classifier. In order to find the optimal value

for T, we performed multiple experiments and found that a value around 100

gives good results. In this way, we trained four classifiers: pedestrianClassi f ier,

bikeClassi f ier, carClassi f ier and busClassi f ier. For each of these classifiers, the re-

sults from the test sets to measure the performance of the object classification are

given in Table 4.6.

Table 4.6: Classification results for the individual binary classifiers

Object Class Total Objects Correctly Classified Wrongly Classified

Pedestrian 342 336 6

Bicycle 295 286 9

Car 406 392 14

Bus 127 124 3

Once we have trained the four classifiers offline, the next step is to use them in

our perception system for classifying the detected objects. For this purpose, we use

the sequential multi-class classification (as described in section 3.6.5) and arrange

the classifiers according to their individual estimated error with the classifiers with

138 4.4. DATMO Results

Figure 4.16: Some examples of the hand-labeled data used for training the car classifier. First four

rows contain the positive examples while the last two rows contain the negative examples.

Chapter 4. Experimental Results 139

(a) Different examples of pedestrian.

(b) Vans.
(c) Bicycles.

(d) A truck.

(e) Motor bikes.

(f) Buses.

Figure 4.17: Some examples of the hand-labeled data used for training different classifiers.

140 4.4. DATMO Results

Table 4.7: Estimated error from the training data for the individual binary classifiers

Object Class Estimated Error

Pedestrian 1.9

Bicycle 3.0

Car 3.6

Bus 2.3

lower error arranged before the ones with higher error. Table 4.7 gives the estimated

error computed from the training data for each of the individual binary classifiers.

The error rates vary between 1.9% and 3.6%. The pedestrian classifier yields the

lowest error rate. Therefore we arrange it as the first classifier in the list followed

by the bus, bike and car classifiers respectively.

In order to verify our algorithm for classification of moving objects, we performed

the quantitative tests. As there is no ground truth information available, we com-

pared the results of classification with the datasets manually. Table 4.8 illustrates

the results that we obtained in three different types of environments. The first col-

umn gives the type of environment used for testing. The second column shows the

number of instances of the objects present throughout the duration of execution.

Each appearance of the object is considered as a separate instance i.e if an object

appears in multiple scans, then each time the object appears, it is counted as a new

object. This number is calculated manually using the images corresponding to each

sequence of data as well as the estimations from the previous positions of the ob-

jects. The third and fourth columns give the results of classification including the

number of times the objects are correctly or wrongly classified respectively. The re-

sults shows that most of the times the objects are classified correctly in all scenarios.

We observed that most of the wrong classifications result from the objects detected

at relatively larger distances from the sensor. The possible reason is that the data

corresponding to these objects is not dense enough to be able to classify them cor-

rectly. However, the performance of our system for classification still proves to be

satisfactory despite this problem.

Table 4.8: Classification of moving objects: Quantitative results

Type of Dataset Total Objects Correctly Classified Wrongly Classified

Highway 195 161 34

Urban 532 463 69

Pedestrian Zone 518 457 61

Chapter 4. Experimental Results 141

4.4.4 Multiple Object Tracking

After detection and classification of moving objects, we perform the multiple object

tracking to estimate the position of these objects with time. For this purpose we use

a sliding window of 10 frames and the objects detected within this sliding window

are stored in the trellis structure of the Viterbi algorithm. At each time step, when

we receive a new set of observations, we perform the data association with the ex-

isting tracks in the trellis. For the creation and deletion of a track, we use a waiting

time of 3 scans. This ensures that a track is not confirmed until it is observed for at

least three scans and it is considered as a false alarm otherwise. Similarly, if a track

does not appear in a scan, it is not deleted immediately rather it is continued with

its predicted position used as the actual position. However, if the track does not

appear for 3 consecutive scans, than it is deleted from the track list.

In order to test our system for DATMO in 3D environments, we used the datasets

recorded in different scenarios. As there is no ground truth information available

for tracking, we provide the qualitative results here. Each tracked object is repre-

sented by a minimum oriented bounding box corresponding to the cluster of voxels

contained in that object. The colors of the boxes and the voxels representing an ob-

ject are chosen according to the class of that object. Cars are shown in green, bikes

in yellow, buses in orange and pedestrians in magenta. In addition to the bound-

ing box, the tracked object is also represented by a track ID which is formed by

combining the object class and the track number e.g. car_3 or bike_2.

In the following, we illustrate the results of multiple object tracking in a city sce-

nario with many cars and a bus. Figure 4.18a shows the scenario at the start of the

sequence. There is a single moving object behind the ego vehicle which is correctly

detected and tracked as car_1 at t = 0.5 s as shown in Fig. 4.18b. Figure 4.19 shows

the results of tracking at t = 13.0 s and 15.8 s where the track for car_1 continues

along with two new cars tracked as car_3 and car_4. It can be observed that car_4 is

not identified at t = 13.0 s due to being far from the sensor and generating too few

voxels to be clustered. However, it is correctly classified at t = 15.8 s even though

it is only partially visible from behind. Figure 4.20 and 4.21 show the results of

tracking later in time when the vehicle reaches an intersection and stops. As it can

be seen, our method for tracking correctly tracks many cars crossing in the inter-

section as well as those passing by (e.g. car_7 and car_8 in Fig. 4.21) and coming

from behind (e.g. car_12 in Fig. 4.21b). Moreover, the previously tracked cars car_1

142 4.4. DATMO Results

and car_4 also stopped at the intersection along the ego-vehicle and therefore they

are not tracked any more (until and unless they start moving again) as shown in

Fig. 4.21 onwards. In addition to the many cars which are tracked throughout the

sequence, a bus is also detected, classified and tracked successfully as shown in Fig.

4.22.

Continuing with the qualitative results, Fig. 4.23 to 4.27 are an illustration of the

experiments conducted for evaluating multiple object tracking in an urban scenario

with many pedestrians and bicyclists around the vehicle. Figure 4.23b shows the

result of tracking at t = 0.3 s. There are three objects, two bicycles and a pedestrian,

detected by the system displayed in yellow and magenta colors respectively. Figure

4.24a and 4.24b are the results from the same scenario after 1 second and 2.4 seconds

respectively where another object (bike_4) is detected in addition to the three objects

previously tracked.

Figure 4.25 shows the same scenario after approximately 7 and 10 seconds with a

relatively larger number of objects around the vehicle. Here, most of the objects are

correctly classified and tracked, however, there are some false alarms too such as

pedestrian_4 in Fig. 4.25a. This false alarm is suppressed by our tracker soon after.

Additionally, track for bike_5 was lost due to an occlusion and missed detection for

longer than 3 scans and therefore a new track (bike_6) is generated for the same

object (Fig. 4.25b). Despite these issues owing to the limitations of the sensor and

the detection module as well as occlusion of the objects, we observe that the cases

of false and lost tracks are very few and most of the objects are tracked success-

fully. Figure 4.26 and 4.27 show the tracking results continued until the end of the

sequence.

It is evident from these illustrations that some objects which were closer to the

ego-vehicle were successfully tracked over a long period of time. For example, the

tracks for pedestrian_1 and bike_3 were initialized as early as t = 0.3 s and they

continued till the end of the sequence. Most of the other objects are also tracked for

a considerable span of time thus showing the efficacy of our system for multiple

object tracking.

As mentioned earlier, we did not have the ground truth information to evaluate our

system for multiple object tracking quantitatively. In order to get an idea about the

performance of the system, we used a method to manually identify the tracks and

compare them against the results of our tracking algorithm. For this purpose, we

Chapter 4. Experimental Results 143

(a) A city road scenario at beginning of the sequence, t = 0 s.

(b) Tracking results at t = 0.5 s.

Figure 4.18: Tracking results at t = 0.5 s. There is only one moving object which is correctly detected

and classified as a car. A track is initialized and confirmed for this car, marked as car_1.

144 4.4. DATMO Results

(a) Tracking results at t = 13.0 s.

(b) Tracking results at t = 15.8 s.

Figure 4.19: Tracking results continued from Fig. 4.18 at t = 13.0 s and t = 15.8 s. Car_4 is not

identified at t = 13.0 s as it is far from the sensor and generates small number of voxels but correctly

identified at t = 15.8 s despite being visible partially from behind.

Chapter 4. Experimental Results 145

(a) Tracking results at t = 20.4 s.

(b) Tracking results at t = 23.0 s.

Figure 4.20: Tracking results continued from Fig. 4.18 at t = 20.4 s and t = 23.0 s. The vehicle has

reached at an intersection with many cars crossing in front of it.

146 4.4. DATMO Results

(a) Tracking results at t = 24.8 s.

(b) Tracking results at t = 29.4 s.

Figure 4.21: Tracking results continued from Fig. 4.18 at t = 24.8 s and t = 29.4 s. The cars which

stopped (car_1 and car_4) are not tracked any more until they start moving again.

Chapter 4. Experimental Results 147

(a) Tracking results at t = 32.4 s.

(b) Tracking results at t = 38.4 s.

Figure 4.22: Tracking results continued from Fig. 4.18 at t = 32.4 s and t = 38.4 s. In addition to

many cars, a bus is also detected and tracked.

148 4.4. DATMO Results

(a) Scenario at t = 0 s.

(b) Tracking results at t = 0.6 s.

Figure 4.23: Tracking results at t = 0.6 s. There are three moving objects correctly detected and

classified as two bikes and a pedestrian.

Chapter 4. Experimental Results 149

(a) Tracking results at t = 1.0 s.

(b) Tracking results at t = 2.4 s.

Figure 4.24: Tracking results continued from Fig. 4.23 at t = 1.0 s and t = 2.4 s. Another object

(bike_4) is detected and tracked in addition to the previously tracked objects.

150 4.4. DATMO Results

(a) Tracking results at t = 7.2 s.

(b) Tracking results at t = 10.2 s.

Figure 4.25: Tracking results continued from Fig. 4.23 at t = 7.2 s and t = 10.2 s. This shows the

case of a false alarm generated as pedestrian_4 (Fig. 4.25a) and a new track (bike_6) initialized for an

existing object (bike_5) due to a sequence of missed detections (Fig. 4.25b).

Chapter 4. Experimental Results 151

(a) Tracking results at t = 13.4 s.

(b) Tracking results at 16.8 s.

Figure 4.26: Tracking results continued from Fig. 4.23 at t = 13.4 s and t = 16.8 s.

152 4.4. DATMO Results

(a) Tracking results at t = 20.0 s.

(b) Tracking results at 21.8 s.

Figure 4.27: Tracking results continued from Fig. 4.23 at t = 20.0 s and t = 21.8 s.

Chapter 4. Experimental Results 153

Table 4.9: Multiple object tracking: Quantitative results

Type of Dataset Total Objects Non-detections False Alarms Total Tracks

Highway 17 162 53 58

Urban 54 341 132 74

Pedestrian Zone 67 284 156 93

used the sequences of data captured from the three types of environment: highway,

urban and pedestrian zone.

Table 4.9 illustrates the quantitative results we obtained for tracking of moving ob-

jects in three different scenarios listed in the first column. The second column gives

the number of distinct objects present in the environment throughout the sequence

of data. This number was calculated manually using the images corresponding

to each sequence of data as well as the estimations from the previous positions of

the objects. The third column gives the number of frames in which an object was

not detected but still tracked by our algorithm. It corresponds to the number of

times a case of non-detection occurred which was correctly handled by our method

of moving object tracking. These non-detections could be caused by the failure of

the sensor, detection module or classification module. The fourth column gives the

number of false alarms detected by our algorithm. These false alarms are again

generated by the detection or classification module where a non-dynamic object

is wrongly identified as a dynamic object. In our tracking method, a false alarm

which does not appear sufficient number of times is not confirmed as a track there-

fore it is not identified as a dynamic object. The last column gives the total number

of tracks generated during the complete execution of the system for the sequence

of data.

The results illustrate that most of the dynamic objects are correctly tracked by our

method along with handling a large number of non-detections and false alarms

generated during the previous steps. We observe that the total number of the tracks

is greater than the total number of objects present in the environment. This phe-

nomenon can be explained by the fact that the objects often leave and re-enter the

range of the sensor thus giving rise to the creation of new tracks. These results

clearly show the importance of a reliable tracking system which can handle the

failure of the sensor as well as detection and classification systems for the reliable

perception of the dynamic environment.

154 4.5. Conclusion

Table 4.10: Processing times for different components

Component Processing Time

Mapping 5.35 s

Ground Segmentation 1.87 s

ICP 3.21 s

Moving Object Detection 0.11 s

Classification 0.17 s

Tracking 0.13 s

Our system for perception was tested on a computer with a processor of 2.1GHz

running a Linux operating system. We used several sequences of data from urban,

highway and pedestrian zone scenarios. The system generally gave good results

also in difficult scenarios with many objects in the surrounding. Average process-

ing times per frame for each component of the system are given in Table 4.10. As it

can be seen that the average processing time for generating the simple octree-based

3D occupancy grid map is 5.35 seconds. Whereas, the time required for ground

segmentation and ICP localization is 1.87 seconds and 3.21 seconds respectively. In

comparison to that the average computation times for detection (with clustering),

classification and tracking are 0.11, 0.17 and 0.13 seconds respectively. This shows

that the average time required for DATMO in each frame is around 0.41 seconds

which is, though not real time in the context of a sensor with scanning frequency

of 10Hz, but still very promising. Moreover, optimizing and parallelizing the code

with the use of advanced and efficient hardware can improve the processing speed

considerably.

4.5 Conclusion

In this chapter we detailed the implementation of our system for perception in out-

door environments and presented the experimental results obtained by it. In order

to test our system, we used different publicly available datasets obtained from the

experimental vehicles equipped with 3D Velodyne laser scanner, driving in differ-

ent environments. For testing our method for SLAM with ground segmentation,

we used two complex datasets and obtained good results. For each new scan, the

first step was to convert it into octree-based occupancy grid representation. Then

we used our method for ground segmentation to differentiate between the voxels

Chapter 4. Experimental Results 155

corresponding to ground and non-ground objects. An important observation in this

context was the huge amount of data corresponding to the ground. After ground

segmentation, we used the non-ground voxels for ICP based localization. We notice

that the data used for ICP at this step is a lot less than the original amount of data

acquired at each step. We experimented with different parameters and selected the

appropriate ones based on the results obtained.

For evaluating our method for detection, classification and tracking of moving ob-

jects, we used several datasets gathered from different environments including ur-

ban, highway and pedestrian zones and obtained good results even in complex

scenarios. The amount of noise generated by the sensor was a big challenge. How-

ever, our method for detection and density-based clustering of dynamic objects

performed well in terms of high detection rate and low false alarms. Most of the

false alarms which still existed were handled by our supervised classification mod-

ule. An additional contribution of our work that we detailed in this chapter is the

labeled dataset consisting of different dynamic objects that we generated for the

supervised training of classifiers. We trained four classifiers corresponding to each

object class of interest namely; bus, car, bike and pedestrian. The classifiers were

trained offline using simple features and AdaBoost. The trained classifiers were

then used online in our system for the classification of the detected moving objects.

At the end, we presented some qualitative results for detection, classification and

tracking of moving objects from different scenarios.

The results obtained from application of the proposed technique on real data col-

lected from different scenarios show a reliable environment representation with

good segmentation between the non-ground objects and ground. The segmentation

is accurate enough to be used for clustering and classification of the static objects

which was out of scope of this work. Moreover, the moving objects are clearly and

efficiently segmented from the static environment despite a considerable amount

of noise. The spurious elements are further minimized by use of classification and

tracking. This results in a robust and reliable representation of the dynamic outdoor

environment in 3D.

156 4.5. Conclusion

Chapter 5

Conclusion and Perspectives

5.1 Conclusion

This thesis addressed the problem of vehicle perception in the context of outdoor

dynamic environments. Environment perception plays a key role in an intelligent

system since any error in the perceived information can drastically affect the per-

formance and security of the whole system. The aim of this work was to provide an

intelligent vehicle with a robust and reliable perception of the surroundings built

upon the recently developed sensor technology. A survey of the literature revealed

that many of the recent works in this context have relied upon the fusion of infor-

mation from multiple sensors to achieve this goal. However, we posit that with the

recent advancement in sensor technology, a single 3D laser scanner is sufficient to

be used as an external sensor for environment perception. Based on this hypoth-

esis, we presented a perception framework addressing the core tasks of the prob-

lem including simultaneous localization and mapping (SLAM) with detection and

tracking of moving objects (DATMO). The proposed framework is tested through

various off-line datasets acquired by the 3D laser scanner mounted on the vehicles

driven in different outdoor scenarios to demonstrate its applicability and perfor-

mance in real environments.

In chapter 2, after reviewing the existing solutions in the literature for simultaneous

localization and mapping, we proposed an algorithm for SLAM in 3D. Our method

was built on an optimized octree-based occupancy grid mapping framework. We

preferred the grid-based environment representation due to its compactness and

efficiency as well as the possibility to detect dynamic objects. As in occupancy

157

158 5.1. Conclusion

grid mapping, the free areas of the environment are explicitly modeled therefore

the dynamic objects can be detected by observing the occupancy of the previously

free areas. While using a 3D laser scanner, an important observation is that a large

fraction of the data corresponds to the ground. Therefore, ground segmentation

was an important step in our approach before the subsequent processing of the

information. We used a cell-based method with variance and mean of the heights

as the main features for identifying the ground voxels. After ground segmentation,

we performed the incremental ICP based scan matching by using the odometry

for the initial estimate of transition. The performance of ICP is improved by two

methods. First, we use the octree occupancy grid for scan matching which is a sub-

sampled version of the original point cloud. Further, after segmenting the ground

voxels, the remaining voxels (which serve as the point cloud for scan matching)

are again reduced by a large factor. Second, we use a fast approximation of the

point correspondences in ICP algorithm by using kd-tree for approximate nearest

neighbor search.

Based on the results of chapter 2, we presented a framework for detection, classi-

fication and tracking of moving objects in chapter 3 which is the most significant

contribution of this work. Our method for motion-based detection of dynamic ob-

jects reliably identifies the possible moving objects without a prior knowledge of

the objects. However, due to the sensor uncertainty and huge amount of data gen-

erated by a 3D laser scanner, the amount of noise and thus the wrongly detected

dynamic objects is also huge. Thus we perform the supervised classification of the

detected objects to differentiate the real objects. In comparison to the other ap-

proaches for object classification, our method does not require the pre-defined rou-

tines to extract high-level features. Instead, we extract the single-valued features

from each layer and use the AdaBoost algorithm to boost these simple features to

strong classifiers for object identification. Moreover, using a supervised learning

method results in assigning the semantic labels to the objects corresponding to the

pre-defined classes of road users with known dynamics. As the number of moving

object classes appearing on the roads are quite limited therefore the supervised ap-

proach proves feasible in this context. The classification of dynamic objects further

helps in the process of tracking for estimating the positions of these objects with

time. For multiple object data association, we used Viterbi algorithm which over-

comes the problem of abrupt changes in motion (for example in case of pedestrians)

as well as temporary occlusions by taking advantage of dynamic programming.

Chapter 5. Conclusion and Perspectives 159

The proposed framework was evaluated on the datasets obtained from different

outdoor scenarios using a 3D laser scanner as described in chapter 4. The results

obtained from these evaluations show a reliable performance in different circum-

stances. The ground segmentation and scan matching was shown to yield a good

performance with a considerable improvement in the localization in comparison to

the vehicle odometry. The dynamic object detection, classification and tracking was

shown to work reliably even in complex urban scenarios.

In summary, this thesis has addressed a relatively new problem of 3D perception

in outdoor dynamic environments and we have demonstrated that we can reliably

perform simultaneous localization and mapping with detection, classification and

tracking of moving objects from a ground vehicle equipped with a single 3D laser

scanner. Despite its implementation with ground vehicles in this work, the pro-

posed approach can also be used in other areas and we hope that the obtained

results will serve as potential basis for a wide range of robotic applications.

5.2 Perspectives

As mentioned before, perception with 3D laser scanners is a new area of research

and it has several open questions that need to be addressed. This thesis has fo-

cused on some of those questions, however, there are many possible extensions for

enhancing the results and taking the framework further.

One potential extension concerns the simultaneous localization and mapping ap-

proach: We used odometry as the initial estimate for transition while registering

the new scan with existing map, however, using a heuristic method for calculating

the initial transition estimate in ICP can lead to a more robust and reliable localiza-

tion in the situations where the odometry is too erroneous to be used. Further, the

results of ground segmentation provide a good segmentation of the static objects as

illustrated in Fig. 5.1. These segmented objects can be clustered and classified into

known categories such as trees, bush, walls, light poles, traffic signs etc. Moreover,

these clustered objects can be used for object based scan alignment for an improved

localization of the vehicle.

Another future line of research can focus on improving the performance of detec-

tion, classification and tracking of moving objects algorithm by integrating the road

border detection. The results of this step can be used as a prior information about

160 5.2. Perspectives

Figure 5.1: An illustration of object segmentation based on ground identification. Different static

objects such as light poles, sign boards, traffic signs, façades of the buildings and parked cars are

separated from each other. A proximity based clustering of the occupied voxels can result in the

individual clusters corresponding to these objects which can be used for classification as well as

object based localization.

different regions of the environment which will constrain the appearance and mo-

tion estimation of the dynamic objects. The possible constraints can be such as the

dynamic objects should only be detected on or within a threshold of the road bor-

ders (appearance constraint) or the cars can only move along the direction of the road

(motion constraint). Using these constraints, the number of dynamic object hypothe-

ses can be reduced significantly thus improving the quality and efficiency of the

tracking algorithm. An alternative or complementary option to road border detec-

tion can be the use of the navigation maps. The performance of tracking algorithm

can also be improved by modeling the interactions between the dynamic objects.

On a separate note, the current implementation of the proposed framework is not

real-time with a frame rate of upto 10 Hz therefore a possible line of future work

can address the problem of attaining a real-time implementation. The possible so-

lutions include the use of general-purpose graphical processing units (GPGPU) as

well as the multi-core CPUs.

References

Adams Martin, Zhang Sen, and Xie Lihua. Particle filter based outdoor robot lo-

calization using natural features extracted from laser scanners. In Robotics and

Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol-

ume 2, pages 1493–1498. IEEE, 2004.

Amanatides John, Woo Andrew, et al. A fast voxel traversal algorithm for ray trac-

ing. In Proceedings of EUROGRAPHICS, volume 87, pages 3–10, 1987.

Anderson Brian D. and Moore John B. Optimal filtering. Prentic-Hall, Englewood

Cliffs, New Jersey, 1979.

Anguelov D., Taskarf B., Chatalbashev V., Koller D., Gupta D., Heitz G., and Ng

A. Discriminative learning of markov random fields for segmentation of 3d scan

data. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, volume 2, pages 169–176 vol. 2, 2005. doi: 10.1109/CVPR.

2005.133.

Arras Kai Oliver, Mozos O Martınez, and Burgard Wolfram. Using boosted features

for the detection of people in 2d range data. In Robotics and Automation, 2007 IEEE

International Conference on, pages 3402–3407. IEEE, 2007.

Arulampalam M Sanjeev, Maskell Simon, Gordon Neil, and Clapp Tim. A tutorial

on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal

Processing, IEEE Transactions on, 50(2):174–188, 2002.

Arun K.S., Huang T. S., and Blostein S. D. Least-squares fitting of two 3-d point

sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-9(5):

698–700, 1987.

Arya S and Mount D. Ann: library for approximate nearest neighbor searching. In

2nd CGC Workshop on Computational Geometry, 1997.

161

162 REFERENCES

Azim Asma and Aycard Olivier. Multiple pedestrian tracking using viterbi data

association. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 706–711. IEEE,

2010.

Azim Asma and Aycard Olivier. Detection, classification and tracking of moving

objects in a 3d environment. In Intelligent Vehicles Symposium (IV), 2012 IEEE,

pages 802–807. IEEE, 2012.

B. Douillard J. Underwood N. Melkumyan S. Singh S. Vasudevan C. Brunner

A. Quardros. Hybrid elevation maps: 3d surface models for segmentation. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

1532–1538, 2010.

Baig Qadeer. Multisensor Data Fusion for Detection and Tracking of Moving Objects

From a Dynamic Autonomous Vehicle. PhD thesis, PhD thesis, University of Greno-

ble, 2012.

Bailey Tim. Mobile robot localisation and mapping in extensive outdoor environments.

PhD thesis, The University of Sydney, 2002.

Bar-Shalom Y, Li X Rong, and Kirubarajan T. Estimation with applications to track-

ing and navigation, 2001.

Bar-Shalom Yaakov and Fortmann Thomas E. Tracking and data association. Aca-

demic Press, 1988.

Baum L. E. and Petrie T. Statistical inference for probabilistic functions of finite state

markov chains. The Annals of Mathematical Statistics, Vol. 37:1554–1563, 1966.

Bertozzi Massimo, Broggi Alberto, and Fascioli Alessandra. Vision-based intelli-

gent vehicles: State of the art and perspectives. Robotics and Autonomous systems,

32(1):1–16, 2000.

Besl Paul J and McKay Neil D. Method for registration of 3-d shapes. In Robotics-DL

tentative, pages 586–606. International Society for Optics and Photonics, 1992.

Blackman S and Popoli R. Design and analysis of modern tracking systems. Artech

House, Norwood, MA, 1999.

Blackman Samuel S. Multiple hypothesis tracking for multiple target tracking.

Aerospace and Electronic Systems Magazine, IEEE, 19(1):5–18, 2004.

REFERENCES 163

Borrmann Dorit, Elseberg Jan, Lingemann Kai, Nüchter Andreas, and Hertzberg

Joachim. Globally consistent 3d mapping with scan matching. Robotics and Au-

tonomous Systems, 56(2):130–142, 2008.

Boser Bernhard E, Guyon Isabelle M, and Vapnik Vladimir N. A training algo-

rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152. ACM, 1992.

Botsch Mario, Wiratanaya Andreas, and Kobbelt Leif. Efficient high quality render-

ing of point sampled geometry. In Proceedings of the 13th Eurographics workshop on

Rendering, pages 53–64. Eurographics Association, 2002.

Brechtel Sebastian, Gindele Tobias, and Dillmann Rüdiger. Recursive importance

sampling for efficient grid-based occupancy filtering in dynamic environments.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages

3932–3938. IEEE, 2010.

Brenner C, Dold C, and Ripperda N. Coarse orientation of terrestrial laser scans

in urban environments. ISPRS journal of photogrammetry and remote sensing, 63(1):

4–18, 2008.

Brown James Anthony and Capson David W. A framework for 3d model-based

visual tracking using a gpu-accelerated particle filter. Visualization and Computer

Graphics, IEEE Transactions on, 18(1):68–80, 2012.

Burgard Wolfram, Cremers Armin B, Fox Dieter, Hähnel Dirk, Lakemeyer Gerhard,

Schulz Dirk, Steiner Walter, and Thrun Sebastian. Experiences with an interactive

museum tour-guide robot. Artificial Intelligence, 114:3–55, 2000.

Burlet Julien, Vu Trung Dung, Aycard Olivier, et al. Grid-based localization and

online mapping with moving object detection and tracking. Technical report,

INRIA-UJF, 2007.

Chavez-Garcia R Omar, Burlet Julien, Vu Trung-Dung, and Aycard Olivier. Frontal

object perception using radar and mono-vision. In Intelligent Vehicles Symposium

(IV), 2012 IEEE, pages 159–164. IEEE, 2012.

Choset Howie and Nagatani Keiji. Topological simultaneous localization and map-

ping (slam): toward exact localization without explicit localization. Robotics and

Automation, IEEE Transactions on, 17(2):125–137, 2001.

164 REFERENCES

Clodic A. Fleury S. Alami R. Herrb M. & Chatila R. Supervision and interaction:

Analysis from an autonomous tour-guide robot deployment. In International Con-

ference on Advanced Robotics, Seattle, USA, 2005.

Cole David M and Newman Paul M. Using laser range data for 3d slam in outdoor

environments. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, pages 1556–1563. IEEE, 2006.

Csorba Michael. Simultaneous localisation and map building. PhD thesis, University

of Oxford, 1997.

Darms Michael, Rybski Paul, and Urmson Chris. Classification and tracking of

dynamic objects with multiple sensors for autonomous driving in urban envi-

ronments. In Intelligent Vehicles Symposium, 2008 IEEE, pages 1197–1202. IEEE,

2008.

Davey Samuel J., Rutten Mark G., and Cheung Brian. A comparison of detec-

tion performance for several track-before-detect algorithms. EURASIP Jour-

nal on Advances in Signal Process, 2008, January 2008. ISSN 1110-8657. doi:

10.1155/2008/428036. URL http://dx.doi.org/10.1155/2008/428036.

del Blanco Carlos R, Jaureguizar Fernando, and García Narciso. An advanced

bayesian model for the visual tracking of multiple interacting objects. EURASIP

Journal on Advances in Signal Processing, 2011(1):1–13, 2011.

Dietmayer Klaus CJ, Sparbert Jan, and Streller Daniel. Model based object classifi-

cation and object tracking in traffic scenes from range images. Proceedings of IV,

pages 2–1, 2001.

Dissanayake MWM Gamini, Newman Paul, Clark Steven, Durrant-Whyte Hugh F,

and Csorba Michael. A solution to the simultaneous localization and map build-

ing (slam) problem. Robotics and Automation, IEEE Transactions on, 17(3):229–241,

2001.

Douillard Bertrand, Underwood J, Kuntz N, Vlaskine V, Quadros A, Morton P, and

Frenkel A. On the segmentation of 3d lidar point clouds. In Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, pages 2798–2805. IEEE, 2011.

Durrant-Whyte Hugh F, Rao BYS, and Hu H. Toward a fully decentralized architec-

ture for multi-sensor data fusion. In Robotics and Automation, 1990. Proceedings.,

1990 IEEE International Conference on, pages 1331–1336. IEEE, 1990.

http://dx.doi.org/10.1155/2008/428036

REFERENCES 165

Eggert David W, Lorusso Adele, and Fisher Robert B. Estimating 3-d rigid body

transformations: a comparison of four major algorithms. Machine Vision and Ap-

plications, 9(5-6):272–290, 1997.

Elfes Alberto. Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6):46–57, 1989.

Elfes Alberto. Multi-source spatial data fusion using bayesian reasoning. Data

fusion in robotics and machine intelligence, -:137–163, 1992.

Eliazar Austin and Parr Ronald. Dp-slam: Fast, robust simultaneous localization

and mapping without predetermined landmarks. In International Joint Conference

on Artificial Intelligence, volume 18, pages 1135–1142. LAWRENCE ERLBAUM

ASSOCIATES LTD, 2003.

Elseberg Jan, Borrmann Dorit, and Nüchter Andreas. Efficient processing of

large 3d point clouds. In Information, Communication and Automation Technologies

(ICAT), 2011 XXIII International Symposium on, pages 1–7. IEEE, 2011.

Ess Andreas, Schindler Konrad, Leibe Bastian, and Van Gool Luc. Object detection

and tracking for autonomous navigation in dynamic environments. The Interna-

tional Journal of Robotics Research, 29(14):1707–1725, 2010.

Ester Martin, Kriegel Hans-Peter, Sander Jörg, and Xu Xiaowei. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD,

volume 96, pages 226–231, 1996.

Fairfield Nathaniel, Kantor George, and Wettergreen David. Real-time slam with

octree evidence grids for exploration in underwater tunnels. Journal of Field

Robotics, 24(1-2):03–21, 2007.

Fairfield Nathaniel, Wettergreen David, and Kantor George. Segmented slam in

three-dimensional environments. Journal of Field Robotics, 27(1):85–103, 2010.

Fardi Basel, Dousa Jaroslav, Wanielik Gerd, Elias Bjorn, and Barke Alexander. Ob-

stacle detection and pedestrian recognition using a 3d pmd camera. In Intelligent

Vehicles Symposium, 2006 IEEE, pages 225–230. IEEE, 2006.

Fayad Fadi and Cherfaoui Veronique. Tracking objects using a laser scanner in driv-

ing situation based on modeling target shape. In Intelligent Vehicles Symposium,

2007 IEEE, pages 44–49. IEEE, 2007.

166 REFERENCES

Forney Jr G David. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,

1973.

Fortmann Thomas E and Baron Sheldon. Problems in multi-target sonar tracking.

In Decision and Control including the 17th Symposium on Adaptive Processes, 1978

IEEE Conference on, volume 17, pages 1182–1188. IEEE, 1978.

Fournier Jonathan, Ricard Benoit, and Laurendeau Denis. Mapping and explo-

ration of complex environments using persistent 3d model. In Computer and Robot

Vision, 2007. CRV’07. Fourth Canadian Conference on, pages 403–410. IEEE, 2007.

Frank Oliver, Nieto Juan, Guivant Jose, and Scheding Steve. Multiple target track-

ing using sequential monte carlo methods and statistical data association. In

Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ Inter-

national Conference on, volume 3, pages 2718–2723. IEEE, 2003.

Freund Yoav and Schapire Robert E. A desicion-theoretic generalization of on-line

learning and an application to boosting. In Computational learning theory, pages

23–37. Springer, 1995.

Gad Ahmed and Farooq Mohammad. Viterbi-based data association techniques for

target tracking. In Proceedings of SPIE, volume 5096, pages 37–46, 2003.

Gambino Fabio, Ulivi Giovanni, and Vendittelli Marilena. The transferable belief

model in ultrasonic map building. In Fuzzy Systems, 1997., Proceedings of the Sixth

IEEE International Conference on, volume 1, pages 601–608. IEEE, 1997.

Garulli Andrea, Giannitrapani Antonio, Rossi Andrea, and Vicino Antonio. Mobile

robot slam for line-based environment representation. In Decision and Control,

2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on,

pages 2041–2046. IEEE, 2005.

Geiger Andreas, Lenz Philip, and Urtasun Raquel. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Conference on Computer Vision and

PatternRecognition (CVPR), 2012.

Gordon Neil J, Salmond David J, and Smith Adrian FM. Novel approach to

nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings F (Radar

and Signal Processing), volume 140, pages 107–113. IET, 1993.

REFERENCES 167

Grisettiyz G, Stachniss Cyrill, and Burgard Wolfram. Improving grid-based slam

with rao-blackwellized particle filters by adaptive proposals and selective resam-

pling. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, pages 2432–2437. IEEE, 2005.

Gutmann J-S and Konolige Kurt. Incremental mapping of large cyclic environ-

ments. In Computational Intelligence in Robotics and Automation, 1999. CIRA’99.

Proceedings. 1999 IEEE International Symposium on, pages 318–325. IEEE, 1999.

Hahnel Dirk, Schulz Dirk, and Burgard Wolfram. Map building with mobile robots

in populated environments. In Intelligent Robots and Systems, 2002. IEEE/RSJ In-

ternational Conference on, volume 1, pages 496–501. IEEE, 2002.

Hall David L and Garga Amulya K. Pitfalls in data fusion (and how to avoid

them). In Proceedings of the Second International Conference on Information Fusion

(FusionâĂŹ99), volume 1, pages 429–436, 1999.

Harris Chris and Stephens Mike. A combined corner and edge detector. In Alvey

vision conference, volume 15, page 50. Manchester, UK, 1988.

Hellaker Jan. Prometheus: Strategy. ITS technology collection on CD-ROM: SAE’s

essential resource for ITS vehicle applications, 1998, 1990.

Himmelsbach M. Hundelshausen F.V. ; Wuensche H. Fast segmentation of 3d point

clouds for ground vehicles. In IEEE Intelligent Vehicles Symposium (IV), pages

560–565, 2010.

Himmelsbach Michael, Mueller Andre, Luettel Thorsten, and Wuensche Hans-

Joachim. LIDAR-based 3D Object Perception. In Proceedings of 1st International

Workshop on Cognition for Technical Systems, Munich, October 2008.

Horn Berthold KP. Closed-form solution of absolute orientation using unit quater-

nions. JOSA A, 4(4):629–642, 1987.

Horn Berthold KP, Hilden Hugh M, and Negahdaripour Shahriar. Closed-form

solution of absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–

1135, 1988.

Huang Hui-Min, Pavek Kerry, Albus James, and Messina Elena. Autonomy levels

for unmanned systems (alfus) framework: an update. In Proceedings of the 2005

SPIE Defense and Security Symposium, pages 439–448, 2005.

168 REFERENCES

Jensen Björn, Tomatis Nicola, Mayor Laetitia, Drygajlo Andrzej, and Siegwart

Roland. Robots meet humans-interaction in public spaces. Industrial Electron-

ics, IEEE Transactions on, 52(6):1530–1546, 2005.

Kalman Rudolph Emil et al. A new approach to linear filtering and prediction prob-

lems. Journal of basic Engineering, 82(1):35–45, 1960.

Kammerl Julius, Blodow Nico, Rusu Radu Bogdan, Gedikli Suat, Beetz Michael,

and Steinbach Eckehard. Real-time compression of point cloud streams. In

Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 778–

785. IEEE, 2012.

Katz Roman, Douillard Bertrand, Nieto Juan, and Nebot Eduardo. A self-

supervised architecture for moving obstacles classification. In Intelligent Robots

and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 155–160.

IEEE, 2008.

Khan Zia, Balch Tucker, and Dellaert Frank. Mcmc-based particle filtering for track-

ing a variable number of interacting targets. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 27(11):1805–1819, 2005.

King Bradford J, Malisiewicz Tomasz, Stewart Charles V, and Radke Richard J. Reg-

istration of multiple range scans as a location recognition problem: Hypothesis

generation, refinement and verification. In 3-D Digital Imaging and Modeling, 2005.

3DIM 2005. Fifth International Conference on, pages 180–187. IEEE, 2005.

Kluge Boris, Kohler Christian, and Prassler Erwin. Fast and robust tracking of

multiple moving objects with a laser range finder. In Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages

1683–1688. IEEE, 2001.

Koller Jost and Ulmke Martin. Multi hypothesis tracking of ground moving targets.

GI Jahrestagung (2), 68:307–311, 2005.

Konolige Kurt. Improved occupancy grids for map building. Autonomous Robots, 4

(4):351–367, 1997.

Krishna K Madhava and Kalra Prem K. When does a robot perceive a dynamic

object? Journal of Robotic Systems, 19(2):73–90, 2002.

REFERENCES 169

Labayrade Raphaël, Royere Cyril, Gruyer Dominique, and Aubert Didier. Cooper-

ative fusion for multi-obstacles detection with use of stereovision and laser scan-

ner. Auton. Robots, 19(2):117–140, September 2005.

Lai Kevin and Fox Dieter. Object recognition in 3d point clouds using web data and

domain adaptation. The International Journal of Robotics Research, 29(8):1019–1037,

2010.

Laine Samuli and Karras Tero. Efficient sparse voxel octrees. Visualization and Com-

puter Graphics, IEEE Transactions on, 17(8):1048–1059, 2011.

Lam Joseph, Kusevic Kresimir, Mrstik R, Harrap P, and Greenspan Michael. Urban

scene extraction from mobile ground based lidar data. In Proc. 3DPVT, volume

2010, pages 478–486, 2011.

Lau Boris, Arras Kai O, and Burgard Wolfram. Multi-model hypothesis group

tracking and group size estimation. International Journal of Social Robotics, 2(1):

19–30, 2010.

Lee Sang-Mook, Im Jeong Joon, Lee Bo-Hee, Leonessa A., and Kurdila A. A real-

time grid map generation and object classification for ground-based 3d lidar data

using image analysis techniques. In Image Processing (ICIP), 2010 17th IEEE Inter-

national Conference on, pages 2253 –2256, sept. 2010.

Leonard John, How Jonathan, Teller Seth, Berger Mitch, Campbell Stefan, Fiore

Gaston, Fletcher Luke, Frazzoli Emilio, Huang Albert, Karaman Sertac, et al. A

perception-driven autonomous urban vehicle. Journal of Field Robotics, 25(10):

727–774, 2008.

Leonard John J and Durrant-Whyte Hugh F. Mobile robot localization by tracking

geometric beacons. Robotics and Automation, IEEE Transactions on, 7(3):376–382,

1991a.

Leonard John J and Durrant-Whyte Hugh F. Simultaneous map building and local-

ization for an autonomous mobile robot. In Intelligent Robots and Systems’ 91.’In-

telligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ International Work-

shop on, pages 1442–1447. Ieee, 1991b.

Lindstrom M and Eklundh J-O. Detecting and tracking moving objects from a mo-

bile platform using a laser range scanner. In Intelligent Robots and Systems, 2001.

170 REFERENCES

Proceedings. 2001 IEEE/RSJ International Conference on, volume 3, pages 1364–1369.

IEEE, 2001.

Lowe David G. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

Lu Feng and Milios Evangelos. Robot pose estimation in unknown environments

by matching 2d range scans. Journal of Intelligent and Robotic Systems, 18(3):249–

275, 1997.

Lundquist C Schon T. Road geometry estimation and vehicle tracking using a single

track model. In IEEE Intelligent vehicles symposium (IV), 2008.

MacKay David JC. Introduction to monte carlo methods. In Learning in graphical

models, pages 175–204. Springer, 1998.

Meagher Donald. Geometric modeling using octree encoding. Computer graphics

and image processing, 19(2):129–147, 1982.

Mendes Abel, Bento Luis Conde, and Nunes Urbano. Multi-target detection and

tracking with a laser scanner. In Intelligent Vehicles Symposium, 2004 IEEE, pages

796–801. IEEE, 2004.

Montemerlo Michael, Thrun Sebastian, and Siciliano Bruno. FastSLAM: A scalable

method for the simultaneous localization and mapping problem in robotics, volume 27.

Springer Verlag, 2007.

Montemerlo Michael, Becker Jan, Bhat Suhrid, Dahlkamp Hendrik, Dolgov Dmitri,

Ettinger Scott, Haehnel Dirk, Hilden Tim, Hoffmann Gabe, Huhnke Burkhard,

Johnston Doug, Klumpp Stefan, Langer Dirk, Levandowski Anthony, Levin-

son Jesse, Marcil Julien, Orenstein David, Paefgen Johannes, Penny Isaac, Petro-

vskaya Anna, Pflueger Mike, Stanek Ganymed, Stavens David, Vogt Antone, and

Thrun Sebastian. Junior: The stanford entry in the urban challenge. J. Field Robot.,

25(9):569–597, September 2008.

Moosmann Frank and Fraichard Thierry. Motion estimation from range images in

dynamic outdoor scenes. In Robotics and Automation (ICRA), 2010 IEEE Interna-

tional Conference on, pages 142–147. IEEE, 2010.

REFERENCES 171

Moosmann Frank and Sauerland Miro. Unsupervised discovery of object classes in

3d outdoor scenarios. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, pages 1038–1044. IEEE, 2011.

Moosmann Frank and Stiller Christoph. Velodyne slam. In Intelligent Vehicles Sym-

posium (IV), 2011 IEEE, pages 393–398. IEEE, 2011.

Moravec Hans P. Robot spatial perceptionby stereoscopic vision and 3d evidence

grids. Technical report, The Robotics Institute, Carnegie Mellon University, Pitts-

burgh (PA), 1996.

Morris Daniel, Hoffman Regis, and McLean Steve. Ladar-based vehicle detection

and tracking in cluttered environments. Technical report, DTIC Document, 2008.

Moutarlier Philippe and Chatila Raja. An experimental system for incremental en-

vironment modelling by an autonomous mobile robot. In Experimental Robotics I,

pages 327–346. Springer, 1990.

Murphy Kevin. Bayesian map learning in dynamic environments. Advances in

Neural Information Processing Systems (NIPS), 12:1015–1021, 1999.

Nashashibi F. and Bargeton A. Laser-based vehicles tracking and classification us-

ing occlusion reasoning and confidence estimation. In Intelligent Vehicles Sympo-

sium, 2008 IEEE, pages 847 –852, june 2008.

Nedevschi Sergiu, Tiberiu Marita, Danescu Radu, Oniga Florin, and Bota Silviu.

On-board stereo sensor for intersection driving assistance architecture and spec-

ification. In Intelligent Computer Communication and Processing, 2009. ICCP 2009.

IEEE 5th International Conference on, pages 409–416. IEEE, 2009.

Needham Joseph. Science and Civilisation in China: Volume 2, History of Scientific

Thought. Cambridge University Press, 1991.

Nguyen Viet, Martinelli Agostino, Tomatis Nicola, and Siegwart Roland. A com-

parison of line extraction algorithms using 2d laser rangefinder for indoor mobile

robotics. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ Inter-

national Conference on, pages 1929–1934. IEEE, 2005.

Noykov Sv and Roumenin Ch. Occupancy grids building by sonar and mobile

robot. Robotics and autonomous systems, 55(2):162–175, 2007.

172 REFERENCES

Nüchter A, Lingemann Kai, Hertzberg Joachim, and Surmann Hartmut. 6d slam

with approximate data association. In Advanced Robotics, 2005. ICAR’05. Proceed-

ings., 12th International Conference on, pages 242–249. IEEE, 2005.

Nüchter Andreas, Lingemann Kai, and Hertzberg Joachim. 6D SLAM with Kurt3D.

Robotics Today, Society of Manufacturing Engineers, 20:59–63, 2007a.

Nüchter Andreas, Lingemann Kai, Hertzberg Joachim, and Surmann Hartmut. 6D

SLAM - 3D Mapping Outdoor Environments. ournal of Field Robotics (JFR), Special

Issue on Quantitative Performance Evaluation of Robotic and Intelligent Systems, 24:

699–722, August - September 2007b.

Oriolo Giuseppe, Ulivi Giovanni, and Vendittelli Marilena. Fuzzy maps: a new

tool for mobile robot perception and planning. Journal of Robotic Systems, 14(3):

179–197, 1997.

Pagac Daniel, Nebot Eduardo M, and Durrant-Whyte Hugh. An evidential ap-

proach to map-building for autonomous vehicles. Robotics and Automation, IEEE

Transactions on, 14(4):623–629, 1998.

Pathak Kaustubh, Birk Andreas, Poppinga Jann, and Schwertfeger Sören. 3d for-

ward sensor modeling and application to occupancy grid based sensor fusion. In

Intelligent Robots and Systems (IROS). IEEE/RSJ International Conference on, pages

2059–2064. IEEE, 2007.

Payeur Pierre, Hébert Patrick, Laurendeau Denis, and Gosselin CM. Probabilistic

octree modeling of a 3d dynamic environment. In Robotics and Automation, 1997.

Proceedings., 1997 IEEE International Conference on, volume 2, pages 1289–1296.

IEEE, 1997.

Petrovskaya Anna and Thrun Sebastian. Model based vehicle detection and track-

ing for autonomous urban driving. Autonomous Robots, 26(2-3):123–139, 2009.

Petrovskaya Anna V. Towards dependable robotic perception. PhD thesis, Stanford

University, 2011.

Pfeiffer David and Franke Uwe. Efficient representation of traffic scenes by means

of dynamic stixels. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 217–

224. IEEE, 2010.

REFERENCES 173

Premebida Cristiano and Nunes Urbano. A multi-target tracking and gmm-

classifier for intelligent vehicles. In Intelligent Transportation Systems Conference,

2006. ITSC’06. IEEE, pages 313–318. IEEE, 2006.

Premebida Cristiano, Monteiro Gonçalo, Nunes Urbano, and Peixoto Paulo. A lidar

and vision-based approach for pedestrian and vehicle detection and tracking. In

Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE, pages 1044–

1049. IEEE, 2007.

Pulford GW. Multi-target viterbi data association. In Information Fusion, 2006 9th

International Conference on, pages 1–8. IEEE, 2006.

Pulli Kari. Multiview registration for large data sets. In 3-D Digital Imaging and Mod-

eling, 1999. Proceedings. Second International Conference on, pages 160–168. IEEE,

1999.

Reid Donald. An algorithm for tracking multiple targets. Automatic Control, IEEE

Transactions on, 24(6):843–854, 1979.

Ribo Miguel and Pinz Axel. A comparison of three uncertainty calculi for building

sonar-based occupancy grids. Robotics and Autonomous Systems, 35(3):201–209,

2001.

Richter E Schubert R Wanielik G. Radar and vision based data fusion-advanced

filtering techniques for a multi object vehicle tracking system. In IEEE Intelligent

Vehicles symposium (IV), pages 120–125, 2008.

Rivadeneyra Cesar, Miller Isaac, Schoenberg Jonathan R, and Campbell Mark.

Probabilistic estimation of multi-level terrain maps. In Robotics and Automation,

2009. ICRA’09. IEEE International Conference on, pages 1643–1648. IEEE, 2009.

Rong Li X and Bar-Shalom Yaakov. Tracking in clutter with nearest neighbor filters:

analysis and performance. Aerospace and Electronic Systems, IEEE Transactions on,

32(3):995–1010, 1996.

Rosheim Mark E. Robot Evolution: The Development of Anthrobotics. Wiley-IEEE,

1994.

Roth-Tabak Yuval and Jain Ramesh. Building an environment model using depth

information. Computer, 22(6):85–90, 1989.

174 REFERENCES

Ryoo Michael S and Aggarwal Jake K. Observe-and-explain: A new approach for

multiple hypotheses tracking of humans and objects. In Computer Vision and Pat-

tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

Särkkä Simo, Vehtari Aki, and Lampinen Jouko. Rao-blackwellized particle filter

for multiple target tracking. Information Fusion, 8(1):2–15, 2007.

Schamm Thomas, Zollner J Marius, Vacek Stefan, and Schroder Joachim. Obstacle

detection with a photonic mixing device-camera in autonomous vehicles. In-

ternational Journal of Intelligent Systems Technologies and Applications, 5(3):315–324,

2008.

Schulz Dirk, Burgard Wolfram, Fox Dieter, and Cremers Armin B. Tracking multi-

ple moving targets with a mobile robot using particle filters and statistical data

association. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Inter-

national Conference on, volume 2, pages 1665–1670. IEEE, 2001.

Schulz Dirk, Burgard Wolfram, Fox Dieter, and Cremers Armin B. People tracking

with mobile robots using sample-based joint probabilistic data association filters.

The International Journal of Robotics Research, 22(2):99–116, 2003.

Schwarz Brent. Mapping the world in 3d. Nature Photonics, 4:429–430, 2010.

Siadat Ali, Kaske Axel, Klausmann Siegfried, Dufaut Michel, and Husson René. An

optimized segmentation method for a 2d laser-scanner applied to mobile robot

navigation. In 3rd IFAC Symposium on Intelligent Components and Instruments for

Control Applications, pages 153–158. Citeseer, 1997.

Singer Robert A and Stein John J. An optimal tracking filter for processing sensor

data of imprecisely determined origin in surveillance systems. In Decision and

Control, 1971 IEEE Conference on, volume 10, pages 171–175. IEEE, 1971.

Smith Randall, Self Matthew, and Cheeseman Peter. A stochastic map for uncertain

spatial relationships. In Proceedings of the 4th international symposium on Robotics

Research, pages 467–474. MIT Press, 1988.

Smith Randall, Self Matthew, and Cheeseman Peter. Estimating uncertain spatial

relationships in robotics. In Autonomous robot vehicles, pages 167–193. Springer,

1990.

REFERENCES 175

Smith Randall C and Cheeseman Peter. On the representation and estimation of

spatial uncertainty. The international journal of Robotics Research, 5(4):56–68, 1986.

Spinello Luciano, Triebel Rudolph, and Siegwart Roland. Multimodal people de-

tection and tracking in crowded scenes. In AAAI, pages 1409–1414, 2008.

Stiene Stefan, Lingemann Kai, Nuchter Andreas, and Hertzberg Joachim. Contour-

based object detection in range images. In 3D Data Processing, Visualization, and

Transmission, Third International Symposium on, pages 168–175. IEEE, 2006.

Stiller Christoph, Hipp Johann, Rössig C, and Ewald A. Multisensor obstacle de-

tection and tracking. Image and vision Computing, 18(5):389–396, 2000.

Stiller Christoph, Kammel Sören, Pitzer Benjamin, Ziegler Julius, Werling Moritz,

Gindele Tobias, and Jagszent Daniel. Team anniewayâĂŹs autonomous system.

In Robot Vision, pages 248–259. Springer, 2008.

Streller Daniel and Dietmayer Klaus. Object tracking and classification using a

multiple hypothesis approach. In Intelligent Vehicles Symposium, 2004 IEEE, pages

808–812. IEEE, 2004.

Streller Daniel, Dietmayer Klaus, and Sparbert Jan. Object tracking in traffic scenes

with multi-hypothesis approach using laser range images. In 8th World Congress

on Intelligent Transport Systems, 2001.

Sun Zehang, Bebis George, and Miller Ronald. On-road vehicle detection: A review.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(5):694–711, 2006.

Svensson Lennart, Svensson Daniel, Guerriero Marco, and Willett Peter. Set jpda

filter for multitarget tracking. Signal Processing, IEEE Transactions on, 59(10):4677–

4691, 2011.

Taleghani Sanaz, Aslani Siavash, and Shiry Saeed. Robust moving object detection

from a moving video camera using neural network and kalman filter. In RoboCup

2008: Robot Soccer World Cup XII, pages 638–648. Springer, 2009.

Teichman Alex, Levinson Jesse, and Thrun Sebastian. Towards 3d object recogni-

tion via classification of arbitrary object tracks. In Robotics and Automation (ICRA),

2011 IEEE International Conference on, pages 4034–4041. IEEE, 2011.

176 REFERENCES

Thomaidis George, Spinoulas Leonidas, Lytrivis Panagiotis, Ahrholdt Malte,

Grubb Grant, and Amditis Angelos. Multiple hypothesis tracking for automated

vehicle perception. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 1122–

1127. IEEE, 2010.

Thrun S, Burgard W, and Fox D. Probabilistic robotics, ser. intelligent robotics and

autonomous agents, 2005.

Thrun Sebastian. Learning metric-topological maps for indoor mobile robot navi-

gation. Artificial Intelligence, 99(1):21–71, 1998.

Thrun Sebastian. Robotic mapping: A survey. Exploring Artificial Intelligence in the

New Millenium, -:1–35, 2002.

Thrun Sebastian. Learning occupancy grid maps with forward sensor models. Au-

tonomous robots, 15(2):111–127, 2003.

Thrun Sebastian, Montemerlo Mike, Dahlkamp Hendrik, Stavens David, Aron

Andrei, Diebel James, Fong Philip, Gale John, Halpenny Morgan, Hoffmann

Gabriel, et al. Stanley: The robot that won the darpa grand challenge. Journal

of field Robotics, 23(9):661–692, 2006.

Triebel Rudolph, Pfaff Patrick, and Burgard Wolfram. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Intelligent Robots and Systems, 2006

IEEE/RSJ International Conference on, pages 2276–2282. IEEE, 2006.

Triebel Rudolph, Shin Jiwon, and Siegwart Roland. Segmentation and unsuper-

vised part-based discovery of repetitive objects. In Robotics: Science and Systems,

volume 2, Zaragoza, Spain, 2010.

Urmson Chris, Anhalt Joshua, Bagnell Drew, Baker Christopher, Bittner Robert,

Clark MN, Dolan John, Duggins Dave, Galatali Tugrul, Geyer Chris, et al. Au-

tonomous driving in urban environments: Boss and the urban challenge. Journal

of Field Robotics, 25(8):425–466, 2008.

Vasudevan Shrihari, Ramos Fabio, Nettleton Eric, and Durrant-Whyte Hugh. Non-

stationary dependent gaussian processes for data fusion in large-scale terrain

modeling. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 1875–1882. IEEE, 2011.

REFERENCES 177

Vihola Matti. Rao-blackwellised particle filtering in random set multitarget track-

ing. Aerospace and Electronic Systems, IEEE Transactions on, 43(2):689–705, 2007.

Viola Paul and Jones Michael. Robust real-time object detection. International Jour-

nal of Computer Vision, 4:–, 2001.

Vosselman George, Gorte Ben GH, Sithole George, and Rabbani Tahir. Recognising

structure in laser scanner point clouds. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, 46(8):33–38, 2004.

Vu TD. Vehicle perception: Localization, mapping with detection, classification and track-

ing of moving objects. PhD thesis, PhD thesis, Grenoble Institute of Technology,

2009.

Vu Trung-Dung, Burlet Julien, and Aycard Olivier. Mapping of environment, detec-

tion and tracking of moving objects using occupancy grids. In Intelligent Vehicles

Symposium, pages 684–689, 2008.

Walker Michael W, Shao Lejun, and Volz Richard A. Estimating 3-d location param-

eters using dual number quaternions. CVGIP: image understanding, 54(3):358–367,

1991.

Wang C.-C. Simultaneous Localization, Mapping and Moving Object Tracking. PhD

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2004.

Wang C.-C. and Thorpe C. Simultaneous localization and mapping with detection

and tracking of moving objects. In IEEE International Conference on Robotics and

Automation (ICRA), Washington, DC, USA, 2002.

Wang Chieh-Chih and Thorpe Charles. A hierarchical object based representa-

tion for simultaneous localization and mapping. In Intelligent Robots and Sys-

tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol-

ume 1, pages 412–418. IEEE, 2004.

Wang Chieh-Chih, Thorpe Charles, and Thrun Sebastian. Online simultaneous lo-

calization and mapping with detection and tracking of moving objects: Theory

and results from a ground vehicle in crowded urban areas. In Robotics and Au-

tomation, 2003. Proceedings. ICRA’03. IEEE International Conference on, volume 1,

pages 842–849. IEEE, 2003.

178 REFERENCES

Wang Chieh-Chih, Thorpe Charles, Thrun Sebastian, Hebert Martial, and Durrant-

Whyte Hugh. Simultaneous localization, mapping and moving object tracking.

The International Journal of Robotics Research, 26(9):889–916, 2007.

Weingarten Jan and Siegwart Roland. 3d slam using planar segments. In Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 3062–3067.

IEEE, 2006.

Wender Stefan and Dietmayer Klaus. 3d vehicle detection using a laser scanner and

a video camera. Intelligent Transport Systems, IET, 2(2):105–112, 2008.

Wojke Nicolai and Haselich M. Moving vehicle detection and tracking in unstruc-

tured environments. In Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pages 3082–3087. IEEE, 2012.

Wurm Kai M, Hornung Armin, Bennewitz Maren, Stachniss Cyrill, and Burgard

Wolfram. Octomap: A probabilistic, flexible, and compact 3d map representa-

tion for robotic systems. In Proc. of the ICRA 2010 workshop on best practice in 3D

perception and modeling for mobile manipulation, volume 2, 2010.

Xu Feng, Huang Chenrong, Wu Zhengjun, and Xu Lizhong. Video multi-target

tracking based on probabilistic graphical model. Journal of Electronics (China), 28

(4-6):548–557, 2011.

Yguel Manuel, Aycard Olivier, and Laugier Christian. Wavelet occupancy grids: a

method for compact map building. In Field and Service Robotics, pages 219–230.

Springer, 2006.

Yguel Manuel, Tay Christopher, Keat Meng, Braillon Christophe, Laugier Christian,

and Aycard Olivier. Dense mapping for range sensors: Efficient algorithms and

sparse representations. In Robotics: Science and Systems. Cambridge, MIT Press,

2007.

Yguel Manuel, Aycard Olivier, and Laugier Christian. Update policy of dense

maps: Efficient algorithms and sparse representation. In Field and Service Robotics,

pages 23–33. Springer, 2008.

Yilmaz Alper, Javed Omar, and Shah Mubarak. Object tracking: A survey. Acm

Computing Surveys (CSUR), 38(4):13, 2006.

REFERENCES 179

Yu Jin-Xia, Cai Zi-Xing, and Duan Zhuo-Hua. Detection and tracking of moving ob-

ject with a mobile robot using laser scanner. In Machine Learning and Cybernetics,

2008 International Conference on, volume 4, pages 1947–1952. IEEE, 2008.

Zhang Sen, Adams M, Tang Fan, and Xie Lihua. Geometrical feature extraction

using 2d range scanner. In Control and Automation, 2003. ICCA’03. Proceedings. 4th

International Conference on, pages 901–905. IEEE, 2003.

Zhao HUIJING, Shao XW, Katabira KYOICHIRO, and Shibasaki R. Joint track-

ing and classification of moving objects at intersection using a single-row laser

range scanner. In Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE,

pages 287–294. IEEE, 2006.

	Titlepage
	Abstract
	Contents
	1 Introduction
	1.1 Intelligent Vehicles
	1.2 Sensors
	1.2.1 Vision-based Sensors
	1.2.2 Telemetry/Range Sensors

	1.3 Perception for Intelligent Vehicles and the Challenges
	1.3.1 Problem Statement
	1.3.2 Simultaneous Localization and Mapping
	1.3.3 Detection, Classification and Tracking of Moving Objects
	1.3.4 SLAM with DATMO

	1.4 Contributions
	1.5 Thesis Organization

	2 Simultaneous Localization and Mapping
	2.1 Introduction
	2.2 Background
	2.2.1 Map Representations
	2.2.2 Mathematical Formulation

	2.3 Related Work
	2.3.1 Direct mapping SLAM
	2.3.2 Feature-based SLAM
	2.3.3 Grid-based SLAM
	2.3.4 Synthesis

	2.4 Adopted Approach for Map Representation: Probabilistic 3D Occupancy Grid based on Octrees
	2.4.1 OctoMap 3D Occupancy Grid Mapping – Overview
	2.4.2 Advantages of OctoMap
	2.4.3 Limitations of OctoMap

	2.5 Contributions: 3D Occupancy Grid SLAM
	2.5.1 General Architecture
	2.5.2 Ground Segmentation
	2.5.3 Grid-based SLAM

	2.6 Conclusions

	3 Detection, Classification and Tracking of Moving Objects
	3.1 Introduction
	3.2 Mathematical Formulation
	3.2.1 Single Object Tracking
	3.2.2 Multiple Object Tracking

	3.3 Related Work
	3.3.1 Detection of Moving Objects
	3.3.2 Tracking of Moving Objects
	3.3.3 Classification of Moving Objects
	3.3.4 Synthesis

	3.4 Contributions: 3D Occupancy Grid DATMO
	3.4.1 General Architecture

	3.5 Detection of Moving Objects
	3.5.1 Motion-based Detection
	3.5.2 Density-based Clustering

	3.6 Classification of Moving Objects
	3.6.1 Approach Overview
	3.6.2 Object Segmentation in Layers
	3.6.3 Feature Extraction
	3.6.4 Supervised Learning of Classifier
	3.6.5 Sequential Multi-class Classification

	3.7 Tracking of Moving Objects
	3.7.1 Object Representation and Dynamic Models
	3.7.2 Viterbi Data Association
	3.7.3 Track Maintenance

	3.8 Conclusion

	4 Experimental Results
	4.1 Introduction
	4.2 Sensor System
	4.3 SLAM Results
	4.3.1 Datasets
	4.3.2 SLAM with Ground Segmentation

	4.4 DATMO Results
	4.4.1 Datasets
	4.4.2 Detection of Moving Objects
	4.4.3 Classification of Moving Objects
	4.4.4 Multiple Object Tracking

	4.5 Conclusion

	5 Conclusion and Perspectives
	5.1 Conclusion
	5.2 Perspectives

	References

