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Abstract

Background

In Civil engineering, there is a great need for a better understanding of the fracture

performance of the structures. Defined as the displacement discontinuities of the

material, fractures (or cracks) occur due to many causes. One of which is when

the applied solicitations surpass the material rigidity or when the micro defects

during fabrication become visibly large under the repeated service loading... The

development of cracks reduces notably the bearing capacity of the components and

sometimes lead to complete failure of the entire structure. The study of crack(s)

and crack propagation is therefore a major concern in civil engineering designs,

constructions and maintenances. Since the experimental tests sometimes take longer

times and are rather costly because of the equipments and samples, numerical

approaches are an interesting alternative for calculations and predictions. Thanks

to reliable developed models, the numerical methods can provide very accurate and

rapid solution for many realistic engineering problems. The behavior of cracks and

crack propagation, however, is still difficult to capture and to simulate as they

concern heterogeneous geometries, complicated loadings as well as sophisticated

material behaviors.

The best-known numerical approach in Civil Engineering is the Finite Element

Method (FEM) for its advantages when dealing with complex geometries, material

non-linearities etc. The produced coefficient matrix is banded, symmetric, sparse

and diagonal dominant which lessens the computational work during the build-up

phase and also dispose of a good convergence rate. The application of the FEM can

be seen in almost every domain in civil engineering: elastostatics, elastodynamics,

electromagnetics, acoustics, etc. Nevertheless, there exist numerous circustances

where solely the knowledge of the boundary values is already sufficient without in-

vestigating further in the structure body. For these problems, the Boundary Integral

Equations Method (BIEM) arises as an interesting alternative because of its dis-

tinct advantages. When coupled with an advanced technique namely Fast Multipole

Method (FMM) for faster integral evaluations, the performance of a boundary anal-

ysis is greatly enhanced and become sometimes competitive with the finite elements

calculations. With the possibility of dealing with unbounded/semi-unbounded me-

dia and with evolutive geometries such as the simulation of crack-growth, the Fast

Multipole Boundary Element Method is a favorable option in fracture mechanics.

In this work, the integral formulation of Galerkin coupled with the Fast multipole

method has been used. The modeling of static cracks and crack propagation in

single/multi-region domain has been considered.



x Abstract

Summary of Contributions of the Thesis

The aim of this thesis is to develop a numerical tool based on the Fast Multipole

Symmetric Galerkin Boundary Element Method (FM-SGBEM) to effectively deal

with practical problems. The study of the performance of fractured pavements and

the simulation of crack propagation in such complex geometries are some interesting

applications that the authors wish to achieve.

In order to reach these main objectives, it is necessary to follow a number of

steps:

1. Optimization: The usefulness of a numerical approach can be described

by many factors among which the efficiency is indispensible. This characteristic

is also known as the compromise between the qualities of the results against the

computational costs. For the BEM, this issue matters considerably since the coef-

ficient matrix is fully-populated which penalizes not only the build-up phase but

also the data storage and the solution. The performance of the method is on the

other hand very difficult to grasp as it has to rely on the convergence rate of the

iterative solver (if one is adopted). Even though the Fast multipole method nullifies

most of the usual bottlenecks of a traditional boundary analysis, the treatment s

of large-scales problems (whose number of unknowns are of order 106) still pose a

lot of constraints on a modest computer in terms of necessary storage and com-

putational speed. In this work, we have incorporated some interesting refinements

concerning (1) the compressed storage and more efficient evaluation of the near-

field interactins, (2) a more robust iterative solver based on a nested Generalized

Minimal Residual (GMRES). By doing these, the simulations take minimal space

for the coefficient storage and produce much quicker convergences thanks to the

better preconditioning strategy. The example of multiple cracks in an unbounded

domain features up to 3× 106 unknowns and has been successfully computed on a

single-processor PC (under only 20h of calculation).

2. Extension to Multizone Problems: Realistic structures are usually

presented with heterogeneity, complex material behaviors and sophisticated loading.

It is therefore necessary, at the first step, to adapt the single-region formulation of

the SGBEM to multi-region but piecewise homogeneous problems of linear, isotropic

materials. The adopted technique takes into consideration the continuity conditions

across the interfaces to formulate the Galerkin integral equations for each sub-

domain; then via a suitable arrangement of variables, the global system can be

obtained by simple linear combination of the sub-matrices. With opposite signs

associated with the traction at interface, all the terms sources of dissymmetry simply

vanish and leaves the resulted global matrix symmetric. This property is very useful

from a computational point of view and can be easily used to couple with the

FEM. The algorithm of the multizone SGBEM is represented as a loop on all sub-

domains. On each sub-domain, the corresponding local terms are computed, then

these contributions are transferred to the global system to form the desired values

(Eg. right-handed side vector, matrix-vector product). The second step is to apply

the Fast Multipole algorithm to the multizone SGBEM context. Even though, some
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cares must be taken in this implementation to ensure the efficiency of the multizone

FM-SGBEM, the transition from the multizone SGBEM to the multizone FM-

SGBEM in general can be done in a rather straightforward manner and are well-

discussed in the thesis. Various tests featuring different types of geometries and

different types of solicitations have been considered to verify the validity of the

implemented multizone FM-SGBEM.

3. Fatigue Crack Propagation: This application takes advantages of the

versatility of a boundary analysis during the re-meshing process. While the domain

approaches have higher difficulty for regenerating and updating the mesh at the

crack-tip, the BEM can perform this task rather smoothly. A simple example is

when the cracks are completely embedded in the solid; the re-meshing is thus done

simply by adding new elements to the crack-tip according to the pre-calculated

angle and direction of the crack advancement. In this work, the 3D fatigue crack

propagation governed by Paris law have been considered. Multiple simulations of

crack(s) propagation in both single-region and multi-region configurations have been

carried out and have produced satisfactory results. More complicated schemes of

crack propagation (Eg. surface breaking cracks, interfacial cracks or cross-interfacial

cracks) are expected in the future researches.

4. Simulation of Pavements: One possible application of the multizone FM-

SGBEM is in the simulation of road structures (pavements). Since these structures

are exposed to many unfavorable factors, complex crack distributions are usually

present and need to be taken into consideration. Several numerical simulations have

been carried-out. Due to the large contrast in geometrical and material character-

istics between the sub-layers, the computations can hardly converge. Nevertheless,

the successful calculations (on moderate-size pavements) still produce very satis-

factory results and promise better performances with further investigations and

refinements.
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Contexte

La modélisation numérique de la multi-fissuration et son influence sur le comporte-

ment mécanique des ouvrages du Génie Civil reste un sujet ouvert qui nécessite

le développement de nouveaux outils numériques de plus en plus performants.

L’approche retenue dans le cadre de nos travaux de thèse est basée sur l’utilisation

des concepts des équations intégrales de Galerkin (3D) accélérées par la méthode

multipôle rapide (Fast Multipole Method). Les méthodes intégrales sont bien con-

nues pour leur souplesse à définir des géométries complexes, spécialement celles

des domaines tridimensionnels et pour la grande précision qui caractérise leurs

résultats lors de la détermination des champs singuliers au voisinage de la fis-

sure en mécanique de la rupture. La mise en œuvre d’une stratégie de couplage

entre les deux approches (FM-SGBEM: équations intégrales et méthode multipôle

rapide) vient renforcer la phase de résolution largement pénalisée lors du traitement

des domaines de grandes tailles (nombre de degrés de liberté élevé) par équations

intégrales de Galerkin 3D pures. D’autre part, l’étude du comportement des struc-

tures qui relèvent du domaine du Génie Civil nécessite la prise en compte dans les

modèles, des hétérogénéités et de l’état de fissuration caractérisant leurs domaines

tout en considérant la complexité des chargements les sollicitant.

C’est dans ce contexte que nous avons proposé des adaptations aux environ-

nements numériques existants mais aussi des développement de nouvelles procédures

afin d’appréhender aux mieux le comportement de ces structures.

Plan de Mémoire

Le contexte et les objectifs de la thèse étant fixés, ce mémoire est découpé en sept

chapitres dont le premier se résume à l’introduction générale.

Dans le chapitre 2, de nature bibliographique, on y présente les différentes nota-

tions et définitions utilisées nécessaires à la compréhension des différents concepts

mathématiques introduits dans ce mémoire. Les bases théoriques de la méthode

des équations intégrales de Galerkin et de la méthode multipôle rapide sont en-

suite exposées. Nous nous sommes efforcés de décrire le plus fidèlement possible et

d’une manière exhaustive de l’environnement numérique basé sur la FM-SGBEM.

Le chapitre 3 présente les améliorations apportées dans un premier temps au code

de calcul pour en augmenter l’efficacité. Outre un gain de place en mémoire moyen-

nant l’utilisation d’une technique classique de stockage de matrice creuse, les deux

principaux apports concernent, d’une part l’utilisation de la méthode ’GMRES flex-

ible’ au lieu de la méthode GMRES, dans la résolution itérative du système linéaire

et d’autre part la mise en œuvre d’une intégration ’sélective’, en utilisant un nom-

bre de points de Gauss variable en fonction de la géométrie des éléments considérés.
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Ces travaux d’optimisation ont permis de mener des calculs de grandes tailles avec

une accélération significative. L’extension de la méthode au traitement des struc-

tures à zones multiples a fait l’objet du chapitre 4. Les interfaces entre zones sont

supposées parfaites. La prise en compte de la multiplicité des zones a constitué

un niveau de boucle supplémentaire et a nécessité des travaux d’adaptation de

l’algorithme ’mono-zone’. Les résultats issus des divers tests de validations y sont

détaillés et présentés. Le chapitre 5 traite de l’étude de la propagation de fissures

par fatigue selon la loi de Paris. Différents aspects concernant l’analyse de con-

traintes et la procédure du remaillage sont discutés. Dans le chapitre 6, la méthode

est appliquée à l’étude d’une chaussée souple fissurée. Les fissures transversales sont

présentées dans la couche supérieure. Le comportement du modèle sous l’effet de la

charge d’un demi-essieu est étudié. Le chapitre 7 donne, quant à lui, les conclusions

générales et discute des perspectives pour les améliorations et les développements

des environnements numériques mis en place.

Le mémoire est renforcé par l’insertion de quatre annexes qui donnent des détails

relatifs aux formulations de la FM-SGBEM ainsi que les techniques et les schémas

d’intégration numériques considérés dans le cadre de cette thèse. Une liste exhaus-

tive des subroutines du code numérique a été également jointe.

Concepts théoriques: Formulations intégrales de Galerkin et
Méthode Multipôle Radide

Les formulations intégrales symétriques de Galerkin: La méthode des éléments

de frontière par son approche symétrique (Symmetric Galerkin Boundary Element

Method), se base sur la discrétisation des équations intégrales de Galerkin [6]

dont le support des inconnues est réduit à la frontière du domaine Ω (Fig.2.6)

et la détermination des champs caractérisant le comportement du solide fissuré en

termes de déplacements et de tensions à la frontière du domaine et de sauts de

déplacements à travers les lèvres de fissures permet de réduire d’une dimension la

taille des problèmes étudiés.

Les équations décrivant du principe intégral variationnel de Galerkin se

présentent sous des formes bilinéaires de type I(E1, E2) =

∫
E1

∫
E2

K(x,y) avec

K(x,y) ∈ O(r−1) et la détermination de chacune de ces dernières consiste à évaluer

des doubles intégrales de surface portant sur deux supports géométriques de type

surfacique E1 et E2 parcourus respectivement par les deux points d’intégration x

et y.

Lors de la phase d’intégration numérique, nous distinguerons le traitement des

intégrales portant sur deux éléments éloignés, de celui des intégrales portant sur

deux éléments proches. Dans le premier cas, le nombre d’intégrales à évaluer reste

important et cette particularité s’accentue avec la taille du problème traité. Le re-

cours à la méthode multipôle rapide permet donc de s’affranchir du stockage des ma-

trices issues de la phase de discrétisation des ces intégrales. Dans le second cas, les

matrices sont explicitement définies et stockées dans une matrice nommée [Knear].
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Cette dernière est utilisée lors de la phase de préconditionnement du système ma-

triciel. Nous reviendrons sur ce dernier point, d’une manière plus détaillée dans les

prochaines sections.

La phase de discrétisation des formulations théoriques conduit à la construction

de systèmes matriciels symétriques, de tailles réduites. Néanmoins, ces derniers

présentent l’inconvénient majeur d’être pleins, ce qui pénalise considérablement la

phase de résolution lorsqu’on traite de structures de grandes tailles. La mise en

place d’une procédure de couplage de ces formulations avec la méthode multipôle

rapide (FMM) permet de s’affranchir de cette difficulté majeure.

Le concept de la méthode multipôle rapide: La FMM est basée sur la re-

formulation des noyaux constituant les fonctions fondamentales en termes de

développements en séries multipôles (K(x,y) '
∑
i

φ(
−→
Ox)ψ(

−→
Oy)) de manière à

ce que les variables x et y de l’intégrale soient séparées. Le vecteur r = x − y est

décomposé en r = (x − O) − (y − O). O est un pôle choisi de manière à ce que−→
Oy <

−→
Ox.

Une intégrale générique I =

∫
Sx

∫
Sy

f(x)K(x,y)g(y)dSydSx peut être évaluée

par

I '
∑
i

∫
Sx

f(x)φ(
−→
Ox)Mi(O)dSx (1)

avec le multipôle moment M(O) =
∫
Sy
ψ(
−→
Oy)g(y)dSy. Dans cette expression de I,

les variable x et y étant séparées, il n’est plus nécessaire de recalculer les solutions

fondamentales pour chaque couple de points. Il est donc possible de réutiliser les

intégrations précédentes selon x. Les contributions mutuelles entre tous les points x

et y sont ainsi réduites à quelques contributions entre paquets de points x et paquets

lointains de point y. Ce principe permet une accélération considérable de la phase

d’évaluations des intégrales doubles lors de chaque itération propre au calcul par la

méthode des éléments de frontière. La FMM étendue aux concepts des méthodes

intégrales permet d’effectuer les produits matrice-vecteur en un temps proportionnel

au nombre d’inconnues nodales N alors que l’approche classique demande des temps

de calcul assez prohibitifs (proportionnel au N2). De plus, le coût d’utilisation de

la mémoire centrale est considérablement réduit car la matrice du système n’est

jamais explicitement assemblée (contrairement à un analyse de frontière classique).

Travaux d’optimisation

Le solveur FM-SGBEM pour les équations de l’élastostatique 3D présenté dans

le chapitre 2 a déjà permis d’améliorer les performances de la SGBEM standard.

Toutefois, la méthode peut encore être améliorée et différents points qui peuvent

augmenter les performances de la FM-SGBEM sont donc présentés dans le corps de

ce document. Un important travail d’optimisation des outils numériques existants

a été mené afin d’améliorer les temps CPU affichés. Deux stratégies d’optimisation

basées, d’une part, sur l’évaluation et le stockage des matrices issues des intégrales
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proches (interactions proches stockées matriciellement dans [Knear]), et d’autre

part sur la procédure de préconditionnement du solveur Flexible GMRES, ont été

proposées et implantées.

Les intégrations traditionnelles de la SGBEM sont efficacement calculées en

adoptant le critère de sévérité (IS) [85] pour optimiser l’évaluation numérique des

intégrales. La matrice [Knear] issue de la phase de discrétisation des intégrations

proches est symétrique et creuse; son stockage comprimé fait appel aux algorithmes

de CSRSYM (Symmetric Compressed Sparse Row) [30] minimisant ainsi l’usage de

la mémoire vive.

La définition d’un préconditionneur est cruciale mais délicate dans le cadre de

la FMM car la matrice du système n’est jamais explicitement formée. On propose

ici d’utiliser comme préconditionneur la seule matrice dont on dispose, à savoir

[Knear]. La solution du système linéaire est réalisée par Flexible GMRES, un

outil puissant basé sur l’utilisation de deux solveurs itératifs embôıtés. Le solveur

extérieur est un GMRES flexible et le solveur intérieur est un GMRES classique

permettant de calculer l’inverse du préconditionneur. La phase de résolution est

menée donc avec un processus itératif impliquant le solveur Flexible GMRES à

préconditionnement par [Knear]; matrice à propriétés spectrales qui permettent

une accélération et une convergence remarquables de nos calculs. Les simulations

numériques menées à l’aide d’un calculateur à simple processeur sur des structures à

plusieurs millions degrés de liberté ont permis de bénéficier d’importantes réductions

en temps de calculs pouvant atteindre 80% des temps initiaux. Par ailleurs, les

performances de la méthode dépendent de manière très sensible d’un certain nombre

de paramètres, qui ont été ajustés au mieux d’après les résultats réalisés, mais qui

semblent difficiles à déterminer dans le cas général.

Multizone FM-SGBEM

La méthode présentée au chapitre 2 est limitée aux milieux homogènes. Pour

étudier des configurations réalistes, cette limitation est trop restrictive et c’est dans

ce contexte et à travers le chapitre 4 que nous nous somme proposés d’étendre la

formulation de la FM-SGBEM à des configurations multi-domaines.

L’extension des formulations théoriques existantes et le développement des

environnements numériques s’y rattachant pour appréhender le comportement

des domaines hétérogènes, caractérisés par la variabilité de leurs caractéristiques

mécaniques, ont fait l’objet de la seconde partie de nos travaux. Ces structures dites

hétérogènes (Fig.1), sont amenées à être représentées par plusieurs sous-domaines

séparés par des interfaces internes fictives et sur lesquelles, il conviendra de respecter

l’écriture des conditions de continuité et d’équilibre en termes de déplacements et de

tensions. La multizone FM-SGBEM est une formulation qui se base sur l’écriture

des équations usuelles de la SGBEM pour chaque sous-domaine de la structure

globale et qui fait appel par la suite à une judicieuse combinaison des sous-matrices

dérivant de chaque sous-domaine pour construire un système global assemblé.

L’implantation numérique de la FMM pour le cas multizone fait appel à une
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Figure 1: Domaine multizone Ω avec une fissure Sc

procédure de construction de l’arbre d’octree englobant toutes les zones du domaine.

Nous y traitons chaque zone localement : le calcul des moments, le transfert des

termes, les expansions locales se trouvent uniquement dans la zone étudiée. Le

résultat des produits matrice-vecteur locaux est ensuite traité dans le repère global

du le solveur itératif.

Plusieurs tests et applications numériques ont été étudiés pour différentes con-

figurations de structures hétérogènes telles que l’enveloppe sphérique à trois sous-

couches sous pression interne, le barreau sous l’effet de son poids propre, la fis-

suration d’un matériau du type matrice-inclusion (Fig.2) etc. Ces derniers sont

présentés avec détails dans le corps du manuscrit de thèse. Les temps de calculs

prouvent que la FM-SGBEM est un outil performant et compétitif par rapport aux

autres approches.

(a) (b)

Figure 2: (a) Modèle d’un matériau composite fissuré (avec réseaux de 4x4x4 in-

clusions sphériques & 8x8x8 fissures) (b) Zoom-in du modèle
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Étude de la propagation de fissures

Les aspects liés à la problématique de propagation de fissures 3D dans ces structures

ont été intégrés à nos travaux. Les difficultés caractérisant la phase de remaillage

3D lors de la propagation de fissures, soulevées par les méthodes classiques telles

que celles des éléments finis, ne sont pas rencontrées lors d’un traitement par la FM-

SGBEM et le 3D-remaillage par éléments de frontière est une étape relativement

simple. Nous avons fait appel au critère de propagation de fissures découlant de la

loi de Paris en fatigue.

A partir des sauts de déplacements à travers les lèvres de fissures fournis par

la méthode SGBEM étendue aux solides fissurés, il convient de calculer les fac-

teurs d’intensité de contraintes pour déterminer ensuite l’angle et l’amplitude de

propagation de la fissure. Un remaillage de la pointe de fissure est alors réalisé

sans difficulté particulière. Une illustration de la technique est, dans un premier

temps, proposée sur un cylindre comportant une seule fissure circulaire inclinée et

dans un deuxième temps, sur des solides multifissurés. Les résultats obtenus sont

cohérents avec les références et ont permis de valider les modèles et les environ-

nements numériques développés. La procédure de couplage des méthodes intégrales

avec la méthode multipôle rapide a trouvé toute son importance lors de calculs

menés en propagation de fissures sur des domaines hétérogènes.

Application à une structure réelle de Génie Civil

La dernière étape de nos travaux a consisté en l’étude d’une structure de chaussée

routière souple (Fig.3) présentant un état de fissuration élevé. Cette structure est

également caractérisée par un état de contraintes hétérogènes.

Figure 3: Une structure générale de chaussée

Le modèle de chaussée se compose de trois sous-couches d’épaisseurs respectives

2200 mm pour la plus profonde, 500 mm pour la médiane et 66 mm pour la super-

ficielle. Les valeurs des modules d’Young correspondant sont égales à 80 MPa, 180

MPa et 6110 MPa. Nous nous intéressons à calculer la déflexion de chaussée sous

l’effet de chargement de véhicules. Quelques limitations sont apparues lors de la

phase de calcul et ce en raison d’un fort contraste entre les dimensions des couches
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constitutives et de la grande variabilité de leurs rigidités. Des améliorations aux

tests numériques doivent être apportées.

Conclusions et Perspectives

Les environnements numériques développés dans le cadre de cette thèse ont doté

l’équipe d’un outil de modélisation original lui permettant de mener des calculs

sur des structures à plusieurs millions de degrés de liberté, dans un temps op-

timisé et moyennant l’utilisation d’un calculateur modeste à simple processeur.

Nous nous sommes également affranchis des difficultés liées à la modélisation des

géométries et des configurations complexes reflétant au mieux le comportement des

ouvrages du Génie Civil. Des modèles pour étudier des structures hétérogènes,

pesantes, présentant un état de fissuration avancé en propagation ont été intégrés.

Les résultats encourageants obtenus laissent entrevoir des perspectives intéressantes

quant à l’adaptation de ces travaux pour inclure des aspects en élasto-statique avec

déformations ou contraintes initiales, se présentant notamment en thermoélasticité

ou en micromécanique lors de la présence d’inclusions, sièges de déformations

anélastiques.
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Chapter 1

General Introduction
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1.1 Context and Motivation

Even though the Finite Element Method (FEM) is arguably the best approach for

all problems in engineering, its effectiveness and efficiency is not comparable to the

Boundary Element Method (BEM) in certain circumstances such as unbounded me-

dia, crack propagation... The BEM is a numerical computational method of solving

linear partial differential equations which have been reformulated as integral equa-

tions. The application of BEM can be found widely in many areas of engineering

including elasticity [72], geomechanics [70, 71], structural mechanics [81], electro-

manetics [79], acoustics [76], fracture mechanics [11].... Conceptually, the BEM is

based on the discretization of the boundary integral equations (BIEs), so only the

boundary of the problem is needed to be discretized. This distinguishing feature

(opposing to volume methods) typically reduces the geometrical dimension by one

thus makes the data generation in a boundary analysis much more simple and faster.

In correlation to this fact, if one considers a BE model and a FE model of the same

physical problem which give two approximate solutions of comparable accuracy, it

turns out that the number of unknowns in the BE model is much lower than the

FE model where 3D elements are involved.

An approach based on a variational (weak) version of the integral equations

(namely Symmetric Galerkin BEM) is a highly robust and efficient alternative

boundary elements method. The SGBEM has been the subject of extensive investi-

gations since it was first proposed in 1979 [13]. The key advantage of the Galerkin

formulations is the ability to treat hypersingular (as well as standard singular)

equations by means of standard continuous elements. The more commonly-used

method called collocations requires a differentiable boundary interpolation which

is inherently difficult and computationally expensive. Considering the essential

role of hypersingular equations in the fracture mechanics [68–70], this advantage of

SGBEM become more significant. Additionally, despite that SGBEM is more ex-

pensive than the collocations due to the evaluation of the double surface integrals,



2 Chapter 1. General Introduction

the method still stays very attractive because of its symmetric matrix which can

be exploited to lessen the numerical work or to couple with finite element [3, 5].

Application of the Galerkin method can be found in a broad range of engineering

problems: 3D steady and incompressible flow by Capuana et al. [73], a Stokes prob-

lem with general boundary condition with slop condition was reported by Reidinger

and Steinbach [80], a fully symmetric formulation for interface and multi-zone prob-

lems by Maier [78], by Gray and Paulino [74], dynamic soil-structure interaction by

Lehman and Antes [77] ...

However, the boundary elements only show its efficiency than other methods

in special contexts where there is a high ratio of surface or where the geometries

evolve over time. Moreover, the number of unknowns which a traditional boundary

analysis is capable of solving, is also limited: Because the matrix issued from the

discretization phase is fully-populated, the storage requirements and computational

time will tend to grow according to the square of the problem size. As a result,

the computational resources exhaust rapidly on standard devices and boundary

elements are restraint in treating only problems of moderate size. Many methods

have been introduced to alleviate this O(N2) scaling. One of the most successful

algorithm is the Fast Multipole Method (FMM) [33]. Based on a reformulation of

the Green functions, the method is proved to reduce the complexity to nearly linear

with the number of unknownsO(N). With the apperance of the FMM in a boundary

elements computation, the storage requirements and computational cost can be

effectively reduced to O(NlogN). These improvements make the boundary integral

methods numerically very efficient and competitive with domain approaches. Over

recent decades, the Fast algorithm has been applied in various fields: elastostatics

[5,32], fracture problems [4,11], fluid dynamics [46], electromagnetic [47]... The fact

that this method is nominated one of the top 10 algorithms of the century show

how much influence it has on numerical analysis.

In order to solve 3D problems of engineering interest, the first unavoidable

challenge is the computational efficiency. Considerable efforts have been spent in

this thesis for this starting purpose. The main goals of our work concerns the

extensions and applications of the FM-SGBEM in complex and large-scale issues

such as fractured multizone, fractured composite and crack propagation.

All the numerical codes have been written in Fortran 90. There are a number of

authors who have contributed for the early developments of this code: Mouhoubi [3]

and Pham [1] in 2010 - FM-SGBEM ... The optimization and extensions of the FM-

SGBEM code to multizone, composite and crack propagation have been developed

in-house by the author. Some basic operations (matrix, vector, algebra), however,

have been adopted from the optimized libraries (BLAS). To generate the meshes, a

commercial pre- and post-processor software (Gid) has been used. To visualize and

analyze the output results, Medit has been utilized. SAP 2000 has also been used

to provides some simple finite elements references.
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1.2 Outlines of the Thesis

In chapter 2, the basic mathematical framework of the Elasticity and Fracture Me-

chanics are briefly recalled. The Symmetric Galerkin formulations for each problem

are given. Then some aspects of the numerical solution by the Boundary Elements

Method (discretization, evaluation of integrals, use of an iterative solver ...) are

mentioned. We discuss afterward the need of a Fast algorithm for the SGBEM.

The principle of the Fast Multipole Method is described and the formulation of the

FMM are introduced. The computational scheme of the multi level FMM is also

illustrated. The numerical aspects of the program as well as a generic FM-SGBEM

algorithm are finally described.

In chapter 3, some techniques to enhance the performance of the FM-SGBEM

algorithm have been reported. The first issues when dealing with large-scale prob-

lems resides in the storage of the near-interaction matrix. A simple compress format

has been proposed, the memory constrain has been easily tackled as the numerical

tests have been able to deal with problems of 3× 106 unknowns. Secondly, the long

iterative solution times produced by GMRES has also been reduced with help of a

more powerful preconditioning strategy by Flexible GMRES. Furthermore, analysis

on different choices of input parameters have also been conducted. The validation

tests have been run and the clear improvements of the numerical code have been

reported.

Chapter 4 introduces the extension of the FM-SGBEM in the context of het-

erogeneity, or more precisely, the study of internal interfaces. An advanced and

efficient technique which render symmetric the global system has been adopted.

The multizone formulation as well as the numerical implementation of the method

has been described. A number of validation tests in elasticity or fracture mechanics

has shown a great accuracy of the algorithm. As the numerical code has become

able to treat more complex configurations, many interesting applications have been

opened: multiple-layers road-structure or composite materials... The last example

in this chapter illustrates a model of solid with presence of different sizes and shapes

of random spherical inclusions and cracks.

In chapter 5, a simple crack propagation based on the Paris fatigue law has

been discussed. We introduced first the propagation criterion then the remeshing

strategy. The numerical aspects of the FM-SGBEM to deal with the crack propa-

gation have been presented. A couple of numerical experiments have been carried

out and the obtained outputs are very encouraging.

Chapter 6 presents an application of the method FM-SGBEM in a practical

civil engineering problem: A multi-layer road structure is considered. Real loading

and material properties have been assigned for the models. For verification pur-

poses, there are a number of references that have been attributed. One of which is

extracted from a finite calculation of CAST3M and the others are provided from

real measurements taken on site by the colleagues in COMPANY NAME. Ideally,

these configurations can be solved easily with the implemented FM-SGBEM but in

fact, they feature unfavorable conditions for a 3D boundary analysis such as the
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very thin layer design or considerable contrasts between the constitutive materials’

properties. These elements may have caused the coefficient matrix ill-conditioned

and have therefore led to very slow or nearly unachievable convergences. Never-

theless, the converged calculations show a very good agreement with the provided

references and promise to obtain better results with future refinements.

Lastly, some concluding remarks and discussions have been given in Chapter

7. The perspectives as well as the directions for future researches have also been

introduced.

The thesis also contains 4 Annexes which present the details, descriptions, for-

mulations and complementary techniques related to the method FM-SGBEM as

well as the numerical program. Annex A introduces the integration techniques for

regular and singular cases. Annex B and D show the detail of the Fast Multipole

formulation when applied to the SGBEM. Annex C describes the structure of a

generic FM-SGBEM code along with the name and utility of the most important

subroutines.
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Basic Framework of the Fast

Multipole SGBEM
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Among many alternatives in linear elastic fracture mechanics, boundary ele-

ment method (BEM) is a very attractive option. The advantages in the BEM

arise from the reduction of problem dimension and from its superiority in treat-

ing specific domains of application. Unlike domain methods, the BEM can treat

infinite/semi-infinite domains by discretizing only the finite boundary (Eg. Inter-

action soil/structure, exterior problems ...). Another key feature of the BEM in

fracture mechanics is that the singular stress field at crack front is not approxi-

mated (it is shown in [19] that more accurate results for stress can be obtained).

Also, with evolutive boundaries (Eg. crack propagation...), it is much easier to

re-mesh the cracks by BEM than by finite methods and the outer boundary is not

required to be re-meshed during the modeling of crack propagation. Moreover, the
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study of cracks often leads to the modeling of realistic thus very complex configu-

rations where many materials are considered. This class of problem is also known

as multidomain or interface problems. The BEM approach is still very attractive as

it provides a natural treatment of the interface’s continuity. Taking an example in

elasticity, for the displacement-based FEM, it is difficult to enforce the continuity of

traction, however, for boundary integral equations, this condition appears directly

in the formulations. In [10], a simple technique is introduced to incorporate all

the interfacial conditions in the SGBEM formulations and to construct the global

symmetric system in a very efficient manner.

During its development, with help of advanced techniques and optimizations,

BEM has become an efficient tool and can be used in many other interesting ap-

plication fields. An approach of the BEM, based on the Galerkin approximation,

namely Symmetric Galerkin BEM (SGBEM) [6] is highly advantageous in frac-

ture studies [25]. First, less restrictive requirement than the collocation approach

is imposed on the displacements, thus standard continuous elements can be em-

ployed to evaluate the hypersingular integrals. Secondly, the discretized coefficient

matrix is symmetric which lessens greatly the numerical costs (for both matrix

construction and storage). The main drawback of the method is that the double

surface integrals typically give rise to symmetric but fully-populated matrix. Con-

sequently, the solution becomes very expensive as the number of unknowns grows:

the buildup requirements are of order O(N2), N being the number of unknowns,

and a direct solver may take O(N3) operations to achieve the results. Therefore, the

boundary method is limited to relatively small problems. On the other hand, since

the coefficient matrices in domains approaches are banded and the computational

complexity is of O(N), it is easier and more suited to treat large-scale problems.

Fortunately, the usual slow evaluation of double integrals in the SGBEM can be

sped up by the fast multipole method (FMM). Initially introduced by Rohklin [33],

this algorithm considers one group of particles and represents it by an intermedi-

ate pole. As all the interactions with this group is transferred via this pole, the

overall number of operations is greatly reduced. By coupling the SGBEM with

the Fast Multipole Method (FMM) and an iterative solver, the complexity of the

method is significantly reduced: O(N) for the storage requirements and O(NlogN)

for the operation count [4]. Therefore, the range of boundary analysis can now

be extended to large-scale practical issues with a very good performance (see, for

example, application of FMM in elastodynamics [2]).

In this chapter, some basic concepts of the linear elasticity and fracture mechan-

ics are briefly recalled. The principal of virtual work and Betti’s reciprocal theorem

are described in order to derive the boundary integral equations. The symmetric

Galerkin approach (SGBEM) is also mentioned and the regularized version is pre-

sented. Some important aspects and limitations of the numerical solution including

the use of a preconditioner and an iterative solver are discussed. The computa-

tional limitations of the BEMs arise in this phase which motivate the use of the

Fast multipole method. Simple descriptions of the principle and the formulations

of the Fast algorithm are given. Lastly, a generic computational scheme of a Fast
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Multipole SGBEM is described and discussed.

2.1 Elastostatics

All Boundary Elements Analysis are rooted in the mathematical theory of linear

elasticity which provided central concepts such as effect superposition, influence

functions, reciprocity relationships and basic ingredients such as Kelvin’s funda-

mental solution (1848), Somigliana’s identity (1886)... Therefore, in a most natural

possible approach, we would like to introduce briefly the basic aspects of elasticity

then the formulation of the boundary integral equation and the Symmetric Galerkin

BEM in linear elastostatics. Afterward, we will discuss about its developments and

extensions in complex fractured configurations in the following sections.

2.1.1 Elastostatics problems

Figure 2.1: Elastic solid

Let us consider a 3D elastic deformable body Ω (Fig.2.1), either bounded or

unbounded, subjected to body force bi, imposed boundary conditions of traction

ti = tdi on surface St and prescribed displacement ui = udi on surface Su (shown in

figure etc). The stress state at the point y inside Omega is described by the stress

tensor σij , while the tractions relevant to a direction n (being the outward unit

normal vector to ∂Ω) are given by:

ti(y) = σij(y)nj(y) (i, j = 1, 2, 3 in 3D) (2.1)

In the absence of body forces, the equilibrium equation can be written as:

σij,j(y) = 0 (y ∈ Ω) (2.2)

where (.),j stands for the derivative of (.) along the jth direction.
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Strains, described by tensor εij , are related to displacement by:

εij(y) =
1

2
[ui,j(y) + uj,i(y)] (y ∈ Ω) (2.3)

The consecutive law for linear elastic and isotropic material (Hooke’s law) can

be written as:

σij(y) = λδijεkk(y) + 2µεij(y) (2.4)

where λ and µ are the Lamé constant and δij is the Kronecker symbol. The above

equation can also be expressed as:

σij(y) = Cijhkεhk(y) (2.5)

where the elastic coefficients of the fourth-order tensor Cijhk are given by:

Cijhk = λδijδhk + µ(δikδjh+ δihδjk) (2.6)

This tensor can also be represented in terms of the Poisson ration ν and shear

modulus µ:

Cijhk = 2µ[
ν

1− 2ν
δijδhk + δikδjh+ δihδjk] (2.7)

Therefore, the equilibrium equation can be written as:

µui,jj(y) + (λ+ µ)uj,ji(y) = 0 (y ∈ Ω) (2.8)

Maxwell-Betti reciprocal theorem

Two sets of stresses, body forces and boundary tractions σ1
ij , b

1
i ,t

1
i and σ2

ij , b
2
i ,t

2
i are

said to be statically admissible if equations (2.1) and (2.2) are satisfied. Two sets of

displacements and strains u1
i ,ε

1
ij and u2

i ,ε
2
ij are said to be kinematically admissible

if equations (2.3) hold. According to the principle of virtual work, for any statically

admissible and any kinematically admissible set of quantities, the following integral

statement can be written for 2 different states:

∫
Ω
σ1
ijε

2
ijdV =

∫
∂Ω
t1iu

2
i dS +

∫
Ω
b1iu

2
i dV (2.9)∫

Ω
σ2
ijε

1
ijdV =

∫
∂Ω
t2iu

1
i dS +

∫
Ω
b2iu

1
i dV

Betti’s reciprocal theorem can be obtained:
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∫
Ω

(b2iu
1
i − b1iu2

i )dV =

∫
∂Ω

(t1iu
2
i − t2iu1

i )dS (2.10)

Integral equations

The integral equation for the elastostatic problem can be derived from the Betti’s

reciprocal theorem: letting (u1, t1, b1) denote the real elastic state of the body Ω,

while (u2, t2, b2) can be chosen to represent the response of the infinite domain Ω∞
to a concentrated force acting at point x:

b2i = δ(x,y)e`i

u2
i = Uki (x,y)e`k

t2i = Σk
ij(x,y)nj(y)e`k

where δ(x,y) is the Dirac delta function.

Expression of the fundamental solutions Uki and Σk
ij are given:

Uki (x, x̃) =
1

8πµr

[ 3− 4ν

2(1− ν)
− 1

2(1− ν)
r,ir,k

]
(2.11)

Σk
ij(x, x̃) = − 1

8π(1− ν)r2

[
3r,ir,kr,j + (1− 2ν)(δikr,j + δjkr,i − δijr,k)

]
(2.12)

The Somigliana integral equation for displacements can be obtained by intro-

ducing equation (2.11) into equation (2.10):

uk(x) =−
∫
∂Ω
ui(y)nj(y)Σk

ij(x,y)dSy

+

∫
∂Ω
ti(y)Uki (x,y)dSy +

∫
Ω
bi(y)Uki (x,y)dV (x ∈ Ω) (2.13)

apply the Hooke’s law for this equation, one gets:

σij(x) =Cklab

∫
∂Ω
uk(y)nj(y)

∂

∂yb
Σa
ij(y,x)dSy

−
∫
∂Ω
tk(y)Σk

ij(y,x)dSy +

∫
Ω
bi(y)Σk

ij(y,x)dV (x ∈ Ω) (2.14)

The above equations are called the integral representations which permit to

calculate the displacement and stresses at any point x interior to domain Ω when

the displacement and traction fields are known over the whole boundary ∂Ω. These

equations become invalid when the point x ∈ ∂Ω.

In order to obtain an equation which involves only the boundary quantities, the

source point x has to be moved to the boundary ∂Ω and a limit process is performed
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(details of the procedure can be found in [6]). This procedure results in a boundary

integral equation for displacements:

∫
∂Ω
{[ui(y)− ui(x)]T ki (x,y)− ti(y)Uki (x,y)}dSy =

∫
Ω
ρbi(y)Uki (x,y)dV (2.15)

In an analogous manner, we get the boundary integral equation for tractions.

These equations form the basis of the subsequent discretization progress which give

rise to the collocations approach.

2.1.2 Symmetric Galerkin formulations in Elastostatics

Figure 2.2: Boundary ∂Ω and auxiliary surface S̃

Unlike the Collocations approach, the Symmetric Galerkin BEM is based on a

variational (weak) version of the integral equations. It provides a symmetric and

sign-definite coefficient matrix through the evaluation of double integrations. Over

many decades, the SGBEM has been the subject of many extensive researches. The

interested readers are refered to [6] for more details of the method. Here, only a

simple description of SGBEM for elastostatic problem is introduced:

Let S̃ be a closed, regular surface near the boundary ∂Ω and defined by means

of a one-to-one mapping F onto ∂Ω (Fig.2.2):

y ∈ Ω→ z = F(y) ∈ S̃ (2.16)

As the image of the boundary ∂Ω, the surface S̃ also consists of 2 portions S̃u and

S̃t. The idea is to perform some analytic manipulation, for regularization purposes,

on the double surface integrals over ∂ΩxS̃ and then consider the limiting process

S̃ → ∂Ω. Following the approach introduced by Sitori et al. [43], the SGBEM

procedure consists basically of 2 distinct steps:

1. At first, the classical displacement and traction boundary integral equations

are enforced in a weak sense on the auxilary contours S̃ distinct from ∂Ω. The

displacement equation can be enforced on the surface S̃u in a weighted sense using

a test function t̃(x̃). In the same manner, the traction equation can also be written

on S̃t with the test function ũ(x̃). An analytical regularization procedure is carried

out via integration by parts and Stokes theorem.
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2. Secondly, the limit S̃ → ∂Ω is taken and the discretization phase is performed.

The detailed Symmetric Galerkin equations governing the unknown boundary traces

u on St and t on Su for a mixed boundary value problem in elastostatic (see [36,

37,43]) is shown below:

Find (u, t) ∈ Vu×Vt,

{
Buu(u, ũ) + Btu(t, ũ) = Fu(ũ)

But(u, t̃) + Btt(t, t̃) = Ft(t̃)
∀(ũ, t̃) ∈ Vu×Vt (2.17)

using the the bilinear forms:

Buu(u, ũ) =

∫
St

∫
St

(Ru)iq(x)Bikqs(r)(Rũ)ks(x̃)dSx̃dSx (2.18)

Btu(t, ũ) = −
∫
Su

∫
St

tk(x)T ki (x, x̃)ũi(x̃)dSx̃dSx (2.19)

But(u, t̃) = −
∫
Su

∫
St

t̃k(x̃)T ki (x̃,x)ui(x)dSxdSx̃ (2.20)

Btt(t, t̃) =

∫
Su

∫
Su

tk(x)Uki (x, x̃)t̃i(x̃)dSx̃dSx (2.21)

and the linear forms:

Fu(ũ) = (κ− 1)

∫
St

tDk (x)ũk(x)dSx +

∫
St

∫
St

tDk (x)T ki (x, x̃)[ũi(x̃)− ũi(x)]dSx̃dSx

−
∫
St

∫
Su

tDk (x)T ki (x, x̃)ũi(x)dSx̃dSx −
∫
Su

∫
St

(Ru)Diq(x)Bikqs(r)(Rũ)ks(x̃)dSx̃dSx

Ft(t̃) = κ

∫
Su

uDk (x)t̃k(x)dSx +

∫
Su

∫
Su

[ũDi (x)− ũDi (x̃)]T ki (x̃,x)t̃k(x̃)dSxdSx̃

−
∫
St

∫
Su

tDk (x)Uki (x, x̃)t̃i(x̃)dSx̃dSx −
∫
Su

∫
St

uDi (x̃)T ki (x̃,x)t̃k(x̃)dSxdSx̃

(2.22)

The coefficient κ = 0 or 1 depends on whether the unit normal to Su or St is

directed toward the exterior or interior of that surface. Uki and T ki denote respec-

tively the components in the direction i of the Kelvin fundamental displacement

and traction at x ∈ R3 created in an elastic full-space by a point force applied at

x̃ ∈ R3 and are written as:

Uki (x, x̃) =
1

8πµr

[ 3− 4ν

2(1− ν)
− 1

2(1− ν)
r,ir,k

]
(2.23)

T ki (x, x̃) = − 1

8π(1− ν)r2

[
3r,ir,kr,j + (1− 2ν)(δikr,j + δjkr,i − δijr,k)

]
nj(y)

(2.24)
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having set:

r = x− x̃ r =‖ r ‖ r̂ = r/r (2.25)

The space Vu and Vt of admissible boundary traces of displacements and tractions

are definded as:

Vu = {u ∈ H1/2(S), supp(u) ⊂ St}

Vt = {u ∈ H−1/2(S), supp(t) ⊂ Su} (2.26)

and ũ,̃t are test displacements and tractions. Natural finite-dimensional subspaces

of Vu and Vt for Galerkin discretization consist of continuous interpolatons of u over

St with a zero trace on the edge ∂St and piecewise-continuous interpolation of t over

Su. In particular, in contrast to the case of the traction CBIE, the interpolation

method puts no requirement on the derivatives of u. Note that the data uD ap-

pearing in (2.22) is actually an arbitrary extension to ∆Ω of the dispalcement value

prescribed on Su, having uD ∈ H1/2(∂Ω) regularity, so that the actual displacement

on St is u + uD. This allows u and ũ to belong to the same space Vu.

Formulations (2.18) and (2.22) are written in regularized form [36], which involve

only weakly singular double surface integrals with O(r−1) integrands. The regu-

larization involes the Stokes theorem together with indirect regularization. The

surface curl operator R arising as a result of this manipulation is defined [35]

by [Ru]ks(x̃) = ejrsnjuk,r(y) (where ejrs denotes the permutation symbol). The

weakly singular fourth-rank tensor Bikqs(r) can be expressed as following:

Bikqs(r) =
µ

4π(1− ν)

[(
δqsδik − 2δisδkqν − (1− ν)δiqδks

)
r−1 + δqsr,ir,k

]
(2.27)

2.2 Fracture Mechanics

It is well-known that fractures are critical phenomena in civil engineering since they

can lead to complete destruction of the structures. Because of its importance and

complexity, fracture mechanics have become a field of research interest to mathe-

maticians, scientists and engineers since many decades. Analysis of fracture are one

of the most successful application areas for the boundary integral equations. The

method possesses inherent advantages for these calculations over domain approaches

especially when cracks are directly represented as displacement discontinuity loci

and the traction integral equation is employed to enforce static conditions on the

crack itself.

Fracture mechanics are analogous to the study of cracks. In order to investigate

precisely the phenomenon related to fractures, three-dimensional analysis of cracks

are indispensable. However, 3D calculations always tend to become large and so-

phisticated if we take into account the propagation of cracks. In these models, a

sufficiently fine mesh is needed for the crack front’s orientation and advancement.
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Afterward, the remeshing is required and the computation must be repeated at

each configuration. These tasks have proven to be very difficult with classic domain

approaches since a large amount of volume-elements have to be considered.

The SGBEM, on the contrary, has several key advantages in fracture applica-

tions: (i) it considers only the boundary of the problem thus lessen the most the

cost of build-up data and remeshing (ii) the matrix issued from the discretization

is symmetric (iii) no smoothness is required on the displacement to evaluate the

hypersingular integral thus making use of highly efficient quarter-point elements

to capture the crack-tip behavior (iv) the weighted formulation of Galerkin pro-

vides a smoother solution in the neighborhood of geometric discontinuity. In the

following subsections, the basic concepts of fracture mechanics are recalled and the

formulation of the SGBEM in this matter is given.

2.2.1 Fracture Mechanics problems

Fracture mechanics is the field of mechanics concerned with the study of the crack

propagation of cracks in materials. It uses methods of analytical solid mechanics

to calculate the driving force on a crack and those experimental solid mechanics to

characterize the material’s resistance to fracture. There are three ways of applying

a force to enable a crack to propagate (shown in Fig. 2.3):

Figure 2.3: Cracks modes

• Mode I - Opening mode (a tensile stress normal to the plane of the crack)

• Mode II - Sliding mode (a shear stress acting parallel to the plane of the

crack and perpendicular to the crack front)

• Mode III - Tearing mode (a shear stress acting parallel to the plane of the

crack and parallel to the crack font)

Stress intensity Factors - K (SIFs) are used in fracture mechanics to predict the

stress state near the tip of a crack caused by a remote load. It is a theoretically
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construct usually applied to a homogeneous, linear elastic material and is useful for

providing a failure criterion for brittle materials and is a critical technique in the

discipline of damage tolerance. The magnitude of K depends on sample geometry,

the size and location of the crack, and the magnitude and the modal distribution

of loads on the material.

Figure 2.4: Coordinates at the crack tip

Linear elastic predicts that the stress distribution (σij) near the crack tip, in

polar coordinates (r, θ) (Fig.2.4) with origin at the crack tip, has the form:

σij(r, θ) =
K√
2πr

fij(θ) +O(1) (2.28)

where K is the SIF (with units of stress x length0.5) and fij is a dimensionless

quantity that depends on the load and geometry. Different subscripts are used to

designate the SIF for three different modes:

KI = lim
r→0

√
2πrσyy(r, 0) (2.29)

KII = lim
r→0

√
2πrσyx(r, 0) (2.30)

KIII = lim
r→0

√
2πrσyz(r, 0) (2.31)

In the numerical modeling of linear elastic fracture mechanics problems by the

SGBEM, the cracks are represented as displacement discontinuity and the traction

integral equation is employed to enforce the static condition on the crack itself.

The crack Sc separates locally the solid into two parts, Sc− with the unit outward

normal n, Sc+ with opposite normal -n. Surface Sc is called a crack. When the

solid is subjected to loads, there is a crack opening displacement:

∆ui = u+
i − u−i (2.32)

The normal jump is non negative. The condition ∆u3 ≥ 0 must be considered

in some interface crack problems in order to avoid overlapping phenomena, also
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guarantee the uniqueness of the solution. When the normal crack discontinuity is

positive, the stress vector vanishes on the crack.

Quarter-point elements

Figure 2.5: Quarter point element

In order to better capture the behavior of the fissure in the crack-front (which

presents the singularity), the elements adjacent to the front of the crack are modi-

fied. Let us consider a quadrilateral 8-nodes isoparametric element adjacent to the

crack’s front (see Fig.2.5). 2 middle nodes 2 and 6 are pushed closer to the crack

front by a quarter of the element edge’s length:

y2 − y1 = −as
y3 − y1 = −4as

The node y2 ∈ [y1,y3] is at quarter of the length ‖ y1 − y3 ‖= 4a. On the

segment [y1,y3], the interpolation is quadratic and the point y is interpolated by:

y = N1(ε)y1 +N2(ε)y2 +N3(ε)y3 (2.33)

The interpolation functions are the ones of a 3-nodes quadratic element and are

given by:

N1(ε) =
1

2
ε(1− ε)

N2(ε) = 1− ε2

N3(ε) =
1

2
ε(1 + ε)

We can pose that:

y − y1 = −(1 + ε)2as

and the distance becomes:
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d =‖ y − y1 ‖= a(1 + ε)2

The expression of the approximation of the displacement discontinuities ∆u:

∆u(y) = N2(ε)∆u2 +N3(ε∆u3)

= (1 + ε)

[
∆u2 + (

1

2
∆u3 −∆u2)ε

]
In paying attention to ∆u1 = 0 because the opening displacements are nulls on

the crack front. And in function of d, we can rewrite the above expression as:

∆u(y) =

(
d

2

)1/2
[

2∆u2 − 1

2
∆u3 +

(
d

2

)1/2(1

2
∆u3 −∆u2

)]
With help of the usual interpolation functions, it is possible to represent the

variation in d
2 of ∆u in proximity of the crack surface. These stress intensity

factors KI for example, can be evaluated from the nodal values of ∆u2 and ∆u3:

K1
I = lim

d−→0

µ

4(1− ν)

(
2π

d

)1/2

∆un

= lim
d−→0

µ

4(1− ν)

(
2π

d

)1/2
[

2∆u2
n −

1

2
∆u3

n +

(
d

2

)1/2(1

2
∆u3

n −∆u2
n

)]

=
µ

4(1− µ)

(
2π

a

)1/2 [
2∆u2

n −
1

2
∆u3

n

]
(2.34)

Besides, we can use the same procedure to compute the other factors K1
II or

K1
III .

2.2.2 Symmetric Galerkin formulations in Fracture Mechanics

Figure 2.6: Solid containing a crack



2.2. Fracture Mechanics 17

Considering a fractured solid Ω subjected to prescribed tractions tD on the

boundary St and displacement constraints uD on Su. The boundary of Ω (includ-

ing the crack Sc) is thus defined as S = St
⋃
Su
⋃
Sc. Sc is conceived as a locus

of displacement discontinuity, the jump of the displacements can be computed as

∆u(x) = u(x+)−u(x−) where u(x+) and u(x−) are respectively the displacement

of the upper and lower faces of the crack (Sc = S−c
⋃
S+
c ). The direction of the

normal of the crack is by convention, pointing from S− to S+. Introducing now

a fictitious surface S̃ interior to ∂Ω. Assuming the existence of a one-on-one cor-

respondence between points x ∈ S and x̃ ∈ S̃ : x̃ = X (x, h). The two surfaces

coincide as the parameter h = 0. We also take into account the crack surfaces

S̃+
c , S̃

−
c and their correspondences. The SGBEM procedure consists of two steps:

at first, the classical displacement and traction boundary integral equations are

written in a weak form on the auxiliary contours S̃ and S̃c distinct from S and Sc
(i.e. with h 6= 0) and an analytical regularization procedure is carried out by inte-

gration by parts and Stoke theorem. Secondly, the limits S̃ → S, S̃c → Sc(h → 0)

are taken and the discretization procedure is performed. The definition of an auxil-

iary surface S̃ ∪ S̃c is hence only an artifice which proves useful to guarantee a firm

mathematical and computational basis in dealing with the double surface integrals

involved in the formulation; however, S̃ and S̃c do not play any role in the final

implementation of the method. Details of the mathematical developments of the

SGBEM can be found in [6]. The boundary integral formulation for this problem

is written as follow:

Find (u, t,∆u) ∈ Vu × Vt × Vc,
Buu(u, ũ) + Btu(t, ũ) + B∆uu(∆u, ũ) = Fu(ũ)

But(u, t̃) + Btt(t, t̃) + B∆ut(∆u, t̃) = Ft(t̃)

Bu∆u(u,∆ũ) + Bt∆u(t,∆ũ) + B∆u∆u(∆u,∆ũ) = F∆u(∆ũ)

(2.35)

∀(ũ, t̃,∆ũ) ∈ Vu × Vt × Vc

using the bilinear forms introduced in 2.18 and the following:

B∆uu(∆u, ũ) = −
∫
Sc

∫
St

(R∆u)iq(x)Bikqs(r)(Rũ)ks(x̃)dSx̃dSx (2.36)

Bu∆u(u,∆ũ) = −
∫
St

∫
Sc

(Ru)iq(x)Bikqs(r)(R∆ũ)ks(x̃)dSx̃dSx (2.37)

Bt∆u(t,∆ũ) =

∫
Su

∫
Sc

tk(x)T ki (x, x̃)∆ũi(x̃)dSx̃dSx (2.38)

B∆ut(∆u, t̃) =

∫
Su

∫
Sc

t̃k(x̃)T ki (x̃,x)∆ui(x)dSxdSx̃ (2.39)

B∆u∆u(∆u,∆ũ) =

∫
Sc

∫
Sc

(R∆u)iq(x)Bikqs(r)(R∆ũ)ks(x̃)dSx̃dSx (2.40)
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the linear form is given by:

F∆u(ũ) =

∫
Sc

pk(x)∆ũk(x)dSx +

∫
Su

∫
Sc

(RuD)iq(x)Bikqs(r)(R∆ũ)ks(x̃)dSx̃dSx

−
∫
St

∫
Sc

tDk (x)T ki (x, x̃)∆ũi(x̃)dSx̃dSx (2.41)

In (2.35), the spaces of admissible boundary traces are Vu and Vt (defined by

(2.26)), and Vc = H
1/2
0 (Sc). Natural finite-dimensional subspaces of Vc for Galerkin

discretization then consist of continuous interpolations of ∆u over Sc with a zero

trace on the crack front ∂Sc, with again no requirement on the derivatives of ∆u.

2.3 Boundary Element Analysis

After defining the boundary integral equations, the numerical solution of the sys-

tem is considered. Analytic solutions of the integral equations are no easier to

obtain than for the original differential equations, and thus it is necessary to re-

duce the continuous equations to a discrete system of linear equations that can be

solved. In this section, some basic steps in a boundary analysis such as geometries

discretization, integral evaluation and system solution are briefly recalled.

2.3.1 Discretization

The geometry discretization in the BEM is based on a partitioning of the boundary

surface ∂Ω in to Ne non-intersecting boundary elements E1, E2, .., EN

∂Ω '
Ne⋃
e=1

Se (2.42)

Figure 2.7: Boundary element Ee and referent element ∆e

One of the most convenient ways of having the necessary approximations is

using isoparametric method, in which the boundary and boundary functions are

represented through the same set of shape functions defined on a parameters space.

The discretization procedure can be briefly summarized as follow:
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A generic field f (i.e. geometry, displacements or tractions) can be approximated

in the point x over the elements Ee:

fj(y) =

Nn∑
α=1

Φe
α(ξ)feαj (2.43)

where Nn is the number of nodes of the element, Φe
α(ξ) is the shape function and

feαj are the nodal values belonging to element Ee. The vector y gathers the spatial

coordinates of a point inside the element in the global reference system, while in ξ

the local coordinates (with respect to the master element) are collected.

The use of bilinear elements is recommended even in large scale problems or in

curve boundaries because the numerical performance can be greatly sped up. In

case a very high accuracy is required (eg. behavior near the crack tip), quadratic

elements are employed. Therefore, to optimize our code’s functioning, in a generic

fracture problem, the outer geometries (if present) are usually meshed with Q4-

elements while the cracks are all modeled by modified Q8-elements.

2.3.2 Galerkin approximation

In contrast to collocation, the Galerkin approach does not require that the bound-

ary integral equations be satisfied at any point. Instead, the equations are enforced

in a weighted average where the weight functions are composed of all shape func-

tions that are non-zero on the studied node. The Symmetric Galerkin formulations

are written under double surface integral forms (2.36). The evaluation of the dou-

ble boundary integrals represents a crucial aspect in SGBEM. The generic double

surface integral equation takes the following form:

I(Se, Sf ) =

∫
Se

∫
Sf

f(x)K(x,y)g(y)dSydSx (2.44)

where Se and Sf are the surfaces of source and field elements (x ∈ Se,y ∈ Sf ), f(x)

and g(y) are respectively known and test function. K(x,y) is the Kernel which

contains the singularity O(r−1) or O(r−2). As an integration requires a pair of

source and field elements, there will occur the singularity when these two elements

are coincident, adjacent by edge or adjacent by vertex. For a 3D problems, there

are thus four possible configurations (Fig.2.8):

(i) Coincident: two identical elements

(ii) Edge-adjacent: two elements share one common edge (E5 with E2,E4,E6 and

E8)

(iii) Vertex-adjacent: two elements share one common vertex (E5 with E1,E3,E7

and E9)

(iv) Disjoint: two well-separated elements (Eg. E1 − E9, E3 − E7 etc...)
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Figure 2.8: Different elements interactions

Case (i), (ii), (iii) lead to singular integrals, while case (iv) is non singular. The

singular integrals are evaluated using special schemes described in [6]. The regular

integrals can be evaluated with normal quadrature rule. The integral of a pair of

elements can be written as:

I(Se, Sf ) =

∫
∆e

∫
∆f

f(x(η))K(x(η),y(ξ))g(y(ξ))Jy(ξ)Jx(η)dξdη (2.45)

where ∆e ∈ [−1, 1] × [−1, 1] and ∆f ∈ [−1, 1] × [−1, 1]. This integral can be

approximated by:

I(Se, Sf ) '
Npge∑
i=1

Npgf∑
j=1

f(ηi)K(ηi, ξj)g(ξj)Jy(ξj)Jx(ηi)A
j
ξj
Aiηi

(2.46)

where ηi and Aiηi
denote the abscissas and weights of the gaussian points for exterior

elements; ξj and Ajξj
denote the corresponding parameters for the interior elements.

Npge and Npgf are the number of Gaussian points for exterior and interior element

respectively.

2.3.3 System solution and limitations

The discretized equations system of the SGBEM can be written in matrix form:

[K]{x} = {b}, [K] is the influence matrix, the terms in [K] are derived from (2.18)

or (2.36). Vector {x} regroups all the unknowns on the boundaries of the problem:

u on St, t on Su and ∆u on Sc. The right-hand side vector {b} contains the known

values (2.22) or (2.41) of the system.

The BEM/SGBEM method usually leads to a algebraic system of equations

with less unknowns than that produced by the finite element method (FEM) since

only the boundary values are involved as unknowns. However, the fact that the

resulting coefficients matrix [K] is fully-populated represents a very difficult com-

putational task to deal with. Letting N denote the number of BEM unknowns,
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conventional solution methods for the SGBEM require O(N2/2) memory, O(N2)

setting up computing time and O(N3/6) solution time using a direct solver. These

complexities restrains the BEM/SGBEM in the treating of medium size problems.

On the contrary, the global stiffness matrix in FEM is symmetric, sparse, banded

and positive definite. The FEM requires only O(NFEM ) set-up computing time

and O(NFEM ) for memory, making domain methods very efficient in many scales.

Iterative Solvers and Preconditioned System

In order to solve the linear equations system obtained in the BEM, iterative solvers

are recognized as the primary alternative since direct methods are all computa-

tionally very expensive. Generalized Minimal RESidual (GMRES) [9] has been the

most used iterative solver for BE calculation. A detail description of GMRES in

BEM is shown in [67]. GMRES approximates the solution by a candidate vector

in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find

this vector. The convergence is achieved when the backward error is smaller than a

predefined tolerane. Each GMRES iteration requires the product of the coefficient

matrix and a candidate vector. The complexity of this task is of O(N2/2) either

if [K] is stored or [K]{v} is evaluated by means of conventional SGBEM. This is

already a major improvement in comparison with direct solvers.

Nevertheless, the convergence rate of an iterative solver depends strongly on spec-

tral properties of the matrix which eventually leads to the use of a preconditioner.

In numerical analysis, a preconditioner is a matrix such that when applied to the

original system, it helps decreasing the condition number of the coefficient matrix.

Such technique is called preconditioning. Let us consider a simple linear system:

[K]{x} = {b} (2.47)

in which [K] is a generic square coefficient matrix. This system can be left-

preconditioned by matrix [P ]:

[P ]−1[K]{x} = [P ]−1{b} (2.48)

Preconditioned iterative solvers generally outperform all direct solvers for large

matrices O(N ≥ 104) and have been the only option if the coefficient matrix [K] is

not stored explicitly but is only accessed by evaluating matrix-vector products.

Typically, there is a trade-off in the choice of [P ]. Since the operator [P ]−1

must be executed at each step of the iterative solver, it should have a small cost

(computing time) of applying the [P ]−1 operation. The cheapest preconditioner

would therefore be [P ] = [I] since then [P ]−1 = [I] but this results back in the

original equation and no improvement has been made. At the other extreme, the

choice [P ] = [K] gives [P ]−1.[K] = [I] which has optimal condition number of 1 and

it requires only one iteration for convergence. However, applying the precondition-

ing [P ]−1 is as difficult as solving the original system thus gaining none in terms

of operation. Therefore, depending on different situations, one has to choose [P ]
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somewhere between these two extremes in order to balance the cost of constructing

and inversing matrix [P ] with the overall solution.

In summary, the bottlenecks of the method reside in the memory constraint

and also in the evaluation of matrix-vector product which is required at each step

of the iterative solver. Because the coefficient matrix is full, the cost of applying

these operations becomes excessive even when the problem size is relatively small

(∼ O(N4)). Therefore, the application of SGBEM into large-scale problems requires

that the evaluation of the matrix-vector multiplication must be fast and that the

explicite storage of the matrix [K] should be avoided.

2.4 Fast Multipole Method

As mentioned in the previous sections, due to the fact that the coefficient matrix of

SGBEM is fully-populated, the build-up phase and operation counts unfortunately

lead to a rapid exhaustion for a standard computer. This obstacle makes it impos-

sible to apply the method into treating realistic problems which normally contains

a considerable amount of unknowns. The Fast Multipole Method (FMM) can, for-

tunately, change completely this circumstance. Introduced first by by Rohklin [33]

and Greengard, the FMM is an alternative technique to enhance the performance

of a boundary integral analysis. In a traditional boundary elements analysis, due to

the presence of Kernel functions, the same calculation is repeated from one observa-

tion point to another, thus entailing a high amount of operations. In FMM, Rohklin

uses intermediate points (called poles) to represent distant particle groups and then

introduces a local expansion to evaluate the distant contribution in the form of a

series. The multipole moment associated with a far-away groups can be translated

into the coefficient of the local expansion associated with a local group. It has been

proven that the FMM when combine with an iterative solver, can reduce the com-

putational complexity of a BEM problem from O(N2) to O(NlogαN) (with α being

a small non-negative number). This improvement has opened up a wide range of

applications for the Boundary analysis that have been restrained for many years due

to the lack of efficiency during the solution stage. Various research fields have there-

fore been applied with the Fast algorithm: Stokes flow [41, 42], acoustics [34, 45],

electromagnetics [40], elastodynamics [38,39,44] (read [59–63] for more references).

The outcomes of these studies show great promises in dealing with large-scale en-

gineering problems by boundary approach. Some recent successful works have also

been reported in composite materials [64, 65] and in electromagnetic wave scatter-

ing [66]. Our work inherits the developments of the FMM-SGBEM in elastostatics

and fracture mechanics that are introduced in [3], [5], [1].

2.4.1 Basic concept of the FMM

The Fast Multipole Method is based on a reformulation of the fundamental solutions

into series of product of functions of x and y. This technique allows one to re-use the

integrations with respect to y when the observation point x is changed (Fig.2.9a).
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(a) (b)

Figure 2.9: (a) Simple illustration of the Fast Multipole Method on a generic bound-

ary (b) Standard algorithm (left) and Fast algorithm (right)

The principle of the FMM can be illustrated as such: We need to compute

the interaction between 2 groups of points x and y (respectively on Sx and Sy).

Supposing that we have n points on Sx and m points on Sy, we should therefore

need mn operations by conventional approach. The FMM, on the other hand,

uses the point O to represent Sy, the contributions from Sy are thus carried out

and transferred to every point x via O, the total number of operations is now

reduced to only m + n which is much smaller than m.n. Therefore, the number

of operations is reduced significantly in the evaluation of double integrations of

SGBEM (which is also equal to the matrix-vector multiplication). This improves

greatly the performance of the overall system solution. The figure (2.9b) shows the

O(NM) complexity if standard evaluations of double integration are called, while

with FMM, the operations count is reduced to O(N +M).

Single-level Fast Multipole

The first and simplest variant of the FMM, derived directly from the basic concept,

is called the Single-level FMM. In this approach, the domain Ω is contained and di-

vided by a cubic grid of step d (Fig.2.10a). Only cells containing boundary elements

are taken into consideration. The center of a cell plays the role of intermediate pole

from which both the transfer of the contribution of its elements and the expansion

of the faraway influences takes place. The conventional SGBEM is, othe other hand,

considered when 2 cells are adjacent. The evaluation of the boundary integral is

then composed of the traditional SGBEM and the quick computation of Fast algo-

rithm (Fig.2.10b). Compared with the classical SGBEM, the single-level FMM is

more efficient with a complexity of O(N4/3). However, more efficient scheme can

be achieved by adopting the multi-level FMM which is described more in details in

the next section.
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(a) (b)

Figure 2.10: (a) 2D grid (spacing d) occupying the domain Ω (b) Cells interaction

in the single-level FMM configuration

2.4.2 Multi-level Fast Multipole Formulation

In order to obtain maximal efficiency, the amount of traditional SGBEM calculation

should be minimal while clustering the most possible the distant groups. The Fast

Multipole algorithm must therefore be applied in an hierarchical manner (in a Multi-

level approach). This is done with help of an oct-tree structure (See Fig.2.11): At

the first step (level = 0 or roof ), a cube which contains the whole studied boundary

∂Ω is generated, then it is divided into 8 equal and smaller cubes (level = 1) (whose

edge length is half of the parent cube’s). The cell subdivision is continued until the

number of elements in a cell is smaller than a given value (which is calledmax elem).

Any given boundary element is deemed to belong to one cell of a given level only,

even if is geometrically shared by two or more same-level cells.

Figure 2.11: Oct-tree structure



2.4. Fast Multipole Method 25

We now give some notions that are used in the Fast Multipole algorithm:

• cell - Being an unit of octreee structure, Cell takes form of a square in 2D

and a cube in 3D. They are divided in an hierarchical manner and all contain

boundary elements. The relative positions between cells are used to determine

which operation or which calculation scheme should be used.

• parent, children - a generic cell C at level l can be a child to a cell in level

l − 1 but it can also be the parent of cells in level l + 1. A cell can have

maximal 4 children in 2D and 8 children in 3D.

• leaf - a cell is called a leaf either if it has no child or the number of elements

in it does not exceed the predefined parameter Max elem. The Fast multipole

algorithm implies that the computation is valid when the octree structure has

at least 2 levels (such that far-away interactions exist).

• adjacent - 2 cells of a same level l are called adjacent if they share at least

one vertex, or edge, or surface. In 2D, a generic cell can have 8 adjacent cells.

In 3D, a cell can have at most 26 adjacent cells.

• interaction list - 2 cells are said to be well-separated at level l if they are

not adjacent at level l but their parent cells are adjacent at level l− 1. List of

all cells that are well-separated with cell C at level l is called interaction list

of cell C. The maximum number of well-separated cells in 2D is 62 − 32 = 27

and in 3D is 63 − 33 = 189.

• near interaction - For a cell C, the near interaction between C and its

adjacent cells are computed either if cell C is a leaf or C is not a leaf but

an adjacent cell to C is a leaf. These interactions are computed with the

conventional SGBEM formulations.

• far-away interaction - All the cells that are not adjacent to cell C at level

l are called far-away or distant to cell C and the interaction between them is

computed with the FMM operations

For simplicity purpose, the introduction of the FMM algorithm is done with

the SGBEM formulations. We choose to employ only the FMM operations for the

term Btt (The other bilinear terms are treated analogously and can be found in [1]).

Considering the symmetry of the Kernel function Uki , Btt can be written as:
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Btt(t, t̃) =

∫
Su

∫
Su

tk(x)Uki (x, x̃)t̃i(x̃)dSx̃dSx (2.49)

=

∫
Su

∫
Su

t̃i(x)U ik(x, x̃)tk(x̃)dSx̃dSx

Btt(t
D, t̃) =

∫
Su

∫
Su

tDk (x)Uki (x, x̃)t̃i(x̃)dSx̃dSx (2.50)

=

∫
Su

∫
Su

t̃i(x)U ik(x, x̃)tDk (x̃)dSx̃dSx

The multipole expansion of r−1 in the Kelvin solution Uki is given in [4] by:

1

r
=
∞∑
n=0

n∑
m=−n

(−1)nRnm(x̃′)
n∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(r0)Rn′m′(x′) (2.51)

where

Rnm(y) =
1

(n+m)!
Pmn (cosα)eimβρn

Snm(y) = (n−m)!Pmn (cosα)eimβρ−(n+1) (2.52)

(ρ, α, β) are the spherical coordinates of the argument y. Pmn denotes the Legendre

polynominals and the overbar denotes the complex conjugation. Rnm and Snm can

be effectively evaluated without actual recourse to spherical coordinates by means

of the recursive formulae proposed in [4] (brief description in Annex). Figure 2.12

demonstrates the principle of the FMM as one computes the interaction of two

surface Sx and Sx̃:

Figure 2.12: Decomposition of the position vector

In order to apply the FMM algorithm, the Kernels Uki , T
k
i , Bikqs are decomposed

into multipole series. For this purpose, the relative position vector r = x − x̃ is

decomposed into:
−→
xO+

−−→
OO′+

−−−→
O′x0+−−−→x0x1+

−−→
x1x̃ (Fig.2.12). Hence, the interaction

between 2 boundary portions Sx and Sx̃ is truncated into a number of steps:
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Multipole Moments

In this step, we start with introducing the pole O as a representative for the group

of points in Sx̃. The multipole moments associating with the pole O is the first

FMM operation being computed here.

The Kelvin fundamental solution Uki can be rewritten as:

U ik(x, x̃) =
1

8πµ

∞∑
n=0

n∑
m=−n

(
FSttik,n,m(

−→
Ox) +GStti,n,m(

−→
Ox)(

−→
Ox̃k)

)
Rn,m(

−→
Ox̃) (2.53)

where

FSttik,n,m(
−→
Ox) =

(
3− 4ν

2(1− ν)
δik −

1

21− ν)
(
−−→
Oxk)

∂

∂xi

)
Sn,m(

−→
Ox)

GStti,n,m(
−→
Ox) =

1

2(1− ν)

∂

∂xi
Sn,m(

−→
Ox) (2.54)

The formula of Btt(t, t̃) can be written as:

Btt(t, t̃) =
1

8πµ

∞∑
n=0

n∑
m=−n

∫
Su

t̃i(x̃)

[
FSik,n,m(

−→
Ox)M1tt

k,n,m(O) +GSi,n,m(
−→
Ox)M2tt

n,m(O)

]
dSx

(2.55)

in which the multipole moments centered at O are:

M1
knm(O) =

∫
Su

Rnm(
−→
Ox̃)tk(x̃)dSx̃

M2
nm(O) =

∫
Su

Rnm(
−→
Ox̃)(

−→
Ox̃)ktk(x̃)dSx̃ (2.56)

M2M translation

Now, the influence of Sx̃ is transferred from pole O to pole O′. The multipole

moment centered at O′ is given by:

M1
knm(O′) =

∫
Su

Rnm(
−−→
O′x̃)tk(x̃)dSx̃

M2
nm(O′) =

∫
Su

Rnm(
−−→
O′x̃)(

−−→
O′x̃)ktk(x̃)dSx̃ (2.57)

taking into account the relation between solid harmonic Rn,m and Sn,m:
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Sn,m(
−→
Ox) =

∞∑
n′=0

n∑
m′=−n′

Rn′,m′(
−−→
O′O)Sn+n′,m+m′(

−−→
O′x) (2.58)

Rn,m(
−−→
O′x̃) =

∞∑
n′=0

n∑
m′=−n′

Rn−n′,m−m′(
−→
Ox̃)Rn′,m′(

−−→
O′O) (2.59)

we can have:

Rn,m(
−−→
O′x̃) =

∞∑
n′=0

n∑
m′=−n′

Rn′,m′(
−−→
O′O)Rn−n′,m−m′(

−→
Ox̃) (2.60)

Substituting (2.60) into (2.57) we obtain:

M1
knm(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
O′O)M1tt

k,n−n′,m−m′(O)

M2
nm(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
O′O)

[
M2tt
n−n′,m−m′(O)− (

−−→
OO′)kM

1tt
k,n−n′,m−m′(O)

]
(2.61)

M2L translation

In this step, the M2L operation translates the coefficients from pole O′ to pole x0.

From (2.58) we have:

Sn,m(
−→
Ox) =

∞∑
n′=0

n′∑
m′=−n′

Rn′,m′(−→x0x)Sn+n′,m+m′(−→x0O)

= (−1)n
′
∞∑
n′=0

n′∑
m′=−n′

Rn′,m′(−→x0x)Sn+n′,m+m′(
−−→
Ox0) (2.62)

Replacing (2.62) into (2.55) we get:

Btt(t, t̃) =
1

8πµ

∞∑
n′=0

n′∑
m′=−n′

∫
Su

t̃i(x)
(
FRttik,n′,m′(−−→x0x)L1tt

k,n′,m′(x0) +GRtti,n′,m′(−−→x0x)L2tt
n′,m′(x0)

)
dSx

(2.63)

where L1tt
k,n,m(x0) and L2tt

n,m(x0) are the coefficients of the local expansion centered

at x0, given by:
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L1tt
k,n,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)M1tt

k,n′,m′(O) (2.64)

L2tt
n,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)

(
M2tt
n′,m′(O)− (

−−→
Ox0)kM

1tt
k,n′,m′(O)

)
(2.65)

and

FRttik,n,m(−−→x0x) =

(
3− 4ν

2(1− ν)
δik −

1

2(1− ν)
(−−−→x0xk)

∂

∂xi

)
Rn,m(−−→x0x) (2.66)

GRtti,n,m(−−→x0x) =
1

2(1− ν)

∂

∂xi
Rn,m(−−→x0x) (2.67)

L2L translation

The last step consists of shifting from pole x0 to pole x1 which represents the group

of source points Sx, then expanding the coefficients to each source points x. By

doing so, the boundary integral equation of Btt is evaluated.

From (2.59) we have:

Rn,m(−−→x0x) =
∞∑
n′=0

n′∑
m′=−n′

Rn′,m′(−−→x1x)Rn−n′,m−m′(−−−→x0x1) (2.68)

Substituting (2.68) into (2.63) we obtain:

Btt(t, t̃) =
1

8πµ

∞∑
n′=0

n′∑
m′=−n′

∫
Su

t̃(x)
(
FRttik,n′,m′(−−→x1x)L1tt

k,n′,m′(x1) +GRtti,n′,m′(−−→x1x)L2tt
n′,m′(x1)

)
dSx

(2.69)

where L1tt
k,n,m(x1) and L2tt

n,m(x1) are the coefficients of the local expansion centered

at pole x1, given by:

L1tt
k,n,m(x1) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nRn−n′,m−m′(−−−→x0x1)L1tt
k,n′,m′(x0) (2.70)

L2tt
n,m(x1) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nRn−n′,m−m′(−−−→x0x1)
(
L2tt
n′,m′(x0)− (−−−→x0x1)kL

1tt
k,n′,m′(x0)

)
(2.71)

and
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FRttik,n,m(−−→x1x) =

(
3− 4ν

2(1− ν)
δik −

1

2(1− ν)
(−−−→x1xk)

∂

∂xi

)
Rn,m(−−→x1x) (2.72)

GRtti,n,m(−−→x1x) =
1

2(1− ν)

∂

∂xi
Rn,m(−−→x1x) (2.73)

Replacing all the coefficients of local expansion in the formula of Btt, we finally

obtain the integral equation evaluated. Fig.2.13 summarizes and simplifies these

Fast multipole operations in a tree-like representation:

Figure 2.13: Multi-level Fast multipole operations

2.4.3 Multi-level Fast Multipole Algorithm

We introduce in this section the algorithm of the Fast Multipole method. For

simplicity purpose, some figures and some explanations are in 2D. The extension

to 3D follows similar principle.

Step 1 - Discretization

The boundary of the problem is discretized in the same approach as the conventional

boundary elements analysis.

Step 2 - Construction of Octree structure

The dimensions of the level − 0 cubic octree structure are taken from the minimal

and maximal coordinates (in respectively 3 directions) of the nodes.

Step 3 - Upward pass

At the lowest level (leaf ) and recursively aggregated by moving upward, the mul-

tipole moments are computed. Here, the contribution of the elements in a leaf is

transferred to its center then it will be shifted to the center of the father cell as we

move to the higher level (by M2M operation illustrated in Fig.2.14). The process

stops when level 2 is reached (the highest level that features non-adjacent cells).
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Figure 2.14: Computing Multipole moments at cell C (being a leaf at level l) and

transferring to the center of Cell C’s parent at level l − 1

Figure 2.15: Local expansions from level l to level l + 1

Step 4 - Downward pass

The procedure is now oriented from level 2 down to the leaf -level. The local expan-

sions are computed at level 2 then evaluated at selected lower-level cells by tracing

down the octree structure (see Fig.2.15).

This step translates the contribution of far-away cells toward the center of the

considered leaf -cell C using M2L and L2L operations. Assuming the leaf cell C

is at level l, the distant influence toward its center is composed of 2 parts: The

contributions at level l − 1 of distant cells toward cell C’s parent, the contribution

at level l of cells in the interaction list of C.

This can be illustrated as follow: (Fig.2.16-Left) - distant contribution toward

cell C’s father via M2L translation (level l− 1) and L2L operation translates these

influences from cell C’s parent toward cell C’s center. (Fig.2.16-Right) - distant con-

tribution toward cell C from cells in the interaction list of C at level l is transferred

to C’s center via M2L operation.
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Figure 2.16: Distant influence toward cell C which contains the observation point:

M2L and L2L translations at level l− 1 (left) and M2L translation at level l (right)

Step 5 - Local expansion and Direct calculation

The Local expansion is evaluated when cell C is a leaf. The contribution of the far

field is now located at the center of cell C, it is then shifted to the observation points

via the coefficients of the local expansion. We also perform the Direct calculation

either if cell C is a leaf or one adjacent cell of C is a leaf. For this calculation, all

remaining double element integrals (corresponding to pairs of cells that are not well-

separated at any level) are evaluated using conventional (singular or non-singular)

integration methods. All singular integrals are, in particular, handled in this step.

By combining this near calculation with faraway contribution (Fig.2.17), we get

the integral equations evaluated at all the elements of the boundary.

There are two alternatives to work with the near contributions: (a) assembling

all near-field coefficients into a sparse matrix, namely [Knear] then call it when

needed or (b) Recomputing at each GMRES iteration the near-field contribution

to the matrix-vector multiplication without assembling the matrix [Knear]. The

option (a) has been chosen in this work.

2.4.4 Numerical aspects of a Fast Multipole Algorithm

2.4.4.1 Components of a Cell in the Octree structure

The octree structure consists practically of cells, each cell must therefore contain

necessary information so that the appropriate routine can be called during the

computation. It can be expressed as following:

Octree(Cell Name)%Info Name
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Figure 2.17: Total influence of the boundary toward the observation point = far

away interaction (left) + near interactions (right)

where Octree is a pointer type that contains many arrays in Fortran code,

Cell Name is the name of the observed Cell (namely cell C), Info Name is the

information that is taken into account. These information can be divided in 2 cat-

egories. The first one carries geometrical properties of cell C and is described as

follow:

• Location(3) - center of cell C

• Dimension(3) - dimension of cell C

• Nchildr - number of children of cell C

• Adjlist(:) - list of cells that are adjacent with cell C at the same level

• Nelems - number of elements in cell C

• Elems(:) - name of the elements in cell C

the second one is addressed with the storage of the near interaction:

• Nnull - number of non-null terms computed in the near interactions

• Icol - number of degrees of freedom contained in cell C

• Coc(:) - list of degrees of freedom in cell C

• AAC(:), JAC(:), IAC(:) - arrays contain the matrix [Knear] of unknowns

contained in cell C
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2.4.4.2 Storage of matrix [Knear]

According to the algorithm of the FMM, the entire global matrix is not required

to be explicitly constructed and stored. The only matrix that needs to be fully

or partly built is the matrix of near-interaction [Knear]global. Since the problem’s

geometry is divided and managed in many levels and cells by the octree structure,

the construction and storage of the [Knear]global should follow the same manner. In

this case, matrix [Knear]global is divided in many sub-matrices of the corresponding

cells. As mentioned above, the near interaction is computed either if cell C is a

leaf or cell C is not a leaf but an adjacent cell of C is a leaf. Therefore, if the

studied cell C satisfies this condition, C will have one part of [Knear]global, namely

[Knear]c, stored:

Loop over the octree structure

Do c=2,ncells

If (C = leaf ) Then

Compute [Knear]c
ElseIf (C 6= leaf but C’s adjacent = leaf ) Then

Compute [Knear]c
Else

[Knear]c = ∅
EndDo

Fig.2.18 illustrates a small portion of the octree structure where it is easy to

notice the storage of [Knear]: cells 4,5,6,7,11,12,13 are leaf thus they contain the

coefficients of near interactions. Cell 10 is not a leaf but a neighboring cell 11 is a

leaf so it still has matrix [Knear] stored. Cells 1,2,3,9 do not match the condition

so they are void.

Figure 2.18: A portion of octree structure and its storage of [Knear]

Because there is no need to be explicitly assembled, the matrix [Knear]global has

only a ’representative’ appearance. The role of the global matrix of near interaction

is replaced by the union of its sub-matrices:
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[Knear] =
ncells∑
c=1

[Knear]c (2.74)

The partitioning of [Knear] induces that all the latter matrix-vector or matrix-

matrix operations involving [Knear] be modified. This is a simple task based on the

principle of superposition. The use and role of [Knear] is, however, an important

issue in a Fast multipole boundary analysis. We will discuss more about this aspect

in the following sections of this thesis.

2.4.4.3 Memory complexity

The sub-matrices [Knear]c (c = 1, ncells) are the only matrices that need to be

explicitly stored. They possess similar spectral properties as the matrix [Knear]

and are very sparse (most of the terms are zero). The sparsity of these matrices

is usually high (around 90% or even more) so that the memory requirement of the

method is reduced to an order much lower than N2. One can either store this ma-

trix in a standard manner or as lists of indexes and non-zero values: if the storage

is more important than access speed, it may be preferable to use the second option.

On the contrary, the standard storage can take advantage of the optimized basic lin-

ear algebra subroutines (BLAS), thus renders the matrix operations instantaneous.

However, for some particular sparsity structures, it may be possible to define their

specific and efficient linear system algorithms (Eg. a diagonal matrix requires only

N terms to store and N operation for a matrix-vector product).

2.4.4.4 Matrix-vector multiplication

The product between matrix [K] and a vector {x} is now composed of 2 components:

[K]{x} = [Knear]{x}+ [KFMM ]{x}

Matrix [Knear] (or to be more precise, the summation of [Knear]c with c =

1, ncells) has been computed and stored in RAM, it is now called onto this process

to perform the matrix-vector product. The second part of the summation is carried

out every time the iterative solver updates the candidate vector. This is where the

computation is sped up: while the near part is of order O(N2) as the conventional

approach is employed, the far-away interaction’s complexity is of order N by re-

using the groups of distant points. Because the proportion of far contribution in

this summation is normally dominant in comparison with the near interactions, the

complexity of the matrix-vector multiplication is effectively reduced to N (N being

the problem dimension). This results in a faster solution of the BE analysis.

2.4.4.5 Overall computation complexity

The Fast Multipole algorithm integrates perfectly in the iterative solution of a

boundary elements problem because the iterative solver requires specifically a
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matrix-vector multiplication. For an elastostatics problem, the Fast multipole pro-

cess exhibits linear dependence versus the problem size. Therefore the complexity

of this process becomes Niter ×N (where Niter denotes the number of iterations).

Hence, the efficiency of the FMM becomes more important as the problem size N

grows. Additionally, the memory requirements is also negated because the coeffi-

cient matrix is not obligated to be explicitly stored. Consequently, all the bottle-

necks of the traditional BEM can be avoided and the combined method becomes

computationally very efficient. Fast multipole boundary elements has therefore be-

come a powerful numerical tool capable of treating a wide range of realistic problems

with moderate computational resources.

2.5 Numerical implementation of the FM-SGBEM

The numerical code has been written and developed in Fortran and run on a single-

processor computer (RAM: 48Gb, CPU: 3Ghz). The multi-level Fast Multipole

scheme has been used in all the examples. The FM-SGBEM program consists of

around 80 subroutines which feature about 15.000 code lines. The structure of

the program as well as the utility of each subroutine is detailed in Annex C. We

introduce here the most simple representation of the program in Fig.2.19.

Figure 2.19: Generic FM-SGBEM program in Fortran

The appropriate element type, the number of Gaussian points and other various
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input parameters have been chosen to optimize the code’s performance. The meshes

are generated by the commercial program GiD, the personal pre and post-processor.

The results with less than 106 unknowns are visualized by Medit. Source codes

of matrix-vector operations are taken from the BLAS libraries. Normally, the cost

of the pre-processing and post-processing are insignificant in comparison with the

main-processing. For this reason, later on in the thesis, many comparisons are

related to only different parts of the main phase and the total cost of this phase can

represent the whole . For instance: the main processing is composed of 2 phases:

preparation phase (to compute [Knear] and {vect y}) and iterative solution phase

(GMRES or Flexible GMRES).

2.6 Conclusions

In this chapter, we have introduced the basic foundations of the integral equations

method as well as the regularized version of the symmetric Galerkin approach in two

contexts: elasticity and fracture mechanics. The limitations of the method in the

numerical solution phase have been identified which lead to the application of the

Fast Multipole Method. The fundamental principle and algorithm of the method are

thus described and presented. In order to demonstrate the superiority of the FMM

to the conventional SGBEM, some aspects related to the numerical solution and

complexity of the Fast algorithm have been discussed. Finally, a generic program to

solve the problems in elastostatics/fracture mechanics by the FM-SGBEM is given.

In the next chapter, we will discuss about further refinements for the algorithm.
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The aim of many studies over recent decades is to improve the performance of

the boundary elements analysis and to make it an efficient and powerful numeri-

cal tool for solving realistic problems in engineering. The appearance of the Fast

Multipole Method in the boundary algorithm has effectively overcome all the usual

bottlenecks and has made the coupled fast method a formidable option along with

the infamous finite elements method. However, it is still not simple to simulate

efficiently large-scale models on moderates computational resources. Many devel-

opments have therefore been devoted for further efficiency improvements. In our

work, two strategies of optimization have been adopted to reduce the storage con-

straint and to reduce the iterative resolution time. Appropriate choices on input

parameters have also been analyzed. Lastly, some numerical validation tests in the

context of elasticity and fracture mechanics have been carried out. The performance

enhancements on large-scale problems (N ≥ 106) are well captured and reported.

3.1 Storage of the Matrix of near interactions

.

In the FM-SGBEM algorithm, the global matrix does not need to be fully

constructed. The evaluation of the double integrals (as known as the matrix-vector

product) is divided in two parts: (1) Fast computation by FMM and (2) Standard
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computation by traditional SGBEM. While the fast computation is repeated at

each iteration, the (slow) near-interactions should be computed and stored before

the resolution. As mentioned in the previous sections, the choice of storing the

matrix [Knears]global depends on how one uses and access to it:

(i) Standard storage: the matrices [Knear]c (c = 2, ncells) are stored in RAM

using the standard matrix format which is composed of n rows and n columns. For

this storage, we lose in term of memory but in return can take advantage of the

optimized BLAS routines to compute instantaneously the matrix-matrix or matrix-

vector operations. Providing that a standard matrix of 32.0002 takes already 1Gb

of RAM, the appropriate number of unknowns can be treated should not surpass

104.

(ii) Out-of-core storage: [Knear]c (c = 2, ncells) can also be saved in the hard

disk. There is thus no limitation on how big the matrix is but whenever one wants

to access to the matrices, a routine should be called to read the matrix’s coefficients

entailing considerably long processes. This procedure is the main reason that slows

down significantly the performance of this approach and renders it unusable.

(iii) Compressed storage: This strategy of storage takes advantage of the spectral

properties of the matrix in question by converting it into arrays on non-zero terms.

By doing so, the amount of terms transferred to RAM is reduced to minimal while

keeping the quick access to the matrix. Hence, this approach is well suited for

treating large-scale problems.

3.1.1 Symmetric Compressed Sparse Row

Symmetric Compressed Sparse Row (CSRSYM) [30] is a simple algorithm to store

symmetric and sparse matrices. This algorithm takes only 3 vectors to store all the

necessary information of the matrix in question: The first vector (AA) collects the

value of the non-zeros on the upper part of the matrix (including the diagonal).

The second vector (JA) saves the column index of the corresponding term while

the third one (IA) contains the information on the total number of non-zeros on

each row of the matrix.

A simple example of the CSRSYM is shown below. Matrix [K] is symmetric and

contains many zero terms. The CSRSYM will scan the upper part of this matrix

and extract all the non-zero coefficients for the storage.

[K]=


1 2 0 0 −3

2 −4 0 5 0

0 0 6 −7 0

0 5 −7 8 9

−3 0 0 9 10


↓ can be converted to ↓

AA 1 2 -3 -4 5 6 -7 8 9 10

JA 1 2 5 2 4 3 4 4 5 5

IA 1 4 6 8 10 11
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3.1.2 CSRSYM in FM-SGBEM

The usage of the CSRSYM in the context of FM-SGBEM comes naturally from

the symmetry and sparsity of the sub-matrices [Knear]c (c = 1, ncells). These

particular features can be explained from the nature of the FMM algorithm. At

leaf-level, the standard double integration of the SGBEM is performed, producing

symmetric and non-zero blocks of near interactions between cell C and its adjacent

cells. On the other hand, no calculation between the cells in the adjacent list of C

is conducted, leaving void blocks in the structure of [Knear]c. In a 3D octree, due

to the high number of adjacent cells (maximum 26), each sub-matrix is particularly

very sparse (See Fig.3.1).

Figure 3.1: Block-wise constitution of [Knear]c for 2 cases: C is a leaf (left) and C

is not a leaf but adjacent cell(s) of it is (right). There are n cells adjacent to cell

C (in 3D, n ≤ 26). When cell C is a leaf - interactions of C with itself and with all

of it adjacent cells (being either leaf or not) are computed (left). When C is not a

leaf, only interactions of leaf -adjacent cells with C are computed (Eg. cell Adj.2 is

not a leaf so no interaction between cell C and cell Adj.2 ).

Taking into account the clear advantages of the symmetry and sparsity, it is

convenient to store all [Knear]c using the algorithm of CSRSYM. The following

Algorithm 1 explains how to store a symmetric and sparse sub-matrix using

CSRSYM.

Supplementary arrays should be needed if a sub-matrix is used in the global

operations. Cocc is one of these arrays. It relates the local positions in [Knear]c
with the global positions:

Cocc |i=1,size[Knear]c= local indexi ↔ global index

Finally, the global positioning of a sub-matrix [Knear]c by CSRSYM can be

illustrated in Fig.3.2 (Remark that the overlapping of the component matrices
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Algorithm 1 Symmetric Compressed Sparse Row

for i = 1, n do

for j = i, n do

if [Knear]ij 6= 0 then

- Store [Knear]ij in vector AA

- Store index j in vector JA

- Count number of non-zero in row i and update in vector IA

end if

end for

end for

[Knear]c in the global scale is to illustrate the mutual interactions between pairs

of elements that belong to different adjacent cells.):

Figure 3.2: Representation of [Knear]global as a summation of all [Knear]c

Memory Usage

Compared with the standard strategies, the CSRSYM is clearly superior since it

uses the minimal space to store a symmetric sparse matrix. During numerical tests,

the construction and storage of [Knear]global are observed. From problem size of

103 to 106, we notice that the proportion of zeros in the matrix can go up to 95%,

hence using sparse compressed strategies is the best option. Besides, CSRSYM can

take advantage of the symmetry feature of the method SGBEM so it takes roughly

50% less memory than the original CSR algorithm and also take less time in the

matrix-vector multiplication.

Matrix-Vector multiplication

The matrix [Knear]global is never explicitly assembled in the algorithm of the FM-

SGBEM. All the operations (Eg. matrix-vector product) inquiring [Knear]global
are conducted via the union of the constitutive matrices [Knear]c (c = 2, ncells).

Since these sub-matrices are stored in an unpopular format which is the CSRSYM,
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it is thus necessary to describe the specific algorithm of the matrix-vector product

between [Knear]global and a given vector. Considering therefore a generic product

of [Knear]global and {v}. We have:

[Knear]global{v} =
ncells∑
c=2

[Knear]c{vc}

where {vc} is a part of vector {v} which corresponds to the unknowns in [Knear]c.

The summation of all block-wise matrix-vector product [Knear]c{vc} constitutes

the required term. The algorithm of this operation can be expressed as in Algorithm

2.

Algorithm 2 Matrix-Vector Product of CSRSYM: [Knear]c{vc}
• A compressed sub-matrix [Knear]c will have 3 corresponding vectors: AAc,

JAc and IAc where the number of rows in [Knear]c is nrow = IAc − 1

• The vector {vc} in the product should be of similar dimension (nrow)

• The matrix-vector multiplication is looped on every row:

for row = 1, nrow do

- Compute the number of nonzero terms in row: nnulrow = IArow+1 − IArow
- The value and column index of nnulrow nonzero terms of this row are then

taken from AAc and JAc
- Multiply this row with the corresponding part of {vc}row to get the row value

of the product

- Mirror the above operation to get the symmetric part

- Accumulate the result in the appropriate places of the product vector

end for

3.2 Preconditioning strategy

The second goal is to reduce the computational time of the method. In FM-SGBEM,

there are two main procedures: (1) Build-up phase and (2) Iterative Solution phase.

The first procedure consists on reading inputs, constructing octree structure and

computing the conventional near interactions. This part is heavy but unavoidable.

By only choosing an appropriate ratio of near and far contributions, we can ra-

tionally limit the computation times in this step (mentioned in [2]). In our work,

we aim to accelerate the iterative solution phase by applying a more robust solver

and a better preconditioner. In [1], GMRES left-preconditioned by block-diagonal

of [Knear]global was used as a solver, it had a relatively good convergence rate,

however it was still slower than our expectation and is only effective when the

matrix has the diagonal dominance [20]. More complex preconditioners were also

introduced such as Incomplete LU (ILU) factorization [21], sparse approximate in-

verse (SPAI) [5] [22]... Nevertheless, their construction cost is still high and can

not be used in large-scale problems. In general, it is shown that a good precondi-
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tioner is one that contains more information of the coefficient matrix. In [18], the

symmetric successive over-relaxation (SSOR) preconditioner (which is based on the

near-part of the matrix) is proposed. In [2], Chaillat mentioned that the use of

a full [Knear]global as the preconditioner in Flexible GMRES could reduce greatly

the number of iterations thus lower the computational time. Flexible GMRES is

a variant of the GMRES algorithm which typically provides the use of a second

solver during the preconditioning process. Basically, it is a scheme of two iterative

solvers: GMRES plays the role of the outer solver (main problem) and for the inner

solver (preconditioning task), any iterative method can be used. For example, the

CGNR (or CGNE - conjugate gradient method applied to the normal equations)

can be used as such. In [8], it is shown that the Flexible GMRES with a GMRES

as an inner iterative solver can outperform the standard GMRES and is very easy

to implement.

Inheriting from the previous studies, we aim to apply a strategy in which the

matrix [Knear]global is employed as a preconditioner in the algorithm of the Flexible

GMRES to enhance the solution phase of the FM-SGBEM. In the next sections,

brief revisions of the GMRES and Flexible GMRES are presented, followed by the

implementation of this strategy into our work and we show at last some numerical

tests for validation purposes.

3.2.1 GMRES and Flexible GMRES

Before discussing about Flexible GMRES, it is important to recall the principle and

algorithm of the original solver: the Generalized Minimal RESidual (GMRES). This

is an iterative method developed by Y. Saad [9] and M. H. Schultz in 1986. GMRES

is utilized for solving approximately a system of linear equations by a vector in a

Krylov subspace with minimal residual.

Considering the linear equations system:

[A]{x} = {b} (3.1)

and denoting the euclidean norm of a vector −→v by ‖v‖. The matrix [A] is assumed

to be invertible. The nth Krylov subspace for this problem is:

Kn = Kn(A, b) = span{b, Ab,A2b, ..., An−1b}

GMRES approximates the exact solution of [A]{x} = {b} by the vector xn ∈ Kn

that minimizes the Euclidean norm of the residual ‖ Axn − b ‖
The vectors b, Ab,A2b, ..., An−1b might be almost linearly independent, so instead

of this basis, the Arnoldi iteration is used to find orthonormal vectors q1, q2, ..., qn
which form a basis for Kn. Hence, the vector xn ∈ Kn can be written as xn = Qnyn
with yn ∈ R3, where Qn is the m− by − n matrix formed by q1, q2, ..., qn.

The Arnoldi process also produces an (n + 1) − by − n upper Hessenberg Matrix

H̃n with:
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AQn = Qn+1H̃n

Because Qn is orthogonal, we have:

‖Axn − b‖ = ‖H̃nyn − βe1‖

where e1 = {1, 0, 0, ..., 0} is the first vector in the standard basis of Rn+1 and

β = ‖b − Ax0‖ - x0 being the first trial vector (usually zero). Hence, xn can be

found by minimizing the Euclidean norm of the residual rn = H̃nyn − βe1 which is

a linear least square problem of size n.

So, at every step of a GMRES iteration, these actions are performed:

1. Do one step of the Arnoldi method

2. Find the yn which minimizes ‖rn‖

3. Compute xn = Qnyn

4. Repeat if the residual is not yet small enough

The equation (3.1) is now right-preconditioned by matrix [M ] such that

[A][M ]−1([M ]{x}) = {b} (3.2)

The algorithm of GMRES for this modified system can be expressed like the

following:

Algorithm 3 GMRES with right preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspace. Define an

(m+ 1)×m matrix H̃m and initialize all its entries hi,j to zero

2. Arnoldi process:

(a) Compute r0 = b−Ax0, β = ‖x0‖ and v1 = r0/β

(b) For j = 1, ...,m do

• Compute zj := M−1vj
• Compute w := Azj

• For i = 1, ..., j do
hi,j := (w, vi)

w := w − hi,jvi
• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

(c) Define Vm := [v1, ..., vm]

3. Form the approximate solution: Compute xm = x0 + M−1Vmym where

ym = argminy‖βe1 − H̃mym‖2 and e1 = [1, 0, ..., 0]T

4. Restart: If satisfied, stop. Else set x0 ← xm and go to 2

The Arnoldi loop constructs an orthogonal basis of the preconditioned Krylov

subspace: spab{r0, AM
−1r0, ..., (AM

−1)m−1r0} by a modified Gram-Schmidt pro-

cess, in which the new vector to be orthogonalized is obtained from the previous
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vector of the process. The last step in the above algorithm forms the solution as

a linear combination of the preconditioned vectors zi = M−1vi with i = 1, ...,m.

Because these vectors are all obtained by applying the same preconditioning matrix

M−1 to the v′s, we need not save them. We only need to apply M−1 to the linear

combination of the v′s, for example to Vmym.

In the case we allow the change for the preconditioner at every step such that:

zj = M−1
j vj

and we save these vectors to use them in updating xm in step 3, we would obtain

a ’modified’ and ’flexible’ version of the GMRES. Such algorithm is called Flexible

GMRES and is shown below:

Algorithm 4 Flexible GMRES with variable preconditioning

1. Start: Choose x0 and a dimension m of the Krylov subspace. Define an

(m+ 1)×m matrix H̃m and initialize all its entries hi,j to zero

2. Arnoldi process:

(a) Compute r0 = b−Ax0, β = ‖x0‖ and v1 = r0/β

(b) For j = 1, ...,m do

• Compute zj := M−1
j vj

• Compute w := Azj

• For i = 1, ..., j do
hi,j := (w, vi)

w := w − hi,jvi
• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

(c) Define Zm := [z1, ..., zm]

3. Form the approximate solution: Compute xm = x0 + M−1Zmym where

ym = argminy‖βe1 − H̃mym‖2 and e1 = [1, 0, ..., 0]T

4. Restart: If satisfied, stop. Else set x0 ← xm and go to 2

As the difference can be easily spotted in the step 2, the preconditioner matrixM

can be varied from one iteration to another and that we now save the preconditioned

vectors zi and update the solution using these vectors. Besides, it should also be

noted that neither preconditioned GMRES or Flexible GMRES requires explicit

formation of M−1A. As a result, the preconditioning task zj = M−1
j vj in Flexible

GMRES can be solved by means of an iterative solver which differs from GMRES

algorithm where M−1 needs to be explicit to compute M−1Vmym. Consequently,

more sophisticated matrices can be use as preconditioner for Flexible GMRES since

the algorithm offers a possibility to inverse the preconditioner either if it is explicit

or is in compact format.

3.2.2 Flexible GMRES in FM-SGBEM

The concept of using the Flexible GMRES preconditioned by [Knear] fits naturally

in the algorithm of FM-SGBEM because:
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• [Knear] is already computed and stored→ No additional operations or space

for the preconditioner

• [Knear] possess similar spectral properties as the global matrix → Faster

convergence

• [Knear]−1 is not required explicitly in inner iterative solver → Simple task

with low complexity and computational costs

Hence, we employ a simple algorithm of Flexible GMRES which is simply de-

rived from GMRES in the FM-SGBEM. This Flexible GMRES utilizes another

GMRES as an inner solver for the preconditioning task. So we basically have a

solver which consists of 2 GMRES embedded in an inner-outer scheme: The outer

GMRES solves the original system [K]{x} = {b} and the inner GMRES performs

the preconditioning of [Knear]−1. The Algorithm of Flexible GMRES is described

below in Algorithm 5:

Algorithm 5 Flexible GMRES in FM-SGBEM

1. Build-up Process: Compute known terms: vector {b} and matrix [Knear]

2. Iterative Solution:

→ Call Outer GMRES

• Initiate the first candidate vector {x0} = 0

• Matrix-vector product: [K]{zj} = [Knear]{zj}+ [KFMM ]{zj}
• Preconditioning task: {zj} = [Knear]−1{vj}
→ Call Inner GMRES

- Inner Matrix-Vector product: [Knear]{wj}
- Inner Preconditioning: {wj} = [diag Knear]−1{νj}

3. Condition to converge:

- If ‖({b} − [K]{xi})‖ ≤ Precision, stop.

- Else, set x0 ← xm and go back to Outer GMRES.

As one can notice, the main equation [K]{x} = {b} is solved by Outer GMRES.

This solver is right-preconditioned by [Knear]global and converges if the backward

error is smaller than 10−3. We also note a slight deviation from the the Flexible

scheme presented in [2] where the inner GRMES functions without any precondi-

tioner. In our work, we take advantage of the block diagonal of [Knear]global and

use it as the preconditioner for the inner GMRES (the precision is set to 10−1). By

doing so, the number of inner iterations (normally around or even higher than 50) is

reduced to less than 20 and the quality of vectors transferred to the outer operation

is also well assured. Hence, the inner iteration is sped up as well and contributes

to the overall improvement. The performance of Flexible GMRES over GMRES is

analyzed in the numerical tests. The source codes of GMRES, Flexible GMRES

and corresponding subroutines are downloaded from http://www.cerfacs.fr.
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3.3 Numerical validations

3.3.1 Parameter choices

Before running the numerical calculations, we need to provide all the necessary

input parameters for the program such as: the backward error of GMRES, number

of gaussian points, the truncation threshold, the maximal number of elements in

a leaf... Certain parameters are closely related to the nature of the FM-SGBEM

method which play a crucial role in the functioning of the computational code. A

slight change of them can affect considerably the overall performance and quality

of a calculation. Hence, beside the optimization strategies, the algorithm can be

already improved by the pertinent choices of parameters. For this purpose, the

very first numerical step is addressed to the analysis of the input parameters. The

decisive condition for all tests is the quality of results: a calculation is valid when

the biggest relative error < 1%. Once this condition is met, the computational

time and resources-consummation are considered. The choices that lead to correct

results with minimal requirements are retained.

Parameter of truncation

A generic Fast multipole analysis takes into account an infinite series of products

of 2 variables. In a numerical calculation, this development needs to be truncated

at a certain number: p. This number must be chosen such that the precision is

sufficient and the cost of calculation should not be excessive. Two simple tests in

elasticity and fracture mechanics are carried out to analyze the different outcomes

due to the variation of different truncation parameters. The enhanced FM-SGBEM

code has been utilized, max elem is set to 30 and the backward error of Flexible

GMRES is set to 10−3.

Figure 3.3: Clamped cube under tensile load

The first test consists of an elastic clamped cube being put under uniform load

p = 1 on the free surface (Fig.3.3). The reaction at the support surface and the

displacement of all nodes are unknowns in this calculation. The code runs with

5 different parameter of truncation: p = 4, 5, 6, 7, 8 on 2 different mesh densities:

M1, M2 which feature respectively 9.600 and 21.600 4-nodes quadilateral elements.



3.3. Numerical validations 49

There is no exact solution for this problem, so a finite element analysis has been

carried out to provide a reference solution. The FM-SGBEM’s performance and

results are observed. The table below shows the relative errors of different choices

of p on 2 meshes (the displacement Uz of a vertical edge is compared with a finite

elements calculation) :

Figure 3.4: Relative error (%) of Uz on a vertical edge

Remark: from the diagram in Fig.3.4, except the case p = 4, all the results

obtained by p = 5, 6, 7, 8 are satisfying with the biggest relative error does not

exceed 1%. Therefore, p = 5 appears to be a better option since the computational

time is the lowest whilst giving results of similar quality.

(a) (b)

Figure 3.5: (a) Illustration of a penny-shaped crack meshed from 48 quarter-point

elements Q8 (b) Special elements near crack tip: intermediate points are pushed

closer to the crack-tip by a quarter of the edge’s length

The second test is run in the context of fracture mechanics. In this test, we com-

pute the crack opening displacement of a penny-shaped crack (radius a = 1) in an

unbounded domain, subjected to a remote tensile load σ0
33 = 1 (see Fig.3.5). Analo-

gously to the first test, numerous calculations based on different truncation param-
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eters p = 4, 5, 6, 7, 8 are carried out and compared. Two meshes are taken into con-

sideration: M3 and M4 contain respectively 7.500 and 10.800 quarter-point 8-nodes

elements (which are constituted from 22.701 and 32.641 nodes). In this case, there is

an analytic solution of the crack opening displacement: ∆u =
4(1− ν)

πµ

√
a2 − r2σ0

33

for comparison purposes. The quality of the computed crack opening displacements

is shown in the Fig.3.6

Figure 3.6: Relative error (%) of ∆uz on the radius

Remark: In this second test, all choices exhibit relatively good results. How-

ever, p = 4 and p = 5 give particularly rather big errors near the crack-front. This

is not favorable for the study of crack propagation where the behavior near the

crack-tip is of the utmost importance. Result of p = 6, however, is unstable: best

on M4 but worst on M3, so it should not be used. Between the last two options

p = 7 and p = 8, p = 7 is better because p = 8 would be too expensive.

Overall, we can deduce that the choice p = 5 would fit better for non-fracture

configuration or for geometries of less interest. On the other hand, p = 7 is required

on cracks or complex geometries for better precision.

Maximal number of elements in a leaf

The maximal number of boundary elements in each leaf (max elem) has been,

however, chosen differently for each particular example. The main reason for doing

so is to balance the computational portions between the traditional SGBEM and the

Fast Multipole algorithm. This parameter has turned out to be a very important

index which can affect directly the efficiency of the code: If this parameter is large,

the near interactions becomes majority and the traditional evaluations of double

integrals will slow down the system solution. On the other hand, if this number

is too small, the octree’s depth and the number of cells may grow important thus

entails a relatively high number of operations but produces a very sparse matrix of

near interactions. This matrix would therefore not be helpful as a preconditioner
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in accelerating the convergence of the solver and the efficiency of the method is not

assured. The study carried out by Chaillat in [2] has proved this fact and has given

us some ideas on choosing the appropriate max elem for each problem.

This phenomenon can be illustrated by the same test above. The crack config-

uration M3 is run now with different max elem. Three options of max elem have

been taken as 10,30 and 100. By choosing so, the octree depth is 6,5 and 4 respec-

tively. The outcome of these calculations is reported in the below table 3.3.1. The

truncation parameter is set to 7 and the the backward error of Flexible GMRES is

10−3.

max elem l ncells pre time(s) CPU(s) iter N-Iter sol time(s) tot time(s)

10 6 2.014 841 35 292 10.516 11.357

30 5 801 1.444 28 207 5.824 7.268

100 4 257 3.293 25 33 854 4.147

Table 3.1: Different outcomes due to different choices of max elem on the mesh

M3: l denotes octree depth, ncells is the total number of cells and N-Iter is the

iteration counts. pre time(s) denotes the computational time for [Knear] and

{vect y}. sol time(s) indicates the time consumed by the iterative solver to con-

verge. tot time(s) is the total computational time.

As predicted, when max elem is small, the octree gets deeper and generates

better clustering of near and distant interactions. The computational cost for the

preparation increases therefore from max elem = 10 to 100. However, since the

octree structure becomes more complex, the cost of each iteration increases as rep-

resented by the CPU(s) per iteration. Lastly, the trade-off between the preparation

time and the quality of [Knears] as a preconditioner is well shown: despite having

the longest preparation time, the third test assumingly produces the best precon-

ditioner thus speeds up drastically the convergence rate of Flexible GMRES. The

number of iteration counts of the third run is 1/6 compared to the second and only

1/9 compared to the first, making max elem=100 the most optimal choice in terms

of overall speed (See Fig.3.7).

In general, this remark does not hold true every time and is very hard to pre-

define a rule for choosing max elem. On different geometries, mesh densities and

different material properties (different matrix spectral), we get different outcomes.

For instance, similar tests have been run on mesh M4:

max elem l ncells pre time(s) CPU(s) iter N-Iter sol time(s) tot time(s)

10 7 3.637 1.029 57 178 10.503 11.532

30 6 1.089 2.018 41 87 3.564 5.582

100 5 305 5.555 36 71 2.639 8.194

Table 3.2: Different outcomes due to different choices of max elem on the mesh M4
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Figure 3.7: Computational times (s) by different choices of max elem on mesh M3

Figure 3.8: Computational times (s) by different choices of max elem on mesh M4

In Fig.3.8, we can notice that the computational times follow the above principle:

high max elem is time-consuming for the preparation phase but is efficient in the

solution phase and vice-versa. However, in this case, as max elem = 100 takes

too long in the near calculation, the overall computational time is not the fastest.

Also, the memory usage must also be taken into consideration. In the above tests,

max elem=100 takes the most memory slots: 5 times more than the first choice.

Therefore, throughout the numerical experiments, max elem=30 has been retained

in almost simulations as it can be stable and balances the overall speed over memory

requirements. If different value of max elem is chosen other than 30, it is because

it particularly produces the most optimized performance.
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Number of Gaussian points

In a boundary calculation, the number of gaussian points is also crucial to determine

the trade-off between the computational speed and precision. The lower number

will obviously lead to better speed but risks having considerable errors. As the

surface integral equations deal with singularity O(r−1), higher degree of precision

should be applied for ’close’ interactions and less points for ’further’ interactions.

An empirical scheme for selecting appropriate number of gaussian points has been

introduced by Rezayal et al. in [1986]. As stated in the formula, the choice depends

primarily on the ratio of element size to the distance between two elements. Here,

for quadrilateral elements, the element size, H is taken as the length of the longest

diagonal. The distance between the centers of 2 elements is denoted by d. The line

between these 2 centers form an angle θ with the normal of the exterior element

(see Fig.3.9).

Figure 3.9: Geometry of a pair of elements

For convenience, an index of severity (IS) has been introduced to quantify the

variation in the required degree of the integration formula:

IS = (2.37 + 0.424cosθ)H/d (3.3)

(IS is rounded off to the nearest integer). The correlation between IS and the

number of Gaussian points is given in table 3.3.

A simple test has been carried out to investigate the quality of the result issued

from this variation of gaussian points. Single penny-shaped crack (48 elements Q8)

in an unbounded domain is put under tensile load σ33 = 1. Backward error of the

iterative solver is set to 10−3, max elem chosen as 10. By adopting the criterion,

the integrations are divided in 3 categories according to the distance and elements

size and are shown in table 3.4. From the table, instead of using 4x4 gaussian

points, the regular schemes are now computed with 2x2 or 3x3 points thus reduced

considerably the operations counts. In terms of precision, comparing with the

exact result (Fig.3.10), this scheme exhibits very good quality outputs, especially

the displacement discontinuity at the vicinity of the crack front, the relative error

is 0, 5%.
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IS Number of Gauss points

1 2x2=4

2 3x3=9

3 4x4=16

4 5x5=25

5 6x6=36

6 4x(4x3) = 64

7 4x(5x5) = 100

8 4x(6x6) = 144

Table 3.3: Table of serverity index

near 16 regu 4 regu 9 regu 16

Integral counts without IS 210 0 0 390

Integral counts with IS 210 213 177 0

Table 3.4: Number of pairs of elements integration using different numbers of gaus-

sian points: near 16 denotes the near (singular) interactions count with 4x4 gaus-

sian points. Analogously, regu 4, regu 9, regu 16 show respectively the number of

integrals with 2x2, 3x3 and 4x4 gauss points. Initianlly, regular double integrals

with 4x4 gaussian points requires 390 × 4 × 4 × 4 × 4 operations. With the IS

implemented, the operation counts are (213× 2× 2× 2× 2) + (177× 3× 3× 3× 3)

which is equal to a 80% reduction of operations.

This technique is quickly implemented in large-scale tests and has obtained a

great boost in terms of near computational time. The details are later reported in

the performance test.

3.3.2 Performance test

In this numerical test, the enhanced performance of the FM-SGBEM algorithm is

justified. All the clear improvements due to the proposed strategies are mentioned.

Since the memory requirement is well-assured by the compressed sparse format,

there leaves only one major concern: the computational speed. In order to provide

a comparative basis, similar computations by GMRES (preconditioned by the block

diagonal of [Knear]) have been performed along with Flexible GMRES. Some lat-

eral tests have been carried out first hand to ensure that GMRES is also executed

efficiently on the similar set of parameters as Flexible GMRES and the obtained

results are of equal precision.

Regarding this performance test, the FM-SGBEM is applied in a large-scale

fractured configuration: a network of n3
c penny-shaped cracks is introduced in an

unbounded homogeneous domain (E = 1, ν = 0.3). A tensile load σ0
33 = 1 is put

on the crack system and we compute the crack opening displacement. Each crack
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Figure 3.10: Selective number of gauss point: numerical and exact results on crack

opening displacement

(radius a = 1) is modeled using 48 8-nodes quarter-point quadrilateral elements

(see Fig.3.5). These cracks are generated regularly on a cubic grid with a regular

distance of 4r in each coordinate direction and are randomly oriented in space

(illustrated in Fig. 3.11). The number of crack in this system is therefore n3 (n

being the number of cracks in one direction).

Figure 3.11: System of 1000 randomly-oriented penny-shaped cracks in an un-

bounded domain

We compute the crack opening displacement (COD) with help of the governing

variational traction equation written on Sc:

∫
Sc

∫
Sc

[R∆u]iq(x)Bikqs(r)[R∆ũ]iq(x̃)dSx̃dSx =

∫
Sc

pk(x)∆ũ(x)dSx (3.4)
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In order to test the performance of the 2 chosen solvers, we generate 4 meshes

by varying nc = 14, 16, 18, 20 which contain respectively arrays of 2.744, 4.096,

5.832 and 8.000 cracks. All of these meshes feature more than 1 millions unknowns.

The calculations were carried out successively on these 4 configurations by Flexible

GMRES and by GMRES. Similar input parameters are chosen for these 2 solvers:

parameter of truncation is set to p = 7, precision is 10−3. Information of these tests

are shown in Table 3.5.

Mesh N-Cracks NEQ max elem l̄

1 2.744 1.061.928 15 7

2 4.096 1.585.152 30 6

3 5.832 2.256.984 30 7

4 8.000 3.096.000 30 7

Table 3.5: Information of 4 meshes: NEQ denotes the number of unknowns,

max elem is the maximum number of elements in an octree cell, l̄ is the depth

of the octree structure.

Near Computation: For simplicity purposes, the effect of different numbers

of gaussian points for regular integration by the index of severity (IS) is investigated

first hand. Simulations on 4 meshes are carried out twice, one time with constant

4x4 gaussian points for all integrations (both singular and regular) and one with the

IS implemented. Table 3.6 shows the computational time for computing [Knear]

and {vect y} in both cases.

Mesh pre time(s) Gain

all 4x4 with IS

1 17.561 9.995 43.08%

2 23.404 12.890 44.92%

3 45.825 22.753 50.3%

4 112.000 44.070 60.65%

Table 3.6: Time (s) for computing [Knear] and {vect y} (pre time) using respec-

tively 4x4 gaussian points (second column) and using selective numbers of gaussian

points by adopting the IS (third column). The last column indicates the gain of

computational time.

Iterative Solution: Secondly, the performance of the iterative solution phase is

observed. Instead of using the operation counts as a comparative basis, the solution

times (defined equally as the convergence rate) are used to justify the performance

of the solvers. Table 3.7 details all the computational times on the 4 meshes by

GMRES and Flexible GMRES. The solution times are shown in Fig.3.12a. Fig.3.12b

illustrates the CPU(s) of each iteration by these 2 solvers.

• Remark 1: The index of severity (IS) negates greatly the need of too ’precise’



3.3. Numerical validations 57

Mesh N-Iter CPU(s)/iter Sol time (s) Tot time (s)
Flex GMRES Flex GMRES Flex GMRES Gain Flex GMRES Gain

1 6 18 1.626 1.569 11.155 28.271 60,54% 21.087 38.952 44,02%
2 4 18 2.349 2.317 11.706 42.659 72,56% 26.053 57.067 54,35%
3 4 18 3.377 3.299 16.711 59.004 71,68% 42.424 84.904 50,03%
4 4 18 4.756 4.576 23.542 79.403 70,35% 73.383 128.828 43,04%

Table 3.7: Crack configurations and solution times respectively by Flexible GMRES

and GMRES. N-Iter indicates the number of iterations; CPU(s)/iter is time (s)

consumed per iteration; sol time denotes the iterative solution time (s) and tot time

is the total computational time (s).

(a) (b)

Figure 3.12: Multicrack - (a) Solution time and (b) Time per iteration by GMRES

and Flexible GMRES

integrals by replacing the 4x4 gauss scheme with 2x2 or 3x3 thus halves the

computational time for [Knear] and {vect y}.

• Remark 2: Flexible GMRES and GMRES both exhibit linear dependent

relation between the CPU(s) per iteration and the number of unknowns

(Fig.3.12b). One can easily notice that Flexible GMRES is more expensive

than GMRES for each iteration. This is understandable because Flexible

GMRES also features the inner solution for the preconditioning task.

• Remark 3: Globally, Flexible GMRES converges much faster than GMRES

which results in a 60 − 70% solution time cut off (Fig.3.12a). Consequently,

40 − 50% of the total computational time can be reduced by using Flexible

GMRES.



58 Chapter 3. Preconditioning and refinements of the FM-SGBEM

3.4 Conclusions

In this chapter, two majors improvements have been implemented for the algorithm

of FM-SGBEM to compute the large-scale problems. The first consideration is

the rational storage of the near interaction matrix [Knears]. For this purpose,

the CSRSYM approach has been applied in the hierarchical algorithm of the FM-

SGBEM. This work does not only divide the global [Knears] into many cell-level

matrices of insignificant size, but also compress each symmetric and sparse sub-

matrix into arrays of non-zero indexes. The memory usage is therefore pushed to

the minimal possible which helps computing successfully many test problems whose

size goes up to 3 millions unknowns on a single processor PC.

The second concern of the FM-SGBEM algorithm is the high iteration counts in

the solution phase by GMRES. The reduction of the solution time by fastening the

convergence is met by the use of a more robust solver: Flexible GMRES, where the

preconditioning task is occupied by a better matrix: [Knears]. The particularities

and reasons for which Flexible GMRES is more favorable than GMRES are dis-

cussed. The algorithm and implementation of Flexible GMRES in the FM-SGBEM

have also been presented.

Some of the important parameters (truncation, max elem...) have been cho-

sen so that the program is computationally robust while being sufficiently correct.

Nevertheless, the study did not include the influence of a great number of other

factors: geometries, material properties, restart parameter etc.

Lastly, the enhanced performance of the code has been demonstrated through

some numerical examples. It is effectively proved that in most cases, Flexible GM-

RES outperforms significantly GMRES in terms of speed and of quality of results.

This optimized algorithm has been therefore utilized thorough out all the remaining

numerical tests in this thesis.

In the following chapter, we will discuss about the extension of the method

into more sophisticated problem where the heterogeneity is accounted for and the

interfaces between sub-domains are presented.
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Multizone problems also refer to the treatment of a domain containing dif-

ferent materials separated by internal interfaces. These problems can be seen in

many practical applications: composite materials, geomechanical systems, study of

fractures... At the common boundary between two sub-domains (interface), the

corresponding full matching behaviors have to be enforced. One important aspect

in a multi-domain algorithm is to enforce the continuity and equilibrium conditions

at interfaces, but there are no prescribed values.

Considering a generic fractured interface problem Ω containing 3 homogeneous

sub-domains (Fig. 4.1). On an interface, both displacements and traction are un-

knowns that belong to all adjacent bodies. In a simple case where the interface is

shared by 2 bodies. The continuity of displacement and equilibrium conditions are:

ua(x) = ub(x) and ta(x) = −tb(x) (a, b being the name of two adjacent zones). The

normal vector of an interface is chosen so that it is directed from the zone having

the lower enumeration to the zone having the higher number.

In general, the BEM becomes expensive compared to the domain techniques

when the studied problem exhibits a high ratio of surface to volume. This is true
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Figure 4.1: A multizone fractured domain

for multizone problems with the presence of interfaces (internal boundaries). Nev-

ertheless, the BEM approach is still attractive for this class of problem because of

the natural treatment of continuity conditions: For the displacement-based FEM,

enforcing the continuity of traction is a difficult task, while this quantity appears

directly in the boundary integral formulation.

SGBEM normally provides a symmetric system matrix but when applied to the

sub-domains formulation, this property cannot be completely achieved. In order

to conserve the global symmetry of the method, an appropriate technique must be

adopted during the matrices construction. Layton et al. [24] introduced an algo-

rithm that can lead to a partly symmetric matrix by putting the unknowns on the

interface ahead. The block matrices corresponding to interfaces are non-symmetric,

while the rests are symmetric. In [10], Gray and Paulino studied a fully symmetric

Galerkin BEM in heat transferring. This method is based on an appropriate com-

bination of usual SGBEM equations on interfacial and non-interfacial boundaries.

This technique is later adopted in elastostatics [5] and fracture mechanics [23]. With

the advantageous nature and symmetry in treating multizone problems, the SGBEM

becomes therefore a formidable option. The need of solving practical multizone is-

sues which feature high amounts of unknowns naturally leads to the application of

the Fast Multipole Method. With the complexity of O(NlogαN), the multizone

FM-SGBEM is expected to be a powerful alternative for many important realistic

applications.

In this work, the approach described in [10] by Gray and Paulino has been

exploited. Perfect bonding between sub-domains is assumed first, imposing the

continuity of displacement and the equilibrium of traction across the interface. Via

some appropriate terms rearrangement and sign adoptions, the symmetry of the

global matrix can be achieved. Secondly, the Fast Multipole Method is introduced

in the multizone SGBEM formulation. Some computational and efficiency issues of

the algorithm is discussed in the later subsection. Lastly, numerical experiments

on validation tests are given and one extension on practical material is reported,

followed by some conclusions and perspectives.
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4.1 SGBEM formulation for multizone problems

Figure 4.2: A bi-material interface problem

A simplest geometry would be preferable to describe the multizone formulation. The

extension to more complicated interface problems would follow analogous principles.

For instance, a geometry having a single common boundary is employed (Fig.4.2).

The solid contains 2 materials A and B located at the bottom and top regions

respectively. The interface Si = IA = IB has the normal vector oriented from solid

A toward B. There are two sets of unknowns related to 2 sub-domains:

uA, tA, uIA , tIA and uB, tB, uIB , tIB (4.1)

where uA, tA, uB, tB and uIA , tIA , uIB , tIB are non-interfacial and interfacial un-

knowns of A and B respectively.

The basic idea is to write the usual SG equations on all boundaries of each sub-

domain. It is then convenient to write the double integral terms of these equations

in the block-matrix format:

For zone A:

BAA
uu BAA

tu BIAA
uu BIAA

tu

BAA
ut BAA

tt BIAA
ut BIAA

tt

BAIA
uu BAIA

tu BIAIA
uu BIAIA

uu

BAIA
ut BAIA

tt BIAIA
ut BIAIA

uu





uA

tA

uIA

tIA


=



Fu(ũA)

Ft(t̃A)

Fu(ũIA)

Ft(t̃IA)


(4.2)

and zone B:

BBB
uu BBB

tu BIBB
uu BIBB

tu

BBB
ut BBB

tt BIBB
ut BIBB

tt

BBIB
uu BBIB

tu BIBIB
uu BIBIB

tu

BBIB
ut BBIB

tt BIBIB
ut BIBIB

tt





uB

tB

uIB

tIB


=



Fu(ũB)

Ft(t̃B)

Fu(ũIB )

Ft(t̃IB )


(4.3)
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these terms are well detailed in chapter 2, the upper scripts indicate the surfaces

on which the integrals are written, for instance:

BIAA
tu =

∫
StA

∫
IA

tIAi (x)T ki (x, x̃)ũk(x̃)dSx̃dSx

The continuity conditions uIA = uIB = uSi and tIA = −tIB = tSi are then

embedded in the above systems in an appropriate way: replace the interface traction

of the top region (B) by the negative of the bottom interface traction (A). The

equation (4.3) is thus transformed to:

BBB
uu BBB

tu BSiB
uu −BSiB

tu

BBB
ut BBB

tt BSiB
ut −BSiB

tt

BBSi
uu BBSi

tu BSiSi
uu −BSiSi

tu

−BBSi
ut −BBSi

tt −BSiSi
ut BSiSi

tt





uB

tB

uSi

tSi


=



Fu(ũB)

Ft(t̃B)

Fu(ũSi)

−Ft(t̃Si)


(4.4)

From (4.2) and (4.4), the global matrix can be easily constructed by linear

combination as: 
[SG]AA [SG]SiA 0

[SG]ASi [SG]SiSi [SG]BSi

0 [SG]SiB [SG]BB





uA

tA

uSi

tSi

uB

tB


(4.5)

Block [SG]X ,Y corresponds to the Symmetric Galerkin equations written for the

surfaces X and Y respectively. The diagonal blocks (1,1) and (3,3) are symmetric

as a consequence of the SG procedure. The blocks (1,3) and (3,1) are zero since the

top and bottom equations are not related. The pairs of off-diagonal blocks (1,2) =

(2,1)T , (2,3) = (3,2)T (T indicating the transpose) are also result of the SGBEM

procedure. The block (2,2) is a linear combination of the SG equations for interface

of top and bottom materials. There are single integral terms embedded in this block

that are locally unsymmetric. Due to the change of sign across the interface and the

material-independence property, these integrals drop out and leave only the double

integral terms that are all symmetric in the global system. Eventually, the global

matrix is symmetric and is also of reduced size since only one set of unknowns from

the interface is invoked.

Let us now consider a generic fractured sub-domain d sharing n interfaces

(I1, I2, ..., In) with its surrounding zones. Sd denotes the non-interfacial bound-

aries of this body. In a general case, Sd can be an union of prescribed traction,

displacement and cracks surfaces: Sd = Sdt ∪ Sdu ∪ Sdc . The SGBEM block matrix

form for this zone can be written as:

[Kd]{xd} = {bd} (4.6)
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[Kd] is the coefficient matrix that stores all the coefficients which are derived

from the integral equations of SGBEM written for all surfaces in the zone d. This

matrix can be expressed in term-wise manner as follow:



BStSt
uu BSuSt

tu BScSt
∆uu BI1St

uu ◦BI1St
tu ... BInSt

uu •BInSt
tu

BStSu
ut BStSt

tt BScSt
∆ut BI1Su

ut ◦BI1Su
tt ... BInSu

ut •BInSu
tt

BStSc
u∆u BSuSc

t∆u BScSc
∆u∆u BI1Sc

u∆u ◦BI1Sc
t∆u ... BInSc

u∆u •BSinSc
t∆u

BStI1
uu BSuI1

tu BScI1
∆uu BI1I1

uu ◦(BI1I1
tu + I1

u) ... BInI1
uu •BInI1

tu

◦BStI1
ut ◦BSuI1

tt ◦BScI1
∆ut ◦(BI1I1

ut − I1
t ) BI1I1

tt ... BInI1
ut ◦ •BInI1

tt

... ... ... ... ...
. . . ... ...

BStIn
uu BSuIn

tu BScIn
∆uu BI1In

uu BI1In
tu ... BInIn

uu •(BInIn
tu + Inu )

•BStIn
ut •BSuIn

tt •BScIn
∆ut •BI1In

ut • ◦BI1In
tt ... •(BInIn

ut − Int ) BInIn
tt



(4.7)

{xd} and {bd} are respectively the solution vector and local known vector. The

solution vector {xd}, despite being written for the body − d, contains the global

unknowns which are related to this body. The right-hand side vector [bd] contains

all the known values and can be expressed as follow:

{xd} =



uS
d
t

tS
d
u

∆u

uI1

tI1

...

uIn

tIn


{bd} =



F(ũSt)

F(t̃Su)

F(∆ũSc)

F(ũI1)

◦F(t̃I1)
...

F(ũIn)

•F(t̃In)


(4.8)

The terms [B∗∗] and [I∗] denote double and single integrals of the SGBEM

formulations, F(∗) denote the known value related to the test-function. Detailed

of these terms can be found in chapter 2. One important issue in the multizone

problems is the sign adoption. Correct signs for the interfacial traction have to be

accounted for where symbol ◦ or • is present. This is to incorporate the equilibrium

of the traction vector from one zone to another across the interface. For example, if

the normal vector of the studied interface is inward, the sign of the corresponding

traction term and its transpose is negative and vice-versa [5].

As the previous remark, the single integral [ISiu ] is, in general, different with the

transpose of [ISit ], thus rendering the local coefficient matrix [Ki] non-symmetric.

Fortunately, the equation (4.6) is written for every zone which eventually gives

rise to equal and sign-opposite single integral terms. Since they are not material-

dependent, these single integrals simply disappear during the assembly process and

the global system is fully symmetric. As is proven in [10], this multizone SGBEM

algorithm is computationally very efficient: the global matrix is of reduced size be-

cause only unknowns on one side of the interface are considered; and the symmetry
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can be used to reduce the matrices build-up cost or to couple with finite elements

method.

4.2 Fast multipole SGBEM for multizone problem

In this work, we discuss directly the application and the solution of the Fast Mul-

tipole method in the multizone SGBEM without describing the solution of the

multizone SGBEM since they follow similar principles. The same settings of the

fast multipole algorithm in a single domain can be effectively extended to the case

of multiple domains. The only distinct feature in a multizone problem is the gradual

computation of n sub-problems (n being the number of bodies). Each sub-problem

is represented as a sub-domain of a distinguishing material. Since an indispens-

able part of a sub-domain is the interface which contains unknown values, each

sole sub-domain is not well-posed and thus cannot be solved separately. However,

the coefficients matrix and the right-hand side vector of each zone can be easily

obtained. By evaluating all the local sub-domains, we eventually gain access to the

global system. This system is derived from the linear combination of the compo-

nent matrices and known vectors of all sub-domains. As a result, the solution of

a multizone problem is conducted to the solution of a combined system which is

globally well-posed and solvable. This task appears to be trivial since the equation

system is also linear and can be handled by iterative approaches as introduced in

single-domain problems.

4.2.1 Multizone FM-SGBEM algorithm

Figure 4.3: Block matrixes in Multizone problem

The multizone FM-SGBEM algorithm can be summarized in a few steps: (a)

an octree structure is constructed first, covering the whole solid. (b) a loop on all

bodies is called. Near interactions are computed then stored locally in [Knears].
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(c) an iterative solver (Eg. GMRES) is used to approximate the solution. As

GMRES requires a global matrix-vector multiplication, a second loop is called

and takes care of the product in a block-matrix manner. An example is shown

in Fig.4.3: (1) Zone-i sharing 2 interfaces with zone i-1 and zone i+1. We take

out the part of the global candidate vector which corresponds to the unknowns

of this zone. (2) This local vector is used at first in fast multipole evaluations,

then it is multiplied with the near coefficients which are already stored in step (a).

The sum of these two operations forms the product of zone-i with the candidate

vector (3) This product is then returned to the global coordination and the next

zone is studied. (4) By accumulating all these local products, we obtain eventually

the global matrix-vector product for GMRES. After the convergence is achieved,

the post-processing does not differ from the case of single domain. The detailed

algorithm of the multizone FM-SGBEM can be expressed as follows:

Algorithm 6 Multizone FM-SGBEM
1-Initialization

(a) Import geometries and parameters

(b) Create an octree for the complete multizone configuration

(c) Compute the right-hand side vector {b}
Initiate {b} = 0

Loop over i = 1, nbody

Compute {b} for each subdomain i, set {b} := {b}+ {b}i
End

(d) For each i = 1, nbody, compute [Knear]i
2-Iterative Solution

(a) Initiate family of Krylov vectors: {w}1 = {b}
(b) GMRES main loop: set k = 1; while ‖ [K]{x}k − {b} ‖≥ 10−3 (precision)

(i) Compute new Krylov vector {w}k+1:

Initiate {y}k = 0

Loop over i = 1, nbody

Compute {y}ik := {y}ik + [K]i,FMM{w}ik using FMM

Add near contribution: {y}ik := {y}ik + [K]i,near{w}ik
End

Solve [K]near{w}k+1 = {y}k using inner GMRES loop (preconditioning)

(stopping criterion: ‖ [K]near{w}k+1 = {y}k ‖≥ 10−1)

(ii) Find {x}k ∈ V ect(w1, w2, ...., wk) such that ‖ [K]{x}k − {f} ‖→ min

(iii) Set k := k + 1

3-Post Processing

4.2.2 Multizone FM-SGBEM numerical implementation

The scheme of the multizone FM-SGBEM is based essentially from the single-

domain FM-SGBEM scheme which is presented in chapter 2. Even though the

principle conveys the impression of simplicity, the numerical implementation of the

multizone FM-SGBEM has proven to be a more difficult task. A lot of compu-
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tational efforts have been made for this purpose but due to the vast complexity

of multi-domain geometries, it still appears impossible to model and compute ef-

ficiently any generic or random multizone problems. There are thus numerous

adjustments in the numerical code in order to cope with each particular problem.

Details of these changes will be clarified and discussed along with the problem de-

scription. In this section, we present the most general computation scheme (pre

processing in Fig.4.4 and main processing in Fig.4.5) for a multizone FM-SGBEM.

4.2.2.1 Pre-Processing

Figure 4.4: Multizone FM-SGBEM: Pre-Processing phase

The calculation begins with the import of parameters and geometries. Here,

slab usually denotes the outer boundary (either fractured or not), crack denotes

one single penny-shaped crack whilst inclusion is often represented as a sphere.

These geometries are generated by Gid thus only ‘raw’ texts of nodal coordinates

and connectivity matrices are provided. To fully define a particular multizone and

multifracture problem, we usually need to declare more input information. In the

spirit of minimizing the labor work for each test variety, the data provided by

Gid needs to be complimented by some automatic codes so that the flexibility is

not lost. For this purpose, a number of subroutines in the pre-processing phase

is written: for instance, generate crack and generate inclusion can multiply

the original crack or inclusion, adjust size, rotate and distribute them in space...

Once the preparation is done, join data regroups all component entities and form

the expected global geometry (with distinguishing zones, global arrays of unknowns

types and positions etc ...)

The second stage of the pre-processing is to construct the octree structure. To

adapt with the multiple sub-regions feature, there are 2 alternatives: (1) Build only

one octree structure for the entire geometry, (2) Build separate octree structures for
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each body. For the first approach, the octree generation can be simple and quick (no

real change from the mono-zone algorithm). However, stricter conditions should be

applied in the latter steps to prevent useless operations. Contrarily, The second

approach can handle local FMM-operations rather smoothly and elegantly since

the octree does not possess ‘exotic’ elements (from unwanted zones). Nevertheless,

the drawback of the second approach is the lack of flexibility and adaptability:

when the difference of geometrical dimensions or mesh refinement between internal

zones become considerable (Eg. matrix-inclusions problem) or when the number of

internal bodies grows big, it becomes more sophisticated to correctly generate and

manage the local octrees in an efficient way. Sometimes, it would be more desirable

to consider a coarse zone/mesh by pure SGBEM approach rather than by FMM.

In our work, we adopt the first approach to generate the octree structure as well as

the related Fast algorithm, some adaptive changes are also included to replace the

FMM operations by pure SGBEM to achieve the best efficiency.

4.2.2.2 Main-Processing

Figure 4.5: Multizone FM-SGBEM: Main-Processing phase

The main program consists of constructing and solving the linear system equa-

tion. The numerical implementation of the multizone follows closely the previously

described algorithm: whenever a global-scale quantity is needed, a loop on all bod-

ies (Nbody) are called and all local computations are performed. At the end of each
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local computation, the local components are added up to form the global quantities:

[Knear] =

Nbody∑
i=1

[Knear]i

{vect y near} =

Nbody∑
i=1

{vect y near}i

[Knear]{x} =

Nbody∑
i=1

[Knear]i{x}i

Multizone sign adoption

Different sign adoptions for traction-related terms on different normal orientations

is the reason for which the most adequate modifications and adjustments must take

place to ensure the exactitude and efficiency of the multizone program. The first

remark is addressed to the sign adoption of the SGBEM terms. The Fast algorithm

breaks the double integrals into 2 parts: one in the multipole moments and one

during the expansion process. Hence, if the correct sign for the interfacial traction is

adopted in one process, it should not be repeated in another. Example for the term

BSiSt
tu , the multipole moment would be computed on

∫
Si

tSi ... and the expansion

is on

∫
St

ũ..., the sign is thus put in the multipole moment, not in the expansion

(in case the normal vector of interface Si is inward). Secondly, providing that the

normal vector of a boundary surface in an integration is outward by convention,

we also need to invert the nodal sequence of the elements on an inward-interface to

keep it ‘locally’ outward.

Multizone FMM memory allocations

Even though a good majority of the memory is reserved for [Knear], we should not

underestimate the Fast Multipole memory management. In the multi-level FM-

SGBEM, the multipole moments and local expansions are computed for every level,

every cell and every degree of freedom. Hence, a large amount of memory slots

is reserved to store these quantities (especially for multizone problems). A good

management in this step is necessary to contribute to the overall efficiency. In a

multizone problem, the ‘local’ computation is restricted to only one sub-domain at

a time, so the cells in the octree structure which contain no element of the studied

zone should be ‘muted’ to minimize the memory usage (no memory allocation) -

otherwise they are ‘active’ - See Fig.4.6. Overall, this memory allocation is tem-

porary. When the local calculation ends and the next zone is called, these slots

are freed and another cycle repeats. The highest amount of memory in use is thus

required by the zone that features the most cells. For this matter, the multizone

FMM requires less memory than single-domain FMM of a same problem size.
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Figure 4.6: Multizone FM-SGBEM Memory management: the gray window repre-

sents the studied zone i, the cells which contain elements of zone i are all compu-

tationally active, the rests are muted

Regarding the active cells, despite having many more terms, the number of

arrays to store the multizone FMM moments need not exceed the single-domain

case. Let [MBTT] and [LBTT] denote respectively the arrays containing multipole

moments and local expansion of

∫
Su

t for the terms BSuSu
tt , BSuSt

tu and BSuSc
tu . The

presence of interfaces

∫
Si

tSi is accounted for by simply adding this contribution in

these arrays (no further need to allocate new distinct memory slot such as [MBTT] I

or [MBTT] C particularly for interface or crack surfaces). By expanding these

arrays (multipole moments) on the corresponding surfaces Su, St, Sc or Si, the

routines can also automatically compute the terms BSuSi
tt , BSiSu

tt , BSiSi
tt , BSuSi

tu ,

BSiSt
tu , BSiSc

tu and BSiSi
tu which appear in the multizone formulation. Hence, two set

arrays [MBTT] and [LBTT] are sufficient to compute all Btt and Btu terms in the

system. Analogous concept is applied for the terms But and Buu and they are

expressed below:

[MBTT] and [LBTT]←−
∫
Su

t and

∫
Si

tSi

[MBUT] and [LBUT]←−
∫
St

u and

∫
Sc

∆u and

∫
Si

uSi (4.9)

[MBUU] and [LBUU]←−
∫
St

(Ru) and

∫
Si

(RuSi) and

∫
Sc

(R∆u)

In terms of memory allocation, this confinement may appear fairly helpful: Skipping

all the intermediate steps, a general cell would contain 40(p + 1)(p + 2) double-

precision terms (p being the parameter of truncation). Hence, for an octree featuring

about 20.000 cells and p is set to 7, the total amount of RAM for all the multipole

moments introduced in (4.9) is approximately 60 Mb. If extra multipole arrays (Eg.

[MBTT I] for interfaces or [MBTT C] for cracks) were used to better distinguish the

different surfaces and to facilitate the programming, the extra RAM needed would
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be only about 120 Mb. This amount of memory is inconsiderable in comparison

with [Knear]. However, from the computational point of view, these additional

arrays will triple the FMM operations because M2M, M2L and L2L must include

the extra interface and crack arrays. This entails a process roughly 3 times more

expensive than a normal Fast algorithm would need as consequence. Therefore, this

confinement remark is overall advantageous and should not be underrated.

Multizone FMM passages

In the scenario where only one octree structure is built for multiple sub-domains,

all cells are globally connected. The full set of Fast operations (comprising M2M,

M2L and L2L) will therefore be applied to all these cells by default which entails

excessive unneeded process. For an optimal multizone Fast multipole code, all the

FMM paths (such as M2L and L2L) connected to ‘muted’ cells should be blocked.

This consideration is not applied for M2M in the upward pass because the parent

cell is never deemed as ‘muted’ since it contains the elements of the studied zone as

its child does. Regarding the downward pass and local expansion, this blockage helps

preventing the transfer of coefficients to unwanted destinations therefore reducing

notably the wasteful operations (Fig.4.6).

Multizone [Knear] storage

With respect to the storage of the matrix [Knear], the compressed sparse format

used in the single domain is still effective but undergoes some adjustments. This

is to anticipate a general circumstance where cell C contains multiple sub-domains:

the contribution and internal interactions of elements in cell C should not be mixed

from one zone to another. For the purposes of maintaining the generality, the new

subroutine is designed so that it can recognize the number of zones in the studied

cell and allocate accordingly distinguishing CSRSYM arrays for the coefficients of

each sub-domain. These contributions are separated by some markers since there is

no connection between non-interfacial elements of 2 adjacent zones. When needed,

the implanted markers can distinguish the segments and extract only the necessary

one for the multizone matrix-vector products. This concept is illustrated in Fig.4.7.

4.3 Computational Aspects

There are two most important benefits from the symmetry of the multizone SGBEM

formulation: (1) Possibility of coupling boundary and finite elements (2) a compu-

tationally efficient algorithm. As mentioned in [5], the fully symmetric scheme is

more efficient than both unsymmetrical Galerkin and collocations approaches for

medium to large scales since the cost of build-up and storage is basically reduced

by a half. The solution time should also be halved if a direct solver is adopted.

Additionally, the present approach is very suitable for the parallelization [24].

The equation (4.7) is written for each zone of distinct material parameters. Each
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Figure 4.7: The storage of near-interactions in Cell C which contains 2 zones i and

i + 1: [Knear]zone ic and [Knear]zone i+1
c . These matrices are all concatenated in

the CSRSYM arrays of cell C: AAC, JAC and IAC. In a general case, cell C can

contains n zones and the CSRSYM arrays are composed of n separated segments

sub-matrix is independent from the other domains thus can be run on different

processors of a parallel machine. However, this interesting feature is not investigated

in this work but holds a promising perspective for further discussion.

Another technique can be adopted to improve the efficiency of the method is

the rational choice of element types and the number of Gaussian points [5]: linear

and coarser elements should be used to mesh the boundary portions where results

are of less interest (for instance, in a fracture problem, the outer geometry should

be meshed with only Q4 elements and computed with 2 gaussian points).

For certain multizone problems such as long, thin geometries, the multizone

SGBEM can be very efficient because the integral equations are written over small

pieces of the boundary and the resulting coefficient matrix is block-sparse (the

sparsity is proportion to the connection of the internal zones). In more general

multizone cases, the complexity of the problem (overall operation counts) is usually

higher due to the presence of sophisticated interfaces. The portion of interface to

the non-interfacial boundaries can in fact, affect considerably the efficiency of the

multizone algorithm. Let us consider a simple example of 2 configurations (Fig.4.8):

(a) mono-domain and (b) bi-domain. In the first geometry, the number of element

in Su and St are respectively nSu and nSt . In the second geometry, the boundary

Su, St is preserved, only the interface SI is added (having nSI
extra elements) and

divides evenly the boundary St such that there are nSt/2 elements on Szone1t and

nSt/2 elements on Szone2t .

This example is for the purpose of studying the complexity change when an

interface is present in a body. The operations counts are assumed to be the element-

element interactions in this analysis. Taking into account the symmetry of the
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Figure 4.8: Single domain (left) and 2-zone domain (right)

SGBEM formulation, the complexity of these 2 cases is examined.

Single-Domain:

non-interface & non-interface

BSuSu
tt −→ n2

Su
/2

BStSt
uu −→ n2

St
/2

BSuSt
tu and BSuSt

ut −→ nSunSt

The number of operations in this first case is therefore:

n2
St
/2 + n2

Su
/2 + nSunSt (4.10)

Considering the second configuration by scanning gradually over 2 zones, we

get:

Zone 1:

non-interface & non-interface

BSuSu
tt −→ n2

Su
/2

BStSt
uu −→ n2

St
/8

BSuSt
tu and BSuSt

ut −→ nSunSt/2

interface & interface

BSISI
tt −→ n2

SI
/2

BSISI
uu −→ n2

SI
/2

BSISI
tu and BSISI

ut −→ nSI
nSI

non-interface & interface

BSuSI
tt −→ nSunSI

BStSI
uu −→ nStnSI

/2

BSuSI
tu ,BSuSI

ut and BSISt
tu ,BSISt

ut −→ nSI
(nSu + nSt/2)

The total operation counts in this second case (zone 1 + zone 2) is:

n2
Su
/2 + n2

St
/4 + nSunSt/2 + 2nSI

(nSu + nSt + 2nSI
) (4.11)

From (4.10) and (4.11), it is clear that with the presence of interface, the differ-

ence in operation counts is 2nSI
(nSu + nSt + 2nSI

)− n2
St
/4− nSunSt/2. Hence, in
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Zone 2:

non-interface & non-interface BStSt
uu −→ n2

St
/8

interface & interface

BSISI
tt −→ n2

SI
/2

BSISI
uu −→ n2

SI
/2

BSISI
tu and BSISI

ut −→ nSI
nSI

non-interface & interface
BStSI
uu −→ nStnSI

/2

BSISt
tu and BSISt

ut −→ nStnSI
/2

this example, the threshold for the multizone computation to be as efficient as the

mono-domain case is when nSI
' 1/10 of (nSu + nSt), which denotes a very small

portion of interface over non-interfacial boundaries.

In general, the above fact holds true for almost all multizone configurations:

If more zones or cracks are involved, the additional complexities become far more

substantial. Furthermore, the presence of internal boundaries also increases the

near-interactions in the Fast Multipole algorithm which are computationally ex-

pensive. Consequently, these drawbacks slow down significantly the calculation of a

multizone problem in comparison with a mono-domain problem of similar number

of unknowns.

There are, however, a number of alternatives to alleviate this disadvantage:

Either applying the method on long thin domains - where the contribution of ‘arti-

ficial interfaces’ is insignificant and the block-sparsity of the coefficient matrix can

compensate for the presence of the additional boundaries [75] or using a relatively

coarse mesh on interfaces of less importance. Also, special treatments could be in-

voked on certain circumstances to take advantages of the geometry: for instance, in

a matrix-inclusion problem where each inclusion is considered as a body/interface,

we exclude the inclusions from the FM algorithm and compute them by the conven-

tional SGBEM. The combination is performed later during matrix-vector product

and the algorithm has proven to be very efficient.

4.4 Numerical examples

4.4.1 Cube subjected to its body-weight

The first example involves a clamped cube subjected to its own body-weight

(Fig. 4.9). In this problem, the right-handed side of the traction and displacement

equations contains additional contributions due to gravitational loads:

Fbwt(t̃) =

∫
Su

∫
S
Pi(x̃,x)t̃i(x̃)dSxdSx̃ (4.12)

Fbwt(ũ) = −
∫
St

∫
S
Qij(x̃,x)ũi(x̃)dSxdSx̃ (4.13)
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Figure 4.9: Clamped cube under gravitational load

where

Pi(x̃,x) =
1

8πµ
[bink(x)r,k −

1

2(1− ν)
bkr,kni(x)]

Qij(x̃,x) =
1

8πr
[nmr,m(bir,j + bjr,i) +

ν

1− ν
δij(nmr,mbsr,s + bmn,m) (4.14)

− 1

2(1− ν)
[bmrm(nir,j + njr,i) + (1− 2ν)(binj + bjni)]]

the gravitational load is contained in vector b = (0, 0,−gρ)T

The cube, dimension 100x100x100, is composed of two bodies which have iden-

tical material properties (for validation purposes): E1 = E2 = 33, ν1 = ν2 = 0.1

and ρ1 = ρ2 = 0.16. The mesh consists of 176 Q4 quadrilateral elements. Since

there is no exact solution available, a finite element analysis has been carried out

to obtain a reference solution.

The implemented FM-SGBEM for multi-zone problems is carried out using sim-

ilar parameters input as in the mono-domain case: max elem is 30, truncation is set

to 7, the Flexible GMRES converges if the backward error is smaller than 10−3. The

displacement component along the vertical edge of cube is compared with the FEM

reference (see Fig. 4.10). Despite the coarseness of the chosen mesh, the numerical

solution gives a very good agreement with the FEM result.

4.4.2 Bi-material cantilever beam

In this example, a bi-material cantilever beam is studied. The dimensions of the

beam are 40×40×200, the interface divides equally the beam into two layers. Iden-

tical materials E1 = E2 = 1 and ν1 = ν2 = 0, 3 are chosen for these two layers

to test the multizone algorithm. The beam is fixed on one end and subjected to

uniform pression p = 1 on the top face (See Fig.4.11).

The beam is modeled with 432 Q4 elements. The solution is obtained by the

multizone FM-SGBEM using similar input parameters as described in the first

validation test. The results of displacement Uz on the red line is compared with
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Figure 4.10: Displacement Uz of the vertical bold edge of the cube

the finite elements solution. The agreements between the BE and FE approaches

are very good (See Fig.4.12).

4.4.3 Spherical envelope under internal pressure

Let us consider a spherical homogeneous envelope of internal radius a and external

radius b. The constitutive material is elastic isotropic (E = 1, ν = 0.3). The internal

surface is subjected to a normal uniform pressure p = 1 (Fig.4.13):

This is a simple test in elastostaticity where we have the exact solution of radial

displacement ur:

ur =
a3

b3 − a3

[
(1− 2ν)r + (1 + ν)

b3

2r2

]
p

E
(4.15)

and the stress σrr:

σrr =
a3

b3 − a3

[
b3

r3
− 1

]
p (4.16)

In order to test the multizone code, we proceed therefore to model a spherical

envelope which is composed of 3 layers. To take advantage of the exact solution

and to test the validity of the program, we choose identical material properties for

all 3 layers. However, the algorithm considers them as separate bodies and use the

multizone scheme to solve the problem. The geometry and boundary conditions is

found on Fig.4.14:

In this example, 1.047 Q8 elements have been used, constituting 13.689 un-

knowns (9.447 in displacements and 4.242 in traction). The FM-SGBEM program

converges after 25 iterations (about 30’ calculation to reach the precision of 10−3).

The mean values ur and tr are computed respectively from the radial displacement

and traction of all nodes on different radius. The relative error between the numer-

ical code and the exact solution are reported in the below table. It can be seen that
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Figure 4.11: Bi-material cantilever beam

the multizone FM-SGBEM algorithm is correct and the agreement is good despite

the coarseness of the chosen mesh.

position ur theorical ur numerical relative error (%)

r1 0.66667 0.6632 0.52 %

r2 0.17778 0.176338 0.81 %

r3 0.092416 0.0916 0.86 %

r4 0.06667 0.0661 0.83 %

position tr theorical tr numerical relative error (%)

r2 0.111111 0.113082 2,6%

r3 0,021752 0.022988 5,67%

Table 4.1: Displacement ur and traction tr on different layers

4.4.4 Fractured cylinder under tensile load

A simple bi-materials cylinder (176 Q4-elements) was used to represent a multi-

domain solid in this example. The boundary conditions as well as the materials

properties are shown in the Fig.4.16a. This cylinder contains in zone 2 an internal

crack. In this test, we compute the displacement discontinuity on the crack. In

order to do so, the fracture SGBEM formulation in chapter 2 is invoked in the

multizone scheme. Two forms of crack are solved in this example: penny-shaped

crack and elliptical crack. The exact solution of these two crack types are available.
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Figure 4.12: Vertical displacements on an edge of the cantilever beam

Figure 4.13: Spherical envelope under internal uniform pressure

Penny-Shaped crack

The penny-shaped crack (as is presented in chapter 3) is constituted from 48 Q8

elements, the elements adjacent to the front are modified according to the quarter-

point scheme. The crack (radius a = 1) is put on the plane Oxy at the center

of zone 2. The numerical crack opening displacement (COD) is compared with

the analytical solution: ∆u3 =
4(1− ν)

πµ

√
a2 − r2σ0

33. The results are shown in

Fig.4.16b. Similar tests where the crack is moved to zone 1 or oriented randomly in

space are also carried out. The relative errors of these tests’ results are all inferior

to 1%.

The Stress Intensity Factors (SIFs) can be evaluated from the nodal displace-

ment discontinuity of 2 nodes at the vicinity of the crack-front:
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Figure 4.14: Spherical Envelope under internal pressure (a) 1-layer body E = 1, ν =

0.3 (b) 3-layer body (r1 = 1, r2 = 2, r3 = 3, r4 = 4) of identical properties: E1 =

E2 = E3 = 1, ν1 = ν2 = ν3 = 0.3

(a) (b)

Figure 4.15: Radial displacement of a internal-pressurized spherical envelope (a)

exact results (b) numerical results

Knode 1
I =

µ

4(1− ν)

(
2π

a

)1/2 [
2∆unode 2

3 − 1

2
∆unode 3

3

]
(4.17)

Compared with the exact SIFs KI =
2

π

√
πaσ0

33, the numerical results exhibit a

relative error of 1, 65%

Elliptical crack

Considering now an elliptical crack of major semi-axis a and minor semi-axis b

(Fig.4.17):

The analytic expression of the crack opening displacement (see [15]) is:

∆u3 =
2(1− ν)σ0

33

µ

b

E(k)

√
1− x2

a2
− y2

b2
(4.18)
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(a) (b)

Figure 4.16: (a) bi-material cylinder (b) crack opening displacement (∆u3)

Figure 4.17: Elliptical crack geometry

where E(k) is the complete elliptic integral of the second kind:

E(k) =

∫ π/2

0

√
1− k2sin2αdα k2 = 1− b2

a2
(4.19)

E(k) can be approximated either by:

E(k) =
[
1 + 1, 464(cosα)1,65

]1/2
k = sinα (accuracy 0.1%) (4.20)

or

E(k) =
π

2

1

1 + λ

4− 0, 18λ4

4− λ2
λ = tan2α

2
(accuracy 0.05%) (4.21)

Equation (4.20) has been chosen in this work. The above fractured geometry

is retaken into computation but the penny-shaped crack is replaced by an elliptical

crack. The mesh for this elliptical crack is obtained from the same penny-shaped
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crack mesh simply by contraction of the y nodal coordinates. In Fig.4.18, a com-

parison between exact and numerical crack opening displacement of nodes on Ox

(left) and Oy (right) is shown.

Figure 4.18: ∆u3 of an elliptical crack embedded in a bi-material cylinder

4.4.5 Mulicrack in a bounded multizone domain

In this test, we study a clamped bi-material cube which contains many cracks and

is put under an uniform tensile load p = 1. The cube, dimension 100x100x100,

is modelled with 4400 elements Q4. The interface divides the cube evenly at the

altitude of h = 50 (see Fig.4.19a). The same material properties (E1 = E2 =

2000, ν1 = ν2 = 0.3) are defined for these two bodies but the multi-zone computation

is carried out as if they were two different materials. The feature and configuration

of the cracks systems are similar to those in the previous tests. The center of

the crack system coincides with the cube’s. We compute 3 meshes in which the

system contains respectively: 1.000, 1.728, 2.744 cracks. The number of Gaussian

points is chosen as 2, the parameter of truncation is set to 7. The maximal number

of elements in a leaf is 30, the restart parameter is fixed at 50 and the stopping

criterion for the solver Flexible GMRES is 10−3.

Mesh NEQ max elem l̄ Pre Time(s) N-iter CPU(s)/iter Tot Time (s)

1 401.412 30 7 5.457 79 561 50.986

2 683.148 30 7 12.197 66 1.204 95.584

3 1.061.928 30 7 11.903 102 1.872 206.114

Table 4.2: Details of the numerical tests: l̄ denotes the depth of the octree structure,

NEQ is the problem size; N-iter is the iteration counts; Pre Time and Tot Time

are respectively the preparation and total computational times.

Table 4.2 shows the details of the calculation on these 3 meshes. The CPU

times per iteration are linear with the number of DOFs which corresponds very
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(a) (b)

Figure 4.19: (a) Bi-material clamped cube under uniform tensile load (b) Mesh 1:

cube containing 10x10x10 cracks

well to the expected performance of a FM-SGBEM algorithm. Nevertheless, by

comparing the results in the unbounded problem (mono-zone) with this one in terms

of speed, one can notice a considerable difference in the computation times between

these two problems. This can be explained as the latter problem has to take into

consideration many extra terms due to interactions between the outer and interfaces

boundaries. In contrast to the unbounded fractured geometry where we compute

only the term BScSc
uu . In the bounded configuration, all other terms in equation

(4.7) including BScSc
uu must also be calculated. Furthermore, with poor distribution

of cracks in space, there can occur cells with highly concentrated cracks; the near

interactions with these cells can cause major slow down and memory overflow to

the code performance.

Figure 4.20: Time CPU (s) consumed per iteration
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4.4.6 Extension to Matrix-Inclusion materials

Figure 4.21: Composite materials

In this section, we discuss about the extension of the method into the matrix-

inclusion materials (as known as composites - Fig.4.21). Composite materials have

proven to be the subject of great interest as these materials possess better char-

acteristics than the original components. Composite materials are seen very often

in all engineering structures: from the widely-used concrete in buildings to the

highly-cost fibre-reinforced polymers in the spacecrafts. The literature concerning

the fracture of composite materials is rather limited and restricted to extremely

idealized models ( [48]- [50]). In these configurations, the model’s parameters must

rely on the macroscopic behaviors of the equivalent medium. Nevertheless, in cer-

tain scales and circumstances, the response of the system should not be approxi-

mated by the macroscopic parameters. To provide a better analysis on a fractured

composite material, one should take the heterogeneity of the sub-domains into con-

sideration. Exhaustive studies on the fracture composite by different numerical

approaches can be found in ( [51]- [58]). In the present paper, we employ the Fast

Multipole-SGBEM to simply investigate the behavior of fractures (the crack open-

ing displacement/stress intensity factors) in a model of composite. The authors aim

to extend this study further to simulate a crack propagation in more sophisticated

configurations.

Considering a simple configuration of a composite material (Fig.4.22): the outer

geometry is a clamped cube of size a3 under uniaxial tensile load, contains a system

of n3
i spherical inclusions of radius ri. These inclusions are located regularly on a

cubic grid of step di. The solid also has an array of n3
c penny-shaped cracks inside.

Having a unique radius of rc, these cracks are oriented randomly in space and are

also distributed on a regular cubic grid of step dc. In a generalized manner, the

program recognizes each inclusion as an independent zone and employs the equation

(4.7) as well as the multizone scheme to construct and to solve the global equations

system. The distances di and dc are chosen such that the cracks are sufficiently

far (at least four times the radius of crack) from the outer boundary and from the
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(a) (b)

Figure 4.22: (a) Model of fractured composite material (4x4x4 spherical inclusions

& 8x8x8 cracks) (b) Interior view of cracks and inclusions

surfaces of the inclusions (interfaces).

To ensure a good variety for this problem, different sizes, shapes and material

properties are also applied for the cracks and inclusions: Two type of cracks are

considered: penny-shaped crack of radius rc and elliptical cracks of major semi-axis

ac and minor semi-axis bc; a scaling coefficient ranged randomly from 0.5 to 1 is

applied to each crack and inclusion to vary the size of these entities. While the

material of solid is fixed as Esolid = 1, νsolid = 0, 3, these values on inclusions are

varied: Einclusion = 1 − 10, νinclusion = 0, 1 − 0, 4. The large-scale computations

consist of important numbers of inclusions and cracks. The dimensions are chosen

as: a = 80, rc = 1, ri = 2; the number of inclusion ni = 4; distance between

inclusions di = 20 the uniform tensile load p = 1. The outer boundary and inclusion

are made of 600 and 151 Q4 elements respectively. The crack is meshed with 48 Q8

elements. The table below shows the details of the number of components in the

solid as well as the number of unknowns and the output results:

Mesh nc dc NEQ max elem l̄ Pre Time(s) N-Iter CPU(s)/iter Tot Time(s)

1 8 10 258.702 30 5 4.182 16 823 18.219
2 10 7 447.558 30 8 6.165 15 1.274 26.832
3 12 6 729.294 30 8 24.112 16 2.353 63.666
4 14 5 1.122.468 30 6 15.982 14 4.404 83.180

Table 4.3: Fractured composite numerical tests by Flexible FM-SGBEM: NEQ

denotes the problem size, N-iter is the iteration counts; Pre time, Tot time are

respectively the preparation times and total computational times.

In order to obtain an efficient performance, the FMM algorithm is partly mod-

ified in this example. Because the FMM is not advantageous on the scales inferior

to 104, it should not be applied on inclusions which are locally considered as a
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sub-domain. The pure SGBEM is utilized on inclusions instead. Being composed

of a small number of elements, the computation on each inclusion becomes thus

instantaneous while having negligible additional SGBEM storage. Nevertheless, as

the geometry contains more surface areas, the computation is still highly expensive.

The dependence of the computational time per iteration is captured and shown in

Fig.4.23.

Figure 4.23: Time (s) consumed per iteration

4.5 Conclusion

In this chapter, the multizone SGBEM and the application of the Fast algorithm

in this context have been presented. Firstly, the symmetric multizone formulation

for fracture mechanics has been introduced for simple and general cases. Secondly,

the implementation of the Fast Multipole Method for multizone SGBEM has been

reported. All the important concerns regarding the octree generation, memory man-

agement, complexity counts, FMM operations ... have been covered in this chapter.

It is effectively shown that, despite having greater complexities, the multizone FM-

SGBEM is still a very attractive alternative for studying heterogeneity and interface

problems because of its natural treatment of tractions continuity and its ability to

couple with finite method or parallelization.

In the numerical experiments, the program has successfully solved some valida-

tion tests in elastostaticity and in fracture mechanics with excellent accuracy. The

extension of the optimized algorithm to large-scale multizone fractured problems

has also been introduced and reported. The performance of the code has shown

that the FM-SGBEM is also a viable and efficient alternative for the solution of

practical multizone problems.

Future developments of this multizone algorithm could be possibly aimed for

the study of interfacial cracks or cross-interfacial cracks. Further investigations to

enhance the efficiency of the method such as parallelization or improvements in
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the Fast Multipole scheme should also be considered. In the next chapter, we will

discuss about the crack propagation and some applications of the numerical code.
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5.1 Introduction

The three-dimensional numerical modeling of fracture propagation remains a chal-

lenging issue. Generally, due to the lack of efficiency during the re-meshing phase,

completely robust and automated routines have yet to be developed. This obstacle

appears particularly difficult for domain-based approaches where 3D elements are

employed [82]. Using a boundary-only discretisation, the remeshing task takes place

only along the crack front or on the intersection of the crack and the external body,

thus provides a process straightforward and more elegant.

Many developments have been devoted to improve the capacity of the boundary

elements in simulating the crack-propagation. See, for example, Li and Keer, 1992

[16] where pure Mode I behavior is assumed or the subregion approach is employed.

Mi and Aliabadi, 1994 [17], Mi, 1996 [14] adopted the dual approach to enforce the

traction equation in addition to the traditional Somigliana displacement identity at

points of the fracture surface. These approaches are limited by a strong continuity

requirement set on the displacement field (C1) at the collocation points. A more

efficient treatment can be achieved with the Galerkin approach, see Yoshida et

al. [4], Frangi et al. [11]. This variational method yields symmetric coefficient

matrices and generally provides high accuracy and better convergence rate when

iterative solvers are used. Frangi, 2002 [12] utilized the SGBEM to simulate a

simple fatigue crack growth. Similar method can be found in the work of Roberts

et al. [26] and Kitey et al. [27] where the crack growth occurred in particulate

composites. Xu et al., 2004 [28] also applied the SGBEM to investigate the 2D
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crack propagation. Tavara, on the other hand, modeled cohesive crack growth in

homogeneous media [29].

The main drawback caused by the fully-populated matrix in SGBEM can be

circumvented, as suggested by the authors of these previous studies, by coupling

with the Fast Multipole Method. Starting from these experiences, the FM-SGBEM

is here implemented to simulate a simple fatigue-crack propagation governed by

Paris law. The first and second sections of this chapter introduce the criterion of

the fatigue crack propagation and the subsequent remeshing strategy especially de-

signed for a boundary element analysis. Lastly, several numerical tests for validation

purposes have been performed. These tests include many fractured configurations

such as the propagation of one or multiple crack(s) in homogeneous or piece-wise

homogeneous domain.

5.2 Propagation criterion

Since the accurate modeling of cracks and cracks growth in three dimensional linear

elastic fracture mechanics remains an open issue, a widely accepted advancement

law for cracks is still elusive. In this work, a simple fatigue crack growth governed

by the Paris law and independent of the fatigue ratio R has been considered. The

configuration of the crack growth is shown in Fig.5.1.

Figure 5.1: Generic local crack extension at a frontal element. Vectors s, t and n

denote the local coordinates of node 3. The vectors s and n compose the plane of

propagation. The advancement takes place in this plane and form an angle θ0 with

the direction s. ∆a is the length of the extension.

A few steps are required to simulate this crack growth:

(i) The displacement discontinuity field can be expressed in a local coordinate

system as ∆u = ∆uss + ∆utt + ∆unn. The components ∆un, ∆us and ∆ut



5.3. Remeshing phase 89

correspond respectively to 3 modes: opening, sliding and tearing. Based on these

values, the SIFs can be evaluated accordingly through extrapolation:

KI = ∆un
µ

4(1− ν)
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ρ
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µ

4(1− ν)

√
2π

ρ
(5.1)

KIII = ∆ut
µ

4

√
2π

ρ

where ρ is the arc-length distance from the crack front along the s direction.

(ii) The frontal nodes will move in the plane perpendicular to the crack front

and the propagating angle in this plane is determined by:
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where KIeff = KI + B | KIII | is an ’effective’ or ’equivalent’ mode I stress

intensity factor which accounts for the presence of the non-zero KIII ; B is a material

parameter.

(iii) The advancement length ∆a is deduced from an application of Paris law:

∆a

∆n
= C(∆Keff )m (5.3)

where n denotes the number of intervals; C and m are material parameters.

(iv) The propagation stops when the increments number attains a given thresh-

old or the maximal extension size is reached.

5.3 Remeshing phase

As the nature of the method concerns only the boundary elements and no interaction

between cracks and the outer boundary is present, the re-meshing task is relatively

simple.

At each cycle, after determining the angle and length of the extension, a set of

new nodes is added ahead of the crack front. We purposely applied the lengths ∆a

and 3∆a/4 to generate new frontal and quarter nodes. The position of the common

nodes between 2 elements is averaged to ensure the continuity from one element to

another. From the new nodes, new quarter-point elements can be generated and

become the new frontal elements. The quarter points of the former frontal elements

are moved back to the middle of the crack edge, reverting them to standard Q8-

element.

Minor attentions are expected during the renumbering of new nodes and new

elements to prevent repetition. Additionally, the nodal sequence of new elements

should be similar to that of the old elements to avoid conflicts in the later double

integral evaluations.
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5.4 Numerical examples

The algorithm of the fracture FM-SGBEM has been further developed in order to

simulate the fatigue crack-propagation. There are generally two most important

ingredients in an analysis of crack propagation: one is the solution of the governing

equations for a fractured configuration and the other is the stress analysis and the

extension of the crack geometry. While the first concern is already well taken care

of by the existing FM-SGBEM, the other proves to be a trivial matter since the

adopted propagation law is relatively simple. Exploiting the strategies presented

in the previous sections, necessary yet straightforward steps can be designed and

implemented. The general procedure on each cycle of computation can therefore be

summarized in a few steps (Fig.5.2): (i) The fractured system is introduced first.

(ii) The system is solved by the FM-SGBEM algorithm, producing the important

results on the crack displacement discontinuities ∆u. (iii) Stress analysis is carried

out to find θ0 and ∆a and eventually the crack extension is performed. (iv) Lastly,

the newly generated geometry is added to the old system. Once all the information

is updated, a new cycle can commence.

Figure 5.2: Each cycle of the fatigue-crack propagation: resolution scheme by FM-

SGBEM

Similarly to the previous fracture tests, the studied crack is modeled with 48

Q8 elements. The frontal elements are quarter-point elements. In these tests, the

material is elastic and isotropic. The parameters are chosen such that: the fatigue

ration R = 0, the Young modulus E = 103 kN/cm2, the Poisson coefficient ν = 0.3.

At each cycle, the maximal crack advancement ∆amax is set equal to the edge length.

Flexible GMRES has been used for the system resolution. The stopping-criterion

is set to 10−3.

5.4.1 Inclined penny-shaped crack in a bounded domain

In this first example, we consider an inclined penny-shaped crack (r = 1 cm) embed-

ded in the center of an homogeneous cylinder of dimensions H = 60 cm, R = 10 cm.
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The cylinder is subjected to uniform tensile load p = 10 kN/mm2 at 2 extremities.

The crack forms an angle α = π/4 with axis-y (Fig.5.3).

Figure 5.3: Inclined penny-shaped crack embedded in an homogeneous cylinder

The system size goes from 1.065 unknowns (initial state) to 2.361 unknowns

(interval-10). The time needed for each cycle of computation increases from 7,7s

(cycle-1) to 53s (cycle-10). After 10 intervals, as the natural consequence of the

particular configuration, the crack evolves quickly towards the plane xOy which is

perpendicular to the applied force - See Fig.5.4:

Figure 5.4: Propagation of a bounded and inclined penny-shaped crack (α = π/4)

after 10 intervals

To better analyze the output results, the evolution of the SIFs and the propagat-

ing angle of all nodes on the crack front over 10 increments are considered (depicted

in Fig.5.5). During the course of propagation, as the crack shape approaches the

horizontal plane (xOy), KI becomes predominant, KII rapidly tends to zero and

KIII decays.
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Figure 5.5: Evolution of the SIFs and θ0 of an inclined penny-shaped crack (α =

π/4) during 10 cycles of propagation. The highest node on the crack-front is taken

as the starting node of the sequence

5.4.2 Multiple Inclined penny-shaped cracks in a bounded domain

The second example concerns the modeling of multiple crack propagation. The

outer object in this case is a clamped cube of dimensions 80x80x80, subjected to

uniform tensile load p = 10 at the top face. The crack array, as described in the

previous tests, contains n3
c randomly-oriented penny-shaped cracks (rc = 1) on a

cubic grid of step dc. The center of the crack array is located at the center of the

cube. The distance dc is sufficiently big to avoid influences between cracks.

The parameter max elem = 30 has been chosen constant for all cycles. The

mesh density varies from 4.902 unknowns (initial state) to 16.038 unknowns (last

increment). The time for each cycle of computation changes from 241s (initial

state) to 1.335s (last increment). From the first to the last cycle, the convergence

rate of the GMRES solver is relatively fast: 11 iterations for the initial state and

increases gradually to 17 in the last increment. Fig.5.6 shows the crack array after

10 increments of propagation. As they are put under vertical tensile load, the cracks
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all evolve toward the horizontal plane.

Figure 5.6: Propagation of the 2x2x2 crack-network after 10 intervals in a homoge-

neous clamped cube.

5.4.3 Multiple Cracks propagation in multizone configurations

This last example incorporates all the developments of the numerical code (multi-

zone and crack propagation) to simulate the growth of several cracks in a 2-layers

cubic domain. The interface divides evenly the cube into 2 horizontal layers. The

dimensions and boundary conditions of the cube are taken from the cube in the

previous test. From bottom to top, the material properties of the subdomains are

respectively: E1 = 1000 kN/cm2, ν1 = 0, 3, E2 = 2000 kN/cm2, ν2 = 0, 3. Centered

inside the solid, a system of 2× 2× 2 penny-shaped cracks (rc = 1 cm) is generated

on a cubic grid of steps dx = dy = dz = 40 cm.

Fig.5.7 shows the details of the configuration and the state of the cracks after

10 intervals. Similarly to the homogeneous case, all the cracks tend to propagate

toward the horizontal plane under the tensile load.

5.5 Conclusions

Several numerical examples of crack growth in the context of 3D linear elastic frac-

ture mechanics by the FM-SGBEM have been presented. The implemented code

proves reliable and very efficient. While a relatively simple crack growth law was

adopted, the resulting crack trajectories showed a good correlation with the exper-

imental outcomes. Due to time constraint, more complex fracture configurations or

more sophisticated propagation criterion have not been taken into account. How-

ever, this work could very well contribute a solid basis for many areas of future

researches regarding the modeling of fracture propagation, on either moderate or

large-scale simulations.

Regarding the overall complexity and code performance, despite the fact that the

Fast algorithm has dealt with almost all the bottlenecks of a boundary analysis, the
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Figure 5.7: Propagation of the array of 2x2x2 cracks after 10 intervals in a 2-layered

cube.

normal cost of a computation is still high. For instance, each increments featuring

106 unknowns can take a matter of day to finish. Realistic simulations may therefore

last up to a number of weeks if higher incremental numbers are expected. Further

optimization and calibration should be investigated to improve the overall efficiency

of the method.

One of the first thoughts to enhance the code performance may be addressed to

the construction of the coefficients matrix. During every increment of propagation,

a layer of new elements is added to the geometry, the system needs to be updated

and recomputed. If one rebuilds the coefficient matrix, the interaction between pairs

of old elements will be repeated and will require wasteful operations. Therefore,

during an increment, the old parts of the matrix should be kept constant, only

the parts of the matrix that are related to the newly added elements should be

computed. Once the computation of this increment terminates, these parts become

the constant part of the next increment and so on (see Fig.5.8). By doing so,

the cost of re-constructing the coefficient matrix should be greatly reduced and

therefore accelerate the near-field evaluations by SGBEM. This idea concerns not

only the Symmetric Galerkin approach but also the Fast Multipole SGBEM with

similar application to the near-field coefficient matrix [Knear].
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Figure 5.8: The coefficients matrix of an unbounded crack Sc computed at step i :

the part coresponding to the input state of the crack at step i-1 are kept constant,

only the extended geometry (from step i-1 ) needs to be computed anew. These

2 parts consititute the coefficients matrix with which the system of step i can be

solved to find the next geometrical extension.
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6.1 Introduction

It is well-known that pavement systems are vital elements in the infrastructure net-

work for all societies. Besides, they also raise technical and economical issues related

to high material consumption, energy input and capital investments. An elaborate,

effective and prudent pavement design is therefore composed of two factors: (1) the

enhancement of the sustainability of the transportation network and (2) the most

economical combination of layer thickness and material type. One of the critical

elements in any pavement designs is linked to a realistic modeling of the pavement

under various interior and exterior conditions. In the past, pavement design had

to rely on the empirical approach that has not been able to predict performance

very accurately. This is indeed a very difficult task since the pavement system

is multilayered, three-dimensionnal and is composed of many materials which are

nonlinear, elastic, viscous, anisotropic etc; the loadings are not usually circular

or uniformly distributed, and so on. Thus, to improve pavement modeling, it is

necessary to use numerical methods such as Finite Difference Method, Boundary

Elements method and Finite Elements Method. As depicted in the first chapter,

the BEM is well-suited to model the semi-infinite boundaries associated with lay-

ered pavement systems and has the benefit of the dimension reduction. Besides, the

method is also capable of accounting for the presence of cracks and crack(s) propa-

gation with less computational effort. The boundary discretization-based approach
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therefore provides a very attractive alternative beside the ’conventional’ FEM to

simulate and analyze the pavement systems.

The study presented in this chapter has focused on investigating the applicability

of the FM-SGBEM to predict or simulate the structural degradation of typical

road structures with the presence of cracks. In order to generalize the findings of

this study, large pavement examples have been modeled to include wide-base tires,

different pavement structures and material properties. The analysis was carried out

using a static load. The numerical results are also compared with the observation

of the performance of existing pavements.

6.2 Overview of Pavement Structures

6.2.1 Pavement definition and types

Pavement is the actual travel surface especially made sustainable and serviceable

to withstand the traffic load. Pavement also grants friction for the vehicles thus

providing comfort to the driver and transfers the traffic load from the upper surface

to the natural soil.

In earlier times before the traffic became most regular, stone paths were much

familiar for carts and foot traffic load.

Nowadays, pavements are primarily used by vehicles and pedestrians. All hard

road pavements usually fall into two broad categories namely

• Flexible pavements - Theses are pavements which leads to the deformation

of subgrade and the subsequent layers to the surface. A flexible material,

usually asphalt, is laid with no reinforcement or with a specialized fabric

reinforcement that permits flow or repositioning of the road-bed under ground

changes.

• Rigid pavements - The rigid characteristic of the pavement are associated

with rigid or flexural strength or slab action so the load is distributed over

a wide area of subgrade soil. Rigid pavement is laid in slabs with steel rein-

forcement.

6.2.2 Pavement constitution

In general, road structures are composed of several layers of material. Each layer

receives the loads from the above layer, spreads them out, then passes on these

loads to the next layer below. Thus, the further down in the pavement structure

a particular layer is, the less load (in term of force per unit area) it must carry.

In order to take maximum advantage of this property, material layers are usually

arranged in order of descending load bearing capacity, with the highest-capacity

(and most expensive) material on the top and the lowest load-bearing capacity

(and least expensive) material on the bottom.

A typical pavement structure (Fig.6.1) consists of:
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• Surface course - This is the top layer which is in contact with traffic. It

provides characteristics such as friction, smoothness, noise control, rut resis-

tance and drainage. In addition, it serves to prevent the entrance of excessive

quantities of surface water into the underlying base and subbase layers.

• Base course - lays directly under the surface course and generally consists

of aggregate (either stabilized or unstabilized). It provides additional load

distribution and contributes to the drainage and frost resistance.

• Subbase course - intermediate layer, acts primarily as structural support

• Subgrade - the existing soil

Figure 6.1: A general road structure

6.2.3 Cracking in pavements

As time passes, asphalt pavements may encounter problems that need to be ad-

dressed. Three types of degradation that an asphalt pavement may develop are

cracking, distortion and disintegration. Cracking has certainly the highest influ-

ence on the service life of the pavement since it leads to water penetration, thereby

weakening the bearing capacity of the pavement structure. There are various causes

of cracks in pavement that include stresses from axle loads, temperature changes in

the asphalt layer, or moisture and temperature changes in an underlying layer. A

solid understanding of the cracking phenomenon in pavements is essential for the

pavement design, performance prediction and reparation.

It has been accepted since a long time that cracking of the asphalt layer is

a major mode of premature failure. Many studies have verified that pavement

cracking not only occur in fatigue cracking in which a crack initiates from the bottom

of the asphalt layer but also in other modes such as low temperature cracking or

top-down cracking. This chapter focus on generalizing and studying the pavement

structure with the presence of the transverse cracks in the asphalt concrete.
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Figure 6.2: Modeling of a 3-layer pavement

6.2.4 Pavement Modeling

A 3-layered pavement structure has been analyzed in this work. This pavement is

one of the four different low traffic pavement sections (from S1 to S4), with unbound

granular bases, which have been tested with the LCPC accelerated pavement testing

facility in Nantes which is an outdoor installation dedicated to full-scale pavement

experiments. The structure S4 has been studied in this chapter. The characteristics

of the layers are shown in table 6.1 and can be visualized in Fig.6.2. The mechanical

characteristics of the asphalt concrete layer have been determined with laboratory

tests. In situ measurement of the frequency (12,5 Hz) and temperature (23◦C)

at the bottom of the asphalt concrete layer lead to the proposed modulus. The

unbound layers mechanical parameters have been back calculated to fit the in situ

deflection performed at 65 KN and 43,2 km/h speed (see [84]).

Layer Constitution Thickness (mm) E (MPa) µ

Layer 1 Asphalt concrete 66 6610 0,35

Layer 2 Unbound granular base course 500 180 0,3

Layer 3 Subgrade 2220 80 0,25

Table 6.1: Pavement characteristics

For simplicity purposes, the contact area of the wheel and the road surface is

supposed to be a rectangle of dimensions 180× 300 mm, as depicted in the Fig.6.3.

6.3 Numerical Test

6.3.1 Deflection of pavement under static axle loading

This simple test in elastostatics takes advantage of the numerical solution produced

by the finite element model (in code CAST3M) of Chazallon [83] to verify the exac-

titude of the boundary elements code before simulating the real fractured pavement
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Figure 6.3: Modeling of the contact area of a half-axle loading as 2 rectangles of

dimensions 180 × 300 mm (LCPC pavement testing facility). The vertical load of

these wheels is 65 kN which is equal to the distributed load of p = 0, 6 MPa

structure. The 3-layer pavement structure previously introduced (comprising the

depth and characteristics of each layer) is thus studied in this section.

The finite element model in CAST3M is of dimensions: 6000 × 6000 × 2786

mm. For efficiency purpose, the finite element mesh constitutes only a quarter

of the model as to take into account the symmetry of the configuration along 2

directions x and y. The mesh contains 1000 20-nodes cubic elements, see Fig.6.4).

The pavement deflection subjected to half-axle is computed.

(a) (b)

Figure 6.4: Pavement simulation: (a) Full model (b) The 3D finite element mesh

(a quarter of the model)

In parallel, a boundary mesh is generated to test the validity of the boundary

code. Since the boundary methods treats preferably massive structures of important

sizes, the symmetry of the geometry and the loading is not taken into consideration

here. There is, however, an approach to take into account the geometrical symme-

try which can be found in the work of Bonnet [7]. The dimensions of the boundary
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element mesh are chosen as 3555× 3300× 2786 mm (following respectively 3 direc-

tions x,y and z ) which now represents the entire model (loaded by one half-axle), see

Fig.6.5.This boundary mesh is composed of 4.276 four-nodes quadrilateral elements

which generates overall about 11.000 unknowns in displacement and in traction.

(a) (b)

Figure 6.5: (a) BEM model of the 3-layer pavement under half-axle loading (b)

Boundary mesh

Details of the computation are shown in the table 6.2 below. The computa-

tion by the FM-SGBEM code converged after 190 iterations to reach the desired

precision.

Model Solver p precision num crack N iter

2220 500 66 Flexible GMRES 7 10−3 0 190

Table 6.2: Detail of the pavement (without crack) calculation. The model is named

after the thickness (in mm) of the constittutive layers from the bottom to top (Eg.

2220 500 66 is the previously introduced structure S4). The number of cracks in

the structure is described by num crack ; p is the truncation parameter and N iter

denotes the number of iterations.

The following diagrams (Fig.6.6 and 6.7) show the deflection of the models

respectively across and along the rolling direction of the studied models under

the effect of half-axle loading. Despite the coarseness of the boundary mesh, the

exhibited results from the boundary analysis correspond very well with the output

from CAST3M (the region of most important deflection - left half of the diagrams).

There is, however, a noticeable dispersion between the BEM and FEM results in

the right half of these diagrams. It is understandable since the boundary mesh is
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chosen to be nearly twice smaller than the finite mesh.

Figure 6.6: Calculated deflection of the model under the effect of half-axle loading:

transverse section

Figure 6.7: Calculated deflection of the model under the effect of half-axle loading:

longitudinal section

6.3.2 Deflection of fractured pavement

In this simulation, a boundary mesh of dimensions 5355×3300×2786 mm, subjected

to an axle loading, has been taken into account (see Fig.6.8) to model the real 3-layer

fractured pavement.

In order to account for the presence of the cracks in the surface course (Asphalt

Concrete), a system of transverse cracks is generated and introduced here. Each

crack is modeled as a rectangle of width h and length L (see Fig.6.9). Since the

cause of transverse cracks are mainly due to traffic loads and thermal constraints,
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Figure 6.8: Dimensions of the pavement model on the plane xOy. The axle is

located at the center of the surface course

these cracks are centered at the middle of the wheel-road contact and are distributed

along the rolling direction.

Figure 6.9: Transverse cracks in the asphalt concrete under the wheel track. h is

the crack width, varies from 10 to 40 mm; dz = 10 mm is the distance of the cracks

to the interface. The crack length is chosen as L = 1275 mm.

The cracks are located symmetrically under the wheel-road contact and are

positioned progressively further from the contact line center (see Fig.6.10). Let

dx(i) denote the distance of the crack i to crack i− 1, we have a crack distribution

as in the following table 6.3. The cracks are modeled with eight-node quadrilateral

elements which contain 2.000 nodes in average depending on the input crack mesh

(h = 10-40 mm). By varying the number of cracks in the surface course, we can have

different fractured states of the pavement. For instance, if 15 cracks are present (as

shown in Fig.6.10), we have a highly fractured pavement.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

dx (mm) 40 90 150 220 300 390 490 600 720 850 990 1140 1300 ...

Table 6.3: Crack steps from the center of the wheel-road contact (following the y

direction).

Figure 6.10: Planar distribution of the transversal crack system under half-axle

loading. The bold white line denotes the transverse crack at the center of the

contact surface. All the cracks are positioned symmetrically to this line. This

configuration is identical for the other half-axle.

The model of a highly-fractured pavement which features more than 50 trans-

verse cracks (about 4 × 105 unknowns) can be visualized in Fig.6.11. In this test,

the parameter max elem is set to 100 instead of 30 to prevent memory exhaustion

due to the poor distribution of elements. We have attempted to solve this problem

with the FM-SGBEM code but the calculations could not converge with the set

of input parameters introduced in the previous chapters. To be precise, the max-

imum number of iteration is reached (max N iter = 1.000) before the backward

error is smaller than the stopping criterion of 10−3. The convergence could have

been achieved if the max N iter had been set higher (Eg. 3.000 or more) but in that

case, the calculation would take a large computational time and therefore would

loose its applicability of calculations with larger degree of freedom.

In this configuration, there are a number of unfavorable factors that generate ill-

conditioned matrix and subsequently limit the convergence rate of the code. Some

of the investigations are therefore performed on the simple pavements (without

crack or with a few cracks). The outcomes are discussed in the following:
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Figure 6.11: 3D view of the pavement model with the static truck load and the

transverse crack systems

Thickness of the surface course

The first observed factor is the contrast of the dimensions of the layers. In the

mentioned pavement structure, the surface course is the thinnest and has the largest

difference in dimensions (3300 mm to 66 mm). A few tests with different thickness

of the AC have been performed to see the influence of this thickness to the change in

the convergence rate of the FM-SGBEM. These 3 thickness are respectively 66 mm,

120 mm and 240 mm. As shown in the table 6.4, with similar input parameters,

thicker AC layer will result in a slightly faster convergence:

Model AC thickness (mm) N iter

2220 500 66 66 190

2220 500 120 120 185

2220 500 240 240 180

Table 6.4: Different outcomes by different thicknesses of the AC - pavement without

crack.

Contrast of the materials’ stiffness

The stiffness of the layers is also believed to be one of the unfavorable factor that

have caused the ill-conditioned matrix. Similar tests on different ratios of stiffness

has been performed. The largest ratio is the case of the real structure, this quantity

is decreased progressively toward the case of identical materials. Table 6.5 shows the

results of these tests and indicates that smaller ratios lead to faster convergences.
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Model E3 − E2 − E1 N iter

2220 500 66 80-180-6110 190

2220 500 66 300-600-4000 148

2220 500 66 180-180-180 96

2220 500 66 6110-6110-6110 49

Table 6.5: Different outcomes by different ratios of the layers’ stiffness - pavement

without crack.

High concentration of elements

In the fractured model, all the cracks are located inside a very thin layer and there-

fore create a region of very high concentration of entities (elements/nodes/degrees

of freedom). We have tried to reduce this effect by either decreasing the num-

ber of cracks or increasing the distance between them. Models featuring thicker

AC (presented above) are also included in this investigation. Different outcomes

are obtained. With a few number of cracks, the thin AC structure (2220 500 66)

still could not converge while convergences have been reached with the thicker

AC layers. For example, the structure 2220 500 120 containing one rectangle crack

(h = 40, L = 1275 mm) at dz = 10 mm converged after 96 iterations (27s/iteration)

in 3.061 s, the structure 2220 500 240 featuring up to 3 penny-shaped crack (radius

r=30 mm, distance between cracks 30 mm) at the center of the AC layer converged

after 183 iterations (18s/iterations) in 3.770 s.

Remarks

From all the investigations, we can deduce that the input parameters (model di-

mensions, materials stiffness, crack distribution ...) affect clearly the convergence

rate of the FM-SGBEM code and consequently limit our simulations to a small

scale (about 15 × 103 unknowns) which feature relatively simple fractured state.

Due to time constraint, further investigations could not be carried out and we have

not reached the optimal solution for this test.

6.4 Conclusions

In this chapter, the Symmetric Galerkin approach coupled with the Fast Multipole

Method has been applied to pavement study. We have attempted to compute the

deflection of the pavement under axle-load. The small-scale simulations (without

or with a small number of cracks) have provided satisfactory results whereas larger-

scale configurations could not be achieved. Some investigations have proved that the

input configurations dispose of unfavorable factors for the numerical calculations.

The performance and stability of the FM-SGBEM code require therefore further

investigations combined with some optimization techniques to overcome the con-

vergence difficulty to reach the goal of simulating large-scale fractured pavements.

Also, more realistic factors should be embedded in the code to render the model
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closer to the reality.
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7.1 Conclusions and Discussions

The extension and application of the Fast Multipole SGBEM to the context of mul-

tizone, multicrack in linear fracture mechanics have been successfully carried out in

this thesis. In order to solve efficiently some practical issues of engineering interests,

a great effort has been devoted first hand in chapter 3 to the optimization of the

algorithm. Multiple strategies have been proposed and implemented. The most

considerable improvements are the compressed storage of the near-field coefficient

matrix [Knear] and the concept using this compressed matrix as the preconditioner

of the nested solver namely Flexible GMRES. The enhanced code has been run on

various large-scale tests (N = O(106)) and has proved to be very robust and of

excellent accuracy.

As the code has become more efficient and reliable, more complex fractured

configurations should be considered. In chapter 4, the FM-SGBEM has been ex-

tended to multi-region problems. By adopting a technique of appropriate terms-

arrangement, the global matrix is rendered symmetric during the assembling phase

thus conserves well the efficiency feature. Different numerical aspects and attentions

during the implementation of the multizone SGBEM and multizone FM-SGBEM

are well discussed. The good precision of the developed code has been shown in a few

numerical verification tests incorporating a number of practical solicitations such

as bending or body-weights. The successful implementation of the FM-SGBEM in

treating multi-region problems has opened many interesting areas of studies such as

the application in multilayered road structure or the study of composite materials

... The later case has been generalized and presented in this chapter as a frac-

tured matrix-inclusion material. Even though the large-scale test converges rather

rapidly, it still requires considerable overall computational times. Future develop-

ments are expected to boost further the performance and make the FM-SGBEM

an formidable option in treating specific problems for composite materials.
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Chapter 5 introduces another interesting application of the FM-SGBEM in the

fracture context concerning the simulations of crack-growth. For this matter, the

boundary analysis shows clearly its flexibility and versatility during the process

of remeshing. The newly added elements are generated and simply added to the

crack-front following the computed angle without affecting the initial mesh thus

can avoid immense mesh-data modifications. Beside the remeshing, the modeling

of a propagation involves also the recomputation of the system at every step which

requires imperatively a robust and efficient algorithm. Unlike the limited ordinary

BEM, the FM-SGBEM is qualified in every aspect: accurate, straightforward and

efficient. Three-dimensional simulation of non-planar crack(s)-growth has been pre-

sented here. Good correlations have been found between the obtained numerical

results and the established references. Due to the time constraint, only simple

configurations of crack propagation under fatigue Paris law have been taken into

account. However, the correct numerical results encourages the developments and

extensions of the algorithm in more complex geometries with more sophisticated

criteria.

Chapter 6 presents the application of the FM-SGBEM in simulating road struc-

tures (pavements). Since the structure of pavements is similar to all the studied

models in this work which are multi-layered and multi-fractured, the implementa-

tion and calculation have been carried out rather simply. The behaviors (defor-

mations) of the asphalt surface (either fractured or not) under vehicle loads are

computed. A great number of tests have been carried out and the simulations are

reported to be unstable and have poor convergence rate. This event may happen

due to the significant contrast in the stiffness of the constitutive materials. Besides,

the extreme thinness of the surface course compared to its other two dimensions

is also believed to be the cause of the ill-conditioned matrix which slow down con-

siderably the iterative solution. Large-scale pavement simulations have therefore

not been accomplished in this work. Nonetheless, early results on moderate size

pavement meshes have been achieved and exhibit very good agreements with the

provided references. Further investigations and refinements should be able to run

large-scale pavement simulations by the FM-SGBEM

7.2 Directions for future works

Along with the development of the Boundary analysis, the models are getting more

complex and featuring greater sophisticated issues. Ordinary and simple algorithms

can no longer answer to such rising demands. The numerical work developed during

this thesis has somehow provided a robust algorithm in treating various large-scale

problems of multizone and multicrack in the context of linear fracture mechanics.

This is but a small piece in the large picture of the study of fractures. There are

a great number of another aspects and factors that must be accounted for if one

wants the numerical approach to get closer to the real-behavior of this phenomenon.

As mentioned many times during the thesis, great efforts should always be spent
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to enhance the efficiency of the method. Similarly in the work of many other au-

thors, the improvement of the method performance stays at their top priority. The

adaptation and extension of the method to cope with some particular circumstances

might come at the second place. Some thoughts on these concerns are discussed

below:

Parallelization

The algorithm of the FM-SGBEM in this thesis has been implemented for single

processor platform. The adaptation of the code in a multi-core environment is

expected to boost greatly its performance. This idea comes from observing the

hierarchical structure of the FMM: the system is solved by looping on all the octree

cells, instead of putting all the computations on one processor, different groups of

cells can be associated with different and independent processors. The same concept

could also be applied in the multizone FM-SGBEM: different zones can also be

computed simultaneously thus reduces significantly the total computational time.

Even though the parallelization has been adopted in a few publications concerning

the FMM, the actual task is deemed rather difficult and considerable effort should

be spent along this line.

Other refined opitimizations

The preconditioning strategy introduced in thesis has somewhat reduced greatly

the iterative solution phase thus has contributed to the overall efficiency. However,

the cost of calculating the near coefficients is still very high. Works on the reformu-

lation of the integral operators or different approaches that take into account the

mathematical properties of the continuous operators are expected to enhance fur-

ther the algorithm performance. Also, some special techniques which make use of

the direct solver without exhausting the computational cost have also been reported

recently to achieve considerable improvements.

Coupling with other numerical methods

Another interesting alternative for the future work is the coupling of the FM-

SGBEM with the well-known FEM. One viable application of such coupling

should be the model of soil-structure interactions. The coupled method has

the advantage of dealing with all distinct difficulties of each method. One

such BEM-FEM model, in example, can use the BEM mesh to deal with the

singularities and the FEM mesh to correctly represent the non-linearity of materials.

For final remark, the author hope that this thesis can somehow contribute

to the growth of the BEM community and that in the near future, the FM-SGBEM

in particular can become a practical tool for solving greater ranges of engineering

applications.





Appendix A

Integration techniques

A.1 Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral

of a function, usually stated as a weighted sum of function values at specified points

within the domain of integration. The rule is constructed to yield an exact result

for polynominals of degree 2n−1 or less by a suitable choice of point xi and weights

wi for i = 1, 2, ..., n. For a simple domain taken as [−1, 1], the rule is written as:∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi) (A.1)

The abscissas and weights of different numbers of gaussian points are:

n Abscissa (xi) Weight (wi)

1 0 2

2 -0,577350269 1

0,577350269 1

3 -0,77459666 0,555555556

0 0,888888889

0,77459666 0,555555556

4 -0,861136311 0,347854845

-0,339981043 0,652145154

0,339981043 0,652145154

0,861136311 0,347854845

5 -0,906179846 0,236926885

-0,53846931 0,478628670

0 0,568888889

0,53846931 0,478628670

0,906179846 0,236926885

Change of interval

An integral over [a, b] must be change into an integral over [−1, 1] in order to apply

the Gaussian quadrature rule. This change can be done in this way:∫ b

a
f(x)dx =

b− a
2

∫ 1

−1
f

(
b− a

2
z +

b+ a

2

)
dz (A.2)
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After applying the gaussian quadrature rule, the following approximation is:∫ b

a
f(x)dx ≈ b− a

2

n∑
i=1

wif

(
b− a

2
zi +

b+ a

2

)
(A.3)

Gaussian quadrature rule in 2D

Figure A.1: Gauss points in the intervals [−1, 1]× [−1, 1]

The 2D integration is simply computed as repeated one-dimensional integrals:

I =

∫ 1

−1

∫ 1

−1
f(x, y)dxdy

≈
∫ 1

−1

(
n∑
i=1

wif(xi, y)

)
dy

≈
n∑
j=1

n∑
i=1

wjwif(xi, yj) (A.4)

Example in 2D with the number of gaussian points n = 2. As we know the abscissas

and weighted in 1D for n = 2 are respectively xi = ± 1√
3
, wi = 1, the gaussian

quadrature rule for f(x, y) is:

f(x, y) ≈ 1.1.f(− 1√
3
,− 1√

3
) + 1.1.f(− 1√

3
,

1√
3

) + 1.1.f(
1√
3
,− 1√

3
) + 1.1.f(

1√
3
,

1√
3

)

A.2 Singular Integration

An efficient approach to double area integration of weakly singular kernels is based

on coordinate transformations, which produce a jacobian that can cancel the weak

singularity of the kernel. Such technique has been developed and reported in

[Frangi]. Singularity occurs when 2 elements share one or more nodes. There are
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3 cases respectively: common vertex, common edge and coincident. To deal with

the singularity, the four-dimensional integration 0 ≤ ψ1, ψ2, η1, η2 ≤ 1 is divided

into several integration sub-domains. In each sub-domain, a special coordinate

transformation is introduced accordingly.

The numerical computation of a general singular integration is expressed as

follow:

I =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

nsub∑
isub=1

f(x(ξ1, ξ2))K(x(ξ1, ξ2),y(η1, η2))g(y(η1, η2))Jisubdω1dω2dω3dω4

(A.5)

where nsub is the number of integration sub-domains; ξ1, ξ2, η1, η2 are local

coordinates in sub-domain isub which are expressed through integration variables

0 ≤ ω1, ω2, ω3, ω4 ≤ 1 and Jisub is the sub-domain transformation Jacobian. Three

cases of singularity are presented below:

Common vertex

Figure A.2: Elements with common vertex

Number of sub-domains nsub = 4

isub ξ1 ξ2 η1 η2

1 v2 v3 v4 v1

2 v3 v4 v1 v2

3 v4 v1 v2 v3

4 v1 v2 v3 v4
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Variables transformations and Jacobian:

v1 = ω1

v2 = ω1.ω2

v3 = ω1.ω3

v4 = ω1.ω4

Jisub = ω3
1

A.2.0.1 Common Edge

Figure A.3: Elements with common edge

Number of sub-domains nsub = 6

isub ξ1 ξ2 η1 η2

1 v4 v2 v1 + v4 v3

2 v1 + v4 v2 v4 v3

3 v5 v1 v2 + v5 v3

4 v2 + v5 v1 v5 v3

5 v5 v3 v2 + v5 v1

6 v2 + v5 v3 v5 v1
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Variables transformations and Jacobian:

v1 = ω1

v2 = ω1.ω2

v3 = ω1.ω3

v4 = ω4.(1− ω1)

v5 = ω4.(1− ω1ω2)

J1,2 = ω2
1(1− ω1)

J3,4,5,6 = ω2
1(1− ω1ω2)

A.2.0.2 Coincident

Figure A.4: Coincident elements

Number of sub-domains nsub = 8

isub ξ1 ξ2 η1 η2

1 v3 v4 v1 + v3 v2 + v4

2 v3 v2 + v4 v1 + v3 v4

3 v1 + v3 v4 v3 v2 + v4

4 v1 + v3 v2 + v4 v3 v4

5 v4 v3 v2 + v4 v1 + v3

6 v4 v1 + v5 v2 + v4 v3

7 v2 + v4 v3 v4 v1 + v3

8 v2 + v4 v1 + v3 v4 v3

Variables transformations and Jacobian:

v1 = ω1

v2 = ω1.ω2

v3 = ω3(1− ω1)

v4 = ω4.(1− ω1ω2)

Jisub = ω1(1− ω1)(1− ω1ω2)
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FMM developments for

SGBEM terms

B.1 Terms Buu(u, ũ) and Buu(u
D, ũ)

Paying attention to the symmetry property of the 4th order tensor Bikqs in the

SGBEM formulations, the terms Buu(u, ũ) and Buu(uD, ũ) can be written as:

Buu(u, ũ) =

∫
St

∫
St

(Ru)iq(x)Bikqs(r)(Rũ)ks(x̃)dSx̃dSx

=

∫
St

∫
St

(Rũ)iq(x)Bikqs(r)(Ru)ks(x̃)dSx̃dSx (B.1)

Buu(uD, ũ) =

∫
St

∫
St

(RuD)iq(x)Bikqs(r)(Rũ)ks(x̃)dSx̃dSx

=

∫
St

∫
St

(Rũ)iq(x)Bikqs(r)(RuD)ks(x̃)dSx̃dSx (B.2)

The term Buu(u, ũ) is chosen to evaluate. The formula of Bikqs is given in the

simplified form as:

Bikqs(r) = µ2[−4δqsFik + (4δisδqs − 4νδisδkq − 2(1− ν)δiqδks)F,pp] (B.3)

where

F (x− x̃) =
r

16πµ(1− ν)
(B.4)

F,pp(x− x̃) =
1

8πµr(1− ν)
(B.5)

F,ik(x− x̃) =
1

16πµr(1− ν)
(δik − r,ir,k) (B.6)

Substituting the formulas (B.4) into (B.3) and taking the expansion of the function

1/r we obtain:

Bikqs(r) =
µ

4π(1− ν)

[
(δikδqs − 2δisδkqν − (1− ν)δiqδks)

1

r
+ δqs

r,ir,k
r

]
(B.7)

=
µ

4π(1− ν)

∞∑
n=0

n∑
m=−n

(
FSuu
ikqs,n,m(

−→
Ox) +GSuu

iqs,n,m(
−→
Ox)(

−−→
Oyk)

)
Rn,m(

−→
Oy)

(B.8)
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where the functions FSuu
ikqs,n,m and GSuu

iqs,n,m are defined by:

FSuu
ikqs,n,m(

−→
Ox) =

[
(δikδqs − 2δisδkqν − (1− ν)δiqδks)− δqs

−−→
Oxk

∂

∂xi

]
Sn,m(

−→
Ox)

(B.9)

GSuu
iqs,n,m = δqs

∂

∂xi
Sn,m(

−→
Ox) (B.10)

And the formula of Buu(u, ũ) can be rewritten as:

Buu(u, ũ) =
µ

4π(1− ν)

∞∑
n=0

n∑
m=−n

∫
St

(Rũiq(x)

(
FSuu
ikqs,n,m(

−→
Ox)M1uu

ks,n,m(O)

+GSuu
iqs,n,m(

−→
Ox)M2uu

sn,m(O)

)
dSx (B.11)

where the multipole moments are:

M1uu
ks,n,m(O) =

∫
St

Rn,m(
−→
Ox̃)(Ru)ks(x̃)dSx̃ (B.12)

M2uu
sn,m(O) =

∫
St

Rn,m(
−→
Ox̃)(

−→
Ox̃)k(Ru)ks(x̃)dSx̃ (B.13)

Analogously to the treatment of the term Btt(t, t̃), we obtain the translations of

the term Buu(u, ũ):

The M2M translation:

M1uu
ks,n,m(O′) =

n∑
n′=o

n′∑
m′=−n′

Rn′,m′(
−−→
OO′)M1uu

ks,n−n′,m−m′(O) (B.14)

M2uu
s,n,m(O′) =

n∑
n′=o

n′∑
m′=−n′

Rn′,m′(
−−→
OO′)

(
M2uu
s,n−n′,m−m′(O)

− (
−−→
OO′)kM

1uu
ks,n−n′.m−m′(O)

)
(B.15)

The M2L translation:

L1uu
ks,n,m(x0) =

∞∑
n′=o

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)M1uu

ks,n′,m′(O) (B.16)

L2uu
s,n,m(x0) =

∞∑
n′=o

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)

(
M2uu
s,n′,m′(O)

− (
−−→
Ox0)kM

1uu
ks,n′,m′(O)

)
(B.17)
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The L2L translation:

L1uu
ks,n,m(x1) =

∞∑
n′=o

n′∑
m′=−n′

(−1)nRn−n′,m′−m(−−−→x0x1)L1uu
ks,n′,m′(x0) (B.18)

L2uu
s,n,m(x1) =

∞∑
n′=o

n′∑
m′=−n′

(−1)nRn−n′,m′−m(−−−→x0x1)
(
M2uu
s,n′,m′(x0)

− (−−−→x0x1)kM
1uu
ks,n′,m′(x0)

)
(B.19)

The integral (B.1) can be evaluated via L1uu
ks,n,m and L2uu

s,n,m:

Buu(x, ũ) =
µ

4π(1− ν)

∞∑
n=0

n∑
m=−n

∫
St

(Rũ)iq(x)
(
FRuuikqs,n,m(−−→x1x)L1uu

ks,n,m(x1)

+GRuuiqs,n,m(−−→x1x)L2uu
sn,m(x1)

)
dSx (B.20)

where FRuuikqs,n,m and GRuuiqs,n,m are defined as:

FRuuikqs,n,m(−−→x1x) =

[
(δikδqs − 2δisδkqν − (1− ν)δiqδks)− δqs−−→x1xk

∂

∂xi

]
Rn,m(−−→x1x)

(B.21)

GRuuiqs,n,m(−−→x1x) = δqs
∂

∂xi
Rn,m(−−→x1x) (B.22)

B.2 Terms But(u, t̃) and But(u
D, t̃)

We now take into consideration the terms But(u, t̃) and But(u
D, t̃). The term

But(u, t̃) is chosen to be evaluated:

But(u, t̃) = −
∫
Su

∫
St

t̃k(x̃)T ki (x̃,x)ui(x)dSxdSx̃ (B.23)

But(u
D, t̃) = −

∫
Su

∫
Su

t̃k(x̃)T ki (x̃,x)uDi (x)dSxdSx̃ (B.24)

where the traction fundamental solution is written as:

T ki (x̃,x) = Σk
ij(x̃,x)nj(x)

= Cijab
∂

∂xb
Uka (x̃,x)nj(x)

=
1

8πµ
Cijab

∂

∂xb

∞∑
n=0

n∑
m=−n

(
FSttka,n,m(

−→
Ox̃)

+GSttk,n,m(
−→
Ox̃)(

−→
Oxa)

)
Rn,m(

−→
Ox)nj(x) (B.25)
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The functions FSttka,n,m and GSttk,n,m are detailed in the section of term Btt(t, t̃). Sub-

stituting these functions in But(u, t̃) we get:

But(u, t̃) =− 1

8πµ

∞∑
n=0

n∑
m=−n

∫
Su

t̃k(x̃)

(
FSka,n,m(

−→
Ox̃)M1ut

a,n,m(O)

+GSk,n,m(
−→
Ox̃)M2ut

n,m(boldO)

)
dSx̃ (B.26)

where the multipole moments are:

M1ut
a,n,m(O) =

∫
St

Cijab
∂

∂xb
Rn,m(

−→
Ox)nj(x)ui(x)dSx (B.27)

M2ut
n,m(O) =

∫
St

Cijab
∂

∂xb

[
(
−−→
Oxa)Rn,m(

−→
Ox)

]
nj(x)ui(x)dSx (B.28)

Again, by following similar principle, we obtain the FMM operations.

The M2M translation:

M1ut
a,n,m(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
OO′)M1ut

a,n−n′,m−m′(O) (B.29)

M2ut
n,m(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
OO′)

(
M2ut
n−n′,m−m′(O)

−(
−−→
OO′)aM

1ut
a,n−n′,m−m′(O)

)
(B.30)

The M2L translation:

L1ut
a,n,m(x̃0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox̃0)M1ut

a,n′,m′(O) (B.31)

L2ut
n,m(x̃0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox̃0)

(
M2ut
n′,m′(O)

−(
−−→
Ox̃0)aM

1ut
a,n′,m′(O)

)
(B.32)

The L2L translation:

L1ut
a,n,m(x̃1) =

∞∑
n′=0

n′∑
m′=−n′

Rn′−n,m′−m(
−−−→
x̃0x̃1)L1ut

a,n′,m′(x̃0) (B.33)

L2ut
n,m(x̃1) =

∞∑
n′=0

n′∑
m′=−n′

Rn′−n,m′−m(
−−−→
x̃0x̃1)

(
L2ut
n′,m′(x̃0)

−(
−−−→
x̃0x̃1)aL

1ut
a,n′,m′(x̃0)

)
(B.34)



B.3. Terms Btu(t, ũ) and Btu(tD, ũ) 123

So the integral But(u, t̃) is computed via L1ut
a,n,m and L2ut

n,m as:

But(u, t̃) =− 1

8πµ

∞∑
n=0

n∑
m=−n

∫
Su

t̃k(x̃)
[
FRka,n,m(

−−→
x̃1x̃)L1ut

a,n,m(x̃1)

+GRk,n,m(
−−→
x̃1x̃)L2ut

n,m(x̃1)
]
dSx̃ (B.35)

B.3 Terms Btu(t, ũ) and Btu(t
D, ũ)

We choose the term Btu(t, ũ) to evaluate:

Btu(t, ũ) = −
∫
Su

∫
St

tk(x)T ki (x, x̃)ũi(x̃)dSx̃dSx (B.36)

Btu(tD, ũ) = −
∫
St

∫
St

tDk (x)T ki (x, x̃)ũi(x̃)dSx̃dSx (B.37)

(B.38)

This term can also be written as:

Btu(t, ũ) = −
∫
St

∫
Su

ũk(x)T ik(x̃,x)ti(x̃)dSx̃dSx (B.39)

The fundamental solution of traction can also be written as:

T ik(x̃,x) =Σi
kjnj(x)

=Ckjab
∂

∂xb
U ia(x̃,x)nj(x)

=Ckjab
∂

∂xb
U ia(x, x̃)nj(x)

=Ckjab
∂

∂xb
Uai (x, x̃)nj(x)

=− 1

8πµ

∞∑
n=0

n∑
m=−n

Ckjab
∂

∂xb

(
FSai,n,m(

−→
Ox)

+GSa,n,m(
−→
Ox)(

−→
Ox̃i)

)
Rn,m(

−→
Ox̃)nj(x) (B.40)

The functions FSttka,n,m and GSttk,n,m are defined in the section of term Btt(t, t̃).

Substituting these elements in equation (B.39) we get:

Btu(t, ũ) =− 1

8πµ

∞∑
n=0

n∑
m=−n

∫
St

ũk(x)Ckjabnj(x)
∂

∂xb

(
FSttai,n,m(

−→
Ox)M1tu

i,n,m(O)

+GStta,n,m

−→
OxM2tu

n,m(O)

)
dSx (B.41)
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The multipole moments are:

M1tu
i,n,m(O) =

∫
Su

Rn,m(
−→
Ox̃)ti(x̃)dSx̃ (B.42)

M2tu
n,m(O) =

∫
Su

Rn,m(
−→
Ox̃)(

−→
Ox̃i)ti(x̃)dSx̃ (B.43)

The M2M translation:

M1tu
i,n,m(O′) =

n∑
n′=0

n′∑
m′=n′

Rn′,m′(
−−→
O′O)M1tu

i,n−n′,m−m′(O) (B.44)

M2tu
n,m(O′) =

n∑
n′=0

n′∑
m′=n′

Rn′,m′(
−−→
O′O)

[
M2tu
n−n′,m−m′(O)

−(
−−→
OO′)iM

1tu
i,n−n′,m−m′(O)

]
(B.45)

The M2L translation:

L1tu
i,n,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)M1tu

i,n′,m′(O) (B.46)

L1tu
i,n,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)

[
M2tu
n′,m′(O)

−(
−−→
Ox0)iM

1tu
i,n′,m′(O)

]
(B.47)

The L2L translation:

L1tu
i,n,m(x1) =

∞∑
n′=n

n′∑
m′=−n′

Rn−n′,m−m′(−−−→x0x1)L1tu
i,n′,m′(x0) (B.48)

L2tu
n,m(x1) =

∞∑
n′=n

n′∑
m′=−n′

Rn−n′,m−m′(−−−→x0x1)
[
L2tu
n′,m′(x0)

−(−−−→x0x1)iL
1tu
i,n′,m′(x0)

]
(B.49)

The term Btu(t, ũ) is therefore computed as:

Btu(t, ũ) =− 1

8πµ

∞∑
n=0

n∑
m=−n

∫
St

ũk(x)Ckjabnj(x)
∂

∂xb

(
FRttai,n,m(−−→x1x)L1tu

i,n,m(x1)

+GRtta,n,m(−−→x1x)L2tu
n,m(x1)

)
dSx (B.50)

where the functions FRttai,n,m and FGtta,n,m are defined in the section of the term
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Btt(t, t̃). We can evaluate the 2th order derivative of these functions as:

∂

∂xb
FRttai,n,m(−−→x1x) =

1

2(1− ν)

(
(3− 4ν)δai

∂

∂xb
Rn,m(−−→x1x)

− ∂

∂xb

[
(−−→x1x)i

∂

∂xa
Rn,m(−−→x1x)

])
=

1

2(1− ν)

(
(3− 4ν)δai

∂

∂xb
Rn,m(−−→x1x) (B.51)

−
[
(−−→x1x)i

∂

∂xb

∂

∂xa
Rn,m(−−→x1x) +

∂

∂xb
(−−→x1x)i +

∂

∂xa
Rn,m(−−→x1x)

])
∂

∂xb
GRtta,n,m(−−→x1x) =

1

2(1− ν)

∂

∂xb

∂

∂xa
Rn,m(−−→x1x) (B.52)

B.4 Terms Btu2(t
D, ũ) and But2(u

D, t̃)

We choose the term But2(uD, t̃) to evaluate:

But2(uD, t̃) = −
∫
Su

∫
∂Ω
t̃k(x̃)uDi (x̃)T ki (x̃,x)dSxdSx̃ (B.53)

Btu2(tD, ũ) = −
∫
St

∫
∂Ω
tDk (x)ũi(x)T ki (x, x̃)dSx̃dSx (B.54)

The formula of the term But2(uD, t̃) is expressed under the expansion form as:

But2(uD, t̃) =−
∫
Su

∫
∂Ω
t̃k(x̃)uDi (x̃)

1

8πµ
Cijab

∂

∂xb

∞∑
n=0

n∑
m=−n

(
FSttka,n,m(

−→
Ox̃)

+GSttk,n,m(
−→
Ox̃)(

−→
Oxa)

)
Rn,m(

−→
Ox)nj(x)dSxdSx̃

=
1

8πµ

∞∑
n=0

n∑
m=−n

∫
Su

t̃k(x̃)uDi (x̃)

(
FSttka,n,m(

−→
Ox̃)M1ut2

ia,n,m(O)

+GSttk,n,m(
−→
Ox̃)M2ut2

in,m(O)

)
dSx̃ (B.55)

where the multipole moments are:

M1ut2
ia,n,m(O) =

∫
∂Ω
Cijab

∂

∂xb
Rn,m(

−→
Ox)nj(x)dSx (B.56)

M2ut2
in,m(O) =

∫
∂Ω
Cijab

∂

∂xb
Rn,m

[
(
−→
Oxa)Rn,m(

−→
Ox)

]
nj(x)dSx (B.57)
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The M2M translation:

M1ut2
ia,n,m(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
O′O)M1ut2

ia,n−n′,m−m′(O) (B.58)

M2ut2
in,m(O′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
O′O)

(
M2ut2
i,n−n′,m−m′(O)

−(
−−→
O′O)aM

1ut2
ia,n−n′,m−m′(O)

)
(B.59)

The M2L translation:

L1ut2
ia,n,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)M1ut2

ia,n′,m′(O) (B.60)

L2ut2
in,m(x0) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nSn+n′,m+m′(
−−→
Ox0)

(
M2ut2
i,n′,m′(O)

−(
−−→
Ox0)aM

1ut
ia,n′,m′(O)

)
(B.61)

The L2L translation:

L1ut2
ia,n,m(x1) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nRn′−n,m′−m(−−−→x0x1)L1ut2
ia,n′,m′(x0) (B.62)

L2ut2
in,m(x1) =

∞∑
n′=0

n′∑
m′=−n′

(−1)nRn′−n,m′−m(−−−→x0x1)
(
L2ut2
i,n′,m′(x0)

−(−−−→x0x1)aL
1ut2
ia,n−n′,m−m′(x0)

)
(B.63)

The integral is then evaluated with help of L1ut2
ia,n,m and L2ut2

i,n,m:

But2(uD, t̃) =− 1

8πµ

∞∑
n=0

n∑
m=−n

∫
Su

t̃k(x̃)uDi (x̃)
[
FRka,n,m(

−−→
x̃1x̃)L1ut2

ia,n,m(x̃1)

+GRk,n,m(
−−→
x̃1x̃)L2ut2

in,m(x̃1)
]
dSx̃ (B.64)



Appendix C

List of subroutines in the

Program

In this section, the name and functionality of the subroutines in the Fortran

program is given. This is to facilitate the comprehension of the thesis in case a

subroutine is mentioned. Most of these are developed in-house by the authors.

1. Fracture FMSGBEM main program, containing all the subroutines

2. read parameters import the parameters for the Octree generation

(max elem) and for the Solver (truncation, precision, restart parameter,

maximum iteration, number of Gaussian points)

3. read slab import the geometry of slab (nodal coordinates and connectivity

matrix)

4. read crack import the geometry of crack (nodal coordinates and connectivity

matrix)

5. read inclusion import the geometry of inclusion (nodal coordinates and con-

nectivity matrix)

6. conditionlimit modify the crack following the quarter-point scheme

7. multicrack multiply, orientate and distribute the cracks in space

8. generate inclusion multiply, orientate and distribute the inclusions in space

9. join data concatenate the geometries and form the global arrays; allocate

some arrays that control the zones and element type

10. unkn manager allocate arrays for the known and unknown vectors; estimate

the problem size

11. generate gauss compute the coordinates and weights of the gaussian points

12. generate octree build the octree structure

13. find adjac elem create a list of adjacent elements

14. eval baric compute the center of all elements
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15. allocate multipole allocate the arrays for multipole moments and local ex-

pansions

16. clean multipole set all the values of the multipole moments and local ex-

pansions to zero

17. int direct single compute the single integral

18. int lu compute the single integral

19. upward 0 execute the upward pass of the FMM operation (input by known

values on boundaries)

20. int mpl 0 compute the multipole moments

21. downward 0 execute the downward pass of the FMM operation

22. int direct 0 loop on all cells, compute matrix [Knear] and right-hand side

vector {bnear}; expand the far-away interaction to the leaf-cells and compute

the portion {bFMM}; store matrices [Knears] under CSRSYM format

23. csrsym convert a normal matrix to the compressed sparse format

24. solve gmres activate the solution by the iterative solver (either by GMRES

or Flexible GMRES)

25. upward 1 execute the upward pass of the FMM operation (input by the

candidate vector)

26. int mpl 1 compute the multipole moments

27. downward 1 execute the downward pass of the FMM operation

28. int direct 1 loop on all cells, compute a part of the product by the far-

interactions [KFMM ]; invoke the matrix [Knear] and proceed to multiply it

with a candidate vector; finalize the matrix-vector product

29. prod knear multiply [Knear] and the candidate vector

30. csrsymv multiply a compressed sparse matrix with a vector

31. post proc post-processing subroutine, export the results under text files:

traction, displacement, crack opening displacement

32. Q8 Q4 slab create geometry and nodal solution (*.mesh and *.bb) of slab

for MEDIT

33. Q8 Q4 crack create geometry and nodal solution (*.mesh and *.bb) of cracks

for MEDIT
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34. Q8 Q4 inclusion create geometry and nodal solution (*.mesh and *.bb) of

inclusions for MEDIT

35. Q8 Q4 exact create geometry and exact nodal solution if it exists (*.mesh

and *.bb) of the problem for MEDIT

36. write echo create a memo file (log.txt) which contains all the input infor-

mation of the calculation: date and time, number of unknowns in traction,

in displacement, in crack opening displacement, number of zones/inclusions,

material properties of each zone, number of gaussian points for each geometry,

and parameter for octree and GMRES

37. write octree create a memo file (octree.txt) which contains the octree struc-

ture: name of each cell, its neighbors, children, position about its branch,

level; scan on each level and show name of cells in each level...

38. write report create a memo file (report.txt) which summarizes the output

information of the calculation: number of outer iteration, time per iteration,

pre-processing time, solution time, total computational time ...

39. int buu consider the relative position between 2 elements and warp to the

appropriate Buu integration scheme

40. int btt consider the relative position between 2 elements and warp to the

appropriate Btt integration scheme

41. int btu consider the relative position between 2 elements and warp to the

appropriate Btu integration scheme

42. int buu 2 consider the relative position between 2 elements and warp to the

appropriate Btu 2 integration scheme

43. int regu buu compute the regular Buu integral

44. int regu btu compute the regular Btu integral

45. int regu btt2 compute the regular Btt integral

46. int regu btu 2 compute the regular Btu 2 integral

47. int coin buu compute the common vertex Buu integral

48. int coin btu compute the common vertex Btu integral

49. int coin btt2 compute the common vertex Btt integral

50. int coin btu 2 compute the common vertex Btu 2 integral

51. int conf buu compute the coincidence Buu integral

52. int conf btu compute the coincidence Btu integral
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53. int conf btt2 compute the coincidence Btt integral

54. int conf btu 2 compute the coincidence Btu 2 integral

55. int cote buu compute the common edge Buu integral

56. int cote btu compute the common edge Btu integral

57. int cote btt2 compute the common edge Btt integral

58. int cote btu 2 compute the common edge Btu 2 integral

59. eval Uik evaluate the kernel Uki

60. eval Tik evaluate the kernel T ki

61. eval Bikqs evaluate the kernel Bikqs

62. coor elem recuperate the cartesian coordinates of nodes in the given element

63. eval PF evaluate the real cartesian coordinates of a given point

64. eval SHP evaluate the shape function of a given gaussian point

65. eval DSHP evaluate the derivative of the shape function of a given gaussian

point

66. eval NORM evaluate the normal vector of an element at given point, also

compute the jacobian of the transformation

67. eval Cijhk evaluate the forth order tensor of elasticity

68. eval Rnm evaluate the harmonic function Rnm

69. eval Snm evaluate the harmonic function Snm

70. eval Fiknm evaluate the term Fij,n,m

71. transl M2M execute the M2M transformation

72. transl M2L execute the M2L transformation

73. transl L2L execute the L2L transformation
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FMM - Useful formulaes

This appendix provides the practical computation of the solid harmonics Rn,m(y)

and Sn,m(x) and the derivatives of the Rn,m and Sn,m(x) using only the Cartesian

coordinates of the generic arguments x and y. The readers are referred to Nishimura

et al. [31] for further details. The brief description of the recursive formulae can be

summarized as follow:

(a) The Rn,m(y) are computed recursively by setting R0,0(y) = 1 and using:

Rn+1,n+1(y) =
y1 + iy2

2(n+ 1)
Rn,n(y) (D.1)(

(n+ 1)2 −m2
)
Rn+1,m(y)− (2n+ 1)y3Rn,m(y) + ‖y‖2Rn−1,m(y) = 0 (D.2)

(b) The Sn,m(x) are computed recursively by setting S0,0(x) =
1

‖x‖
and using:

Sn+1,n+1(x) =
(2n+ 1)(x1 + ix2)

‖x‖2
Sn,n(x) (D.3)

‖x‖2Sn+1,m(x)− (2n+ 1)x3Sn,m(x) + (n2 −m2)Sn−1,m(x) = 0 (D.4)

(c) Finally, the negative terms are computed (n > m) following the properties:

Rn,−m(y) = (−1)mRn,m(y) (D.5)

Sn,−m(x) = (−1)mSn,m(x) (D.6)

The first order derivatives of Rn,m and Sn,m are computed via:

∂

∂y1
Rn,m =

1

2
(Rn−1,m−1 −Rn−1,m+1) (D.7)

∂

∂y2
Rn,m =

i

2
(Rn−1,m−1 −Rn−1,m+1) (D.8)

∂

∂y3
Rn,m = Rn−1,m (D.9)

∂

∂x1
Sn,m =

1

2
(Sn+1,m−1 −Rn+1,m+1) (D.10)

∂

∂x2
Sn,m =

i

2
(Sn+1,m+1 − Sn+1,m−1) (D.11)

∂

∂x3
Sn,m = −Sn+1,m (D.12)
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And the second order derivatives:

∂

∂y1

∂

∂y1
Rn,m =

1

4
(Rn−2,m−2 − 2Rn−2,m +Rn−2,m+2) (D.13)

∂

∂y1

∂

∂y2
Rn,m =

∂

∂y2

∂

∂y1
Rn,m =

i

4
(Rn−2,m−2 −Rn−2,m+2) (D.14)

∂

∂y1

∂

∂y3
Rn,m =

∂

∂y3

∂

∂y1
Rn,m =

1

2
(Rn−2,m−1 −Rn−2,m+1) (D.15)

∂

∂y2

∂

∂y2
Rn,m = −1

4
(Rn−2,m−2 + 2Rn−2,m +Rn−2,m+2) (D.16)

∂

∂y2

∂

∂y3
Rn,m =

∂

∂y3

∂

∂y2
Rn,m =

i

2
(Rn−2,m−1 +Rn−2,m+1) (D.17)

∂

∂y3

∂

∂y3
Rn,m = Rn−2,m (D.18)

∂

∂x1

∂

∂x1
Sn,m =

1

4
(Sn+2,m−2 − 2Sn+2,m + Sn+2,m+2) (D.19)

∂

∂x1

∂

∂x2
Sn,m =

∂

∂x2

∂

∂x1
Sn,m =

i

4
(Sn+2,m−2 − Sn+2,m+2) (D.20)

∂

∂x1

∂

∂x3
Sn,m =

∂

∂x3

∂

∂x1
Sn,m = −1

2
(Sn+2,m−1 − Sn+2,m+1) (D.21)

∂

∂x2

∂

∂x2
Sn,m = −1

4
(Sn+2,m−2 + 2Sn+2,m + Sn+2,m+2) (D.22)

∂

∂x2

∂

∂x3
Sn,m =

∂

∂x3

∂

∂x2
Sn,m = − i

2
(Sn+2,m−1 + Sn+2,m+1) (D.23)

∂

∂x3

∂

∂x3
Sn,m = Sn+2,m (D.24)
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