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Prologue

Pourquoi, un jour, décidons-nous de changer le cours de notre vie, alors que, la veille

encore, nous étions installés dans de confortables habitudes ? Je crois que c’est en partie

à cette question que mon existence est une réponse. Ce manuscrit contient de nombreux

travaux mathématiques auxquels j’ai contribué, et pourtant, je ne suis pas mathématicien.

Il n’est en fait que l’ombre d’une autre démarche. La motivation qui m’anime, sans

doute, est poétique : créer des mondes par des mots. C’est peut-être pour cela qu’on ne

saurait facilement la caractériser. Ainsi, pour faire une analogie, lorsque j’ai commencé

à apprendre le piano et le solfège et que j’ai évoqué cette nouvelle activité auprès de

François Castella, ce dernier m’a posé une question qui se ramenait finalement à celle-ci :

pourquoi ? Et j’ai esquivé. Je fais de la recherche mathématique pour la même raison

que je fais du piano ou que je m’intéresse à la philosophie. De même, j’ai découvert cette

année certains grands classiques littéraires, comme Don Quichotte, Madame Bovary, La

Confusion des Sentiments, Le Lys dans la Vallée ou La Recherche du Temps Perdu.

Toutes ces œuvres nous parlent de la même chose. Ce sont des variations géniales sur

un même thème : comment les images qu’on projette sur le monde nous en font-elles

perdre la saveur ? En particulier, le génie proustien nous montre l’essence de l’art dans

les sensations à travers lesquelles s’engouffre notre mémoire involontaire. J’ai décidé de

faire du piano en écoutant, dissimulé dans l’encadrement d’une porte, Ari Laptev qui

jouait sur celui qui est installé à Mittag-Leffler ; l’espace d’un instant, je me suis souvenu

d’un autre piano, d’un autre lieu dont je sentais encore l’humidité, et d’autres mains qui

m’avaient appris à aimer la musique ; immédiatement, je flottais là-bas, volant à travers

une cour intérieure obscure, passant devant un atelier, et m’envolant au premier étage,

au-dessus des vieilles marches en bois, pour rejoindre un ami, assis au piano, tandis que

l’eau chauffait dans la cuisine. Alors, pourquoi pas ? me suis-je dit. Peut-être trouverai-

je ce qu’il y a de si spécial dans ce souvenir si j’apprends à jouer. J’ai consacré sept

ans au Laplacien magnétique et à ses cousins, en suivant la même démarche : laisser se

déployer les sentiments, les souvenirs, les pensées, peu importe où cela mène, tant qu’on

en sent la nécessité, suivant ainsi les conseils de Rilke au jeune poète. Il y a une grande

similitude entre la pensée de Platon et celle de Proust, notamment dans leur rapport à la

mémoire. Dans le mythe d’Er, la plupart des hommes se proposent comme avenir leur vie

passée, bien souvent en interposant devant leur regard des images sans âme (l’ambition,

le pouvoir, la richesse, l’amour, etc.). De même, le narrateur de la Recherche perd son

temps à aimer des femmes comme il aimait sa mère : avec anxiété et insatisfaction.

Dans les deux cas, une mémoire solidifiée et prête pour l’action surnage et empêche les

hommes de voir leur vérité. Dans les deux cas, c’est la métamorphose du sujet à travers

la mémoire involontaire (une compréhension intuitive totale) qui l’amène à choisir une

vie bonne ou une vie de romancier. La véritable nécessité de cette mémoire, ce n’est

pas celle dont une technique parfaite rend compte en cöıncidant avec une vérité logique ;

c’est bien plutôt celle qui nâıt de l’aléa des sentiments et qui s’impose à nous. Ce n’est
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qu’ainsi que je comprends l’activité de chercheur ou que je comprends qu’on puisse aimer

plusieurs thèmes de recherche (ou plusieurs personnes : c’est la même chose, non ?),

simultanément.

Ainsi s’achève la véritable description de mes travaux et ici commencent mes re-

merciements. D’abord, je souhaiterais particulièrement remercier Maria Esteban (en lui

souhaitant un prompt rétablissement), Gilles Lebeau et Jan Philip Solovej pour avoir

accepté de faire un rapport sur mes travaux. Ensuite, je remercie vivement Erwan Faou,

Clotilde Fermanian-Kammerer, Bernard Helffer, Frédéric Hérau et San Vũ Ngo.c pour

leur présence dans mon jury. J’aurais, bien sûr, quelques mentions spéciales à ajouter.

Ainsi, je dois à Bernard de m’avoir présenté le Laplacien magnétique et quelques uns de

ses secrets ; mais cela a surtout été une aventure humaine de l’avoir rencontré. J’ai un

immense plaisir à discuter avec lui et j’ai cru comprendre que nous parlions souvent la

même langue : l’intuition. En ce qui concerne Frédéric, je me souviens qu’il m’a dit un

jour avec un léger sourire que j’étais plutôt un bon vivant : je le soupçonne d’en être

un aussi et je le remercie pour sa bienveillance et les petits concerts de piano improvisés

pendant nos pauses WKB. Enfin, je voudrais exprimer ma gratitude à San : sa constance

et sa tranquillité m’ont souvent inspiré, pas seulement en ce qui concerne la géométrie

symplectique et les formes normales.

Les travaux dont ce manuscrit retrace l’histoire sont pour la plupart des collaborations.

J’ai ainsi longuement échangé avec la singulière et féline Monique Dauge qui met parfois

tant d’animation dans les couloirs. Je la remercie particulièrement pour sa confiance

qui nous a permis notamment d’élever nos deux enfants (mathématiques) : Thomas

Ourmières-Bonafos et Jean-Philippe Miqueu. J’en profite d’ailleurs pour les remercier

de leur compréhension devant la folie douce de leurs directeurs. Je souhaite à Thomas

que son post-doc au pays basque lui permette de poursuivre dans la voie qu’il se sera

choisie et à Jean-Philippe de poursuivre sur sa lancée. Je voudrais ensuite remercier

Virginie Bonnaillie-Noël pour nos nombreux travaux nés durant un inoubliable automne

suédois, ainsi que pour sa fiabilité et son savoir-vivre (pour tous ces repas, tout ce vin,

tout ce champagne !). Ce fut également un grand plaisir de rencontrer mon plus jeune

collaborateur Nicolas Popoff. Les discussions avec lui, de tous ordres, m’ont toujours

captivé. Je lui souhaite de s’épanouir à Bordeaux. Un grand merci aussi au finlandais

Nicolas Dombrowski pour m’avoir inspiré. Je tiens aussi à remercier David Krejčǐŕık

pour sa patience et sa clarté, ainsi que pour son goût des bonnes choses. Il me faut ici

aussi exprimer ma gratitude à l’égard de feu Pierre Duclos qui nous a inspiré l’étude des

guides d’ondes magnétiques. Parfois des collaborations naissent dans des cuisines, c’est

là que j’ai rencontré Matej Tušek lorsque nous étions en collocation à Mittag-Leffler ; je

le remercie pour ces agréables moments. Je dois aussi beaucoup à Mikael P. Sundqvist et

à la douceur de son caractère ; et, même si nous n’avons pas encore publié ensemble, il a

largement contribué à ma compréhension des problèmes magnétiques. De la même façon,

Søren Fournais a beaucoup soutenu mes réflexions et inspiré de nombreuses idées qui ont
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encore porté leurs fruits récemment ; merci pour ces séjours dans la belle ville d’Aarhus !

Ce fut aussi très stimulant de travailler avec Vincent Duchêne qui a eu la bonne idée

de me parler de δ-interaction juste avant que Konstantin Pankrashkin ne porte à ma

connaissance un travail apparenté. Je voudrais remercier Peter Hislop pour sa patience

et son naturel : il fait bon travailler avec lui. Enfin, je ne saurais comment exprimer

ma gratitude à Benjamin Boutin pour toutes ces heures passées récemment à reluquer

ensemble la méthode QR.

Les discussions ne se soldent pas toujours immédiatement par un article, mais elles

n’en restent pas moins des sources d’inspiration, c’est pourquoi je remercie Philippe Briet,

Vincent Bruneau, Yves Colin de Verdière, Pavel Exner, Frédéric Faure, Raphaël Henry,

Luc Hillairet, Moez Khenissi, Corentin Léna, Hatem Najar, Konstantin Pankrashkin,

Georgi Raykov, Didier Robert, Coni Rojas-Molina, Frédéric Rousset, Éric Soccorsi, Fran-

çoise Truc, Joe Viola et Xue-Ping Wang.

Je voudrais remercier l’équipe EDP de l’IRMAR pour m’avoir fait confiance en m’ac-

cueillant en son sein il y a quatre ans : Zied Ammari (pour sa bienveillance), Christophe

Cheverry (pour son intégrité), Vincent Duchêne, Taoufik Hmidi (pour ces moments passés

à discuter dans mon bureau), Karel Pravda-Starov (qui vient de nous rejoindre), Fran-

cis Nier (pour m’avoir motivé à lire Balzac), Frédéric Rousset (qui a rejoint la vallée

de Chevreuse), Nicoletta Tchou (pour quelques discussions à l’accent italien), San Vũ

Ngo.c et Dimitri Yafaev (pour son humour si russe). Il m’arrive aussi de hanter quelques

collègues de l’étage du “dessous” : Benjamin Boutin, Gabriel Caloz (que je croise parfois à

la Présidence), François Castella, Martin Costabel, Nicolas Crouseilles, Éric Darrigrand,

Monique Dauge, Yvon Lafranche, Löıc Le Marrec, Olivier Ley, Mohammed Lemou, Löıc

Le Treust (pour nos discussions sur l’avenir dans la recherche), Roger Lewandowski, Fa-

brice Mahé, Florian Méhats (puissent nos guides d’ondes non-linéaires voir le jour !) et

Lalao Rakotomanana. Pendant ces quatre années, j’ai aussi enseigné, en collaboration

avec quelques collègues : Delphine Boucher, Pierre Carcaud, Arnaud Debussche, Nizar

Demni (qui semblerait en cours de magnétisation ?), Isabelle Gruais, Camille Horbez,

Stéphane Leborgne, Yohann Le Floch, Michel Pierre, Cyril Rigault, Christophe Wacheux,

Dimitri Yafaev. J’espère que les étudiants survivront à nos enseignements. J’en profite

pour faire un petit coucou à Thibaut Deheuvels, Aurélien Klak, Yannick Privat et Guil-

laume Rolland. Sans oublier : Ismaël Bailleul, Bachir Bekka (le chef), Jean-Christophe

Breton, Guy Casale (en souvenir de quelques fêtes de la science), Bernard Delyon, Ying

Hu, Bernard Le Stum (merci pour ces conversations autour de l’enseignement), Jean-

Marie Lion. Pour ceux que j’oublierais, j’espère qu’ils me pardonneront.

Parce que l’université ce n’est pas seulement s’amuser à faire de l’enseignement et de

la recherche et que c’est aussi, quelques fois, de l’administration, je voudrais saluer mes

deux voisins du CEVU : Anne Grazon et Frédéric Lambert ; c’est vraiment plus rigolo

quand vous êtes là.
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Annick Paulmier, Marie-Aude Verger et Carole Wosiak. Elles ont un grand mérite de

vivre parmi ces chercheurs fous.

Dans la grande cohérence intuitive que je recherche, mes amis ont une part impor-

tante. Parfois, je les considère comme le rempart contre la permanente dissolution du

Temps. Aussi, je dois beaucoup à Romain pour nos innombrables discussions psycho-

socio-philosophiques. Le monde changerait de couleur si nous ne faisions pas revivre de

temps en temps le Banquet et le Ménon ; merci aussi à Jason de te donner le sourire.

Je ne compte plus ce que je dois à Livia, après plus de quinze ans d’amitié (eh oui, ça

ne nous rajeunit pas) traversés par tristesses et joies ; auprès de toi, je me sens chez

moi. Vincent (G.), je n’oublierai pas nos folles soirées à Saint-Aubin passées à laver

des rideaux ou ces moments à Munich où il a parfois tant plu (le Laplacien magnétique

ne te remerciera jamais assez). Merci encore pour nos discussions et j’espère que notre

collaboration naissante aura un bel avenir (j’en profite pour remercier le doux Marc de

nous en avoir donné l’idée). J’ai une pensée pour Laelana, Virginie (T.), Florian (G.) ou

mon pianiste préféré Jérôme (K.) et pour nos soirées entre filles : ça m’a souvent remonté

le moral. À toi aussi, Mathieu (D.), merci d’être toujours présent. Annalisa, c’est tou-

jours un plaisir de te croiser quand tu reviens en Europe et de refaire le monde autour

de quelques verres. Vincent et Joël, merci pour nos discussions (toujours un peu psy-

chologiques !) qui m’ont souvent inspiré. Raphaël et Raymond, si je dors si fréquemment

dans votre salon, ce n’est pas uniquement pour avoir un toit quand je viens travailler à

Paris, pour préparer des repas pantagruéliques, ou faire les yeux doux à vos séduisants

amis, c’est aussi parce que j’aime votre philosophie et j’espère que votre long voyage vous

mènera où vous le souhaiterez. Ô Benjamin, seule la musique pourrait exprimer comment

ton ineffable amitié m’est essentielle... Peut-être qu’en osant paraphraser Montaigne, je

pourrais dire : parce que c’était toi, parce que c’était moi ; merci au charmant Mathieu,
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CHAPTER 1

A magnetic story

Γνῶθι σεαυτόν.

All this magnetic story is based on the book in preparation [R14b]. This chapter is an

informal introduction which points out some connections between the different problems

analyzed in the present work. We also provide a detailed description of the contents of

this dissertation in Section 3.

1. The realm of λ1(h)

1.1. Once upon a time... Let us present two reasons which lead to the analysis of

the magnetic Laplacian.

The first motivation arises in the mathematical theory of superconductivity. A model

for this theory (see [126]) is given by the Ginzburg-Landau functional:

G(ψ,A) =

∫

Ω

|(−i∇+ κσA)ψ|2 − κ2|ψ|2 + κ2

2
|ψ|4 dx+ κ2

∫

Ω

|σ∇×A− σB|2 dx,

where Ω ⊂ R
d is the place occupied by the superconductor, ψ is the so-called order pa-

rameter (|ψ|2 is the density of Cooper pairs), A is a magnetic potential and B the applied

magnetic field. The parameter κ is characteristic of the sample (the superconductors of

type II are such that κ >> 1) and σ corresponds to the intensity of the applied magnetic

field. Roughly speaking, the question is to determine the nature of the minimizers. Are

they normal, that is (ψ,A) = (0,F) with ∇ × F = B (and ∇ · F = 0), or not? We

can mention the important result of Giorgi-Phillips [60] which states that, if the applied

magnetic field does not vanish, then, for σ large enough, the normal state is the unique

minimizer of G (with the divergence free condition). When analyzing the local minimality

of (0,F), we are led to compute the Hessian of G at (0,F) and to analyze the positivity

of:

(−i∇+ κσA)2 − κ2.

For further details, we refer to the book by Fournais and Helffer [52] and to the papers

by Lu and Pan [100, 101]. Therefore the theory of superconductivity leads to investigate

the lowest eigenvalue λ1(h) of the Neumann realization of the magnetic Laplacian, that

is (−ih∇+A)2, where h > 0 is small (κ is assumed to be large).

The second motivation is to understand at which point there is an analogy between the

electric Laplacian −h2∆+V (x) and the magnetic Laplacian (−ih∇+A)2. For instance, in
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the one dimensional electric case, when V admits a unique and non-degenerate minimum

at 0 and satisfies lim inf
|x|→+∞

V (x) > V (0), we know that the n-th eigenvalue λn(h) exists and

satisfies:

(1.1.1) λn(h) = V (0) + (2n− 1)

√

V ′′(0)

2
h+O(h2).

Therefore a natural question arises:

“Are there similar results to (1.1.1) in pure magnetic cases?”

In order to answer this question, this dissertation presents a theory of the Magnetic

Harmonic Approximation. Concerning the Schrödinger equation in presence of magnetic

field the reader may consult [5] (see also [29]) and the surveys [110], [44] and [73].

Jointly with (1.1.1) it is well-known that we can perform WKB constructions for the

electric Laplacian (see the book of Dimassi and Sjöstrand [35, Chapter 3]). Unfortunately

such constructions do not seem to be possible in full generality for the pure magnetic

case (see the course of Helffer [66, Section 6] and the paper by Martinez and Sordoni

[107]) and the naive localization estimates of Agmon are no more optimal (see [83], the

paper by Erdős [42] or the papers by Nakamura [113, 114]). In the magnetic situation,

accurate semiclassical expansions of the eigenvalues and eigenfunctions (shortly called

eigenpairs) are difficult to obtain. In fact, the more we know about the expansion of the

eigenpairs, the more we can estimate the tunnel effect in the spirit of the electric tunnel

effect of Helffer and Sjöstrand (see for instance [81, 82] and also the papers by Simon

[127, 128]) when there are symmetries. Estimating the magnetic tunnel effect is still

a widely open question directly related to the approximation of the eigenfunctions (see

[83] and [22] for electric tunneling in presence of magnetic field and [12] in the case with

corners). Hopefully the main philosophy living throughout this dissertation will prepare

the future investigations on this fascinating subject. In particular we provide the first

examples of magnetic WKB constructions inspired by the theory developed in [BHR14].

Anyway this dissertation proposes a change of perspective in the study of the magnetic

Laplacian. In fact, during the past decades, the philosophy behind the spectral analysis

was essentially variational. Many papers dealt with the construction of quasimodes used

as test functions for the quadratic form associated with the magnetic Laplacian. In any

case the attention was focused on the functions of the domain more than on the operator

itself. In this dissertation we systematically try to inverse the point of view: the main

problem is no more to find appropriate quasimodes but an appropriate (and sometimes

microlocal) representation of the operator. By doing this we will partially leave the min-

max principle and the variational theory for the spectral theorem and the microlocal and

hypoelliptic spirit.
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1.2. Definitions. Let Ω be a Lipschitzian domain in R
d. Let us consider a smooth

vector potential A = (A1, . . . , Ad) on Ω. We consider the 1-form:

ωA =
d∑

k=1

Ak dxk.

We introduce the exterior derivative of ωA:

σB = dωA =
∑

j<k

Bj,k dxj ∧ dxk.

In dimension two, the only coefficient is B12 = ∂x1A2 − ∂x2A1. In dimension three, the

magnetic field is defined as:

B = (B1, B2, B3) = (B23,−B13, B12) = ∇×A.

We will discuss in this dissertation the spectral properties of some self-adjoint realizations

of the magnetic operator:

Lh,A,Ω =
d∑

k=1

(−ih∂k + Ak)
2,

where h > 0 is a parameter (related to the Planck constant). We notice the fundamental

property, called gauge invariance:

e−iφ(−i∇+A)eiφ = −i∇+A+∇φ

so that:

e−iφ(−i∇+A)2eiφ = (−i∇+A+∇φ)2,
where φ ∈ H1(Ω,R).

1.3. A fascination for λ1(h). In the last fifteen years many papers dealt with the

asymptotic expansions of the first eigenvalue of the magnetic Laplacian. Let us describe

some of these results.

1.3.1. Constant magnetic field. In dimension two the constant magnetic field case is

treated when Ω is a disk (with Neumann condition) by Bauman, Phillips and Tang in [7]

(see [9] and [43] for the Dirichlet case). In particular, they prove a two terms expansion

of the first eigenvalue:

λ1(h) = Θ0h− C1

R
h3/2 + o(h3/2),

where Θ0 ∈ (0, 1) and C1 > 0 are universal constants. This result, which was conjectured

in [8, 34], is generalized to smooth and bounded domains by Helffer and Morame in [75]

where it is proved that:

(1.1.2) λ1(h) = Θ0h− C1κmaxh
3/2 + o(h3/2),

where κmax is the maximal curvature of the boundary. Let us emphasize that, in these

papers, the authors are only concerned by the first terms of the asymptotic expansion of
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λ1(h). In the case of smooth domains the complete asymptotic expansion of all the eigen-

values is done by Fournais and Helffer in [51]. When the boundary is not smooth, we may

mention the papers of Jadallah and Pan [87, 118]. In the semiclassical regime, we refer

to the papers of Bonnaillie-Noël, Dauge and Fournais [10, 11, 14] where perturbation

theory is used in relation with the estimates of Agmon. For numerical investigations the

reader may consider the paper [12].

In dimension three the constant magnetic field case (with intensity 1) is treated by

Helffer and Morame in [77] under generic assumptions on the (smooth) boundary of Ω:

λ1(h) = Θ0h+ γ̂0h
4/3 + o(h4/3),

where the constant γ̂0 is related to the magnetic curvature of a curve in the boundary

along which the magnetic field is tangent to the boundary. The case of the ball is analyzed

in details by Fournais and Persson in [53].

1.3.2. Variable magnetic field. The case of variable magnetic fields is the core of this

dissertation. This case can be motivated by anisotropic superconductors (see for instance

[25, 2]) or the liquid crystal theory (see [78, 79, R10a, R10b]). Nevertheless we will

see that the variable situation has an interest in itself and will lead to considerations that

may apply to the constant magnetic field case as well. One of the main (and not so naive)

ideas in this dissertation is that a variable geometry with a constant magnetic field can

be transformed into a constant geometry with an effective variable magnetic field (and

even an electric field in the semiclassical limit). Let us now recall some personal results

which gave birth to the intuitions pervading this dissertation.

For the case with a non vanishing variable magnetic field, we refer to [100, R09] for

the first terms of the lowest eigenvalue. In particular the paper [R09] provides (under a

generic condition) an asymptotic expansion with two terms in the form:

λ1(h) = Θ0b
′h+ C2D

1 (x0,B, ∂Ω)h
3/2 + o(h3/2),

where C2D
1 (x0,B, ∂Ω) depends on the geometry of the boundary and on the magnetic

field at x0 and where b′ = min
∂Ω

B = B(x0). When the magnetic field vanishes, the first

analysis of the lowest eigenvalue is due to Montgomery in [111] followed by Helffer and

Morame in [74] (see also [119, 68, 70]).

In dimension three (with Neumann condition on a smooth boundary), the first term of

λ1(h) is given by Lu and Pan in [101]. The next terms in the expansion are investigated

in [R10c] where we can find in particular an upper bound in the form

λ1(h) ≤ ‖B(x0)‖s(θ(x0))h+ C3D
1 (x0,B, ∂Ω)h

3/2 + C3D
2 (x0,B, ∂Ω)h

2 + Ch5/2,

where s is a spectral invariant defined in the next section, θ(x0) is the angle of B(x0)

with the boundary at x0 and the constants C3D
j (x0,B, ∂Ω) are related to the geometry
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and the magnetic field at x0 ∈ ∂Ω. Let us finally mention the recent paper by Bonnaillie-

Noël-Dauge-Popoff [13] which establishes a one term asymptotics in the case of Neumann

boundaries with corners.

1.4. Some model operators. It turns out that the results recalled in Section 1.3

are related to many model operators. Let us introduce some of them.

1.4.1. De Gennes operator. The analysis of the magnetic Laplacian with Neumann

condition on R
2
+ makes the so-called de Gennes operator to appear. We refer to [32]

where this model is studied in details (see also [52]). For ζ ∈ R, we consider the Neumann

realization on L2(R+) of

(1.1.3) L
[0]
ζ = D2

t + (ζ − t)2.

We denote by ν
[0]
1 (ζ) the lowest eigenvalue of L

[0]
ζ . It is possible to prove that the function

ζ 7→ ν
[0]
1 (ζ) admits a unique and non-degenerate minimum at a point ζ

[0]
0 > 0, shortly

denoted by ζ0, and that we have

(1.1.4) Θ0 := min
ξ∈R

ν
[0]
1 (ζ) ∈ (0, 1).

1.4.2. Montgomery operator. Let us now introduce another important model. This

one was introduced by Montgomery in [111] to study the case of vanishing magnetic

fields in dimension two (see also [119] and [77, Section 2.4]). This model was revisited

by Helffer in [67], generalized by Helffer and Persson in [80] and Fournais and Persson

in [54]. The Montgomery operator with parameter ζ ∈ R is the self-adjoint realization

on R of:

(1.1.5) L
[1]
ζ = D2

t +

(

ζ − t2

2

)2

.

1.4.3. Popoff operator. The investigation of the magnetic Laplacian on dihedral do-

mains (see [121]) leads to the analysis of the Neumann realization on L2(Sα, dt dz) of:

(1.1.6) Le
α,ζ = D2

t +D2
z + (t− ζ)2,

where Sα is the sector with angle α,

Sα =
{

(t, z) ∈ R
2 : |z| ≤ t tan

(α

2

)}

.

1.4.4. Lu-Pan operator. Let us present a last model operator appearing in dimension

three in the case of a smooth Neumann boundary (see [101, 76, BDPR12]). We consider

the half-plane,

R
2
+ = {(s, t) ∈ R

2, t > 0}
and we introduce the self-adjoint Neumann realization on R

2
+ of the Schrödinger operator

LLP
θ with potential Vθ:

(1.1.7) LLP
θ = −∆+ Vθ = D2

s +D2
t + Vθ,
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where Vθ is defined for any θ ∈ (0, π
2
) by

Vθ : (s, t) ∈ R
2
+ 7−→ (t cos θ − s sin θ)2.

We can notice that Vθ reaches its minimum 0 all along the line t cos θ = s sin θ, which

makes the angle θ with ∂R2
+. We denote by s1(θ) or simply s(θ) the infimum of the

spectrum of LLP
θ . In [52] (and [76, 101]), it is proved that s is analytic and strictly

increasing on
(
0, π

2

)
.

2. A connection with waveguides

2.1. Existence of a bound state of LLP
θ . Among other things one can prove the

following lemma (see [76, 101]).

Lemma 1.1. For all θ ∈
(
0, π

2

)
there exists an eigenvalue of LLP

θ below the essential

spectrum which equals [1,+∞).

A classical result combining an estimate of Agmon (cf. [1]) and a theorem due to

Persson (cf. [120]) implies that the corresponding eigenfunctions are localized near (0, 0).

This result is slightly surprising since the existence of the discrete spectrum is related to

the association between the Neumann condition and the partial confinement of Vθ. After

translation and rescaling, we are led to a new operator:

hD2
s +D2

t + (t− ζ0 − sh1/2)2 −Θ0,

where h = tan θ. Then one can reduce the (semiclassical) analysis to the so-called Born-

Oppenheimer approximation (see for instance [103]):

hD2
s + ν

[0]
1 (ζ0 + sh1/2)−Θ0.

This last operator is very easy to analyze with the classical theory of the harmonic

approximation and we get (see [BDPR12]):

Theorem 1.2. The lowest eigenvalues of LLP
θ admit the following expansions:

(1.2.1) sn(θ) ∼
θ→0

∑

j≥0

γj,nθ
j

with γ0,n = Θ0 et γ1,n = (2n− 1)

√

(ν
[0]
1 )′′(ζ0)

2
.

2.2. A result of Duclos and Exner. Figure 1 can make us think to a broken

waveguide. Indeed, if one uses the Neumann condition to symmetrize LLP
θ and if one

replaces the confinement property of Vθ by a Dirichlet condition, we are led to the sit-

uation described in Figure 2. This heuristic comparison reminds the famous paper [37]

where Duclos and Exner introduce a definition of standard (and smooth) waveguides and
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s1(θ) 1.0001656284 0.99987798948 0.99910390126 0.99445407220

Figure 1. First eigenfunction of LLP
θ for θ = ϑπ/2 with ϑ = 0.9, 0.85, 0.8

et 0.7.

(0,0) 2θ θ(− π
sin θ

, 0)

Dirichlet

Ωθ Ω+
θ

Neumann

Figure 2. Waveguide with corner Ωθ and half-waceguide Ω+
θ .

perform a spectral analysis. For example, in dimension two (see Figure 3), a waveguide

of width ε is determined by a smooth curve s 7→ c(s) ∈ R
2 as the subset of R2 given by:

{c(s) + tn(s), (s, t) ∈ R× (−ε, ε)} ,

where n(s) is the normal to the curve c(R) at the point c(s).

Figure 3. Waveguide Figure 4. Broken guide
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Assuming that the waveguide is straight at infinity but not everywhere, Duclos and

Exner prove that there is always an eigenvalue below the essential spectrum (in the case

of a circular cross section in dimensions two and three). Let us notice that the essential

spectrum is [λ,+∞) where λ is the lowest eigenvalue of the Dirichlet Laplacian on the

cross section. The proof of the existence of discrete spectrum is elementary and relies on

the min-max principle. Letting ψ ∈ H1
0 (Ω) :

q(ψ) =

∫

Ω

|∇ψ|2 dx,

it is enough to find ψ0 such that q(ψ0) < λ‖ψ0‖L2(Ω). Such a function can be constructed

by considering a perturbed Weyl sequence associated with λ.

2.3. Waveguides and magnetic fields. Bending a waveguide induces discrete

spectrum below the essential spectrum, but what about twisting a waveguide? This

question arises for instance in the papers [92, 95, 41] where it is proved that twisting

a waveguide plays against the existence of the discrete spectrum. In the case without

curvature, the quadratic form is defined for ψ ∈ H1
0(R× ω) by:

q(ψ) = ‖∂1ψ − ρ(s)(t3∂2 − t2∂3)ψ‖2 + ‖∂2ψ‖2 + ‖∂3ψ‖2,

where s 7→ ρ(s) represents the effect of twisting the cross section ω and (t2, t3) are

coordinates in ω. From a heuristic point of view, the twisting perturbation seems to act

“as” a magnetic field. This leads to the natural question:

“Is the spectral effect of a torsion the same as the effect of a magnetic field?”

If the geometry of a waveguide can formally generate a magnetic field, we can conversely

wonder if a magnetic field can generate a waveguide. This remark partially appears in

[36] where the discontinuity of a magnetic field along a line plays the role of a waveguide.

More generally it turns out that, when the magnetic field cancels along a curve, this curve

becomes an effective waveguide.

3. Organization of the dissertation

3.1. Spectral analysis of model operators and spectral reductions. Chapter 2

deals with model operators. This notion of model operators is fundamental in the theory

of the magnetic Laplacian. We have already introduced some important and historical

examples. There are essentially two natural ways to meet reductions to model operators.

The first approach can be done thanks to a (space) partition of unity which reduces the

spectral analysis to the one of localized and simplified models (we straighten the geometry

and freeze the magnetic field). The second approach, which involves an analysis in the

phase space, is to identify the possible different scales of the problem, that is the fast

and slow variables. This often involves an investigation in the microlocal spirit: we

shall analyze the properties of symbols and deduce a microlocal reduction to a spectral

problem in lower dimension. In Chapter 2 we provide explicit examples of models and
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provide their spectral analysis. In Chapter 2, Section 1 we introduce a model which is

fundamental to describe the effect of conical singularities of the boundary on the magnetic

eigenvalues (see [BR13a, BR14]). This is an example which is provided by the first kind

of approach (freeze the geometry and the magnetic field). It will turn out that part of the

spectral analysis of this model can be done in the spirit of the second approach when the

angle of the cone goes to zero (different scales and dimensional reduction). In Chapter

2, Section 2 we present a model related to vanishing magnetic fields in dimension two.

Due to an inhomogeneity of the magnetic operator, this other model leads to a microlocal

reduction and therefore to the investigation of an effective symbol (see [BR13b, R14a]).

In fact, the example of Section 2 can lead to a more general framework. In Chapter 2,

Section 3 we provide a general and elementary theory of the “magnetic Born-Oppenheimer

approximation” which is a systematic semiclassical reduction to model operators (under

generic assumptions on some effective symbols). We also provide the first known pure

magnetic WKB constructions (see [BHR14]).

3.2. Normal forms philosophy and the magnetic semi-excited states. As we

have seen there is a non trivial connection between the discrete spectrum, the possible

magnetic field and the possible boundary. In fact normal form procedures are often

deeply rooted in the different proofs, not only in the semiclassical framework. We present

in Chapter 3 the results of four studies [DoR13], [R12], [PR13], [RVN14]. These

studies are concerned by the semiclassical asymptotics of the magnetic eigenvalues and

eigenfunctions.

3.2.1. Towards the magnetic semi-excited states. We now describe the philosophy of

the proofs of asymptotic expansions for the magnetic Laplacian with respect to a param-

eter α (which tends to zero and which might be for example the semiclassical parameter).

Let us distinguish between the different conceptual levels of the analysis. Our analysis

uses the standard construction of quasimodes, localization techniques (“IMS” formula)

and a priori estimates of Agmon type satisfied by the eigenfunctions. These “standard”

tools, which are used in most of the papers dealing with λ1(α), are not enough to inves-

tigate λn(α) due to the spectral splitting arising sometimes in the subprincipal terms. In

fact such a fine behavior is the sign of a microlocal effect. In order to investigate this ef-

fect, we use normal form procedures in the spirit of the Egorov theorem. It turns out that

this normal form strategy also strongly simplifies the construction of quasimodes. Once

the behavior of the eigenfunctions in the phase space is established, we use the Feshbach-

Grushin approach to reduce our operator to an electric Laplacian. Let us comment more

in details the whole strategy.

The first step to analyze such problems is to perform an accurate construction of

quasimodes and to apply the spectral theorem. In other words we look for pairs (λ, ψ) such

that we have ‖(Lα−λ)ψ‖ ≤ ε‖ψ‖. Such pairs are constructed through an homogenization

procedure involving different scales with respect to the different variables. In particular
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the construction uses a formal power series expansion of the operator and an Ansatz

in the same form for (λ, ψ). The main difficulty in order to succeed is to choose the

appropriate scalings.

The second step aims at giving a priori estimates satisfied by the eigenfunctions.These

are localization estimates à la Agmon (see [1]). To prove them one generally needs to

have a priori estimates for the eigenvalues which can be obtained with a partition of

unity and local comparisons with model operators. Then such a priori estimates, which

are in general not optimal, involve an improvement in the asymptotic expansion of the

eigenvalues. If we are just interested in the first terms of λ1(α), these classical tools are

enough.

In fact, the major difference with the electric Laplacian arises precisely in the analy-

sis of the spectral splitting between the lowest eigenvalues. Let us describe what is done

in [51] (dimension two, constant magnetic field, α = h) and in [R13a] (non constant

magnetic field). In [51, R13a] quasimodes are constructed and the usual localization

estimates are proved. Then the behavior with respect to a phase variable needs to be

determined to allow a dimensional reduction. Let us underline here that this phenom-

enon of phase localization is characteristic of the magnetic Laplacian and is intimately

related to the structure of the low lying spectrum. In [51] Fournais and Helffer are led

to use the pseudo-differential calculus and the Grushin formalism. In [R13a] the ap-

proach is structurally not the same. In [R13a], in the spirit of the Egorov theorem (see

[39, 124, 105]), we use successive canonical transforms of the symbol of the operator

corresponding to unitary transforms (change of gauge, change of variable, Fourier trans-

form) and we reduce the operator, modulo remainders which are controlled thanks to

the a priori estimates, to an electric Laplacian being in the Born-Oppenheimer form (see

[27, 103] and more recently [BDPR12]). This reduction highlights the crucial idea that

the inhomogeneity of the magnetic operator is responsible for its spectral structure, as

we can see in [DoR13], [PR13].

3.2.2. Birkhoff normal form. As we suggested above, our magnetic normal forms are

close to the Birkhoff procedure and it is rather surprising that it has never been im-

plemented to describe the effect of magnetic fields on the low lying eigenvalues of the

magnetic Laplacian. A reason might be that, compared to the case of a Schrödinger

operator with an electric potential, the pure magnetic case presents a specific feature:

the symbol “itself” is not enough to generate a localization of the eigenfunctions. This

difficulty can be seen in the recent papers by Helffer and Kordyukov [69] (dimension

two) and [71] (dimension three) which treat cases without boundary. In dimension three

they provide accurate constructions of quasimodes, but do not establish the semiclassical

asymptotic expansions of the eigenvalues which is still an open problem. In dimension

two, they prove that if the magnetic field has a unique and non-degenerate minimum, the
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j-th eigenvalue admits an expansion in powers of h1/2 of the form:

λj(h) ∼ hmin
q∈R2

B(q) + h2(c1(2j − 1) + c0) +O(h5/2),

where c0 and c1 are constants depending on the magnetic field. In [RVN14], we extend

their result by obtaining a complete asymptotic expansion which actually applies to more

general magnetic wells and allows to describe larger eigenvalues. In the ongoing work

[HKRVN14], we extend this strategy to the dimension three.

3.3. The spectrum of waveguides. In Chapter 4 we present some results occurring

in the theory of waveguides. In particular we consider the following question (addressed

in [KR13]):

“What is the spectral influence of a magnetic field on a waveguide ?”

Then, when there is no magnetic field, we would also like to analyze the effect of a corner

on the spectrum and present a non smooth version of the result of Duclos and Exner (see

[DaR12]). For that purpose we also present some results concerning the semiclassical

triangles.
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Magnetic cone
([BR13a, BR14])

• Conical singularity,
• Small angle limit.

”Vanishing” magnetic fields
([R13a, DoR13])

• Montgomery operator(s),
• Normal form.

Magnetic WKB constructions ([BHR14])

• Coherent states,
• Operator valued eikonal equation,
• Normal forms and tunnel effect.

Magnetic normal form in 3D ([HKRVN14])

• Symplectic geometry in odd dimension.

Spectrum and Geometry
in 2D Magnetic wells ([RVN14])

• Symplectic geometry,
• Birkhoff normal form,
• Pseudo-differential calculus.

Magnetic lens ([PR13])

• Edge singularity,
• Normal form.

A model electric Schrödinger operator ([BDPR12])

• Born-Oppenheimer approximation.

Magnetic toy operator in 3D
with smooth boundary ([R12])

• Grushin reduction,
• Polynomial estimates in the phase space.

Broken waveguides ([DaLR11, DaR12])

• Born-Oppenheimer approximation,
• Boundary layer.

Breaking a magnetic zero locus ([BR13b, R14a])

• Coherent states.

Magnetic waveguides ([KR13, KRT13])

• Norm resolvent convergence,
• Magnetic Hardy inequality.

Breaking a δ-interaction ([DuR14])

• Number of eigenvalues,
• Singular Born-Oppenheimer approximation.

Figure 5. Some references and connections



CHAPTER 2

Models and spectral reductions

The soul unfolds itself, like a lotus of countless petals.

The Prophet, Self-Knowledge, Khalil Gibran

In this chapter we introduce two model operators (depending on parameters).

The first one is the Neumann Laplacian on a circular cone of aperture α with a

constant magnetic field. This model is quite important in the study of problems with

non smooth boundaries in dimension three: this is the simplest case involving a conical

singularity. The results presented about this operator are based on the collaborations

with V. Bonnaillie-Noël [BR13a] and [BR14].

The second one appears in dimension two when studying vanishing magnetic fields

in the case when the cancellation line of the field intersects the boundary. The results

concerning this model are related to [BR13b] and [R14a].

These models will already give a flavor of the techniques which travel through this

dissertation.

Finally, we provide in this chapter a theory of the magnetic Born-Oppenheimer ap-

proximation as well as purely magnetic WKB constructions based on the collaboration

with V. Bonnailllie-Noël and F. Hérau [BHR14].

1. The power of the peaks

We are interested in the low-lying eigenvalues of the magnetic Neumann Laplacian

with a constant magnetic field applied to a “ peak ”, i.e. a right circular cone Cα. The

right circular cone Cα of angular opening α ∈ (0, π) (see Figure 1) is defined in the

Cartesian coordinates (x, y, z) by

Cα = {(x, y, z) ∈ R
3, z > 0, x2 + y2 < z2 tan2 α

2
}.

Let B be the constant magnetic field

B(x, y, z) = (0, sin β, cos β)T,

where β ∈
[
0, π

2

]
. We choose the following magnetic potential A:

A(x, y, z) =
1

2
B× x =

1

2
(z sin β − y cos β, x cos β,−x sin β)T.
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We consider Lα,β the Friedrichs extension associated with the quadratic form

QA(ψ) = ‖(−i∇+A)ψ‖2L2(Cα),

defined for ψ ∈ H1
A
(Cα) with

H1
A
(Cα) = {u ∈ L2(Cα), (−i∇+A)u ∈ L2(Cα)}.

The operator Lα is (−i∇+A)2 with domain:

H2
A
(Cα) = {u ∈ H1

A
(Cα), (−i∇+A)2u ∈ L2(Cα), (−i∇+A)u · n = 0 on ∂Cα}.

We define λn(α, β) as the n-th Rayleigh quotient of Lα,β. Let ψn(α, β) be a normalized

associated eigenvector (if it exists).

B

α

Cα

β

Figure 1. Geometric setting.

1.1. Why studying magnetic cones? One of the most interesting results of the

last fifteen years is provided by Helffer and Morame in [75] where they prove that the

magnetic eigenfunctions, in 2D, concentrates near the points of the boundary where the

(algebraic) curvature is maximal, see (1.1.2). This property aroused interest in domains

with corners, which somehow correspond to points of the boundary where the curvature

becomes infinite (see [87, 118] for the quarter plane and [10, 11] for more general

domains). Denoting by Sα the sector in R
2 with angle α and considering the magnetic

Neumann Laplacian with constant magnetic field of intensity 1, it is proved in [10] that,

as soon as α is small enough, a bound state exists. Its energy is denoted by µ(α). An

asymptotic expansion at any order is even provided (see [10, Theorem 1.1]):

(2.1.1) µ(α) ∼ α
∑

j≥0

mjα
2j, with m0 =

1√
3
.
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In particular, this proves that µ(α) becomes smaller than the lowest eigenvalue of the

magnetic Neumann Laplacian in the half-plane with constant magnetic field (with inten-

sity 1), that is:

µ(α) < Θ0, α ∈ (0, α0),

where Θ0 is defined in (1.1.4).This motivates the study of dihedral domains (see [121,

122]). Another possibility of investigation, in dimension three, is the case of a conical

singularity of the boundary. We would especially like to answer the following questions:

Can we go below µ(α) and can we describe the structure of the spectrum when the

aperture of the cone goes to zero?

1.2. The magnetic Laplacian in spherical coordinates. Since the spherical co-

ordinates are naturally adapted to the geometry, we consider the change of variable:

Φ(τ, θ, ϕ) := (x, y, z) = α−1/2(τ cos θ sinαϕ, τ sin θ sinαϕ, τ cosαϕ).

This change of coordinates is nothing but a first normal form. We denote by P the

semi-infinite rectangular parallelepiped

P := {(τ, θ, ϕ) ∈ R
3, τ > 0, θ ∈ [0, 2π), ϕ ∈ (0, 1

2
)}.

Let ψ ∈ H1
A
(Cα). We write ψ(Φ(τ, θ, ϕ)) = α1/4ψ̃(τ, θ, ϕ) for any (τ, θ, ϕ) ∈ P in these

new coordinates and we have

‖ψ‖2L2(Cα) =
∫

P
|ψ̃(τ, θ, ϕ)|2 τ 2 sinαϕ dτ dθ dϕ,

and:

QA(ψ) = αQα,β(ψ̃),

where the quadratic form Qα,β is defined on the transformed form domain H1
Ã
(P) by

(2.1.2) Qα,β(ψ) :=

∫

P

(
|P1ψ|2 + |P2ψ|2 + |P3ψ|2

)
dµ̃,

with the measure

dµ̃ = τ 2 sinαϕ dt dθ dϕ,

and:

H1
Ã
(P) = {ψ ∈ L2(P , dµ̃), (−i∇+ Ã)ψ ∈ L2(P , dµ̃)}.

We also have:

P1 = Dτ − τϕ cos θ sin β,

P2 = (τ sin(αϕ))−1

(

Dθ +
τ 2

2α
sin2(αϕ) cos β +

τ 2ϕ

2

(

1− sin(2αϕ)

2αϕ

)

sin β sin θ

)

,

P3 = (τ sin(αϕ))−1Dϕ.
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We consider Lα,β the Friedrichs extension associated with the quadratic form Qα,β:

Lα,β = τ−2(Dτ − τϕ cos θ sin β)τ 2(Dτ − τϕ cos θ sin β)

+
1

τ 2 sin2(αϕ)

(

Dθ +
τ 2

2α
sin2(αϕ) cos β +

τ 2ϕ

2

(

1− sin(2αϕ)

2αϕ

)

sin β sin θ

)2

+
1

α2τ 2 sin(αϕ)
Dϕ sin(αϕ)Dϕ.

We define λ̃n(α, β) the n-th eigenvalue of Lα,β.

1.3. Spectrum of the magnetic cone in the small angle limit.

1.3.1. Eigenvalues in the small angle limit. We aim at estimating the discrete spec-

trum, if it exists, of Lα,β. For that purpose, we shall first determine the bottom of its

essential spectrum. From Persson’s characterization of the infimum of the essential spec-

trum, it is enough to consider the behavior at infinity and it is possible to establish the

following proposition (see [BR14]).

Proposition 2.1. Let us denote by spess(Lα,β) the essential spectrum of Lα,β. We have:

inf spess(Lα,β) ∈ [Θ0, 1],

where Θ0 > 0 is defined in (1.1.4).

At this stage we still do not know that discrete spectrum exists. As it is the case in

dimension two (see [10]) or in the case on the infinite wedge (see [121]), there is hope to

prove such an existence in the limit α → 0 (see [BR14]).

Theorem 2.2. For all n ≥ 1, there exist α0(n) > 0 and a sequence (γj,n)j≥0 such that,

for all α ∈ (0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α, β) ∼
α→0

α
∑

j≥0

γj,nα
j, with γ0,n =

√

1 + sin2 β

25/2
(4n− 1).

Remark 2.3. In particular the main term is minimum when β = 0 and in this case

Theorem 2.2 states that λ1(α) ∼ 3
25/2

α. We have 3
25/2

< 1√
3
so that the lowest eigenvalue

of the magnetic cone goes below the lowest eigenvalue of the two dimensional magnetic

sector (see (2.1.1)).

Remark 2.4. As a consequence of Theorem 2.2, we deduce that the lowest eigenvalues

are simple as soon as α is small enough. Therefore, the spectral theorem implies that the

quasimodes constructed in the proof are approximations of the eigenfunctions of Lα,β. In

particular, using the rescaled spherical coordinates, for all n ≥ 1, there exist αn > 0 and

Cn such that, for α ∈ (0, αn):

‖ψ̃n(α, β)− fn‖L2(P, dµ̃) ≤ Cnα
2,

where fn (which is β dependent) is related to the n-th Laguerre’s function and ψ̃n(α, β)

is the n-th normalized eigenfunction.
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In the next two sections we discuss the strategy of the proof of Theorem 2.2.

1.3.2. Axissymmetric case: β = 0. We apply the strategy presented in Chapter 1,

Section 3. In this situation, the phase variable that we should understand is the dual

variable of θ given by a Fourier series decomposition and denoted by m ∈ Z. In other

words, we make a Fourier decomposition of Lα,0 with respect to θ and we introduce the

family of 2D-operators (Lα,0,m)m∈Z acting on L2(R, dµ):

Lα,0,m = − 1

τ 2
∂ττ

2∂τ +
1

τ 2 sin2(αϕ)

(

m+
sin2(αϕ)

2α
τ 2
)2

− 1

α2 τ 2 sin(αϕ)
∂ϕ sin(αϕ)∂ϕ,

with

R = {(τ, ϕ) ∈ R
2, τ > 0, ϕ ∈ (0, 1

2
)},

and

dµ = τ 2 sin(αϕ) dτ dϕ.

This normal form is also the suitable form to construct quasimodes. Then an integrability

argument proves that the eigenfunctions are microlocalized in m = 0, i.e. they are

axisymmetric. Thus this allows a first reduction of dimension. It remains to notice

that the last term in Lα,0,0 is penalized by α−2 so that the Feshbach-Grushin projection

on the groundstate of −α−2(sin(αϕ))−1∂ϕ sin(αϕ)∂ϕ (the constant function) acts as an

approximation of the identity on the eigenfunctions. Therefore the spectrum of Lα,0,0 is

described modulo lower order terms by the spectrum of the average of Lα,0 with respect

to ϕ which involves the so-called Laguerre operator (radial harmonic oscillator).

1.3.3. Case β ∈
[
0, π

2

]
. In this case we cannot use the axisymmetry, but we are

still able to construct formal series and prove localization estimates of Agmon type.

Moreover we notice that the magnetic momentum with respect to θ is strongly penalized

by (τ 2 sin2(αϕ))−1 so that, jointly with the localization estimates it is possible to prove

that the eigenfunctions are asymptotically independent from θ and we are reduced to the

situation β = 0.

2. Vanishing magnetic fields and boundary

2.1. Why considering vanishing magnetic fields? A motivation is related to

the papers of R. Montgomery [111], X-B. Pan and K-H. Kwek [119] and B. Helffer

and Y. Kordyukov [68] (see also [74] and [66]) where the authors analyze the spectral

influence of the cancellation of the magnetic field in the semiclassical limit. Another

motivation appears in the paper [36] where the authors are concerned with the “magnetic

waveguides” and inspired by the physical considerations [123, 65] (see also [85]). In any

case the case of vanishing magnetic fields can inspire the analysis of non trivial examples

of magnetic normal forms, as we will see later.
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2.2. Montgomery operator. Without going into the details let us describe the

model operator introduced in [111]. Montgomery was concerned by the magnetic Lapla-

cian (−ih∇ + A)2 on L2(R2) in the case when the magnetic field B = ∇ × A vanishes

along a smooth curve Γ. Assuming that the magnetic field non degenerately vanishes, he

was led to consider the self-adjoint realization on L2(R2) of:

L = D2
t + (Ds − st)2.

In this case the magnetic field is given by β(s, t) = s so that the zero locus of β is the

line s = 0. Let us write the following change of gauge:

LMo = e−i s
2t
2 L ei

s2t
2 = D2

s +

(

Dt +
s2

2

)2

.

The Fourier transform (after changing ζ in −ζ) with respect to t gives the direct integral:

LMo =

∫ ⊕
L
[1]
ζ dζ, where L

[1]
ζ = D2

s +

(

ζ − s2

2

)2

.

Note that this family of model operators will be seen as special case of a more general

family in Section 3.2. Let us recall a few important properties of the lowest eigenvalue

ν
[1]
1 (ζ) of L

[1]
ζ (for the proofs, see [119, 67, 80]).

Proposition 2.5. The following properties hold:

(1) For all ζ ∈ R, ν
[1]
1 (ζ) is simple.

(2) The function ζ 7→ ν
[1]
1 (ζ) is analytic.

(3) We have: lim
|ζ|→+∞

ν
[1]
1 (ζ) = +∞.

(4) The function ζ 7→ ν
[1]
1 (ζ) admits a unique minimum at a point ζ

[1]
0 and it is non

degenerate.

We have:

(2.2.1) sp(L) = spess(L) = [νMo,+∞) ,

with νMo = ν
[1]
1 (ζ

[1]
0 ). With a finite element method and Dirichlet condition on the

artificial boundary, a upper-bound of the minimum is obtained in [80, Table 1] and the

numerical simulations provide νMo ≃ 0.5698 reached for ζ
[1]
0 ≃ 0.3467 with a discretization

step at 10−4 for the parameter ζ. This numerical estimate is already mentioned in [111].

In fact we can prove the following lower bound (see [BR13b] for a proof using the Temple

inequality).

Proposition 2.6. We have: νMo ≥ 0.5.

2.3. Generalized Montgomery operators. It turns out that we can generalize

the Montgomery operator by allowing an higher order of degeneracy of the magnetic

field. Let k be a positive integer. The generalized Montgomery operator of order k is the
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self-adjoint realization on R defined by:

L
[k]
ζ = D2

t +

(

ζ − tk+1

k + 1

)2

.

The following theorem (which generalizes Proposition 2.5) is proved in [54, Theorem 1.3].

Theorem 2.7. ζ 7→ ν
[k]
1 (ζ) admits a unique and non-degenerate minimum at ζ = ζ

[k]
0 .

Notation 2.8. For real ζ, the lowest eigenvalue of L
[k]
ζ is denoted by ν

[k]
1 (ζ) and we denote

by u
[k]
ζ the positive and L2-normalized eigenfunction associated with ν

[k]
1 (ζ). We denote

in the same way its holomorphic extension near ζ
[k]
0 .

2.4. A broken Montgomery operator.

2.4.1. Heuristics and motivation. As mentioned above, the bottom of the spectrum

of L is essential. This fact is due to the translation invariance along the zero locus of B.

This situation reminds what happens in the waveguides framework. Guided by the ideas

developed for the waveguides, the papers [BR13b] and [R14a] aimed at analyzing the

effect of breaking the zero locus of B. Introducing the “breaking parameter” θ ∈ (−π, π],
we break the invariance of the zero locus in three different ways:

(1) Case with Dirichlet boundary: LDir
θ . We let R2

+ = {(s, t) ∈ R
2, t > 0} and con-

sider LDir
θ the Dirichlet realization, defined as a Friedrichs extension, on L2(R2

+)

of:

D2
t +

(

Ds +
t2

2
cos θ − st sin θ

)2

.

(2) Case with Neumann boundary: LNeu
θ . We consider LNeu

θ the Neumann realiza-

tion, defined as a Friedrichs extension, on L2(R2
+) of:

D2
t +

(

Ds +
t2

2
cos θ − st sin θ

)2

.

The corresponding magnetic field is B(s, t) = t cos θ−s sin θ. It cancels along the
half-line t = s tan θ. Note that this model plays a central role in the semiclassi-

cal problem when the cancellation line of the magnetic field meets a Neumann

boundary (as we can see in [119] and in recent results of my student Miqueu

[108]).

(3) Magnetic broken line: Lθ. We consider Lθ the Friedrichs extension on L2(R2)

of:

D2
t +

(

Ds + sgn(t)
t2

2
cos θ − st sin θ

)2

.

The corresponding magnetic field is β(s, t) = |t| cos θ− s sin θ; it is a continuous

function which cancels along the broken line |t| = s tan θ.

Notation 2.9. We use the notation L•
θ where • can be Dir, Neu or ∅.
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2.4.2. Properties of the spectra. Let us analyze the dependence of the spectra of L•
θ

on the parameter θ. Denoting by S the axial symmetry (s, t) 7→ (−s, t), we get:

L•
−θ = SL•

θS,

where the line denotes the complex conjugation. Then, we notice that L•
θ and L•

θ are

isospectral. Therefore, the analysis is reduced to θ ∈ [0, π). Moreover, we get:

SL•
θS = L•

π−θ.

The study is reduced to θ ∈
[
0, π

2

]
. We observe that at θ = 0 and θ = π

2
the domain of

L•
θ is not continuous.

Lemma 2.10. The family (L•
θ)θ∈(0,π2 )

is analytic of type (A).

The following proposition states that the infimum of the essential spectrum is the

same for LDir
θ , LNeu

θ and Lθ.

Proposition 2.11. For θ ∈
(
0, π

2

)
, we have inf spess(L

•
θ) = νMo.

In the Dirichlet case, the spectrum is essential:

Proposition 2.12. For all θ ∈
(
0, π

2

)
, we have sp(LDir

θ ) = [νMo,+∞).

From now on we assume that • = Neu, ∅.

Notation 2.13. Let us denote by λ•n(θ) the n-th number in the sense of the Rayleigh

variational formula for L•
θ.

The two following propositions are Agmon type estimates and give an exponential

decay of the eigenfunctions (a proof is given in [BR13b]). R
2
• denotes R

2
+, R

2 when

• = Neu, ∅ respectively. The first decay is proved with respect to the variable t.

Proposition 2.14. There exist ε0, C > 0 such that for all θ ∈
(
0, π

2

)
and all eigenpair

(λ, ψ) of L•
θ such that λ < νMo, we have:

∫

R2
•

e2ε0|t|
√
νMo−λ|ψ|2 ds dt ≤ C(νMo − λ)−1‖ψ‖2.

The second decay is related to the (semiclassical) variable s and is not optimal at all

when θ goes to zero (see [R14a] ; we will again meet this non optimality in our magnetic

Born-Oppenheimer theory).

Proposition 2.15. There exist ε0, C > 0 such that for all θ ∈
(
0, π

2

)
and all eigenpair

(λ, ψ) of L•
θ such that λ < νMo, we have:

∫

R2
•

e2ε0|s| sin θ
√
νMo−λ|ψ|2 ds dt ≤ C(νMo − λ)−1‖ψ‖2.

The following proposition (the proof of which can be found in [119, Lemma 5.2])

states that LNeu
θ admits an eigenvalue below its essential spectrum when θ ∈

(
0, π

2

]
.
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Proposition 2.16. For all θ ∈
(
0, π

2

]
, λNeu1 (θ) < νMo.

Remark 2.17. The situation seems to be different for Lθ. According to numerical sim-

ulations with a finite elements method, there exists θ0 ∈
(
π
4
, π
2

)
such that λ1(θ) < νMo for

all θ ∈ (0, θ0) and λ1(θ) = νMo for all θ ∈
[
θ0,

π
2

)
.

2.5. Singular limit θ → 0.

2.5.1. Renormalization. Thanks to Proposition 2.16, one knows that breaking the

invariance of the zero locus of the magnetic field with a Neumann boundary creates a

bound state. We also would like to tackle this question for Lθ and in any case to estimate

more quantitatively this effect: this was the specific purpose of [R14a]. A way to do this

is to consider the limit θ → 0 which reveals new model operators. First, we perform a

scaling:

(2.2.2) s = (cos θ)−1/3ŝ, t = (cos θ)−1/3t̂.

The operator L•
θ is thus unitarily equivalent to (cos θ)2/3L̂•

tan θ, where the expression of

L̂•
tan θ is given by:

D2
t̂ +

(

Dŝ + sgn(t̂)
t̂2

2
− ŝt̂ tan θ

)2

.

Notation 2.18. We let ε = tan θ.

For (x, ξ) ∈ R
2 and ε > 0, we introduce the unitary transform:

Vε,x,ξψ(ŝ, t̂) = e−iξŝψ
(

ŝ− x

ε
, t̂
)

,

and the conjugate operator:

L̂•
ε,x,ξ = V −1

ε,x,ξL̂
•
εVε,x,ξ.

Its expression is given by:

(2.2.3) L̂•
ε,x,ξ = D2

t̂ +

(

−ξ − xt̂+ sgn(t̂)
t̂2

2
+Dŝ − εŝt̂

)2

.

Let us introduce the new variables:

(2.2.4) ŝ = ε−1/2σ, t̂ = τ

Therefore L̂•
ε,x,ξ is unitarily equivalent to L•

ε,x,ξ whose expression is given by:

(2.2.5) L•
ε,x,ξ = D2

τ +

(

−ξ − xτ + sgn(τ)
τ 2

2
+ ε1/2Dσ − ε1/2στ

)2

.

2.5.2. New model operators. By taking formally ε = 0 in (2.2.5) we are led to two

families of one dimensional operators on L2(R2
•) with two parameters (x, ξ) ∈ R

2:

M•
x,ξ = D2

τ +

(

−ξ − xτ + sgn(τ)
τ 2

2

)2

.
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These operators have compact resolvents and are analytic families with respect to the

variables (x, ξ) ∈ R
2.

Notation 2.19. We denote by µ•
n(x, ξ) the n-th eigenvalue of M•

x,ξ.

Roughly speakingM•
x,ξ is the operator valued symbol of (2.2.5), so that we expect that

the behavior of the so-called “band function” (x, ξ) 7→ µ•
1(x, ξ) determines the structure

of the low lying spectrum of M•
ε,x,ξ in the limit ε → 0. The following two theorems

(proved in [BR13b]) state that the band functions admit a minimum.

Theorem 2.20. The function R × R ∋ (x, ξ) 7→ µNeu
1 (x, ξ) admits a minimum denoted

by µNeu

1
. Moreover we have:

lim inf
|x|+|ξ|→+∞

µNeu
1 (x, ξ) ≥ νMo > min

(x,ξ)∈R2
µNeu
1 (x, ξ) = µNeu

1
.

Theorem 2.21. The function R× R ∋ (x, ξ) 7→ µ1(x, ξ) admits a minimum denoted by

µ
1
. Moreover we have:

lim inf
|x|+|ξ|→+∞

µ1(x, ξ) ≥ νMo > min
(x,ξ)∈R2

µ1(x, ξ) = µ
1
.

Numerical experiments lead to the following conjecture.

Conjecture 2.22. The minimum µ•
1
is unique (and attained at (x0, ξ0)) and non-degenerate.

Under Conjecture 2.22, it is possible to prove complete asymptotic expansions of the

first eigenvalues of Lθ (see [R14a]). In order to state this result, we introduce

(2.2.6) H =
∂2ξµ1(x0, ξ0)

2
D2

σ−
∂ξ∂αµ1(x0, ξ0)

2
σDσ−

∂ξ∂αµ1(x0, ξ0)

2
Dσσ+

∂2αµ1(x0, ξ0)

2
σ2.

Theorem 2.23. We assume that Conjecture 2.22 is true. For all n ≥ 1, there exists a

sequence (δnj )j≥0 such that the n-th eigenvalue of Lθ exists and satisfies

λn(θ) ∼
θ→0

∑

j≥0

δnj θ
j/2,

with:

δn0 = µ0, δn1 = 0

where µ0 is the infimum of the band function µ1 and δn2 is the n-th eigenvalue of H.

Remark 2.24. Theorem 2.23 implies that the lowest eigenvalues become simple when

θ is small enough so that we get an approximation at any order of the corresponding

eigenfunctions by some formal power series which behave like Hermite’s functions with

respect to σ = (tan θ)1/2ŝ at the main order. These eigenfunctions are microlocalized near

(σ,Dσ) = (x0, ξ0) and have the same behavior as the computed eigenfunctions displayed

on Figures 2 and 3. Note that, in order to prove this theorem, we have used in [R14a]

a coherent states decomposition which seem to be an unusual tool to study the low lying

spectrum of the semiclassical Laplacian. Implementing the idea was also a motivation for
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this work ; this was the first step towards a more general theory: Theorem 2.23 can be

proved by using the magnetic Born-Oppenheimer approximation (see Section 3).

Figure 2. Modulus of the first three eigenfunctions of L̂tan θ when θ = π
100

.

Figure 3. Phase of the first three eigenfunctions of L̂tan θ when θ = π
100

.

23



3. Magnetic Born-Oppenheimer approximation

The results discussed below are obtained in collaboration with V. Bonnaillie-Noël

and F. Hérau (see [BHR14]) and generalize the strategy used in [R14a]. This section is

devoted to the analysis of the operator on L2(Rm
s × R

n
t , ds dt):

(2.3.1) Lh = (−ih∇s + A1(s, t))
2 + (−i∇t + A2(s, t))

2.

Note that (2.2.3) can easily be put in this form. For simplicity’s sake we will assume that

A1 and A2 are analytic. We would like to describe the lowest eigenvalues of this operator

in the limit h→ 0 under elementary confining assumptions. The problem of considering

partial semiclassical problems appears for instance in the context of [103, 90] where the

main issue is to approximate the eigenvalues and eigenfunctions of operators in the form:

(2.3.2) − h2∆s −∆t + V (s, t).

The main idea, due to Born and Oppenheimer in [18], is to replace, for fixed s, the

operator −∆t + V (s, t) by its eigenvalues µk(s). Then we are led to consider for instance

the reduced operator (called Born-Oppenheimer approximation):

−h2∆s + µ1(s)

and to apply the semiclassical techniques à la Helffer-Sjöstrand [81, 82] to analyze in

particular the tunnel effect when the potential µ1 admits symmetries. The main point

it to make the reduction of dimension rigorous. Note that we have always the following

lower bound:

(2.3.3) − h2∆s −∆t + V (s, t) ≥ −h2∆s + µ1(s),

which involves accurate estimates of Agmon with respect to s.

3.1. Electric Born-Oppenheimer approximation and low lying spectrum.

Before dealing with the so-called Born-Oppenheimer approximation in presence of mag-

netic fields, we shall recall the philosophy in a simplified electric case.

3.1.1. Electric result. Let us explain the question in which we are interested. We shall

study operators in L2(R× Ω) (with Ω ⊂ R
n) in the form:

Hh = h2D2
s + V(s),

where V(s) = −∆t + P (t, s) is a family of semi-bounded self-adjoint operators, analytic

of type (B), with P polynomial for simplicity. We will denote by Qh the corresponding

quadratic form.

We want to analyze the low lying eigenvalues of this operator. We will assume that

the lowest eigenvalue ν(s) of V(s) (which is simple) admits, as a function of s, a unique

and non degenerate minimum at s0.
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We now discuss the heuristics. We hope that Hh can be described by its “Born-

Oppenheimer” approximation:

HBO
h = h2D2

s + µ(s),

which is an electric Laplacian in dimension one. Then, we guess that HBO
h is well approx-

imated by its Taylor expansion:

h2D2
s + µ(s0) +

ν ′′(s0)

2
(s− s0)

2.

In fact this heuristics can be made rigorous.

Assumption 2.25. Let us assume that lim inf
s→±∞

ν(s) > ν(s0) and that

inf
s
spess(V(s)) > ν(s0).

Theorem 2.26. Let us assume that ν(s) admits a unique and non degenerate minimum

at s0 and that Assumption 2.25 is satisfied. Then the n-th eigenvalue of Hh has the

expansion

λn(h) = ν(s0) + h(2n− 1)

(
ν ′′(s0)

2

)1/2

+ o(h).

3.1.2. A non example: the broken δ-interactions. In the last theorem we were only

interested in the low lying spectrum. It turns out that the so-called Born-Oppenheimer

reduction is a slightly more general procedure (see [103, 90]) which provides in general

an effective Hamiltonian which describes the spectrum below some fixed energy level

(and allows for instance to estimate the counting function). With the example of broken

δ-interactions, the standard technique needs to be adapted due to the singularity of the

δ interaction (one may consult [46, 47, 21, 45] for perspectives and motivation). The

results presented below are obtained in collaboration with V. Duchêne in [DuR14]. Let

us consider Hh the Friedrichs extension (see [20]) of the rescaled quadratic form:

(2.3.4) Qh(ψ) =

∫

R2

h2|∂xψ|2 + |∂yψ|2 dx dy −
∫

R

|ψ(|s|, s)|2 ds, ∀ψ ∈ H1(R2).

Formally we may write

(2.3.5) Hh = −h2∂2x − ∂2y − δΣπ
4
,

where

Σπ
4
= {(|s|, s), s ∈ R}.

In particular, we notice that:

spess(Hh) =

[

− 1

4(1 + h2)
,+∞

)

.

Let us introduce some notation.

Notation 2.27. We denote by W : [−e−1,+∞) → [−1,+∞) the Lambert function

defined as the inverse of [−1,+∞) ∋ w 7→ wew ∈ [−e−1,+∞).

25



Notation 2.28. Given H a semi-bounded self-adjoint operator and a < inf spess(H), we

denote

N(H, a) = #{λ ∈ sp(H) : λ ≤ a} < +∞.

The eigenvalues are counted with multiplicity.

The following theorem provides the asymptotics of the number of bound states.

Theorem 2.29. There existsM0 > 0 such that for all C(h) ≥M0h with C(h) →
h→0

C0 ≥ 0:

N

(

Hh,−
1

4
− C(h)

)

∼
h→0

1

πh

∫ +∞

x=0

√

−1

4
− C0 +

(
1

2
+

1

2x
W (xe−x)

)2

dx.

Remark 2.30. It is important to notice that in the above result, we estimate the counting

function below a potentially moving (w.r.t. h) threshold. In particular, the distance

between −1
4
− C(h) and the bottom of the essential spectrum is allowed to vanish in

the semiclassical limit. Therefore our statement is slightly unusual as customary results

would typically concern N (Hh, E) with E fixed and satisfying E < −1
4
, so as to insure a

fixed security distance to the bottom of the essential spectrum (see for instance the related

works [6, 112]).

The next theorem is the analogous of Theorem 2.26.

Theorem 2.31. For all n ≥ 1, we have:

λn(h) =
h→0

−1 + 22/3zAirev(n)h
2/3 +O(h),

where zAirev(n) is the n-th zero of the reversed Airy function.

3.2. Magnetic case. We would like to understand the analogy between (2.3.1) and

(2.3.2). In particular even the formal dimensional reduction does not seem to be as clear

as in the electric case. Let us write the operator valued symbol of Lh. For (x, ξ) ∈ R
n×R

n,

we introduce the electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (−i∇t + A2(x, t))
2 + (ξ + A1(x, t))

2.

Denoting by µ1(x, ξ) = µ(x, ξ) its lowest eigenvalue we would like to replace Lh by the

m-dimensional pseudo-differential operator:

µ(s,−ih∇s).

Under different assumptions, such reductions are considered in [106, Theorem 2.1 and

remark thereafter] where it is suggested that the spectrum of Lh could be completely

determined by an effective Hamiltonian (a matrix of pseudo-differential operators) whose

principal symbol can be described thanks to the spectral invariants of the operator valued

symbol of Lh. For the present situation the low lying spectrum of Lh could be described

by the one of µ(s, hDs) modulo O(h) and we will see that, under generic assumptions,
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O(h) is precisely the order of the spectral gap between the first eigenvalues in the simple

well case.

3.2.1. Eigenvalue asymptotics in the magnetic Born-Oppenheimer approximation. We

work under the following assumptions. The first assumption essentially states that the

lowest eigenvalue of the operator symbol of Lh admits a unique and non-degenerate

minimum.

Assumption 2.32. - The family (Mx,ξ)(x,ξ)∈Rm×Rm is analytic of type (B) in the

sense of Kato [89, Chapter VII].

- For all (x, ξ) ∈ R
m ×R

m, the bottom of the spectrum of Mx,ξ is a simple eigen-

value denoted by µ(x, ξ) (in particular it is an analytic function) and associated

with a L2-normalized eigenfunction ux,ξ ∈ S(Rn) which also analytically depends

on (x, ξ).

- The function µ admits a unique and non degenerate minimum µ0 at point denoted

by (x0, ξ0) and such that lim inf |x|+|ξ|→+∞ µ(x, ξ) > µ0.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm can be analytically extended in a complex neigh-

borhood of (x0, ξ0).

Assumption 2.33. Under Assumption 2.32, let us denote by Hessµ(x0, ξ0) the Hessian

matrix of µ at (x0, ξ0). We assume that the spectrum of Hessµ(x0, ξ0)(σ,Dσ) is simple.

The next assumption is a spectral confinement.

Assumption 2.34. For R ≥ 0, we let ΩR = R
m+n \ B(0, R). We denote by LDir,ΩR

h the

Dirichlet realization on ΩR of (−i∇t +A2(s, t))
2 + (−ih∇s +A1(s, t))

2. We assume that

there exist R0 ≥ 0, h0 > 0 and µ∗
0 > µ0 such that for all h ∈ (0, h0):

λ
Dir,ΩR0
1 (h) ≥ µ∗

0.

Remark 2.35. In particular, due to the monotonicity of the Dirichlet realization with

respect to the domain, Assumption 2.34 implies that there exist R0 > 0 and h0 > 0 such

that for all R ≥ R0 and h ∈ (0, h0):

λDir,ΩR
1 (h) ≥ λ

Dir,ΩR0
1 (h) ≥ µ∗

0.

By using the Persson’s theorem, we have the following proposition.

Proposition 2.36. Let us assume Assumption 2.34. There exists h0 > 0 such that for

all h ∈ (0, h0):

inf spess(Lh) ≥ µ∗
0.

We can now state the theorem concerning the spectral asymptotics.

Theorem 2.37. We assume that A1 and A2 are polynomials. Let us assume Assumptions

2.32, 2.33 and 2.34. For all n ≥ 1, there exist a sequence (γj,n)j≥0 and h0 > 0 such that
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for all h ∈ (0, h0) the n-th eigenvalue of Lh exists and satifies:

λn(h) ∼
h→0

∑

j≥0

γj,nh
j/2,

where γ0,n = µ0, γ1,n = 0 and µ2,n is the n-th eigenvalue of 1
2
Hessx0,ξ0 µ(σ,Dσ).

3.2.2. Using the coherent states to prove Theorem 2.37. Let us very roughly explain

the structure of the proof of Theorem 2.37. We use the following rescaling

(2.3.6) s = x0 + h1/2σ, t = τ,

and a gauge transform eiξ0σ/h
1/2

, so that Lh becomes

(2.3.7) Lh = (−i∇τ + A2(x0 + h1/2σ, τ))2 + (ξ0 − ih1/2∇σ + A1(x0 + h1/2σ, τ))2.

The first step in the proof of Theorem 2.37 is, as usual, a construction of quasimodes

(which behave like the Hermite functions with respect to σ). Here it involves general-

izations of the Feynman-Hellmann formulas (which are consequences of the Kato theory)

jointly with the classical Fredholm alternative. The second step is more difficult and

involves a microlocal analysis of the eigenfunctions (which has to be done to prove that

the constructed quasimodes are actually approximations of the eigenfunctions). It turns

out that the coherent states representation is flexible enough to succeed. Let us recall

the formalism of coherent states (see for instance [50] and [28]) to give the flavor of the

proof. We define

g0(σ) = π−m/4e−|σ|2/2,

and the usual creation and annihilation operators

aj =
1√
2
(σj + ∂σj

), a∗j =
1√
2
(σj − ∂σj

),

which satisfy the commutator relations

[aj, a
∗
j ] = 1, [aj, a

∗
k] = 0 if k 6= j.

We notice that

σj =
1√
2
(aj + a∗j), ∂σj

= 1√
2
(aj − a∗j), aja

∗
j =

1
2
(D2

σj
+ σ2

j + 1).

For (u, p) ∈ R
m × R

m, we introduce the coherent state

fu,p(σ) = eip·σg0(σ − u),

and the associated projection, defined for ψ ∈ L2(Rm × R
n) by

Πu,pψ = 〈ψ, fu,p〉L2(Rm, dσ)fu,p = ψu,pfu,p,

which satisfies

ψ =

∫

R2m

Πu,pψ du dp,
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and the Parseval formula

‖ψ‖2 =
∫

Rn

∫

R2m

|ψu,p|2 du dp dτ.

We recall that

ajfu,p =
uj + ipj√

2
fu,p

and

(aj)
ℓ(a∗k)

qψ =

∫

R2m

(
uj + ipj√

2

)ℓ(
uk − ipk√

2

)q

Πu,pψ du dp.

We have

Lh = L0 + h1/2L1 + hL2 + . . .+ hM/2LM .

If we write the Wick ordered operator, we get

(2.3.8) Lh = L0 + h1/2L1 + hLW
2 + . . .+ (h1/2)MLW

M
︸ ︷︷ ︸

LW
h

+hR2 + . . .+ (h1/2)MRM
︸ ︷︷ ︸

Rh

,

where the Rj are the remainders in the (anti-)Wick ordering and satisfy, for j ≥ 2,

(2.3.9) hj/2Rj = hj/2Oj−2(σ,Dσ),

where the notationOj(σ,Dσ) stands for a polynomial operator with total degree in (σ,Dσ)

less than j. We recall that

LW
h =

∫

R2m

Mx0+h1/2u,ξ0+h1/2p du dp.

Then, the microlocal analysis of the eigenfunctions can start. Without entering into the

details, the main idea is to prove polynomial (in (u, p)) weighted estimates in the phase

phase by using the following elementary “microlocalization” lemma (which we proved in

[R14a]) with A a polynomial in ak and a∗k.

Lemma 2.38 (“Localization” of P 2 with respect to A). Let H be a Hilbert space and P

and A be two unbounded operators defined on a domain D ⊂ H. We assume that P is

symmetric and that P (D) ⊂ D, A(D) ⊂ D, A∗(D) ⊂ D. Then, for ψ ∈ D, we have

(2.3.10) Re 〈P 2ψ,AA∗ψ〉 = ‖P (A∗ψ)‖2 − ‖[A∗, P ]ψ‖2 + Re 〈Pψ, [[P,A],A∗]ψ〉

+ Re
(

〈Pψ,A∗[P,A]ψ〉 − 〈Pψ,A[P,A∗]ψ〉
)

.

The obtained estimates, which tell that the eigenfunctions are bounded in σ and Dσ

(these bounds are better than the one provided by the naive estimates of Agmon), are

then enough to implement a dimensional reduction (to the effective harmonic oscillator)

in the Grushin spirit.

3.2.3. A family of examples. In order to make our Assumptions 2.32, 2.33 and 2.34

more concrete, let us provide a family of examples in dimension two which is related to

[80] and the more recent result by Fournais and Persson [54]. Our examples are strongly

connected with [68, Conjecture 1.1 and below].
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For k ∈ N \ {0}, we consider the operator the following magnetic Laplacian on

L2(R2, dx ds):

Lh,A[k] = h2D2
t +

(

hDs − γ(s)
tk+1

k + 1

)2

,

where γ is analytic. Let us assume that either γ is polynomial and admits a unique

minimum γ0 > 0 at s0 = 0 which is non degenerate, or γ is analytic and such that

lim infx→±∞ γ = γ∞ ∈ (γ0,+∞).

Let us perform the rescaling:

s = s, t = h
1

1+k t.

The operator becomes:

h
2k+2
k+2

(

D2
t +

(

h
1

k+2Ds − γ(s)
tk+1

k + 1

)2
)

.

and the investigation is reduced to the one of:

(2.3.11) L
vf,[k]
h = D2

t +

(

h
1

k+2Ds − γ(s)
tk+1

k + 1

)2

.

Let us verify Assumption 2.32. The h
1

k+2 -symbol of L
[k]
h with respect to s is:

M[k]
x,ξ = D2

t +

(

ξ − γ(x)
tk+1

k + 1

)2

.

The lowest eigenvalue of M[k]
x,ξ, denoted by µ[k](x, ξ), satisfies:

µ[k](x, ξ) = (γ(x))
2

k+2ν
[k]
1

(

(γ(x))−
1

k+2 ξ
)

,

where ν
[k]
1 (ζ) denotes the first eigenvalue of:

L
[k]
ζ = D2

t +

(

ζ − tk+1

k + 1

)2

.

We recall the non trivial fact that ζ 7→ ν
[k]
1 (ζ) admits a unique and non-degenerate

minimum at ζ = ζ
[k]
0 (see Theorem 2.7). Therefore Assumption 2.32 is satisfied. This is

delicate to verify Assumption 2.34 and this relies on a basic normal form procedure that

we will use for our magnetic WKB constructions.

3.3. The magnetic WKB expansions.

3.3.1. WKB analysis and estimates of Agmon. As we explained in Chapter 1, Section

3.2.1, in many papers about asymptotic expansions of the magnetic eigenfunctions, one

of the methods consists in using a formal power series expansion. It turns out that these

constructions are never in the famous WKB form, but in a weaker and somehow more

flexible one. When there is an additional electric potential, the WKB expansions are

possible as we can see in [83] and [107]. The reason for which we would like to have

a WKB description of the eigenfunctions is to get a precise estimate of the magnetic

30



tunnel effect in the case of symmetries. Until now, such estimates are only investigated

in two dimensional corner domains in [11] and [12] for the numerical counterpart. It

turns out that the crucial point to get an accurate estimate of the exponentially small

splitting of the eigenvalues is to establish exponential decay estimates of Agmon type.

These localization estimates are rather easy to obtain (at least to get the good scale in the

exponential decay) in the corner cases due to the fact that the operator is “more elliptic”

than in the regular case in the following sense: the spectral asymptotics is completely

drifted by the principal symbol. Nevertheless, let us notice here that establishing the

optimal estimates of Agmon is still an open problem. In smooth cases, due to a lack of

ellipticity and to the multiple scales, the localization estimates obtained in the literature

are in general not optimal at all (or rely on the presence of an electric potential, see

[113, 114]): the principal symbol provides only a partial confinement whereas the precise

localization of the eigenfunctions seems to be determined by the subprincipal terms. Our

WKB analysis, in some explicit cases, give some hints for the optimal candidate to be

the effective Agmon distance. The following result is proved in [BHR14].

Theorem 2.39. We assume A2 = 0 and A1 is real analytic. Under Assumptions 2.32,

2.33 and 2.34, there exist a function Φ = Φ(s) defined in a neighborhood V of x0 with

ReHessΦ(x0) > 0 and, for any n ≥ 1, a sequence of real numbers (λn,j)j≥0 such that

λn(h) ∼
h→0

∑

j≥0

λn,jh
j,

in the sense of formal series, with λn,0 = µ0. Besides there exists a formal series of

smooth functions on V × R
n
t

an(.;h) ∼
h→0

∑

j≥0

an,jh
j

with an,0 6= 0 such that

(Lh − λn(h))
(
an(.;h)e

−Φ/h
)
= O (h∞) e−Φ/h.

Furthermore the functions t 7→ an,j(s, t) belong to the Schwartz class uniformly in s ∈ V.
In addition, if A1 is a polynomial function, there exists c0 > 0 such that for all h ∈ (0, h0)

B
(

λn,0 + λn,1h, c0h
)

∩ sp (Lh) = {λn(h)},

and λn(h) is a simple eigenvalue.

In the previous theorem we used the following definition of formal series of functions.

Notation 2.40. Let n ≥ 1. We write an(s, t;h) ∼
h→0

∑

j≥0 an,j(s, t)h
j when for all J ≥ 0

and α ∈ N
n+m, there exist hJ,α > 0 and CJ,α > 0 such that for all h ∈ (0, hJ,α), we have

∣
∣
∣
∣
Dα
(

an(s, t;h)−
J∑

j=0

an,j(s, t)h
j
)
∣
∣
∣
∣
≤ CJ,αh

J+1 locally in (s, t) ∈ V × R
n.

We also write a = O(h∞) when a ∼ 0. The case of formal series of numbers is similar.
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Let us also recall that for any arbitrary sequence of smooth functions aj one can

always find, by a procedure of Borel type, a unique smooth function a(s, t;h) (called a

realization) (up to O(h∞)) such that a(s, t;h) ∼
h→0

∑

j≥0 aj(s, t)h
j.

Remark 2.41. When A2 is not zero, it appears that the dimensional reduction is pre-

vented by the oscillations of the eigenfunctions of the model operator Mx,ξ. The problem

already appears in the case t ∈ R: we can gauge out A2 at the price to replace A1 by

A1 + h∇sϕ(s, t) which is h dependent. As a consequence of our analysis, we can check

that the spectrum associated with the potential (A1 + h∇sϕ, 0) is shifted by a factor O(h)

compared to the one associated with (A1, 0). In dimension one for t, we can even prove

that the phase Φ in the WKB expansion is (s, t)-dependent.

Let us explain the main lines of the proof of Theorem 2.39. Thanks to Theorem 2.37,

we have sharp asymptotic expansions of the eigenvalues. In particular, one knows that

they become simple in the semiclassical limit. Therefore, to get the (WKB) approxima-

tion of the corresponding eigenfunctions, we have just to use an appropriate Ansatz for

our quasimodes and to apply the spectral theorem. The new Ansatz considered here is

given by a partial WKB expansion with respect to the variable s. Under our analyticity

assumptions, the effective eikonal equation is solved thanks to the classical stable man-

ifold theorem and analytic extensions of the eigenpairs of the “model” operators. The

corresponding effective transport equation is obtained as the Fredholm condition of an

operator valued transport equation jointly with the Feynman-Hellmann formulas.

3.3.2. WKB expansions for L
vf,[k]
h . The following theorem (which is almost an obvious

consequence of Theorem 2.39) states that the first eigenfunctions of L
vf,[k]
h (defined in

(2.3.11)) are in the WKB form (and so are the eigenfunctions of the fully semiclassical

magnetic Laplacian Lh,A[k] which is the pilot operator in situations involving for instance

an additional metric).

Theorem 2.42. Let us assume that γ is analytic with lim infx→±∞ γ = γ∞ ∈ (γ0,+∞].

In the analytic case, there exist a function Φ = Φ(s) defined in a neighborhood V of 0

with ReΦ′′(0) > 0 and a sequence of real numbers λvfn,j such that the n-th eigenvalue of

L
vf,[k]
h satisfies

λvfn (h) ∼
h→0

∑

j≥0

λvfn,jh
j

k+2

in the sense of formal series, with λvfn,0 = µ0 = ν
[k]
1 (ζ

[k]
0 ). Besides there exists a formal

series of smooth functions on V × R
n
t

avfn (., h) ∼
h→0

∑

j≥0

avfn,jh
j

k+2

with avfn,0 6= 0 such that

(

L
vf,[k]
h − λn(h)

)(

avfn (·, h)e−Φ/h
1

k+2

)

= O (h∞) e−Φ/h
1

k+2
,
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There exists c0 > 0 such that for all h ∈ (0, h0)

B
(

λvfn,0 + λvfn,1h
1

k+2 , c0h
2

k+2

)

∩ sp
(

L
vf,[k]
h

)

= {λvfn (h)},

and λvfn (h) is a simple eigenvalue.

Remark 2.43. If γ(s)−1γ(0)− 1 is small enough (weak magnetic barrier), our construc-

tion of Φ can be made global, that is V = R. Note that the simplicity is a consequence of

the analysis of [R13a, DoR13] which does not use that γ is a polynomial.

3.3.3. Along a varying edge. Let us provide another example for which one can pro-

duce a WKB analysis but which is not a direct consequence of Theorem 2.39. This

example, analyzed in [BHR14], is inspired by the collaboration with N. Popoff [PR13].

This one is motivated by the analysis of problems with singular boundaries. Here we are

concerned with the case when the domain is a wedge with varying aperture, that is with

the Neumann magnetic Laplacian Le
h,A = (−ih∇+A)2 on L2(Ws 7→α(s), ds dt dz). Let us

recall the definition of the magnetic wedge with constant aperture α. Many properties of

this operator can be found in the thesis of Popoff [121]. We let

Wα = R× Sα,

where the 2D corner with fixed angle α ∈ (0, π) is defined by:

Sα =
{

(t, z) ∈ R
2 : |z| < t tan

(α

2

)}

.

Definition 2.44. Let Le
α be the Neumann realization on L2(Wα, ds dt dz) of

(2.3.12) D2
t +D2

z + (Ds − t)2.

We denote by νe1(α) the bottom of the spectrum of Le
α.

Using the Fourier transform with respect to ŝ, we have the decomposition:

(2.3.13) Le
α =

∫ ⊕
Le
α,ζ dζ,

where Le
α,ζ is the following Neumann realization on L2(Sα, dt dz):

(2.3.14) Le
α,ζ = D2

t +D2
z + (ζ − t)2,

where ζ ∈ R is the Fourier parameter. As

lim
|(t,z)|→+∞
(t,z)∈Sα

(ζ − t)2 = +∞,

the Schrödinger operator Le
α,ζ has compact resolvent for all (α, ζ) ∈ (0, π)× R.

Notation 2.45. For each α ∈ (0, π), we denote by νe1(α, η) the lowest eigenvalue of Le
α,ζ

and we denote by ueα,ζ a normalized corresponding eigenfunction.
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Using (2.3.13) we have:

(2.3.15) νe1(α) = inf
ζ∈R

νe1(α, ζ).

Let us gather a few elementary properties.

Lemma 2.46. We have:

(1) For all (α, ζ) ∈ (0, π)× R, νe1(α, ζ) is a simple eigenvalue of Le
α,ζ.

(2) The function (0, π)× R ∋ (α, ζ) 7→ νe1(α, ζ) is analytic.

(3) For all ζ ∈ R, the function (0, π) ∋ α 7→ νe1(α, ζ) is decreasing.

(4) The function (0, π) ∋ α 7→ νe1(α) is non increasing.

(5) For all α ∈ (0, π), we have

(2.3.16) lim
η→−∞

νe1(α, ζ) = +∞ and lim
ζ→+∞

νe1(α, ζ) = s(π−α
2
).

Proof. We refer to [121, Section 3] for the first two statements. The monotonicity

comes from [121, Proposition 8.14] and the limits as ζ goes to ±∞ are computed in [121,

Theorem 5.2]. �

Remark 2.47. As νe1(π) = Θ0, we have:

(2.3.17) ∀α ∈ (0, π), νe1(α) ≥ Θ0.

Let us note that it is proved in [121, Proposition 8.13] that νe1(α) > Θ0 for all α ∈ (0, π).

Proposition 2.48. There exists α̃ ∈ (0, π) such that for α ∈ (0, α̃), the function ζ 7→
νe1(α, ζ) reaches its infimum and

(2.3.18) νe1(α) < s

(
π − α

2

)

,

where the spectral function s is defined in Chapter 1, Section 1.4.4.

Remark 2.49. By computing Cqm, we notice that (2.3.18) holds at least for α ∈ (0, 1.2035).

Numerical computations show that in fact (2.3.18) seems to hold for all α ∈ (0, π).

We will work under the following conjecture:

Conjecture 2.50. For all α ∈ (0, π), ζ 7→ νe1(α, ζ) has a unique critical point denoted

by ζe0(α) and it is a non degenerate minimum.

Remark 2.51. A numerical analysis seems to indicate that Conjecture 2.50 is true (see

[121, Subsection 6.4.1]).

Under this conjecture and using the analytic implicit functions theorem, we deduce

(see [PR13]):

Lemma 2.52. Under Conjecture 2.50, the function (0, π) ∋ α 7→ ζe0(α) is analytic and

so is (0, π) ∋ α 7→ νe1(α). Moreover the function (0, π) ∋ α 7→ νe1(α) is decreasing.
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We will assume that there is a unique point of maximal aperture (which is non-

degenerate).

Assumption 2.53. The function s 7→ α(s) admits a unique and non-degenerate maxi-

mum α0 at s = 0.

Notation 2.54. We let T (s) = tan
(

α(s)
2

)

.

In order to perform the WKB analysis in the wedge case, we need to consider the

Neumann realization of the operator defined on L2(Sα0 , dt dz) by

Me
s,ζ = D2

t + T (s)−2T (0)2D2
z + (ζ − t)2,

whose form domain is

Dom (Qe
s,ζ) =

{
ψ ∈ L2(Sα0) : Dtψ ∈ L2(Sα0), Dzψ ∈ L2(Sα0), tψ ∈ L2(Sα0)

}

and with operator domain

Dom (Me
s,ζ) =

{
ψ ∈ Dom (Qe

s,ζ) : Me
s,ζψ ∈ L2(Sα0),C(s)ψ = 0

}
,

where

C(s) = −sgn(z)Dt + T (s)−2T (0)Dz.

The lowest eigenvalue of Me
s,ζ is denoted by µe(s, ζ) and the corresponding normalized

eigenfunction ues,ζ . Conjecture 2.50 can be reformulated as follows.

Conjecture 2.55. For all α0 ∈ (0, π), the function ζ 7→ µe(0, ζ) admits a unique critical

point ζe0 which is a non-degenerate minimum.

The following proposition essentially shows that the operator symbol Me
s,ζ satisfies

generic properties as in Assumption 2.32.

Proposition 2.56. Under Assumption 2.53 and if Conjecture 2.55 is true, the function

µe admits a local non-degenerate minimum at (0, ζe0). Moreover the Hessian at (0, ζe0) is

given by

(2.3.19) 4κT (0)−1‖Dzu
e
0,ζe0

‖s2 + ∂2ζµ
e(0, ζe0)ζ

2,

where κ = −T ′′(0)
2

.

Thanks to this proposition, in [BHR14] we provide local (near the point of the edge

giving the maximal aperture) WKB expansions of the lowest eigenfunctions.

3.3.4. Curvature induced magnetic bound states. As we have seen, in many situations

the spectral splitting appears in the second term of the asymptotic expansion of the

eigenvalues. It turns out that we can also deal with more degenerate situations. The

next lines are motivated by the initial paper [75] whose main result is recalled in (1.1.2).

This fundamental result establishes that a smooth Neumann boundary can trap the

lowest eigenfunctions near the points of maximal curvature. These considerations are
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generalized in [51, Theorem 1.1] where the complete asymptotic expansion of the n-th

eigenvalue of Lc
h,A = (−ih∇+A)2 is provided and satisfies in particular:

(2.3.20) Θ0h− C1κmaxh
3/2 + (2n− 1)C1Θ

1/4
0

√

3k2
2
h7/4 + o(h7/4),

where k2 = −κ′′(0). As in [51], we consider the magnetic Neumann Laplacian on a

smooth domain Ω such that the algebraic curvature κ satisfies the following assumption.

Assumption 2.57. The function κ is smooth and admits a unique and non-degenerate

maximum.

In [BHR14] we prove that the lowest eigenfunctions are approximated by local WKB

expansions which can be made global when for instance ∂Ω is the graph of a smooth

function. In particular we recover the term C1Θ
1/4
0

√
3k2
2

by a method different from

the one of Fournais and Helffer and we explicitly provide a candidate to be the optimal

distance of Agmon in the boundary. Since it is quite unusual to exhibit a pure magnetic

Agmon distance, let us provide a precise statement. For that purpose, let us consider

the following Neumann realization on L2(R2
+,m(s, t) ds dt), which is nothing but the

expression of the magnetic Laplacian in curvilinear coordinates,

(2.3.21) Lc
h = m(s, t)−1hDtm(s, t)hDt

+m(s, t)−1

(

hDs + ζ0h
1
2 − t+ κ(s)

t2

2

)

m(s, t)−1

(

hDs + ζ0h
1
2 − t+ κ(s)

t2

2

)

,

where m(s, t) = 1− tκ(s). Thanks to the rescaling

t = h1/2τ, s = σ,

and after division by h the operator Lc
h becomes

(2.3.22) Lc
h = m(σ, h1/2τ)−1Dτm(σ, h1/2τ)Dτ

+m(σ, h1/2τ)−1

(

h1/2Dσ + ζ0 − τ + h1/2κ(σ)
τ 2

2

)

m(σ, h1/2τ)−1

(

h1/2Dσ + ζ0 − τ + h1/2κ(σ)
τ 2

2

)

,

on the space L2(m(σ, h1/2τ) dσ dτ).

Theorem 2.58. Under Assumption 2.53, there exist a function

Φ = Φ(σ) =

(
2C1

ν ′′1 (ζ0)

)1/2 ∣
∣
∣
∣

∫ σ

0

(κ(0)− κ(s))1/2 ds

∣
∣
∣
∣

defined in a neighborhood V of (0, 0) such that ReΦ′′(0) > 0, and a sequence of real

numbers (λcn,j)j≥0 such that

λcn(h) ∼
h→0

∑

j≥0

λcn,jh
j
4 .
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Besides there exists a formal series of smooth functions on V,

acn ∼
h→0

∑

j≥0

acn,jh
j
4

such that

(Lc
h − λcn(h))

(

acne
−Φ/h

1
4

)

= O (h∞) e−Φ/h
1
4 .

We also have that λcn,0 = Θ0, λ
c
n,1 = 0, λcn,1 = −C1κmax and λcn,3 = (2n− 1)C1Θ

1/4
0

√
3k2
2
.

The main term in the Ansatz is in the form

acn,0(σ, τ) = f c
n,0(σ)uζ0(τ).

Moreover, for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(

λcn,0 + λcn,2h
1/2 + λcn,3h

3
4 , ch

3
4

)

∩ sp (Lc
h) = {λcn(h)},

and λcn(h) is a simple eigenvalue.

Remark 2.59. In particular, Theorem 2.58 proves that there are no odd powers of h
1
8 in

the expansion of the eigenvalues (compare with [51, Theorem 1.1]).
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3.3.5. Some numerical simulations. We provide below some numerical simulations

from [BHR14] (κ has one or two maxima).

Figure 4. Modulus, log10(modulus) and phase of the first eigenfunction,
h = 1

20
.

(a) First eigenvector

(b) Second eigenvector

Figure 5. Moduli, log10(moduli) and phases of the first two eigenvectors,
h = 1

20
.
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CHAPTER 3

Semiclassical magnetic normal forms

Now do you imagine he would have at-

tempted to inquire or learn what he thought

he knew, when he did not know it, until he

had been reduced to the perplexity of real-

izing that he did not know, and had felt a

craving to know?

Meno, Plato

In this chapter we highlight the normal form philosophy explained in Chapter 1,

Section 3 by presenting four results of magnetic harmonic approximation. As we will see,

each situation will present its specific features and difficulties:

• How can we deal with a vanishing magnetic field in dimension two? ([DoR13])

• How can we treat a problem with smooth boundary in dimension three? ([R12])

• Can we still display a precise semiclassical asymptotics in dimension three if the

boundary is not smooth? ([PR13])

• In dimension two and without boundary, can we describe more than λn(h) for

fixed n? ([RVN14])

1. Vanishing magnetic fields in dimension two

In this section we study the influence of the cancellation of the magnetic field along

a smooth curve in dimension two. The results of this section are joint work with N.

Dombrowski [DoR13].

1.1. Framework. We consider a vector potential A ∈ C∞(R2,R2) and we consider

the self-adjoint operator on L2(R2) defined by:

Lh,A = (−ih∇+A)2.

1.1.1. How does B vanish? In order Lh,A to have compact resolvent, we will assume

that:

(3.1.1) B(x) →
|x|→+∞

+∞.

Notation 3.1. We will denote by λn(h) the n-th eigenvalue of Lh,A.
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As in [119, 68], we will investigate the case when B cancels along a closed and

smooth curve C in R
2. We have already discussed the motivation in Chapter 2, Section

2. Let us notice that the assumption (3.1.1) could clearly be relaxed so that one could

also consider a smooth, bounded and simply connected domain of R2 with Dirichlet or

Neumann condition on the boundary as far as the magnetic field does not vanish near

the boundary (in this case one should meet a model presented in Chapter 2, Section 2).

We let:

C = {c(s), s ∈ R}.
We assume that B is positive inside C and negative outside. We introduce the standard

tubular coordinates (s, t) near C defined by the map

(s, t) 7→ c(s) + tn(s),

where n(s) denotes the inward pointing normal to C at c(s). The function B̃ will denote

B in the coordinates (s, t), so that B̃(s, 0) = 0.

1.1.2. Heuristics and leading operator. Let us adopt first a heuristic point of view

to introduce the leading operator of the analysis presented in this section. We want to

describe the operator Lh,A near the cancellation line of B, that is near C. In a rough

approximation, near (s0, 0), we can imagine that the line is straight (t = 0) and that the

magnetic field cancels linearly so that we can consider B̃(s, t) = γ(s0)t where γ(s0) is the

derivative of B̃ with respect to t. Therefore the operator to which we are reduced at the

leading order near s0 is:

h2D2
t +

(

hDs − γ(s0)
t2

2

)2

.

This operator is a special case of the larger class introduced in Chapter 2.

1.2. Montgomery operator and rescaling. We will be led to use the Montgomery

operator with parameters η ∈ R and γ > 0:

(3.1.2) L
[1]
γ,ζ = D2

t +
(

ζ − γ

2
t2
)2

.

The Montgomery operator has clearly compact resolvent and we can consider its lowest

eigenvalue denoted by ν
[1]
1 (γ, ζ). In fact one can take γ = 1 up to the rescaling t = γ−1/3τ

and L
[1]
γ,ζ is unitarily equivalent to:

γ2/3
(

D2
τ + (−ηγ−1/3 +

1

2
τ 2)2

)

= γ2/3L
[1]

1,ζγ−1/3 .

Let us emphasize that this rescaling is related to the normal form analysis that we use in

the semiclassical spectral asymptotics. For all γ > 0, we have (see Chapter 2, Proposition

2.5):

(3.1.3) ζ 7→ ν
[1]
1 (γ, ζ) admits a unique and non-degenerate minimum at a point ζ

[1]
0 (γ).
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If γ = 1, we have ζ
[1]
0 (1) = ζ

[1]
0 . We may write:

(3.1.4) inf
ζ∈R

ν
[1]
1 (γ, ζ) = γ2/3ν

[1]
1 (ζ

[1]
0 ).

Let us recall some notation.

Notation 3.2. We notice that L
[1]
ζ = L

[1]
1,ζ and we denote by u

[1]
ζ a L2-normalized and

positive eigenfunction associated with ν
[1]
1 (ζ).

For fixed γ > 0, the family (L
[1]
γ,ζ)η∈R is an analytic family of type (B) so that the

eigenpair (ν
[1]
1 (ζ), u

[1]
ζ ) has an analytic dependence on ζ (see [89]).

1.3. Semiclassical asymptotics with vanishing magnetic fields. We consider

the normal derivative of B on C, i.e. the smooth function γ : s 7→ ∂tB̃(s, 0). We will

assume that:

Assumption 3.3. γ admits a unique, non-degenerate and positive minimum at s0 = 0.

We let γ0 = γ(0). Let us state the main result of this section:

Theorem 3.4. We assume Assumption 3.3. For all n ≥ 1, there exists a sequence (θnj )j≥0

such that we have:

λn(h) ∼
h→0

h4/3
∑

j≥0

θnj h
j/6

where:

θn0 = γ
2/3
0 ν

[1]
1 (ζ

[1]
0 ), θn1 = 0, θn2 = γ

2/3
0 C0 + γ

2/3
0 (2n− 1)

(

αν
[1]
1 (ζ

[1]
0 )(ν

[1]
1 )′′(ζ

[1]
0 )

3

)1/2

,

where we have let:

(3.1.5) α =
1

2
γ−1
0 γ′′(0) > 0

and:

C0 = 〈Lu[1]
ζ
[1]
0

, u
[1]

ζ
[1]
0

〉L2(Rτ̂ ),(3.1.6)

where:

L = 2k(0)γ
−4/3
0

(
τ̂ 2

2
− ζ

[1]
0

)

τ̂ 3 + 2τ̂ γ
−1/3
0 κ(0)

(

−ζ [1]0 +
τ̂ 2

2

)2

,

and:

k(0) =
1

6
∂2t B̃(0, 0)− κ(0)

3
γ0.

Remark 3.5. This theorem is mainly motivated by the paper of Helffer and Kordyukov

[68] (see also [66, Section 5.2] where the above result is presented as a conjecture and

the paper [74] where the case of discrete wells is analyzed) where the authors prove a one

term asymptotics for all the eigenvalues (see [68, Corollary 1.1]). Moreover, they also

prove an accurate upper bound in [68, Theorem 1.4] thanks to a Grushin type method
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(see [64]). This result could be generalized to the case when the magnetic vanishes on

hypersurfaces at a given order. By using the results of [BHR14], we can improve the

construction of quasimodes done in [DoR13] into a WKB construction.

2. Variable magnetic field and smooth boundary in dimension three

This section is devoted to the investigation of the relation between the boundary

and the magnetic field in dimension three. We will see that the semiclassical structure is

completely different from the one presented in the previous section even if the eigenvalues

expansions look the same. The different results are obtained in [R12].

2.1. A toy operator with variable magnetic field. Let us introduce the geo-

metric domain

Ω0 = {(x, y, z) ∈ R
3 : |x| ≤ x0, |y| ≤ y0 and 0 < z ≤ z0},

where x0, y0, z0 > 0. The part of the boundary which carries the Dirichlet condition is

given by

∂DirΩ0 = {(x, y, z) ∈ Ω0 : |x| = x0 or |y| = y0 or z = z0}.

2.1.1. Definition of the operator. For h > 0, α ≥ 0 and θ ∈
(
0, π

2

)
, we consider the

self-adjoint operator:

(3.2.1) Lh,α,θ = h2D2
y + h2D2

z + (hDx + z cos θ − y sin θ + αz(x2 + y2))2,

with domain:

Dom (Lh,α,θ) = {ψ ∈ L2(Ω0) : Lh,α,θψ ∈ L2(Ω0),

ψ = 0 on ∂DirΩ0 and ∂zψ = 0 on z = 0}.

We denote by (λ(h), uh) an eigenpair and we let Lh = Lh,α,θ (we omit the dependence on

α and θ). The vector potential is expressed as:

A(x, y, z) = (Vθ(y, z) + αz(x2 + y2), 0, 0)

where

(3.2.2) Vθ(y, z) = z cos θ − y sin θ.

The associated magnetic field is given by:

(3.2.3) ∇×A = B = (0, cos θ + α(x2 + y2), sin θ − 2αyz).

2.1.2. Constant magnetic field (α = 0). Let us examine the important case when

α = 0:

Lh,0,θ = h2D2
y + h2D2

z + (hDx + Vθ(y, z))
2,

viewed as an operator on L2(R3
+). We perform the rescaling:

(3.2.4) x = h1/2r, y = h1/2s, z = h1/2t
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and the operator becomes (after division by h):

L1,0,θ = D2
s +D2

t + (Dr + Vθ(s, t))
2.

Making a Fourier transform in the variable r denoted by F , we get:

(3.2.5) FL1,0,θF−1 = D2
s +D2

t + (η + Vθ(s, t))
2.

Then, we use a change of coordinates:

(3.2.6) Uθ(η, s, t) = (ρ, σ, τ) =
(

η, s− η

sin θ
, t
)

and we obtain:

HNeu
θ = UθFL1,0,θF−1U−1

θ = D2
σ +D2

τ + Vθ(σ, τ)
2.

Notation 3.6. We denote by QNeu
θ the quadratic form associated with HNeu

θ .

The operator HNeu
θ viewed as an operator acting on L2(R2

+) is nothing but LLP
θ (see

Chapter 1, Section 1.4.4). Let us also recall that the lower bound of the essential spectrum

is related, through the Persson’s theorem, to the following estimate:

qLPθ (χRu) ≥ (1− ε(R))‖χRu‖, ∀u ∈ Dom (qLPθ ),

where qLPθ is the quadratic form associated with LLP
θ , where χR is a cutoff function away

from the ball B(0, R) and ε(R) is tending to zero when R tends to infinity. Moreover, if

we consider the Dirichlet realization LLP,Dir
θ , we have:

(3.2.7) qLP,Dir
θ (u) ≥ ‖u‖2, ∀u ∈ Dom (qLP,Dir

θ ).

2.1.3. A “generic” model. Let us explain why we are led to consider our model. Let

us introduce a fundamental invariant in the case of variable magnetic field and our generic

assumptions. We let:

B̂(x, y) = s(θ(x, y))‖B(x, y, 0)‖,
where θ(x, y) is the angle of B(x, y, 0) with the boundary z = 0:

‖B(x, y, 0)‖ sin θ(x, y) = B(x, y, 0) · n(x, y),

where n(x, y) is the inward normal at (x, y, 0). It is proved in [101] that the semiclassical

asymptotics of the lowest eigenvalue is:

λ1(h) = min(inf
z=0

B̂, inf
Ω0

‖B‖)h+ o(h).

We are interested in the case when the following generic assumptions are satisfied:

(3.2.8) inf
z=0

B̂ < inf
Ω0

‖B‖

(3.2.9) B̂ admits a unique and non degenerate minimum.

Under these assumptions, a three terms upper bound is proved for λ1(h) in [R10c] and

the corresponding lower bound, for a general domain, is still an open problem.
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For α > 0, the toy operator (3.2.1) is the simplest example of a generic Schrödinger

operator with variable magnetic field satisfying Assumptions (3.2.8) and (3.2.9). We have

the Taylor expansion:

(3.2.10) B̂(x, y) = s(θ) + αC(θ)(x2 + y2) +O(|x|3 + |y|3).

with:

C(θ) = cos θs(θ)− sin θs′(θ).

Moreover, it is proved in [BDPR12] that C(θ) > 0, for θ ∈
(
0, π

2

)
. Thus, Assumption

(3.2.9) is verified if x0, y0 and z0 are fixed small enough. Using s(θ) < 1 when θ ∈
(
0, π

2

)

and ‖B(0, 0, 0)‖ = 1, we get Assumption (3.2.8).

2.1.4. Remark on the function B̂. Using the explicit expression of the magnetic field,

we have:

B̂(x, y) = B̂rad(R), R = α(x2 + y2)

and an easy computation gives:

B̂rad(R) = ‖Brad(R)‖s
(

arctan

(
sin θ

cos θ +R

))

,

with

‖Brad(R)‖ =
√

(cos θ +R)2 + sin2 θ.

The results of [BDPR12] imply that B̂rad is strictly increasing and

∂RB̂rad(R = 0) = C(θ) > 0.

Consequently, B̂ admits a unique and non degenerate minimum on R
3
+ and tends to

infinity far from 0. This is easy to see that:

inf
R3
+

‖B‖ = cos θ.

We deduce that, as long as s(θ) < cos θ, the generic assumptions are satisfied with

Ω0 = R
3
+.

2.2. Three dimensional magnetic wells induced by the magnetic field and

the (smooth) boundary. Let us introduce the fundamental operator

Sθ(Dρ, ρ) =

(

2

∫

R2
+

τVθ(u
LP
θ )2 dσ dτ

)

Hharm +

(

2

sin θ

∫

R2
+

τVθ(u
LP
θ )2 dσ dτ

)

ρ+ d(θ),

where

Hharm = D2
ρ +

ρ2

sin2 θ
and

d(θ) = sin−2 θ〈τ(D2
σVθ + VθD

2
σ)u

LP
θ , uLPθ 〉+ 2

∫

R2
+

τσ2Vθ(u
LP
θ )2 dσ dτ.
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We recall the important fact that (see [R10c, Formula (2.31)]):

2

∫

R2
+

tVθ(u
LP
θ )2 ds dt = C(θ) > 0,

so thatSθ(Dρ, ρ) can be viewed as the harmonic oscillator up to dilation and translations.

We can now state the main result of this section.

Theorem 3.7. For all α > 0, θ ∈
(
0, π

2

)
, there exist a sequence (µj,n)j≥0 and ε0 > 0 s.

t. for |x0|+ |y0|+ |z0| ≤ ε0,

λn(h) ∼ h
∑

j≥0

µj,nh
j

and we have µ0,n = s(θ) and µ1,n is the n-th eigenvalue of Sθ(Dρ, ρ).

Remark 3.8. The proof of Theorem 3.7 relies on the proof of accurate microlocal proper-

ties of the eigenfunctions and especially we use, in [R12], multiple commutator estimates

to get precise polynomial bound of the eigenfunctions in the phase space. Somehow this

strategy can remind the spirit of hypoellipticity.

3. When a magnetic field meets a curved edge

We analyze here the effect of an edge in the boundary and how its combines with the

magnetic field to produce a spectral asymptotics. This was the aim of the collaboration

with N. Popoff [PR13].

3.1. Geometrical assumptions and local models.

3.1.1. Description of the lens. We first define the lens Ω.

Definition 3.9. Let Σ be a smooth and connected surface in R
3 and Π be the plane x3 = 0.

We assume that the intersection Σ ∩ Π is a smooth and closed curve and that Σ and Π

intersect neither normally nor tangentially. Denoting by Σ+ the set {x ∈ Σ : x3 > 0} and

by Σ− its symmetric with respect to x3 = 0, the lens Ω is the open set of the points lying

between Σ+ and Σ− whereas the edge is

(3.3.1) E = Σ+ ∩ Σ−.

We define α(x) as the opening angle between Σ− and Σ+ at the point x ∈ E. We assume

that α(x) ∈ (0, π) for all x ∈ E.

In our situation the magnetic field B = (0, 0, 1) is normal to the plane where the edge

lies. For x ∈ ∂Ω \ E we introduce the angle θ(x) defined by:

(3.3.2) B · n(x) = sin θ(x).
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A model lens with constant opening angle is given by two parts of a sphere glued

together (see Figure 1). In this case we have

(3.3.3) ∀x ∈ ∂Ω \ E, π − α

2
< θ(x)

where α ∈ (0, π) is the opening angle of the lens and we notice that the magnetic field is

nowhere tangent to the boundary. We will assume that the opening angle of the lens is

variable. For a given point x of the boundary, we analyze the localized (in a neighborhood

of x) magnetic Laplacian Llens
h and we distinguish between x belonging to the edge and x

belonging to the smooth part of the boundary.

−→
B

B

E

⊙

π−α
2

θ(x)

x

π
2

Figure 1. A lens Ω: the magnetic field is nowhere tangent to the boundary
and it makes the angle θ(x) with the regular boundary.

3.1.2. Leading Operator. Let x ∈ E and V a small neighborhood of x in Ω. We

suppose that the opening angle at x is α. There is a diffeomorphism, denoted by the

local coordinates (š, ť, ž), from V to an open subset of the infinite wedge Wα. This

diffeomorphism can be explicitly described. We refer to Chapter 2, Section 3.3.3 where

some basic properties of the magnetic wedge were discussed.

⊙š

E

ž

ťα

Figure 2. Using the local coordinates (š, ť, ž), a neighborhood of a point
of the edge can be described as a subset of the infinite wedge Wα.

The model situations (magnetic wedge and smooth boundary) lead to compare the

following quantities:

inf
x∈E

νe1(α(x)), inf
x∈∂Ω\E

s1(θ(x)),
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where θ(x) is defined in (3.3.2), α(x) and E are defined in Definition 3.9. Let us state

the different assumptions under which we work:

Assumption 3.10.

(3.3.4) inf
x∈E

νe1(α(x)) < inf
x∈∂Ω\E

s1(θ(x)).

Remark 3.11. Using (3.3.3), the fact that s1 is increasing and Proposition 2.48, we

check that, in the model case when Ω is made of two parts of a sphere glued together,

Assumption 3.10 is satisfied for α small enough. By a continuity argument, Assumption

3.10 holds for not too large perturbations of this lens.

From the properties of the leading operator we see that we will be led to work near

the point of the edge of maximal opening. Therefore we will assume the following generic

assumption:

Assumption 3.12. We denote by α : E 7→ (0, π) the opening angle of the lens. We

assume that α admits a unique and non degenerate maximum at the point x0 and we let

α0 = max
E

α.

We denote T = tan α
2
and T0 = tan α0

2
.

In particular, under this assumption and Conjecture 2.50, the function s 7→ νe1(α(s))

admits a unique and non-degenerate minimum.

3.2. Normal form. This is “classical” that Assumption 3.10 leads to localization

properties of the eigenfunctions near the edge E and more precisely near the points of

the edge where E ∋ x 7→ ν(α(x)) is minimal. Therefore, since ν is decreasing and thanks

to Assumption 3.12, we expect that the first eigenfunctions concentrate near the point

x0 where the opening is maximal. This is possible to introduce, near each x ∈ E, a local

change of variables which transforms a neighborhood of x in Ω in a ε0-neighborhood of

(0, 0, 0) of Wα(x), denoted by Wα(x),ε0 .

For the convenience of the reader, let us write below the expression of the magnetic

Laplacian in the new local coordinates (š, ť, ž) where š is a curvilinear abscissa of the

edge. The magnetic Laplacian Llens
h is given by the Laplace-Beltrami expression (on

L2(|Ǧ|1/2 dš dť dž)):

(3.3.5) Ľlens
h := |Ǧ|−1/2∇̌h|Ǧ|1/2Ǧ−1∇̌h

where:

(3.3.6) ∇̌h =






hDš

hDť

hT (š)−1T (0)Dž




+






−ť+ ζe0h
1/2 − h T ′

2T (žDž +Dž ž) + Ř1(š, ť, ž)

0

0




 .

The precise forms of the Taylor expansions of the remainder Ř1, the metric Ǧ and the

function š 7→ T (š) are analyzed in [PR13].
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Remark 3.13. Such a normal form allows us to describe the leading structure of this

magnetic Laplace-Beltrami operator. Indeed, if we just keep the main terms in (3.3.5) by

neglecting formally the geometrical factors, our operator takes the simpler form:

(hDš − ť+ ζe0h
1/2)2 + h2D2

ť + h2T (0)2T (š)−2D2
ž ,

whose symbol with respect to s is discussed in Chapter 2, Section 3.3.3. Performing

another formal Taylor expansion near š = 0, we are led to the following operator:

(hDš − ť+ ζe0h
1/2)2 + h2D2

ť + h2D2
ž + ch2š2D2

ž ,

where c > 0. Using a scaling, we get a rescaled operator whose first term is the leading

operator Le
α0

and which allows to construct quasimodes. Moreover this form is suitable

to establish microlocalization properties of the eigenfunctions with respect to Dš.

3.3. Magnetic wells induced by the variations of a singular geometry. The

main result of this section is a complete asymptotic expansion of all the first eigenvalues

of Llens
h .

Theorem 3.14. We assume that Conjecture 2.50 is true. We also assume Assumptions

3.10 and 3.12. For all n ≥ 1 there exists (µj,n)j≥0 such that we have:

λn(h) ∼
h→0

h
∑

j≥0

µj,nh
j/4.

Moreover, we have:

µ0,n = νe1(α0), µ1,n = 0, µ2,n = ω0 + (2n− 1)
√

κT −1
0 ‖Dẑueζe0‖

2∂2ζν
e
1(α0, ζe0),

where ω0 and κ > 0 are geometrical constants.

Remark 3.15. We observe that, for all n ≥ 1, λn(h) is simple for h small enough. This

simplicity, jointly with a quasimodes construction, also provides an approximation of the

corresponding normalized eigenfunction. Moreover, if α is analytic, by using the WKB

analysis of [BHR14] (see Chapter 2, Section 3.3.3), it is possible to get WKB expansions

of the eigenfunctions.

4. Birkhoff normal form

Sections 1, 2 and 3 are mainly structured around the idea of normal forms. Indeed, in

each case we have introduced an appropriate change of variable or equivalently a Fourier

integral operator and we have normalized the magnetic Laplacian by transferring the

magnetic geometry into the coefficients of the operator. We can interpret this normaliza-

tion as a very explicit application of the Egorov theorem. Then, in the investigation, we

are led to use the Feshbach projection to simplify again the situation. This projection

method can also be heuristically interpreted as a normal form in the spirit of Egorov:

taking the average of the operator in a certain quantum state is nothing but the quan-

tum analog of averaging a full Hamiltonian with respect to a reduced Hamiltonian. In
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problems with boundaries or with vanishing magnetic fields it appears that the dynamics

of the reduced Hamiltonian is less understood (due to the boundary for instance) than

the spectral theory of its quantization. Keeping this remark in mind it now naturally

appears that we should implement a general normal form, for instance in the simplest

situation of dimension two, without boundary and with a non vanishing magnetic field.

This was the purpose of the collaboration with S. Vũ Ngo.c [RVN14].

4.1. Preliminary considerations. As we shall recall below, a particle in a magnetic

field has a fast rotating motion, coupled to a slow drift. It is of course expected that the

long-time behaviour of the particle is governed by this drift. From the quantum point

of view we will see that this drift is governed by a reduced Hamiltonian which can be

approximated by the magnetic field itself.

Let (e1, e2, e3) be an orthonormal basis of R3 and let us consider the plane R
2 =

{q1e1 + q2e2; (q1, q2) ∈ R
2}, and the magnetic field is B = B(q1, q2)e3. For the moment

we only assume that q = (q1, q2) belongs to an open set Ω where B does not vanish.

With appropriate constants, Newton’s equation for the particle under the action of

the Lorentz force writes

(3.4.1) q̈ = 2q̇ ×B.

The kinetic energy E = 1
4
‖q̇‖2 is conserved. If the speed q̇ is small, we may linearize the

system, which amounts to have a constant magnetic field. Then, as is well known, the

integration of Newton’s equations gives a circular motion of angular velocity θ̇ = −2B

and radius ‖q̇‖ /2B. Thus, even if the norm of the speed is small, the angular velocity

may be very important. Now, if B is in fact not constant, the particle may leave the

region where the linearization is meaningful. This suggests a separation of scales (as

in the semiclassical and quantum context of Sections 1 and 3), where the fast circular

motion is superposed with a slow motion of the center.

It is known that the system (3.4.1) is Hamiltonian. Let A ∈ C∞(R2,R2) such that

B = ∇×A.

As usual we may identify A = (A1, A2) with the 1-form A = A1 dq1 + A2 dq2. Then, as

a differential 2-form, dA = (∂A2

∂q1
− ∂A1

∂q2
) dq1 ∧ dq2 = B dq1 ∧ dq2. In terms of canonical

variables (q, p) ∈ T ∗
R

2 = R
4 the Hamiltonian of our system is

(3.4.2) H(q, p) = ‖p−A(q)‖2 .

We use here the Euclidean norm on R
2, which allows the identification of R2 with (R2)∗

by

(3.4.3) ∀(v, p) ∈ R
2 × (R2)∗, p(v) = 〈p, v〉.
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Thus, the canonical symplectic form ω on T ∗
R

2 is given by

(3.4.4) ω((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉.

It is easy to check that Hamilton’s equations for H imply Newton’s equation (3.4.1).

In particular, through the identification (3.4.3) we have q̇ = 2(p−A).

4.2. Classical magnetic normal forms. Before considering the semiclassical mag-

netic Laplacian we shall briefly discuss some results concerning the classical dynamics for

large time. As we have already suggested in the introduction of this dissertation, the

large time dynamics problem has to face the issue that the conservation of the energy H

is not enough to confine the trajectories in a compact set.

The first result shows the existence of a smooth symplectic diffeomorphism that trans-

forms the initial Hamiltonian into a normal form, up to any order in the distance to the

zero energy surface.

Theorem 3.16. Let

H(q, p) := ‖p−A(q)‖2 , (q, p) ∈ T ∗
R

2 = R
2 × R

2,

where the magnetic potential A : R
2 → R

2 is smooth. Let B := ∂A2

∂q1
− ∂A1

∂q2
be the

corresponding magnetic field. Let Ω ⊂ R
2 be a bounded open set where B does not vanish.

Then there exists a symplectic diffeomorphism Φ, defined in an open set Ω̃ ⊂ Cz1 × R
2
z2
,

with values in T ∗
R

2, which sends the plane {z1 = 0} to the surface {H = 0}, and such

that

(3.4.5) H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞),

where f : R2 × R → R is smooth. Moreover, the map

(3.4.6) ϕ : Ω ∋ q 7→ Φ−1(q,A(q)) ∈ ({0} × R
2
z2
) ∩ Ω̃

is a local diffeomorphism and

f ◦ (ϕ(q), 0) = |B(q)| .

In the following theorem we denote by K = |z1|2 f(z2, |z1|2) ◦ Φ−1 the (completely

integrable) normal form of H given be Theorem 3.16 above. Let ϕt
H be the Hamiltonian

flow ofH, and let ϕt
K be the Hamiltonian flow ofK. Let us state the important dynamical

consequences of Theorem 3.16 (see Figure 3).

Theorem 3.17. Assume that the magnetic field B > 0 is confining: there exists C > 0

and M > 0 such that B(q) ≥ C if ‖q‖ ≥M . Let C0 < C. Then

(1) The flow ϕt
H is uniformly bounded for all starting points (q, p) such that B(q) ≤

C0 and H(q, p) = O(ǫ) and for times of order O(1/ǫN), where N is arbitrary.

(2) Up to a time of order Tǫ = O(|ln ǫ|), we have

(3.4.7)
∥
∥ϕt

H(q, p)− ϕt
K(q, p)

∥
∥ = O(ǫ∞)
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for all starting points (q, p) such that B(q) ≤ C0 and H(q, p) = O(ǫ).

It is interesting to notice that, if one restricts to regular values of B, one obtains the

same control for a much longer time, as stated below.

Theorem 3.18. Under the same confinement hypothesis as Theorem 3.17, let J ⊂ (0, C0)

be a closed interval such that dB does not vanish on B−1(J). Then up to a time of order

T = O(1/ǫN), for an arbitrary N > 0, we have
∥
∥ϕt

H(q, p)− ϕt
K(q, p)

∥
∥ = O(ǫ∞)

for all starting points (q, p) such that B(q) ∈ J and H(q, p) = O(ǫ).

Figure 3. Numerical simulation of the flow of H when the magnetic field
is given by B(x, y) = 2 + x2 + y2 + x3

3
+ x4

20
, and ǫ = 0.05, t ∈ [0, 500]. The

picture also displays in red some level sets of B.

4.3. Semiclassical magnetic normal forms. We turn now to the quantum coun-

terpart of these results. Let Lh,A = (−ih∇ − A)2 be the magnetic Laplacian on R
2,

where the potential A : R2 → R
2 is smooth, and such that Lh,A ∈ S(m) for some order

function m on R
4 (see [35, Chapter 7]). We will work with the Weyl quantization; for a

classical symbol a = a(x, ξ) ∈ S(m) , it is defined as:

Opwh aψ(x) =
1

(2πh)2

∫ ∫

ei(x−y)·ξ/ha

(
x+ y

2
, ξ

)

ψ(y) dy dξ, ∀ψ ∈ S(R2).

The first result shows that the spectral theory of Lh,A is governed at first order by

the magnetic field itself, viewed as a symbol.
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Theorem 3.19. Assume that the magnetic field B is non vanishing on R
2 and confining:

there exist constants C̃1 > 0, M0 > 0 such that

(3.4.8) B(q) ≥ C̃1 for |q| ≥M0.

Let H0
h = Opwh (H

0), where H0 = B(ϕ−1(z2))|z1|2 where ϕ : R2 → R
2 is a diffeomorphism.

Then there exists a bounded classical pseudo-differential operator Qh on R
2, such that

• Qh commutes with Opwh (|z1|2);
• Qh is relatively bounded with respect to H0

h with an arbitrarily small relative

bound;

• its Weyl symbol is Oz2(h
2 + h |z1|2 + |z1|4),

so that the following holds. Let 0 < C1 < C̃1. Then the spectra of Lh,A and LNo
h := H0

h+Qh

in (−∞, C1h] are discrete. We denote by 0 < λ1(h) ≤ λ2(h) ≤ · · · the eigenvalues of

Lh,A and by 0 < µ1(h) ≤ µ2(h) ≤ · · · the eigenvalues of LNo
h . Then for all j ∈ N

∗ such

that λj(h) ≤ C1h and µj(h) ≤ C1h, we have

|λj(h)− µj(h)| = O(h∞).

The proof of Theorem 3.19 relies on the following theorem (see [86] where a close

form of this theorem appears), which provides in particular an accurate description of

Qh. In the statement, we use the notation of Theorem 3.16. We recall that Σ is the zero

set of the classical Hamiltonian H.

Theorem 3.20. For h small enough there exists a Fourier Integral Operator Uh such

that

U∗
hUh = I + Zh, UhU

∗
h = I + Z ′

h,

where Zh, Z
′
h are pseudo-differential operators that microlocally vanish in a neighborhood

of Ω̃ ∩ Σ, and

(3.4.9) U∗
hLh,AUh = LNo

h +Rh,

where

(1) LNo
h is a classical pseudo-differential operator in S(m) that commutes with

Ih := −h2 ∂
2

∂x21
+ x21;

(2) For any Hermite function hn(x1) such that Ihhn = h(2n − 1)hn, the operator

LNo,(n)
h acting on L2(Rx2) by

hn ⊗ LNo,(n)
h (u) = LNo

h (hn ⊗ u)

is a classical pseudo-differential operator in SR2(m) of h-order 1 with principal

symbol

F (n)(x2, ξ2) = h(2n− 1)B(q),

where (0, x2 + iξ2) = ϕ(q) as in (3.4.6);

52



(3) Given any classical pseudo-differential operator Dh with principal symbol d0 such

that d0(z1, z2) = c(z2)|z1|2+O(|z1|3), and any N ≥ 1, there exist classical pseudo-

differential operators Sh,N and KN such that:

(3.4.10) Rh = Sh,N(Dh)
N +KN +O(h∞),

with KN compactly supported away from a fixed neighborhood of |z1| = 0.

(4) LNo
h = H0

h +Qh, where H0
h = Opwh (H

0), H0 = B(ϕ−1(z2))|z1|2, and the operator

Qh is relatively bounded with respect to H0
h with an arbitrarily small relative

bound.

We recover the result of [69], adding the fact that no odd power of h1/2 can show up

in the asymptotic expansion (see the recent work [72] where a Grushin type method is

used to obtain a close result).

Corollary 3.21 (Low lying eigenvalues). Assume that B has a unique non-degenerate

minimum. Then there exists a constant c0 such that for any j, the eigenvalue λj(h) has

a full asymptotic expansion in integral powers of h whose first terms have the following

form:

λj(h) ∼ hminB + h2(c1(2j − 1) + c0) +O(h3),

with c1 =

√
det(B”◦ϕ−1(0))

2B◦ϕ−1(0)
, where the minimum of B is reached at ϕ−1(0).

Proof. The first eigenvalues of Lh,A are equal to the eigenvalues of LNo,(1)
h (in point (2)

of Theorem 3.20). Since B has a non-degenerate minimum, the symbol of LNo,(1)
h has a

non-degenerate minimum, and the spectral asymptotics of the low-lying eigenvalues for

such a 1D pseudo-differential operator are well known. We get

λj(h) ∼ hminB + h2(c1(2j − 1) + c0) +O(h3),

with c1 =
√

det(B ◦ ϕ−1)”(0)/2. One can easily compute

c1 =

√

det(B” ◦ ϕ−1(0))

2 |det(Dϕ−1(0))| =

√

det(B” ◦ ϕ−1(0))

2B ◦ ϕ−1(0)
.

�
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CHAPTER 4

Waveguides

Si on me presse de dire pourquoi je l’aimais,

je sens que cela ne se peut exprimer qu’en

répondant : Parce que c’était lui : parce que

c’était moi.

Les Essais, Livre I, Chapitre XXVIII,

Montaigne

This chapter presents recent results in the spectral theory of waveguides. It is essen-

tially based on the collaborations with D. Krejčǐŕık [KR13] on the one hand and with

M. Dauge [DaR12] on the other hand. In Section 1 we describe magnetic waveguides

in dimensions two and three and we analyze the spectral influence of the width ε of the

waveguide and the intensity b if the magnetic field. In particular we investigate the limit

ε → 0. In Section 2 we describe the same problem in the case of layers. In Sections 3

and 4 the effect of a corner in dimension two is tackled.

1. Magnetic waveguides

This section is concerned with spectral properties of a curved quantum waveguide

when a magnetic field is applied. The main results of this section were obtained in

collaboration with D. Krejčǐŕık in [KR13].

We will give a precise definition of what a waveguide is in Sections 1.3 and 1.4.

Without going into the details we can already mention that we will use the definition

given in the famous (non magnetic) paper of Duclos and Exner [37] and its generalizations

[26, 93, 56]. The waveguide is nothing but a tube Ωε about an unbounded curve γ in

the Euclidean space R
d, with d ≥ 2, where ε is a positive shrinking parameter and the

cross section is defined as εω = {ετ : τ ∈ ω}.
More precisely this section is devoted to the spectral analysis of the magnetic operator

with Dirichlet boundary conditions L
[d]
ε,bA defined as

(4.1.1) (−i∇x + bA(x))2 on L2(Ωε, dx).

where b > 0 is a positive parameter and A a smooth vector potential associated with a

given magnetic field B.
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1.1. The result of Duclos and Exner. One of the remarkable facts which is proved

by Duclos and Exner is that the Dirichlet Laplacian on Ωε always has discrete spec-

trum below its essential spectrum when the waveguide is not straight and asymptotically

straight. Let us sketch the proof of this result in the case of two dimensional waveguides.

Let us consider a smooth and injective curve γ: R ∋ s 7→ γ(s) which is parameterized

by its arc length s. The normal to the curve at γ(s) is defined as the unique unit vector

n(s) such that γ′(s) · ν(s) = 0 and det(γ′, ν) = 1. We have the relation γ′′(s) = κ(s)n(s)

where κ(s) denotes the algebraic curvature at the point γ(s). We can now define standard

tubular coordinates. We consider:

R× (−ε, ε) ∋ (s, t) 7→ Φ(s, t) = γ(s) + tn(s).

We always assume

(4.1.2) Φ is injective and ε sup
s∈R

|κ(s)| < 1.

Then it is well known (see [93]) that Φ defines a smooth diffeomorphism from R× (−ε, ε)
onto the image Ωε = Φ(R× (−ε, ε)), which we identify with our waveguide. In these new

coordinates, the operator becomes (exercise)

L
[2]
ε,0 = −m−1∂sm

−1∂s −m−1∂tm∂t, m(s, t) = 1− tκ(s),

which is acting in the weighted space L2(R × (−ε, ε),m(s, t) ds dt). We introduce the

shifted quadratic form:

Q[2],sh
ε,0 (φ) =

∫

R×(−ε,ε)

(

m−2|∂s(φ)|2 + |∂tφ|2 −
π2

4ε2
|φ|2
)

m ds dt

and we let:

φn(s, t) = χ0(n
−1s) cos

( π

2ε
t
)

,

where χ0 is a smooth cutoff function which is 1 near 0. We can check thatQ[2],sh
ε,0 (φn) →

n→+∞
0. Let us now consider a smooth cutoff function χ1 which is 1 near a point where κ is

not zero and define φ̃(s, t) = −χ2
1(s, t)L[2],sh

ε,0 φn(s, t) which does not depend on n as soon

as n is large enough. Then we have:

Q[2],sh
ε,0 (φn + ηφ̃) = Q[2],sh

ε,0 (φn)− 2ηB[2],sh
ε,0 (φn, χ1(s)L[2],sh

ε,0 φn) + η2Q[2],sh
ε,0 (φ̃).

For n large enough, the quantity B[2],sh
ε,0 (φn, χ1(s)L[2],sh

ε,0 φn) does not depend on n and is

positive. For such an n, we take η small enough and we find:

Q[2],sh
ε,0 (φn + ηφ̃) < 0.

Therefore the bottom of the spectrum is an eigenvalue due to the min-max principle.

Duclos and Exner also investigate the limit ε→ 0 to show that the Dirichlet Laplacian

on the tube Ωε converges in a suitable sense to the effective one dimensional operator

Leff = −∂2s −
κ(s)2

4
on L2(γ, ds).
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In addition it is proved in [37] that each eigenvalue of this effective operator generates

an eigenvalue of the Dirichlet Laplacian on the tube.

As Duclos and Exner we are interested in approximations of L
[d]
ε,bA in the small cross

section limit ε→ 0. Such an approximation might non trivially depends on the intensity

of the magnetic field b especially if it is allowed to depend on ε.

1.2. Waveguides with more geometry. In dimension three it is also possible to

twist the waveguide by allowing the cross section of the waveguide to non-trivially rotate

by an angle function θ with respect to a relatively parallel frame of γ (then the velocity

θ′ can be interpreted as a “torsion”). It is proved in [41] that, whereas the curvature is

favourable to discrete spectrum, the torsion plays against it. In particular, the spectrum

of a straight twisted waveguide is stable under small perturbations (such as local electric

field or bending). This repulsive effect of twisting is quantified in [41] (see also [92, 95])

by means of a Hardy type inequality. The limit ε → 0 permits to compare the effects

bending and twisting ([19, 33, 94]) and the effective operator is given by

Leff = −∂2s −
κ(s)2

4
+ C(ω)θ′(s)2 on L2(γ, ds),

where C(ω) is a positive constant whenever ω is not a disk or annulus. Writing (4.1.1)

Figure 1. Torsion on the left and curvature on the right

in suitable curvilinear coordinates (see (4.1.9) below), one may notice similarities in the

appearance of the torsion and the magnetic field in the coefficients of the operator and

it therefore seems natural to ask the following question:

“Does the magnetic field act as the torsion ?”

In order to define our effective operators in the limit ε → 0 we shall describe more

accurately the geometry of our waveguides. This is the aim of the next two sections in

which we will always assume that the geometry (curvature and twist) and the magnetic

field are compactly supported.
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1.3. Two-dimensional waveguides. Up to changing the gauge, the Laplace-Beltrami

expression of L
[2]
ε,bA in these coordinates is given by

L
[2]
ε,bA = (1− tκ(s))−1(i∂s + bA1)(1− tκ(s))−1(i∂s + bA1)− (1− tκ(s))−1∂t(1− tκ(s))∂t,

with the gauge:

A(s, t) = (A1(s, t), 0), A1(s, t) =

∫ t

0

(1− t′κ(s))B(Φ(s, t′)) dt′.

We let:

m(s, t) = 1− tκ(s).

The self-adjoint operator L
[2]
ε,bA on L2(R × (−ε, ε),m ds dt) is unitarily equivalent to the

self-adjoint operator on L2(R× (−ε, ε), ds dt):

L[2]
ε,bA = m1/2L

[2]
ε,bAm

−1/2.

Introducing the rescaling

(4.1.3) t = ετ,

we let:

Aε(s, τ) = (A1,ε(s, τ), 0) = (A1(s, ετ), 0)

and denote by L[2]
ε,bAε

the homogenized operator on L2(R× (−1, 1), ds dτ):

(4.1.4) L[2]
ε,bAε

= m−1/2
ε (i∂s + bA1,ε)m

−1
ε (i∂s + bA1,ε)m

−1/2
ε − ε−2∂2τ + Vε(s, τ),

with:

mε(s, τ) = m(s, ετ), Vε(s, τ) = −κ(s)
2

4
(1− εκ(s)τ)−2.

It is easy to verify that L[2]
ε,bA, defined as Friedrich extension of the operator initially

defined on C∞
0 (R×(−ε, ε)), has form domain H1

0(R×(−ε, ε)). Similarly, the form domain

of L[2]
ε,bAε

is H1
0(R× (−1, 1)).

1.4. Three-dimensional waveguides. The situation is geometrically more com-

plicated in dimension 3. We consider a smooth curve γ which is parameterized by its

arc length s and does not overlap itself. We use the so-called Tang frame (or the rel-

atively parallel frame, see for instance [94]) to describe the geometry of the tubular

neighbourhood of γ. Denoting the (unit) tangent vector by T (s) = γ′(s), the Tang frame

(T (s),M2(s),M3(s)) satisfies the relations:

T ′ = κ2M2 + κ3M3,

M ′
2 = −κ2T,

M ′
3 = −κ3T.

The functions κ2 and κ3 are the curvatures related to the choice of the normal fields M2

and M3. We can notice that κ2 = κ22 + κ23 = |γ′′|2 is the square of the usual curvature of

γ.

58



Let θ : R → R a smooth function (twisting). We introduce the map Φ : R×(εω) → Ωε

defined by:

(4.1.5)

x = Φ(s, t2, t3) = γ(s) + t2(cos θM2(s) + sin θM3(s)) + t3(− sin θM2(s) + cos θM3(s)).

Let us notice that s will often be denoted by t1. As in dimension two, we always assume:

(4.1.6) Φ is injective and ε sup
(τ2,τ3)∈ω

(|τ2|+ |τ3|) sup
s∈R

|κ(s)| < 1.

Sufficient conditions ensuring the injectivity hypothesis can be found in [41, App. A]. We

define A = DΦA(Φ) = (A1,A2,A3),

h = 1− t2(κ2 cos θ + κ3 sin θ)− t3(−κ2 sin θ + κ3 cos θ),

h2 = −t2θ′,
h3 = t3θ

′,

and R = h3bA2 + h2bA3. We also introduce the angular derivative ∂α = t3∂t2 − t2∂t3 .

The magnetic operator L
[3]
ε,bA is unitarily equivalent to the operator on L2(Ωε, h dt) given

by

(4.1.7) L
[3]
ε,bA =

∑

j=2,3

h−1(−i∂tj + bAj)h(−i∂tj + bAj)

+ h−1(−i∂s + bA1 − iθ′∂α +R)h−1(−i∂s + bA1 − iθ′∂α +R).

By considering the conjugate operator h1/2L
[3]
ε,bAh

−1/2, we find that L
[3]
ε,bA is unitarily

equivalent to the operator defined on L2(R× (εω), ds dt2 dt3) given by:

(4.1.8) L[3]
ε,bA =

∑

j=2,3

(−i∂tj + bAj)
2 − κ2

4h2

+ h−1/2(−i∂s + bA1 − iθ′∂α +R)h−1(−i∂s + bA1 − iθ′∂α +R)h−1/2.

Finally, introducing the rescaling

(t2, t3) = ε(τ2, τ3) = ετ,

we define the homogenized operator on L2(R× ω, ds dτ):

(4.1.9) L[3]
ε,bAε

=
∑

j=2,3

(−iε−1∂τj + bAj,ε)
2 − κ2

4h2ε

+ h−1/2
ε (−i∂s + bA1,ε − iθ′∂α +Rε)h

−1
ε (−i∂s + bA1,ε − iθ′∂α +Rε)h

−1/2
ε ,

where Aε(s, τ) = A(s, ετ), hε(s, τ) = h(s, ετ) and Rε = R(s, ετ).

The form domains of L[3]
ε,bA and L[3]

ε,bAε
are H1

0(R × (−ε, ε)) and H1
0(R × (−1, 1)), re-

spectively.
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1.5. Limiting models and asymptotic expansions. We can now state our main

results concerning the effective models in the limit ε → 0. We will denote by λDir
n (ω)

the n-th eigenvalue of the Dirichlet Laplacian −∆Dir
ω on L2(ω). The first positive and

L2-normalized eigenfunction will be denoted by J1.

Definition 4.1 (Case d = 2). For δ ∈ (−∞, 1), we define:

Leff,[2]
ε,δ = −ε−2∆Dir

ω − ∂2s −
κ(s)2

4

and for δ = 1, we let:

Leff,[2]
ε,1 = −ε−2∆Dir

ω + T [2],

where

T [2] = −∂2s +
(
1

3
+

2

π2

)

B(γ(s))2 − κ(s)2

4
.

Theorem 4.2 (Case d = 2). There exists K such that, for all δ ∈ (−∞, 1], there exist

ε0 > 0, C > 0 such that for all ε ∈ (0, ε0):
∥
∥
∥
∥

(

L[2]

ε,ε−δAε
− ε−2λDir

1 (ω) +K
)−1

−
(

Leff,[2]
ε,δ − ε−2λDir

1 (ω) +K
)−1
∥
∥
∥
∥
≤ Cmax(ε1−δ, ε), for δ < 1

and:
∥
∥
∥
∥

(

L[2]

ε,ε−1Aε
− ε−2λDir

1 (ω) +K
)−1

−
(

Leff,[2]
ε,1 − ε−2λDir

1 (ω) +K
)−1
∥
∥
∥
∥
≤ Cε.

In the critical regime δ = 1, we deduce the following corollary providing the asymp-

totic expansions of the lowest eigenvalues λ
[2]
n (ε) of L[2]

ε,ε−1Aε
.

Corollary 4.3 (Case d = 2 and δ = 1). Let us assume that T [2] admits N (simple)

eigenvalues µ0, · · · , µN below the threshold of the essential spectrum. Then, for all n ∈
{1, · · ·N}, there exist (δj,n)j≥0 and ε0 > 0 such that for all ε ∈ (0, ε0):

λ[2]n (ε) ∼
ε→0

∑

j≥0

δj,nε
−2+j,

with

δ0,n =
π2

4
, δ1,n = 0, δ2,n = µn.

Thanks to the spectral theorem, we also get the approximation of the corresponding

eigenfunctions at any order.

In order to present analogous results in dimension three, we introduce supplementary

notation. The norm and the inner product in L2(ω) will be denoted by ‖ · ‖ω and 〈·, ·〉ω,
respectively.

Definition 4.4 (Case d = 3). For δ ∈ (−∞, 1), we define:

Leff,[3]
ε,δ = −ε−2∆Dir

ω − ∂2s −
κ(s)2

4
+ ‖∂αJ1‖2ωθ′2
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and for δ = 1, we let:

Leff,[3]
ε,1 = −ε−2∆Dir

ω + T [3],

where T [3] is defined by:

T [3] = 〈(−i∂s − iθ′∂α − B12(s, 0, 0)τ2 − B13(s, 0, 0)τ3)
2Id(s)⊗ J1, Id(s)⊗ J1〉ω

+ B2
23(s, 0, 0)

(‖τJ1‖2ω
4

− 〈DαRω, J1〉ω
)

− κ2(s)

4
,

where Rω is a determined function (see [KR13]) and

B23(s, 0, 0) = B(γ(s)) · T (s),
B13(s, 0, 0) = B(γ(s)) · (cos θM2(s)− sin θM3(s)),

B12(s, 0, 0) = B(γ(s)) · (− sin θM2(s) + cos θM3(s)).

Theorem 4.5 (Case d = 3). There exists K such that for all δ ∈ (−∞, 1], there exist

ε0 > 0, C > 0 such that for all ε ∈ (0, ε0):
∥
∥
∥
∥

(

L[3]

ε,ε−δAε
− ε−2λDir

1 (ω) +K
)−1

−
(

Leff,[3]
ε,δ − ε−2λDir

1 (ω) +K
)−1
∥
∥
∥
∥
≤ Cmax(ε1−δ, ε), for δ < 1

and:
∥
∥
∥
∥

(

L[3]

ε,ε−1Aε
− ε−2λDir

1 (ω) +K
)−1

−
(

Leff,[3]
ε,1 − ε−2λDir

1 (ω) +K
)−1
∥
∥
∥
∥
≤ Cε.

In the same way, this theorem implies asymptotic expansions of eigenvalues λ
[3]
n (ε) of

L[3]

ε,ε−1Aε
.

Corollary 4.6 (Case d = 3 and δ = 1). Let us assume that T [3] admits N (simple)

eigenvalues ν0, · · · , νN below the threshold of the essential spectrum. Then, for all n ∈
{1, · · ·N}, there exist (δj,n)j≥0 and ε0 > 0 such that for all ε ∈ (0, ε0):

λ[3]n (ε) ∼
ε→0

∑

j≥0

δj,nε
−2+j,

with

δ0,n = λDir
1 (ω), δ1,n = 0, δ2,n = νn.

As in two dimensions, we also get the corresponding expansion for the eigenfunctions.

Complete asymptotic expansions for eigenvalues in finite three-dimensional waveguides

without magnetic field are also previously established in [63, 15]. Such expansions were

also obtained in [62] in the case δ = 0 in a periodic framework.

Remark 4.7. As expected, when δ = 0 that is when b is kept fixed, the magnetic field does

not persists in the limit ε → 0 as well in dimension two as in dimension three. Indeed,

in this limit Ωε converges to the one dimensional curve γ and there is no magnetic field

in dimension 1.
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1.6. Norm resolvent convergence. Let us state an auxiliary result, inspired by

the approach of [58], which tells us that, in order to estimate the difference between two

resolvents, it is sufficient to analyse the difference between the corresponding sesquilinear

forms as soon as their domains are the same.

Lemma 4.8. Let L1 and L2 be two positive self-adjoint operators on a Hilbert space

H. Let B1 and B2 be their associated sesquilinear forms. We assume that Dom (B1) =

Dom (B2). Assume that there exists η > 0 such that for all φ, ψ ∈ Dom (B1):

|B1(φ, ψ)−B2(φ, ψ)| ≤ η
√

Q1(ψ)
√

Q2(φ),

where Qj(ϕ) = Bj(ϕ, ϕ) for j = 1, 2 and ϕ ∈ Dom (B1). Then, we have:

‖L−1
1 − L−1

2 ‖ ≤ η‖L−1
1 ‖1/2‖L−1

2 ‖1/2.

Proof. The original proof can be found in [94, Prop. 5.3]. Let us consider φ̃, ψ̃ ∈ H.

We let φ = L−1
2 φ̃ and ψ = L−1

1 ψ̃. We have φ, ψ ∈ Dom (B1) = Dom (B2). We notice

that:

B1(φ, ψ) = 〈L−1
2 φ̃, ψ̃〉, B2(φ, ψ) = 〈L−1

1 φ̃, ψ̃〉
and:

Q1(ψ) = 〈ψ̃,L−1
1 ψ̃〉, Q2(φ) = 〈φ̃,L−1

2 φ̃〉.
We infer that: ∣

∣
∣〈(L−1

1 − L−1
2 )φ̃, ψ̃〉

∣
∣
∣ ≤ η‖L−1

1 ‖1/2‖L−1
2 ‖1/2‖φ̃‖‖ψ̃‖

and the result elementarily follows. �

1.7. A magnetic Hardy inequality. In dimension 2, the limiting model (with

δ = 1) highlights the fact that the magnetic field plays against the curvature, whereas

in dimension 3 this repulsive effect is not obvious (it can be seen that 〈DαRω, J1〉ω ≥ 0).

Nevertheless, if ω is a disk, we have 〈DαRω, J1〉ω = 0 and thus the component of the

magnetic field parallel to γ plays against the curvature (in comparison, a pure torsion

has no effect when the cross section is a disk). In the flat case (κ = 0), we can quantify this

repulsive effect by means of a magnetic Hardy inequality (see [40] where this inequality

is discussed in dimension two).

Theorem 4.9. Let d ≥ 2 and ω be an open bounded subset of Rd−1. Let us consider

Ω = R× ω. For R > 0, we let:

Ω(R) = {t ∈ Ω : |t1| < R}.

Let A be a smooth vector potential such that the magnetic 2-form σB is not zero on

Ω(R0) for some R0 > 0. Then, there exists C > 0 such that, for all R ≥ R0, there exists

cR(B) > 0 such that, we have:

(4.1.10)

∫

Ω

|(−i∇+A)ψ|2 − λDir
1 (ω)|ψ|2 dt ≥

∫

Ω

cR(B)

1 + s2
|ψ|2 dt, ∀ψ ∈ C∞

0 (Ω).
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Moreover we can take:

cR(B) =
(
1 + CR−2

)−1
min

(
1

4
, λDir,Neu

1 (B,Ω(R))− λDir
1 (ω)

)

,

where λDir,Neu
1 (B,Ω(R)) denotes the first eigenvalue of the magnetic Laplacian on Ω(R),

with Dirichlet condition on R× ∂ω and Neumann condition on {|s| = R} × ω.

The inequality of Theorem 4.9 can be applied to prove certain stability of the spectrum

of the magnetic Laplacian on Ω under local and small deformations of Ω. Let us fix

ε > 0 and describe a generic deformation of the straight tube Ω. We consider the local

diffeomorphism:

Φε(t) = Φε(s, t2, t3) = (s, 0, · · · , 0) +
d∑

j=2

(tj + εj(s))Mj + E1(s),

where (Mj)
d
j=2 is the canonical basis of {0} × R

d−1. The functions εj and E1 are smooth

and compactly supported in a compact set K. As previously we assume that Φε is a

global diffeomorphism and we consider the deformed tube Ωdef,ε = Φε(R× ω).

Proposition 4.10. Let d ≥ 2. There exists ε0 > 0 such that for ε ∈ (0, ε0), the spectrum

of the Dirichlet realization of (−i∇ + A)2 on Ωdef,ε coincides with the spectrum of the

Dirichlet realization of (−i∇+A)2 on Ω. The spectrum is given by [λDir
1 (ω),+∞).

By using a semiclassical argument, it is possible to prove a stability result which does

not use the Hardy inequality.

Proposition 4.11. Let R0 > 0 and Ω(R0) = {t ∈ R×ω : |t1| ≤ R0}. Let us assume that

σB = dξA does not vanish on Φ(Ω(R0)) and that on Ω1 \Φ(Ω(R0)) the curvature is zero.

Then, there exists b0 > 0 such that for b ≥ b0, the discrete spectrum of L
[d]
1,bA is empty.

2. Magnetic layers

As we will sketch below, the philosophy of Duclos and Exner may also apply to thin

quantum layers as we can see in the contributions [38, 24, 97, 98, 99, 125] and the

related papers [88, 30, 31, 129, 109, 59, 56, 131, 130, 96, 94]. The collaboration

with D. Krejčǐŕık and M. Tušek [KRT13] aimed at investigating the effect of a magnetic

field.

Let us consider Σ an hypersurface embedded in R
d with d ≥ 2, and define a tubular

neighbourhood about Σ,

(4.2.1) Ωε :=
{
x+ tn ∈ R

d
∣
∣ (x, t) ∈ Σ× (−ε, ε)

}
,

where n denotes a unit normal vector field of Σ. We investigate:

(4.2.2) LA,Ωε = (−i∇+A)2 on L2(Ωε) ,

with Dirichlet boundary conditions on ∂Ωε.
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2.1. Normal form. As usual the game is to find an appropriate normal form for

the magnetic Laplacian. Given I := (−1, 1) and ε > 0, we define a layer Ωε of width 2ε

along Σ as the image of the mapping

(4.2.3) Φ : Σ× I → R
d :
{
(x, u) 7→ x+ εun

}

Let us denote by Ã the components of the vector potential expressed in the curvilinear

coordinates induced by the embedding (4.2.3). Moreover, assume

(4.2.4) Ãd = 0.

Thanks to the diffeomorphism Φ : Σ× I → Ωε, we may identify LA,Ωε with an operator

Ĥ on L2(Σ× I, dΩε) that acts, in the form sense, as

Ĥ = |G|−1/2(−i∂xµ + Ãµ)|G|1/2Gµν(−i∂xν + Ãν)− ε−2|G|−1/2∂u|G|1/2∂u .

Let us define

J :=
1

4
ln

|G|
|g| =

1

2

d−1∑

µ=1

ln(1− εuκµ) =
1

2
ln

[

1 +
d−1∑

µ=1

(−εu)µ
(
d− 1

µ

)

Kµ

]

.

Using the unitary transform

U : L2(Σ× I, dΩε) → L2(Σ× I, dΣ ∧ du) :
{
ψ 7→ eJψ

}
,

we arrive at the unitarily equivalent operator

H := UĤU−1 = |g|−1/2(−i∂xµ + Ãµ)|g|1/2Gµν(−i∂xν + Ãν)− ε−2∂2u + V ,

where

V := |g|−1/2 ∂xi

(
|g|1/2Gij(∂xjJ)

)
+ (∂xiJ)Gij(∂xjJ) .

We get

H = UÛ(−∆Ωε
D,A)Û

−1U−1 .

2.2. The effective operator. H is approximated in the norm resolvent sense (see

[KRT13] for the details) by

(4.2.5) H0 = heff − ε−2∂2u ≃ heff ⊗ 1 + 1⊗ (−ε−2∂2u)

on L2(Σ× I, dΣ ∧ du) ≃ L2(Σ, dΣ)⊗ L2(I, du) with the effective Hamiltonian

(4.2.6) heff := |g|−1/2
(
− i∂xµ + Ãµ(., 0)

)
|g|1/2gµν

(
− i∂xν + Ãν(., 0)

)
+ Veff ,

where

(4.2.7) Veff := −1

2

d−1∑

µ=1

κ2µ +
1

4

(
d−1∑

µ=1

κµ

)2

.

In particular the effective Hamiltonian only feels the normal component of the magnetic

field.
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3. Semiclassical triangles

As we would like to analyze the spectrum of broken waveguides (that is waveguides

with an angle), this is natural to prepare the investigation by studying the Dirichlet

eigenvalues of the Laplacian on some special shrinking triangles. This subject is already

dealt with in [55, Theorem 1] where four-term asymptotics is proved for the lowest

eigenvalue, whereas a three-term asymptotics for the second eigenvalue is provided in

[55, Section 2]. We can mention the papers [57, 58] whose results provide two-term

asymptotics for the thin rhombi and also [16] which deals with a regular case (thin

ellipse for instance), see also [17]. We also invite the reader to take a look at [84].

For a complete description of the low lying spectrum of general shrinking triangles, one

may consult the paper by my student Ourmières [117] where tunnel effect estimates are

also established. In dimension three the generalization to cones with small aperture is

done in [116] and is motivated by [49]. The result of this section was obtained in the

collaboration with M. Dauge [DaR12] and aimed at applying the semiclassical techniques

to this kind of geometric problems. In particular, this work establishes that, in the case

of shrinking triangles, the eigenfunctions contain a boundary layer (they live on different

scales depending on h). This fact does not seem to be known in the literature.

Let us define the isosceles triangle in which we are interested:

(4.3.1) Triθ =
{

(x1, x2) ∈ R− × R : x1 tan θ < |x2| <
(

x1 +
π

sin θ

)

tan θ
}

.

We will use the coordinates

(4.3.2) x = x1
√
2 sin θ, y = x2

√
2 cos θ,

which transform Triθ into Triπ/4. The operator becomes:

DTri(h) = 2 sin2θ ∂2x − 2 cos2θ ∂2y ,

with Dirichlet condition on the boundary of Tri. We let h = tan θ ; after a division by

2 cos2 θ, we get the new operator:

(4.3.3) LTri(h) = −h2∂2x − ∂2y .

This operator is thus in the “Born-Oppenheimer form” and we shall introduce its Born-

Oppenheimer approximation which is the Dirichlet realization on L2((−π
√
2, 0)) of:

(4.3.4) HBO,Tri(h) = −h2∂2x +
π2

4(x+ π
√
2)2

.

Theorem 4.12. The eigenvalues of HBO,Tri(h), denoted by λBO,Tri,n(h), admit the expan-

sions:

λBO,Tri,n(h) ∼
h→0

∑

j≥0

β̂j,nh
2j/3, with β̂0,n =

1

8
and β̂1,n = (4π

√
2)−2/3zAirev(n),

where zAirev(n) is the n-th zero of the reversed Airy function Airev(x) = Ai(−x).
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We state the result for the scaled operator LTri(h).

Theorem 4.13. The eigenvalues of LTri(h), denoted by λTri,n(h), admit the expansions:

λTri,n(h) ∼
h→0

∑

j≥0

βj,nh
j/3 with β0,n =

1

8
, β1,n = 0, and β2,n = (4π

√
2)−2/3zAirev(n),

the terms of odd rank being zero for j ≤ 8. The corresponding eigenfunctions have

expansions in powers of h1/3 with both scales x/h2/3 and x/h (the “boundary layer”).

4. Broken waveguides

4.1. Physical motivation. As we have already recalled at the beginning of this

chapter, it has been proved in [37] that a curved, smooth and asymptotically straight

waveguide has discrete spectrum below its essential spectrum. Now we would like to

explain the influence of a corner which is somehow an infinite curvature and extend the

philosophy of the smooth case. This is the aim of the collaboration with M. Dauge

[DaR12] (see also the numerical counterpart in [DaLR11]), especially by applying the

semiclassical methods in the context of waveguides.

This question is investigated with the L-shape waveguide in [48] where the existence

of discrete spectrum is proved. For an arbitrary angle too, this existence is proved in

[4] and an asymptotic study of the ground energy is done when θ goes to π
2
(where θ

is the semi-opening of the waveguide). Another question which arises is the estimate of

the lowest eigenvalues in the regime θ → 0. This problem is analyzed in [23] where a

waveguide with corner is the model chosen to describe some electromagnetic experiments

(see Figure 2).

4.2. Geometric description. Let us denote by (x1, x2) the Cartesian coordinates

of the plane and by 0 = (0, 0) the origin. Let us define our so-called “broken waveguides”.

For any angle θ ∈
(
0, π

2

)
we introduce

(4.4.1) Ωθ =
{

(x1, x2) ∈ R
2 : x1 tan θ < |x2| <

(

x1 +
π

sin θ

)

tan θ
}

.

Note that its width is independent from θ, normalized to π, see Figure 3. The limit case

where θ = π
2
corresponds to the straight strip (−π, 0)× R.

The operator −∆Dir
Ωθ

is a positive unbounded self-adjoint operator with domain

Dom (−∆Dir
Ωθ
) = {ψ ∈ H1

0(Ωθ) : −∆ψ ∈ L2(Ωθ)}.

When θ ∈
(
0, π

2

)
, the boundary of Ωθ is not smooth, it is polygonal. The presence of the

non-convex corner with vertex 0 is the reason for the space Dom (−∆Dir
Ωθ
) to be distinct

from H2 ∩ H1
0(Ωθ). We have the following description of the domain (see the classical

references [91, 61]):

(4.4.2) Dom (−∆Dir
Ωθ
) =

(
H2 ∩ H1

0(Ωθ)
)
⊕ [ψθ

sing]
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Figure 2. Experimental results of [23]

x1

x2

(− π
sin θ

, 0)

Ωθ

ϕ
θ

ρ

•
0

Figure 3. The broken guide Ωθ (here θ = π
6
). Cartesian and polar coordinates.

where [ψθ
sing] denotes the space generated by the singular function ψθ

sing defined in the

polar coordinates (ρ, ϕ) near the origin by

(4.4.3) ψθ
sing(x1, x2) = χ(ρ) ρπ/ω sin

πϕ

ω
with ω = 2(π − θ)

where where χ is a radial cutoff function near the origin.

We gather in the following statement several important preliminary properties for the

spectrum of −∆Dir
Ωθ
. All these results are proved in the literature (see also [DaLR11]).
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Proposition 4.14. (i) If θ = π
2
, −∆Dir

Ωθ
has no discrete spectrum. Its essential spectrum

is the closed interval [1,+∞).

(ii) For any θ in the open interval (0, π
2
) the essential spectrum of −∆Dir

Ωθ
coincides

with [1,+∞).

(iii) For any θ ∈ (0, π
2
), the discrete spectrum of −∆Dir

Ωθ
is nonempty.

(iv) For any θ ∈ (0, π
2
) and any eigenvalue in the discrete spectrum of −∆Dir

Ωθ
, the

associated eigenvectors ψ are even with respect to the horizontal axis: ψ(x1,−x2) =

ψ(x1, x2).

(v) For any θ ∈ (0, π
2
), let µGui,n(θ), n = 1, . . ., be the n-th Rayleigh quotient of −∆Dir

Ωθ
.

Then, for any n ≥ 1, the function θ 7→ µGui,n(θ) is continuous and increasing.

It is also possible to prove that the number of eigenvalues below the essential spectrum

is exactly 1 as soon as θ is close enough to π
2
(see [115]). In [DaLR11], we provide a

proof of the following proposition (which is inspired by [112, Theorem 2.1]).

Proposition 4.15. For any θ ∈ (0, π
2
), the number of eigenvalues of −∆Dir

Ωθ
below 1,

denoted by N(−∆Dir
Ωθ
, 1), is finite.

As a consequence of the parity properties of the eigenfunctions of −∆Dir
Ωθ
, cf. point

(iv) of Proposition 4.14, we can reduce the spectral problem to the half-guide

(4.4.4) Ω+
θ = {(x1, x2) ∈ Ωθ : x2 > 0} .

We define the Dirichlet part of the boundary by ∂DirΩ
+
θ = ∂Ωθ ∩ ∂Ω+

θ , and the form

domain

H1
Mix(Ω

+
θ ) =

{
ψ ∈ H1(Ω+

θ ) : ψ = 0 on ∂DirΩ
+
θ

}
.

Then the new operator of interest, denoted by −∆Mix

Ω+
θ

, is the Laplacian with mixed

Dirichlet-Neumann conditions on Ω+
θ . Its domain is:

Dom (−∆Mix

Ω+
θ
) =

{
ψ ∈ H1

Mix(Ω
+
θ ) : ∆ψ ∈ L2(Ω+

θ ) and ∂2ψ = 0 on x2 = 0
}
.

Then the operators −∆Dir
Ωθ

and −∆Mix

Ω+
θ

have the same eigenvalues below 1 and the eigen-

functions of the latter are the restriction to Ω+
θ of the former.

In order to analyze the asymptotics θ → 0, it is useful to rescale the integration

domain and transfer the dependence on θ into the coefficients of the operator. For this

reason, let us perform the following linear change of coordinates:

(4.4.5) x = x1
√
2 sin θ, y = x2

√
2 cos θ,

which maps Ω+
θ onto the θ-independent domain Ω+

π/4, see Fig. 4. That is why we set for

simplicity

(4.4.6) Ω := Ω+
π/4 , ∂DirΩ = ∂DirΩ

+
π/4 , and H1

Mix(Ω) =
{
ψ ∈ H1(Ω) : ψ = 0 on ∂DirΩ

}
.
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θ

Ωθ

π
4

Ω

Neumann Neumann

Figure 4. The half-guide Ω+
θ for θ = π

6
and the reference domain Ω.

Then, ∆Mix

Ω+
θ

is unitarily equivalent to the operator defined on Ω by:

(4.4.7) DGui(θ) := −2 sin2θ ∂2x − 2 cos2θ ∂2y ,

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of Ω.

We let h = tan θ ; after a division by 2 cos2 θ, we get the new operator:

(4.4.8) LGui(h) = −h2∂2x − ∂2y ,

with domain:

Dom (LGui(h)) =
{
ψ ∈ H1

Mix(Ω) : LGui(h)ψ ∈ L2(Ω) and ∂yψ = 0 on y = 0
}
.

The Born-Oppenheimer approximation is:

(4.4.9) HBO,Gui(h) = −h2∂2x + V (x),

where

V (x) =







π2

4(x+ π
√
2)2

when x ∈ (−π
√
2, 0),

1

2
when x ≥ 0.

4.3. Eigenvalues induced by a strongly broken waveguide. Let us now state

the main result concerning the asymptotic expansion of the eigenvalues of the broken

waveguide.

Theorem 4.16. For all N0, there exists h0 > 0, such that for h ∈ (0, h0) the N0 first

eigenvalues of LGui(h) exist. These eigenvalues, denoted by λGui,n(h), admit the expan-

sions:

λGui,n(h) ∼
h→0

∑

j≥0

γj,nh
j/3 with γ0,n =

1

8
, γ1,n = 0, and γ2,n = (4π

√
2)−2/3zAirev(n)

and the term of order h is not zero. The corresponding eigenvectors have expansions in

powers of h1/3 with the scale x/h when x > 0, and both scales x/h2/3 and x/h when x < 0.

The main ingredient in the proof of Theorem 4.16 is the construction of quasimodes.

This one uses double scale expansions and the Dirichlet-to-Neumann operators to handle

the connection between the triangle part and the guiding part of the waveguide.
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4.4. A few numerical simulations from [DaR12]. Let us provide some numerical

simulations (using Melina [102]) of the first eigenfunctions.

λcomp
1 (θ) = 0.32783

λcomp
2 (θ) = 0.40217

λcomp
3 (θ) = 0.47230

λcomp
4 (θ) = 0.54181

λcomp
5 (θ) = 0.61194

λcomp
6 (θ) = 0.68328

λcomp
7 (θ) = 0.75607

λcomp
8 (θ) = 0.83040

λcomp
9 (θ) = 0.90610

λcomp
10 (θ) = 0.98195

Figure 5. Computations for θ = 0.0226 ∗ π/2 ∼ 2◦ with the mesh M64S.
Numerical values of the 10 eigenvalues λj(θ) < 1. Plots of the associated
eigenfunctions in the physical domain.
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[42] L. Erdős. Gaussian decay of the magnetic eigenfunctions. Geom. Funct. Anal. 6(2) (1996) 231–

248.
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[95] D. Krejčiř́ık, E. Zuazua. The Hardy inequality and the heat equation in twisted tubes. J. Math.

Pures Appl. 94 (2010) 277–303.

[96] J. Lampart, S. Teufel, J. Wachsmuth. Effective Hamiltonians for thin Dirichlet tubes with

varying cross-section. In Mathematical results in quantum physics, pages 183–189. World Sci. Publ.,

Hackensack, NJ 2011.

[97] C. Lin, Z. Lu. On the discrete spectrum of generalized quantum tubes. Comm. Partial Differential

Equations 31(10-12) (2006) 1529–1546.

[98] C. Lin, Z. Lu. Existence of bound states for layers built over hypersurfaces in R
n+1. J. Funct.

Anal. 244(1) (2007) 1–25.

[99] C. Lin, Z. Lu. Quantum layers over surfaces ruled outside a compact set. J. Math. Phys. 48(5)

(2007) 053522, 14.

[100] K. Lu, X.-B. Pan. Eigenvalue problems of Ginzburg-Landau operator in bounded domains. J.

Math. Phys. 40(6) (1999) 2647–2670.

[101] K. Lu, X.-B. Pan. Surface nucleation of superconductivity in 3-dimensions. J. Differential Equa-

tions 168(2) (2000) 386–452. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2

(Atlanta, GA/Lisbon, 1998).
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