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Prologue

Pourquoi, un jour, décidons-nous de changer le cours de notre vie, alors que, la veille
encore, nous étions installés dans de confortables habitudes ? Je crois que c’est en partie
a cette question que mon existence est une réponse. Ce manuscrit contient de nombreux
travaux mathématiques auxquels j’ai contribué, et pourtant, je ne suis pas mathématicien.
Il n’est en fait que 'ombre d’une autre démarche. La motivation qui m’anime, sans
doute, est poétique : créer des mondes par des mots. C’est peut-étre pour cela qu’on ne
saurait facilement la caractériser. Ainsi, pour faire une analogie, lorsque j’ai commencé
a apprendre le piano et le solfege et que j'ai évoqué cette nouvelle activité aupres de
Francois Castella, ce dernier m’a posé une question qui se ramenait finalement a celle-ci :
pourquoi ? Et j’ai esquivé. Je fais de la recherche mathématique pour la méme raison
que je fais du piano ou que je m’intéresse a la philosophie. De méme, j’ai découvert cette
année certains grands classiques littéraires, comme Don Quichotte, Madame Bovary, La
Confusion des Sentiments, Le Lys dans la Vallée ou La Recherche du Temps Perdu.
Toutes ces ceuvres nous parlent de la méme chose. Ce sont des variations géniales sur
un méme theme : comment les images qu’on projette sur le monde nous en font-elles
perdre la saveur 7 En particulier, le génie proustien nous montre ’essence de I'art dans
les sensations a travers lesquelles s’engouffre notre mémoire involontaire. J’ai décidé de
faire du piano en écoutant, dissimulé dans I’encadrement d’une porte, Ari Laptev qui
jouait sur celui qui est installé a Mittag-Leffler ; 'espace d’un instant, je me suis souvenu
d’un autre piano, d'un autre lieu dont je sentais encore 'humidité, et d’autres mains qui
m’avaient appris a aimer la musique ; immédiatement, je flottais la-bas, volant a travers
une cour intérieure obscure, passant devant un atelier, et m’envolant au premier étage,
au-dessus des vieilles marches en bois, pour rejoindre un ami, assis au piano, tandis que
Ieau chauffait dans la cuisine. Alors, pourquoi pas ? me suis-je dit. Peut-étre trouverai-
je ce qu’il y a de si spécial dans ce souvenir si j'apprends a jouer. J’ai consacré sept
ans au Laplacien magnétique et a ses cousins, en suivant la méme démarche : laisser se
déployer les sentiments, les souvenirs, les pensées, peu importe ou cela mene, tant qu’on
en sent la nécessité, suivant ainsi les conseils de Rilke au jeune poete. Il y a une grande
similitude entre la pensée de Platon et celle de Proust, notamment dans leur rapport a la
mémoire. Dans le mythe d’Er, la plupart des hommes se proposent comme avenir leur vie
passée, bien souvent en interposant devant leur regard des images sans ame (1’ambition,
le pouvoir, la richesse, 'amour, etc.). De méme, le narrateur de la Recherche perd son
temps a aimer des femmes comme il aimait sa mere : avec anxiété et insatisfaction.
Dans les deux cas, une mémoire solidifiée et préte pour I'action surnage et empéche les
hommes de voir leur vérité. Dans les deux cas, c¢’est la métamorphose du sujet a travers
la mémoire involontaire (une compréhension intuitive totale) qui ’ameéne & choisir une
vie bonne ou une vie de romancier. La véritable nécessité de cette mémoire, ce n’est
pas celle dont une technique parfaite rend compte en coincidant avec une vérité logique ;

c’est bien plutot celle qui nait de 'aléa des sentiments et qui s’impose a nous. Ce n’est



qu’ainsi que je comprends l'activité de chercheur ou que je comprends qu’on puisse aimer
plusieurs themes de recherche (ou plusieurs personnes : c’est la méme chose, non 7),

simultanément.

Ainsi s’acheve la véritable description de mes travaux et ici commencent mes re-
merciements. D’abord, je souhaiterais particulierement remercier Maria Esteban (en lui
souhaitant un prompt rétablissement), Gilles Lebeau et Jan Philip Solovej pour avoir
accepté de faire un rapport sur mes travaux. Ensuite, je remercie vivement Erwan Faou,
Clotilde Fermanian-Kammerer, Bernard Helffer, Frédéric Hérau et San Vi Ngoc pour
leur présence dans mon jury. J’aurais, bien str, quelques mentions spéciales a ajouter.
Ainsi, je dois & Bernard de m’avoir présenté le Laplacien magnétique et quelques uns de
ses secrets ; mais cela a surtout été une aventure humaine de l’avoir rencontré. J’ai un
immense plaisir a discuter avec lui et j’ai cru comprendre que nous parlions souvent la
méme langue : l'intuition. En ce qui concerne Frédéric, je me souviens qu’il m’a dit un
jour avec un léger sourire que j'étais plutot un bon vivant : je le soupgonne d’en étre
un aussi et je le remercie pour sa bienveillance et les petits concerts de piano improvisés
pendant nos pauses WKB. Enfin, je voudrais exprimer ma gratitude a San : sa constance
et sa tranquillité m’ont souvent inspiré, pas seulement en ce qui concerne la géométrie

symplectique et les formes normales.

Les travaux dont ce manuscrit retrace 1’histoire sont pour la plupart des collaborations.
J’ai ainsi longuement échangé avec la singuliere et féline Monique Dauge qui met parfois
tant d’animation dans les couloirs. Je la remercie particulierement pour sa confiance
qui nous a permis notamment d’élever nos deux enfants (mathématiques) : Thomas
Ourmieres-Bonafos et Jean-Philippe Miqueu. J’en profite d’ailleurs pour les remercier
de leur compréhension devant la folie douce de leurs directeurs. Je souhaite a Thomas
que son post-doc au pays basque lui permette de poursuivre dans la voie qu’il se sera
choisie et a Jean-Philippe de poursuivre sur sa lancée. Je voudrais ensuite remercier
Virginie Bonnaillie-Noél pour nos nombreux travaux nés durant un inoubliable automne
suédois, ainsi que pour sa fiabilité et son savoir-vivre (pour tous ces repas, tout ce vin,
tout ce champagne !). Ce fut également un grand plaisir de rencontrer mon plus jeune
collaborateur Nicolas Popoff. Les discussions avec lui, de tous ordres, m’ont toujours
captivé. Je lui souhaite de s’épanouir a Bordeaux. Un grand merci aussi au finlandais
Nicolas Dombrowski pour m’avoir inspiré. Je tiens aussi a remercier David Krejcirik
pour sa patience et sa clarté, ainsi que pour son gott des bonnes choses. Il me faut ici
aussi exprimer ma gratitude a I’égard de feu Pierre Duclos qui nous a inspiré ’étude des
guides d’ondes magnétiques. Parfois des collaborations naissent dans des cuisines, c’est
la que j’ai rencontré Matej Tusek lorsque nous étions en collocation a Mittag-Leffler ; je
le remercie pour ces agréables moments. Je dois aussi beaucoup a Mikael P. Sundqvist et
a la douceur de son caractere ; et, méme si nous n’avons pas encore publié ensemble, il a
largement contribué a ma compréhension des problemes magnétiques. De la méme fagon,

Sgren Fournais a beaucoup soutenu mes réflexions et inspiré de nombreuses idées qui ont
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encore porté leurs fruits récemment ; merci pour ces séjours dans la belle ville d’Aarhus !
Ce fut aussi tres stimulant de travailler avec Vincent Duchéne qui a eu la bonne idée
de me parler de d-interaction juste avant que Konstantin Pankrashkin ne porte a ma
connaissance un travail apparenté. Je voudrais remercier Peter Hislop pour sa patience
et son naturel : il fait bon travailler avec lui. Enfin, je ne saurais comment exprimer
ma gratitude a Benjamin Boutin pour toutes ces heures passées récemment a reluquer
ensemble la méthode QR.

Les discussions ne se soldent pas toujours immédiatement par un article, mais elles
n’en restent pas moins des sources d’inspiration, ¢’est pourquoi je remercie Philippe Briet,
Vincent Bruneau, Yves Colin de Verdiere, Pavel Exner, Frédéric Faure, Raphaél Henry,
Luc Hillairet, Moez Khenissi, Corentin Léna, Hatem Najar, Konstantin Pankrashkin,
Georgi Raykov, Didier Robert, Coni Rojas-Molina, Frédéric Rousset, Eric Soccorsi, Fran-
coise Truc, Joe Viola et Xue-Ping Wang.

Je voudrais remercier I’équipe EDP de 'IRMAR pour m’avoir fait confiance en m’ac-
cueillant en son sein il y a quatre ans : Zied Ammari (pour sa bienveillance), Christophe
Cheverry (pour son intégrité), Vincent Duchéne, Taoufik Hmidi (pour ces moments passés
a discuter dans mon bureau), Karel Pravda-Starov (qui vient de nous rejoindre), Fran-
cis Nier (pour m’avoir motivé a lire Balzac), Frédéric Rousset (qui a rejoint la vallée
de Chevreuse), Nicoletta Tchou (pour quelques discussions a l'accent italien), San Vu
Ngoc et Dimitri Yafaev (pour son humour si russe). Il m’arrive aussi de hanter quelques
collegues de I'étage du “dessous” : Benjamin Boutin, Gabriel Caloz (que je croise parfois a
la Présidence), Frangois Castella, Martin Costabel, Nicolas Crouseilles, Eric Darrigrand,
Monique Dauge, Yvon Lafranche, Loic Le Marrec, Olivier Ley, Mohammed Lemou, Loic
Le Treust (pour nos discussions sur I'avenir dans la recherche), Roger Lewandowski, Fa-
brice Mahé, Florian Méhats (puissent nos guides d’ondes non-linéaires voir le jour !) et
Lalao Rakotomanana. Pendant ces quatre années, j’ai aussi enseigné, en collaboration
avec quelques collegues : Delphine Boucher, Pierre Carcaud, Arnaud Debussche, Nizar
Demni (qui semblerait en cours de magnétisation 7), Isabelle Gruais, Camille Horbez,
Stéphane Leborgne, Yohann Le Floch, Michel Pierre, Cyril Rigault, Christophe Wacheux,
Dimitri Yafaev. J’espere que les étudiants survivront a nos enseignements. J’en profite
pour faire un petit coucou a Thibaut Deheuvels, Aurélien Klak, Yannick Privat et Guil-
laume Rolland. Sans oublier : Ismaél Bailleul, Bachir Bekka (le chef), Jean-Christophe
Breton, Guy Casale (en souvenir de quelques fétes de la science), Bernard Delyon, Ying
Hu, Bernard Le Stum (merci pour ces conversations autour de l’enseignement), Jean-

Marie Lion. Pour ceux que j'oublierais, j’espere qu’ils me pardonneront.

Parce que 'université ce n’est pas seulement s’amuser a faire de ’enseignement et de
la recherche et que c’est aussi, quelques fois, de 'administration, je voudrais saluer mes
deux voisins du CEVU : Anne Grazon et Frédéric Lambert ; c’est vraiment plus rigolo
quand vous étes la.
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Je n’oublie pas les secrétaires qui m’ont plusieurs fois facilité la vie : Claude Boschet,
Emmanuelle Guiot, Chantal Halet, Xhensila Lachambre, Véronique Le Goff, Marie-
Annick Paulmier, Marie-Aude Verger et Carole Wosiak. Elles ont un grand mérite de

vivre parmi ces chercheurs fous.

Dans la grande cohérence intuitive que je recherche, mes amis ont une part impor-
tante. Parfois, je les considere comme le rempart contre la permanente dissolution du
Temps. Aussi, je dois beaucoup a Romain pour nos innombrables discussions psycho-
socio-philosophiques. Le monde changerait de couleur si nous ne faisions pas revivre de
temps en temps le Banquet et le Ménon ; merci aussi a Jason de te donner le sourire.
Je ne compte plus ce que je dois a Livia, apres plus de quinze ans d’amitié (eh oui, ¢a
ne nous rajeunit pas) traversés par tristesses et joies ; aupres de toi, je me sens chez
moi. Vincent (G.), je n’oublierai pas nos folles soirées a Saint-Aubin passées a laver
des rideaux ou ces moments a Munich ou il a parfois tant plu (le Laplacien magnétique
ne te remerciera jamais assez). Merci encore pour nos discussions et j’espére que notre
collaboration naissante aura un bel avenir (j’en profite pour remercier le doux Marc de
nous en avoir donné l'idée). J’ai une pensée pour Laelana, Virginie (T.), Florian (G.) ou
mon pianiste préféré Jérome (K.) et pour nos soirées entre filles : ¢a m’a souvent remonté
le moral. A toi aussi, Mathieu (D.), merci d’étre toujours présent. Annalisa, c’est tou-
jours un plaisir de te croiser quand tu reviens en Europe et de refaire le monde autour
de quelques verres. Vincent et Joél, merci pour nos discussions (toujours un peu psy-
chologiques !) qui m’ont souvent inspiré. Raphaél et Raymond, si je dors si fréquemment
dans votre salon, ce n’est pas uniquement pour avoir un toit quand je viens travailler a
Paris, pour préparer des repas pantagruéliques, ou faire les yeux doux a vos séduisants
amis, c¢’est aussi parce que j’aime votre philosophie et j’espere que votre long voyage vous
ménera ot vous le souhaiterez. O Benjamin, seule la musique pourrait exprimer comment,
ton ineffable amitié m’est essentielle... Peut-étre qu’en osant paraphraser Montaigne, je
pourrais dire : parce que c’était toi, parce que c¢’était moi ; merci au charmant Mathieu,
pour lequel j’ai une pensée particuliere en ce début d’année. Enfin, chere Fanny, c’est
peut-étre parce que tu es ma soeur, que je peux dire que ton amitié compte au dela des
mots ; merci a Pascal dont j’aime tant le caractere et belle vie a Antoine, arrivé avec tant

d’avance !

Valete |
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CHAPTER 1

A magnetic story
I'vesd oeautdv.

All this magnetic story is based on the book in preparation [R14b]. This chapter is an
informal introduction which points out some connections between the different problems
analyzed in the present work. We also provide a detailed description of the contents of

this dissertation in Section 3.

1. The realm of \;(h)

1.1. Once upon a time... Let us present two reasons which lead to the analysis of

the magnetic Laplacian.

The first motivation arises in the mathematical theory of superconductivity. A model
for this theory (see [126]) is given by the Ginzburg-Landau functional:

2
G0 &) = [ (=iV + ko A)ul = o+ S0l o #* [ oV x A = oBJda,
Q Q

where Q C R? is the place occupied by the superconductor, 9 is the so-called order pa-
rameter (|1|? is the density of Cooper pairs), A is a magnetic potential and B the applied
magnetic field. The parameter x is characteristic of the sample (the superconductors of
type II are such that x >> 1) and o corresponds to the intensity of the applied magnetic
field. Roughly speaking, the question is to determine the nature of the minimizers. Are
they normal, that is (¢, A) = (0,F) with VX F = B (and V- F = 0), or not? We
can mention the important result of Giorgi-Phillips [60] which states that, if the applied
magnetic field does not vanish, then, for ¢ large enough, the normal state is the unique
minimizer of G (with the divergence free condition). When analyzing the local minimality
of (0,F), we are led to compute the Hessian of G at (0, F) and to analyze the positivity
of:
(—iV + koA)? — K2

For further details, we refer to the book by Fournais and Helffer [52] and to the papers
by Lu and Pan [100, 101]. Therefore the theory of superconductivity leads to investigate
the lowest eigenvalue A;(h) of the Neumann realization of the magnetic Laplacian, that
is (—ihV + A)?, where h > 0 is small (x is assumed to be large).

The second motivation is to understand at which point there is an analogy between the
electric Laplacian —h?A+V (z) and the magnetic Laplacian (—ihV+A)?. For instance, in
1



the one dimensional electric case, when V' admits a unique and non-degenerate minimum
at 0 and satisfies liminf V'(z) > V'(0), we know that the n-th eigenvalue A, (h) exists and

|z| =400
satisfies:

(1.1.1) A(h) =V (0)+ (2n — 1) V%(O)h + O(Rh?).

Therefore a natural question arises:
“Are there similar results to (1.1.1) in pure magnetic cases?”

In order to answer this question, this dissertation presents a theory of the Magnetic
Harmonic Approximation. Concerning the Schrodinger equation in presence of magnetic
field the reader may consult [5] (see also [29]) and the surveys [110], [44] and [73].

Jointly with (1.1.1) it is well-known that we can perform WKB constructions for the
electric Laplacian (see the book of Dimassi and Sjostrand [35, Chapter 3]). Unfortunately
such constructions do not seem to be possible in full generality for the pure magnetic
case (see the course of Helffer [66, Section 6] and the paper by Martinez and Sordoni
[107]) and the naive localization estimates of Agmon are no more optimal (see [83], the
paper by Erdés [42] or the papers by Nakamura [113, 114]). In the magnetic situation,
accurate semiclassical expansions of the eigenvalues and eigenfunctions (shortly called
eigenpairs) are difficult to obtain. In fact, the more we know about the expansion of the
eigenpairs, the more we can estimate the tunnel effect in the spirit of the electric tunnel
effect of Helffer and Sjostrand (see for instance [81, 82] and also the papers by Simon
[127, 128]) when there are symmetries. Estimating the magnetic tunnel effect is still
a widely open question directly related to the approximation of the eigenfunctions (see
[83] and [22] for electric tunneling in presence of magnetic field and [12] in the case with
corners). Hopefully the main philosophy living throughout this dissertation will prepare
the future investigations on this fascinating subject. In particular we provide the first
examples of magnetic WKB constructions inspired by the theory developed in [BHR14].
Anyway this dissertation proposes a change of perspective in the study of the magnetic
Laplacian. In fact, during the past decades, the philosophy behind the spectral analysis
was essentially variational. Many papers dealt with the construction of quasimodes used
as test functions for the quadratic form associated with the magnetic Laplacian. In any
case the attention was focused on the functions of the domain more than on the operator
itself. In this dissertation we systematically try to inverse the point of view: the main
problem is no more to find appropriate quasimodes but an appropriate (and sometimes
microlocal) representation of the operator. By doing this we will partially leave the min-
max principle and the variational theory for the spectral theorem and the microlocal and
hypoelliptic spirit.



1.2. Definitions. Let  be a Lipschitzian domain in R?. Let us consider a smooth
vector potential A = (A;,..., A;) on Q. We consider the 1-form:

d
WA = Z Ak dz k-
k=1
We introduce the exterior derivative of wx:

0B = dwa = Y Bjdz; A day.
j<k
In dimension two, the only coefficient is By = 0., A2 — 0,,A4;1. In dimension three, the
magnetic field is defined as:

B = (By, By, B3) = (Bas, —Bi3, Bi2) = V x A.

We will discuss in this dissertation the spectral properties of some self-adjoint realizations

of the magnetic operator:
d

Qh,Ayg = Z(—ih@k + Ak)z,
k=1
where h > 0 is a parameter (related to the Planck constant). We notice the fundamental

property, called gauge invariance:
eT(—iV + A)e” = —iV+ A+ Vo

so that:
e (—iV + A)?e? = (—iV + A + Vo)?,
where ¢ € H'(Q, R).

1.3. A fascination for \;(h). In the last fifteen years many papers dealt with the
asymptotic expansions of the first eigenvalue of the magnetic Laplacian. Let us describe
some of these results.

1.3.1. Constant magnetic field. In dimension two the constant magnetic field case is
treated when € is a disk (with Neumann condition) by Bauman, Phillips and Tang in [7]
(see [9] and [43] for the Dirichlet case). In particular, they prove a two terms expansion
of the first eigenvalue:

C
A (h) = Oph — Elhf”/? + o(h*/?),
where ©¢ € (0,1) and C; > 0 are universal constants. This result, which was conjectured

in [8, 34], is generalized to smooth and bounded domains by Helffer and Morame in [75]
where it is proved that:

(1.1.2) A (h) = Ogh — Cikpmanh®? + o(h*/?),

where Kpq. is the maximal curvature of the boundary. Let us emphasize that, in these
papers, the authors are only concerned by the first terms of the asymptotic expansion of

3



A1(h). In the case of smooth domains the complete asymptotic expansion of all the eigen-
values is done by Fournais and Helffer in [51]. When the boundary is not smooth, we may
mention the papers of Jadallah and Pan [87, 118]. In the semiclassical regime, we refer
to the papers of Bonnaillie-Noél, Dauge and Fournais [10, 11, 14] where perturbation
theory is used in relation with the estimates of Agmon. For numerical investigations the
reader may consider the paper [12].

In dimension three the constant magnetic field case (with intensity 1) is treated by
Helffer and Morame in [77] under generic assumptions on the (smooth) boundary of €

A (h) = Oph + Aoh™? 4 o(h*/?),

where the constant 7, is related to the magnetic curvature of a curve in the boundary
along which the magnetic field is tangent to the boundary. The case of the ball is analyzed

in details by Fournais and Persson in [53].

1.3.2. Variable magnetic field. The case of variable magnetic fields is the core of this
dissertation. This case can be motivated by anisotropic superconductors (see for instance
[25, 2]) or the liquid crystal theory (see [78, 79, R10a, R10b]). Nevertheless we will
see that the variable situation has an interest in itself and will lead to considerations that
may apply to the constant magnetic field case as well. One of the main (and not so naive)
ideas in this dissertation is that a variable geometry with a constant magnetic field can
be transformed into a constant geometry with an effective variable magnetic field (and
even an electric field in the semiclassical limit). Let us now recall some personal results
which gave birth to the intuitions pervading this dissertation.

For the case with a non vanishing variable magnetic field, we refer to [100, R09] for
the first terms of the lowest eigenvalue. In particular the paper [R09] provides (under a

generic condition) an asymptotic expansion with two terms in the form:
A (h) = Ogb'h 4+ C?P(xq, B, 0Q)h*/% + o(h*/?),

where C?P(x, B,99) depends on the geometry of the boundary and on the magnetic
field at xo and where b’ = rgsian = B(xo). When the magnetic field vanishes, the first

analysis of the lowest eigenvalue is due to Montgomery in [111] followed by Helffer and
Morame in [74] (see also [119, 68, 70]).

In dimension three (with Neumann condition on a smooth boundary), the first term of
A1(h) is given by Lu and Pan in [101]. The next terms in the expansion are investigated
in [R10c| where we can find in particular an upper bound in the form

M(R) < ||B(x0)||5(8(x0))h + C3P(xq, B, 0132 + C3P(xo, B, 0Q)h* + Ch/?,

where s is a spectral invariant defined in the next section, 6(x() is the angle of B(xo)
with the boundary at xy, and the constants C’]?’D(xo, B, 0Q2) are related to the geometry



and the magnetic field at xo € 0€2. Let us finally mention the recent paper by Bonnaillie-
Noél-Dauge-Popoff [13] which establishes a one term asymptotics in the case of Neumann

boundaries with corners.

1.4. Some model operators. It turns out that the results recalled in Section 1.3
are related to many model operators. Let us introduce some of them.

1.4.1. De Gennes operator. The analysis of the magnetic Laplacian with Neumann
condition on }Ri makes the so-called de Gennes operator to appear. We refer to [32]
where this model is studied in details (see also [52]). For ( € R, we consider the Neumann
realization on L?(R,) of

(1.1.3) el =D} +(C- 12

We denote by V{O] (¢) the lowest eigenvalue of 220]. It is possible to prove that the function
¢ — I/P](C ) admits a unique and non-degenerate minimum at a point C(EO] > 0, shortly

denoted by (py, and that we have

(1.1.4) O := Igrleiﬁl v(¢) € (0,1).

1.4.2. Montgomery operator. Let us now introduce another important model. This
one was introduced by Montgomery in [111] to study the case of vanishing magnetic
fields in dimension two (see also [119] and [77, Section 2.4]). This model was revisited
by Helffer in [67], generalized by Helffer and Persson in [80] and Fournais and Persson
in [54]. The Montgomery operator with parameter ¢ € R is the self-adjoint realization
on R of:

2\
(1.1.5) el =D+ (g - 5) .

1.4.3. Popoff operator. The investigation of the magnetic Laplacian on dihedral do-
mains (see [121]) leads to the analysis of the Neumann realization on L*(S,, dtdz) of:
(1.1.6) cc=D;+ D+ (t—¢)>
where S, is the sector with angle «,

S, = {(t,z) €R?: |2| < ttan (%)}

1.4.4. Lu-Pan operator. Let us present a last model operator appearing in dimension
three in the case of a smooth Neumann boundary (see [101, 76, BDPR12]). We consider
the half-plane,

R2 = {(s,t) € R? t >0}
and we introduce the self-adjoint Neumann realization on R? of the Schrédinger operator
£LP with potential Vj:

(1.1.7) eP — A4V, =D?+ D4V,
5



where Vj is defined for any 6 € (0, %) by
Vo : (s,t) € RZ — (tcosf — ssin ).

We can notice that Vj reaches its minimum 0 all along the line tcosf = ssinf, which
makes the angle § with ORZ. We denote by () or simply s(f) the infimum of the
spectrum of £57. In [52] (and [76, 101]), it is proved that s is analytic and strictly

increasing on (O, %)

2. A connection with waveguides

2.1. Existence of a bound state of £;°. Among other things one can prove the
following lemma (see [76, 101]).

Lemma 1.1. For all 0 € (0,%) there exists an eigenvalue of £5° below the essential

spectrum which equals [1, 4+00).

A classical result combining an estimate of Agmon (cf. [1]) and a theorem due to
Persson (cf. [120]) implies that the corresponding eigenfunctions are localized near (0, 0).
This result is slightly surprising since the existence of the discrete spectrum is related to
the association between the Neumann condition and the partial confinement of Vj. After
translation and rescaling, we are led to a new operator:

hD? + D? + (t — (o — sh'/?)? — Qy,

where h = tan . Then one can reduce the (semiclassical) analysis to the so-called Born-
Oppenheimer approximation (see for instance [103]):

hD? + v (¢ + sh*/?) — O,

This last operator is very easy to analyze with the classical theory of the harmonic
approximation and we get (see [ BDPR12]):

Theorem 1.2. The lowest eigenvalues of £5° admit the following expansions:

(1.2.1) 5u(0) ~ > Vint’
Jj=0

) (¢0)
o)

with Yo, = Op et Y1, = (2n — 1)

2.2. A result of Duclos and Exner. Figure 1 can make us think to a broken
waveguide. Indeed, if one uses the Neumann condition to symmetrize £ and if one
replaces the confinement property of Vj by a Dirichlet condition, we are led to the sit-
uation described in Figure 2. This heuristic comparison reminds the famous paper [37]
where Duclos and Exner introduce a definition of standard (and smooth) waveguides and
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FIGURE 1. First eigenfunction of S'@P for = 9 /2 with J = 0.9, 0.85, 0.8
et 0.7.
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Dirichlet

FIGURE 2. Waveguide with corner 2 and half-waceguide Q.

perform a spectral analysis. For example, in dimension two (see Figure 3), a waveguide

of width ¢ is determined by a smooth curve s — ¢(s) € R? as the subset of R? given by:

{c(s) +tn(s), (s,t) eRx (—8,8)},

where n(s) is the normal to the curve ¢(R) at the point ¢(s
F1GURE 3. Waveguide FIGURE 4. Broken guide



Assuming that the waveguide is straight at infinity but not everywhere, Duclos and
Exner prove that there is always an eigenvalue below the essential spectrum (in the case
of a circular cross section in dimensions two and three). Let us notice that the essential
spectrum is [\, +00) where X is the lowest eigenvalue of the Dirichlet Laplacian on the
cross section. The proof of the existence of discrete spectrum is elementary and relies on
the min-max principle. Letting ¢ € H () :

v = [ 190 i

it is enough to find vy such that q(v) < Al[1ol/L2(). Such a function can be constructed
by considering a perturbed Weyl sequence associated with .

2.3. Waveguides and magnetic fields. Bending a waveguide induces discrete
spectrum below the essential spectrum, but what about twisting a waveguide? This
question arises for instance in the papers [92, 95, 41] where it is proved that twisting
a waveguide plays against the existence of the discrete spectrum. In the case without
curvature, the quadratic form is defined for ¢ € H{(R x w) by:

q(1) = ||010) — p(8)(t302 — t205)1]|> + [|0atp||* + ||0s2]|?,

where s — p(s) represents the effect of twisting the cross section w and (to,t3) are
coordinates in w. From a heuristic point of view, the twisting perturbation seems to act

“as” a magnetic field. This leads to the natural question:
“Is the spectral effect of a torsion the same as the effect of a magnetic field?”

If the geometry of a waveguide can formally generate a magnetic field, we can conversely
wonder if a magnetic field can generate a waveguide. This remark partially appears in
[36] where the discontinuity of a magnetic field along a line plays the role of a waveguide.
More generally it turns out that, when the magnetic field cancels along a curve, this curve
becomes an effective waveguide.

3. Organization of the dissertation

3.1. Spectral analysis of model operators and spectral reductions. Chapter 2
deals with model operators. This notion of model operators is fundamental in the theory
of the magnetic Laplacian. We have already introduced some important and historical
examples. There are essentially two natural ways to meet reductions to model operators.
The first approach can be done thanks to a (space) partition of unity which reduces the
spectral analysis to the one of localized and simplified models (we straighten the geometry
and freeze the magnetic field). The second approach, which involves an analysis in the
phase space, is to identify the possible different scales of the problem, that is the fast
and slow variables. This often involves an investigation in the microlocal spirit: we
shall analyze the properties of symbols and deduce a microlocal reduction to a spectral
problem in lower dimension. In Chapter 2 we provide explicit examples of models and
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provide their spectral analysis. In Chapter 2, Section 1 we introduce a model which is
fundamental to describe the effect of conical singularities of the boundary on the magnetic
eigenvalues (see [BR13a, BR14]). This is an example which is provided by the first kind
of approach (freeze the geometry and the magnetic field). It will turn out that part of the
spectral analysis of this model can be done in the spirit of the second approach when the
angle of the cone goes to zero (different scales and dimensional reduction). In Chapter
2, Section 2 we present a model related to vanishing magnetic fields in dimension two.
Due to an inhomogeneity of the magnetic operator, this other model leads to a microlocal
reduction and therefore to the investigation of an effective symbol (see [BR13b, R14a)).
In fact, the example of Section 2 can lead to a more general framework. In Chapter 2,
Section 3 we provide a general and elementary theory of the “magnetic Born-Oppenheimer
approximation” which is a systematic semiclassical reduction to model operators (under
generic assumptions on some effective symbols). We also provide the first known pure
magnetic WKB constructions (see [ BHR14]).

3.2. Normal forms philosophy and the magnetic semi-excited states. As we
have seen there is a non trivial connection between the discrete spectrum, the possible
magnetic field and the possible boundary. In fact normal form procedures are often
deeply rooted in the different proofs, not only in the semiclassical framework. We present
in Chapter 3 the results of four studies [DoR13]|, [R12], [PR13], [RVN14]. These
studies are concerned by the semiclassical asymptotics of the magnetic eigenvalues and

eigenfunctions.

3.2.1. Towards the magnetic semi-excited states. We now describe the philosophy of
the proofs of asymptotic expansions for the magnetic Laplacian with respect to a param-
eter @ (which tends to zero and which might be for example the semiclassical parameter).
Let us distinguish between the different conceptual levels of the analysis. Our analysis
uses the standard construction of quasimodes, localization techniques (“IMS” formula)
and a priori estimates of Agmon type satisfied by the eigenfunctions. These “standard”
tools, which are used in most of the papers dealing with A;(«), are not enough to inves-
tigate A\, (a) due to the spectral splitting arising sometimes in the subprincipal terms. In
fact such a fine behavior is the sign of a microlocal effect. In order to investigate this ef-
fect, we use normal form procedures in the spirit of the Egorov theorem. It turns out that
this normal form strategy also strongly simplifies the construction of quasimodes. Once
the behavior of the eigenfunctions in the phase space is established, we use the Feshbach-
Grushin approach to reduce our operator to an electric Laplacian. Let us comment more
in details the whole strategy.

The first step to analyze such problems is to perform an accurate construction of
quasimodes and to apply the spectral theorem. In other words we look for pairs (A, 1) such
that we have ||(L,—A)¢|| < e|[¢||. Such pairs are constructed through an homogenization
procedure involving different scales with respect to the different variables. In particular
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the construction uses a formal power series expansion of the operator and an Ansatz
in the same form for (A,%). The main difficulty in order to succeed is to choose the
appropriate scalings.

The second step aims at giving a priori estimates satisfied by the eigenfunctions.These
are localization estimates a la Agmon (see [1]). To prove them one generally needs to
have a priori estimates for the eigenvalues which can be obtained with a partition of
unity and local comparisons with model operators. Then such a priori estimates, which
are in general not optimal, involve an improvement in the asymptotic expansion of the
eigenvalues. If we are just interested in the first terms of A;(«), these classical tools are

enough.

In fact, the major difference with the electric Laplacian arises precisely in the analy-
sis of the spectral splitting between the lowest eigenvalues. Let us describe what is done
n [51] (dimension two, constant magnetic field, &« = h) and in [R13a] (non constant
magnetic field). In [51, R13a] quasimodes are constructed and the usual localization
estimates are proved. Then the behavior with respect to a phase variable needs to be
determined to allow a dimensional reduction. Let us underline here that this phenom-
enon of phase localization is characteristic of the magnetic Laplacian and is intimately
related to the structure of the low lying spectrum. In [51] Fournais and Helffer are led
to use the pseudo-differential calculus and the Grushin formalism. In [R13a] the ap-
proach is structurally not the same. In [R13a], in the spirit of the Egorov theorem (see
[39, 124, 105]), we use successive canonical transforms of the symbol of the operator
corresponding to unitary transforms (change of gauge, change of variable, Fourier trans-
form) and we reduce the operator, modulo remainders which are controlled thanks to
the a priori estimates, to an electric Laplacian being in the Born-Oppenheimer form (see
[27, 103] and more recently [BDPR12]). This reduction highlights the crucial idea that
the inhomogeneity of the magnetic operator is responsible for its spectral structure, as
we can see in [DoR13], [PR13].

3.2.2. Birkhoff normal form. As we suggested above, our magnetic normal forms are
close to the Birkhoff procedure and it is rather surprising that it has never been im-
plemented to describe the effect of magnetic fields on the low lying eigenvalues of the
magnetic Laplacian. A reason might be that, compared to the case of a Schrodinger
operator with an electric potential, the pure magnetic case presents a specific feature:
the symbol “itself” is not enough to generate a localization of the eigenfunctions. This
difficulty can be seen in the recent papers by Helffer and Kordyukov [69] (dimension
two) and [71] (dimension three) which treat cases without boundary. In dimension three
they provide accurate constructions of quasimodes, but do not establish the semiclassical
asymptotic expansions of the eigenvalues which is still an open problem. In dimension

two, they prove that if the magnetic field has a unique and non-degenerate minimum, the
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j-th eigenvalue admits an expansion in powers of /2 of the form:

Aj(h) ~ hmin B(q) + h*(c1(2) — 1) + ¢o) + O(h*?),

qeR?

where ¢y and ¢; are constants depending on the magnetic field. In [RVN14], we extend
their result by obtaining a complete asymptotic expansion which actually applies to more
general magnetic wells and allows to describe larger eigenvalues. In the ongoing work
[HKRVN14], we extend this strategy to the dimension three.

3.3. The spectrum of waveguides. In Chapter 4 we present some results occurring
in the theory of waveguides. In particular we consider the following question (addressed
in [KR13)):

“What is the spectral influence of a magnetic field on a waveguide 7”

Then, when there is no magnetic field, we would also like to analyze the effect of a corner
on the spectrum and present a non smooth version of the result of Duclos and Exner (see
[DaR12]). For that purpose we also present some results concerning the semiclassical
triangles.

11
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CHAPTER 2

Models and spectral reductions

The soul unfolds itself, like a lotus of countless petals.
The Prophet, Self-Knowledge, Khalil Gibran

In this chapter we introduce two model operators (depending on parameters).

The first one is the Neumann Laplacian on a circular cone of aperture o with a
constant magnetic field. This model is quite important in the study of problems with
non smooth boundaries in dimension three: this is the simplest case involving a conical
singularity. The results presented about this operator are based on the collaborations
with V. Bonnaillie-Noél [BR13a] and [BR14].

The second one appears in dimension two when studying vanishing magnetic fields
in the case when the cancellation line of the field intersects the boundary. The results
concerning this model are related to [BR13b] and [R14a].

These models will already give a flavor of the techniques which travel through this
dissertation.

Finally, we provide in this chapter a theory of the magnetic Born-Oppenheimer ap-
proximation as well as purely magnetic WKB constructions based on the collaboration
with V. Bonnailllie-Noél and F. Hérau [BHR14].

1. The power of the peaks

We are interested in the low-lying eigenvalues of the magnetic Neumann Laplacian

4

with a constant magnetic field applied to a “ peak ”, i.e. a right circular cone C,. The
right circular cone C, of angular opening o € (0,7) (see Figure 1) is defined in the

Cartesian coordinates (z,y, z) by
Co={(z,y,2) €ER®, 2>0, 2* +4° < than2% )
Let B be the constant magnetic field
B(z,y,2) = (0,sin 3, cos B)7,

where 5 € [0, g] We choose the following magnetic potential A:

1 1
A(z,y,2) = §B X X = i(zsinﬁ —ycos 3,z cos 3, —xsin B)T.
13



We consider £, g the Friedrichs extension associated with the quadratic form
Qa(¥) = I(=iV + A)[IE2 e, ),
defined for ¢ € H4 (C,) with
HLY (C.) = {u € L*(C.), (—iV + A)u € L*(C,)}.
The operator £, is (—iV + A)? with domain:
HA (Co) = {u € HY (Co), (—iV + A)*u € L*(C,), (—iV + A)u-n =0 on 9C,}.

We define A, (a, 5) as the n-th Rayleigh quotient of £, 5. Let ¢, (c, ) be a normalized

associated eigenvector (if it exists).

FIGURE 1. Geometric setting.

1.1. Why studying magnetic cones? One of the most interesting results of the
last fifteen years is provided by Helffer and Morame in [75] where they prove that the
magnetic eigenfunctions, in 2D, concentrates near the points of the boundary where the
(algebraic) curvature is maximal, see (1.1.2). This property aroused interest in domains
with corners, which somehow correspond to points of the boundary where the curvature
becomes infinite (see [87, 118] for the quarter plane and [10, 11] for more general
domains). Denoting by S, the sector in R? with angle o and considering the magnetic
Neumann Laplacian with constant magnetic field of intensity 1, it is proved in [10] that,
as soon as « is small enough, a bound state exists. Its energy is denoted by p(a). An

asymptotic expansion at any order is even provided (see [10, Theorem 1.1]):
. 1

2.1.1 a)~a ) mia, with  mg = —.

.11 pla) ~ 3o 0=

14



In particular, this proves that p(a) becomes smaller than the lowest eigenvalue of the
magnetic Neumann Laplacian in the half-plane with constant magnetic field (with inten-
sity 1), that is:
p(a) < Oy, a € (0, ),

where Oy is defined in (1.1.4).This motivates the study of dihedral domains (see [121,
122]). Another possibility of investigation, in dimension three, is the case of a conical
singularity of the boundary. We would especially like to answer the following questions:
Can we go below pu(a) and can we describe the structure of the spectrum when the
aperture of the cone goes to zero?

1.2. The magnetic Laplacian in spherical coordinates. Since the spherical co-

ordinates are naturally adapted to the geometry, we consider the change of variable:
(7,0, 0) = (x,y,2) = o ?(7 cos O sin cvp, Tsinbsinagp, T cosap).

This change of coordinates is nothing but a first normal form. We denote by P the
semi-infinite rectangular parallelepiped

Pi={(1,0,0) €R?, 7>0, 0 €[0,2m), p € (0,1)}.
Let ¢ € Hi (Ca). We write ¢(®(7,0,)) = a'/44(7,0,¢) for any (r,6,¢) € P in these

new coordinates and we have
6l = [ 160, 0)F s dr do .

and:

Qa(¥) = aQas(¥),

where the quadratic form Q,, s is defined on the transformed form domain Hk(P) by

(2.12) Q0 s(¥) = /P (1P + [ Pal? + | Py ?) di

with the measure
dji = 7 sinap dt df dy,

and:
HY (P) = {¢ € LX(P, dj1), (—iV + A)y € L*(P, dji)}.

We also have:

P, =D, —1pcosfsin g,

2 2 in(2
P, = (tsin(ayp)) ™! (De + ;—a sin? (o) cos 3 + % <1 — %) sin 3 sin 8) ,
Py = (tsin(agp)) ' D,.
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We consider L, g the Friedrichs extension associated with the quadratic form Q, s:

Loz = 7 2D, —T1pcoslsinp)r*(D,; — T cosfsin )
2

9 (2 2
Dy + T sin?(aup) cos 3 + Uy sin(Za) sin fsin 6
2a 2 2aup

1
_|_—
T2 Sin2(omp) (

1
————D,si D,.
a?r2sin(ap) ¥ sin(ag) D

We define A\, (o, 8) the n-th eigenvalue of Lep.

1.3. Spectrum of the magnetic cone in the small angle limit.

1.3.1. FEigenvalues in the small angle limit. We aim at estimating the discrete spec-
trum, if it exists, of £, 3. For that purpose, we shall first determine the bottom of its
essential spectrum. From Persson’s characterization of the infimum of the essential spec-
trum, it is enough to consider the behavior at infinity and it is possible to establish the
following proposition (see [BR14]).

Proposition 2.1. Let us denote by sp.(La3) the essential spectrum of £, 5. We have:
inf Spess(’ga,ﬁ) € [@07 1]7
where ©g > 0 is defined in (1.1.4).

At this stage we still do not know that discrete spectrum exists. As it is the case in
dimension two (see [10]) or in the case on the infinite wedge (see [121]), there is hope to
prove such an existence in the limit o — 0 (see [BR14]).

Theorem 2.2. For all n > 1, there exist ap(n) > 0 and a sequence (7;,)j>0 such that,

for all a € (0,ap(n)), the n-th eigenvalue exists and satisfies:

4 _ V1 +sin? 3
)\n<a> 5) a:O o Z fyjm&jv with Yon = T(Zln - 1)
Jj=0

Remark 2.3. In particular the main term is minimum when 3 = 0 and in this case
Theorem 2.2 states that A\ () ~ 25%04. We have 25% < \/ig so that the lowest eigenvalue
of the magnetic cone goes below the lowest eigenvalue of the two dimensional magnetic
sector (see (2.1.1)).

Remark 2.4. As a consequence of Theorem 2.2, we deduce that the lowest eigenvalues
are simple as soon as « is small enough. Therefore, the spectral theorem implies that the
quasimodes constructed in the proof are approzimations of the eigenfunctions of Lo g. In
particular, using the rescaled spherical coordinates, for all n > 1, there exist a,, > 0 and
C,, such that, for a € (0, a,):

H&n(aaﬁ) - anL2(73,dﬁ) < Cna27

where f, (which is  dependent) is related to the n-th Laguerre’s function and &n(a,ﬁ)
1s the n-th normalized eigenfunction.
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In the next two sections we discuss the strategy of the proof of Theorem 2.2.

1.3.2. Azissymmetric case: [ = 0. We apply the strategy presented in Chapter 1,
Section 3. In this situation, the phase variable that we should understand is the dual
variable of # given by a Fourier series decomposition and denoted by m € Z. In other
words, we make a Fourier decomposition of L, with respect to § and we introduce the
family of 2D-operators (Lq.0.m)mez acting on L*(R, du):

. 9 2
Laom = —%377'207 + ZanZ(ag) (m #7’2> — m&p sin(a)0,,
with
R={(1,0) €R? 7>0, pc (O,%)},
and

dp = 7% sin(ap) dT de.

This normal form is also the suitable form to construct quasimodes. Then an integrability
argument proves that the eigenfunctions are microlocalized in m = 0, i.e. they are
axisymmetric. Thus this allows a first reduction of dimension. It remains to notice
that the last term in £, is penalized by a~? so that the Feshbach-Grushin projection
on the groundstate of —a~?(sin(ay)) 10, sin(ap)d, (the constant function) acts as an
approximation of the identity on the eigenfunctions. Therefore the spectrum of £, ¢ is
described modulo lower order terms by the spectrum of the average of £, with respect
to ¢ which involves the so-called Laguerre operator (radial harmonic oscillator).

1.3.3. Case 8 € [0, g} In this case we cannot use the axisymmetry, but we are
still able to construct formal series and prove localization estimates of Agmon type.
Moreover we notice that the magnetic momentum with respect to 6 is strongly penalized
by (72 sin®(ap)) !

that the eigenfunctions are asymptotically independent from 6 and we are reduced to the

so that, jointly with the localization estimates it is possible to prove

situation 5 = 0.

2. Vanishing magnetic fields and boundary

2.1. Why considering vanishing magnetic fields? A motivation is related to
the papers of R. Montgomery [111], X-B. Pan and K-H. Kwek [119] and B. Helffer
and Y. Kordyukov [68] (see also [74] and [66]) where the authors analyze the spectral
influence of the cancellation of the magnetic field in the semiclassical limit. Another
motivation appears in the paper [36] where the authors are concerned with the “magnetic
waveguides” and inspired by the physical considerations [123, 65] (see also [85]). In any
case the case of vanishing magnetic fields can inspire the analysis of non trivial examples
of magnetic normal forms, as we will see later.
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2.2. Montgomery operator. Without going into the details let us describe the
model operator introduced in [111]. Montgomery was concerned by the magnetic Lapla-
cian (—ihV + A)? on L*(R?) in the case when the magnetic field B = V x A vanishes
along a smooth curve I'. Assuming that the magnetic field non degenerately vanishes, he
was led to consider the self-adjoint realization on L?(IR?) of:

£ =D?+ (D, — st)*.

In this case the magnetic field is given by [3(s,t) = s so that the zero locus of 3 is the
line s = 0. Let us write the following change of gauge:

2\ 2
gMo — o715 gei*s = D2+ (Dt+ %) .

The Fourier transform (after changing ¢ in —() with respect to ¢ gives the direct integral:

) . . 52 2
£M°:/ el d¢,  where 2”:D3+<C—5>.

Note that this family of model operators will be seen as special case of a more general
family in Section 3.2. Let us recall a few important properties of the lowest eigenvalue
VP(() of 221] (for the proofs, see [119, 67, 80]).

Proposition 2.5. The following properties hold:

(1) For all ¢ € R, I/P](C) is simple.

(2) The function VP](C) is analytic.

(3) We have: lim 1'(¢) = +o0.
|¢|[—+400

(4) The function ¢ — y{”(g ) admits a unique minimum at a point <0[1] and it is non

degenerate.
We have:
(2:2.1) SP(L) = SPess(£) = [0, +00)
with e = u{”(co[”). With a finite element method and Dirichlet condition on the

artificial boundary, a upper-bound of the minimum is obtained in [80, Table 1] and the
numerical simulations provide v, 2~ 0.5698 reached for C([)l] ~ (.3467 with a discretization
step at 107 for the parameter ¢. This numerical estimate is already mentioned in [111].
In fact we can prove the following lower bound (see [BR13b] for a proof using the Temple
inequality).

Proposition 2.6. We have: vy, > 0.5.

2.3. Generalized Montgomery operators. It turns out that we can generalize
the Montgomery operator by allowing an higher order of degeneracy of the magnetic
field. Let k be a positive integer. The generalized Montgomery operator of order k is the
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self-adjoint realization on R defined by:

E+1 \ 2
K _ p2 !

The following theorem (which generalizes Proposition 2.5) is proved in [54, Theorem 1.3].

Theorem 2.7. { — v; (¢) admits a unique and non-degenerate minimum at ¢ = ;.

(k] (K]

Notation 2.8. For real (, the lowest eigenvalue ofﬁék] 15 denoted by u{k]((’) and we denote

by uék] the positive and L*-normalized eigenfunction associated with V}k}(C). We denote

in the same way its holomorphic extension near C([]k].

2.4.

A broken Montgomery operator.

2.4.1. Heuristics and motivation. As mentioned above, the bottom of the spectrum

of £ is essential. This fact is due to the translation invariance along the zero locus of B.

This situation reminds what happens in the waveguides framework. Guided by the ideas

developed for the waveguides, the papers [BR13b] and [R14a] aimed at analyzing the

effect of breaking the zero locus of B. Introducing the “breaking parameter” 6 € (—m, 7],

we break the invariance of the zero locus in three different ways:

(1)

Case with Dirichlet boundary: £5. We let R2 = {(s,t) € R?,¢ > 0} and con-
sider £§'" the Dirichlet realization, defined as a Friedrichs extension, on L?(R?2)
of:

2 2
D} + (Ds + 50089 - 5tsin9) .

Case with Neumann boundary: £)®. We consider £)®" the Neumann realiza-

tion, defined as a Friedrichs extension, on L*(R2) of:
2 ?
Df+(Ds+§c030—stsin0) .

The corresponding magnetic field is B(s,t) = t cos @ —ssin . It cancels along the
half-line ¢ = stanf. Note that this model plays a central role in the semiclassi-
cal problem when the cancellation line of the magnetic field meets a Neumann
boundary (as we can see in [119] and in recent results of my student Miqueu
[108]).

Magnetic broken line: £y. We consider £y the Friedrichs extension on L?(R?)
of:

2 2
D} + (DS + sgn(t)a cos ) — stsin (9) :

The corresponding magnetic field is 8(s,t) = |t| cos§ — ssin6; it is a continuous

function which cancels along the broken line |t| = stan§.

Notation 2.9. We use the notation £§ where e can be Dir, Neu or ().
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2.4.2. Properties of the spectra. Let us analyze the dependence of the spectra of £)
on the parameter . Denoting by S the axial symmetry (s,t) — (—s,t), we get:

£, =S58£5,
where the line denotes the complex conjugation. Then, we notice that £j and 2_5 are
isospectral. Therefore, the analysis is reduced to 6 € [0, 7). Moreover, we get:

The study is reduced to 6 € [0, g] We observe that at ¢ = 0 and 6 = 7 the domain of

£¢ is not continuous.
Lemma 2.10. The family (25)96(0 ) is analytic of type (A).
2
The following proposition states that the infimum of the essential spectrum is the

same for £§", £l and £,.

Proposition 2.11. For 6 € (0,%), we have inf sp.(£5) = Vo

In the Dirichlet case, the spectrum is essential:

Proposition 2.12. For all 6 € (0,%), we have sp(£5") = [Vmo, +00).

From now on we assume that e = Neu, ().

Notation 2.13. Let us denote by A% (0) the n-th number in the sense of the Rayleigh
variational formula for £3.

The two following propositions are Agmon type estimates and give an exponential
decay of the eigenfunctions (a proof is given in [BR13b]). RZ denotes R, R? when
e = Neu, () respectively. The first decay is proved with respect to the variable ¢.

Proposition 2.14. There exist €9, C > 0 such that for all 6 € (0, %) and all eigenpair
(A, 1) of £5 such that A < vwmo, we have:

/2 Ve X dsdt < Clomo — A) 7 [[9]
Ro

The second decay is related to the (semiclassical) variable s and is not optimal at all
when 6 goes to zero (see [R14a] ; we will again meet this non optimality in our magnetic
Born-Oppenheimer theory).

Proposition 2.15. There exist €9, C' > 0 such that for all § € (0, %) and all eigenpair
(A, 1) of £5 such that A < vwo, we have:

/2 6250\s|sin0m‘w’2 dsdt < C(VMo _ A)fll‘ww
RS

The following proposition (the proof of which can be found in [119, Lemma 5.2])
states that £)* admits an eigenvalue below its essential spectrum when 6 € (O, g}
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Proposition 2.16. For all 0 € (0, %], A\Y**(0) < vvo.

Remark 2.17. The situation seems to be different for £y. According to numerical sim-
ulations with a finite elements method, there exists 0y € (%, %) such that \(0) < vme for
all 6 € (0,6y) and M\ (0) = vmo for all 6 € [90, %)

2.5. Singular limit ¢ — 0.

2.5.1. Renormalization. Thanks to Proposition 2.16, one knows that breaking the
invariance of the zero locus of the magnetic field with a Neumann boundary creates a
bound state. We also would like to tackle this question for £y and in any case to estimate
more quantitatively this effect: this was the specific purpose of [R14a]. A way to do this
is to consider the limit § — 0 which reveals new model operators. First, we perform a
scaling:

(2.2.2) s = (cos@) 135, t = (cosh) V3.

The operator £ is thus unitarily equivalent to (cos)2/3£2, .

where the expression of

o 3 3 .
tan o 15 given by:

12 . 2
D?+O%+%mw§—ﬁum@.
Notation 2.18. We let € = tan$.

For (z,¢) € R? and ¢ > 0, we introduce the unitary transform:

Vewet(5,8) = e (3 - 2.1).

€
and the conjugate operator:

~ 1 4
;,$,£ = ‘/57$7E£;‘/57$7€'

Its expression is given by:

~

2
Let us introduce the new variables:
(2.2.4) §=ec12%, t=r1

Therefore ’é;mf is unitarily equivalent to £ . whose expression is given by:
72 2
(2.2.5) £ .e=D2+ (—5 R sgn(r)§ +¢e'2D, — 51/207) :

2.5.2. New model operators. By taking formally ¢ = 0 in (2.2.5) we are led to two
families of one dimensional operators on L?(R%) with two parameters (x,¢) € R*:

2\ 2
e = D? + (—5 — a7 + sgn(r)%) .
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These operators have compact resolvents and are analytic families with respect to the
variables (z,&) € R2.

Notation 2.19. We denote by puy,(x,§) the n-th eigenvalue of M .

Roughly speaking M3, ; is the operator valued symbol of (2.2.5), so that we expect that
the behavior of the so-called “band function” (z,&) — p3(x, &) determines the structure
of the low lying spectrum of 92 . in the limit ¢ — 0. The following two theorems
(proved in [BR13b]) state that the band functions admit a minimum.

Theorem 2.20. The function R x R 3 (x,€) — ule(z,€) admits a minimum denoted

by ET‘“‘“. Moreover we have:

liminf N (x, &) > vpo > min pN(z, &) = pNev.
|$|+|E|_>+OON1 (7,€) > Mo (x,g)eRQ'ul (z,€) Ky

Theorem 2.21. The function R x R 3 (z,£) — ui(x, &) admits a minimum denoted by

p, - Moreover we have:

lim inf ,€) > Umo > min r,8)=pu. .
|$|+|£‘_>+OOM1( §) = Mo (x’é)eRth( &=

Numerical experiments lead to the following conjecture.

Conjecture 2.22. The minimum 3 is unique (and attained at (o, o)) and non-degenerate.

Under Conjecture 2.22, it is possible to prove complete asymptotic expansions of the
first eigenvalues of £y (see [R14a]). In order to state this result, we introduce

agzﬂl(;co, 50) D?, _ agaaﬂlz(xo, 50) oD, — 353aul2(:vo, §0) Do+ 32#1(;07 50)02'

Theorem 2.23. We assume that Conjecture 2.22 is true. For all n > 1, there exists a

(2.2.6) H =

sequence (5}‘)20 such that the n-th eigenvalue of £y exists and satisfies
A ~ ngi/?
n(0) g D507,
j=0

with:
0p = po, 07 =0

where pg is the infimum of the band function py and 0% is the n-th eigenvalue of H.

Remark 2.24. Theorem 2.25 implies that the lowest eigenvalues become simple when
0 1s small enough so that we get an approximation at any order of the corresponding
eigenfunctions by some formal power series which behave like Hermite’s functions with

respect to o = (tan 6)/?

S at the main order. These eigenfunctions are microlocalized near
(0,Dy) = (x0,&) and have the same behavior as the computed eigenfunctions displayed
on Figures 2 and 3. Note that, in order to prove this theorem, we have used in [R14a]
a coherent states decomposition which seem to be an unusual tool to study the low lying
spectrum of the semiclassical Laplacian. Implementing the idea was also a motivation for
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this work ; this was the first step towards a more general theory: Theorem 2.23 can be

proved by using the magnetic Born-Oppenheimer approzimation (see Section 3).

0 10 20 30 40 50 60 70 80

FIGURE 2. Modulus of the first three eigenfunctions of Qtang when 6 = 5.

FIGURE 3. Phase of the first three eigenfunctions of Lione when 0 = 105
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3. Magnetic Born-Oppenheimer approximation

The results discussed below are obtained in collaboration with V. Bonnaillie-Noél
and F. Hérau (see [BHR14]) and generalize the strategy used in [R14a]. This section is
devoted to the analysis of the operator on L?(R™ x R?, ds dt):

(2.3.1) L, = (—ihV, + Ay (s,1)* + (=iV; + Ay(s, 1))

Note that (2.2.3) can easily be put in this form. For simplicity’s sake we will assume that
A; and A, are analytic. We would like to describe the lowest eigenvalues of this operator
in the limit h — 0 under elementary confining assumptions. The problem of considering
partial semiclassical problems appears for instance in the context of [103, 90| where the
main issue is to approximate the eigenvalues and eigenfunctions of operators in the form:

(2.3.2) — Rh*A, — Ap+ V(s, ).

The main idea, due to Born and Oppenheimer in [18], is to replace, for fixed s, the
operator —A; + V (s, t) by its eigenvalues g (s). Then we are led to consider for instance

the reduced operator (called Born-Oppenheimer approximation):
_hQAs + H1 (5 )

and to apply the semiclassical techniques a la Helffer-Sjostrand [81, 82] to analyze in
particular the tunnel effect when the potential p; admits symmetries. The main point
it to make the reduction of dimension rigorous. Note that we have always the following
lower bound:

(2.3.3) — A, — A+ V(s t) > —h*A, + i (s),

which involves accurate estimates of Agmon with respect to s.

3.1. Electric Born-Oppenheimer approximation and low lying spectrum.
Before dealing with the so-called Born-Oppenheimer approximation in presence of mag-
netic fields, we shall recall the philosophy in a simplified electric case.

3.1.1. FElectric result. Let us explain the question in which we are interested. We shall
study operators in L?(R x ) (with  C R") in the form:

ﬁh = hQDg + V(S),

where V(s) = —A; + P(t, s) is a family of semi-bounded self-adjoint operators, analytic
of type (B), with P polynomial for simplicity. We will denote by 9y, the corresponding
quadratic form.

We want to analyze the low lying eigenvalues of this operator. We will assume that
the lowest eigenvalue v(s) of V(s) (which is simple) admits, as a function of s, a unique
and non degenerate minimum at sg.
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We now discuss the heuristics. We hope that £, can be described by its “Born-
Oppenheimer” approximation:

Hh° = h*Di + u(s),
which is an electric Laplacian in dimension one. Then, we guess that $E© is well approx-
imated by its Taylor expansion:

I/”(SO)
2

(s — s0)°.

h? D3 + pu(s0) +
In fact this heuristics can be made rigorous.

Assumption 2.25. Let us assume that liminf v(s) > v(sg) and that

s—+oo

irslf SPess(V(8)) > v(s0).

Theorem 2.26. Let us assume that v(s) admits a unique and non degenerate minimum
at so and that Assumption 2.25 is satisfied. Then the n-th eigenvalue of $, has the

ETPAnsLon

174 So 12
M(h) =v(sg) + h(2n — 1) (#) +o(h).

3.1.2. A non example: the broken d-interactions. In the last theorem we were only
interested in the low lying spectrum. It turns out that the so-called Born-Oppenheimer
reduction is a slightly more general procedure (see [103, 90]) which provides in general
an effective Hamiltonian which describes the spectrum below some fixed energy level
(and allows for instance to estimate the counting function). With the example of broken
O-interactions, the standard technique needs to be adapted due to the singularity of the
J interaction (one may consult [46, 47, 21, 45] for perspectives and motivation). The
results presented below are obtained in collaboration with V. Duchéne in [DuR14]. Let
us consider £);, the Friedrichs extension (see [20]) of the rescaled quadratic form:

@30 o) = [ W00l + el dedy— [ (sl )P ds o€ HIE?)
R2 R

Formally we may write

(2.3.5) Hn = —h*0; — 0y — Iz, ,

where
S ={(shs), s€R}.

In particular, we notice that:

) = [ ).

Let us introduce some notation.

Notation 2.27. We denote by W : [—e™' 4+00) — [—1,400) the Lambert function
defined as the inverse of [—1,4+00) 3 w — we® € [—e™!, +00).
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Notation 2.28. Given $) a semi-bounded self-adjoint operator and a < infsp.(9), we
denote

N($H,a) = #{A€sp(H) : A <a} < +o0.

The eigenvalues are counted with multiplicity.

The following theorem provides the asymptotics of the number of bound states.

Theorem 2.29. There exists My > 0 such that for all C(h) > Myh with C(h) e Co > 0:
—

1 oo ?
N (ﬁh, 1= C(h)) o 7rh \/—— —Cy + + W(xe x)) dz.

Remark 2.30. [t is important to notice that in the above result, we estimate the counting

function below a potentially moving (w.r.t. h) threshold. In particular, the distance
between —i — C(h) and the bottom of the essential spectrum is allowed to vanish in
the semiclassical limit. Therefore our statement is slightly unusual as customary results
would typically concern N ($9p,, E) with E fized and satisfying E < ——, s0 as to insure a
fized security distance to the bottom of the essential spectrum (see for instance the related

works [6, 112]).

The next theorem is the analogous of Theorem 2.26.

Theorem 2.31. For alln > 1, we have:
A(h) = =1+ 22/ 2p(n)h?3 + O(h),
h—0

where zpyer(n) is the n-th zero of the reversed Airy function.

3.2. Magnetic case. We would like to understand the analogy between (2.3.1) and
(2.3.2). In particular even the formal dimensional reduction does not seem to be as clear
as in the electric case. Let us write the operator valued symbol of £;,. For (z,¢) € R"xR"™,
we introduce the electro-magnetic Laplacian acting on L2(R", dt):

Mg = (—iV; + Ag(z, 1)) + (€ + Ay(z, 1))

Denoting by u1(x,&) = p(z, ) its lowest eigenvalue we would like to replace £;, by the
m-~dimensional pseudo-differential operator:

p(s, —ihVy).

Under different assumptions, such reductions are considered in [106, Theorem 2.1 and
remark thereafter] where it is suggested that the spectrum of £, could be completely
determined by an effective Hamiltonian (a matrix of pseudo-differential operators) whose
principal symbol can be described thanks to the spectral invariants of the operator valued
symbol of £;,. For the present situation the low lying spectrum of £, could be described
by the one of u(s, hDs) modulo O(h) and we will see that, under generic assumptions,
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O(h) is precisely the order of the spectral gap between the first eigenvalues in the simple
well case.

3.2.1. Figenvalue asymptotics in the magnetic Born-Oppenheimer approximation. We
work under the following assumptions. The first assumption essentially states that the
lowest eigenvalue of the operator symbol of £, admits a unique and non-degenerate

minimum.

Assumption 2.32. - The family (M) @ ermxrm is analytic of type (B) in the
sense of Kato [89, Chapter VII].

- For all (z,&) € R™ x R™, the bottom of the spectrum of My is a simple eigen-
value denoted by p(x,&) (in particular it is an analytic function) and associated
with a L?*-normalized eigenfunction u, ¢ € S(R™) which also analytically depends
on (x,§).

- The function . admits a unique and non degenerate minimum o at point denoted
by (xo,&0) and such that Bminf ;4 ie/5 o0 (2, &) > po.

- The family (My¢)(ze)crmxrm can be analytically extended in a complex neigh-
borhood of (9,&)-

Assumption 2.33. Under Assumption 2.32, let us denote by Hess u(xg,&o) the Hessian
matriz of p at (xg,&). We assume that the spectrum of Hess pu(xq, &) (0, D,) is simple.

The next assumption is a spectral confinement.

Assumption 2.34. For R >0, we let Qp = R™™"\ B(0,R). We denote by £""" the
Dirichlet realization on Qg of (—iV;+ Aa(s,t))? + (—ihVs + Ai(s,t))*. We assume that
there exist Ry > 0, hg > 0 and p§ > po such that for all h € (0, ho):

A () = g,
Remark 2.35. In particular, due to the monotonicity of the Dirichlet realization with

respect to the domain, Assumption 2.3/ implies that there exist Ry > 0 and hg > 0 such
that for all R > Ry and h € (0, hy):

AP (h) = N () 2 g,

By using the Persson’s theorem, we have the following proposition.

Proposition 2.36. Let us assume Assumption 2.5/. There exists hg > 0 such that for
all h € (0, hy):
inf spess(’gh) 2 /'LS

We can now state the theorem concerning the spectral asymptotics.

Theorem 2.37. We assume that Ay and As are polynomials. Let us assume Assumptions
2.32, 2.33 and 2.34. For alln > 1, there exist a sequence (;,)j>0 and hg > 0 such that
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for all h € (0, hg) the n-th eigenvalue of £, exists and satifies:

)\n(h> h:O Z 7j,nhj/27
j=0

where Yo, = po, Vi = 0 and pay, is the n-th eigenvalue of $Hessy ¢, (o, D, ).

3.2.2. Using the coherent states to prove Theorem 2.37. Let us very roughly explain
the structure of the proof of Theorem 2.37. We use the following rescaling

(2.3.6) s = xg + h'/%0, t=r,

i€oo/h1/2

and a gauge transform e , so that £, becomes

(2.3.7)  Ln = (=iV, 4+ Ag(zg + h20, 7)) + (& — ih'*V, + Ai(zg + b0, 7))2.

The first step in the proof of Theorem 2.37 is, as usual, a construction of quasimodes
(which behave like the Hermite functions with respect to o). Here it involves general-
izations of the Feynman-Hellmann formulas (which are consequences of the Kato theory)
jointly with the classical Fredholm alternative. The second step is more difficult and
involves a microlocal analysis of the eigenfunctions (which has to be done to prove that
the constructed quasimodes are actually approximations of the eigenfunctions). It turns
out that the coherent states representation is flexible enough to succeed. Let us recall
the formalism of coherent states (see for instance [50] and [28]) to give the flavor of the
proof. We define

golo) =7/,
and the usual creation and annihilation operators

*

a; = \/Lﬁ(o-j + affj)? aj = \/L§<O-j - aﬂj)?
which satisfy the commutator relations

[aj7a;]:17 [ajva;;]:o 1fk7é.]
We notice that

0j =50 +aj), 05 = (0 —aj), a;0; = 3(D7, + 07 +1).

For (u,p) € R™ x R™, we introduce the coherent state
fup(0) = eP7go(o —u),
and the associated projection, defined for ¢ € L*(R™ x R™) by
Iupt = W, fup)z®m,do) fup = Yupfup

which satisfies

?ﬁ = Hu,pqvb du dpv

R2m
28



and the Parseval formula

lo? = / / upl? dudpdr.
n ]RQm

+ ’ij

We recall that

A fup = %Tfu,p
and o .
(a;) (a) " = - (uj ;gp’) (uk \;gpk) I, du dp.
We have

Ln=Lo+hY2Ly+hLlo+ ...+ EM2L,,.

If we write the Wick ordered operator, we get
(2.3.8) Ly=Lo+ DL+ hLy + .+ (WDMLY +hRy + ..+ (W) Ry,

-~ -~

W
LY Rh

where the R; are the remainders in the (anti-)Wick ordering and satisfy, for j > 2,
(2.3.9) W/2R; = WW/*0;_5(0, Dy),

where the notation O, (o, D,,) stands for a polynomial operator with total degree in (o, D,)
less than j. We recall that

W
E = , Mz0+h1/2u,§0+h1/2p du dp
]R m

Then, the microlocal analysis of the eigenfunctions can start. Without entering into the
details, the main idea is to prove polynomial (in (u,p)) weighted estimates in the phase
phase by using the following elementary “microlocalization” lemma (which we proved in
[R14a]) with 2 a polynomial in a; and aj.

Lemma 2.38 (“Localization” of P? with respect to ). Let H be a Hilbert space and P
and A be two unbounded operators defined on a domain D C H. We assume that P is
symmetric and that P(D) C D, (D) C D, A*(D) C D. Then, for ¢ € D, we have

(2.3.10) Re (P2, A2A*p) = [|PA")||2 — |[247, Py + Re (P, [P, 2], 24]eh)
+Re ((Py, 0[P, 2A]y) - (PY, AP,AT] )

The obtained estimates, which tell that the eigenfunctions are bounded in ¢ and D,
(these bounds are better than the one provided by the naive estimates of Agmon), are
then enough to implement a dimensional reduction (to the effective harmonic oscillator)

in the Grushin spirit.
3.2.3. A family of examples. In order to make our Assumptions 2.32, 2.33 and 2.34

more concrete, let us provide a family of examples in dimension two which is related to
[80] and the more recent result by Fournais and Persson [54]. Our examples are strongly
connected with [68, Conjecture 1.1 and below].
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For £k € N\ {0}, we consider the operator the following magnetic Laplacian on
L2(R?, dz ds):

kE+1
where v is analytic. Let us assume that either ~ is polynomial and admits a unique

et \ 2

minimum 7, > 0 at so = 0 which is non degenerate, or ~ is analytic and such that
liminf, 107 = Yoo € (70, +00).

Let us perform the rescaling:

The operator becomes:

2k42 1 tk—H 2
hw | D? h¥2 D, — .
N ( t+( - 7<S)k+1> )

and the investigation is reduced to the one of:

2
(2.3.11) et = p2 4 (pEe D, — (s) Y
h ! k41

Let us verify Assumption 2.32. The hk%?—symbol of Q%f] with respect to s is:

k] ) tk—l—l 2
M8 =02+ (€=l )

The lowest eigenvalue of ML’C] , denoted by plfl(z, ), satisfies:
2 1
i, €) = (r() P! (o))"
(%]

where v;(¢) denotes the first eigenvalue of:

k+1 0\ 2
K _ 2 _ 2

We recall the non trivial fact that ¢ — u}’“}(g) admits a unique and non-degenerate

minimum at ¢ = Co[k] (see Theorem 2.7). Therefore Assumption 2.32 is satisfied. This is
delicate to verify Assumption 2.34 and this relies on a basic normal form procedure that

we will use for our magnetic WKB constructions.

3.3. The magnetic WKB expansions.

3.3.1. WKB analysis and estimates of Agmon. As we explained in Chapter 1, Section
3.2.1, in many papers about asymptotic expansions of the magnetic eigenfunctions, one
of the methods consists in using a formal power series expansion. It turns out that these
constructions are never in the famous WKB form, but in a weaker and somehow more
flexible one. When there is an additional electric potential, the WKB expansions are
possible as we can see in [83] and [107]. The reason for which we would like to have
a WKB description of the eigenfunctions is to get a precise estimate of the magnetic
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tunnel effect in the case of symmetries. Until now, such estimates are only investigated
in two dimensional corner domains in [11] and [12] for the numerical counterpart. It
turns out that the crucial point to get an accurate estimate of the exponentially small
splitting of the eigenvalues is to establish exponential decay estimates of Agmon type.
These localization estimates are rather easy to obtain (at least to get the good scale in the
exponential decay) in the corner cases due to the fact that the operator is “more elliptic”
than in the regular case in the following sense: the spectral asymptotics is completely
drifted by the principal symbol. Nevertheless, let us notice here that establishing the
optimal estimates of Agmon is still an open problem. In smooth cases, due to a lack of
ellipticity and to the multiple scales, the localization estimates obtained in the literature
are in general not optimal at all (or rely on the presence of an electric potential, see
[113, 114]): the principal symbol provides only a partial confinement whereas the precise
localization of the eigenfunctions seems to be determined by the subprincipal terms. Our
WKB analysis, in some explicit cases, give some hints for the optimal candidate to be
the effective Agmon distance. The following result is proved in [BHR14].

Theorem 2.39. We assume Ay = 0 and Ay is real analytic. Under Assumptions 2.32,
2.3 and 2.3/, there exist a function ® = ®(s) defined in a neighborhood V of xy with
ReHess®(xy) > 0 and, for any n > 1, a sequence of real numbers (N, ;)j>o0 such that

Aa(h) ~ D Aagh?,
Jj20

in the sense of formal series, with A\, = po. Besides there exists a formal series of
smooth functions on V x R}

an(.;h) o Z ;W

>0
with ano # 0 such that

(L1 = Ma(R)) (an(;R)e™®/") = O (B) e /M,

Furthermore the functions t — a, ;(s,t) belong to the Schwartz class uniformly in s € V.
In addition, if Ay is a polynomial function, there exists co > 0 such that for all h € (0, hg)

B(Ano + Muahscoh) N5p (1) = {Aa(h)}.

and A\, (h) is a simple eigenvalue.

In the previous theorem we used the following definition of formal series of functions.

Notation 2.40. Let n > 1. We write a,(s,t; h) o > 50 Gn (8, t)h when for all J >0
= >
and oo € N"*™ there exist hyo > 0 and Cjo > 0 such that for all h € (0,h;,), we have

J
’DO‘ (an(s, t;h) — Zaw(s,t)hj)’ < Cyroh™™ locally in (s,t) €V x R™.
5=0
We also write a = O(h*) when a ~ 0. The case of formal series of numbers is similar.
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Let us also recall that for any arbitrary sequence of smooth functions a; one can
always find, by a procedure of Borel type, a unique smooth function a(s,¢;h) (called a
realization) (up to O(h*)) such that a(s,t; h) o > im0 a5(s, t)h.

Remark 2.41. When A, is not zero, it appears that the dimensional reduction is pre-
vented by the oscillations of the eigenfunctions of the model operator Mg . The problem
already appears in the case t € R: we can gauge out Ay at the price to replace Ay by
Ay + hVgp(s,t) which is h dependent. As a consequence of our analysis, we can check
that the spectrum associated with the potential (Ay + hV s, 0) is shifted by a factor O(h)
compared to the one associated with (A1,0). In dimension one for t, we can even prove
that the phase ® in the WKB expansion is (s,t)-dependent.

Let us explain the main lines of the proof of Theorem 2.39. Thanks to Theorem 2.37,
we have sharp asymptotic expansions of the eigenvalues. In particular, one knows that
they become simple in the semiclassical limit. Therefore, to get the (WKB) approxima-
tion of the corresponding eigenfunctions, we have just to use an appropriate Ansatz for
our quasimodes and to apply the spectral theorem. The new Ansatz considered here is
given by a partial WKB expansion with respect to the variable s. Under our analyticity
assumptions, the effective eikonal equation is solved thanks to the classical stable man-
ifold theorem and analytic extensions of the eigenpairs of the “model” operators. The
corresponding effective transport equation is obtained as the Fredholm condition of an
operator valued transport equation jointly with the Feynman-Hellmann formulas.

3.3.2. WKB expansions for Szf’[k]. The following theorem (which is almost an obvious
consequence of Theorem 2.39) states that the first eigenfunctions of sz’[k] (defined in
(2.3.11)) are in the WKB form (and so are the eigenfunctions of the fully semiclassical
magnetic Laplacian £, 4 which is the pilot operator in situations involving for instance
an additional metric).

Theorem 2.42. Let us assume that 7 is analytic with iminf, 47 = Yoo € (70, +00].

In the analytic case, there exist a function ® = ®(s) defined in a neighborhood V of 0

vf

with Re ®"(0) > 0 and a sequence of real numbers ) ;

Szf’[k} satisfies

such that the n-th eigenvalue of

XI(h) ~ S Nk
h—0 >0 J

in the sense of formal series, with /\)’:0 = [y = V{k]( ([)k]). Besides there exists a formal

series of smooth functions on V x R}

af(h) ~ N e nre

h—0
720

with aXfy # 0 such that

(£ = nuw)) (aee 7 ) = 0 oy,

n
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There exists cog > 0 such that for all h € (0, hg)
B(Mf,o + /\ilh%“’ Coh’“i“> Msp <£\;/:’[k]> = {\ (W)},
and N\ (h) is a simple eigenvalue.

Remark 2.43. If v(s)"'v(0) — 1 is small enough (weak magnetic barrier), our construc-

tion of ® can be made global, that is V = R. Note that the simplicity is a consequence of
the analysis of [R13a, DoR13| which does not use that «y is a polynomial.

3.3.3. Along a varying edge. Let us provide another example for which one can pro-
duce a WKB analysis but which is not a direct consequence of Theorem 2.39. This
example, analyzed in [BHR14], is inspired by the collaboration with N. Popoff [PR13].
This one is motivated by the analysis of problems with singular boundaries. Here we are
concerned with the case when the domain is a wedge with varying aperture, that is with
the Neumann magnetic Laplacian £§ , = (=ihV + A)? on L*(Waa(s), dsdtdz). Let us
recall the definition of the magnetic wedge with constant aperture o. Many properties of
this operator can be found in the thesis of Popoff [121]. We let

Woz =R x Som
where the 2D corner with fixed angle o € (0, 7) is defined by:

S = {(t,z) €R?:|z| < ttan (%)}

Definition 2.44. Let £2 be the Neumann realization on L2(W,, dsdtdz) of
(2.3.12) D} + D? + (D — t)*.

We denote by v§(a) the bottom of the spectrum of £8 .

Using the Fourier transform with respect to s, we have the decomposition:

®
(2.3.13) [ / e
where £5 . is the following Neumann realization on L*(S,, dt dz):
(2.3.14) b =D;+ DI+ (C—1),

where ¢ € R is the Fourier parameter. As

lim (¢ —t)? = +oo,
|(t,2)|=>+o0
(t,2)ESa

the Schrodinger operator £f, - has compact resolvent for all (o, () € (0,7) x R.

Notation 2.45. For each a € (0,7), we denote by vi(a,n) the lowest eigenvalue of £,
and we denote by ug, . a normalized corresponding eigenfunction.

33



Using (2.3.13) we have:
(2.3.15) vi(a) = égﬂg vi(a, Q).
Let us gather a few elementary properties.

Lemma 2.46. We have:

(1) For all (o, ¢) € (0,7) X R, v§(cv, () is a simple eigenvalue of £, .
(2) The function (0,7) x R 3 (o, () = v§(av, ) is analytic.

(3) For all ¢ € R, the function (0,7) 3 o+ v§(v, () is decreasing.
(4) The function (0,7) > a — v§(a) is non increasing.

(5) For all a € (0,7), we have

(2.3.16) Jim vi(a, Q) = +oo and  lim vi(e,) = s(*52).

PRrROOF. We refer to [121, Section 3] for the first two statements. The monotonicity
comes from [121, Proposition 8.14] and the limits as ¢ goes to 00 are computed in [121,

Theorem 5.2]. O
Remark 2.47. As v§(m) = Oy, we have:

(2.3.17) Va € (0,7), vi(a)> 6.

Let us note that it is proved in [121, Proposition 8.13| that v§(a) > O for all o € (0, 7).

Proposition 2.48. There exists & € (0,7) such that for a € (0,&), the function ¢ —
v§(a, Q) reaches its infimum and

(2.3.18) zfm)<s(ﬂga),

where the spectral function s is defined in Chapter 1, Section 1.4.4.

Remark 2.49. By computing C9™, we notice that (2.3.18) holds at least for o € (0,1.2035).
Numerical computations show that in fact (2.3.18) seems to hold for all o € (0, ).

We will work under the following conjecture:

Conjecture 2.50. For all o € (0,7), ¢ — vi(e, () has a unique critical point denoted
by (§(a) and it is a non degenerate minimum.

Remark 2.51. A numerical analysis seems to indicate that Conjecture 2.50 is true (see
[121, Subsection 6.4.1] ).

Under this conjecture and using the analytic implicit functions theorem, we deduce
(see [PR13)):

Lemma 2.52. Under Conjecture 2.50, the function (0,7) 3 a — (§(«) is analytic and
50 is (0,7) 3 a > v§(«v). Moreover the function (0,7) 3 a — v§(«a) is decreasing.
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We will assume that there is a unique point of maximal aperture (which is non-
degenerate).

Assumption 2.53. The function s — «(s) admits a unique and non-degenerate mazi-

mum oqg at s = 0.

Notation 2.54. We let T (s) = tan <@>

In order to perform the WKB analysis in the wedge case, we need to consider the
Neumann realization of the operator defined on L*(S,,, dtdz) by

M= Di +T(s)7T(0)°DZ + (¢ —t)*,
whose form domain is
Dom (Q% ) = {¢ € L*(84,) : Db € L*(Say), Dotp € L*(Sa,), 1) € L*(Sa,) }
and with operator domain
Dom (M5.) = {¢ € Dom (Q5 ) : MS 4 € L*(Say), €(s) = 0},
where
¢(s) = —sgn(2) Dy + T (s)*T(0)D..

The lowest eigenvalue of M¢ . is denoted by p°(s, () and the corresponding normalized
eigenfunction ug .. Conjecture 2.50 can be reformulated as follows.

Conjecture 2.55. For all oy € (0,7), the function ¢ — p(0,¢) admits a unique critical

point (§ which is a non-degenerate minimum.

The following proposition essentially shows that the operator symbol Mg . satisfies
generic properties as in Assumption 2.32.

Proposition 2.56. Under Assumption 2.53 and if Conjecture 2.55 is true, the function
we admits a local non-degenerate minimum at (0,(5). Moreover the Hessian at (0,(f) is

given by
(2.3.19) ART(0) Y Douf gslls* + OZ°(0, G5)C,

_ T// (0)
) .

where kK =

Thanks to this proposition, in [BHR14] we provide local (near the point of the edge
giving the maximal aperture) WKB expansions of the lowest eigenfunctions.

3.3.4. Curvature induced magnetic bound states. As we have seen, in many situations
the spectral splitting appears in the second term of the asymptotic expansion of the
eigenvalues. It turns out that we can also deal with more degenerate situations. The
next lines are motivated by the initial paper [75] whose main result is recalled in (1.1.2).
This fundamental result establishes that a smooth Neumann boundary can trap the
lowest eigenfunctions near the points of maximal curvature. These considerations are
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generalized in [51, Theorem 1.1] where the complete asymptotic expansion of the n-th
eigenvalue of £f , = (—ihV + A)? is provided and satisfies in particular:

3k
(2.3.20) Ooh — Chimaxh®? + (20— 1)C105/ "/ 72h7/4 +o(hT/Y),
where ks = —k”(0). As in [51], we consider the magnetic Neumann Laplacian on a

smooth domain €2 such that the algebraic curvature x satisfies the following assumption.

Assumption 2.57. The function k is smooth and admits a unique and non-degenerate

Marimum.

In [BHR 14| we prove that the lowest eigenfunctions are approximated by local WKB

expansions which can be made global when for instance 02 is the graph of a smooth

function. In particular we recover the term 016(1]/ 4\/% by a method different from

the one of Fournais and Helffer and we explicitly provide a candidate to be the optimal
distance of Agmon in the boundary. Since it is quite unusual to exhibit a pure magnetic
Agmon distance, let us provide a precise statement. For that purpose, let us consider
the following Neumann realization on L?(R?,m(s,t)dsdt), which is nothing but the

expression of the magnetic Laplacian in curvilinear coordinates,

(2.3.21) LS = m(s,t) " hDym(s,t)hD,
2

+m(s,t)"! (hDs +Coh? —t+ m(s)%) m(s, )" (hDS +Goh? —t+ K(S)g) :
where m(s,t) = 1 — tr(s). Thanks to the rescaling
t = h'/?r, s = o,
and after division by h the operator £} becomes
(2.3.22)  £5 = m(o, K1) D,m(o, h'/*7)D,
+m(o, hl/QT)_1 (hl/zDU +G—T7+ hl/z&(a)T;) m(o, hl/QT)_1 (hl/zDU +G—T7+ hl/zfz(a)T;) ,

on the space L?(m(o, h'/?7)do dr).

Theorem 2.58. Under Assumption 2.53, there exist a function

d=d(0) = (u{zTC(Z)) v /OJ(IQ(O) — k(s))/%ds

defined in a neighborhood V of (0,0) such that Re®”(0) > 0, and a sequence of real
numbers (X5, ;)j>0 such that

C C l
() ~ DX b
Jj=0
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Besides there exists a formal series of smooth functions on V),

J

C C =

as ~ as .ht

" h—0 4 ™J
Jj=0

such that ) .
(25 = Xs(h) (age ") = O (=) /M,

We also have that X5,y = ©g, A1 =0, A, | = —Clikmax and X;, 3 = (2n — 1)01@(1)/4@ ey
The main term in the Ansatz is in the form

C

ty0(0,7) = [ 0(0)ug (7).
Moreover, for all n > 1, there exist hg > 0, ¢ > 0 such that for all h € (0, hy), we have
B( X+ Ac b2 + X5 sk eht) Nsp (25) = (s},
and XS (h) is a simple eigenvalue.

Remark 2.59. In particular, Theorem 2.58 proves that there are no odd powers of hs in
the expansion of the eigenvalues (compare with [51, Theorem 1.1]).
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3.3.5. Some numerical simulations. We provide below some numerical simulations

from [BHR14] (x has one or two maxima).
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CHAPTER 3

Semiclassical magnetic normal forms

Now do you imagine he would have at-
tempted to inquire or learn what he thought
he knew, when he did not know it, until he
had been reduced to the perplexity of real-
izing that he did not know, and had felt a

craving to know?

Meno, Plato

In this chapter we highlight the normal form philosophy explained in Chapter 1,
Section 3 by presenting four results of magnetic harmonic approxzimation. As we will see,
each situation will present its specific features and difficulties:

e How can we deal with a vanishing magnetic field in dimension two? ([DoR13])

e How can we treat a problem with smooth boundary in dimension three? ([R12])

e Can we still display a precise semiclassical asymptotics in dimension three if the
boundary is not smooth? ([PR13])

e In dimension two and without boundary, can we describe more than A\, (h) for
fixed n? ([RVIN14])

1. Vanishing magnetic fields in dimension two

In this section we study the influence of the cancellation of the magnetic field along
a smooth curve in dimension two. The results of this section are joint work with N.
Dombrowski [DoR13].

1.1. Framework. We consider a vector potential A € C*°(R? R?) and we consider
the self-adjoint operator on L?(R?) defined by:

Lha = (—ihV + A)*.
1.1.1. How does B vanish? In order £, ao to have compact resolvent, we will assume
that:

(3.1.1) B(z) — +oo.

|z| =400

Notation 3.1. We will denote by A\, (h) the n-th eigenvalue of £y, 4.
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As in [119, 68], we will investigate the case when B cancels along a closed and
smooth curve C in R?. We have already discussed the motivation in Chapter 2, Section
2. Let us notice that the assumption (3.1.1) could clearly be relaxed so that one could
also consider a smooth, bounded and simply connected domain of R? with Dirichlet or
Neumann condition on the boundary as far as the magnetic field does not vanish near
the boundary (in this case one should meet a model presented in Chapter 2, Section 2).
We let:

C ={c(s),s € R}.
We assume that B is positive inside C and negative outside. We introduce the standard
tubular coordinates (s,t) near C defined by the map

(s,t) — c(s) +tn(s),

where n(s) denotes the inward pointing normal to C at ¢(s). The function B will denote
B in the coordinates (s,t), so that B(s,0) = 0.

1.1.2. Heuristics and leading operator. Let us adopt first a heuristic point of view
to introduce the leading operator of the analysis presented in this section. We want to
describe the operator £j, o near the cancellation line of B, that is near C. In a rough
approximation, near (sg,0), we can imagine that the line is straight (¢ = 0) and that the
magnetic field cancels linearly so that we can consider B(s, ) = y(so)t where y(so) is the
derivative of B with respect to t. Therefore the operator to which we are reduced at the
leading order near s is:

2\?
h*>D? + <hDS - 7(50)5) :
This operator is a special case of the larger class introduced in Chapter 2.

1.2. Montgomery operator and rescaling. We will be led to use the Montgomery
operator with parameters n € R and v > 0:

1 _ 12 7,2\
(3.1.2) =D+ (c-51)
The Montgomery operator has clearly compact resolvent and we can consider its lowest
eigenvalue denoted by v1(7, ¢). In fact one can take v = 1 up to the rescaling t = y~1/37

and QLHC is unitarily equivalent to:

B 1

Let us emphasize that this rescaling is related to the normal form analysis that we use in
the semiclassical spectral asymptotics. For all v > 0, we have (see Chapter 2, Proposition
2.5):

(3.1.3) ¢ — I/F] (7, ) admits a unique and non-degenerate minimum at a point Co[l] (7).
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If v = 1, we have ¢{(1) = ¢!, We may write:

(3.1.4) égﬂg”l (v.Q) = (@Y.

Let us recall some notation.

Notation 3.2. We notice that S[Cl] = 2[112 and we denote by u[cl] a L?-normalized and

positive eigenfunction associated with v1"(¢).

For fixed v > 0, the family (2[ ] Jner is an analytic family of type (B) so that the
eigenpair (v [t ](C ) [1]) has an analytic dependence on ¢ (see [89]).

1.3. Semiclassical asymptotics with vanishing magnetic fields. We consider
the normal derivative of B on C, i.e. the smooth function v : s — 9,B(s,0). We will
assume that:

Assumption 3.3. v admits a unique, non-degenerate and positive minimum at sg = 0.

We let 79 = 7(0). Let us state the main result of this section:

Theorem 3.4. We assume Assumption 3.5. For alln > 1, there exists a sequence («9}1)]-20

such that we have:
~ h4/3 Z enhj/ﬁ

h~>0
7>0

where:

1, 0y e A1y 2
or — 2P, gn— 0 gn = 420, + A2 (20 — 1) (avl (S )gjl )" (% )) 7

where we have let:

1
(3.1.5) a=5%7"(0)>0
and:
(3.1.6) Co = <LUC1[]11>U[<1[}11>L2(R+)7
0
where: 2
_ s (TP ~1/3 7

L=2k(0)y """ {5 = ¢ 724+ 279, R (0) { =G t3 )

and:

1 .-
k(0) = 8833(0’0) — 3 o

Remark 3.5. This theorem is mainly motivated by the paper of Helffer and Kordyukov
[68] (see also [66, Section 5.2] where the above result is presented as a conjecture and
the paper [74] where the case of discrete wells is analyzed) where the authors prove a one
term asymptotics for all the eigenvalues (see [68, Corollary 1.1]). Moreover, they also
prove an accurate upper bound in [68, Theorem 1.4] thanks to a Grushin type method
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(see [64]). This result could be generalized to the case when the magnetic vanishes on
hypersurfaces at a given order. By using the results of [BHR14], we can improve the
construction of quasimodes done in [DoR13] into a WKB construction.

2. Variable magnetic field and smooth boundary in dimension three

This section is devoted to the investigation of the relation between the boundary
and the magnetic field in dimension three. We will see that the semiclassical structure is
completely different from the one presented in the previous section even if the eigenvalues

expansions look the same. The different results are obtained in [R12].

2.1. A toy operator with variable magnetic field. Let us introduce the geo-

metric domain
QO = {(xaya Z) € Rg : ’x‘ é X, ’y‘ S Yo and O <z S ZO}7

where g, 40, 20 > 0. The part of the boundary which carries the Dirichlet condition is
given by
Opir€do = {(x,y,2) € Qo : |z| = z0 or |y| = yo or 2 = 2 }.

2.1.1. Definition of the operator. For h > 0, a > 0 and 6 € (0, g), we consider the

self-adjoint operator:
(3.2.1) Lhap = D2+ h>D? + (hD, + zcos§ — ysin b + az(z? + y%))?,
with domain:
Dom (Shﬂ’g) = {’(ﬁ c LQ(QO) : sh@’@lﬂ € LQ(QO),
=0 on Jpy and 9,1 =0o0n z=0}.

We denote by (A(h),us) an eigenpair and we let £, = £, 49 (we omit the dependence on
a and ). The vector potential is expressed as:

Alz,y,2) = (Voly, 2) + az(2® +¢7),0,0)
where
(3.2.2) Vo(y, z) = zcosf — ysinb.
The associated magnetic field is given by:
(3.2.3) V x A =B=(0,cos0 + a(z® + y?),sinf — 2ayz).
2.1.2. Constant magnetic field (o« = 0). Let us examine the important case when
a=0:
€noo = WDy +1*DZ + (hDy + Va(y, 2))’,

viewed as an operator on L*(R3). We perform the rescaling:

(3.2.4) x=hY?r, y=h"%s, z=h"%
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and the operator becomes (after division by h):

L1000 = D>+ D} + (D, + Vy(s, 1))
Making a Fourier transform in the variable r denoted by F, we get:
(3.2.5) FLiooF 1= D2+ D+ (n+ Vy(s, 1)
Then, we use a change of coordinates:
(3.2.6) Us(n, s,t) = (p,0,7) = <77, s — size’t)

and we obtain:

9% = UpFLipF Uyt = D} + D2+ Vy(o,7)*.
Notation 3.6. We denote by Q)" the quadratic form associated with $j".

The operator $)® viewed as an operator acting on L*(R?) is nothing but " (see

Chapter 1, Section 1.4.4). Let us also recall that the lower bound of the essential spectrum
is related, through the Persson’s theorem, to the following estimate:

a5 (xru) > (1= e(R))lIxrull, Vu€ Dom (gs"),

where q57 is the quadratic form associated with £57, where xp is a cutoff function away

from the ball B(0, R) and £(R) is tending to zero when R tends to infinity. Moreover, if

. . o LP,Di
we consider the Dirichlet realization £, ", we have:

(3.2.7) g " (u) = |lul]®,  Vu € Dom (g5""").

2.1.3. A “generic” model. Let us explain why we are led to consider our model. Let
us introduce a fundamental invariant in the case of variable magnetic field and our generic
assumptions. We let:

~

B(z,y) = s(0(z,y))|B(z,y,0)|,
where 0(x,y) is the angle of B(z,y,0) with the boundary z = 0:
IB(z,y,0)[[sinf(z,y) = B(z,y,0) - n(z,y),

where n(z, y) is the inward normal at (x,y,0). It is proved in [101] that the semiclassical
asymptotics of the lowest eigenvalue is:

A (h) = min(inEB, inf | B|) + o(h).
= 0
We are interested in the case when the following generic assumptions are satisfied:

(3.2.8) inf B < inf ||B||
z=0 Qo

(3.2.9) B admits a unique and non degenerate minimum.

Under these assumptions, a three terms upper bound is proved for A;(h) in [R10c| and
the corresponding lower bound, for a general domain, is still an open problem.
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For o > 0, the toy operator (3.2.1) is the simplest example of a generic Schrodinger
operator with variable magnetic field satisfying Assumptions (3.2.8) and (3.2.9). We have
the Taylor expansion:

(3.2.10) B(z,y) = 5(0) + aC(0)(2* + v*) + O(|z* + |y*).
with:
C(0) = cosbs(6) — sin0s'(0).
Moreover, it is proved in [BDPR12] that C'(¢) > 0, for 0 € (O, g) Thus, Assumption

(3.2.9) is verified if zo, yo and 2o are fixed small enough. Using s(#) < 1 when 6 € (0, %)
and ||B(0,0,0)|| = 1, we get Assumption (3.2.8).

2.1.4. Remark on the function B. Using the explicit expression of the magnetic field,
we have:

~ A

B($, y) = Brad(R>> R = 05('7/2 + y2)
and an easy computation gives:
A sin 6
Bra R - Bra R t A Y
o) = B ) (arctan (7))
with

IBaa(R)|| = 1/ (cos 8 + R)? + sin?6.
The results of [BDPR12] imply that B,.q is strictly increasing and
OrBraa(R = 0) = C(0) > 0.

Consequently, B admits a unique and non degenerate minimum on ]Ri and tends to
infinity far from 0. This is easy to see that:

inf | B|| = cos6.
Y

We deduce that, as long as s(6) < cosf, the generic assumptions are satisfied with

QO - Ri

2.2. Three dimensional magnetic wells induced by the magnetic field and
the (smooth) boundary. Let us introduce the fundamental operator

So(Dp, p) = (2/11@

2
T%(Ulép)z do dT) Hharm + ( / TVg(u'g‘P)2 do d7> p+d(9),

2 sinf Jre
+ R
where
0
2
Hharm =D + —
P sin%6
and

d(0) = sin ™2 0(r(D2Vp + Ve D2)ug" ,ug") + 2/ 702 Vy(ug")? do dr.
R
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We recall the important fact that (see [R10c, Formula (2.31)]):

; / 1V (ubP)2 ds dt = C(6) > 0,
&
so that Gy(D,, p) can be viewed as the harmonic oscillator up to dilation and translations.

We can now state the main result of this section.

Theorem 3.7. For all « > 0, 0 € (0, %), there exist a sequence (jtjn)i>0 and g9 > 0 s.
t. for |zo| + |yo| + |20] < €0,
An(h) ~ B> g’

320

and we have pg,, = §(0) and 1, is the n-th eigenvalue of S¢(D,, p).

Remark 3.8. The proof of Theorem 3.7 relies on the proof of accurate microlocal proper-
ties of the eigenfunctions and especially we use, in [R12], multiple commutator estimates
to get precise polynomial bound of the eigenfunctions in the phase space. Somehow this

strateqy can remind the spirit of hypoellipticity.

3. When a magnetic field meets a curved edge

We analyze here the effect of an edge in the boundary and how its combines with the

magnetic field to produce a spectral asymptotics. This was the aim of the collaboration
with N. Popoff [PR13].

3.1. Geometrical assumptions and local models.

3.1.1. Description of the lens. We first define the lens €.

Definition 3.9. Let ¥ be a smooth and connected surface in R® and I be the plane x5 = 0.
We assume that the intersection X N 11 is a smooth and closed curve and that ¥ and 11
intersect neither normally nor tangentially. Denoting by X the set {x € X : x3 > 0} and
by X7 its symmetric with respect to x3 = 0, the lens €2 is the open set of the points lying

between X1 and X7 whereas the edge is
(3.3.1) E=Y"NY".

We define a(x) as the opening angle between ¥~ and X1 at the point x € E. We assume
that a(x) € (0,7) for allx € E.

In our situation the magnetic field B = (0,0, 1) is normal to the plane where the edge
lies. For x € 002\ E we introduce the angle (x) defined by:

(3.3.2) B - n(x) = sinf(x).
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A model lens with constant opening angle is given by two parts of a sphere glued
together (see Figure 1). In this case we have

™=

(3.3.3) Vx € 00\ E, < 0(x)

where o € (0, 7) is the opening angle of the lens and we notice that the magnetic field is
nowhere tangent to the boundary. We will assume that the opening angle of the lens is
variable. For a given point x of the boundary, we analyze the localized (in a neighborhood
of x) magnetic Laplacian £ and we distinguish between x belonging to the edge and x
belonging to the smooth part of the boundary.

FIGURE 1. A lens Q: the magnetic field is nowhere tangent to the boundary
and it makes the angle 6(x) with the regular boundary.

3.1.2. Leading Operator. Let x € E and V' a small neighborhood of x in . We
suppose that the opening angle at x is . There is a diffeomorphism, denoted by the
local coordinates (,f, %), from V to an open subset of the infinite wedge W,. This
diffeomorphism can be explicitly described. We refer to Chapter 2, Section 3.3.3 where
some basic properties of the magnetic wedge were discussed.

VAlY
Q
Satd

FIGURE 2. Using the local coordinates (3,7, 2), a neighborhood of a point
of the edge can be described as a subset of the infinite wedge W,.

The model situations (magnetic wedge and smooth boundary) lead to compare the

following quantities:
inf 17 (a(x)), inf s1(6(x)),

xel X€OO\E
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where 6(x) is defined in (3.3.2), a(x) and E are defined in Definition 3.9. Let us state
the different assumptions under which we work:

Assumption 3.10.

(3.3.4) igg vi(a(x)) < xegsl)f\Eﬁlw(x))'

Remark 3.11. Using (3.3.3), the fact that s; is increasing and Proposition 2./8, we
check that, in the model case when Q is made of two parts of a sphere glued together,
Assumption 5.10 is satisfied for o small enough. By a continuity argument, Assumption
3.10 holds for not too large perturbations of this lens.

From the properties of the leading operator we see that we will be led to work near
the point of the edge of maximal opening. Therefore we will assume the following generic

assumption:

Assumption 3.12. We denote by o : E +— (0,7) the opening angle of the lens. We
assume that o admits a unique and non degenerate maximum at the point xq and we let

Qp = IMmax «.
E

We denote T = tan § and Ty = tan 3.

In particular, under this assumption and Conjecture 2.50, the function s — v§(a(s))

admits a unique and non-degenerate minimum.

3.2. Normal form. This is “classical” that Assumption 3.10 leads to localization
properties of the eigenfunctions near the edge E and more precisely near the points of
the edge where £ 5 x — v(«(x)) is minimal. Therefore, since v is decreasing and thanks
to Assumption 3.12, we expect that the first eigenfunctions concentrate near the point
xo where the opening is maximal. This is possible to introduce, near each x € E, a local
change of variables which transforms a neighborhood of x in €2 in a gyp-neighborhood of
(0,0,0) of Wy(x), denoted by Wa(x),,-

For the convenience of the reader, let us write below the expression of the magnetic
Laplacian in the new local coordinates (3,7, ) where § is a curvilinear abscissa of the

edge. The magnetic Laplacian £ is given by the Laplace-Beltrami expression (on
L2(|G|"/? d5 di d2)):

(3.3.5) g5 = |G| PV4IG PGV,
where:
v LD, ~1+ (Y2 — hI(3D; + D:2) + R (5,1, 2)
(3.3.6) V= hDy + 0
WT(3) 7T (0)D: ’

The precise forms of the Taylor expansions of the remainder R;, the metric G and the
function § — T(§) are analyzed in [PR13].
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Remark 3.13. Such a normal form allows us to describe the leading structure of this
magnetic Laplace-Beltrami operator. Indeed, if we just keep the main terms in (3.3.5) by
neglecting formally the geometrical factors, our operator takes the simpler form:

(hDs — T + CSh''?)? + B2 D2 4 h*T (0)*T (5) D2,

whose symbol with respect to s is discussed in Chapter 2, Section 3.3.3. Performing

another formal Taylor expansion near § = 0, we are led to the following operator:
(hDs — T + CSh'/?)? + h?D? 4+ h*D? + ch?5°D2,

where ¢ > 0. Using a scaling, we get a rescaled operator whose first term is the leading
operator L5, and which allows to construct quasimodes. Moreover this form is suitable

to establish microlocalization properties of the eigenfunctions with respect to Dy.

3.3. Magnetic wells induced by the variations of a singular geometry. The
main result of this section is a complete asymptotic expansion of all the first eigenvalues
of gfens.

Theorem 3.14. We assume that Conjecture 2.50 is true. We also assume Assumptions
3.10 and 3.12. For all n > 1 there exists (j1;n);>0 such that we have:

~  pil4
Aa(h) ~ hY i,

Jj=20
Moreover, we have:

Hon = V?(QO)a Hin = 07 H2.n = Wo + (27’L - 1)\/I{%_IHD/”:’UE‘S”282V§(O[0’ gg)’

where wy and k > 0 are geometrical constants.

Remark 3.15. We observe that, for alln > 1, A\, (h) is simple for h small enough. This
simplicity, jointly with a quasimodes construction, also provides an approximation of the
corresponding normalized eigenfunction. Moreover, if « is analytic, by using the WKB
analysis of [ BHR14] (see Chapter 2, Section 3.5.3), it is possible to get WKB expansions

of the eigenfunctions.

4. Birkhoff normal form

Sections 1, 2 and 3 are mainly structured around the idea of normal forms. Indeed, in
each case we have introduced an appropriate change of variable or equivalently a Fourier
integral operator and we have normalized the magnetic Laplacian by transferring the
magnetic geometry into the coefficients of the operator. We can interpret this normaliza-
tion as a very explicit application of the Egorov theorem. Then, in the investigation, we
are led to use the Feshbach projection to simplify again the situation. This projection
method can also be heuristically interpreted as a normal form in the spirit of Egorov:
taking the average of the operator in a certain quantum state is nothing but the quan-
tum analog of averaging a full Hamiltonian with respect to a reduced Hamiltonian. In
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problems with boundaries or with vanishing magnetic fields it appears that the dynamics
of the reduced Hamiltonian is less understood (due to the boundary for instance) than
the spectral theory of its quantization. Keeping this remark in mind it now naturally
appears that we should implement a general normal form, for instance in the simplest
situation of dimension two, without boundary and with a non vanishing magnetic field.
This was the purpose of the collaboration with S. Vii Ngoc [RVIN14].

4.1. Preliminary considerations. As we shall recall below, a particle in a magnetic
field has a fast rotating motion, coupled to a slow drift. It is of course expected that the
long-time behaviour of the particle is governed by this drift. From the quantum point
of view we will see that this drift is governed by a reduced Hamiltonian which can be
approximated by the magnetic field itself.

Let (e1,es,e3) be an orthonormal basis of R3 and let us consider the plane R? =
{qre1 + @es; (q1,q2) € R?}, and the magnetic field is B = B(qi, ¢2)es. For the moment
we only assume that ¢ = (¢1, ¢2) belongs to an open set §2 where B does not vanish.

With appropriate constants, Newton’s equation for the particle under the action of
the Lorentz force writes

(3.4.1) i =2¢ x B.

The kinetic energy E = 1 ||¢||* is conserved. If the speed ¢ is small, we may linearize the
system, which amounts to have a constant magnetic field. Then, as is well known, the
integration of Newton’s equations gives a circular motion of angular velocity 6 = —2B
and radius ||¢|| /2B. Thus, even if the norm of the speed is small, the angular velocity
may be very important. Now, if B is in fact not constant, the particle may leave the
region where the linearization is meaningful. This suggests a separation of scales (as
in the semiclassical and quantum context of Sections 1 and 3), where the fast circular
motion is superposed with a slow motion of the center.

It is known that the system (3.4.1) is Hamiltonian. Let A € C*°(R?,R?) such that
B=VxA.

As usual we may identify A = (A;, Ay) with the 1-form A = A;dg; + Ay dge. Then, as
a differential 2-form, dA = (%—Z‘f — %—’;‘21) dgi A dgs = Bdg; A dgo. In terms of canonical
variables (¢, p) € T*R? = R?* the Hamiltonian of our system is

(3.4.2) H(q,p) = llp— Al

We use here the Euclidean norm on R?, which allows the identification of R? with (R?)*
by

(3.4.3) V(v,p) € R? x (R, p(v) = (p,v).
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Thus, the canonical symplectic form w on T*R? is given by
(3.4.4) w((Q1, P1), (Q2, P2)) = (P1,Q2) — (P», Q1).

It is easy to check that Hamilton’s equations for H imply Newton’s equation (3.4.1).
In particular, through the identification (3.4.3) we have ¢ = 2(p — A).

4.2. Classical magnetic normal forms. Before considering the semiclassical mag-
netic Laplacian we shall briefly discuss some results concerning the classical dynamics for
large time. As we have already suggested in the introduction of this dissertation, the
large time dynamics problem has to face the issue that the conservation of the energy H
is not enough to confine the trajectories in a compact set.

The first result shows the existence of a smooth symplectic diffeomorphism that trans-
forms the initial Hamiltonian into a normal form, up to any order in the distance to the

zero energy surface.

Theorem 3.16. Let
H(q,p) == |p— AlQ)|*, (g¢,p) € T'R*=R* x R?,

where the magnetic potential A : R?> — R? is smooth. Let B := %_fo — %—‘221 be the
corresponding magnetic field. Let Q C R? be a bounded open set where B does not vanish.
Then there exists a symplectic diffeomorphism ®, defined in an open set Q C C,, x Ri,

with values in T*R?, which sends the plane {z; = 0} to the surface {H = 0}, and such
that

(3.4.5) Ho® = |z f(z, |a1]*) + O(|21]%),
where f : R? x R — R is smooth. Moreover, the map
(3.4.6) 0:Q3qg— ® (g, Alg)) € ({0} x R? ,) N

15 a local diffeomorphism and

In the following theorem we denote by K = |z|* f(22,]21|°) o @' the (completely
integrable) normal form of H given be Theorem 3.16 above. Let ¢!, be the Hamiltonian
flow of H, and let ¢t be the Hamiltonian flow of K. Let us state the important dynamical
consequences of Theorem 3.16 (see Figure 3).

Theorem 3.17. Assume that the magnetic field B > 0 is confining: there exists C' > 0
and M > 0 such that B(q) > C if ||q|| > M. Let Cy < C. Then

(1) The flow pY is uniformly bounded for all starting points (q,p) such that B(q) <
Co and H(q,p) = O(¢) and for times of order O(1/€e"), where N is arbitrary.
(2) Up to a time of order T, = O(|lne|), we have

(3.4.7) % (a:p) = i (g, p)|| = O()
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for all starting points (q,p) such that B(q) < Cy and H(q,p) = O(e).

It is interesting to notice that, if one restricts to regular values of B, one obtains the
same control for a much longer time, as stated below.

Theorem 3.18. Under the same confinement hypothesis as Theorem 3.17, let J C (0, Cy)
be a closed interval such that dB does not vanish on B™*(J). Then up to a time of order
T = O(1/eN), for an arbitrary N > 0, we have

€% (a.p) = ¢ (a,p)|| = O()
for all starting points (q,p) such that B(q) € J and H(q,p) = O(e).

F1GURE 3. Numerical simulation of the flow of H when the magnetic field
is given by B(z,y) =2+ 2> + 3> + 2 + 2 and e = 0.05, t € [0,500]. The
picture also displays in red some level sets of B.

4.3. Semiclassical magnetic normal forms. We turn now to the quantum coun-
terpart of these results. Let £, a = (—ihV — A)? be the magnetic Laplacian on R?,
where the potential A : R? — R? is smooth, and such that £, o € S(m) for some order
function m on R* (see [35, Chapter 7]). We will work with the Weyl quantization; for a
classical symbol a = a(a:' €) € S(m) , it is defined as:

Opfav(e) = s [ [ (T ) vtmayds, o e SR

The first result shows that the spectral theory of £ s is governed at first order by
the magnetic field itself, viewed as a symbol.

51



Theorem 3.19. Assume that the magnetic field B is non vanishing on R? and confining:
there exist constants 01 > 0, My > 0 such that

(3.4.8) B(q) > Cy  for |q| > M.

Let H) = Opy (HY), where H® = B(p~(22))|21]* where ¢ : R? — R? is a diffeomorphism.
Then there exists a bounded classical pseudo-differential operator Qp, on R?, such that

o Q; commutes with Op¥(|=1|°);

e Qy is relatively bounded with respect to HY with an arbitrarily small relative
bound;

o its Weyl symbol is O.,(h* + h |z |* + |z|"),

so that the following holds. Let0 < C < C,. Then the spectra of Ly, 4 and £,'\L'° = ’H?;l—@h
in (—oo,C1h| are discrete. We denote by 0 < Ai(h) < Ao(h) < --- the eigenvalues of
Lna and by 0 < puy(h) < pg(h) < --- the eigenvalues of LY. Then for all j € N* such
that Aj(h) < Cih and pj(h) < Cih, we have

[Ai(h) = p ()] = O(h™).

The proof of Theorem 3.19 relies on the following theorem (see [86] where a close
form of this theorem appears), which provides in particular an accurate description of
@n- In the statement, we use the notation of Theorem 3.16. We recall that ¥ is the zero
set of the classical Hamiltonian H.

Theorem 3.20. For h small enough there exists a Fourier Integral Operator Uy such
that

U;;Uh:I—I-Zh, UhU;:I—I—Z}IL,
where Zy,, Z,, are pseudo-differential operators that microlocally vanish in a neighborhood
of AN, and

(3.4.9) Ur Ly AUy = L}° + Ry,
where

(1) LN is a classical pseudo-differential operator in S(m) that commutes with

) O 2
Ih = —h*— +x )
ox? !
(2) For any Hermite function h,(x1) such that Iph, = h(2n — 1)h,, the operator
LN acting on L*(Ry,) by

ho @ L2 (0) = LN(h, ® )

is a classical pseudo-differential operator in Sg2(m) of h-order 1 with principal
symbol
F"(25,&) = h(2n —1)B(q),
where (0,29 + &) = ¢(q) as in (3.4.6);
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(8) Given any classical pseudo-differential operator Dy, with principal symbol dy such
that do(z1, 29) = c(29)|21*+0(|21]?), and any N > 1, there exist classical pseudo-
differential operators S, n and Ky such that:

(3.4.10) Ry, = Spn(Dn)™ + Ky + O(h™),

with Ky compactly supported away from a fized neighborhood of |z1| = 0.
(4) LN° = H + Qp, where H) = Op}’ (H®), H® = B(o ™' (22))|21|%, and the operator
Qp is relatively bounded with respect to HY with an arbitrarily small relative

bound.

We recover the result of [69], adding the fact that no odd power of 2*/2 can show up
in the asymptotic expansion (see the recent work [72] where a Grushin type method is

used to obtain a close result).

Corollary 3.21 (Low lying eigenvalues). Assume that B has a unique non-degenerate
minimum. Then there exists a constant ¢y such that for any j, the eigenvalue \;(h) has
a full asymptotic expansion in integral powers of h whose first terms have the following

form:
Aj(R) ~ hmin B + h*(c1(25 — 1) + ¢o) + O(h?),
with ¢; = %ﬁ;m)), where the minimum of B is reached at =1(0).

PRrROOF. The first eigenvalues of £, 4 are equal to the eigenvalues of E,'jo’(l) (in point (2)
of Theorem 3.20). Since B has a non-degenerate minimum, the symbol of Ego’(l) has a
non-degenerate minimum, and the spectral asymptotics of the low-lying eigenvalues for
such a 1D pseudo-differential operator are well known. We get

Aj(h) ~ hmin B + h*(¢; (25 — 1) + ¢o) + O(h?),

with ¢; = y/det(B o »=1)"(0)/2. One can easily compute

. V/det(B” o o=1(0)) _ V/det(B” o p=1(0))
LT 2]det(De1(0)))] 2B o o-1(0)
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CHAPTER 4

Waveguides

Si on me presse de dire pourquoi je ’aimais,
je sens que cela ne se peut exprimer qu’en
répondant : Parce que c’était lui : parce que
¢’était moi.

Les FEssais, Livre 1, Chapitre XXVIII,

Montaigne

This chapter presents recent results in the spectral theory of waveguides. It is essen-
tially based on the collaborations with D. Krejcifik [KR13] on the one hand and with
M. Dauge [DaR12] on the other hand. In Section 1 we describe magnetic waveguides
in dimensions two and three and we analyze the spectral influence of the width ¢ of the
waveguide and the intensity b if the magnetic field. In particular we investigate the limit
€ — 0. In Section 2 we describe the same problem in the case of layers. In Sections 3

and 4 the effect of a corner in dimension two is tackled.

1. Magnetic waveguides

This section is concerned with spectral properties of a curved quantum waveguide
when a magnetic field is applied. The main results of this section were obtained in
collaboration with D. Krej¢irik in [KR13].

We will give a precise definition of what a waveguide is in Sections 1.3 and 1.4.
Without going into the details we can already mention that we will use the definition
given in the famous (non magnetic) paper of Duclos and Exner [37] and its generalizations
[26, 93, 56]. The waveguide is nothing but a tube (2. about an unbounded curve = in
the Euclidean space R?, with d > 2, where ¢ is a positive shrinking parameter and the

cross section is defined as ew = {e7: 7 € w}.

More precisely this section is devoted to the spectral analysis of the magnetic operator

with Dirichlet boundary conditions 2[;9) A defined as

(4.1.1) (—iV, +bA(z))? on L2(Q, dx).

where b > 0 is a positive parameter and A a smooth vector potential associated with a

given magnetic field B.
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1.1. The result of Duclos and Exner. One of the remarkable facts which is proved
by Duclos and Exner is that the Dirichlet Laplacian on 2. always has discrete spec-
trum below its essential spectrum when the waveguide is not straight and asymptotically
straight. Let us sketch the proof of this result in the case of two dimensional waveguides.

Let us consider a smooth and injective curve : R 5 s — ~(s) which is parameterized
by its arc length s. The normal to the curve at v(s) is defined as the unique unit vector
n(s) such that 7/(s) - v(s) = 0 and det(y/,v) = 1. We have the relation 7"(s) = k(s)n(s)
where (s) denotes the algebraic curvature at the point y(s). We can now define standard
tubular coordinates. We consider:

R x (—¢g,¢) 3 (s,t) = ®(s,t) = y(s) + tn(s).
We always assume

(4.1.2) ® is injective  and  esup |k(s)| < L.

seR
Then it is well known (see [93]) that ® defines a smooth diffeomorphism from R x (—¢, ¢)
onto the image Q. = ®(R x (—¢,¢)), which we identify with our waveguide. In these new

coordinates, the operator becomes (exercise)

el o= —m om0, — mOmd, m(s,t) =1—tr(s),

g,

which is acting in the weighted space L*(R x (—¢,¢),m(s,t)dsdt). We introduce the
shifted quadratic form:

S| _ ’7T2
Q[ﬂ)’ h(‘b) = /R ( : (m 2|as(¢)‘2 + |8t¢\2 - 4—62|¢‘2> mdsdt

and we let:
Gn(s,t) = xo(n"'s) cos <2€t>

where Yy is a smooth cutoff function which is 1 near 0. We can check that Q[Q] o (¢n) —J)r
n—-+00

0. Let us now consider a smooth cutoff function y; which is 1 near a point where « is

not zero and define ¢(s,t) = —x2(s, t)ﬁg%fh . (8,t) which does not depend on n as soon

as n is large enough. Then we have:

Qi (¢, + 1) = Q5 (00) — 2085 (0, x1 (5)LE5 " 00) + 02 Q55" ().

For n large enough, the quantity 5[2 Sh(¢n, Xl(s)EE%’Sh ) does not depend on n and is

positive. For such an n, we take 1 small enough and we find:

QPr (¢, + ) <

Therefore the bottom of the spectrum is an eigenvalue due to the min-max principle.

Duclos and Exner also investigate the limit € — 0 to show that the Dirichlet Laplacian
on the tube (). converges in a suitable sense to the effective one dimensional operator

2
L= 9% - @ on L2(v, ds).
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In addition it is proved in [37] that each eigenvalue of this effective operator generates

an eigenvalue of the Dirichlet Laplacian on the tube.

As Duclos and Exner we are interested in approximations of Sﬂ A in the small cross
section limit € — 0. Such an approximation might non trivially depends on the intensity

of the magnetic field b especially if it is allowed to depend on €.

1.2. Waveguides with more geometry. In dimension three it is also possible to
twist the waveguide by allowing the cross section of the waveguide to non-trivially rotate
by an angle function 6 with respect to a relatively parallel frame of v (then the velocity
0’ can be interpreted as a “torsion”). It is proved in [41] that, whereas the curvature is
favourable to discrete spectrum, the torsion plays against it. In particular, the spectrum
of a straight twisted waveguide is stable under small perturbations (such as local electric
field or bending). This repulsive effect of twisting is quantified in [41] (see also [92, 95])
by means of a Hardy type inequality. The limit ¢ — 0 permits to compare the effects
bending and twisting ([19, 33, 94]) and the effective operator is given by

L= 02 - %8)2 +CW)0'(s)>  on  L*(y, ds),

where C(w) is a positive constant whenever w is not a disk or annulus. Writing (4.1.1)

F1GURE 1. Torsion on the left and curvature on the right

in suitable curvilinear coordinates (see (4.1.9) below), one may notice similarities in the
appearance of the torsion and the magnetic field in the coefficients of the operator and
it therefore seems natural to ask the following question:

“Does the magnetic field act as the torsion 7”

In order to define our effective operators in the limit ¢ — 0 we shall describe more
accurately the geometry of our waveguides. This is the aim of the next two sections in
which we will always assume that the geometry (curvature and twist) and the magnetic
field are compactly supported.
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1.3. Two-dimensional waveguides. Up to changing the gauge, the Laplace-Beltrami
expression of SEL A in these coordinates is given by

€84 = (1 — tr(5)) 7110y + bAL) (L — tri(s)) 71 (i + bAy) — (1 — tr(s)) 'O, (1 — tr(s))d,

€

with the gauge:

Als 1) = (Ay(s,),0),  Ay(s,t) = /0 (1= (s))B(®(s, 1)) dt".
We let:
m(s,t) =1 —tr(s).

The self-adjoint operator E[Eg]b 4 oon L2(R x (—e,¢),mdsdt) is unitarily equivalent to the
self-adjoint operator on L2(R x (—¢,¢), dsdt):

£ = w2
Introducing the rescaling
(4.1.3) t=er,

we let:
Ac(s, m) = (-/41,5(57 7),0) = (Ai(s,e7),0)
and denote by ELQ,;)AE the homogenized operator on L*(R x (—1,1), dsdr):

(4.1.4) LB = mI V20, + bA)mI (10, + bAymI Y2 — e 7202 + Vi(s, 7),
with:
K(s)? -2
me(s,7) =m(s,eT), V.(s,7)=— 1 (1 —er(s)T)"~.

It is easy to verify that LEL 1, defined as Friedrich extension of the operator initially
defined on C§°(R x (—¢, €)), has form domain Hj(R x (—¢,¢)). Similarly, the form domain
of £2}, is HY(R x (~1,1)).

1.4. Three-dimensional waveguides. The situation is geometrically more com-
plicated in dimension 3. We consider a smooth curve v which is parameterized by its
arc length s and does not overlap itself. We use the so-called Tang frame (or the rel-
atively parallel frame, see for instance [94]) to describe the geometry of the tubular
neighbourhood of v. Denoting the (unit) tangent vector by T'(s) = +/(s), the Tang frame
(T'(s), Ma(s), M3(s)) satisfies the relations:

T = KoMy + k3Ms,
My, = —koT,
M; = —r3T.
The functions k9 and k3 are the curvatures related to the choice of the normal fields M,

and Mj. We can notice that k? = k2 + k2 = |7"|?

Y-

is the square of the usual curvature of
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Let 6 : R — R a smooth function (twisting). We introduce the map ® : R x (ew) — .
defined by:
(4.1.5)
x = D(s,tg,t3) = (s) + ta(cos O Ma(s) + sin O M3(s)) + t3(—sin O Ma(s) + cos O M3(s)).

Let us notice that s will often be denoted by ¢;. As in dimension two, we always assume:

(4.1.6) ® is injective and ¢ sup (|r|+ |m3]) sup|k(s)| < 1.

(T2,m3)€EW seR

Sufficient conditions ensuring the injectivity hypothesis can be found in [41, App. A]. We
define A = DPA(P) = (A, As, A3),

h = 1—ty(kgcost+ k3sinf) — t3(—kaesinh + k3 cosb),
hey = —t50,
hy = t30,
and R = hsbAy + hobAs. We also introduce the angular derivative 0, = t30;, — t20;,.

The magnetic operator Sﬂ A is unitarily equivalent to the operator on L*(€., h dt) given
by

(41.7) £8, =" hH(=idy, + bA)h(—idy, + bA;)
7=2,3
+ b7 (—i0s + bA; —i0'0, + R)A ™ (—is + bA; — 00y + R).

E%Ahil/ 2. we find that SE’;} 4 1s unitarily

equivalent to the operator defined on L*(R x (ew), dsdt, dts) given by:

By considering the conjugate operator h'/2g

2
3 . K
(4.1.8) LL,%)A = Z (—z@tj + b.Aj)Z - 4_h2

j=2,3
+ h7Y2(=i0, + bA; — 00, + R)A ™ (—i0, + bA, — 00, + R)h ™2
Finally, introducing the rescaling
(ta,t3) = (T, T3) = €T,
we define the homogenized operator on L*(R x w, dsdr):

(4.1.9) LB, =Y (—ic'0,, + bA;.)?

§j=2,3

BV (0 + bALe — 0/ + RWTH (=i, + bAL . — 00D + RV,

)

K
412

where A (s, 7) = A(s,e7), he(s,7) = h(s,e7) and R. = R(s,e7).

The form domains of £§LA and EE;)AS are HY(R x (—¢,¢)) and H}(R x (—1,1)), re-
spectively.
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1.5. Limiting models and asymptotic expansions. We can now state our main
results concerning the effective models in the limit ¢ — 0. We will denote by AP (w)
the n-th eigenvalue of the Dirichlet Laplacian —APT on L?(w). The first positive and
L%-normalized eigenfunction will be denoted by .J;.

Definition 4.1 (Case d = 2). For 0 € (—o0, 1), we define:

K(s)?
4

eff,[2] —2 A Dir 2
£€,5 = —¢€ Aw - 85 -

and for 6 =1, we let:
el _672A5ir + 7—[2],

g1

where
k(s)?

4

1 2
TH =00+ 5+ 5 ) BO(s) -
3 w2
Theorem 4.2 (Case d = 2). There exists K such that, for all 6 € (—o0, 1], there exist
g0 > 0,C > 0 such that for all e € (0,):
_ -1 _ -1
(5[2] 2P (W) + K) — (ES;’M — e 2P () + K)

e,e %A,

< Cmax(e'™,¢), ford <1

an

< Ce.

e,1

d:
H (L2 1 — 2N (w) + K) o (£~ em2AP"(w) + K) B

In the critical regime § = 1, we deduce the following corollary providing the asymp-

totic expansions of the lowest eigenvalues A2 () of LE]g,l A

Corollary 4.3 (Case d = 2 and § = 1). Let us assume that T? admits N (simple)
eigenvalues g, - - , pun below the threshold of the essential spectrum. Then, for all n €
{1,--- N}, there exist (0;,)j>0 and g9 > 0 such that for all € € (0,¢):

2] ~ . o2+
ND(e) ~ D bjme
Jj=0
with
50,71 = - 51,71 = 07 52,11 = HUn.

Thanks to the spectral theorem, we also get the approximation of the corresponding
eigenfunctions at any order.

In order to present analogous results in dimension three, we introduce supplementary
notation. The norm and the inner product in L*(w) will be denoted by || - || and (-, ).,
respectively.

Definition 4.4 (Case d = 3). For 6 € (—o0, 1), we define:

2
L AR S N
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and for J = 17 we let:
ﬁﬂ[g] _ _672A5ir + 7'[3],
where T8l is defined by:
T = ((—i0, — i 0o — Bia(s,0,0)72 — Bus(s,0,0)73)*ld(s) ® Ji, ld(s) ® Ji)o,

K (s)
YR

J
+ B2,(s,0,0) ("T41”w — (DaRw,Jl)w) —

where Ry, is a determined function (see [KR13]) and

B2s(s,0,0) = B(v(s)) - T(s),
Bi3(s,0,0) = B(y(s)) - (cos @ My(s) — sin Mjs(s)),
Bi2(s,0,0) = B(y(s)) - (—sinf Ms(s) + cos M3(s)).

Theorem 4.5 (Case d = 3). There exists K such that for all 6 € (—o0,1], there exist
g0 > 0,C > 0 such that for all € € (0,g¢):

-1 -1

< Cmax(e'¢), ford <1

(L8, =W @) + K) = (L5 — AP (w) + K)

and:

-1

. -1 .
H (E[jl.,l A — AP (w) + K) - (c:f?m —e2ADIN () K) < Ce.

In the same way, this theorem implies asymptotic expansions of eigenvalues )\5’ ] () of

Corollary 4.6 (Case d = 3 and § = 1). Let us assume that TP admits N (simple)
eigenvalues vy, - - - , vy below the threshold of the essential spectrum. Then, for all n €
{1,--- N}, there exist (§;);>0 and 9 > 0 such that for all e € (0,¢p):
M) ~ 3G,
7>0
with
50,n = AlDir(W), (517,1 = 0, 527n = Up.

As in two dimensions, we also get the corresponding expansion for the eigenfunctions.
Complete asymptotic expansions for eigenvalues in finite three-dimensional waveguides
without magnetic field are also previously established in [63, 15]. Such expansions were
also obtained in [62] in the case § = 0 in a periodic framework.

Remark 4.7. As expected, when § = 0 that is when b is kept fized, the magnetic field does
not persists in the limit € — 0 as well in dimension two as in dimension three. Indeed,
in this limit 2. converges to the one dimensional curve v and there is no magnetic field
in dimension 1.
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1.6. Norm resolvent convergence. Let us state an auxiliary result, inspired by
the approach of [58], which tells us that, in order to estimate the difference between two
resolvents, it is sufficient to analyse the difference between the corresponding sesquilinear

forms as soon as their domains are the same.

Lemma 4.8. Let £, and £9 be two positive self-adjoint operators on a Hilbert space
H. Let B, and By be their associated sesquilinear forms. We assume that Dom (B;) =
Dom (B3). Assume that there exists n > 0 such that for all ¢,1p € Dom (By):

B1(6, ) — B9, )| < 0/ (¥)V/Qa(9),
where Q;(¢) =Bj(p, ) for j =1,2 and ¢ € Dom (By). Then, we have:

et — 3 < nller M2 et

PROOF. The original proof can be found in [94, Prop. 5.3]. Let us consider b, € H.
We let ¢ = £§1<5 and 1 = S;lﬁ. We have ¢,1 € Dom (B;) = Dom (B3). We notice
that:

Bi(o,¥) = (£5'0,9), Ba(¢,¥) = (£1'9, )
and:
Q(¥) = (0, £7'9),  D2(0) = (6, £,79).
We infer that:
(&7 = 2200, 9| < mlleT M2 1L 12l 1

and the result elementarily follows. O

1.7. A magnetic Hardy inequality. In dimension 2, the limiting model (with
9 = 1) highlights the fact that the magnetic field plays against the curvature, whereas
in dimension 3 this repulsive effect is not obvious (it can be seen that (D, R, J1), > 0).
Nevertheless, if w is a disk, we have (D,R,,Ji), = 0 and thus the component of the
magnetic field parallel to v plays against the curvature (in comparison, a pure torsion
has no effect when the cross section is a disk). In the flat case (k = 0), we can quantify this
repulsive effect by means of a magnetic Hardy inequality (see [40] where this inequality

is discussed in dimension two).

Theorem 4.9. Let d > 2 and w be an open bounded subset of RI-1. Let us consider
Q=R Xxw. For R >0, we let:

QR) ={t € Q: |t;| < R}.

Let A be a smooth vector potential such that the magnetic 2-form opg is not zero on
Q(Ry) for some Ry > 0. Then, there ezists C > 0 such that, for all R > Ry, there ezists
cr(B) > 0 such that, we have:

(4.1.10) /Q [(=iV + A)p|2 — AP (w)[e]? dt > /Q
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Moreover we can take:

cr(B) = (1+ CR™?)" min G APrNev B O(R)) — A'f”@)) ,

where AN (B, Q(R)) denotes the first eigenvalue of the magnetic Laplacian on Q(R),
with Dirichlet condition on R x Ow and Neumann condition on {|s| = R} X w.

The inequality of Theorem 4.9 can be applied to prove certain stability of the spectrum
of the magnetic Laplacian on € under local and small deformations of 2. Let us fix
€ > 0 and describe a generic deformation of the straight tube 2. We consider the local
diffeomorphism:

d
(I)E<t) = (I)E(S>t27t3) ( + Z t + 5] Mj + 51(‘9)7
7j=2

where (M;)9_, is the canonical basis of {0} x R*"!. The functions ¢; and & are smooth
and compactly supported in a compact set K. As previously we assume that &, is a
global diffeomorphism and we consider the deformed tube Q%" = &_(R x w).

Proposition 4.10. Let d > 2. There exists g > 0 such that for e € (0,eq), the spectrum
of the Dirichlet realization of (—iV + A)? on Q%% coincides with the spectrum of the
Dirichlet realization of (—iV + A)? on Q. The spectrum is given by [AP"(w), +00).

By using a semiclassical argument, it is possible to prove a stability result which does
not use the Hardy inequality.

Proposition 4.11. Let Ry > 0 and Q(Ry) = {t € Rxw: |t;| < Ry}. Let us assume that
op = d€a does not vanish on ®(2(Ry)) and that on Q1 \ P(Q(Ry)) the curvature is zero.
Then, there exists by > 0 such that for b > by, the discrete spectrum of 2[1‘?1)14 15 empty.

2. Magnetic layers

As we will sketch below, the philosophy of Duclos and Exner may also apply to thin
quantum layers as we can see in the contributions [38, 24, 97, 98, 99, 125] and the
related papers [88, 30, 31, 129, 109, 59, 56, 131, 130, 96, 94]. The collaboration

field.

Let us consider ¥ an hypersurface embedded in R? with d > 2, and define a tubular
neighbourhood about 3,

(4.2.1) Q.= {z+tn eR | (z,t) € S x (—¢,¢)},
where n denotes a unit normal vector field of 3. We investigate:
(4.2.2) Lao. = (—iV+A)? on  L*Q),

with Dirichlet boundary conditions on 0€2..
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2.1. Normal form. As usual the game is to find an appropriate normal form for
the magnetic Laplacian. Given I := (—1,1) and € > 0, we define a layer €. of width 2¢
along > as the image of the mapping

(4.2.3) ®:E xR {(z,u) = z+eun}

Let us denote by A the components of the vector potential expressed in the curvilinear
coordinates induced by the embedding (4.2.3). Moreover, assume

(4.2.4) Ag=0.

Thanks to the diffeomorphism ® : ¥ x I — ()., we may identify L4 o. with an operator
H on L2(32 x I, df2.) that acts, in the form sense, as

H = |G| Y (=idw + A)|G|M2GH" (=idw + A,) — e72|G|7%8,|G|/0, .
Let us define

1 G 1 & 1
J.:ZIHWZ§ZID(1—€UHM):§IH

Using the unitary transform

U:L(Ex1,d0) = LS x [, dS A du): {¢— ey},

we arrive at the unitarily equivalent operator
H:=UHU = |g|7V2(=i0p + A)|g|"?G* (=iDp + A,) — 7202+ V,
where
V=g 72 0, (|91 G (8,3 T)) + (0, )GV (0,1 7).

We get
H=UU(-A%)U'U.

2.2. The effective operator. H is approximated in the norm resolvent sense (see
[KRT13] for the details) by

(4.2.5) Hy=heg — 207 ~ heg ®1+1® (—20?)
on L2(X x I, dX A du) ~ L2(X, d¥) ® L%(I, du) with the effective Hamiltonian
(4.2.6) he = |g| ™2 (= i0un + A,u(-,0))[g]"?g" (= i0pr + AL (.,0)) + Ve,
where
= s 2
(4.2.7) Ve == —3 K2+ 1 (Z /@N> .
p=1 p=1

In particular the effective Hamiltonian only feels the normal component of the magnetic
field.
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3. Semiclassical triangles

As we would like to analyze the spectrum of broken waveguides (that is waveguides
with an angle), this is natural to prepare the investigation by studying the Dirichlet
eigenvalues of the Laplacian on some special shrinking triangles. This subject is already
dealt with in [55, Theorem 1] where four-term asymptotics is proved for the lowest
eigenvalue, whereas a three-term asymptotics for the second eigenvalue is provided in
[55, Section 2]. We can mention the papers [57, 58] whose results provide two-term
asymptotics for the thin rhombi and also [16] which deals with a regular case (thin
ellipse for instance), see also [17]. We also invite the reader to take a look at [84].
For a complete description of the low lying spectrum of general shrinking triangles, one
may consult the paper by my student Ourmieres [117] where tunnel effect estimates are
also established. In dimension three the generalization to cones with small aperture is
done in [116] and is motivated by [49]. The result of this section was obtained in the
collaboration with M. Dauge [DaR12] and aimed at applying the semiclassical techniques
to this kind of geometric problems. In particular, this work establishes that, in the case
of shrinking triangles, the eigenfunctions contain a boundary layer (they live on different
scales depending on h). This fact does not seem to be known in the literature.

Let us define the isosceles triangle in which we are interested:
(4.3.1) Trig = {(1]1,1‘2) ER_XxR:zjtanf < |zy| < (xl + ﬁ) tané’} :
We will use the coordinates
(4.3.2) T =21V2sinf, y=x2v2cos0),
which transform Trig into Tri; 4. The operator becomes:
Dri(h) = 2sin?0 85 — 2cos?0 05,

with Dirichlet condition on the boundary of Tri. We let h = tan@ ; after a division by

2 cos? ), we get the new operator:
292 2
(4.3.3) Lri(h) = —h"0; — 0,

This operator is thus in the “Born-Oppenheimer form” and we shall introduce its Born-
Oppenheimer approximation which is the Dirichlet realization on L?((—7/2,0)) of:

7T2

4.34 Heomi(h) = —h?0>? + ————
(4.3.4) Bo,™ri(/) TP

Theorem 4.12. The eigenvalues of Heo 1i(h), denoted by Ago 1in(h), admit the expan-

S10NS:
~ . ~ 1 ~
. ~ E B 2j/3 ; — = — (47V2) " 2/3 5 s e
)\BO,Tn,n(h) e P ﬁ],nh y with BO,n S and ﬁl,n ( W\/_) ZAi (n)7

where zayer(n) is the n-th zero of the reversed Airy function Ai"(z) = Ai(—x).
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We state the result for the scaled operator Lri(h).

Theorem 4.13. The eigenvalues of L1i(h), denoted by Avein(h), admit the expansions:

)\Tri,n(h) h:(] Zﬁj,nhj/s with BO,n -

320

1
g Pa=0 and Bn= (47V/2) "2 25500 (),
the terms of odd rank being zero for j < 8. The corresponding eigenfunctions have

expansions in powers of h'/3 with both scales x/h?3 and x/h (the “boundary layer”).

4. Broken waveguides

4.1. Physical motivation. As we have already recalled at the beginning of this
chapter, it has been proved in [37] that a curved, smooth and asymptotically straight
waveguide has discrete spectrum below its essential spectrum. Now we would like to
explain the influence of a corner which is somehow an infinite curvature and extend the
philosophy of the smooth case. This is the aim of the collaboration with M. Dauge
[DaR12] (see also the numerical counterpart in [DaLLR11]), especially by applying the
semiclassical methods in the context of waveguides.

This question is investigated with the L-shape waveguide in [48] where the existence
of discrete spectrum is proved. For an arbitrary angle too, this existence is proved in
[4] and an asymptotic study of the ground energy is done when 6 goes to 7 (where 0
is the semi-opening of the waveguide). Another question which arises is the estimate of
the lowest eigenvalues in the regime 6 — 0. This problem is analyzed in [23] where a
waveguide with corner is the model chosen to describe some electromagnetic experiments

(see Figure 2).

4.2. Geometric description. Let us denote by (x1,x2) the Cartesian coordinates
of the plane and by 0 = (0, 0) the origin. Let us define our so-called “broken waveguides”.

™

For any angle 6 € (0, 5) we introduce

(4.4.1) Qy = {(:L’l,xQ) €R?*:xztanf < |xo| < (:cl + %) tan&} .
sin
Note that its width is independent from #, normalized to 7, see Figure 3. The limit case

i

5 corresponds to the straight strip (—m,0) x R.

where § =

The operator —Ag!" is a positive unbounded self-adjoint operator with domain
Dom (—Ag") = {1 € Hi(Qg) :  —Av € L*(Q)}.

When 6 € (O, %), the boundary of )y is not smooth, it is polygonal. The presence of the
non-convex corner with vertex 0 is the reason for the space Dom (—Agi;) to be distinct
from H? N Hj(Q). We have the following description of the domain (see the classical
references [91, 61]):

(4.4.2) Dom (—AS") = (H* N Hy(Q)) & [¢,,]

sing
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{a) (b)

FIG. 6. (a) Experimentally measured contour plots of fre-
quency shifts for lowest-frequency bound-state wave functions
for a sharply bent waveguide with an interior angle §=22.5".
The frequency shift measured as a function of position for a
small metal sphere inside the waveguide. Shaded areas denote
regions of positive frequency shift (relatively large magnetic
field energy density); unshaded areas signify negligible or nega-
tive frequency shift (negligible or relatively large electric-field
energy density). Point E1 denotes the maximum negative-
energy shift (antinode of E,); points H 1a and H 1b denote points
of the maximum positive-energy shift (antinodes of H,). Nu-
merical values of these quantities are given in Table II. (b) Cal-
culations of the same quantity shown in (a), using Eq. (23).

(a) (b)

FIG. 7. Experimentally measured contour plots for the fre-
quency shift for the first excited state of a bent waveguide with
an interior angle 6=22.5°, The notation is that of Fig. 6.
Points E2 and E3 denote maximum measured negative frequen-
cy shifts; points H2, H3a, H3b, H4a, and H4b represent local
maxima in the frequency shifts. (b) Calculations of the frequen-
cy shift for the same quantity shown in (a).

FIGURE 2. Experimental results of [23]

T2

L,

X1

FIGURE 3. The broken guide €2y (here § = 7). Cartesian and polar coordinates.

where |

0

sing

| denotes the space generated by the singular function

polar coordinates (p, @) near the origin by

(4.4.3)

2ﬂseing(xh 1’2) = X(p) P

. TP
/W gin
w

where where y is a radial cutoff function near the origin.

0

sing

with w = 2(m —0)

defined in the

We gather in the following statement several important preliminary properties for the
spectrum of —Ag". All these results are proved in the literature (see also [DaLR11]).
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Proposition 4.14. (i) If 0 = 5, —Ag" has no discrete spectrum. Its essential spectrum

is the closed interval [1,+00).

(ii) For any 6 in the open interval (0,%5) the essential spectrum of —ABZ coincides
with [1,400).
(iii) For any 0 € (0, %), the discrete spectrum of —Agigr is nonempty.
Dir

(iv) For any 6 € (0,3) and any eigenvalue in the discrete spectrum of —AgY, the

associated eigenvectors 1 are even with respect to the horizontal axis: (xy, —x9) =
(a1, T9).

(v) For any 0 € (0,%), let peuin(0), n =1,..., be the n-th Rayleigh quotient of —AgY.
Then, for any n > 1, the function 0 — picuin(6) is continuous and increasing.

It is also possible to prove that the number of eigenvalues below the essential spectrum

is exactly 1 as soon as ¢ is close enough to 7 (see [115]). In [DaLR11], we provide a

proof of the following proposition (which is inspired by [112, Theorem 2.1]).

Proposition 4.15. For any 0 € (0,%), the number of eigenvalues of —ABZ below 1,
denoted by N(—Agg, 1), is finite.

As a consequence of the parity properties of the eigenfunctions of —Agi}r, cf. point

(iv) of Proposition 4.14, we can reduce the spectral problem to the half-guide
(444) Qg_ = {(fEl,.’EQ) S Qg DT > 0}

We define the Dirichlet part of the boundary by dp; Q) = 99y N 9QS, and the form
domain

Hii () = {¢ eH(Qf): ¥=0 on 8D;rQ§}.
Then the new operator of interest, denoted by —A?;';ﬁ‘, is the Laplacian with mixed
Dirichlet-Neumann conditions on €. Its domain is:

Dom (—AMX) = {1 € Hyy(F) : A € L*(Qf) and oy =0 on x5 =0}.
0
Then the operators —Ag;' and —AS'\;”K have the same eigenvalues below 1 and the eigen-
0

functions of the latter are the restriction to Qj of the former.

In order to analyze the asymptotics § — 0, it is useful to rescale the integration
domain and transfer the dependence on # into the coefficients of the operator. For this
reason, let us perform the following linear change of coordinates:

(4.4.5) r=1V2sin0, y=1yv2cos0,

which maps 2 onto the #-independent domain er/ > see Fig. 4. That is why we set for
simplicity

(4.4.6) Q= Q:/4’ Opir§) = 8DirQ;r/4, and Hy (Q) = {v e H(Q) : ¢ =0 on Ipi2}.
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FIGURE 4. The half-guide Q) for § = % and the reference domain €.

Then, AP is unitarily equivalent to the operator defined on € by:
6
(4.4.7) Deui(0) := —25in’0 07 — 2 cos?0 07,

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of 2.
We let h = tan@ ; after a division by 2 cos? 8, we get the new operator:

(4.4.8) Leui(h) = —h*0; — 02,
with domain:
Dom (Lgui(h)) = {¢ € Hy(Q) :  Leu(h)v € L*(Q) and 9,00 =0 on y=0}.

The Born-Oppenheimer approximation is:

(4.4.9) Hpo,cui(h) = —h°02 + V (z),
where
G h (—7v/2,0)
— — Wwhenx € (—7 ,U),
V(z) = i +17T\/§)2
3 when z > 0.

4.3. Eigenvalues induced by a strongly broken waveguide. Let us now state
the main result concerning the asymptotic expansion of the eigenvalues of the broken
waveguide.

Theorem 4.16. For all Ny, there exists hg > 0, such that for h € (0,hg) the Ny first
eigenvalues of Leui(h) exist. These eigenvalues, denoted by Auin(h), admit the expan-
s10MS:
: 1
Auin(h) ~ > b with Yo =<, n =0, and you = (47V2) 250 (n)
h—0 = 8
>
and the term of order h is not zero. The corresponding eigenvectors have expansions in
powers of h'/3 with the scale x/h when x > 0, and both scales x/h*® and x/h when x < 0.

The main ingredient in the proof of Theorem 4.16 is the construction of quasimodes.
This one uses double scale expansions and the Dirichlet-to-Neumann operators to handle
the connection between the triangle part and the guiding part of the waveguide.
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4.4. A few numerical simulations from [DaR12|. Let us provide some numerical
simulations (using Melina [102]) of the first eigenfunctions.

«—————‘-=

AP () = 0.32783
-_ e

AP (0) = 0.40217
-_— . »

A™P(6) = 0.47230
-_— e

2™ (9) = 0.54181

-_— 9
AC™(9) = 0.61194
-_— 9"

ACT™P () = 0.68328
-_— "
AL (9) = 0.75607
e B2 ER ER 4
AC™(6) = 0.83040
—-—.elhh
AC™ () = 0.90610
—_—menony B
ASTP () = 0.98195

F1cure 5. Computations for § = 0.0226 % 7/2 ~ 2° with the mesh M64S.
Numerical values of the 10 eigenvalues \;() < 1. Plots of the associated
eigenfunctions in the physical domain.
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