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Abstract

This research deals with the challenging task of video classification, with a particular focus on action
recognition, which is essential for a comprehensive understanding of videos. In the typical scenario,
there is a list of semantic categories to be modeled, and example clips are given together with their
associated category label, indicating which action of interests happens in that clip. No information is
given about where or when the action happens, even less about why the annotator considered the clip to
belong to a sometimes ambiguous category.

Within the framework of the bag-of-words representation of videos, we explore how to leverage
such weak labels from three points of view: (i) the use of coherent supervision from the earliest stages
of the pipeline; (ii) the combination of heterogeneous features in nature and scale; and (iii) mid-level
representations of videos based on regions, so as to increase the ability to discriminate relevant locations
in the video.

For the quantization of local features, we propose and evaluate a novel form of supervision to
train random forests which explicitly aims at the discriminative power of the resulting bags of words.
We show that our forests are better than traditional ones at incorporating contextual elements during
quantization, and draw attention to the risk of naive combination of features. We also show that mid-
level representations carry complementary information that can improve classification. Moreover, we
propose a novel application of video classification to tracking. We show that weak clip labels can be
used to successfully classify videos into categories of dynamic models. In this way, we improve tracking

by performing classification-based dynamic model selection.
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Chapter 1

Introduction

Automatic recognition of actions in videos is a key goal in video analysis and understanding. It is receiv-
ing increasing attention from the computer vision community due to its appealing potential applications:
video indexing and retrieval, visual surveillance, monitoring systems and human-computer interaction,
among others.

A large amount of research has been reported on human action categorization, i.e. automatic vision-
based grouping of videos into semantic categories corresponding to human actions, such as running,
eating, fighting or shaking hands. Researchers are also interested in the localization of an action in a
video, in action comparison, and in other related problems not necessarily involving humans, such as
general event recognition and anomaly detection, which enlarges the range of potential applications, but
also of specific difficulties to overcome.

Current research shows promising action recognition results on simplistic scenarios, e.g. [7], but
only limited success in more realistic situations, e.g. [60]. How to perform robust action recognition
in realistic unconstrained videos is still an open question, with implications in the design of appropriate
features, video representations, appearance and motion models, and inference methods.

In addition to the understanding of human motion and behavior in realistic videos, it would be
useful to accurately classify videos into other kinds of categories, not necessarily semantic. For example,
categories that could facilitate further processing and understanding for a particular task, such as tracking
or video-based 3D reconstruction. In that sense, reliable classification into task-specific categories could

be a universal first step of many other vision systems.

1.1 Challenges

Similarly to the domain of object recognition in still images, an action recognition system should be
robust against clutter and variations in viewpoint, spatial scale, and lighting conditions. There are other
sources of intra-class variability specific to actions and videos: temporal length and execution rate of the
action, subject clothing and general appearance, personal style in the performance, self-occlusion, dis-
tracting background motion, camera motion, etc. At the same time, in some situations, there can be low
inter-class variability, e.g. actions performed by the same person or with the same type of camera motion

may look very similar. Depending on the application, the action to recognize may be an interaction with



1.2. Problem statement and contribution 12

other people or objects in the environment.

Even if all these sources of uncertainty could be modeled, action recognition would still be a difficult
problem due to the ambiguity of actions. Contrary to the field of the natural language processing —where
there is a natural decomposition of speech into building units i.e. sentences, words, phonemes— there is
no general agreement about the decomposition of actions into “basic” action units. In the same way, there
are various definitions of other related terms such as gesture, activity, behavior and event, involving only
vague quantitative notions about their complexity, and temporal or spatial extent. In practice, different
approaches adopt the most convenient definition depending on the particular application.

The definition of the actions of interest is also application- or user-dependent. Any computer-based
approach to recognition assumes that there is some manner of grouping actions that corresponds to hu-
man perceptual or semantic grouping. However, perception is often subjective and the semantics of
actions involve qualitative and quantitative considerations, which are difficult to integrate in a single co-
herent output space of action categories. A particular choice of category taxonomy may seem arbitrary to
another user or be useless in a different application —compare for instance ballet movements or olympic
diving. This is not specific to actions; category taxonomies can be also be problematic in the domain of
scene recognition [139]. Further, particular instances of actions may belong to multiple categories (e.g.
composition of two actions happening at the same time) or lie in the fuzzy frontier between two or more
of them (e.g. walking fast/running slow). Spatial and temporal localization are also ambiguous. The
continuous nature of human actions makes it difficult to say where and when an action starts and ends,
especially when there is overlap or a smooth transition between two actions. Due to all these particu-
larities, the action recognition problem has been hard to define formally. They also lead to considerable

difficulty in establishing the ground truth, essential to evaluate progress in the field.

1.2 Problem statement and contribution

The problem we address lies in the area of the description and classification of unconstrained video. The
high number of degrees of freedom of the human body, the differences in the performance of actions
by different people, the wide range of possible recording conditions, and the uncertainty due to the
limitations of existing computer vision techniques lead to potentially very heterogeneous, sparse and
high dimensional input data.

State-of-the-art approaches depend on a training phase using labeled data. This constitutes a bot-
tleneck, as it is hard and expensive to get sensible ground truth in terms of time and human effort. In
the typical scenario, there is a list of semantic categories to be modeled, and example clips are given
together with their associated category label, indicating which action of interests happens in that clip.
No information is given about where or when the action happens, even less about why the annotator
considered the clip to belong to a sometimes ambiguous category.

Simple and robust representations like histograms of local features have been proved useful in the
context of periodic actions, like walking or waving, but more elaborated representations of videos are
needed in order to capture more complex and instantaneous spatiotemporal patterns, corresponding to

actions like kissing, answering a phone or getting out of a car.
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Still under-explored are alternative target categories, which could be less subjective, for example
categories that serve some empirically measurable purpose.

Our proposed contribution is to improve video understanding from the points of view of the target
categories and the descriptive power of video representations. We are aware of the availability of only
weak annotations, and explore ways of leveraging them approaching the problem from three fronts: (i)
the use of coherent supervision from the earliest stages of the pipeline; (ii) the combination of heteroge-
neous features in nature and scale; and (iii) mid-level representations of videos based on regions, so as
to increase the ability to discriminate relevant locations in the video.

Our research revolves the bag-of-words representation of videos, which consist of discretizing (or
quantizing) descriptors of local video patches and computing histograms of such quantized descriptors.
Each chapter brings into question one aspect of this generic framework, which is described in Chapter 3.

For the quantization of local features, we are interested in ensembles of randomized trees, as they
allow for the introduction of supervision in a very flexible way. In Chapter 4 we propose a novel form
of supervision to train them, which explicitly aims at the discriminative power of the resulting bags of
words, and evaluate it on challenging action recognition datasets.

Chapter 5 addresses the fusion of heterogeneous features, both in nature and scale, with a special
focus on the combination of local and contextual features at quantization time. By means of an empirical
example, we show that supervision can be a useful resource in this task, which may result disappointing
if carried out naively.

The localization of most meaningful areas of the video for a particular classification task is not
indicated by the weak labels. This motivates us to explore in Chapter 6 mid-level representations based
on regions, which we obtain by randomly sampling regions and describing them with bags of words. We
show that this intermediate representation carries complementary information that can improve classifi-
cation.

Moreover, we propose in Chapter 7 a novel application of video classification to tracking. We show
that weak clip labels can be used to successfully classify videos into categories of dynamic models. In

this way, we improve tracking by performing classification-based dynamic model selection.
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Chapter 2

Related Work

A possible definition of action recognition is to analyze a video clip so as to predict whether it contains
one action among a list of predefined actions of interest, and which. “Does this clip contain the action of
running?”, or “which action is more likely happening in this video, running, walking or jumping?”, are
example questions that an action recognition system would aim at answering. In most of the work re-
viewed in this chapter, such actions of interest are performed by humans, e.g. running, walking, jumping,
waving, kissing, hugging, shaking hands, answering a phone, getting out of a car, etc. Therefore, this
computer vision task is very often referred to as human action recognition. However, as long as the hu-
man assumption is not hard-coded in the system, nothing prevents from using the approaches presented
here to analyze the actions or motion of, e.g., animals. For example, if the application field is horse
dressage, one could use such systems to recognize different kinds of horse movements, like different
gaits, leg-yield, shoulder-in, etc.

In the typical supervised scenario, some example clips of the actions of interest are available “of-
fline”, i.e. at training time, so that statistical models of those actions can be learnt from them. Then, at
test time, previously unseen clips —to which we may refer as test or query clips— are given to the system
and the most likely action is to be predicted. The analysis of the query clips does not necessarily happen

in real time.

The problem is simpler if the videos are already pre-segmented into clips containing a single action.
It can be made harder if, for example, the videos contain more than one action, or multiple people
performing different actions at the same time. Several datasets are being used to test and compare
approaches and to assess progress in the field. The datasets vary with regards to the way they present
the videos and the extra information available, e.g. whether there are training videos, whether they are
pre-segmented temporally, whether people have been tracked and the bounding boxes are available or
silhouettes are easy to extract, and so on. Somehow, datasets themselves define the scenarios to work on

and the particular task to be achieved. We give an overview of datasets and methodology in Section 2.2.

The reported work on action recognition is varied from many different points of view: the nature of
the extracted features, the action representation and its structure, the different inference and recognition
techniques, the scenarios and target tasks, etc. The extracted features may capture shape and appearance

information, motion information or both. The representation of the action may have different temporal
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extents, from a single frame or small set of frames to the whole video. Considering the amount of infor-
mation extracted we can distinguish between features describing the whole region of interest (ROI) and
features describing only a sparse set of local patches. Another criterion to group action recognition ap-
proaches can be the way to deal with the temporal dimension, implicitly embedded in the representation
or by using explicit dynamic models. There is also a wide range of choice of inference techniques for
classification and matching.

Here we present the different approaches organized around the type of representation (holistic vs.
sparse) in Sections 2.3 and 2.4 respectively, and the inference techniques used to perform recognition in
Section 2.5.

Other tightly related tasks are action localization and event detection, which deal with long test
videos and aim at saying where and/or when the action or event of interest is happening. We discuss

those in Section 2.6.

2.1 Scope

This thesis focuses on action recognition from the stream of 2D mono-camera images directly, without
intermediate 3D reconstruction of spatial locations. Therefore, this review excludes literature on motion
capture and on action recognition approaches which derive from it. We are interested in solutions that are
not specific to humans or articulated objects consisting of rigid parts, so we overlook approaches relying
on body part tracking, skeletons, explicit pose estimation or other kinds of strong shape and motion
assumptions. Human or pedestrian detection —which is a requirement of some of the action recognition
approaches that will be described— are beyond the scope of this review, as well as research work that is
specific to periodic motion (e.g. time-frequency analysis), and other specific application domains like
facial expression recognition, sign language, etc.

The interested reader may find a review on motion capture and analysis in [78] and a list of more

general action recognition reviews in [90].

2.2 Scenarios and methodology

A large family of approaches assumes that the region occupied by the subject of interest is known.
In the most demanding cases, it is assumed that the subject’s silhouette can be easily extracted, e.g.
[146]. In other cases a bounding box may be enough, but then it is common to assume that there is no
distracting background motion around the subject, e.g. [21]. Other simplifications include considering
static camera [6], actions being readily segmented in time, or a small set of unambiguous actions to
recognize [106]. The datasets traditionally used to evaluate and compare approaches are a good reflection
of these assumptions. Recently there has been an effort to overcome these limitations, which has been
followed by the publication of new datasets representing more and more realistic and unconstrained
environments [67, 60].

Most current approaches rely on an existing training set of actions and statistical learning, but others
can perform action recognition from a single example —typically those based on template matching, e.g.

[110]. Works have appeared that focus on specific scenarios: crowded scenes [47], short-duration actions
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[18], high/low resolution videos [6], etc. More generally, research has been directed towards recognition
in unconstrained videos, so-called actions “in the wild”. Our work is in line with these tendencies. There

is also an increasing interest in the online and real-time scenarios, e.g. [145, 138, 94, 149].

The datasets illustrate these scenarios. It is common in the action recognition community to report
performance on relatively simple datasets build by the same authors for a particular occasion. However
there is an increasing interest in gathering more and more extensive datasets and making them publicly

available, to facilitate the assessment of progress in the field.

There are two datasets that had become very popular and were the standard to compare different
approaches at the begining of our research: the KTH human motion dataset [106] and the Weizmann
human action dataset [6]. Both contain videos recorded under controlled conditions, showing several
actors doing the same repetitive action during the whole clip, the performance style and duration being
variable. They contain six and ten action categories, e.g. walking, jogging, running, boxing, hand
waving, jumping, etc. In the Weizmann dataset, the foreground silhouettes are included. Background is
relatively static and there is only slight camera motion. Recognition performance for these datasets has

already saturated.

Another dataset that has been used for performance comparison is the UCSD mice behavior dataset
[18] containing five actions: drinking, eating, exploring, grooming and sleeping. This dataset allows for

the evaluation of the applicability of the approaches to discriminate subtle events and non-human actions.

Ke et al. [47] collect the CMU action dataset consisting of 20 minutes of crowded videos containing
110 events of interest (e.g. pick-up, hand wave, jumping jacks, etc). It is more challenging than the

previous human action datasets, but still quite limited in extension.

Laptev et al. use movies to build extensive and realistic human action datasets: Drink-
ing&Smoking [59], Hollywood Human Action dataset (HOHA) [60] and the sequel Hollywood2 [73].
The later contains 12 categories, e.g. kissing hugging, getting out of a car, answering the phone, fight-
ing, shaking hands, etc. Within the same trend, Rodriguez et al. [96] propose the UCF sports dataset,
containing sequences of sport motions, e.g. diving, golf swinging, kicking, weight-lifting, horseback
riding, running, skating, swinging a baseball bat and walking. Bounding boxes of the human figure are
provided with the dataset. For most action classes, in these datasets, there is considerable variation in

action performance, human appearance, camera motion, viewpoint, illumination and background.

Mikolajczyk and Uemura [77] acquire the Multi-KTH dataset, an extension of KTH containing the
same action categories but performed simultaneously by several actors, with more complex backgrounds,
occlusions and camera motion. In the same paper, they show the performance of their system on a sports

dataset containing 17 sport categories.

Recently, more datasets obtained from sports footage, YouTube and home videos have been intro-
duced and used by their respective authors, e.g. UFC fighting [145], UCF YouTube dataset of actions
“in the wild” [67], and a dataset containing social games interactions [127]. A dataset containing several
non-periodic actions and interactions happening simultaneously has also been introduced by Ryoo and

Aggarwal [100].
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Particular evaluation practices are associated to the different datasets. Techniques are evaluated on
a test set, or by cross-validation over splits of the available training data, being typical leave-one-person-
out cross-validation. Typical performance measures in the recognition task include accuracy, average

precision (in the biclass case), and mean average precision (in the multiclass case).

2.3 Figure-centric representations

This section deals with approaches that focus on describing the zone occupied by the subject performing
the action. They build action representations centered on the human figure, typically consisting of dense
descriptions of appearance, motion or both. The captured information is rich, but it is assumed that
the localization has been solved previously. Therefore, even if good performance have been reported in
simple scenarios, there may be limitations in their applicability to unconstrained videos.

For example, some approaches assume that the sequence of body silhouettes is available. However
foreground segmentation is hard in cluttered and dynamic environments. The region of interest (ROI)
may also be given under the form of bounding boxes. In that case, the input is the stabilized sequence
of cropped frames centered on the human figure. Even if a milder assumption, it would be unrealistic to
consider that the actor can be reliably tracked in complex videos.

Many early solutions to the problem of action recognition are based on template matching and
would correspond to this category. One representative example is the work by Davis and Bobick [17].
They combine silhouettes from consecutive frames into Motion Energy Images and Motion History
Images. These are 2D images whose pixels’ values indicate the presence and recency of motion re-
spectively. These templates can be described and compared to others by computing their Hu moments.
MHI have been used as basic features in more complex systems, e.g. [11]. Weinland et al. [133] ex-
tend them to 3D: they build Motion History Volumes from multiple synchronized cameras and compute
viewpoint-invariant descriptors of these templates.

Efros et al. [21] take as input the stabilized cropped frames. For each frame, they computed a motion
descriptor based the spatial arrangement of blurred optical flow, previously separated into sparse non-
negative channels. The frame descriptor is to be matched via spatiotemporal cross correlation against
the frames contained in a labeled dataset. This descriptor became quite popular and can be found with
slight modifications in subsequent attempts to exploit motion information, as a building block of more
complex representations, e.g. [24, 130, 63]. Interestingly, these blurred arrangements are reasonably
discriminative, thus being a robust descriptor even if the flow cannot be estimated precisely. However,
they are sensitive to distracting background motion.

Shechtman and Irani [110] avoid the explicit computation of flow and choose to describe motion
using spatiotemporal gradients instead. They derive a correlation measure between two spatiotemporal
volumes that accounts for consistency of their underlying motion fields. Given a query, i.e. a cropped
video containing an action of interest, this correlation measure can be computed between the query and
a target video at every position to perform action detection. This motion consistency measure builds
on previous work [150] in which it is used to perform temporal segmentation of long video sequences

into event-consistent sub-sequences. A recent approach by Seo and Milanfar [109] can be considered
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a generalization of [110]. They use local steering kernels and Principal Components Analysis to build

resemblance volumes.

Actions have also been regarded as 3D spatiotemporal shapes. Stacking consecutive silhouettes re-
sults in a spatiotemporal volume. Yilmaz and Shah [146] extract local geometric features of its surface,
while Blank et al. [6] use the solution to the Poisson equation to extract saliency and orientation. Ke
et al. [47] also consider actions as spatiotemporal shapes, but their approach needs no extraction of the
sequence of silhouettes at inference time. Instead, they use color-based mean-shift to obtain a spatiotem-
poral over-segmentation of the whole video. In order to detect a given action, they perform volume
matching between the query volume and the video segments. The matching measure includes both the
shape correspondence and the motion consistency (like in [110]). This technique can be extended to
matching by parts of the original template query, thus becoming suitable in crowded scenes with partial

occlusion and overcoming one typical limitation of such holistic approaches.

A disadvantage of template-based methods is their rigidity and dependence on viewpoint, scale, etc.
Typically they are unable to generalize from a collection of examples. Alternatively, statistical learning
can be used to learn action categories. Examples of approaches using discriminative classifiers on the
computed features can be found in [46, 43, 105, 24, 130, 36]. For example, Ke et al. [46] compute
optical flow on the whole video and use “histogram videos” to efficiently compute Haar-like volumetric
features on the components of the optical flow. They train a cascade supervised classifier and adopt a

sliding-window approach to perform action detection.

The group of figure-centric approaches further includes those that build a vocabulary of key poses
or prototypes and consider actions as sequences of those prototypes. Although these representations
are potentially more expressive than, for example, motion history images or volumes, in practice their
capability of discriminating subtle nuances may be limited by the granularity of set of prototypes. Wein-
land et al. [131] use probabilistic dynamic models to represent sequences of 3D hulls obtained from
multiple synchronized cameras. They match their projections to the 2D observations. In a later work,
they consider actions as sets 2D key poses, ignoring temporal dynamics [132]. A recent work [63] uses
prototypes built by clustering frame descriptors, which include both shape information (silhouettes or

likelihood maps) and motion information (similar to [21]).

Recently, there have been some attempts to learn flexible templates from several examples, over-
coming the rigidity of traditional templates. This is the case of Rodriguez et al. [96]. Similarly in spirit to
[110], they build a filter to detect actions. This filter — which is an extension to spatiotemporal volumes
of the traditional MACH filter — has the advantage of capturing intra-class variations, and detection can
be done very efficiently by analyzing the response in the frequency domain. Yao and Zhu [143] learn
deformable templates from several examples using the pursuit algorithm. The use a generative model
to describe some motion and shape primitives contained in a frame, and align and match actions using

Dynamic Spatio-Temporal Warping.
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2.4 Sparse representations

This section encompasses approaches that describe local video patches and/or the configuration of those
patches. Compared to holistic figure-centric approaches, sparse local representations tend to be more
robust to deformations, occlusions and changes in viewpoint, similarly to their analog in the object
recognition domain. Their main requirement is to have a sufficient amount of relevant patches. Usually, it
is useful to compensate for camera motion; otherwise, the background may generate distracting features.

By far, the most popular techniques are based on the local description of a collection of patches,
which are typically extracted at selected interest points, but can also be obtained by random or dense
sampling. In these techniques, the clip or frame is represented by some statistical model capturing to
some extent the relationships among the extracted patches, the typical example being a the histogram of
appearance of several types of patch.

In this section we also include approaches based on the analysis of the configuration of interest

points, without any local description, as well as tracking-based approaches.

2.4.1 Spatiotemporal features

Motivated by the success of local viewpoint invariant features in the field of object recognition and im-
age matching, Laptev and Lindeberg [56] propose to extend the notion of spatial interest point to the
spatiotemporal (ST) domain. They present a 3D version of the Harris detector that detects ST corners.
Dollér et al. [18] claim that ST corners are rare in practice, specially for more subtle actions than running
or waving. They propose an alternative ST point detector based on Gabor filters. It detects spatially dis-
tinguishable regions undergoing complex motion and leads to denser sets of points. These two detectors
have been extensively used in combination with ST descriptors in subsequent works, e.g. [20, 73] and
[143, 67].

In parallel, a considerable amount of work has focused on the derivation of alternative ST point
detectors based on different definitions of saliency [37, 87, 136]. Willems et al. [134] make a review
of existing local ST detectors in terms of efficiency, automatic scale selection, and density, and propose
their own alternative overcoming the typical limitations. Gilbert et al. [31] use 2D Harris corner detector
to the planes x-y, x-t, y-t, thus providing ST information while obtaining much denser collections of
points.

The ST detectors are usually used combined with rich descriptors of the ST volume at the corre-
sponding location and scale. There is a wide choice of ST descriptors. The encoded information typically
consists of the components or orientations of optical flow or 2D/3D gradients, expressed as a flat vector,
using histograms or simply retaining mean value and variance. Some sort of dimensionality reduction
such as Principal Components Analysis may be applied to the descriptor. Examples of ST descriptors
are the histograms of oriented gradients (HOG) and histograms of optical flow (HOF) [60, 59, 73], his-
tograms of 3D gradient orientations [50], extended SIFT [108], extended SURF [134], among others
[57, 18, 125].

Raptis and Soatto [92] have recently proposed tracklets, which are extensions of the HOG/HOF

descriptors with a more principled theoretical basis. Instead of describing a ST cuboid around a static
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point, they track points and retain the gradient and flow information around them from their birth to their
death. In posterior work, Wang et al. [124] also describe tracked points, and use a descriptor based on
gradients of optical flow (motion boundary histograms, MBH), new in the domain of action recognition.
There have also been recent attempts to learn local ST features rather than using hand-crafted
descriptors such as HOG or HOF, following approaches reminiscent of neural networks [62, 118].
As an alternative to ST features, some researchers have opted for extracting classical spatial features
frame by frame and use them to recognize actions [77]. These so-called static features may also be used

in combination with the the ST ones [67].

2.4.2 Vocabulary of visual words

The space of descriptors is very large and is usually compressed and discretized by building feature vo-
cabularies. This is typically done by unsupervised clustering of features extracted from training videos.
The most common technique to do so is k-means, e.g. [56, 136, 60, 20, 127, 125]. A non-planar vocab-
ulary can be obtained by building feature trees, which allow for efficient feature matching [77, 94].

The granularity of the vocabulary has a great impact on the performance. The choice of the num-
ber of words in the vocabulary is non-trivial, as there is a trade-off between the representativeness of
the words and their discriminative power, which is related to the loss of information due to the quan-
tization. To minimize the impact of the granularity issue, there have been attempts to obtain more
compact yet discriminative vocabularies by fusing words according to their mutual information [65, 67]
or co-occurrence [108]. Liu et al. [67] show that their technique is consistently superior to k-means for
different vocabulary cardinalities.

Even if becoming popular in other vision tasks, the use of efficient discriminative vocabularies as
in [80] does not seem a common practice in the action recognition field. And yet some recognition
approaches (e.g. [77, 94]) rely on the assumption that individual features are more or less specific to

particular actions, i.e. actions are recognized according to the votes independently casted by the features.

2.4.3 Aggregation of features

By far, the most popular way of representing a clip is the bag of features (or bag of words)
[106, 18, 136, 60, 84, 20, 125, 67, 73]. The bag of features is the histogram of all the visual words
extracted from the clip, i.e. features which have been quantized according to some vocabulary. This
representation inherits the advantages and drawbacks of its homolog in 2D images: they are simple and
robust against deformations and noise, but disregarding all spatial and temporal information may limit
its discriminative power in certain cases. As noticed by Hospedales et al. [35], they also suffer from
a trade-off in determining the temporal window to collect the bag of words: short windows may split
actions arbitrarily, while long windows risk overlooking actions of short duration. Duchenne et al. [20]
explore this phenomenon empirically. They train classifiers on short video segments. They experiment
with different lengths of the training segments containing the action of interest. They observe decreasing
performance with increasing lengths, illustrating the importance of temporal localization. This issue has
also been observed by Satkin and Hebert [102] who try to extract the most discriminative portion of a

training video automatically to improve classification.
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There are extensions and alternatives to this approach that try to incorporate some information about
the spatial and/or temporal configuration of the extracted visual words. For example: spatiotemporal
pyramid matching [65], concatenation of bags of features computed in spatiotemporal grids [60], en-
forcing temporal ordering using sequential representations [86, 127], encoding feature co-occurrences
[103, 108] and correlograms [65], using constellations and other part-based models in space or space and
time [83, 77, 136], etc. Gilbert et al. [31] group interest points hierarchically in spatiotemporal neighbor-
hoods and detect frequent configurations using data mining. Ryoo and Aggarwal [100] model explicit
temporal and spatial relationships among the extracted features and derive a spatiotemporal match ker-
nel to compare sets of features from two different videos. In Section 6.1 we describe more publications
aiming at describing neighborhoods of spatiotemporal features.

A general drawback of all these approaches based on vocabularies of features is that the vocabulary
is usually expensive to compute, is fixed during the training phase and cannot grow with new incoming
features. Even if the construction of a new vocabulary could be done efficiently, that would affect the
features identities and any subsequent video representation, e.g. the new bag of features could not be
computed from the previous one. Relying on the assumption that features alone can be sufficiently dis-
criminative without any further modeling, Reddy et al. [94] present a method that does not require feature
quantization. Features are organized in a tree that can be efficiently grown by adding features from new
incoming videos. Recognition is performed by matching at the feature level and voting schemes. The
vote casted by each feature depends on the labels associated to neighboring features in the tree.

As an alternative to rich descriptors and vocabularies, some researchers opt for much simpler de-
scriptions of the ST interest points. For example, Gilbert et al. [31] describe interest points only by
their scale and roughly quantized dominant orientation, resulting in a very low dimensional descriptor.
Stronger and discriminative features are then obtained by hierarchical grouping those simple features
within ST neighborhoods, and the application of data mining techniques.

Another way of avoiding the vocabulary and all the associated problems is to focus on the spa-
tiotemporal distribution of interest points, ignoring their local description altogether. Oikonomopoulos
et al. [87] match sets of unbalanced numbers of features through spatiotemporal dynamic warping, and
use the obtained distance measure in a supervised classification framework. Bregonzio et al. [8] recog-
nize actions by describing clouds of interest points at different temporal scales. Oshin et al. [88] use

randomized ferns within the action boundaries to learn spatiotemporal distributions of points.

2.4.4 Tracking-based representations

Tracking-based approaches concentrate on describing the trajectories followed by the detected interest
points, rather than their local appearance. Typically, these trajectories are obtained using the Kanade-
Lucas-Tomasi tracker. Messing et al. [76] use the description of long-term trajectories as the observa-
tion in a generative mixture model. Appearance information can also be incorporated into their model.
Matikainen et al. [74] build a vocabulary of short term trajectory patterns called frajectons and use the
bag-of-words representation and supervised learning. Sun et al. [117] describe trajectories at three lev-

els: local appearance, trajectory shape, and co-occurrence of trajectory types. Each level is represented
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by a bag of features in a spatiotemporal grid, and all the resulting feature channels are combined in a
Multiple-Kernel Support Vector Machine.
Other approaches are based on the analysis of trajectories of human body joints, but those are

beyond the scope of this review as they assume a geometric model is available.

2.4.5 Dealing with distracting features

Sparse representations are often affected by camera motion. They are also affected by the detection of
irrelevant and distracting features. The first issue can be partially solved by estimating the dominant
homographies to compensate motion [120] or subtracting median motion [77]. Laptev and Lindeberg
[58] propose features that are invariant to local velocity. The second issue can be avoided using region-
of-interest (ROI) estimation techniques, e.g. [8]. Liu et al. [67] address both by pruning and mining

static and motion features.

2.5 Inference

The inference method is normally tied to the chosen representation. They can be grouped according to
the implicit or explicit modeling of temporal dynamics.

In the first group, we can find all those methods performing direct decisions, taking as input the
representation of the global clip or frame-by-frame representations. Frame-by-frame decisions can be
extended to clip decisions using simple voting schemes.

Nearest Neighbor classifiers are very popular [21, 56, 6, 94], as well as discriminative models like
Support Vector Machines (SVM) [106, 43, 145, 117, 105, 60, 108, 73], Relevance Vector Machines
(RVM) [87], boosting [24, 67, 59, 86], Conditional Random Fields (CRF) and extensions [130], etc.
Generative models such as latent topic models can be also be used for unsupervised classification [84,
136]. The number of topics has to be fixed a priori. They have been used in a way that assumes that
each obtained topic corresponds to an action, which is not necessarily true due to the total absence of
supervision. Other models allow to infer the number of topics from the data (e.g. Hierarchical Dirichlet
Processes [119] used in [129]), but they have not received much attention from the action recognition
community until very recently, e.g. [64].

In the second group we can find techniques explicitly modeling the temporal dimension of actions.
Some approaches consider actions as sequences of symbols that have to be mined from the data, aligned
and matched, e.g. [11, 127]. Lin et al. [63] use Dynamic Time Warping to align and match sequences of
prototypes. Yao and Zhu [143] perform Dynamic Spatio-Temporal Warping to align their sequences of
deformable templates.

Niebles et al. [82] use the same latent-part-based model as Felzenszwalb et al. [25] for object recog-
nition, only that in this case the latent information is the temporal position of the parts instead of their
spatial position.

Graphical models and probabilistic dynamic models in general —both generative and discriminative—
are very popular and intuitive tools for modeling temporal sequences. Some examples are stochastic

grammars [152], Hidden Markov Models (HMM) and extensions [131, 22], CRF [111] and extensions
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[126, 128], among others.

HMM are powerful generative models with latent state structure. They have been widely used to
model human motion as a sequence of states corresponding to pose, e.g. the image location of body
joints, or the parameters of some geometrical model of body parts. This can be applied to action recog-
nition, but is beyond the scope of this review because of the structural assumptions. Their main draw-
back is that they assume conditional independence between observations, which makes it hard to model
overlapping and long-range dependencies. CRF and extended models (e.g. Hidden CRF) avoid the in-
dependence assumption and allow for non-local dependencies between states and observations, but are
not generative. All these probabilistic models involve assumptions about the probability distributions of
the stochastic variables of the model, the development of inference and learning methods, and need large
amounts of training data to learn all the involved parameters [1]. Non parametric approaches, e.g. [27],

remain under-explored for action recognition.

2.6 Beyond action classification

The action recognition community is interested in other tasks complementary to pure action classifica-
tion, such as action localization and detection of anomalies or particular events. Thus, some approaches
have recently appeared that are oriented towards these goals.

As has already been mentioned, template matching or classifiers can be used to perform action
localization through sliding-window techniques. Sliding windows are in general computationally ex-
pensive. Further, classifiers need to be trained on positive examples, i.e. bounding boxes of the good
locations, implying a huge annotation effort, e.g. Oshin et al. [88].

The match kernel by Ryoo and Aggarwal [100] overcomes the computational cost limitation of
sliding windows by allowing for direct partial matching of two video representations. In the case of Ro-
driguez et al. [96], their filter performs very efficient detection by analyzing its response in the frequency
domain.

Lin et al. [63] use a joint likelihood model of actor location and action prototype, which they
optimize at inference time using likelihood maps provided by an actor tracker and by sampling at several
locations. However, they need figure-centric sequences at training time. The frame-by-frame spatial
localization technique based on centroid voting used by Mikolajczyk and Uemura [77] needs no sliding
window to infer location, but does require bounding boxes at training time.

More publications aiming at localizing actions in time or performing action search are [28, 33, 148].
Gaidon et al. [28] represent actions by the concatenating three bags of words, which they call actoms.
These actoms are located at different key frames of the action and have different temporal lengths,
which automatically determined depending on the distance to the next and previous actom. For training,
they need to manually annotate the positive examples, consistently indicating the temporal location of
the three key frames. They train an SVM classifier with the three concatenated histograms, using an
intersection kernel. They also estimate a generative model for the distribution of the relative temporal
locations of the actoms, resulting in a few candiate temporal sequences of actoms. In order to detect

actions in test videos, they use a sliding-window approach and non-maxima suppresion. For a given
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temporal position, the score is obtained by marginalization over the candidate sequences of actoms, each
evaluated with the SVM.

In order to alleviate some of the annotation effort, Duchenne et al. [20] use weakly-supervised
clustering of videos into temporal segments containing a particular action, and use those segments to
train temporal action detectors. The weak supervision is obtained by means of movie script alignment,
like in [60]. Ikizler-Cinbis et al. [38] learn action models from still images obtained by querying a
web image search engine, thus being very flexible with regard to the possible action categories. Yao and
Zhu [143] need only one manually annotated video to build a deformable template and use it to detect
other training videos of the same class and iteratively update the template. Aware of the ambiguities
in determining the spatial and temporal boundaries of an action, Hu et al. [36] use multiple-instance
learning (MIL) to recognize and locate actions in space and time. Ambiguities in the labeling process
are allowed, thus reducing the labeling labor without sacrificing performance. They label manually only
rough head positions and the approximate frame where the action happens.

A little amount of approaches are able to perform localization with no localization annotation during
the training phase, i.e. only weak supervision of class labels. The pruning technique to select relevant
features used in [67] at training and testing time allow them to infer spatial localization by computing the
centroid, assuming only one action of interest is happening at a given frame. Gilbert et al. [31] use data
mining to learn discriminative patterns of interest points at training time and identify them efficiently at
testing time, allowing them to perform localization even of multiple simultaneous actions.

A related task is event detection and retrieval. One recent example of approach addressing anomaly
detection is [35]. They derive a new generative model that combines the advantages of probabilistic
topic models (e.g. Latent Dirichlet Allocation) and dynamic Bayesian networks (e.g. HMM) and is
rich enough to capture the typical co-occurrence relationships among visual events, thus allowing to
detect online anomalies of different natures (not only rare events, but also rare combinations of them).
Yet another application-specific technique is [127], in which they retrieve quasi-periodic patterns in an

unsupervised way from unstructured videos.
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Chapter 3

Framework

In view of the existing literature, we consider that the bag-of-words approach to video classification is a
suitable baseline, with state-of-the-art performance, and yet very simple and well-understood. Here we
present a description of this widespread approach. It basically aims at obtaining a global representation of
the video (or image) through the accumulation of sparse local information into a fixed-sized description
vector. We refer to this video description as a video signature.

The set of local features detected in a video may have different cardinality from one video to another.
One advantage of the bag-of-words approach is that it takes this variable ensemble and transforms it into
a signature with fixed size for any video. This makes it possible to use off-the-shelf machine-learning
techniques for classification.

The pipeline can be divided into the following stages, as illustrated in Figure 3.1:

(i) Sampling spatiotemporal points, e.g. using an interest-point detector, sampling uniformly or
randomly, more or less densely.

(ii) Computing a descriptor for each sampled point, e.g. related to the gradient or the optical flow
in the neighboring pixels.

(iii) Discretizing or quantizing the descriptors using a vocabulary of visual words, which can be
pre-computed using some example descriptors!. This step can also be called coding and the vocabulary
be called codebook.

(iv) Summarizing the content of the video by aggregating the quantized descriptors. This step is
sometimes called pooling, e.g. [140]. Typically, local features are accumulated into a global histogram
of visual words.

The final video descriptor obtained this way is then the input of a classifier, which needs to be
trained on some example pairs of input video signatures and output video categories.

The bag-of-words representation of videos inherits the advantages and drawbacks of its homolog

IStrictly speaking, one should distinguish between the vocabulary construction, i.e. the process of defining a vocabulary from
training data, and the quantization, i.e. the process by which any descriptor is assigned to one or more words in the vocabulary.
Regarding the later, we consider that a vocabulary is a partition of the descriptor space, and simply assign the descriptor to the
word associated to the part in which in lays (roughly, the “nearest” word). This is called “hard” coding, but other schemes could
be possible, e.g. “soft” assigning the descriptor to several nearby words, e.g. [68]. Our focus is how to obtain such partition, so in

our text we may abuse the term quantization/quantize to refer to both.
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Figure 3.1: Bag-of-words representation of a video.

in 2D images: it is simple and robust against deformations and noise, but disregarding all spatial and
temporal information may limit its discriminative power in certain cases. Some information about the
spatiotemporal distribution of the words can be preserved by concatenating histograms computed over a
spatiotemporal grid. In 2D images, spatial pyramids [61] are a well-established approach for classifica-

tion.

The following sections describe our typical choices for local detectors and descriptors and experi-
mental setup. The quantization step and generalizations of the bag-of-words framework are presented in

Chapters 4, 5 and 6.

3.1 Spatiotemporal detectors and descriptors

3.1.1 STIP features

STIP stands for “Spatio-Temporal Interest Points”. We mean by STIP features a certain combination of
detector and descriptor used successfully for action recognition by Laptev et al. [60]. An implementation
is available for download in the author’s webpage? in the form of compiled binaries. The detector is
based on a Harris detector extended to 3D corners, as described in [55]. The code does not select
for scale; instead, interest point are detected at several spatial and temporal scales given as input. The
descriptors of the 3D patches around the detected points can be Histograms of Oriented Gradients (HOG)
or Histograms of Optical Flow (HOF). The lengths of these descriptors are 72 and 90 respectively. This
implementation was updated in 2011 so that the 3D Harris detector could be replaced by dense regular

sampling of points or to admit any set of detected points as input.

We use STIP features in our experiments in Chapters 4 and 5. In particular, we use the initial ver-
sion of the detector (the only one available when we started this work) with the same default parameters
an in the original publications, and use a concatenation of the HOG and HOF descriptors (HOG|HOF
for short). In the fore-mentioned chapters, we may refer to STIP features or HOG|HOF features inter-

changeably.

Zhttp://www.di.ens.fr/ laptev/download.html#stip
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3.1.2 DenseTrack features or Dense Trajectories (DT)

These spatiotemporal features are presented by Wang et al. in their 2011 work [124]. The code is
available for download and compilation in the author’s website?, as well as instructions on how to set all
the parameters.

Initially, points are sampled following a regular grid. For each point, a 15-frame-long trajectory is
computed by concatenating median-filtered optical flow. In the areas where the density of tracked points
becomes low, new points are sampled. Each point trajectory defines a local (z, y, t)-tube (rather than a
3D patch like in the STIP features). The tubes are described by means of several types of descriptor. The
trajectory itself (Traj) is described through the concatenation of the = and y displacements, the resulting
descriptor having 30 dimensions for the default track length of 15 frames. Histograms of Oriented
Gradients (HOG) and Histograms of Optical Flow (HOF) can be also computed, which have 96 and 108
dimensions respectively for the default parameter setting. Finally, they introduce the Motion Boundary
Descriptor (MBH) in = and y, which are oriented gradients of the z and y components of the optical
flow, of 96 dimensions each. In this work we concatenate both into a single MBH descriptor of 192

dimensions. We use these DT features in Chapters 6 and 7.

3.2 Vocabulary training

As detailed in the next chapter, out preferred method to build visual-word vocabularies is to use Ex-
tremely Randomized Trees [30] as in [80], which are called in this context ERC-Forests. We may also
use the expression random forests to refer to this quantization technique. The number of training features
that we use depends on memory availability; typically 106 for STIP descriptors, 2 - 10° or 4 - 10° for DT

features and region descriptors of Chapter 6. More implementation details can be found in Section 4.5.

3.3 Datasets
3.3.1 The KTH human action dataset

This dataset was introduced in [106]. Compressed AVI files and ground-truth anotations per clip are
publicly available* This dataset is representative of simple periodic actions on simple background and
with very little camera motion. It is composed by videos of 25 subjects performing six different actions
in four different scenarios —thus 600 videos— which can each be divided in four subsequences. We use
this division into subsequence, and therefore work with around 2400 clips (in practice this number is
lower because of missing data). The six actions are walking, jogging, running, boxing, hand waving and
hand clapping, and the scenarios include indoors and outdoors, varying scale and different clothing. A
natural partition of this dataset for training and testing purposed is based on the subjects. The authors
originally propose to use subjects number 11-18 for training a supervised classifier, subjects 01, 04, 20,
21 and 23-25 for validation and choice of the classifier parameters, and subjects 22, 02, 03 and 05-10
for testing. Instead, we fuse the training and validation sets into a single training set and use 5-fold

cross-validation to eventually pick any classifier parameters.

3http://lear.inrialpes.fr/people/wang/dense_trajectories
“http://www.nada kth.se/cvap/actions/
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Table 3.1: Composition of the Hollywood?2 dataset.

training testing

AnswerPhone 66 64
DriveCar 85 102
Eat 40 33
FightPerson 54 70
GetOutCar 51 57
HandShake 32 45
HugPerson 64 66
Kiss 114 103
Run 135 141
SitDown 104 108
SitUp 24 37
StandUp 132 146
total 823 884

3.3.2 Hollywood?2 dataset

This dataset was originally used by Marszalek et al. [73] and is publicly available’. It is composed by
clips from 69 movies. There are 823 training and 884 testing clips. Movies are kept separate in the
training a test sets, so that each movie is used only for training or testing. Each clip comes with one or
more category labels out of 12 possible human actions, see Table 3.1. These challenging clips, contrarily
to the first action datasets such as KTH [106], do not contain actions in controlled environments, but in
realistic scenarios, with high variability, considerable clutter, etc. They have high resolution, so when
extracting STIP features their resolution is typically halved, e.g. [125]. Note the disproportion in the
amount of clips belonging to each category, which introduces an extra difficulty. Some classes are better
represented and a priori “easier” to learn. This means that an “aggressive” training which focuses only
on a small set of easier actions may result in better overall performance than a training trying to maximize
the worst of the per-class performances. This observation is also made by Matikainen et al. [74], who

compare both approaches in their work.

3.3.3 UCF YouTube Action dataset

First used in [67], this dataset is available in the UCF webpage®. In contains short home-made clips
from YouTube covering 11 actions: basketball shooting, biking/cycling, diving, golf swinging, horse
back riding, soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking, and
walking with a dog. There is great variety in camera motion, viewpoint, appearance, scale etc. Image
quality is much worse than in Hollywood2. Each clip of the dataset belongs to one action only. Each set
of actions is divided into 25 groups. Each group may contain videos with the same actor or environment.
Such grouping is useful in order to perform cross-validation in a more realistic way, avoiding that very
similar videos are used for training and testing. However, we have observed some deficiencies in such
partition, with different groups containing almost identical videos. There is room for improvement in

that sense.

Shttp://www.di.ens.fr/ laptev/actions/hollywood2/
Shttp://vision.eecs.ucf.edu/datasets Actions. htmI#UCF%20 YouTube%20Action%20Dataset
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Each group contains at least four videos, and in some publications (e.g. [67]) only the first four
videos of each group are used. We use instead all the clips, which makes a total of 1600 videos.

The original way of evaluating classification performance on this dataset is leave-one-group-out
cross-validation. For a less exhaustive but faster evaluation, we divide the dataset into five partitions
only. We call the first partition YouTube-CV1, which consists of groups 1 to 5 for testing and the rest
for training. The second partition is YouTube-CV2 and consist of groups 6 to 10 for testing and the rest
for training, and so on until YouTube-CVS5. Instead of measuring multiclass classification accuracy as in

[67, 125] we prefer to evaluate the per-class classifiers as detailed in Section 3.5.1.

3.4 Classifier

Our choice for two-class classifier is the Support Vector Machine (SVM) [10].
Given a labeled training set {(x;, y;) }i=1,....n of video signatures x; € X C R? and their binary
categories y; € Y = {—1, 1}, one approach to classification is to find the function f : X — Y that

solves

. n A
min D i Wy, f(xa)) + S 3.1

—_——— =

empirical error regularization

where A controls the strength of the regularization term, and the loss function [ and function space J are

a priori choices with theoretical and algorithmic consequences.’

Consider a positive definite kernel £ on X x &'. There exists a mapping ® : X — # such that the

kernel in the input space is the inner product in the destination space, so
V(x,x') € X%, k(x,x) = (®(x), ®(x'))n. 3.2)
‘H can be instantiated as a function space by taking ®(x) = k(-, x) so that
Fx) = (£, @(x)) = /T ®(x). (3.3)

In that case, H is the reproducing kernel Hilbert space (RKHS) associated to the kernel k.
If we make that particular choice of space of functions, i.e. F being the RKHS of kernel £, and by

the representer theorem, an equivalent problem to Eq. 3.1 is

max S Uy, (Kay) + 30 Ka, (34)
acR™

where K € R™*™ is the kernel matrix of the training examples, K;; = k(x;,x;), and the relationship

between Eq. 3.1 and Eq. 3.4 at the optimum is
F=Y0;®(x;) = ajk(-x;). (3.5)
j=1 j=1

In other words, the classification of a test point f(x) is roughly a linear combination of kernel evaluations

between the test point and the training points k(x, x;), and the vector of optimal weights c is to be learnt.

7See the tutorial http://www.di.ens.fr/ fbach/INRIA summer_school_2012_fbach.pdf for more details on this and following

statements.
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In particular, traditional SVM choose [ to be the hinge loss and the kernel to be linear, so that the possible
classification functions are hyperplanes in A’

We use the LIBSVM implementation [13], which solves a dual problem efficiently thanks to the
convexity of the hinge loss. It integrates a number of possible choices for the kernel function, and it also
admits personalized kernel matrices. The inputs are the type and parameters of the kernel (or the custom

kernel matrix) and a regularization parameter C' < % It also allows for asymmetric losses

fer

min  Cwy Z Uys, f(xi)) + Cw- Z Wyi f(xi))  + /I (3.6)
yi;1 yqz:i—l

through class weights w and w_ (compare to eq, 3.1), which are useful when the training set has an
unbalanced number of positive and negative examples.

We opt for natural balancing, and automatically set the class weights to be inversely proportional
to the number of training items belonging to the positive and negative class, so that wyn, = w_n_.
We use a default value of 100 for parameter C'. Otherwise, we choose it through 5-fold cross-validation,
taking classification accuracy as the performance measure.

In most of our experiments, we use a custom exponential x? kernel

d !/
k(x, x’) = exp (Xz(X,X)> , 3.7
A
where d,» is the symmetric x? distance
3 (zi — x})?
dX2 ()(7 XI) =2 : W (38)
7

As in [125], we set the parameter A to be the average distance between pairs of training points.
In order to deal with multiple classes, we transform the problem into several two-class classification
tasks in a one-vs-all manner, i.e. one classifier per class is trained in which one class at a time is

considered positive and the rest negative.

3.5 Evaluation

3.5.1 VOC Average Precision

We evaluate two-class classification as a detection task. Consider a two-class classifier with a continuous
output, allowing to rank elements from the most to the least likely to belong to the positive class. Putting
a threshold on that output, one obtains a binary classification into positive and negative class. Varying
this threshold permits to adjust the trade-off between the number of false alarms and non-detections.

The precision/recall curve describes this trade-off. It can be computed from the ranked outputs
obtained on a test dataset. For a given rank, recall is the fraction of positive examples above the rank
out of all the positive examples in the test set (i.e. the ratio between true detections and all positives).
Precision is the fraction of positive examples above the rank, out of all the examples above the rank (i.e.
the ratio between true detections and all detections).

The Average Precision (AP) is a value that summarizes the precision/recall curve. We compute

it following PASCAL Visual Object Classes (VOC) Challenge procedure [23]. Eleven equally spaced
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recall levels r € {0,0.1,..., 1} are taken. For each r, precision is interpolated by taking the maximum

value of precision observed for any recalls equal or higher than r

pinterp(r) = maxp(?), (3.9

T>r
where p(7) is the precision measured at recall 7. AP is the average of the eleven interpolated values. We
evaluate multiclass classification in terms of the mean AP obtained over all the classes.
3.5.2 Classification accuracy

For convenience, we use classification accuracy (percentage of correct predictions) when choosing pa-
rameters by cross-validation. This enables to make the folds arbitrarily small (e.g. leave one out),

contrarily to Average Precision, which only makes sense for relatively large tests sets.
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Chapter 4

Quantization of Local Features

An important step of the bag-of-words approach is the quantization of local descriptors, which can have
a critical impact on the final performance. This chapter deals with this step. After a brief review of
relevant existing techniques, we focus on ensembles of randomized trees, which allow us to introduce
supervision in a very flexible way. We explain how this classification algorithm can be used in the bag-
of-words framework as a substitute for k-means clustering. Furthermore, we propose and evaluate a new
objective function to train randomized trees which is specifically designed to obtain discriminative video
signatures. Although there is room for further improvement, we show that our new form of supervision

can perform better than traditional forests. This is also confirmed by experiments in Chapter 5.

4.1 Quantization techniques in the literature

A quantization process maps elements of a potentially large continuous input space to elements of a
smaller discrete space. For example, rounding real numbers to some unit of precision is a form of
quantization. In signal processing, it is typically used to compress signals by approximating them with
elements from a smaller set. The idea is to choose such elements so that the approximation error is
minimized, taking advantage from the statistical properties of the signal. At the same time, the size of
the output set is to be minimized too, or at least some constraints on it must be satisfied depending on the
application, e.g. a desired bit rate to send the signal. There is a trade-off between the approximation error
and the size of the output space, i.e. the quantity of resources used to approximate the signal. Intuitively,
it is desirable to allocate more resources to approximate finely the elements of the input space that appear
more often, whereas the rare elements are approximated coarsely, in order to minimize the overall error.

In the case of the bag-of-words representation, the input is the multidimensional space of local
descriptors (or feature vectors) and the output the set of visual words. K-means clustering is the most
widespread technique to build a vocabulary of visual words given some training descriptors. Given a
target number of clusters k£ and an initial set of k& centroids, this algorithm iteratively assigns each training
element to the nearest centroid, then updates each centroid so that it best approximates its corresponding
subset of elements, until convergence. The final result depends on the initialization and the typical
metric is Euclidean distance. From this description it may seem that k-means finds a local minimum of

the quantization error mentioned in the previous paragraph. This would be the case if the algorithm tried
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to segment the data into groups with the similar number of elements. Instead, k-means assigns training
elements to centroids based on distance only. The underlying assumption is that the data forms spherical
clusters of similar size, which justifies the assignation step of each training item to the nearest centroid.
This is in contrast to other clustering algorithms such as Expectation Maximization with a Gaussian

mixture model, which can represent ellipsoidal clusters of different sizes and orientations.

The optimization of the approximation error is not such a big issue in the bag-of-words represen-
tation as in the compression of signals. Indeed, in our context the quantization is needed to obtain an
intermediate representation of the image or video, i.e. a signature, which is later used as input of a super-
vised classification method. The performance of that classifier is the final objective. From this point of
view, k-means clustering is unsupervised, as no information of the training categories is used to obtain

the clusters.

Moreover, the trade-off between size of the vocabulary and final performance does not necessarily
hold. A large vocabulary with very specific words representing only few descriptors of the input space
may make the later learning task harder and harm final performance. In other words, some loss of
information in the vector quantization process may be useful if it makes it easier for the classifier to
learn and generalize. The trade-off would rather be between the representativeness of the words and
their discriminative power. Ideally, we would like the words to carry some semantic meaning, as in the
case original application of bag-of-words to categorize text and documents. Some authors have shown
that a visual vocabulary can be transformed into another more compact yet discriminative one by fusing
words according to their mutual information [65, 67] or co-occurrence [108]. In some computer vision

applications, the size of the signatures may not even be an operational constraint.

The use of efficient discriminative vocabularies as in [80] is becoming more and more popular in
many vision tasks. According to this technique, named Extremely Randomized Clustering Forest (ERC-
Forest), a random forest is built from training descriptors and the obtained leaves are used as words. This

is explained in more detail in Sections 4.2 and 4.3.

Random forests have also been applied to density estimation [15]. As such, they could be used for

clustering, and therefore for unsupervised quantization.

Mu et al. [81] propose a technique called Random Locality Sensitive Vocabulary (RLSV) that ad-
dresses the computational limitations of k-means clustering when it comes to large training sets and high
dimensionality. They defend the aggregation of different clusterings, as in random forests, as a means
to enhance stability in high-dimensional spaces, and randomization as a means to more efficiently tackle
large-scale problems. Instead of optimizing a global or local objective, their algorithm generates a se-
quence of random bi-partitions of the space of descriptors, based on hashing functions. Supervision is
not needed. Any two samples belong to the same word if they lie on the same side for all bi-partitions.
If B is the number of hashing functions, this corresponds to at most 22 words, as not every partition
intersects every other. Theory from the Local Sensitive Hashing domain guarantees that the probability
that two descriptors collide in the same word is related to their pairwise distance. They combine several

vocabularies generated this way.
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Another method that uses random projections to generate vocabularies is [141], but this time in
a supervised way. They encode features into visual bits optimized for each category. They integrate
both the step of vocabulary generation and classifier training, by generating visual bits in a boosting-like

manner.

4.2 The Decision Forest model

Random decision forests encompass a family of techniques that can be used to address several machine
learning tasks. They became popular thanks to their success in classification and regression, but Criminisi
et al. [15] present a unified model that also deals with density estimation, manifold learning, semi-
supervised learning, etc.

A decision tree is a set of tests (or questions) that are applied to some input data in order to predict
something about them. The tests are hierarchically organized: the first question is the same for all input
objects, and subsequent questions depend on previous answers. The tree can be represented as a directed
graph (Figure 4.1). The internal (split) nodes of the tree store the tests. Here we only consider binary
tests, i.e. yes/no questions. The tree maps a given input object to one of the terminal (leaf) nodes.
The ensemble of leaf nodes constitute therefore a partition of the input space into mutually exclusive
regions.! Objects being mapped to the same leaf share some similarity, as they have satisfied the same

tests. Each leaf stores a local predictor.

Figure 4.1: A decision tree can
be represented by a directed graph.
Its internal and terminal nodes are
called split and leaf nodes respec-
tively.

In the case of supervised classification and regression, training data are available with their corre-
sponding target output, a.k.a. a label, which is discrete and unordered in classification, and continuous
in regression. During the training stage, the dataset is used to build a function that will map new input
data to their most probable label. The ability to map previously unseen data to their correct label is called
generalization.

When decision trees are used for classification or regression, at fraining time the tests are chosen so
as to split the data into subsets with similar labels. The chosen tests are stored in the nodes of the tree. At
test time, a chain of tests is applied to a query datum starting from the root node, until a leaf is reached.
Each question asked depends on previous answers, and tends to increase the certainty about the output
label. The final decision on the query’s label is based on the distribution of labels that was observed at
training time in the reached leaf.

Decision forests combine the ideas of decision trees and ensemble methods. From the same training

ITree-based quantization explained in the following sections is based on this property.



4.2. The Decision Forest model 35

dataset, different trees can be generated by randomizing the test choice and/or the subset of data used to
train each tree. It has been observed that aggregating such trees leads to better generalization, e.g. [30].
We formalize the Random Decision Forest model following mostly the notation in [15]. We choose

the classification task to illustrate it (see also Figure 4.2).

4.2.1 Data point and features

A generic input object is denoted by a vector x = (21, z3, ..., x4) € X, whose components x; represent
some attributes, called features. The training set, denoted by Sy, is a collection of points that are available
to build the forest. In the case of a classification task, the training set is labeled. Each training point is

then denoted by a pair (x, ¢) where ¢ € C is the point’s class label or category, with C = {c1, ..., cx }.

4.2.2 Test or split functions

The test or split function at node j is a function of the feature vector and has a binary output,
h(x,0;): X xT — {0,1}, 4.1

where 8; € 7T denotes the parameters of the test function in the j-th node. A typical choice for test
functions is the family of axis aligned functions, which applies a threshold to some component of the
feature vector. The parameters of this family of tests are the component index and the value of the
threshold.

At training time, the subset of training points S; is available in this node. The parameters of the
split function are chosen so as to optimize some objective function defined on S; (see below). Once the
function has been chosen, S; is split into two subsets S JL and S; corresponding to the left and right child
nodes. This splitting process is repeated for each child node, unless the node satisfies some stopping
condition: maximal depth of the tree allowed, too few training points, too low the score of the optimized
objective function, etc.

Similarly, at test time the stored function is applied to a previously unseen point, which moves to
the right or left child node depending on the output of this binary test, and this is repeated until a leaf is

reached.

4.2.3 Objective or score function

During the training of node j, the parameters that optimize some objective function are selected and
stored. When training decision forests, one way of obtaining diverse trees from the same training data
consists of randomizing this optimization. Only a random subset of the parameter space 7; C 7T is
explored at node j. The amount of randomness is controlled by the ratio p = |7;|/|T|. The resulting

optimization problem is

0] = arg 911]1275% I;. 4.2)

The objective function takes values depending on the data in the node S;, and the way the data is

split due to the value of 8;. It is here denoted by I; because it is typically based on information gain. In

the classification setting, where each point is associated to a categorical label ¢, information gain is the
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Figure 4.2: Training a decision tree with axis-aligned splits. For visualization purposes, the feature space
X is represented with two dimensions only. Each data point has a class label, indicated by its color.
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reduction in label entropy in the two child nodes compared to their parent node. It is defined in [15] as

Sil o
L=HS) = > 5HE). “3)
iefL,r) 7
where H is the entropy of ¢
= _p(c)logp(c) 4.4)
ceC

computed from p(c), the empirical distribution of ¢ in S.

This measure builds on information theory. Consider the categorical label and the outcome of the
binary test to be two random variables, C' and T, taking values c and t = h(x, 6;) respectively for each
data point x. The mutual information of two random variables measures their mutual dependence, i.e.
how much knowing one of these variables reduces the uncertainty about the other. Mutual information

of C' and T can be written as

ple.1)
=2 2. ¥ Op(t) @)

ceC te{L, R} (
4
=3 > plet)lon (fc)) 46)
ceC te{L, R} p
=— Z Z c¢)logp(c) + Z Z (c|t)p(t) log p(c|t) 4.7
ceC te{L, R} ceC te{L, R}
== ple)logp(c) > pltle)+ Y pt)Y_ plclt)logp(clt) 4.8)
ceC te{L, R} te{L, R} ceC
=H(C)- Y pt)H(C|T =t) (4.9)
te{L, R}
=H(C)- H(C|T), (4.10)
where H(Z) denotes entropy of a discrete random variable Z and p(z) its probability distribution:
Z p(z)logp(z (4.11)

In a classification task, mutual information is indeed a meaningful measure: we want to design the
split functions so that knowing the outcome of the test reduces the uncertainty about the label.

Going back to our formulation of the node’s objective function, we see that mutual information
(Eq. 4.9) is equivalent to Criminisi et al.’s definition of information gain (Eq. 4.3), replacing probability
distributions by the empirical distributions extracted from the training points in S;. As said, this score
measures the increase of certainty about a point label when we know to which side of the split, left or
right, it corresponds. Intuitively, this objective function measures how well the test function splits the
data into two subsets with homogeneous labels. When labels are mixed up in the resulting subsets, their
entropy is high and the information gain is low.

Note that the entropies in each child node are weighted by the number of training points on each
side. This means that very unbalanced splits (i.e. most points on one of the subsets) have low entropy

gain, because the entropy in the most populated node is very similar to the entropy in the parent node (as
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they contain mostly the same points) and the entropy in the other child has a very low weight. This score
function is therefore implicitly discouraging very unbalanced splits.

Other entropy-based score functions are possible. For instance, the inventors of a variety of decision
forest called Extremely Randomized Trees [30] suggest normalizing mutual information by the entropies
of C' and T'. Their score function is given by

2I(C;T)

score(S;,0;) = HO) + H(T)’

4.12)

with the entropies computed from the empirical distributions of C' and T in the set S;, e.g. p(t) =
IS31/1S;1, t € {1, R}. If we removed the normalization by the test entropy H(7'), the denominator
would become independent of the split function and would have no influence in the optimization of
Eq. 4.2. In that case, the solution 0; would be the same as using the score function based on information

gain only.

4.2.4 Leaf and ensemble predictive models

At test time, a chain of tests is applied to a data point until it reaches a leaf. In a classification task, the
leaf stores the empirical label distribution of the training points that reached it. This is the predictive
model of one tree: to map each point to the empirical label distribution corresponding to the reached
leaf, p;(c|x). In a forest, each data point reaches many leaves, one per tree. The predictive model of the

ensemble of T trees is a combination of the predicted distributions, typically through averaging:

1 T
plefx) = = > prlelx). (4.13)
t=1

4.2.5 Main parameters

Assuming that the family of test functions has been chosen, as well as the objective function and input
features, the remaining main parameters of this learning model are according to [15]:
e the amount of randomness when optimizing each node (p);
e the maximum allowed tree depth (D); and
e the number of trees (7).
Geurts et al. [30] present a particular case of the family of decision forests. They consider only axis-
aligned test functions with a random threshold. In that case, the cardinality of the space of possible tests
T is the dimension of the feature space d. In order to solve the optimization problem in Eq. 4.2, they
only consider K candidate attributes randomly chosen among the d components of the feature vector.
The amount of randomization is controlled by this parameter, and p = K/d. Rather than maximal
depth, their smoothing parameter is minimum support 1y, i.e. the minimum number of training points
required to further split a node. The third parameter is the same, the number of trees or forest size,
denoted by M in their work.

These parameters affect the forest’s predictive accuracy or generalization, i.e. the ability to predict
the right label when given new data point; the accuracy of its confidence in a prediction, i.e. how “peaky”’

the predicted distribution is for a given data point; and the computational efficiency [15].
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Figure 4.3: The space of patch descriptors, represented as a 2D space for visualization purposes. Each
point is a patch descriptor. Its color represents its “hallucinated” label. A decision forest can be used to
make a partition of this space. Each leaf is a word of a vocabulary of local descriptors.

For example, if we let a single tree grow very deep (or similarly let their minimum support to be
low) we end up with leaves containing very few training points, and therefore the predictive distributions
are less reliable. In the extreme case, with only one data point per leaf, the predicted distribution is
concentrated on a single class, leading to an overestimated confidence in the prediction. As justified in
[30], this negative effect is largely compensated by a sufficiently high number of trees 7. Because the
trees are diverse, they produce different output distributions that are averaged, reducing variance and
making the final prediction more reliable, both in terms of accuracy and confidence. They choose for
their classification experiments n,;, = 2 (fully grown trees), and they find 7' = 100 to be a sufficiently
large number of trees to obtain convergence of the ensemble effect.

Criminisi et al. [15] agree on the observation that accuracy increases with the forest size 7. How-
ever, they warn against fully grown trees, which may lead to overfitting, as well as against too shallow
trees, which may produce low-confidence posteriors. They argue that using multiple trees alleviates in-
deed the problem of overfitting, but it does not cure it completely. Depth would therefore remain an
important parameter to be carefully chosen.

When restricting the test functions to be axis-aligned, Geurts et al. [30] find K = v/d and K = d

to be good values for their classification and regression experiments, respectively.

4.3 Using random forests for local-feature quantization

As explained in the previous section, a decision tree is more than a classification function: it also con-
stitutes a partition of the input space into non-overlapping regions. Each of these regions corresponds
to a leaf of the tree and contains points with common attributes. Let us consider the input space of a
decision forest to be the space of descriptors of image (or video) patches. A decision forest can then
be applied to such local descriptors to obtain a visual vocabulary, as in Figure 4.3. Each leaf is a word
in the vocabulary, and each local descriptor is mapped to several words (one per tree). This vocabulary
can be used to obtain bag-of-words signatures of images as explained in Section 3. In practice, each tree
produces one histogram, and they are concatenated to obtain the final signature, see Figure 4.4.

This is an important difference between forests for classification and forests for quantization. In a

pure classification task, increasing the number of trees has remarkable positive effects, such as canceling
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Figure 4.4: Bag-of-words representation of a video using a random decision forest.

out the variance of individual trees (due to their random nature) thanks to the averaging effect. In the
bag-of-words case this cancelation is less obvious, as signatures are not averaged but concatenated.?

The second difference between decision forests for classification and for local-descriptor quantiza-
tion is the availability of a category label per data point x. In the classification setting, x is the entity to
be classified, i.e. for which we want to predict a category. This category is available at training time. In
the quantization setting, x represents a local descriptor, which we want to assign to a word. The ultimate
goal is to perform supervised image (or video) classification, so we do have a category label for the
image overall. However this label is not available for every local patch (and we do not try to predict it
for every patch either).

Without any supervision, the individual trees would be totally random and have high variance,
which cannot be canceled out through averaging (as explained previously) and could harm performance.
The way to address this issue in practice is to consider that each patch “inherits” the category label of
the image it belongs to —what we call a “hallucinated” label— as a means of weak supervision, see Figure
4.3. This particular use of random decision forests to obtain visual vocabularies is proposed by [80] and
named ERC-Forests. Contrary to k-means clustering, these vocabularies are obtained in a supervised
way, i.e. taking the target output label information into account.

Compared to k-means, the obtained clusters do not tend to be spherical or equally sized. Besides,
there are more parameters that control the total number of bins in the signature: the number of trees and
the number of leaves per tree —or, similarly, the maximum depth of the trees or the minimum support of
anode. As in the case of k-means clustering, there is a trade-off between the representativeness of the
words and their discriminative power. In the case of the forests, this is controlled by the maximal depth
D. Increasing the number of trees 7' is likely to increase final performance thanks to the complementary
information introduced by each tree’s signature. This is however at the cost of a much longer signature,
which may be problematic in terms of computational efficiency of later steps in the pipeline.

Benchmarks of these two methods regarding computational cost, memory needs and performance

can be found in [80, 81]. The training costs are given by [81] in Big-O notation. Assuming that we

2Indeed, it would not make sense to average bin by bin, as trees correspond to different unrelated partitions of the space.
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desire to obtain k words, and that we have n training descriptors of dimensionality d, k-means requires
O(knd) operations per iteration, and typically tens of iterations to converge. In the case of hierarchical
k-means with a branching factor of two, the cost is O(2nd log, k). In the case of a tree, assuming that
roughly the number of levels needed is log, k and that v/d splits are tested at each node as in [30], the
training cost is O(nv/dlog, k). If we consider several trees to obtain the same desired number of words,
the cost is O(nv/d T log, %) The cost to quantize a new descriptor once the vocabulary has been built

is O(knd) for k-means, O(2nd log, k) for hierarchical k-means and only O(log, k) for a tree.

Table 4.1: Properties of k-means vs. ERC-Forests

k-means with Euclidean distance ERC-Forests
- Resolution is tuned through parameter k - Resolution is tuned through the smoothing
(number of clusters). parameter (min. support or max. depth).
- All components in the descriptor have the - Supervised. Capability to filter out noisy
same weight. components.

4.4 Quantizer Forests: a dedicated objective function

The underlying hypothesis of decision forests for quantization (such as ERC-Forest [80]) is that words
can be discriminative individually (that is the point of trying to split descriptors into subsets with homo-
geneous labels) and that weak supervision through “hallucinated” labels is enough to obtain the desired
effect of increased performance.

The problem can be seen from a different point of view, keeping in mind that our final target is to
obtain discriminative signatures. Let us recall the bag-of-words pipeline and the role of the forest for
quantization. We first sample local patches from training videos and compute their descriptor. Then we
use the decision forest training algorithm to obtain a visual vocabulary. The forest acts on local patches,
i.e. the split functions induce a partition on the space of local descriptors. A signature for any video can
then be obtained by passing through the forest every local patch and counting the number of patches in
each leaf.

All in all, we use forests to compute histograms®. Every leaf in the forest is a bin in the signature.
For a given video, the value of a signature bin is the number of local patches from that video that landed
in the corresponding leaf. During the forest training stage, every time we split a node, we are replacing
one bin by two new bins and redistributing the counts of points between the two child nodes. Video
signatures are implicitly changing “on the fly” with every new split.

ERC-Forests attempt to separate local patches regarding their hallucinated label. The standard split
criterion looks at the distribution of category labels over all training points. They are all taken into

account independently to compute node entropies, regardless of whether they belong or not to the same

30ther similar kinds of signature are also envisageable.
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Figure 4.5: Splitting the patch-descriptor space causes an impact on the video signatures and their ar-
rangement. Here a 2D patch patch-descriptor space is represented, with patches extracted from three
videos belonging to three different categories (blue, red and yellow). Each split in this space generates
an additional bin in the final video signatures. We care about the arrangement of video signatures, rather
than the category entropy of local patches.

video. The training stage is trying hard to split descriptors into subsets with homogeneous labels, as
if we wanted to classify the local descriptors themselves, whereas our ultimate objective is to classify

videos, not local patches.

Rather than looking at the entropy distribution of local patches, we would like to look at the signa-
tures we obtain with different candidate splits, and select those splits that facilitate signature (i.e. clip)
classification, see Figure 4.5. Instead of caring about the separability of individual patches, considered
independently, and trying to get discriminative individual words, we focus on the separability of sig-
natures (which aggregate individual patches’ contributions) and trying to get discriminative signatures

overall.

In order to make this work, we need to enlarge each training datum with a label indicating to which
video the patch belongs: (x,v(x),c(v)) with v € {1,...,V}, where V is the number of videos and
c € C is the category label of video v. For a given state of the tree, the video signature of video w is
a histogram by, = (by1,...,bwj,- -, bwn) in which each bin b,,; contains the counts of points at leaf

node j:

buj = {x € S; | v(x) =w}|. (4.14)
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4.4.1 Ideal case and approximations
We propose to use forests to split the descriptor space while measuring the effects in the signature space.
Roughly, we want videos with the same class label to be close in the signature space. Ideally, we would

like the node objective function to be based on the performance of a classifier of video signatures.

First approximation

The objective is to maximize the performance of the classifier (the last stage of our pipeline, see Sec-
tion 3) on the final signatures obtained through some quantization process. The first approximation is
inherent to forest structure and training procedure. Early decisions are made near the root, leading to a
hierarchical coarse-to-fine clustering and not necessarily the optimal signatures.

Optimizing the full final signature is a combinatorial problem, which could be feasible through
exhaustive search only for a very low number of leaves. Imagine the root node and a target signature size
of two bins. The number of operations would be only linear in the size of possible tests 7. If the target
number of leaves is three, then for each candidate split of the root we should test all candidate splits of
the left and right child nodes and pick the best combination of root-child splits. In general, the number

of possible binary trees with n + 1 leaves, is given by the n-th Catalan number [112],

c, = 1 (2”) for n > 0. (4.15)

n+1l\n

It grows asymptotically as C,, ~ 4"/(n3/?,/m). Each of the C,, possible trees with n + 1 leaves has
n internal nodes, and for each internal node we would evaluate p|7 | candidate splits. All this without
considering that a forest has several trees, so there are even more combinations to obtain a given number
of leaves.

Instead, we stick to the classic greedy approach, which has already been proven to have satisfactory
performance [80]. We build our trees from root to leaves, making only local decisions at the level of
each node, eventually using information from the “already-split” nodes and the rest of “current leaves”.
The assumption is that finer signatures can be obtained from coarser signatures by subsequent splits of

the forest nodes, in a way that pursues and eventually reaches a (local) optimum of their performance.

Second approximation

As explained at the beginning of Section 4.4, every new node split modifies implicitly the space of
video signatures. We would like to evaluate the performance of the final classifier on those “dynamic”
signatures. Our final classifier is typically a Support Vector Machine (SVM). Its performance can be
estimated by cross-validation on the training set. To save time and computation, we could also separate
a validation set from the training set. In both cases, any candidate split would imply the modification of
all signatures in the training set, and therefore at least one (or k, in the case of k-fold cross-validation)
training and evaluation process, and eventually the corresponding model-selection with regards to the
SVM parameters. Note the extra computation time that this represents compared to a normal decision
forest. It is impractical to repeat this process for every candidate split. We hypothesize, nevertheless, that
it is possible to assess whether the candidate splits encourage an arrangement of videos in the signature

space that makes the classification task easier.
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To do so, we propose a new objective function and several training algorithms to put it in practice.

This objective function aims explicitly at building forests that lead to discriminative signatures.

4.4.2 Objective function

We propose to solve at node j the optimization problem

0 = arg max Aj, (4.16)

J
i€7;

where A; represents accuracy gain.* This gain depends as usual on the data in the node S; and on the
split function parameters 6. Strictly speaking, it also depends on the current state of the tree (the current
leaves, and the corresponding implicit video signatures).

Consider that at the time of training node j, the tree has L current leaves, so the current implicit
signature is L bins long. Node j is also a current leaf. We divide the computation of A; into two steps:
(i) pre-split accuracy AL, which is the accuracy achieved using the current L-bin-long signatures; and
(ii) post-split accuracy AJL *1, the accuracy achieved splitting S; according to 8; and using the resulting

(L + 1)-bin-long signatures, so

Aj(S1.2,05) = AJLH(Sl:Lv 6;) — AJL(SLL) 4.17)
= AJLH(Sl:L\j’SgLaS;) - Af(SLL% (4.18)

where 81.7, and 8.1\ ; denote all current leaf nodes, respectively including or excluding node j.

We first compute the pre-split accuracy, which is the same for all candidate splits of node j. We base
our accuracy measure on pairwise distances between video signatures (Section 4.4.4). Then, for each
candidate split, we compute the number of points of each video that go to the left and right child nodes,
and compute the impact on the pairwise distances. We compute post-split accuracy for each candidate

split and keep the one with best gain.

4.4.3 Our accuracy measure

As discussed in Section 4.4.1, we would like to assess the quality of the arrangement of video signatures
using the same performance measure as the one we use to evaluate the full system. However, training
and evaluating an SVM to calculate accuracy would be impractical.

A k-nearest-neighbor technique would be more feasible: we would consider one training video
at a time, consider it as a “query” video, take its k£ nearest neighbors among the remaining training
videos, and predict a category based on the most frequent class among the k£ videos. Accuracy would
then be the fraction of good predictions compared to the ground-truth labels. Two disadvantages of this
approach are that kNN accuracy depends on parameter k and it fails to capture the overall arrangement of
videos. When comparing pre- and post-split accuracy on a given query video, it only takes into account
the displacements of videos across the k-th neighbor barrier, and might be blind to other favorable

rearrangements of videos.

“Due to the second approximation, this accuracy is not the actual SVM accuracy but an alternative measure, defined in Sec-

tion 4.4.3.
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We propose yet an alternative accuracy measure inspired by the classical Average Precision used
detections tasks (see Section 3.5.1 for details). As in KNN we take one training video at a time as query.
We then rank the remaining videos according to their distance to the query video, in increasing order.
Consider a detection task in which the positives to be detected are all the training videos with the same
label as the query video. Furthermore, consider the two-class classifier which would be the thresholded
distance (less distance meaning more confidence in the detection). We would like such a classifier to
have high precision and high recall, meaning that most videos with the same label as the query video are
close to it and high in the ranking. Different thresholds produce different precision and recall rates, just
like in a detection task. In this way, we can compute an AP per video. Our accuracy measure can then

be obtained by averaging this AP over all training videos.

4.4.4 Distances between video signatures

We base our accuracy measure on pairwise distances between video signatures.
D(v,w) = D(by,,by) (4.19)

L L \2
:ZM vwe{l,...,V} (4.20)

We prefer x? symmetric distances because our final SVM uses kernels based on those, but [; or lo
distances would be acceptable choices too.

With every new split, all bins in the signature remain the same, except the bin corresponding to the
split node. That bin disappears and is replaced by two new bins, whose values for each training video
are given by the counts of points. Updating pairwise distances between videos amounts to removing the
term corresponding to the split node and adding the two terms corresponding to the child nodes.

We propose two ways to train quantizer trees using our custom objective function.

Breadth-first manner

If the tree is trained in a breadth-first manner, the distance can take into account the full current L-
dimensional signatures for the pre-split stage, and the (L 4 1)-dimensional signatures for the post-split
stage, as conveyed by Eq. 4.20. As long as each bin contributes an additive term to the distances (e.g.
no square root in /5 distances), a global pairwise distance matrix can effectively be updated after each
split by subtracting the contribution of the old node and adding the contributions of the two child nodes,
without having to recompute the contributions of all other dimensions of the signature. The disadvantage
of this approach is that the development of each node depends on the evolution of the tree up to present
time, i.e. the winning splits of a node may depend on what happened in other branches. Therefore, this

tree-training algorithm is not parallelizable.’

Depth-first manner

The are remarkable computational advantages to train each node independently of every other, just with

the data that is present in the node. When using the previous algorithm we consider that a split might

SThe different trees in the forest can still be computed in parallel.
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space of video histograms

(a) (b) ()

Figure 4.6: Illustration of the split of one node in a Quantizer Forest. (a) Distribution of videos along
the one dimension corresponding to the node to split. Each point is a video, and its color represents
its category label. (b) Any split of the node will make the videos move along the dotted lines. This is
because each dimension in a bin in the histogram, and splitting the node in two will generate two bins
whose sum is equal to the value in the original bin. (¢) Among all possible splits, the aim is to choose
a split that produces an arrangement of points that facilitates classification, keeping closer those points
belonging to the same category.

be good because of its complementarity with regards to the existing full signature. The following as-
sumption can be made that enables to keep the training of each node independent from the rest: when
it comes to comparing candidate splits of the same node, the most relevant changes in accuracy can be
noticed independently of the rest of the signature. Instead of looking at the L- and (L + 1)-dimensional
signatures, we take for the pre-split stage the distances in the 1-dimensional space corresponding to the
current node, and take the distances in the resulting 2-dimensional space for the post-split stage.

We focus then on the given node, which represents one dimension in the signature space, see Fig-
ure 4.5. For each training video, we compute the value of that single signature bin by looking at the
training points contained in the node and their corresponding video labels. A candidate split would
transform this 1D space into a 2D space. We compute the 2D sub-signatures corresponding to the can-
didate child nodes. We prefer a split in which the resulting 2D space is such that the videos are easier to
classify according to our classification accuracy measure. Roughly, we prefer splits such that videos of
the same category are kept closer in the resulting 2D space.

Doing so simplifies the dependencies of pre- and post-accuracies of Eq. 4.17:

A;j(85,0;) = A3(S;,0;) — Aj(S)) (4.21)
= A3(S}. S) — Aj(S)), (4.22)

and reduces Eq. 4.20 to one and two terms.

4.4.5 Obtaining balanced trees

This objective function does not take into account the number of points that go left of right. This could
lead to very unbalanced trees, which we have observed to be harming the performance of the quantiza-
tion, as also warned by [15]. In order to avoid this, we restrict our thresholds to be the median of the

values, randomness still remaining in the choice of other split function parameters (the choice of feature
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Figure 4.7: Performance obtained on Hollywood?2 using random forests with increasing number of trees
and depth.

in the case of axis-aligned tests). In this way, we force the algorithm to choose high-scoring splits only

among those leading to balanced trees.

4.5 Experimental evaluation

Unless otherwise stated, we train forests with 5 trees, maximal depth of 14 and minimum support of 200
descriptors, with axis-aligned splits. Out of the d dimensions of the input points, we randomly select v/d
at each node, and for each dimension we uniformly sample two thresholds between the minimum and

maximum values of this dimension according to the training descriptors in the current node.

4.5.1 Influence of depth and forest size

When using forests for quantization, there are two parameters that affect the length of the resulting
signature: maximum depth and number of trees. The same number of leaves can be obtained through

different combinations of those two parameters. For example, in order to roughly double the length of the
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signature, one could grow the forest one level deeper, or could double the number of trees. A reasonable
question to ask is which of the two options to make signatures longer has the greatest impact on the final
performance.

To gain some insight to this question, we train a forest with 15 trees and maximum depth of 14 using,
then slice it at different depths and different number of trees, and evaluate the performance of the result-
ing signatures. For this experiment, we use the Hollywood2 dataset with its standard training/testing
partition and STIP features, and we train a one-vs-all SVM with x? kernels and fixed regularization
parameter C' = 100.

Figure 4.7(a) shows the impact that has adding more trees. On this dataset, going from three to one
tree consistently causes a drop in performance, for all tested depths. Performance increases considerably
from three to seven trees. From there on, it still increases but at a lower rate. In Figure 4.7(b) we can
see how those values of depth and number of trees translate into signature length. From 8000 bins on,
many points lay very close, meaning that different combinations leading to similar signature length have
similar performance.

From these figures we could conclude that going from one tree to several is worthwhile, and sticking
to only a few (between 5 and 10) is already enough to be on the right track. Regarding the depth, going

from eight levels to ten seems to make a considerable difference.

4.5.2 Pruning based on training score

We define three ways of pruning a trained tree. The first one is purely based on tree depth: nodes
exceeding a given maximum depth are removed. The second one is based on training score: we go
through the tree starting from the root, and we greedily select the nodes that had a higher score at
training time, until a given number of leaves is reached. The third one is based on weighted score, and
is a variant of pruning by score which would also account for the number of training points that went
through the node. The idea behind it is to greedily give preference to the splits that lead to high scores on
a large fraction of training points. The second and third pruning techniques enable to precisely tune the
resulting number of leaves. Note that the three techniques run very fast once the tree has been trained.
In order to explore the influence of the pruning technique, we train a forest on some dataset, prune
that forest by score and by depth, compute clip signatures according to the two different pruned forests,
and evaluate the classification accuracy of the two sets of clip signatures in our standard supervised
classification setting: one-vs-all SVM with x? kernels and fixed regularization parameter C' = 100.
Figure 4.8 shows the result of training a traditional random forest (RF) and one of our quantizer
forest (QF) on STIP features of different training/testing partitions of the YouTube dataset. Each forest
has been pruned by score and by depth in order to obtain different signature lengths. Following a similar
experimental procedure, Figure 4.9 shows the average classification performance of five runs of RF
and five runs of QF on STIP features of the Hollywood2 dataset. We see that depth works better on
Hollywood2, but pruning by score may improve RF and QF performance on many partitions of YouTube.
The weighted-score pruning is not tested here, and could also be a means of improvement. An

interesting object of further research would be the relationship between the performance of difference
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Figure 4.8: Random forests and quantizer forests pruned by depth vs. pruned by score, for different

partitions of YouTube data. (Continues...)

pruning techniques and the balance of the resulting trees.

4.5.3 Traditional random forest vs. quantizer forest

In this section we compare the performance of the traditional random forest (RF) and our quantizer forest

(QF) on different dataset and feature types.

In the fist experiment, we use the KTH training and testing videos as described in Section 3.3. We

use 2 - 105 STIP features to train five different RF and five different QF. We obtain a range of signature

lengths by pruning each forest at different depths, from 2 to 14. For each pruned forest, we compute

signatures of the training and testing clips, which we use to train a one-vs-all SVM with x? kernels. For
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Figure 4.8: (...continued) Random forests and quantizer forests pruned by depth vs. pruned by score, for
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Figure 4.10: Comparison of the performance of random forest and quantizer forest on KTH dataset using
STIP features. Average and 95%-confidence intervals over five runs of each type of vocabulary. Note
the logarithmic scale of the signature-length axis in figure (a). The detail inside the dotted rectangle is
shown in figure (b). See text for more details.

each of the two-class classifiers, we choose a value of the regularization parameter C' € {1,10,100}
for each class through 5-fold cross-validation, and evaluate its average precision (AP) on the testing
signatures. Our multiclass performance measure is the mean AP of the six action categories (see Sections
3.4 and 3.5.1 for more details). Figure 4.10 shows the performance score obtained by RF and QF for
varying signature lengths. Points in the graph represent the average of the five runs, and error bars
give its 95%-confidence interval. The QF curve is slightly superior, particularly at length 40, where the
average performance is higher and the interval of confidence is tighter. Overall, the differences are not

statistically significant.

In the next experiment, we use again the Hollywood2 dataset, with the same features and classifier
as in Section 4.5.1. We compare traditional random rorests (RF) and our quantizer forests as well as k-
means, for different vocabulary sizes. In the case of the forests, different sizes are obtained by slicing the

trained forest at different depths. K-means is not hierarchical here, so different sizes have been obtained
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through independent trainings. Due to its high computational cost, we are able to use only 10° training
points for k-means, whereas we can easily use 10° to train the forests. Each training has been repeated
five times. Figure 4.11 presents the average and 95%-confidence intervals of the five runs. We can see
that our QF works better that RF on this dataset and features. While the performance increase seems not
very big in absolute termns, it is actually statistically significant. It can also be noted that the difference in
performance is higher for shorter signatures, which has positive computational implications. This is the
kind of situation in which the longer training of our QF pays off in the form of more compact and better
performing video signatures. On the k-means side, the independent training for different vocabulary
sizes makes it harder to see an improving tendency as the number of clusters is increased, and was very

slow to train.

We also compare RF and QF on different training-testing partitions of the YouTube dataset, as
described 3.3. We used STIP features and the usual classifier. On the left column of Figure 4.12, we
can see the results if we use a fixed regularization parameter C' = 100. We can see that while this value
works well for the STIP signatures of Hollywood2, it does not suit the STIP signatures of YouTube. On
the right column, we chose C' € {1, 10,100} by 5-fold cross-validation, which corresponds to a more
realistic scenario in which the user tries to make the most out of the signatures. QF is again superior in
most partitions and in average.

Finally, we compare again RF and QF on Hollywood2 and YouTube, but this time using dense
MBH features, described in Section 3.1.2 and used more extensively in Chapters 6 and 7. These features
are much denser than STIP. We show here the results of training the forest with 2 - 10° descriptors®.
We choose C' € {1,10,100}. Results are shown in Figures 4.13 and 4.14. In this case, the superiority
of QF regarding signature length is not obvious. If we instead align the scores by depth, we can see
that our algorithm is still doing what it is designed to do: at each step (depth level by depth level, node
by node) it tries to choose the splits that lead to higher classification accuracy. However, in this case

the extra computational training effort does not pay off as in the other cases. Note that our QF use

9This sample is less representative of the variety of local MBH training descriptors than it could be, and thus constrained the

forests in this experiment to be shallower. Further experiments should ideally use a larger training sample, e.g. 10°.
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Figure 4.12: Comparison of the performance of random forest and quantizer forest on different partitions
of the YouTube dataset using STIP features. (Continues...)
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Figure 4.12: (...continued) Comparison of the performance of random forest and quantizer forest on
different partitions of the YouTube dataset using STIP features.
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Figure 4.13: Comparison of the performance of random forest and quantizer forest on different partitions
of the YouTube dataset using dense MBH features. (Continues...)

training signatures computed on the fly to make decisions about good splits. Due to the restricted sample
of MBH descriptors during the QF training, these training signatures computed on the fly may be less
representative of the final signatures, which are computed for a trained forest with all the local descriptors
available for each video. Therefore, the split decisions may be less accurate and the advantage of using

such training objective is reduced.

Table 4.2 compares the time needed to train one tree of RF and QF for the experiments reported
in this section. While in the case of RF training time is only proportional to the number of training
descriptors and the depth of the tree, in QF the training time also depends strongly on the number

training videos, as it needs to compute video signatures and distances to nearest neighbors per every



mean Average Precision mean Average Precision

mean Average Precision

4.5. Experimental evaluation

o
=)

0.55

0.5

0.45 + ; T

0.8

160 640 )
signature length (number of bins)

(g) YouTube-CV4

0.7 r /_./.

0.65

0.6

~—RF —
—=-QF

0.55

0.5 " T

0.8

160 640 ]
signature length (number of bins)

(i) YouTube-CV5

e — "

Y

0.75 //
0.7

0.65 /
06

——RF
-=-QF

i/

0.5 + ; T

40

160 640 ]
signature length (number of bins)

2560

(k) YouTube, average of the five partitions

=]

mean Average Precision mean Average Precisio

mean Average Precision

56

0.8
0.75 //’Z
0.7 //
0.65
0.6
——RF
0.55 ‘;/
--QF
0.5
o
0.45 T T T T T T )
2 3 4 6 7 10 11
forest depth
(h) YouTube-CV4
0.8
0.75
0.7 )/
0.65
0.6 - ./
0.55 ——RF
/ -=-QF
0.5
0.45 T T T T T T ]
2 3 4 6 7 10 11
forest depth
() YouTube-CV5
0.8
0.75 - /
0.65 Aﬂ/’
4
——RF
0.55 of
-=-QF
0.5
0.45 T T T T T T ]
2 3 4 10 11

6 7
forest depth

() YouTube, average of the five partitions

Figure 4.13: (...continued) Comparison of the performance of random forest and quantizer forest on
different partitions of the YouTube dataset using MBH features.

Table 4.2: Comparison of RF and QF training time for the experiments reported in this section (approx-

imate training time per tree).

RF QF
KTH STIP <1min 12h
Hollywood2 STIP 2 min 60 min
YouTube STIP 1 min 20 h

Hollywood2 MBH < 1 min 50 min

YouTube MBH

< 1 min

26 h
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Figure 4.14: Comparison of the performance of random forest and quantizer forest on Hollywood2
dataset using MBH features. Average and 95%-confidence intervals over five runs of each type of vo-
cabulary.

candidate split. The number of training videos is approximately 1100 in KTH, 800 in Hollywood2 and

1200 in each YouTube partition.

4.6 Discussion

In this chapter we have studied the problem of quantifying local descriptors from the point of view of
training a random forest. In order to obtain visual vocabularies, random forests are preferable to other
techniques such as k-means because of their comparable or better performances and higher speed.

Random forests have some parameters which are well understood when it comes to classification
and regression tasks, but their behavior may differ in this quantization task. Here, we have explored some
of these particularities, such as the influence that forest depth and number of trees have in the perfor-
mance of the resulting bags of words. A few trees are enough to achieve the positive effect of ensemble
methods. An appropriate depth is more important than in the case of forests for classification, because
overfitting of individual trees is not compensated anymore by averaging of multiple trees. Instead, the
signatures issued from the different trees are concatenated, and depth has a direct impact in the resolution
of the quantized words. We have also compared two different pruning techniques, without conclusive
results. In summary, those aspects make a difference on the final performance, and therefore they are
not to be neglected when using random forests for quantization for the first time on a new dataset. They
deserve consideration at least in the form of parameter selection and validation, if not further research.

The main contribution of this chapter is to draw attention to the fact that random forests are not
particularly optimized for this quantization task. Indeed, their objective function is based on class entropy
of local patches. This information is not really available, as there is no such category unambiguously
attached to each local patch — in practice the local class label is inherited from the global video or image
class label, which can be unreliable.

This is why we have proposed our new objective function, which explicitly optimizes a function

of the arrangement of video signatures directly in the signature space, rather than in the space of lo-

11
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Figure 4.15: (Continues...)
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Figure 4.15: (...continued) Illustration of YouTube groups. Example frames of the basketball shooting

action separated by groups. Note that what we have created 5 partitions of the YouTube dataset, using

20 groups for training and 5 groups for testing, e.g. YouTube-CV1 uses 06-25 for training and 01-05 for
testing.
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cal descriptors. We have shown that, at the cost of a longer training time, out algorithm can provide
more compact signatures leading to higher classification accuracy. This happened in the case of the

Hollywood2 dataset, which is the more challenging of the three we tested.

There was also an improvement in three out of five partitions of the YouTube dataset, partitions
YouTube-CV1 and YouTube-CV5 being failures. Not all partitions of YouTube behaving the same way
may be related to the peculiar nature of this dataset. As described in 3.3, YouTube has 25 groups of
videos, which are supposed to separate actions performed by the same actor and/or similar background.
We have partitioned this dataset into five larger groups, each containing five of the original groups. For
each partition YouTube-CV1 to YouTube-CV5 we use four large groups for training and one large group
for testing. Figure 4.15 shows some examples from the basketball shooting action. Note that some
groups are “polluted” in the sense that very similar videos are spread through several groups. Compare
for example groups 03 and 23 in Figure 4.15, which contain very similar videos. This means that when
using partitions YouTube-CV1 (06-25 for training and 01-05 for testing) and YouTube-CVS5 (1-20 for
training, 21-25 for testing), very similar videos are being used for training and testing at the same time,

breaking the independency between the training and testing dataset.

We have not visually inspected the hundreds of videos in this dataset, but something similar could
be happening for other groups and other action categories. This undesirable correlation between training
and testing sets in YouTube could be the object of further experiments. For example, a classifier could
be trained on one large group (rather than four) and tested on each of the other large groups. The
classification performance would roughly indicate how well each large group is explained by each other

large group. This could reveal any asymmetries or bias in this dataset.

As discussed towards the end of the previous section, the unsatisfying results when using MBH fea-
tures can be due to the smaller sample of descriptors used for training, which would make the signatures
used for training our QF too dissimilar to the ones used for training the SVM classifier, making the split

decisions unreliable.

Our objective function is still imperfect in several aspects. In our opinion the most compelling
ingredients of random forests for quantization are the randomization of the splits and the power of en-
semble methods. However, our objective works currently in a way that may be diminishing the positive
effect of these ingredients. The first potential limitation is the redundancy among our trees. Each node
is trained independently, and they may all be focusing on improving classification of the same restricted
bunch of videos, leading to similar (redundant) splits and not paying attention to other harder videos.
Instead, the desirable behaviour would be that different nodes and trees complement each other, im-
proving the classification of different areas of the video signature space. A way to empirically visualize
whether this is indeed a limitation of our QF would be to calculate statistics on the types of binary tests
constituting the trees (i.e. which dimensions of the feature vector are selected and at which depth levels)
and compare how diverse they are in RF and QF. A solution to reduce redundancy and encourage the
desirable behavior would be to keep an Adaboost-like distribution of weights over the training videos,

so that our objective function at each node focuses on better discriminating videos that have not been
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correctly classified up to the current moment. We think this would work both in a breadth-first training
and a depth-first training without parallelization of the branches.

The second potential limitation is the risk of overfitting the training data. A way of addressing this
would be to hold out some training videos for validation of the classification accuracy.

Regarding training time, no particular effort has be put into optimizing the code, so it would be
reasonable to expect improvements through a more efficient implementation of certain blocks, notably
the classification accuracy evaluation of each candidate split.

We think that the proposed enhancements of QF would lead to higher accuracy than RF in most
situations, at the cost of more computation. If it were not the case, a sensible conclusion would be that
the main role of the supervision in forest for quantization is to reduce the variance of the individual trees
and make the splits more stable. This would mean that the particular form of supervision (entropy or
some other objective function) would be less critical.

The behavior observed regarding the balance of the trees is particularly interesting, as it may have
connections with the original purpose and objective functions of quantization in signal processing: allo-

cating higher resolution to zones of the input space happening more often.
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Chapter 5

Early fusion of heterogeneous features

As explained in Section 2.4, there is a considerable number of available choices for interest-point de-
tectors and local patch descriptors. We want to draw attention to alternative sources of information in
the video, other than local features. Intermediate regions (or the whole video) can also be described in
terms of gradients, optical flow, color, etc. as well as in terms of semantic attributes, e.g. the output
of a classifier trained to detect certain concepts: materials, objects, pedestrians, etc. The optimal way
to combine these heterogeneous sources of information (heterogeneous both in scale and nature) into a
single global representation is still an open question.

In this chapter we enumerate different schemes to combine such heterogeneous information. We
highlight the risks of naive combination of features too early in the pipeline, and illustrate them through
an experimental example. Results show that our quantizer forests are more robust than information-gain-

based forests at this challenging task.

5.1 Obtaining global representations from heterogeneous features

We picture below some the scenarios of our interest, from the simpler and better-known to the more
complex, for which we may expect to find some difficulties. They can be seen as a generalization of the

bag-of-words framework presented in Section 3.

5.1.1 One single type of local descriptor

This scenario corresponds to traditional bags of words as described in Section 3.

The vocabulary can be obtained using clustering algorithms, e.g. k-means. The number of clusters
needs to be chosen appropriately, depending on the desired resolution. In the bag-of-words framework,
the goal is to obtain a balance between too specific and too generic words.

We have frequently used Extremely Randomized Clustering Forests [80] for this purpose in our
experiments, preferring this option over k-means because of the higher speed on great amounts of data,
and the higher performance and stability in the bag-of-words approach. We have also proposed our own
clustering algorithm in Section 4.4.

Instead of accumulating words to form an orderless global representation, the words can be used to
perform other tasks, e.g. object localization through center voting after a training stage. This has been

applied to actions for example by Mikolajczyk and Uemura [77].
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Figure 5.1: Toy example of two types of local features (shape and color) with two possible values
each. At the top: two toy images showing the detected features. In the middle: each feature can be
histogrammed separately, and both histograms would be combined before the classification step (an
example of late fusion). In this case, this makes the representation of the two images indistinguishable.
At the bottom: both types of feature can be histogrammed jointly (an example of early fusion). Which
of the two strategies is preferable depends on the images labels (whether they belong or not tho the same
class) and the rest of images in the dataset.

5.1.2 Several types of local descriptor

Without loss of generalization, let us consider two types of local descriptor, e.g. corresponding to two
different cues, color and shape, as in [48]. This is illustrated in Figure 5.1. There are two straightforward

options to combine them (adopting the terminology in [48]):

a) Late fusion

This implies building two separate vocabularies and obtaining two independent global representa-
tions. Then they can be combined by simple concatenation, or perform a more sophisticated combination
and selection process. The fusion is done at the stage of the classifier. Some examples:
o Using different similarity measures for the different representations within a learning framework and
learning relative weights, e.g. Multiple Kernel Learning [3], Heterogeneous Feature Machines [12] and,
very recently, Generalized Adaptive [,,-norm Multiple Kernel Learning [140], which enable to learn a
combination of features and outputs of other classifiers.

e Feature selection component by component, e.g. boosting [104], random forests [30].

b) Early fusion
Early fusion consists of computing a joint histogram of the two descriptor spaces, in which each
bin represents the co-occurrence of two cues on the same local patch. In a straightforward way, the two

descriptor spaces can be quantized independently into N7 and IV, clusters respectively. A joint histogram
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of the product space would have N7 x N bins.

If training examples of the joint cues are available (i.e. training patches associated with their two
descriptors), then one can envisage to build a joint vocabulary, taking into account the two descriptors at
once. This also leads to a single global representation, usually shorter than the N; x N histogram that
would be obtained by the product of the two spaces quantized in independently.

As claimed by Khan et al. [48], this joint representation may make the learning stage harder if the
class to be learnt is unrelated to one of the cues.

Nothing prevents from combining the representation obtained with the joint vocabulary with the
two separate representations through late fusion. More generally, all the information may be available
at any point of the pipeline to modulate the final representation, not only the very beginning or the very
end. The two following examples are just particular cases of this general concept.

Khan et al. [48] show how the two cues can be used for two different tasks. In their case, color is
used to build class-specific attention maps. Patches are sampled from that map and their shape descriptors
are used to build a global class-specific representation of the image.

Similarly, Ullah et al. [121] and Su and Jurie [115] use one type of feature to segment a video into

parts and then compute histograms of another type of feature on each part.

5.1.3 Descriptors at different scales

Let us consider two types of descriptors: one local and one global, e.g. HOG descriptor for local patches,
and a color histogram for the whole video.

The local one can be turned into global in a bag-of-words manner, independently from the global
feature. Then the two can be combined through late fusion.

Early fusion of these two features is less straightforward, however. An attempt to build a joint
vocabulary would imply including the global information at the local level. For each patch, the local
descriptor (e.g. HOG) would be expanded by concatenating the global information (color histogram).
The extended feature vector would have a part which is common for all the local patches belonging to the
same video. A similar thing could be done for mid-level contextual information. The following sections

contain further discussion and experiments exploring this subject.

5.2 Joint quantization of heterogeneous features

Whether early of late fusion is the best option depends on the features and the data to be classified. Here
we explore early fusion, as we have found less work on this subject in the image and video classification
literature.

We call early fusion the computation of a joint histogram of several, potentially heterogeneous
features. We consider only two features without loss of generality. As evoked previously, we see several
ways in which a joint histogram can be obtained (Figure 5.2).

e Independent quantization of each feature separately.
e Independent quantization of one feature, then quantization of the second feature conditioned to the

quantized value of the first one.
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type of feature B type of feature B type of feature B

type of feature A
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(a) Independent quantization (b) Joint quantization (c) Conditioned B|A

Figure 5.2: Tllustration of different ways to quantize two types of feature. In grey the joint distribution
of both features.

e Joint quantization of the two features.

We have seen the benefits of traditional random decision forest for clustering over k-means. How-
ever, in some situations the hallucinated labels can have a harming effect. In the case of a redundant
feature, strongly correlated to a given video instance, but not necessarily to the video class in general,
the risk of overfitting and poor generalization is very high. Consider the scenario in which a point is
described at the same time by a local patch descriptor and some contextual mid-level descriptor. The
contextual features are more likely to be shared by a large number of points belonging to the same video.
Those points share, in addition, the same hallucinated label (the category assigned to the video). A split
based on such mid-level features would easily improve an entropy-based score. Indeed, entropy-based
scores consider points independently, regardless of whether they belong to the same video.

In fact, joint quantization of local and mid-level descriptors using entropy-based measures is very
challenging. Because of their correlation to hallucinated labels, mid-level features tend to appear
“stronger” learners and systematically preferred over local features. This means that the tree is splitting
mostly the space of the mid-level features and very few splits happen in the space of local descriptors.
There is no such joint quantization actually happening.

It also has a second and more dangerous effect. This training procedure is blind to the difference
between correlation to a video instance and correlation to a more general category label. It is therefore
subject to a high risk of overfitting and poor generalization. On the contrary, our objective function
presented in Section 4.4 does take into account the video to which the points belong, minimizing the
adverse effect of entropy-based scores combined to hallucinated labels.

Performing such joint quantization with an unsupervised method such as k-means would imply
similar difficulties. The contextual features are more likely to be shared by a large number of points.
Therefore, positioning the prototypes regarding mostly such contextual features would more easily opti-
mize the k-means objective, whereas the local part of the descriptor risks of being interpreted as noise.
Again, we would be mainly clustering the contextual space.

A possible solution is to avoid purely joint clustering. Local information could be clustered first and
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Table 5.1: Performance of a 20 x 20-bin global color histogram on YouTube-CV5.

action C =100 Ce

category {1, 10,100}

basketball shooting 0.859 0.576

biking 0.322  0.400

diving 0.947  0.947

golf swing 0.698 0.698

horse riding 0.578 0.579

soccer juggling 0.402 0.402

swing 0.428 0.355

tennis swing 0.528 0.528

trampoline jumping 0.505 0.505
volleyball spiking 0.709 0.709
walking dog 0.203 0.203
mean AP 0.562 0.536

then disambiguated through context. This could be achieved by the conditioned quantization mentioned

earlier.

5.3 An extreme case: the global color histogram

In this section we experiment with an extreme case of mid-level feature: the global color histogram.
We transform each clip to the L*a*b* color space, and regularly discretize the a* and b* dimensions to
obtain a color histogram of 20 x 20 bins. We compute a global color histogram per clip.

We evaluate its standalone performance when used directly as video signature for classification. We
also evaluate its performance when jointly quantized with local HOG|HOF features and when combined

to a HOG|HOF signature through late fusion.

5.3.1 Standalone performance

Training an SVM with the global color histogram and x? kernel on the YouTube-CV5 dataset leads to the
classification scores shown in Table 5.1. Note that cross-validating the regularization parameter C' does
not produce better performance, leading us to thing that this global color histogram is not a very reliable
feature, in the sense that cross-validation may not reflect accurately the generalization capabilities of this
feature.

Another way to evaluate the standalone performance of this color histogram is to quantize its value
and the represent each video as a histogram of quantized values'. We use both a random forest (RF)
and our quantizer forest (QF) described in Section 4.4 to do this quantization, then perform SVM clas-
sification with a x2 kernel. Results are shown in Figure 5.3(a). We can see that the RF reaches its
maximum performance at depth four, and then it gets worse, most likely due to overfitting. QF tends
to get slowly better with depth. Interestingly, at depth ten it nearly stops growing: no more splits are
found that improve our objective function. On the right side of the figure we can see the performance of
the same forests when cross-validation is used to choose the SVM regularization parameter C'. The RF
clearly gets a higher benefit than QF from this cross-validation step. This reinforces our intuition that

the RF produce too specific signatures that tend to overfit in this setting, therefore the need to regularize
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correctly, whereas the QF is already trying to prevent overfitting with its objective function. However,
both forests reach a similar maximum between 0.30 and 0.35 of mean AP, which is decidedly worse than

the ~0.55 that can be obtained when skipping the quantization step.

5.3.2 As part of a local point descriptor (joint quantization)

Now we consider the global color histogram as an extreme case of a contextual mid-level feature. We
attempt to perform joint quantization of a local HOG|HOF feature the color histogram using a tradi-
tional random forest. One could think that such contextual information might help to better discriminate
between two otherwise identical local patches, but in fact entropy-based quantization combined to hal-
lucinated labels leads to the problem described in the previous section.

Both the QF and the RF build HOG|HOF signatures reaching over 0.60 of mean AP (see Fig-
ure 5.5). However, introducing the global color histogram provokes a decrease in performance, as show
in Figure 5.4. QF resists better the the added “noisy” feature, and is always better than RF at this joint
quantization task, meaning that it tends to select more HOG|HOF features to split the joint space. Still
the performance is far below the 0.60 that can be achieved quantizing HOG|HOF features alone.

In order to force the selection of both kinds of features, we tried other approaches (such as forests
alternating the choice of the two types of features, forest jointly selecting and thresholding pairs of
components of the two feature types at each node, and forests looking at group entropy rather than

category entropy alone), without success.

5.3.3 Late fusion

Figure 5.5 shows the mean AP that can be achieved when combining the HOG|HOF signature and the
global color histogram through the sum of their respective kernels. In this setting, late fusion clearly
outperforms the rest. It consistently brings an improvement to the HOG|HOF signature, for all tested
lengths, although this increment tends to decrease with the length of the signature. As a by-product, this
experiment shows that the global color features is indeed informative (as already shown in Table 5.1)
and complementary to the HOG|HOF signature. The overall late vs. late fusion ont his dataset is shown
in Figure 5.6.

This results could be even better by adding a weighting factor between the two kernels. Cross-
validating such parameter for each class would potentially lead to increased performance, as Table 5.1

shows that the color histogram is more or less helpful depending on the action category.

5.4 Discussion

In this chapter we have presented a generalization of the bag-of-words framework, in which several het-
erogeneous features are to be combined, early or late in the pipeline. We have enumerated several ways
of performing early fusion and drawn attention to the risks of naively mixing features with different sta-

tistical properties at the quantization step. Forest parameters such as minimum node support, maximum

! Actually, one of the purposes of quantization being to obtain a global signature in the bag-of-words paradigm, it does not seem
necessary to apply it to which is already a global feature. Nevertheless, quantization would be meaningful in the case of mid-level

features. We do this only to illustrate the behavior of the quantization of mid-level features, brought to an extreme.
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Figure 5.3: Quantization of the global color histogram using Random Forests and Quantizer Forests at

different depths.
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Figure 5.4: Joint quantization of the global color histogram and a concatenated HOG|HOF feature using
Random Forests and Quantizer Forests at different depths.
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Figure 5.6: Late vs. early fusion of HOG|HOF signature and global color histogram.

depth, etc. control the forest bandwidth, which is related to the assumed level of noise in the data. If we
put features with very different statistical properties into the same feature vector, one part of the feature
vector can be seen as noise, and none of the intended joint quantification would actually be happening.
We have also shown that our quantizer forest behaves better than the traditional random forest in this
challenging quantification tasks, because it considers points grouped by the video they belong to, rather
than treating all points independently. Moreover we have given an example in which the more straight-
forward late fusion performs better. Therefore, we would advise the designer of a vision system not to
blindly commit for one or the other.

Although we have not experimented further with this idea, we have presented the possibility of
“conditioned” quantization. This would consist of first quantizing one feature, and then quantizing the
second feature conditioned to the quantized value of the first one. We hypothesize that this approach
would potentially benefit from the complementary information contained in heterogeneous features, in
a safer way than joint quantization, and with a more efficient use of the available bins than independent
quantization. For example, conditioned quantization could be used to encode spatiotemporal relation-
ships between local patches. Local descriptors (such as HOG|HOF) would be quantized first. Then we
could continue growing each leave (or equivalently train one tree per local word) using splits based on
spatiotemporal relationships, e.g. does my i-th neighbor belong to the j-th word? This approach would
be taking into account the intermediate results of the tree, i.e. which path in the tree did other neigh-
boring points follow? A similar idea has already been used in the entangled trees proposed by Montillo

et al. [79] for medical applications.
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Chapter 6

From local to mid-level descriptions

This chapter compiles our attempts to work with mid-level regions as the “basic unit” instead of local
patches. There are several motivations to this. First, they are a step beyond bags of words, as the
description of regions introduces some spatiotemporal constraints among words. Second, regions are
more discriminative on their own than local patches. Therefore, they are potentially better than local
words for localization, i.e. their location can be more easily identified to the location of the action. This
means that in addition doing a good job at classification (as with local words), such a system could
provide as a by-product a notion of at least rough location of the action —or of the elements that are
relevant to the action. Closely related to this, some regions in the clip might be irrelevant or harmful
to the classification task; a separate description of regions makes it possible to assign to them different
importance in the final classification function, depending on their descriptor and their interactions with
other regions. In addition, in a wide range of application, some extra annotation might be provided by
the user of the system. This annotation can be useful to build more discriminative models, and the can
quite naturally come in the form of regions with certain tags. A model that already uses a region-based
representation has the potential to directly introduce such constraints in the learning process.

We review related work covering aspects such as the description of spatiotemporal neighborhoods of
points, describing videos through histograms of pairwise relationships between points, dense description
of regions of interest, and video description in terms of abstract concepts and semantic attributes. Then,
we present our work with mid-level video representations and the questions and difficulties that arise,
particularly regarding the huge amounts of data and the quantization and coding of region descriptors.
We finally show that this mid-level representation can improve video classification, in agreement with

contemporary work that has been recently published in the domain of 2D images.

6.1 Related work

Recent publications in the domain of action and interaction recognition —both in videos and in still
images— show an increasing interest in going beyond the bag-of-words paradigm towards other repre-
sentations. These approaches try to capture some of the geometric relationships among local patches,

while keeping the robustness of those representations that accumulate unordered information.

Some explore the idea of building “structured” features by combination of simpler ones. They differ
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in the definition of the points of interest and the extent of their neighborhood, as well as in the description

of the geometric relationships among points.

Gilbert et al. [31] extract dense 2D corners in the x-y, x-t and y-t planes. For a given interest point,
they consider a window of 3 x 3 x 3 pixels around it and describe this window using a string of symbols
plus a training label, issued from the action category of the clip from which the point was extracted. The
string of symbols encodes the scale and orientation the points in the window and their position within.
They use data mining to determine which strings are correlated to the labeled categories. The process is

repeated hierarchically so as to describe neighborhoods at different scales.

Kovashka and Grauman [51] compute a first level of classical vocabulary of local descriptors (HOG,
HOF). Each neighborhood is defined by a central interest point and its /N nearest neighbors, rather than
a fixed-size window. The descriptor of a neighborhood is the concatenation of cumulative histograms
for increasing N, separated by word and orientation. Working with cumulative histograms lets the de-
scriptors be more robust to the particular choice of N. Then they quantize the neighborhood descriptors
using dimensionality reduction (PCA) and k-means. They repeat this process hierarchically, so that they
describe neighborhoods at different scales. They have to deal with the fact that the selection of N nearest
neighbors depends on the choice of distance. As the most meaningful distance measure is unknown a
priori, they define several distance measures combining Euclidean distance and normalization of each
component (, y, t) for different normalization factors. In the end there is a vocabulary for each hierar-
chical level and combination of normalization factors. They represent each video by one bag of words
per vocabulary. Then they combine all those bags of words using Multiple Kernel Learning [3], so that
the final kernel is a weighted sum of y? kernels (one per histogram) with the weights being learnt. How
challenging it is to find and exploit the complementary information hidden in the spatiotemporal rela-
tionships is indicated by the big effort they put into generating so many histograms (for different levels

in the hierarchy, for different distances, etc.) and then learning suitable weights.

Yao and Fei-Fei [142] work on still images of people interacting with objects. They build compound
features called grouplets, which are OR/AND combinations of simple features. Simple features are
defined by a word in a vocabulary of SIFT descriptors, their extent in the image, and their position
relative to a reference point, i.e. the center of the human face. Their aim is to find the most discriminative
grouplets. To efficiently explore the space of possible grouplets, they consider that the discriminative
power of a grouplet can be decomposed into two necessary properties: the fact that they appear a lot in
the images of the class of interest (they call this support), and fact they do not appear much in the other
classes. They observe that for a grouplet of high order (i.e. containing several simple features) to have
high support, the grouplets of lower order that it contains must be have high support too. This allows
them to generate candidates for high-support grouplets from low to high order, and then only filter out

from the candidates those that are not discriminative enough.

We observe some limitations in these approaches that could be addressed using more flexible def-
initions of the neighborhoods, or learning them with supervision. In [31] and [51], the neighborhood

includes all immediate interest points. The neighborhood descriptors are hard-coded, in a way that al-
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lows for no supervision. In [31] the labels are only used to pick the most useful neighborhoods at each
level, while in [51] no supervision is used at all during the quantization step. Their hypothesis is that rele-
vant information is contained in the spatiotemporal geometric relationships among close points, but they
ignore the possibility that the neighborhoods might be polluted by irrelevant or harmful relationships.

They do not look for distant relationships either —only describe compact neighborhoods.

Other works focus less on the local neighborhood descriptor and more on the overall arrangement
of words within a short window [149] or in the clip [100], allowing for longer-range relationships. Yu
et al. [149] consider a list of spatiotemporal relationships, e.g. before, after, overlap, near, far, etc.,
and build 3D histograms from pairs of words: two dimensions for the first and second word values, the
third dimension for the relationship. They build on [100] and compare sets of words through histogram
intersection. This provides a similarity measure that can be used to perform matching to training clips

and classification.

We would rather let an algorithm infer the meaningful relationships among points, instead of impos-
ing a given neighborhood descriptor or given list of relationships of interest. This is closer in spirit to the
grouplets in [142], as they try to mine the discriminative combinations of features for the given labels.
There are however several limitations to apply this to actions and videos. Their features are “too local-
ized”: they depend strongly on the position of the features relative to a reference point and a bounding
box, which are not easily and robustly defined in the context of actions. We think that feature-centered
structures are preferable. Moreover, the scores they use to select the best grouplets are “global”, in the
sense that they use all the training points of a given class to compute those scores. This does not account
for the multiple flavors a class may have: some feature may not do a good job at describing the class as a
whole, but may be very useful to describe one part of the data only. This is handled naturally in tree-like

structures, in which the scores are evaluated only in a part of the data.

Following this line of thought, our quantizer forests (Section 4.4) could be used to quantize local
patches based not only on their explicit pre-computed local descriptor but also other attributes, such as
certain geometric relationships with their neighbors, introducing by this means some supervision in the

description and range of the neighborhoods, as proposed in Section 5.4.

Other works describe regions densely rather than in terms of the words they contain. Ikizler-
Cinbis and Sclaroff [40] pre-process videos to detect humans and find regions with coherent motion,
and then describe those regions of interest using HOG and HOF descriptors. They assume that not all
detected regions are useful for classification, and therefore adopt a multiple-instance learning (MIL) ap-
proach. MIL models for two-class classification take as input bags of instances (in this case, a video
would be a bag of regions) and consider them positive if they contain at least one positive instance, and

negative otherwise.

In particular, they apply MIL via Embedded Instance Selection (MILES) [14]. This approach de-
fines a dictionary of “concepts”, which are distributions generating instances. In this case, concepts are
like words in a vocabulary of region descriptors. For a given bag (i.e. video), all instances (i.e. regions)

are compared to all concepts, leading to a signature containing the maximum similarities to each con-



6.2. Mid-level representation of videos 73

cept. The classification of the video is based on that signatureand can be done using linear SVM with [y
norm. In other words, classification is performed after embedding videos into the concept space.

We observe the connection between the abstract concepts in [40] and the semantic attributes in other
works. Liu et al. [66] manually specify a list of semantic attributes to describe actions (e.g. single leg
motion, arm over shoulder motion, torso up-down motion, outdoor related, indoor related, sport related,
etc.) and train classifiers to detect them taking as input the global video. Then, they use latent SVM to
learn the combination of attributes that best models each action. In other words, actions are embedded
in a space of semantic attributes, which are treated as latent in order to handle intra-class variability. The
linear model of the latent SVM combines several elements: the output of a SVM on the raw bag of words
of the video, unary attribute potentials, and pairwise attribute potentials, as well as potentials of other
non-semantic data-driven attributes.

This is similar to Su et al.’s work [114] on 2D images. They train classifiers for semantic attributes
(colors, shapes, materials, object parts, scene types...). They obtain global and mid-level responses from
those concepts that they concatenate in a global low-dimensional image signature to perform object
recognition. Of course, these semantic attributes require extra training data, but the idea is still that the

image can be represented as a set of responses to the presence of concepts.

6.2 Mid-level representation of videos

In view of the related work and our own motivations presented earlier, we dedicate the remainder of the
chapter to work with mid-level descriptions of videos, based on regions rather than local patches. We
think that the semantic attributes in [66, 114] are not so different from the abstract concepts in [40].
They are properties than we can measure for a given video, these properties being roughly similarities to
a series of (semantic or abstract) concepts.

We hypothesize that the complex pre-processing of [40] can be replaced by randomly sampling a
sufficiently large number of regions in the video. We also want to avoid the specific training of separate
semantic classifiers and the annotation they require, although being able to incorporate it if available
would be interesting. In particular, we work with randomly sampled regions whose descriptors are
bags of words, and experiment different ways of clustering them and building video signatures from the
region-level.

Our approach converges with very recent work on 2D images that has been published after our own
research on the subject [140, 116].

Also posteriorly to our research, and motivated as [40] by the presence of irrelevant context in the
video, Sapienza et al. [101] have presented another MIL approach to action recognition. They sample
regions following a regular grid and describe them through bags of words, but follow different learning
method than MILES that focuses on the classification of regions themselves, skipping the quantization
into concepts.

In the following sections we present our approach from the MILES point of view, and generalize

this perspective to include other variants. We later discuss several questions that arise.
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6.2.1 Multiple-Instance Learning

In a standard two-class supervised classification task one is given a set of training patterns (x;,v;) €
R? x {—1,1}, supposed to be independent and identically distributed, from which to build a classifier

f:R? — {1,1}. In multiple-instance learning, labels are only provided for sets of such patterns (bags

m;

7'}, where m; is the number of instances contained in bag i. A bag is

of instances), B; = {x},x?,...,x
labeled as positive if at least one of the instances it contains corresponds indeed to the class of interest,
whereas it is labeled as negative if none of the instances corresponds to such class, therefore introducing
asymmetric constraints on the instances labels. The labels of the instances within a positive bag remain

ambiguous.

Many MIL algorithms (e.g. [72, 151] cited in [14]) are build on the idea of finding similar instances
co-occurring in different bags, the assumption being that those are more likely to be the positive target
concepts. The earliest approaches typically consider one single target point, and label a bag as positive

if at least one of its instances lies “near” the estimated target point.

MIL has been applied in both object and action localization (e.g. [39, 36]) to tackle the problem of
ambiguous location and implicit alignment. In the continuum of locations containing at least partially
the object of interest, some bounding boxes may be inherently ambiguous and it may be hard for a
labeler to hard-classify them into the positive or negative class. Specially when the exact location of the
object or action is ambiguous, forcing one particular bounding box and discarding the rest of potentially-
acceptable bounding boxes may make the learning task harder. By sampling several locations around
the provided or speculated box and formulating the problem as a MIL, the alignment requirements are
relaxed, and the best bounding box for each training image is (at least implicitly) decided through the

learning process.

We can also find in the literature the object recognition task presented as a MIL problem. An image
depicting an object of interest, e.g. a car, is represented as a bag of patches. An image labeled as ‘car’
typically contains at least one car-like patch, indeed. However, as observed by, e.g., Gehler and Chapelle
[29] and Chen et al. [14] , the opposite does not hold: the existence of a car-like patch in an image
does not necessarily mean that the image is a car. It is therefore important to keep in mind the different
meanings of the bag label and instance label. In applications like object recognition, if a positive instance
label indicates that the instance appears to be part of the object (e.g. a car-like patch), then negative bag
may contain positive instances as well. This kind of applications violate the traditional MIL constraint

on the negative bags, even if presented as MIL problems.

Different versions of MIL have been defined that relax this constraint, so that negative bags can
also contain some positive instances. E.g. Scott et al. [107] (cited in [14]) develop a framework in
which there are several positive target concepts, and a bag is labeled positive only if it contains instances
corresponding to all concepts.

We can distinguish two main families of approaches: those that aim at obtaining a classification
function for the individual instances (the missing labels can be considered as hidden variables), e.g.

[101]; and those that transform the problem into supervised classification at the bag level, without em-
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phasis on the classification of the individual instances, e.g. [40].

A possible interpretation behind the second family is that the item that we want to classify —clips in
our case— can be decomposed into several units —the instances, which we will imagine as being localized
in space and time. It is assumed that some of these instances are more relevant than others when it comes
to assigning a semantic label to the clip. Clips are represented as bags of such instances and given a se-
mantic label globally. The aim of the feature extraction and learning process is to find a representation
of such bags that, together with the training labels provided, enables to (implicitly) discriminate between
relevant and irrelevant instances and therefore classify new bags. This interpretation seems well adapted
to the classification task we are dealing with: training clips come with a weak classification label which
says what action of interest happens, e.g. answering the phone; but we do not have any further informa-
tion as to where in the clip the action happens, or why, i.e. what elements of interest whose absence of
presence make people agree on such a semantic label for that clip.

In our work we build instances by taking rectangular spatiotemporal regions from every clip. We
hypothesize that a concept-based approach may be useful to discriminate between relevant and irrelevant

regions and better classify and localize the target actions.

6.2.2 Multiple-Instance Learning via Embedded Instance Selection
Multiple-Instance Learning via Embedded Instance Selection (MILES) [14, 26] corresponds to the sec-
ond family of approaches mentioned in the previous setion, i.e. it reformulates the MIL problem (at the
instance level) as a classic supervised classification problem (at the bag level).

Recall that the idea behind traditional MIL algorithms is to find similar instances co-occurring in
different bags, assuming those are more likely to be the (positive) target point (roughly, the concept of
of interest to be estimated). MILES breaks the asymmetry assumption about positive and negative bags.
It allows for several target points, each of which may be related to the positive or the negative class.

Chen et al. [14] define a measure of probability that a point x is a target point given a bag B;
(independently of the label of the bag) using a most-likely-cause estimator, so

o2

— 2
Pr(x|B;) x s(x, B;) = maxexp <M> , 6.1)
J

where x{ are the instances in the bag B;, and o a predefined scale factor. The measure s(x, B;) can be
interpreted as the similarity between the point and the bag.

MILES considers all instances in the training set {x!,...,x"} (all bags confused) as potential
concepts of interest. Then, it maps each training bag into a feature space representing the similarity of

the bag to each concept.
m(B;) = [s(x", By),...,s(x", B;)]". (6.2)
Once every bag has been embedded into this instance-based space, then standard supervised algorithms

can be applied. They choose an SVM with [; norm, as they claim that the feature-selection aspect is

essential in such a high-dimensional space.
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6.2.3 Variants of MILES

In the MILES approach as described in [14] the dimensionality of the final feature space increases with
the number of instances in the training set. There are alternative ways of transforming the problem into
standard supervised classification in feature spaces with tractable dimensionality.

MIWrapper [26] performs this transformation by applying bag class labels to instances'and weight-
ing the instances so that each bag has the same total weight. SimpleMI [26] obtain a bag’s feature vector
by averaging the feature vectors of the instances in the bag. The final feature space has the same di-
mensionality as the original one in both cases. In the first one there are as many training elements as
instances, whereas the second only generates one training item per bag. Despite the simplicity of these
two approaches, they have show comparable performance to MILES in typical MIL datasets [26].

In [40], the approach is very similar to MILES, only that the training instances are first grouped into
a fixed number of clusters. The candidate concepts are then the prototypes or centroids of such clusters.
Then, as in MILES, a bag’s feature vector is build by measuring the similarity of the bag to each concept,

i.e. the maximum similarity between all instances in the bag and the centroid.

6.2.4 Our generalization

From our point of view, several choices can be made in order to build a concept-based representation of
clips, in which instances are regions sampled from the clip.
e The candidate concepts. They can be all training instances as in [14], or obtained through k-means
clustering as in [40]. We can also imagine using random forests or our quantizer forests to obtain such
partition. In the case of clustering, there is the question of how to chose the prototype of the cluster, to
which all the similarities will be computed.
e The similarity measure between instances. Inspired from the hard-coding that we have been using to
assign local features to words, we could consider a 0/1-similarity between instances looking only whether
they belong to the same cluster. We can also computed similarities based on exponential functions and
normalized distances, as in Eq. 6.1. The choice of distance measure and normalization (e.g. the same
factor for all concepts, one factor per concept, etc.) remains unclear. Similarity could also be measured
with a classifier or regressor trained in the area of the region-descriptor space corresponding to the
concept.
e The measure between a bag and a concept, i.e. how to build the video signature from all the regions
responses to the concepts. Using the maximum similarity of all instances of the bag to the concept is
justified as a most-likely-cause estimator in some probabilistic framework (named diverse density [72]
cited in [14]). Summing (or averaging) the responses of all instances in the bag could also be an option.
In particular, the hard-coding combined to the averaging approach leads to a simple histogram of region
types, i.e. what we could call a “bag of region words” or “‘bag of regions” for short.

We think that these choices have consequences that deserve theoretical and experimental analysis.
We conducted experiments involving k-means clustering of regions described through bags of words,

using x? symmetric distance (Eq. 3.8), similarities based exponential functions and different ways of

Note the parallelism with the “hallucinated” labels used in ERC-Forest described in Section 4.3
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obtaining normalization factors, and both maximum- and average-based pooling of region responses.
We also trained classifiers dedicated to some areas in the region-descriptor space.

Further, we had the idea of decomposing each concept into its “positive part” and “negative part”.
This means that for each concept, a “positive prototype” can be computed from only the instances coming
from positive bags, and the same for the “negative prototype”. Similarly, the local classifiers could be
trained not to distinguish between a concept and the rest of concepts, but to distinguish between the
positive and negative part of a given concept.

Preliminary results of those experiments (not included here) indicate a strong impact of the way of
measuring similarities depending on the normalizing factor. They also indicate that local classifiers for
a given concept are useful provided that there is sufficient training data in the cluster, otherwise simpler
measures such as the similarity are preferable. More exhaustive experiments along those lines would be
needed to obtain more conclusive results.

In the following sections, we focus on reporting our experiments following the “bag of regions”

approach, and compare it to the local-level bag of words.

6.3 Experiments

6.3.1 Bag-of-words baseline

In this section we compute and evaluate bag-of-words signatures of the YouTube dataset, using groups
6 to 25 for training and 1 to 5 for testing (a.k.a. YouTube-CV1). We use as local features the Dense
Trajectories [124] described in Section 3.1.2, which consist of four descriptors: point trajectory (Traj),
Histograms of Oriented Gradients (HOG), Histograms of Optical Flow (HOF) and Motion Boundary
Histograms (MBH). We compute one vocabulary per type of descriptor. 2 - 10° local features were
selected randomly from the training videos to train random forests, which we slice at different depths.
This leads to four different signatures, according to the four descriptor types. We compute the x? kernel
of each signature type, then train one-vs-all SVM with fixed regularization parameter C' = 100.

Results are shown in Figure 6.3.1. Performance seems not to vary much with the vocabulary size,
the main differences being due to the the type of descriptor. We can see that these descriptors work

better than sparser HOG|HOF STIP features used in previous chapters, at a higher computational cost.
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Table 6.1: Bag-of-words performance on YouTube-CV1 using DenseTrack features and y? kernels.
Impact of the choice of regularization parameter C' through 5-fold cross-validation.

forest descriptor signature C = 100 Ce
depth length {1,10, 100}
Traj 883  0.641 0.638

HOG 2948  0.751 0.751

10 HOF 2201  0.724 0.722
MBH 2072  0.783 0.781

sum 8104 0.837 0.837

Traj 1636  0.650 0.648

HOG 5383  0.760 0.760

12 HOF 4005 0.733 0.729
MBH 3724 0.794 0.792

sum 14748  0.846 0.846

Traj 2713  0.652 0.653

HOG 7564  0.767 0.767

14 HOF 6053  0.736 0.737
MBH 5575  0.800 0.800

sum 21905 0.843 0.843

MBH is clearly superior in this dataset, and the sum of kernels is an appropriate way of combining
such heterogeneous features is this case. We observe that for the same depth, very different lengths are
obtained for each type of descriptor. This can be explained by the length of each local descriptor (and
therefore the dimension of the space being quantized) and the variability of training descriptors: it seems
that stopping conditions are reached earlier in the case of the Traj descriptor.

As a sanity check, we repeat the classification choosing the regularization parameter C' among
values {1, 10,100} through 5-fold cross-validation for each of the one-vs-all SVM, see Table 6.1. We

do not observe significative difference in performance with regards to the default C' = 100.

6.3.2 Bag of regions

In this experiment, we randomly sample several spatiotemporal region in each clip. We use the local-
feature vocabularies from the previous section to compute bag-of-words descriptions of each region.
Regions are then clustered using random forests.

We sample simple regions with the shape of spatiotemporal boxes. Spatially, we consider four
different sizes: 20 x 40, 40 x 20, 20 x 20 and 40 x 40, measured in percentage of the frame width
and height. For each size, we sample randomly allowing for some overlap until most of the area has
been covered, up to a total of 144 rectangles per frame. Temporally, the boxes are 30 frames long, and
sampled regularly every 15 frames.

We compute bag-of-words descriptions of each region using the 14-level-deep vocabularies from
the previous experiment. There is one vocabulary (and therefore one region descriptor) for each local
descriptor Traj, HOG, HOF and MBH.

We then use random forests to quantize the space of region descriptors. Training parameters are set
to our default 5 trees and maximum depth of 14, but in order to allow the features to fit in memory we

decrease the number of training regions to 4 - 10°.



mean Average Precision

6.3. Experiments 79

0.85 0.85
0.8 0.8
0.75 0.75
s X
B e 0.7 /./I
0.65 r/)\\x 0.65 &
region_sum " region_sum
0.6 — gonsum 06 gonsum
—o—region_Traj =&—region_Traj
055 Jod ./ —B-region_HOG 055 —m-region_HOG
"\\ region_HOF region_HOF
0.5 =>=region_MBH - 0.5 =>é=region_MBH
0.45 : : : : : ‘ 0.45 : : : : ‘
500 2000 8000 32000 500 2000 8000 32000
signature length (number of bins) signature length (number of bins)
(a) With fixed C' = 100. (b) With C € {1, 10,100} chosen through 5-fold

cross-validation.

Figure 6.2: Performance of bag-of-regions descriptors and x? kernels on YouTube-CV1.
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Figure 6.3: Local- vs. region-based representations on YouTube-CV1, using DenseTrack features and
2
x“ kernels.

A new global signature of each video can be obtained by aggregating all the region information. In
this experiment we opt for counting the number of regions in each cluster, in order to obtain a global

histogram that we call a bag of regions.

Results are shown in Figures 6.2 and 6.3. The two more obvious observations are that (i) the
influence of the SVM regularization parameter C' is much higher here than in the case of the bag of local
words, and (ii) the performance of the region-based clip representation is lower than the local-based,
despite of the extra computation. Looking into the details of the cross-validation process (not included
here) most classes prefer C' = 10 rather than the default C' = 100, which means a stronger regularization
of the decision function. We speculate that the space of regions is under-represented compared to the

space of local patches.

In the case of local patches, the DenseTrack features have descriptors whose lengths are in the order
of tens of bins. Such features are extracted densely at every frame. Hundreds of thousands of samples
are available at the time of training the random forest for quantization and all of them are used when

computing the signature of a given clip.
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In contrast, the spatiotemporal regions that we use in this experiment have much longer descriptors,
in the order of thousands of bins. The region-descriptor space is therefore potentially much larger, which
is in accordance with the fact that regions are potentially more specific than local patches. However, we
sample such larger space comparatively more sparsely, with less than 200 regions every 15 frames, to be
compared with a few thousands in the case of the local DT features>. We can also see in the figure that
for the same depth of the forest (14 levels) much shorter signatures are obtained, which means that this
larger space has been more coarsely quantized. All things considered, we can conclude that these regions
are miss-represented and this has a negative impact on the generalization capabilities of the region-based

signature.

6.3.3 Bag of regions with reduced region descriptor

A way to address the miss-representation problem described above is to reduce the dimensionality of
the space of region descriptors. The straightforward option is to use the 12-level-deep local vocabularies
instead of the 14-level-deep ones so as to reduce every region descriptor to approximately half the length.
Another option is to use some dimensionality reduction technique. We tried Principal Components
Analysis (PCA) previous to the region vocabulary training. None of the two options lead to conclusive

results, and may deserve further analysis.

6.3.4 Bag of regions with denser regions

We conduct two small tests to see the impact of the amount of regions sampled per clip. To do so, we
sample regions following the same spatial pattern described previously, but we make the boxes 15 frames

long instead of 30 and sample them every 5 frames instead of every 15.

In the first experiment, we use the same region vocabulary computed in the previous section, and
only use the new regions to compute each video signature. In the second experiment, we retrain the
vocabularies using the new regions (but still around 4 - 10° regions for training) in addition to using them
to compute the signatures. During training, the stopping conditions are relaxed in order to obtain deeper

trees (minimum node support is decreased from 200 to 50 regions).

The results are shown in Figure 6.4, compared to the initial region-based and local-patch-based
signatures. In the case of the Traj descriptor, there is a clear increase in classification performance when
the same region vocabulary is used but more regions are sampled when computing each clip signature.
The performance becomes then comparable with the local-based signature, without being significatively
superior. HOF and MBH also seem to benefit from the denser sampling, although the performance
remains worse than the local-based signature. MBH is the only case in which a deeper forest seems to

improve the region-based signature.

2 A typical frame of the YouTube dataset can be 320 x 240 pixels. Points to be tracked are initialized following a 5 x 5-pixel
grid, and tracked for 15 frames at most. More points are sampled in the empty areas as needed when existing tracks disappear. A
rough estimate can be of %

the clip ‘v_biking_01_01" of this dataset has 5102 DT features between frames 15 and §29.

~ 3000 features extracted every 15 frames. In practice this number can be higher. For instance,



6.3. Experiments 81

0.7
=>epatch-based signature
—e—region-based signature
0.68 —B-denser regions
5 —A—denser regions and deeper training
£ 066 / A
(5]
1
(5]
%064 -
=1
B
: o/‘/‘
0.62 ' d
0.6 ‘ ‘
500 2000 8000
signature length (number of bins)
(a) Traj
0.8
X
0.75
g
g 0.7 £
(9]
&
£ 0.65
- v
<
g 06 —<patch-based signature
g —e—region-based signature
0.55 -B-denser regions
denser regions and deeper training
0.5 ‘ ‘
500 2000 8000
signature length (number of bins)
(b) HOG
0.75
0.7
g
£ 0.65 —
) /
g o7
z 06
g ——patch-based signature
g —e—region-based signature
0.55 denser regi
gions
denser regions and deeper training
0-5 T 1
500 2000 8000
signature length (number of bins)
(c) HOF
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at signature computation time, and when denser region sampling is used combined with deeper training.

6.3.5 Complementarity of the bag of regions and the bag of words

Table 6.2 shows the performance obtained by combining the bags of words of Section 6.3.1 and bags
of regions of Section 6.3.2 through the sum of their kernels. Results are separated by class and by
descriptor. We can see that in approximately half of the cases the combination is superior to any of
the two kernels individually. We also observe that in the case of the Traj descriptor the bag of regions
outperforms the bag of words quite often, which is never the case with the HOG and MBH descriptors.
This table shows that bag of regions is not a redundant layer with regard to bag of words. Instead,
and despite the limitations that we have observed in the previous sections, the bag-of-regions signature
contains complementary information. This complementarily could even be exploited further through a

weighted sum of kernels, which we have not tested here. The weights could be learnt in a Multiple
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Kernel Learning manner, or selected through cross-validation with the rest of the SVM parameters. A
faster approach would be to estimate the performance of each separate kernel through cross-validation

and then use weights proportionally to those performances.

6.4 Discussion

The reported experiments focus on the bag-of-regions approach. It basically consists of applying a
second iteration or layer to the standard bag of words so as to obtain a signature of quantized regions
descriptors. Such region descriptors are here bags of words, but they could be any other descriptor
of a spatiotemporal region: HOG, HOF, color, etc.. One advantage of using bags of words as region
descriptors is to reuse the quantized local words, which we would compute anyway as we know that they
produce useful signatures. We can see such region descriptors as introducing spatiotemporal constraints
to an otherwise unordered bag of words.

We have also described the connections of this bag-of-regions representation to other MIL-inspired
approaches. From this point of view, the target positive class is assumed to be related to one or several
target concepts, and classification is performed on video signatures which contain information on the
absence or presence of such concepts. Those concepts can be region prototypes, e.g. cluster centroids,
and presence can be measured in terms of similarity. In the case of the bag-of-regions such concepts are
possible values of the quantized region space, and presence is measured as the count of corresponding
regions.

From our experience, the main drawback of this approach when applied to videos is the considerable
computational needs. Compared to standard bag of words, it needs a second pass of region sampling and
quantization. This extra computation may be worthwhile for image representation and classification, but
it becomes quickly unfeasible when it comes to videos.

Furthermore, we have observed that this region space is quite high-dimensional, and in order to ob-
tain reliable quantization and representations it has to be sampled quite densely. This problem becomes
even worse with other similarity-based variants, which need the computation of centroids and similar-
ities, and therefore the computation and comparison of lots of pairwise distances between regions, or
between regions and centroids. Notions such as averages, similarities and nearest neighbors become
tricky in such high-dimensional spaces (see for example the concentration of distribution issue [4]). Our
preliminary experiments with similarity-based signatures indicate that they are indeed extremely sensi-
tive to the way centroids are computed and distances are normalized into similarities. In order to answer
to these question, a more principled approach and bibliographic research beyond the action recognition
domain may prove useful. More exhaustive exploration the MIL variants that we propose in Section 6.2.4
may also help gaining further insight into region-based representations.

Nevertheless, we have observed that intermediate regions contain complementary information that
may improve classification when combined to bag-of-words signatures. Region-based representations
have had success in other scenarios, as can be seen in recent works [140, 116] which are contemporary
to our research. We therefore encourage future research to go for such region-based representations. We

find the notion of concepts particularly interesting, as it enables to use such abstract region prototypes
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Table 6.2: Complementarity of bag-of-words (BOW) and bag-of-regions (BOR) signatures on YouTube-
CV1 using DenseTrack features and x? kernels. Performance of each kernel individually and their sum.

) Traj HOG
action category  "BAW BOR sum  BOW BOR sum
basketball shooting  0.513 0.438 0.586 0.596 0.356 0.592

biking 0.737 0.745 0.756 0.849 0.827 0.879
diving 0.811 0.718 0.805 0.974 0.892 0.984
golf swing 0.766 0.701 0.846 0.928 0.865 0.937
horse riding 0.658 0.712 0.709 0.895 0.820 0.880
soccer juggling 0.712 0.819 0.815 0.439 0.541 0.644
swing 0.759 0.634 0.673 0.677 0.657 0.684
tennis swing 0.498 0.466 0.544 0.582 0.439 0.486

trampoline jumping 0.834 0.891 0.883 0.833 0.706 0.762
volleyball spiking 0.634 0.596 0.704 0.996 0.913 0.993

walking dog 0.259 0.208 0.246 0.666 0.691 0.667
mean AP 0.653 0.630 0.688 0.767 0.701 0.773
HOF MBH

BOW BOR sum BOW BOR sum
basketball shooting  0.537 0.502 0.551 0.509 0.329 0.569

biking 0.713 0.702 0.720 0.935 0.918 0.937
diving 0.900 0.749 0.861 1.000 0.984 0.993
golf swing 0.861 0.725 0.846 0.945 0.770 0.907
horse riding 0.853 0.830 0.853 0.912 0.891 0.914
soccer juggling 0.788 0.745 0.786 0.900 0.883 0.938
swing 0.713 0.522 0.641 0.815 0.790 0.819
tennis swing 0.664 0.559 0.679 0.510 0.356 0.502

trampoline jumping 0.840 0.786 0.839 0.909 0.891 0.903
volleyball spiking 0.819 0.774 0.833 0.818 0.782 0.818

walking dog 0.416 0.376 0.413 0.544 0.434 0.495
mean AP 0.737 0.661 0.729 0.800 0.730 0.799
4 4
Bow Bor I
basketball shooting 0.737 0.489 0.657
biking 0.948 0.919 0.943
diving 0.987 0.946 0.980
golf swing 0.976 0.944 0.979
horse riding 0.919 0.892 0.907
soccer juggling 0.837 0.836 0.852
swing 0.863 0.825 0.854
tennis swing 0.609 0.563 0.621
trampoline jumping 0.882 0.885 (.882
volleyball spiking 0.982 0.974 0.984
walking dog 0.536 0.504 0.539

mean AP 0.843 0.798 0.836
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as if they were semantic attributes. This leaves the door open to more complex models exploiting corre-
lations between pairs of (semantic or abstract) attributes, their location in the image, etc. It would also
be interesting to exploit the particularities of videos in our favor rather than being limited by the burden
of huge amounts of data. For example, smarter sampling strategies could be found that benefit from
the inherent temporal redundancy in videos or from domain knowledge. One example is the concurrent
work carried out by Raptis et al. [93] and also published after our work on the subject. They also try
to discover the discriminative parts of an action through mid-level video representations, in which the
candidates for parts of an action are clusters of trajectories. They use a graphical model that incorporates
appearance and motion constraints for the individual parts and pairwise constraints for the spatiotempo-

ral dependencies among them.
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Chapter 7

Featured application:

Selection of dynamic models for tracking

There are important limitations in the understanding of visual scenes. Many aspects are involved in the
generation of natural image sequences: type of scene, point of view and camera motion, number and
type of objects in the scene, their location, their appearance and pose, their motion and interactions, the
acquisition conditions, etc. Understanding visual scenes requires being able explaining a huge variety of
data. One way to address this problem is to factor the different sources of variability, and try to explain
them separately or hierarchically. Motion is an example. The apparent 2D motion of objects in a video
is strongly conditioned by the camera motion, as well as the type of scene and its geometry. Each object
may have its own motion pattern in the context of the more global scene-dependent motion.

Our interest in this chapter is to model the latter via specialist dynamic models. The idea is that
conditioning the choice of dynamic model on the “causes” of motion could improve tracking, provided
that this leads to the choice of the best available model for each video. Such conditioning frees the
specialist from having to cope with motions beyond its capabilities.

We propose that such specialist models are good priors that can lead to better tracking performance
compared to standard general-purpose dynamic models such as Brownian and constant-velocity. Fur-
thermore, we present a scenario in which the selection of the most appropriate dynamic model for a
given video is automatized by means of a video classification system.

Our main contributions are (i) the design of a few specialized motion models, which only track well
in scenes having similar geometry and camera motion, (ii) showing that a new video can be mapped to
one of the available motion models automatically, (iii) a new dataset to evaluate 2D-point tracking, and
critically (iv) experimental evidence of improved tracking performance when using the predicted motion

model in unseen videos.

7.1 Related work

In this chapter we adopt the state-space approach to tracking [2]. We consider the evolution of the
target as a dynamic system. All the relevant information about the system is contained in a state vector.

Trackers can be seen as having two main components: a model describing the evolution of the state
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Figure 7.1: (Left) Illustration of the complex combination of causes that produce motion in a video.
(Middle) Approximating the real graphical model, the many causes can be grouped into one more ab-
stract variable. (Right) In practice, we quantize the causes into a discrete variable, and infer it using a
discriminative model.

with time, i.e. the dynamic model, and a model relating the noisy observations to the state, i.e. the
measurement model. We focus on choosing the dynamic model that is most appropriate for each video
clip, though other related tracking research is summarized here as well.

There is a great amount of work on visual tracking proposing different measurement models. They
are often related to visual appearance cues, such as contours [41] or color [89]. The measurement
model can and also be related to apparent motion, i.e. optical flow [53, 97]. Indeed, an appearance
descriptor can be enhanced by integrating simple motion information. For example, Kristan et al. [53]
use a measurement model combining color and optical flow to resolve color-only ambiguities. They
use a mixed dynamic model combining constant velocity for position and Brownian evolution for size.
Cehovin et al. [122] build on that approach with a constellation of local visual parts, which get resampled
spatially based on consistency with an object’s higher-level appearance.

Online adaptation of the measurement model is an ongoing area of study, e.g. [42, 137], the main
issue being the trade-off between adaptability versus drift. A time-weighted appearance model can be
obtained through weighted online learning [144] that avoids drift and emphasizes most recent observa-
tions. When the tracked object is at least partially known, an appearance model can be learned a priori,
or revised online, such as Holzer et al.’s online learning of linear predictors [34] or Grabner et al.’s
online boosting tracker [32]. Tracking-by-detection uses temporal constraints to resolve the space of
hypotheses that emerge when flexible appearance models are used. Kalal et al. [44] have an impressive
example of a real-time system for solitary patches, while Prisacariu and Reid [91] demonstrate excellent
tracking of even articulated shapes using level sets and nonlinear shape manifolds as shape priors for
known object classes. Williams et al. [135] train a regressor which can localize the tracked target even
with significant occlusions.

Most relevant to our supervised learning-based approach, Stenger et al. [113] assess the suitability
of different measurement models for a particular tracking scenario, e.g. face or hand tracking. They
use labeled training data of that scenario to calibrate the different measures of confidence given by
each observation model, turning them into expected tracking error. By doing so, they can compare
and combine the observation models reliably (e.g. in a cascade). Their experiments focus on coupling
different models of appearance, so they replace the dynamic model by simple exhaustive search, and

re-initialize lost tracks as needed. Yoon et al. [147] innovate in this vein. In contrast, we use a fixed
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appearance model to better study the impact of choosing different motion models.

Comparatively little attention has been paid to dynamic models. Dynamic models can guide the
search, tracking through brief occlusions and favoring observations with more likely motion. While it is
very common to simply use Brownian or constant-velocity motion models, with parameters set a priori,
their generality hurts them in many specific situations. Lourenco and Barreto [69] show the importance

of an appropriate motion model in the case of scenes with radial distortion.

If tracking an object with a known nature, a physical model can better dictate the system’s predic-
tions [16]. If ground-truth tracks are available, Blake et al. [5] showed that it is possible to learn the
parameters of a motion model for a given scenario. For simple cases, the initial tracks can come from an

untrained tracker.

Rodriguez et al. [95] use topic models to learn long-term flow patterns from a sequence of a crowded
scene, which improves re-tracking in the same scene. In subsequent work [97], they also cope with
previously unseen sequences. For a given area, they retrieve training patches that appear similar. They
use the learned flow patterns as a prior in the framework of a Kalman filter [45] with a constant-velocity
motion model and a flow-based measurement model. The two components are weighted differently in
light of the learned flow priors. In contrast, we handle motion models which are more complex than

constant velocity, and without the assumptions imposed by the Kalman filter.

Buchanan and Fitzgibbon [9] obtain a robust motion prior from the global motion of 2D points in
a time window, and apply it to re-track them. That motion model is based on rank constraints on the
matrices explaining all the initial 2D tracks, without being restricted to rigid motions. While their model

focused on translations of the individual points, more complex transformations are possible.

Outgrowing the closed-form learning that was possible in [5], North et al. [85] present an expanded
algorithm to learn the parameters of more complex dynamics. Illustrated on the example of juggling,
they model motion as a sequence of motion ‘“classes”, and concurrently learn the parameters of each

motion class and the transition probabilities among classes.

The large variety of both motion models and available appearance models makes it difficult to
choose among them when designing a system. Kwon and Lee [54] adaptively sample from a tracker
space integrating appearance and motion models, selecting the tracker that provides the highest data
likelihood. We approach a similar challenge, but choosing among very specialized motion models, and

leveraging supervised learning.

Kowdle and Chen [52] also train classifiers based on both scene and camera dynamics, and use

them together with shot-boundary detection to segment videos into clips of consistent motion.

From the model-selection point of view, our work is related to Mac Aodha et al.’s [70, 71]. They
train a supervised classifier to predict the per-pixel success of different flow algorithms. Posteriorly to
our work, Matikainen et al. [75] have presented the problem of choosing among very specialist models

as a recommentation problem and successfully applied it to action recognition.
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7.2 Dynamic models

We focus on four types of camera motion (traveling right, traveling left, moving forward, moving back-
ward) and implement a specialized dynamic model for each. They are described below, together with
two standard dynamic models used very frequently for tracking, namely Brownian motion and constant
velocity. We establish six video categories that correspond to the six dynamic models, and aim to cat-
egorize each new video sequence to its most appropriate dynamic model. These coarse categories are
simple enough to be automatically recognized much of the time, yet emerge as specific enough to give
improved performance when tracking with the corresponding dynamic model. To validate our approach,
a dataset (Section 7.3) of challenging videos was collected and augmented with manual annotations of
correct tracks. Section 7.4 describes the video-clip classification process.

In order to compare the performance of the dynamic models on any given video, we choose the task
of tracking 2D points. We adopt the standard Bayesian formulation for tracking and implement it as a
particle filter [2]. Given the position of a 2D point in an initial frame, we want to know the position of
that point in the subsequent frames. For each frame ¢, we estimate the posterior distribution of the state

of the system x; given the observed images I, up to time ¢,

plullig = plfx) [ plxlxis) plsiallii) dxios .1
—— —— —_—————— ————
posterior measurement model dynamic model prior

where the posterior at time (¢ — 1) becomes the prior at time ¢. We now present the models in terms of
equations describing the evolution of the system given the previous state. Implementation details can be

found in Section 7.5.

Brownian (Br): This is the baseline dynamic model. The system’s state vector is x = [z, y, w, h],
where [z, y] is the 2D position and [w, h] are the patch width and height. Position and scale change only

due to Gaussian noise. We keep the aspect ratio fixed, so

[xt+17 yt+1] ~ Norm ([mtv yt]7 diag(agv 0-5)) ) (72)

[wWis1, hip1] = sfwg, he); s~ Norm(0,02). (7.3)

Constant Velocity (CVel): This model is also a standard choice for tracking. We set x =
[, y, w, h, &, gy, s], where [&,y] are the displacements relative to the previous time-step, and s

is the last increase in scale. Scale is assumed to be Brownian, so

[141, Gea] ~ Norm ([, 9], diag(0?, 07)) , (7.4)
[Ter1, Yer1] = [T, ye] + [Beg1, Yol (7.5)
[Wit1, Pip1] = serafwe, by sep1 ~ Norm(st,af). (7.6)

In our experiments we set oy = 0.

Traveling Right / Left (TRight / TLeft): These models are specialized to scenes in which the camera

moves horizontally to the right (or left). The model can be written with the same equations as the
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Figure 7.2: Illustration of the Forward motion model.

constant-velocity model, only o, < o,. The prior on the x displacement in TRight has the opposite

sign to TLeft.

Forward / Backward (Fwd / Bwd): When the camera moves horizontally forward in a scene, some
objects seem to appear at a 2D focus of expansion point [f*, f¥], and move away from it and grow
as they get closer to the camera. The opposite happens when the camera moves backward. Based on
validation data, we designed a dynamic model specialized for such scenes. The model assumes that
the distance between a tracked point and its focus of expansion increases (or decreases) multiplied by
a nearly-constant factor d. The patch size also has a nearly-constant increasing rate s. Both rates are
coupled, i.e. they tend to be both greater or less than one. Fwd and Bwd models have opposite priors on
these rates (d, s > 1 for Fwd and d, s < 1 for Bwd). The state vectoris x = [z, y, w, h, d, s, f*, fY].

We model each 2D point as having its own focus of expansion (which is sampled from the previous
time-step) and is moving from it in a nearly-straight line, passing through the current position. We ac-
count for slight deviations through o ~ Norm(0, o2 ), which represents a tilt angle whose corresponding

rotation matrix is R,,. See Figure 7.2. The state updates are

[f1s lia] ~ Nomm([f7, f1],070), (7.7

diy1 = di + og4e1; €1 ~ Norm(0,1.0), (7.8)

St+1 = 8¢ + 0s€2; €9 ~ Norm(eg,0.1), (7.9)

e, pen]” = iR, |7 [T (7.10)
Yt — fty+1 fty+1

[Wig1, higp1] = sep1[we, hy). (7.11)

Note that Brownian motion is a particular case of these two models, when the rates controlling
scale and distance-to-focus are both one. Besides, there might be ambiguity between the Fwd and Bwd
models: the same rectilinear motion can be explained as approaching a point in the direction of the
motion or as moving away form a point placed in the opposite direction. This means that both models

can similarly explain the observed motion of an object if the changes in scale are subtle. But when the
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changes become more obvious, the wrong combination of focus position and motion direction will loose

track of the object.

7.3 Dataset

While datasets of manually tracked objects exist (e.g. [123]), we needed self-consistent video clips span-
ning a variety of camera motions, and ground-truth 2D tracks for points rather than objects. Our dataset
consists of over 100 challenging real-world videos from YouTube, encompassing various scenarios, il-
luminations, and recording conditions. They typically last 3-90 seconds. Through our annotation tool,
users picked at least 10 interest points per video, among all FAST [98, 99] interest points. They marked
each point’s [z, y] position in at least 10 subsequent frames, sparsely in time if possible. These annota-
tions serve for assessing tracking performance, as described in Section 7.5.3.

We manually obtain inspection-based labels for each video as one way to train a supervised clas-
sifier. We ourselves inspected the videos and judged whether a clip belonged predominantly to one of
the four camera motions or might be better served by the Br or CVel models. For the TRight and TLeft
categories, we also include the flipped video in the dataset. In total there are 12 videos labeled as Br, 11
as CVel, 11 (+ 17 flips) as TRight, 17 (+ 11) as TLeft, 24 as Fwd, and 14 as Bwd. The flipped videos
provide some symmetry with regard to the difficulty of tracking-left and tracking-right videos. Such
videos look similar but their different target labels make classification harder. Some example frames of
the videos in our dataset, excluding the flipped versions, are showed at the end of the chapter.

An alternative way of obtaining supervision is performance-based labeling. In this case, for a given
set of available motion models and parameter settings, a video is labeled with the one that performed
best according to the annotations of ground-truth tracks.

Note that the specialized motion models have been designed previous to obtaining this benchmark
data, and in particular, previous to establishing the inspection-based (and potentially subjective) target

categories. The default parameters in our models were not tuned for this data.

7.4 Video description and classification

We use the local DenseTrack video features presented by Wang et al. [124] for the task of action recogni-
tion (see Section 3.1.2). We quantize these local features using Extremely Randomized Trees [30] as in
[80] and obtain visual-word vocabularies. For each type of descriptor, we train five trees of around 1000
leaves each. For the experiments, rather than computing the vocabulary on our dataset, we trained on
completely different data, namely the action recognition UCF YouTube dataset [67]. We obtain global
video signatures by computing normalized histograms of visual words, one per type of descriptor.

For video classification, we use the standard LIBSVM [13] multiclass approach, consisting of an
all-pairs biclass SVM and majority voting. We pre-compute x? kernels for each type of signature, and
combine different types of signatures through the sum of the kernels. We have assumed a constant
motion model for the whole of each video, but one could easily imagine a sliding-window extension to
deal with longer, more varied videos.

We aim at classifying videos into one of six categories corresponding to the six dynamic models
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Table 7.1: Parameter settings.

Br CVel  TRight TLeft Fwd Bwd

U% 3 1 1 -

oy 3 1 0.1 N

ol 0.03 0.03 0.006 0.005

o - - - 0.01

0’} - - N 1

T - - - /180

a0 4

On {0.1,0.2,0.5, 1, 2, 5} (default = 1)

To - 0 -2 ‘ 2 N

Yo - 0 0 .

S0 - 1 1 1.005 0.995

do - - - 1.01 0.99
fécv fé’ - - - N, S,E, W of frame

in Section 7.2. Such supervised classifiers need a training label for each video, which we obtain by

inspection as explained in Section 7.3.

7.5 Tracking implementation

We implement Eq. 7.1 as a particle filter. Our motion models have higher-dimensional state vectors than
the baselines and therefore might enjoy a larger number of particles, but we fix all models to 50 particles
so that the comparisons are fair in terms of allocated resources.

The state vector x; contains at least the 2D position of the point [z, y;] and the dimensions [wy, hy]
of a patch around it. We evaluate trackers on the basis of only the position estimates that they produce,

but width and height are also needed by the measurement model.

7.5.1 Dynamic models

In this section we detail the state prior for each dynamic model and the parameter values used in the

experiments. We decompose every standard deviation in our models (0., 0y, etc.) into two factors
Oy = Onol, (7.12)

where o, is fixed and o, is a common parameter controlling the global lever of noise in the model. The
standard deviations in the prior distributions are also all controlled by a factor 0. Parameter settings are

summarized in Table 7.1.

Brownian: The initial state vector x; = [z1, y1, wi, hi] is fully defined by the input, so no prior

distribution is used.

Constant Velocity: The four first components of the initial state vector x; = [x1, Y1, w1, h1, £1, Y1, S1]

are fully defined by the input, and the rest sampled from the following prior distribution

[#1, §1] ~ Norm ([, ¢o],ogdiag(o2,07)) (7.13)

51 ~ Norm(sg, (090)?). (7.14)

Traveling Right / Left: The prior distribution for horizontal displacement is

&1 ~ Norm (090,20, (0004)?) - (7.15)
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Forward / Backward: The prior distributions are

[ffs fl] ~Nom([fg, fi],(o00s)?D), (7.16)
di =dg + (and)el; €1 ~ NOI‘I’H(O, 1.0), (7.17)
81 =89 + (0'00'5)62; €g ~~ NOI'IIl(Gl, 01) (718)

The initial position of the focus of expansion (fF, f}) is sampled from five points on the northern,

southern, right, left and central areas of the frame.

7.5.2 The measurement model

The measurement model estimates the likelihood of the observed image given a state. Given the initial
position of the 2D point [x1,y1] in the initial frame I;, we extract a 15 x 15-pixel patch around it and
keep as the reference template. The likelihood of any state in any subsequent frame ¢ is measured by
first extracting a patch from image I, at the prescribed position and scale. Once interpolated, the patch
is scored based on normalized cross-correlation (NCC) to the reference template,

p(I¢|x¢) o< cal(NCC(patch,¢, patch,)). (7.19)

ref>»

The mapping cal(-) aims at being a calibration, transforming raw NCC values to be proportional to
likelihood values. cal(-) is adapted to each tracked point, and is computed in the first frame by measuring
the NCC between the template patch and a number of neighboring patches.

We extract patches within a neighboring zone around the template, and compute both their area
overlap with the template and their NCC. The aim is to penalize NCC values that despite being high
correspond to patches with low area overlap. To do so, we clip all overlap values below 70% to a very
low value of 5%. We assimilate this clipped overlap to likelihood and assume we now have pairs of
likelihoods and NCC. Any regression technique can now be used to map NCC to likelihood. We choose
a very simple technique! that is fully data-driven, parameter-free and forces the mapping to be monotone,

i.e. increasing likelihood for increasing NCC values.

7.5.3 Performance evaluation

We evaluate each tracker’s performance in terms of robustness on our dataset, using the ground-truth
points that have been manually labeled as described in Section 7.3. Let p; = [z;,v:], ¢ € [1,..., N] be
the position of the N ground-truth points in a given video. Let p; be the position of the reference point
p; estimated by the tracker. We compute the percentage of successful track estimates, i.e. the fraction of

point-positions that match the ground-truth locations within a certain level of precision, so

N . ~ ~
1 1 if |x; — 23| <6 and |y; —9;| < 0
robustness = — E No(piypi); Do(piypi) = | | lvi = Bl (7.20)
N i—1 0 otherwise.

This measure of performance is averaged over two runs of tracking. The trackers are not re-

initialized after loss of track, so early loss of track is typically more costly.

IPair-adjacent-violators (PAV) algorithm for isotonic regression. Described in (e.g.) http://stb649.wiwi.hu-

berlin.de/fedc_homepage/xplore/ebooks/html/anr/anrhtmlnode43.html



7.6. Experiments and results 95

To obtain the global performance of the whole dataset, we average the robustness obtained when
using the motion model that was selected for individual videos.
6 is 10 in all our experiments. This is a tolerant threshold so inaccurate versus failed tracking can

be distinguished.

7.6 Experiments and results

This section experimentally validates our approach, showing that we can use machine learning tech-
niques in order to select among dynamic models given low level features. The objective is to signifi-
cantly improve tracking performance. We show the tracking performance of the six dynamic models,
measuring how each performs on its own. We finally report the performance of the video classifica-
tion algorithm and, critically, the results of point trackers using motion models predicted by the video

classifier.

7.6.1 Tracking robustness of individual motion models

The performance of the six motion models is computed over the whole dataset. As shown in Table 7.2,
no individual model performs extraordinarily overall. The hypothesis that ideally, each video should be
processed using the most appropriate motion model is explored through the following tests.

We estimate the idealized performance that is obtained if, among the available motion models, an
oracle chose the one that actually performs best on each video. The ideal performance is already better
when there is a choice between just the two standard motion models (0.493). Enlarging the collec-
tion with our four specialized models raises the ceiling further (0.561). Knowing the rather subjective
inspection-based labels yields a best-case score of 0.526, which is worse than the six-way performance-
based oracle, but a significant improvement nonetheless.

Figure 7.3 gives insight into the behavior of the different motion models. It shows the tracking
robustness obtained by each motion model for different parameter settings. The videos are grouped
according to their inspection-based labels, and the performance has been averaged within groups. One
can see the inclination of most groups toward their corresponding dynamic model. For example, TRight
and TLeft are poor in general, but they largely outperform the rest on their corresponding families of
videos. On the Constant Velocity videos, CVel outperforms other models over a broad range of parameter
settings. Between the two baselines, CVel tends to outperform Br, but there is no clear winner as it
depends of the parameter settings. Br performs better than CVel on videos labeled as Brownian. Fwd
and Bwd perform better than Br in general, except for videos labeled as Brownian, on which they are
nevertheless more robust when the level of noise in the models is high. Fwd vs. Bwd and TRight vs.
TLeft only differ in their respective priors, so it is less surprising that they have similar performance

profiles.

7.6.2 Tracking robustness using classification

The previous experiments showed how predicting the most appropriate motion model would lead to
significant improvement of tracking robustness. We propose that such predictions can be made using a

set of training videos, assigning them to categories that encapsulate shared motion properties, and using
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(a) Brownian videos (b) Constant-Velocity videos

0.7
0.6
0.5
7]
0
004t
@
303}
e
0.2
0.1
O
ol . . .®
0.1 0.2 0.5 1 2 5
noise level parameter
(c) Traveling-Right videos (d) Traveling-Left videos
(e) Forward videos (f) Backward videos

Figure 7.3: Average tracking robustness of each motion model (see legend) on each inspection-labeled
group of videos. Different parameter settings, from low to high values of noise parameters o, oy, 05,
o4, etc. are controlled by a single noise level parameter (default = 1). Considering peak-performance
and area under the curves, groups are partial to their respective motion models. Motion models differ in
their robustness to parameter settings.
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Table 7.2: White background: average tracking robustness of each individual motion model over all
videos (default parameters). Bottom row: percentage of times that motion model (among six) was the
best choice. Dark gray: best-case results if model is selected by either a performance-based oracle, or
our inspection-based labels. Right column: tracking each video using our classifier’s suggested motion
model, using inspection-based training data.

Individual motion models Ideal predictions Our
. best{Br, manual
Br CVel TRight TLeft Fwd Bwd Cvil} bestfall} o method
tracking robustness (-1072) 42.3 43.2 37.9 37.2 44.7 43.7 49.3 56.1 52.6 51.9
= std. dev. random runs 04 04 0.7 05 02 0.1 0.6 0.4 0.2 0.1
% best choice (£2) 21 11 12 20 20 16 32 100 52 50

Table 7.3: Classifiers trained using different descriptors. First row: classification accuracy with respect
to the target inspection-based labels (leave-one-out training). Below: tracking robustness obtained using
the model predicted for each sequence. Note how features other than HOG lead to tracking robustness
that is superior to the general-purpose motion models.

Traj + Target
HOG Traj HOF MBH  HOF+ 1ab§1s
MBH
classification accuracy (%) 30 84 85 83 91 =
tracking robustness (-1072) 42.2 52.2 52.09 50.5 51.9 52.6
= std. dev. random runs 0.6 0.1 0.01 0.4 0.1 0.2

a classifier to predict the category of a new video at test time.

As explained in Section 7.4, we train multiclass SVMs using different video descriptors and the
inspection-based category labels, then evaluate them in a leave-one-out manner so that each video in
the dataset acts as the test video once. This produces a motion category prediction for each video.
Table 7.3 shows the classification performance of the different video descriptors with regard to the target
inspection-based labels. The table also shows the tracking robustness obtained when tracking with the

predicted motion model.

As expected, the HOG descriptor, which encodes only local appearance, is not very useful in this
classification task. Ignoring HOG, the combination of three motion-related descriptors yields the best
classification accuracy. However, this does not translate into the best tracking performance. Not all the
classification mistakes are equally costly in terms of tracking. Classification, by design, is optimized
here for mutually-exclusive classes and a binary 0-1 loss, i.e. the five possible types of error incur the
same penalty. In practice, confusing TRight for TLeft could hurt tracking much more than picking CVel,

for example.

Performance-based categories. We also trained a classifier on performance-based labels. Classification
accuracies are much poorer (43% for six categories), indicating that this is a harder classification task
than the one targeting inspection-based labels. Nevertheless, the tracking performance is comparable
(0.529), which can be explained by the fact that the “best{all}” ideal predictions in Table 7.2 set a higher
ceiling. Note that the human effort to obtain the inspection-based labels is much lower, as no manual

ground-truth point tracks are needed, only visual inspection and some generic knowledge of the models.
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7.6.3 Heuristic model selection

We experimented with a technique to select motion models based on track lengths. A way to assess the
confidence in a track is to look at the output of the measurement model p(I;|x;) at each time-step. One
can threshold this likelihood to decide that track has been lost and establish the track length.

A straightforward way of selecting a dynamic model for a query video is to try them all and choose
the one that provided more likely or longer tracks.

We put in practice this idea by taking 10 random points in the video and tracking them for as long
as possible. Rather than putting a hard and somewhat arbitrary threshold on the likelihood, we compute
for each tracked point the sum of likelihoods obtained at each time step. This amounts to a weighted
track length.

We average this weighted track length over the 10 points, and select a motion model based on
this value. We call it heuristic because there is no guaranty that this confidence is robust to the typical
difficulties of tracking, e.g. appearance changes, repetitive structure, etc.. The obtained results are shown

in Table 7.4.

Table 7.4: Average tracking robustness using a model selection heuristic based on track lengths, com-
pared to our method.

heuristic predicted model
tracking robustness (%) 46.6 51.9
% best choice 33 50

7.6.4 Customized vocabularies

If we use customized vocabularies (i.e. trained on our dataset) rather than pre-computed ones, the clas-
sification accuracy is noticeably higher for each descriptor (up to 92 %), and this has indeed a slight

impact on the tracking performance (0.525). More details in Table 7.5.

Table 7.5: Classification accuracy and tracking robustness of classifiers trained with different descriptors.
The vocabulary of visual words was computed on the target dataset.

Traj + Target
HOG Traj HOF MBH HOF + labgls
MBH
classification accuracy (%) 40 85 88 87 92 —
tracking robustness (-10~2) 429 52.1 52.3 50.8 52.5 52.6

7.7 Application to longer videos

In the previous sections, we have presented a method that treats each query video as a whole: features
are extracted throughout the whole clip, a global signature is computed, and then a single dynamic model
is predicted from it. This setting makes sense if the query video is short or regular enough to reasonably

assume that a single dynamic model explains it well.
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Instead, we can image an online scenario, in which we want to do tracking in longer videos with
potentially varying dynamics. In that case we can still apply our system in a sliding window manner. As
frames are made available, we can extract features, and then compute signatures for short, potentially
overlapping time intervals, by taking only the features from the corresponding frames. A dynamic model
can be predicted for each time interval, and the particle filter can then be updated accordingly. Note that
some latency would be introduced by the feature extractor, the signature computation and classification.
The time consumed by these stages would determine its applicability in real time.

Pushing this idea further, the localized analysis could be done not only in temporal intervals but also
in spatial windows, letting different regions of the video to be explained by different simple dynamic
models. Each particle set corresponding to one of such regions, the appropriate dynamic model could be
readily used in the particle filter.

The main condition to make these extensions feasible is to have at training time some ground-truth
pairs of segmented clips and a their corresponding dynamic model, as we have in our current training

dataset.

7.8 Discussion

We have presented a simple approach to choose among specialized dynamic models. Pre-classifying
each video leads to improved tracking robustness, requiring prior training on separate data and only
weak supervision in the form of inspection-based labels. Brownian motion and constant-velocity mod-
els have comparable tracking robustness in our experiments, while guidance from our inspection- and
performance-based classifiers improves this baseline by over 20%.

The experiments using performance-based supervision highlight that considering the categories as
mutually exclusive may be unnecessarily distracting to the classifier. The 0-1 penalty function used
during training does not account for the fact that, depending on the video, a misclassification error may
have a different impact than another in terms of tracking performance. One way to address this issue
could be to employ regression or structured output spaces to predict the relative success of the motion
models, but our initial experiments were disappointing.

We have used a particle filter and a simple measurement model only as a platform for comparing
dynamic models. Classifying a video according to its dynamic model could be used in combination with
(and should be complimentary to) any tracking approach, and may simplify the challenges associated
with, for example, motion segmentation [19].

Our classification-based dynamic model selection allows us to automatize the choice of an appro-
priate dynamic model in the context of videos with very distinctive motion for which reliable motion
models exist. It could also prove useful to apply our method to local regions or in a sliding-window
fashion, so as to allow for an online application and deal with videos containing several types of motion,
as described in Section 7.7. However, there is a number of limitations that would restrict its use for
general tracking. One is the availability of such specialized dynamic models. Here we do not address
the automatic discovery of target classes or the design of the corresponding adapted models from data.

A first step in this direction would be related to Kitani et al.’s algorithm [49] to cluster videos into cate-
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gories of first-person actions in a fast and unsupervised way. If many dynamic models could be designed
systematically, then videos could be mapped to both motion models and bespoke parameters.

Dynamic model selection based only on “how well the data is explained” (i.e. based on the mea-
surement model) is not reliable in general, as the measurement model is not an absolute measure of
ground truth. This estimation of performance may derive and eventually lead to loose track of the object.
Our approach arises from the observation that the tracker has no way of knowing if its doing fine or not.
Therefore we go for the alternative reasoning “I know how to track because I have seen this situation
before” and try to make link the query video to some other training video (for which we potentially
have ground truth). This approach is basically transferring the key to success from the reliability of the
measurement model to the reliability of the training data. Therefore, another limitation would be the
availability of reliable training data. This approach would fail is there is no reliable mapping between
new videos and training videos (i.e. the feature vector computation) and between training videos and tar-
get classes (i.e. the labels). This drawback is common to any image recognition system relying heavily
in statistical learning.

Despite these limitations, while one can imagine other optimization methods to select among dy-
namic models, we have not found in our scenario one as effective as the proposed classification approach.
We explored a heuristic based on track lengths, which scored half way between the general-purpose base-
line models and our method. Further, classification has the potential to scale well when the number of
motion models increases, making the running of each model in a try-and-see approach more costly than
extracting and classifying a feature vector.

Overall, we have shown that it is possible to map local video features to dynamic models, by-passing
the constraint to blindly rely on an arbitrary measurement model. Despite the limitations in practical use,
there is good reason to expect that further very specialized motion models, that are not good in general

but outstanding under known circumstances, are worth developing.
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Figure 7.4: Example frames of our dataset, excluding flipped clips.
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Chapter 8

Conclusion

Bag-of-words representation of videos had a big success in the first action recognition datasets, which
contained actions with periodic motion (such as walking, running, waving, etc.) to which histograms
respond particularly well. With recent more realistic datasets of actions in the wild, bag of words is still
a reference baseline, but its limitations to capture the spatiotemporal structure of local features, or to
filter by location the relevant information, for example, leave room for more elaborated representations.

Our research has focused on extending the bag of words framework to better suit the problem of
video classification with weak labels, and applying supervision in a more consistent way with regards
the vague information provided by such labels.

We aimed at leveraging weak annotation from early stages in the pipeline. In particular, we adopted
the random forests method as local feature quantizer, and analyzed the influence of its parameters. Tra-
ditional forests provide some supervision, but are not particularly optimized for this quantization task.
Therefore we proposed and evaluated a new supervision scheme that explicitly aims at increasing the
discriminative power of the final bag-of-words video descriptions. Our new forests proved particularly
superior to traditional ones at incorporating contextual information into the local quantization process.
However, we have our reservations about the real impact on performance of this enhanced supervision,
specially considering the extra computation needed.

We also explored a mid-level representation of videos, mainly motivated but the fact that different
regions in the video may be more or less relevant, information which is not conveyed by the weak labels.
Many questions arise that deserve more principled approaches and more exhaustive evaluation, but our
preliminary results show that our mid-level representation of videos do carry useful information that
complements the bag of words and therefore improves classification performance. This agrees with
simultaneous work that has been published after our own research on the subject.

Finally, we have proposed a novel application of video classification to improve tracking. A main
issue about tracking is the reliability of different measurement models, the difficulty to assess “on the
fly” how good tracking is so as to make corrections and avoid deriving. Our contribution consists of
proposing video classification as a strong prior on the appropriate dynamic model. In particular, we
train classifiers to predict the dynamic motion model to use in a video, among a predefined list, so as to

perform what we call classification-based model selection. If appropriate specialized models and training
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videos exist, analyzing local features can give an important clue to perform model selection, not relying
in measurement models but in similarities to previously seen videos of the same category. We show that
this is feasible for a simple scenario with dynamic models corresponding to rough camera motion. This
leaves the door open to incorporating this kind of statistical learning into more sophisticated tracking
schemes.

Additional axes for future research are to explore the possibilities of conditioned quantization by
means of random forests in order to incorporate context or to encode spatiotemporal relationships —
which could be useful also in the 2D image domain, and to continue towards making more efficient and
computationally feasible the computation of mid-level representations of videos that can provide better

classification and understanding through the implicit localization of relevant regions.
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RESUME

Cette thése porte sur la classification de vidéos --étape importante de la compréhension des vidéos-- en se
focalisant sur la reconnaissance d'actions. Nous nous plagons dans le cas ou des modeéles de catégories
sémantiques sont a construire automatiquement a partir de données d’entrainement: des extraits vidéo
associées a des catégories. Aucune information n'est fournie quant a la localisation spatio-temporelle de
I'action dans la vidéo, ni aux éléments indicatifs de la catégorie.

Nous explorons trois fagons d'exploiter ces annotations faibles dans le cadre des représentations de vidéos
dites «sacs a mots»: (1) une supervision cohérente dés les premieres étapes du pipeline, (2) la combinaison
d'attributs hétérogenes en nature et en échelle, et (3) des représentations intermédiaires basées sur des
régions de sorte a identifier des zones pertinentes dans les vidéos. Pour la quantification de descripteurs
locaux, nous proposons une nouvelle fonction objectif d’entrainement de foréts aléatoires, qui vise
explicitement a accroitre la capacité discriminatoire des sacs de mots obtenus. Nos foréts sont plus robustes
dans l'incorporation d’éléments de contexte pendant la quantification, limitant les risques de la combinaison
naive d’attributs. Nous montrons que les représentations intermédiaires apportent des informations
complémentaires améliorant la performance des sacs de mots.

De plus, nous proposons une nouvelle application de la classification de vidéos dans le contexte du pistage.
Nous montrons que des annotations faibles peuvent étre utilisées pour classer des vidéos en types de modele
dynamique. Cette sélection de modéle par classification améliore la qualité du pistage.

Leveraging weak supervision for video understanding

This research deals with the task of video classification, with a particular focus on action recognition, which is
essential for a comprehensive understanding of videos. In the typical scenario, there is a list of semantic
categories to be modeled, and example clips are given together with their associated category label, indicating
which action of interests happens in that clip. No information is given about where or when the action happens,
or why the annotator considered the clip to belong to a sometimes ambiguous category.

Within the framework of the bag-of-words representation of videos, we explore how to leverage such weak
labels from three points of view: (1) the use of coherent supervision from the earliest stages of the pipeline; (2)
the combination of heterogeneous features in nature and scale; and (3) mid-level representations of videos
based on regions, so as to increase the ability to discriminate relevant locations in the video. For the
quantization of local features, we propose a novel form of supervision to train random forests which explicitly
aims at the discriminative power of the resulting bags of words. We show that our forests are better than
traditional ones at incorporating contextual elements during quantization, and draw attention to the risk of
naive combination of features. We also show that midlevel representations carry complementary information
that can improve classification.

Moreover, we propose a novel application of video classification to tracking. We show that weak clip labels can
be used to classify videos into categories of dynamic models. In this way, we improve tracking by performing
classification-based dynamic model selection.
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