N

N

Extraction and Analysis of Knowledge for Automatic
Software Repair

Matias Martinez

» To cite this version:

Matias Martinez. Extraction and Analysis of Knowledge for Automatic Software Repair. Software
Engineering [cs.SE]. Université Lille 1, 2014. English. NNT: . tel-01078911

HAL Id: tel-01078911
https://hal.science/tel-01078911
Submitted on 30 Oct 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/tel-01078911
https://hal.archives-ouvertes.fr

: o Q
\\ Université 7y
 Lille1 O e
’ Sc'en(:eseer Technologies Lud i
Département de formation doctorale en informatique Ecole doctorale SPI Lille

UFR IEEA

Extraction and Analysis of Knowledge
for Automatic Software Repair

THESE

présentée et soutenue publiquement le 10/10/2014

pour I'obtention du

Doctorat de I’Université Lille 1

(spécialité informatique)
par

Matias Martinez

Composition du jury

Rapporteurs : Yves Ledru, Université de Grenoble 1 - France
Tom Mens, Université de Mons - Belgique

Examinateurs : Philippe Preux, Université Lille 8 - France
Diego Garbervetsky, University of Buenos Aires - Argentina

Directeurs : Laurence Duchien, Université Lille 1- France
Martin Monperrus, Université Lille 1 - France

Laboratoire d’Informatique Fondamentale de Lille — UMR Lille 1/CNRS 8022 — Inria Lille - Nord Europe

4
Y i Laboratoire Vd
d'Informatique Vo 4 a
Fondamentale
de Lille

INVENTEURS DU MONDE NUMERIQUE

Mis en page avec la classe thloria.

Abstract

Bug fixing is a frequent activity in the software life cycle. The activity aims at removing
the gap between the expected behavior of a program and what it actually does. This gap encom-
passes different anomalies such as the failure of a program facing to a given scenario. Bug
fixing is a task historically done by software developers. However, in the recent years, sev-
eral automatic software repair approaches have emerged to automatically synthesize bug
fixes.

One of the main goals of automatic repair approaches is to reduce the cost of bug fixing
compared to human fixing activity. Human fixing is a time consuming task for developers
due to it involves doing manually task such as reproducing the bug, studying the symp-
toms, searching for a candidate repair and finally validating it. Software companies aim at
decreasing the overall time of bug fixing and, by consequence, decreasing the money spent
in the maintenance activity. For this purpose, researches and companies have proposed tech-
niques and tools that help developers in particular activities such as debugging. Conversely,
automatic software repair approaches emerge to provide a solution from the beginning to the
end. That means, those approaches take as input a failing program and return a fixed version
of that program.

Unfortunately, bug fixing could be even hard and expensive for automatic program re-
pair approaches. For example, to repair a given bug, a repair technique could spend infinite
time to find a fix among a large number of candidate fixes. Additionally, even the cost of fix-
ing could be low, the cost of having a bug in production could be much higher. For instance,
a bug could set a program off-line, or produce an economic damage due to its incorrect op-
erational behavior. For that, finding faster a fix implies decreasing the time to release a fix
and to deploy it in production. The main motivation of this thesis is to decrease the time to
find a fix.

The proposed automatic repair approaches are evaluated by measuring the efficacy of
repairing a set of defects. That means, given a defect dataset, the evaluation measures how
many of them an approach is able to repair. For instance, in an evaluation of GenProg, a
state-of-the-art repair approach guided by genetic programming, this approach repaired 55
out of 105 defects. A question that motivates this thesis is What happens with the remaining
(unrepairable) bugs from those repair approach evaluation experiments? In particular, we wonder
whether they are unrepairable due to: a) the repair search space, i.e., all possible solutions
for the fix, is too large and the evaluated approach needs to spend long time to find one
solution; or b) the approach is not able to fix these bugs i.e., it does not target repairing these
kinds of bugs. For example, an approach that repairs defects in if conditions is not capable, in
theory, of repairing memory leak defects.

In this thesis, we aim at finding answers to those questions. First, we concentrate on the
study of repair search spaces. We aim at adding repair approach strategies to optimize the
search of solutions in the repair search space. We present a strategy to reduce the time to
find a fix. The strategy consumes information extracted from repairs done by developers. To
obtain this information, we first extract source code repairs done by developers from open-

source projects. Then, we analyze the composition of those repairs, in particular, the changes
done by each. Finally, we build change models that describe the kinds of changes and their
abundance. The strategy uses these models to decrease the time to navigate the repair search
space. It focuses on the most frequent kinds to repairs in order to find faster a solution.

We present a second strategy to reduce the size of repair search spaces. In particular, we
focus on reducing the search space of one kind of automatic repair approach: redundancy-
based repair approach. This kind of approach works under the assumption that the ingredients
of a fix, i.e. the source code that conforms the fix, was already written before somewhere in
the program. We call it temporal redundant code. We analyze the location of redundant code in
the application. This study allows us to prove that it is possible to reduce the repair search
space of redundancy-based approaches without losing repair strength. Both strategies are
able to increase the repair efficacy of approaches, that means, to find solutions not previously
found.

Then, we focus on the evaluation of automatic repair approaches. We aim at introducing
methodologies and evaluation procedures to have meaningful repair approach evaluations.
First, we define a methodology to define defect datasets that minimize the possibility of bi-
ased results. The way a dataset is built impacts on the result of an approach evaluation. We
present a dataset that includes a particular kind of defect: if conditional defects. Then, we
aim at measuring the repairability of this kind of defect by evaluating three state-of-the-art
automatic software repair approaches. We carry out a meaningful evaluation of software
repair approaches to determine whether: a) they are able to repair defects from the evalua-
tion dataset; and b) which is better. We set up an experimental protocol where the number
of free variables and potential biases are minimized. In summary, the experiments done in
this thesis allow us to determine that it is possible to reduce the time of repair bugs and it
is possible to carry out meaningful evaluations for measuring the real strength of automatic
software repair approaches.

Contents

1 Introduction

2 State of the Art

[2.2 Studying Software Evolution| 0000000000
2.2.1 Studying How Source Code Evolves|

2.2.2 Empirical Studies of Commits|

2.2.3 Defining Infrastructures for Software Evolution Analysis|
24 StudyofBugsand Fixes|.
[2.3 Automatic Software Repair| o 0 0L

[2.3.1 'Test Suite-based Repair Approaches|

[2.3.2 Optimizing Repair Runtime|.

[2.3.3 Bug Benchmarks and Datasets for Evaluation of Repair Approaches| .

24 Summary|.

3 Learning from Human Repairs by Mining Source Code Repositories

[3.1 A Novel Way to Describe Versioning Transactions using Change Models| . . .

3.1.1 Abstract Syntax Tree Differencing|
3.1.2 Definition of Change Models|
3.1.3 Empirical Evaluation|. 0 0000

iii

AN =N

O

10
11
13
15
15
17
18
19
19
20
20

Contents

[3.2 Techniques to Filter Bug Fix Transactions| 31
3.2.1 Slicing Based on the Commit Message| 31
3.2.2 Slicing Based on the Change Size in Terms of Number of AST Changes| 32
3.2.3 Do Small Versioning Transactions Fix Bugs?| 32

[3.3 Learning Repair Models from Bug Fix Transactions| 33
3.3.1 Methodology| o 34
3.3.2 Empirical Results|o o 000000 35
B33 Discussion|. o Lo 35

[3.4 Defining a Repair Model of Bug Fix Patterns| 38
3.4.1 Defining Bug Fix Patterns| 39
3.4.2 A Novel Representation of Bug Fix Patterns based on AST changes,|. . 39
3.4.3 Defining the Importance of Bug Fix Patterns| 43
3.44 An Novel Algorithm to Identify Instances of Commit Patterns from |

Versioning Iransactions| 44

3.4.5 Evaluating the Genericity of the Pattern Specification Mechanism| . . . 48

3.4.6 Evaluating the Accuracy of AST-based Pattern Instance Identifier) . . . 54

3.4.7 Learning the Abundance of Bug Fix Patterns| 56

48 Di 0 59

3.5 Recapitulation| 59

4 Two Strategies to Optimize Search-based Software Repair] 61

4.1 Adding Probabilities to the Search Space to Optimize the Space Navigation| . 62
#.1.1 Decomposing Repair Search Space| 62
4.1.2 A Strategy to Optimize Shaping Space Navigation|. 63

1.3 Evaluation|. 65
@14 Summary| 73

.2 Reducing Synthesis Search Space for Software Redundancy-based Repair| . . 74
4.2.1 Software Redundancy-based Repair Approaches|. 75
#.2.2 Detining Search Spaces for Redundancy-based Repair Approaches| . . 76
4.2.3 A Strategy to Reduce the Size of the Redundancy-based Synthesis Search |

Space| 77

¥4.2.4 Definition of Evaluation Proceduref. 78
425 Empirical Results| o 000000 81
426 Summary| 84

43 Conclusionl. 84

iv

5 A Unified Repair Framework for Unbiased Evaluation of Repair Approaches 85
[0.1 Detining Defect Datasets for Evaluating Repair Approaches 86
p.1.1 Defininga DefectClass| 86
5.12 Biasin Evaluation Datasets| 86
.1.3 A Methodology to Define Detect Datasets|. 87
p.1.4 Methodology Implementation| 88
p.1.5 Dataset of If Condition fixing Defects| 90
0.2 A Repair Framework for Fixing If Condition Defects| 92
.2.1 Repair Approaches that Target If Condition Detects|. 92
.2.2 A Repair Framework to Replicate Repair Approaches| 94
.23 Summary| 98
0.3 Empirical Evaluation Results of Repair Approaches Fixing If Condition Defects| 98
b.3.1 Measures|. 98
©.3.2 FEvaluationGoals|o oo oo 100
©.3.3 Evaluation Protocoll. o 100
b.34 EvaluationResults| 101
p.3.5 Summary| 104
b4 Conclusion|. 105
6 Conclusion and Perspectives 107
[6.1 Summary| 107
6.2 Future Directions|. 108
[6.2.1 Study of Software Evolution| 108
[6.2.2 Repair Approaches Design| 109
[6.2.3 Datasets and Repair Approaches Evaluations| 110

A Mining Software Repair Models for Reasoning on the Search Space of Automated
Program Fixing 111
[A.1 Mathematical Formula for Computing the Median Number of Repair of MC- |
| Shaper| 111
[A2 Empiricalresults| oo 112
[A.3 Bug Fix Survey Summary| oo o oo 120
B Measuring Software Redundancy 133
BI Dafasellot 133
[B.2 Temporal Redundant commits| 133

Contents

Bibliography 135

vi

Chapter

Introduction

1.1 Context

The world is day by day more computerized. Software is everywhere: PC, laptops, tables,
TV, video game stations, smart-phones and gadgets such as watches and glasses. Unfortu-
nately, having new software means also having more and more new defects.

Bug fixing is an activity for removing defects in software programs. This activity aims
at correcting the behavior of a program. It removes the gap between the expected behavior of
a program and what it actually does. This gap encompasses different anomalies such as the
failure of a program facing a given scenario. Examples of bug fix are: the addition of an
if precondition to check whether a variable is not null before accessing it; the addition of a
missing method invocation; or a change in an arithmetic operator.

When a bug is found, developers or application users report it in an issue tracking sys-
tem. For instance, Apache Software Foundation!, which provides support for more than 100
open-source software projects, uses the tracking system Jira>. Nowadays, companies such
as Google or Facebook are worried® # of having bugs in their products. They do not want to
loose clients or money. They have monetary rewards for the discovery of vulnerabilities to
individuals, external to the company, who found legitimate issues. These companies aim at
searching repairs for their bugs as soon as possible.

Bug fixing is a task historically done by software developers. Consequently, the increase
of new bugs produces an increase in the demand of developers for fixing those bugs. For the
industry, bug fixing has an economical impact: companies need to pay developers for fixing
bugs. For open source projects, managed by not-profit organizations such as Apache or
Mozilla, defects in their products also have a negative impact: their developers, volunteers
that offer their time for free, have to spend much time fixing bugs. For instance, for Apache
common Math library, a well-known library for math in Java environment, 28 days were the
average time to repair each of the 52 bugs reported in 2013°.

'http:/ /www.apache.org/

*https:/ /www.atlassian.com/software /jira/

*https:/ /www.facebook.com/whitehat/

*https:/ /www.google.fr/about/appsecurity / reward-program/

5Value obtained from the dashboard provided by the Apache issue tracker https://issues.apache.
org/

https://issues.apache.org/
https://issues.apache.org/

Chapter 1. Introduction

To decrease the time of bug fixing (and the related economic cost), researchers and com-
panies have proposed techniques and tools that help developers in particular development
and maintenance activities such as debugging, or fault localizations. In spite of those contri-
butions, developers continue spending effort on bug fixing.

As solution, in the recent years automatic software repair approaches have emerged to
automatically synthesize bug fixes. One of their main goals is to decrease the time and
economical cost of bug fixing. Furthermore, these approaches aim at providing a solution
from the beginning to the end. That means, they take as input a failing program and return
a fixed version of that program. Approaches such as GenProg [1]], Patchika [2], ClearView
[3], AutoFix-E [4] and PAR [5], have been proposed by the software engineering research
community to fix real bugs.

Those automatic software repair approaches are able to automatically synthesize bug
fixes. For that, they need two entities. One is the bug oracle: an entity that indicates the pres-
ence of a bug. The other is the program correctness oracle: an entity that indicates whether a
program fulfills the software specification or not. The role of these oracles can be carried out
by humans or by automatic entities such as a program. The former oracle corresponds to
humans (user, developers, etc.) who decide whether a program works correctly or not. For
instance, Carzaniga et al. [6] use an oracle to repair JavaScript bugs. After a repair is synthe-
sized and integrated to a program, the user of the program under repair decides whether a
synthesized repair fixes a bug (previously notified by the same user) or not. An automatic
oracle has the structure of a function f(P) = c, where P is the program under repair, and
c indicates whether the P contains a bug or not. This oracle has the advantage that repair
approaches can use them in an automatically way. However, it is unusual and expensive
to have encoded the complete specification of a program in one oracle. As solution, many
approaches such as GenProg or Patchika rely on test suites as proxy to the ideal program
specification. A program that passes all test cases from a test suite means it is correct accord-
ing to its specification. Otherwise, if at least one test case fails, it means the program has a
bug.

Repair approaches are evaluated to measure their strengths i.e., their repair capability.
These evaluations usually contain two main phases. The first one is the setup of the eval-
uation process. The goal of this phase is to define a dataset of defects to be repaired by
the approaches under evaluation. Defects can be collected from diverse sources: previous
evaluations, defect repositories such as SIR [7], or from software projects (commercial or
open-source). The defects can be real or artificially created defects. The second phase is the
execution of the repair approach evaluation. A quantitative evaluation commonly consists
on the measure of its repair efficacy over a dataset of defects. The repair efficacy measures the
number of defects successfully fixed over the total number of defects from the evaluation
dataset.

1.2 Problem

Repair approach evaluations from literature show that a fraction of evaluated defects remain
unrepairable. An unrepairable defect means that the evaluated approach is not capable to
find a bug fix. For example, GenProg is able to repair 55 out of 105 defects proposed in its
evaluation [8]. Hence, it means that there remain 50 unrepairable defects in this dataset.

2

1.2. Problem

In this thesis, we wonder the reasons for having unrepairable defects in evaluations.
Is it a problem of the approach?

or

Is it a problem of the repair approach evaluation design?

We suspect both cases are possible. First, let us consider the case that an evaluated ap-
proach is not able to find a repair. A search space is the set of all candidate solutions, i.e.,
candidate repairs, that the repair approach is able to synthesize. Using the bug and correct-
ness oracles, the approach determines whether a candidate repair is a solution (it repairs the
bug) or not. A reason for not finding a solution could be the size of the search space that is
too large and takes a long time to evaluate each candidate solution. Our intuition is there are
sources of information that can be used by the approaches for improving the repairability of
bugs. That means, these sources help approaches to find faster a solution in the repair space.

As previous research shows [9], bug fixing is a repetitive task: most of the bugs can be fixed
using a finite set of bug fix patterns i.e., common fixes. Few repair approaches from the lit-
erature use knowledge from previous human bug fixes. The state-of-the art approach PAR
[5] is one that partially uses it. It synthesizes fixes by instantiating 10 bug fix patterns (recur-
ring similar patches) derived from open-source bug fixes. However, there is more valuable
knowledge from the software repositories to increase the repairability strength of repair ap-
proaches. For instance, despite that the work of Pan et al. [9] presents 27 bug fix patterns,
only a small portion of this knowledge is used in the automatic software repair field.

Second, we suspect that evaluation procedure is not well designed and, by consequence,
the evaluation does not produce accurate results. Let us present an illustrative example of a
not well-defined evaluation. Consider that we want to evaluate one language translator, that
translates words from English to Spanish. The evaluation corpus is a text written half in En-
glish and half in Chinese. The translated text (the translator output) ideally would have half
of the words in Spanish, half in Chinese. A well-defined evaluation should only consider
words that the evaluated translator targets, in this example, English words. Then, the evalu-
ation can calculate measures such as efficacy (number of words corrected translated over all
words evaluated from the target language). Contrary, a not well-designed evaluation, such
as that one from our example, includes words from a language not targeted by the translator
under evaluation. The words of the not-targeted language (in the example, Chinese words)
introduce noise in the evaluation. The evaluation result does not show the real efficacy of the
translator. This example could sound a bit naive. However, in a repair approach evaluation,
a not well-defined evaluation process could produce the same effect.

Now, let us focus on evaluations of repair approaches. We claim that repair approaches
always target defect classes. A defect class is a family of defects that have something in com-
mon such as the root cause or the kind of fix applied to repair the defect. In this context,
an approach targeting a defect class means it is able to repair defects of that class. For ex-
ample, the repair approach Semfix [10] is able to repair bugs in if conditions but not missing
method invocations. Coming back to the automatic translation example, approaches are the
translators, and the defect classes are the languages that a translator targets (e.g., English
to Spanish). Having this information, one is able to characterize evaluation datasets. We
have two kinds of defects. On the one hand, the repairable defects, which can be repaired by
the evaluated repair approach. The repair approach targets the defect classes of repairable
defects. On the other hand, the unrepairable defects are the defects that cannot be repaired, by
definition, by the evaluated repair approach. That is, the repair approach does not target the

3

Chapter 1. Introduction

defect classes of the unrepairable defects and, by consequence, its repair search space does
not contain any solution. In the previous example, English words are equivalent to repairable
defects and Chinese words to unrepairable defects. The result of the evaluation would not be
the same if a dataset contains more repairable bugs than unrepairable, and vice-versa.

To summarize, the problem we found in the evaluations from the literature is that they
present a portion of defects used in the evaluation that remains unrepairable. Moreover,
those evaluations do not always include the inclusion criteria of the defect dataset used.
As consequence, it is not possible to have a sound measure of an approach’s performance.
In particular, it is not possible to determine whether a defect could not be repaired due to
the intrinsic characteristics of the repair approach or whether the evaluation process is not
appropriate.

1.3 Thesis Contribution

Our main objective is to improve the performance of repair approaches. That means, to
increase the number of solutions for repairable defects from the evaluation dataset. To measure
the performance of a repair approach, we also need to conduct meaningful repair approach
evaluations. That involves characterizing the defect dataset used in the repair approach
evaluations. These two objectives are guided by the following hypotheses:

a) The repairability of defects can be improved by considering knowledge from previous
repairs done by human developers.
b) Evaluation results are meaningful if evaluation uses well-defined datasets.

In this thesis we validate both hypotheses. For the first one, we search for strategies
for discovering repairable defects that are not previously found by an existing approach.
These strategies rely on information from previous repairs and already written source code.
We aim at adding those strategies to existing repair approaches to optimize the search of
solutions in the repair search space.

We first present a strategy that uses information from previous repairs to optimize the
search of solutions in the repair search space. The optimization reduces the time to find a fix.
The strategy focuses on the most frequent repairs in order to find a solution faster. For that,
it consumes information extracted from repairs done by developers. We mine version con-
trol systems (VCS) of open-source projects to extract those repairs. Version control systems
are used by developers to track changes done during the software life-cycle. Then, we an-
alyze the composition of those extracted repairs. Using this information, we build a model
that captures the source code changes used in bug fixing activity and their abundance. The
strategy uses these models to decrease the time to navigate the repair search space. A repair
approach that implements this strategy aims at synthesizing fixes composed by the most
frequent bug fix changes. This thesis is the first to study the incorporation of this knowledge
in the context of automatic software repair.

Then, we present a novel approach to identify repairs from version control systems. We
present a method to specify patterns of source code changes, and an approach to identify in-
stances of those patterns in a software history. The combination of both allows us to extract
knowledge from software history. We use our approaches to specify bug fix patterns from
the Pan et al.’s bug fix patterns catalog [9], and then we measure the abundance of each of

4

1.3. Thesis Contribution

them. This knowledge could be applied to improve the repairability of bug fix pattern-based
repair approaches such as PAR [5].

We present a second strategy to optimize the search of solutions in the repair search space.
It reduces the size of repair search spaces without significantly decreasing their number of
solutions. Reducing the size has a direct impact on the repair time. We focus on reducing
the search space of one kind of automatic repair approach: redundancy-based repair approach.
These approaches work under the assumption that the ingredients of a fix, i.e., the source
code that conforms the fix, were already written before somewhere in the program. We
analyze the location of redundant code in the software. This study allows us to prove that it
is possible to reduce the repair search space of redundancy-based approaches without losing
repair strength.

Our second hypothesis states that when the evaluation procedure is not well designed,
the evaluation result could not reflect the real strength of the evaluated approach. That
means, for instance, the repair efficacy measure could be high due to a biased definition
of the evaluation dataset. To validate our second hypothesis, we study the dimensions of
evaluation for repair approaches.

First, we focus on the setup step of an approach evaluation. Our challenge is to define a
methodology to build unbiased evaluation datasets. For that, it is necessary to characterize
how the dataset is built and what it contains. As we have shown in the automatic translation
example, a biased evaluation dataset impacts on the result of an evaluation. Suppose one
wants to evaluate an approach that is able to repair defects of class A, but not defects of class
B. If one considers a dataset including a majority of A defects, the efficacy of the approach
can possibly be high. Contrary, if one includes a majority of B defects, the efficacy would
be low, by construction. The reason of these opposite results is the presence of bias in the
evaluation dataset (in this case the presence of unrepairable defects). This bias could be
unintentional, especially when the dataset is informally built without well-defined criteria.
As consequence, measures such as repair efficacy depend on the conjunction of the following
factors: a) the definition of the dataset (the defect classes included in the dataset and their
abundance); and b) the capacity of the approach to repair a given defect class (e.g., the illegal
access to an uninitialized variable).

Those factors have a great impact on the conclusiveness for the evaluation of a repair
approach. Unfortunately, evaluations of repair approaches from the literature do not include
the criteria used to define evaluation datasets. Thus, the evaluation result could be biased.
For example, in the evaluation of PAR [5], the authors define a dataset of 119 defects taken
from the issue tracking system of six open source projects. The inclusion criterion of those
defects is not well-defined. The authors state that “we randomly selected 15 to 29 bugs
per project”. Moreover, it is missing the notion of defect classes. The evaluation returns
that PAR fixes more defects that GenProg. We think that using a strong inclusion criterion,
the result could eventually be different and would better characterize the strength of repair
approaches. Our methodology aims at obtaining this result.

Finally, we focus on the execution step of a repair evaluation. Our motivation is to ex-
ecute evaluations of repair approaches that produce reliable and conclusive results. This
experiment allows us to concretely instantiate our evaluation methodology in order to val-
idate it. In particular we aim at studying the repairability of a particular defect class: if
condition defects. These defects are common: previous works [9, 11] have shown that they
are the most repaired elements in source code. According to the results of Pan et al. [9] over

5

Chapter 1. Introduction

six open source projects, between 5% and 18.6% of bug fix commits are modifications done
in if conditions. Through our experiment we also want to know: a) whether if conditions are
automatically repairable; b) whether one of the major repair approaches of the literature is
better than the others on this defect class. We consider three repair techniques from the most
authoritative literature: GenProg [12], PAR [5] and the mutation-based approach defined by
Debroy and Wong [13]. To carry out this experiment, we define an experimental protocol
where the potential experimental biases are minimized. We propose a unified repair frame-
work to reproduce the three repair approaches. The framework factorizes the variabilities
of the three approaches under consideration and allows us to implement the particular be-
havior of each of them. For instance, the framework uses, for the three implementations, the
same mechanism to detect the suspicious buggy locations and the same correctness oracle
mechanism to validate candidate fixes.

1.4 Outline

The remained of this thesis is structured as follows. Chapter [2| provides an overview of
previous work that focuses on the analysis of software evolution and automatic software
repair approaches. Chapter [provides an analysis of human repairs mined from source code
repositories. Chapter] presents two strategies to optimize search-based software repair.
Chapter [5| presents a framework for evaluation of repair approaches. Chapter [f| presents the
summary of the thesis and future works.

1.5 Publications

Published:

M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients already exist? an
empirical inquiry into the redundancy assumptions of program repair approaches,” in Com-
panion Proceedings of the 36th International Conference on Software Engineering, ICSE Compan-
ion 2014, (New York, NY, USA), pp. 492-495, ACM, 2014.

M. Martinez and M. Monperrus, “Mining software repair models for reasoning on the
search space of automated program fixing,” Empirical Software Engineering, pp. 1-30, 2013.

M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting instances of code
change patterns with ast analysis,” in Software Maintenance (ICSM), 2013 29th IEEE Interna-
tional Conference on, pp. 388-391, Sept 2013.

To appear:

J.R Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus “Fine-grained and Accu-
rate Source Code Differencing”. To appear in Proceedings of the 2014 29th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE "14.

Technical Report:
M. Monperrus and M. Martinez, “CVS-Vintage: A Dataset of 14 CVS Repositories of Java
Software,” tech. rep http://hal.archives-ouvertes.fr/hal-00769121.

6

http://hal.archives-ouvertes.fr/hal-00769121

1.5. Publications

To be submitted:

M. Martinez, M. Monperrus, “Automatically Fixing Buggy If Conditions: an Empirical
Evaluation of Three Software Repair Techniques”,2014

M. Martinez, L. Duchien, and M. Monperrus, “Accurate extraction of bug fix pattern
instances using abstract syntax tree analysis,” 2014.

Chapter 1. Introduction

Chapter

State of the Art

In this thesis we aim at extracting knowledge from repairs done by developers. We want to
use this knowledge to improve the performance of automatic software repair approaches.
In this chapter we present the prior work relevant to our thesis. First, in Section we
introduce the definitions of relevant concepts used along this thesis. Then, in Section we
analyze the related works on software evolution and bug fixing activity. Finally, in Section
2.3|we focus on presenting proposed automatic software repairs and their evaluations.

2.1 Definitions

In this section we present the list of widely used terms along this thesis. This list is presented
in alphabetic order.

An automatic software repair approach is a software that receives a program with one
defect and automatically produces a repair that solves this defect.
A biased dataset is a collection of defects defined through a biased sample.

A biased sample is a subset of a population (i.e., defects) that is not representative of
—either intentionally or unintentionally—an entire population.

A bug oracle is an abstract entity that decides whether a program has a bug or not.
A bug fix commit is a commit containing changes to fix buggy code.

A bug fix pattern is a set of source code changes that frequently appear together for fixing
abug.

A change action represents a kind of source code modification. A change action is part
of a change model.

A change model represents a feature space of software changes. For instance, the change
model of standard Unix diff is composed of two changes: line addition and line deletion. For
instance, in a probabilistic change model each change action has associated a value with a
probability that this action occurs.

A change pattern is a set of source code changes that frequently appear together.

9

Chapter 2. State of the Art

A change pattern identifier is a software entity that classifies, if it is possible, a concrete
change as an instance of a change pattern.

A correctness oracle is an abstract entity that decides whether a program is correct ac-
cording to its specification or it is invalid.

A defect class is a family of defects that have something in common such as the root
cause or the kind of fix.

A defect dataset is a set of defects used for experiments and evaluations. For instance, in
the automatic software repair domain, defect datasets are used to measure the performance
of automatic software repair approaches.

An experimental bias is a process where the scientists performing the research influence
the results, in order to portray a certain outcome®. Bias in research occurs when systematic
errors are introduced into sampling or testing by selecting or encouraging one outcome or
answer over others”.

A hunk is a set of co-localized changes in a source file. In lines of code, a hunk is
composed of a consecutive sequence of added, removed and modified lines.

A hunk pair is a pair of related hunks, one hunk being a section of code at version n and
the other being the corresponding code in the fixed version n + 1. Hunks are paired through
the process of differencing that computes them.

A repair action is a change action that often occurs for repairing software, i.e., often used
for fixing bugs.

A repair model is a set of repair actions, i.e., a set of source code changes often used for
fixing bugs.

A repair search space is a space of all candidate solutions (i.e., fixes) that an automatic
software repair is able to generate. A candidate solution must be validated to verify whether
it is a valid fix or not.

A repair synthesis is the process for generating source code of a repair.

A revision is a set of source code changes done over one file and committed in the version
control system. The revision produces a new version of the modified file.

A versioning transaction or commit is an atomic operation done by developers to reflect
their working changes in a version control system. These changes produce a new version of
the modified files.

A version control system (VCS) is a system that records the history of software changes
during the development and maintenance of a software system.

2.2 Studying Software Evolution

In this thesis we aim at studying how bugs are fixed along the software life-cycle. Bug fixing
activity is part of the software evolution. Our goal is to extract valuable information from
bug fixing activity to apply in automatic software repair domain.

Shttps:/ /explorable.com/research-bias
"http:/ /www.merriam-webster.com/dictionary /bias

10

2.2. Studying Software Evolution

In this Section, we present works that focus on how software evolves through time. First,
in subsection[2.2.T|we focus on those works that study the evolution at the source code level.
That means, how source code changes through the time. We present works that compute the
changes at the source code level. These works are used to compute, for instance, the changes
between two consecutive versions of one file. We also analyze previous work that measure
the abundance of change types, and others that detect change patterns i.e., set of source code
changes that frequently appear together.

In this thesis we are interested in detecting the portion of software changes related to the
bug fixing activity. Version control systems (VCS) are used by developers to track changes
done during the software life-cycle. Developers introduce changes in the software through
commits. In section we present works that analyze commits from version control sys-
tems. Previous works have presented infrastructure to facilitate the study of the software
evolution, i.e., the software history. In sectionwe present those state-of-the-art works.

Finally, once we are able to identify the portion of the software evolution related to bug
fixing activity, we aim at knowing how this activity is done. For instance, what are the source
code changes done to fix the most frequent bugs. In section[2.2.4we present previous works
that focus on bugs and fixes.

2.2.1 Studying How Source Code Evolves

In this section we present publications that analyze the software evolution at the source code
level. First, in subsection we present works that detect the software changes at the
mentioned level. Then, in subsection we present works that focus on measuring the
abundance of those software changes. In subsection we present works that identify
change patterns i.e., set of source code changes that frequently appear together. Subsection
present works that define methods to specify patterns. Finally, in subsection
we identify the previous works about repetitiveness of source code.

2.2.1.1 Analyzing Source Code Changes

We are interested in studying how the source code changes along the software history. For
instance, we want to calculate the source code changes introduced by a new version of a file.
Our goal is to study the kinds and abundance of source code changes related to bug fixing
activity.

Previous works focus on the computation of source code changes. The changes are ex-
pressed at a given granularity. For instance, at line granularity level (e.g., 1 line added) or
at the abstract syntax level (AST) node granularity level (e.g., 1 AST node updated). In the
context of software evolution, these approaches are used for comparing a version of a file
with its predecessor.

First approaches calculate textual changes. They are usually based on the longest com-
mon subsequence algorithm. A well-know algorithm is Myers’ differencing algorithm [14].
They compare two files and highlight elements (e.g., lines, chars) added and removed be-
tween them. These algorithms are not able to identify whether the change affects source code
or documentation, or to identify the source code entity (e.g., method invocation, assignment)
affected by the change.

To overcome these limitations, researches have proposed approaches based on, among
other solutions, UML [15,[16]], token [17] and AST [18],[19} 120, 21]]. Let us focus on one of them,

11

Chapter 2. State of the Art

which we extensively use in this thesis. ChangeDistiller [20] is a fine-grain AST differencing
tool for Java. It expresses fine granularity source code changes using a taxonomy of 41 source
change types [22]], such as “statement insertion” of “if conditional change”. ChangeDistiller
handles changes that are specific to object-oriented elements such as “field addition”. More-
over, Fluri et al. have published an open-source stable and reusable implementation of their
algorithm for analyzing AST changes of Java code.

2.2.1.2 Measuring Frequency of Change Types

Once we are able to compute changes between two files (for example, two consecutive ver-
sions of a same file) at different level of granularity, we aim at measuring the abundance of
each change type to know the importance of each.

Previous works studied the abundance of change types in the version control system
of applications. For instance, Raghavan et al. [18] analyze patches obtained from a source
code repository and then identify higher-level program changes. Their work shows the six
most common types of changes for the Apache web server and the GCC compiler, such as
“Altering existing function bodies”, “Altered existing if conditions” and “Altered existing
function calls”. At a finer grain level, Fluri et al. [20] presented some frequency numbers
of their change types [22] in order to validate the accuracy and the runtime performance of
their distilling algorithm.

Nguyen et al. [23] present an empirical study of repetitiveness of code changes. They
measure the repetitiveness of fine grained source code changes in general changes (consid-
ering all revisions form software repository) and bug fix changes. Their experiment return
that “method calls”, and “expressions” have the most number of changes, while changes to
“constructor calls”, and “do statements” are less.

2.2.1.3 Discovering Change Patterns

In this thesis we consider change pattern as a set of change types (such as addition of method
invocation, update assignment) that appear frequently together. In this thesis we aim at
studying change patterns related to bug fixing activity: the bug fix patterns. That is, we want
to know how source code changes are frequently combined to fix a particular defect class.

Studies have focused on the extraction of change patterns from the history of the soft-
ware. For instance, Fluri et al. [24] use hierarchical clustering of source code changes (from
the taxonomy defined by ChangeDistiller) to discover source code change patterns. Livshits
and Zimmermann [25] presented an approach to detect error patterns of application-specific
coding rules. The proposed approach extracts automatically likely error patterns by mining
software revision histories and checking them dynamically.

The mentioned publications, as many others in the empirical software engineering com-
munity, mine valuable information from version control systems (VCS) such as CVS, SVN
or GIT. Version control systems are used by developers to track changes done during the
software life-cycle. However, much code evolution data is not stored those systems [26} 27,
28| 29]. These systems store changes that commits introduce. However, the changes that
developers do between two commits are not registed in those systems. This involves that
they register a fraction of the software evolution data. As solution, approaches such as Cod-
ingTracker [26] or SpyWare [29] have been proposed to record fine-grained and diverse data

12

2.2. Studying Software Evolution

during code development. The authors of CodingTracker found that 37% of code changes
are shadowed by other changes, and are not stored in VCS.

2.2.1.4 Pattern Formalization

In this thesis we aim at discovering instances of change patterns. For example, we want
to collect the commits that introduce source code changes related to a particular change
pattern. This would allow us to measure the importance of change patterns in the software
history. For that, it is necessary to define a mechanism to formalize change patterns, and
then another mechanism for searching instances from that formalization.

Previous works have focused on defining specifications of patterns. For example, Mens
and Tourwé [30] presented a declarative framework for specifying design patterns, their con-
straints, and their high-level evolution transformations. Moreover, their framework allows
defining refactoring transformations that can be applied to a given design pattern instance.
The authors used their approach to specify design pattern from Gamma et al. [31] catalog
such as the Abstract Factory design pattern. Beside this work, to our knowledge, no previous
publications have focused on specifying a formalization of change patterns, i.e., a structure to
define source code change pattern.

2.2.1.5 Study of Repetitiveness of Source Code

Previous work has focused on the study of code that, in the moment it was written, already
existed somewhere in the application. We call this concept software redundancy.

Some works on code clone detection study software repetitiveness at line-granularity [32]
and at token-level granularity [33]. For instance, Kim et al. [34] considered code clones via
a temporal perspective, linking clones together across versions; Li et al. [35] presented a
token-based approach to detect copy-paste bugs.

Other works have focus on the naturalness of software. Gabel and Su [36] studied the
uniqueness of source code. Their syntactic redundancy calculates the degree to which portions
of software applications are redundant. Hindle et al. [37] studied the repetitiveness and
predictability of code. They present a statistical language model to capture the high-level
statistical regularity that exist in code, represented by n-gram level, probabilistic chains of
tokens. Both consider software redundancy from a spatial viewpoint.

2.2.1.6 Conclusion

The main lesson of this subsection is there is no previous work that defines a method to
specify change patterns in a finer-grained manner. We aim at defining an approach to specify
patterns. Moreover, we want to mine instances of these formalized patterns from the history
of the software.

2.2.2 Empirical Studies of Commits

Developers introduce source code changes in version control systems through commits. Com-
mits introduce modifications to existing software artifacts (source code files, configuration
files, etc.), introduce new artifacts, and remove existing ones. Additionally, each commit
contains meta-data such as the commit date, the name of the developer that does the com-
mit, and a message log (a text where a developer can explain the purpose of the commit).

13

Chapter 2. State of the Art

In this thesis we aim at studying commits that introduce bug fixes to know how developers
repair bugs. Several works have studied the evolution of software at the level of version
control systems commits.

In subsection[2.2.2.T|we present the works that focus on commits meta-data and metrics.
Then, in subsection and subsection we present works that focus on commits
that introduce fix and bugs, respectively.

2221 Studying Commit Meta-data and Metrics

Some works focus on commit meta-data (e.g. authorship, commit text) or size metrics (num-
ber of changer files, number of hunks, etc.). For example, Alali et al. [38] discussed the rela-
tions between different size metrics for commits (# of files, LOC and # of hunks), along the
same line as Hattori and Lanza [39] who also consider the relationship between commit key-
words and engineering activities. German [40] asked different research questions on what
he calls “modification requests” (small improvements or bug fix), in particular with respect
to authorship and change coupling (files that are often changed together). On the opposite,
Hindle et al. [41} 42] focus on large commits, to determine whether they reflect specific en-
gineering activities such as license modifications. Other works analyze the relation between
commit meta-data and the evolution of the source code. For instance, Fluri et al. [43, [44]
look at the relation between source code and comment changes. They found that when code
and comments co-evolve, both are changed in the same revision: 97% of comment changes
are done in the same revision as the associated source code change.

2.2.2.2 Searching for Bug Fixes Commits

Previous researches have focused on the identification from the software history of: a) changes
(instances) that fix bugs and b) changes that introduce bugs. For both cases, techniques pro-
pose to identify commits that introduce those changes. One approach presented by Mockus
and Votta [45] identifies keywords in the commit message. In their work, they classify a
change as “corrective” if the message log of the commit that introduces the change contains
one of the following keywords: “fix”, “bug”, “error”. Other techniques search links to ex-
ternal system in the commit message. The idea is to relate commits with reports such as a
bug report from issue tracking systems. The linkage technique is a way to combine two dif-
ferent sources of information. For example, techniques such that one presented by Fischer et
al. [46] discover links between commits and issue reports, explicitly written in the commit
message.

Other works have empirical studied these linking techniques. For instance, Bird et al.
[47] found these heuristics could produce bias results due to developers can omit bug ref-
erence (the link) in the commit message. The authors found that 54% of fixed bugs in the
bug dataset are not linked to commit message (missing links). Moreover, Antoniol et al.
[48] studied linked reports from issue tracker and obtain that less than half of them related
to corrective maintenance (bug fixing), while the rest were related to activities such as en-
hancements or refactoring. Some approaches have emerged to discover missing links. Wu
et al. [49] presented an approach called ReLink to automatically recover links. ReLink learns
criteria of features from explicit links to recover missing links. Another approach [50] uses
machine learning approach for text categorization of fixing-issue commits on CVS, while

14

2.2. Studying Software Evolution

[51] used a probabilistic approach to effectively recover traceability links between bug fix
commits and corresponding bug reports.

2.2.2.3 Searching for Bug-introducing Commits

Other works have focused on the study of commits that introduce bugs [52, 53]. A fix-
inducing change is a change that later gets undone by a fix. As Kim et al. [53] state, the
extraction of bug-introducing changes is challenging, in contrast to bug-fixes that are rela-
tively easy to obtain. In addition to the use to linkage technique to detect a fix commit, these
approaches define algorithms of find the commit that introduces the bug. Those algorithms
are based on line diff analysis [52] or annotation graphs [53, 54]. Bug-introducing changes
also were studied by Purushothaman and Perry [55]. They studied small commits (in terms
of number of lines of code) of proprietary software at Lucent Technology. They showed
the impact of small commits with respect to introducing new bugs, and whether they are
oriented toward corrective, perfective or adaptive maintenance. Filtering bug fix commits
allows us to study the features of kind of commits. For instance, the common source code
changes they introduce.

2.2.24 Conclusion

In this section we learned that previous works define methods to collect the portion of the
software evolution related to bug fixing activity. Some of them rely on mining commit’s
message logs and other on commit’s features such as commit size. In this thesis we aim at
studying the relation between bug fixing commits and commit size in terms of AST changes
affected by the commit.

2.2.3 Defining Infrastructures for Software Evolution Analysis

As Mens et al. state [56] one of the challenge of software evolution is to find out how different
kinds of data (bug reports, change requests, versioning repositories, execution traces, etc.)
can be integrated, and how support this integration can be provided. Previous works de-
fined infrastructures to facilitating software evolution research such as Evolizer [57], Kenyon
[58], Hipikat [59], RHDB [46], SoftChange [60]. These infrastructures group information
from different systems used in development such as version control systems, issue trackers
or mailing lists. They also provide mechanisms to querying the data. For instance, Fischer
[46] defined an infrastructure built from basic building blocks (SQL database and scripts) for
retrieval and filtering information from a) the version control system and b) the bug report
database. Likewise, SoftChange [60] retrieves, summarizes, and validates data from mailing
lists, CVS logs, and defect tracking systems based on Bugzilla.

224 Study of Bugs and Fixes

Once we detect commits from version control systems that introduce fixes, we aim at study-
ing what these fixes look like. Previous works characterize bugs and fixes. In this section we
first focus on works that present bugs and fixes classification (subsection [2.2.4.1), and then
works that analyze the abundance of bug and fixes (subsection [2.2.4.2).

15

Chapter 2. State of the Art

2.2.4.1 Taxonomies

In this thesis we are interested in how to classify bugs. To repair defects and propose bug
fixes, we need first to know: a) What bugs look like. In particular, the different types of bugs,
the places they affect, their manifestation; b) the changes that developers do to fix bugs.

In one hand, previous works from the literature classify software defects. The prelim-
inary works manually define a classification from, for example, bug reports or software
documentation. For instance, Knuth defines a schema to classify the errors of TEX from
his error log [61]. Chillarege et al. [62] present an Orthogonal Defect Classification (ODC).
It corresponds to a categorization of defects into classes called Defect Types. This catego-
rization has eight defect types such as Assignment (error in initialization of control blocks or
data structure), Interface (errors in interacting with other components) or Documentation er-
ror. Moreover, Ostrand and Weyuker [63] present a scheme for categorizing software errors.
They characterized an error in distinct areas, including “major category”, “type”, presence,
and use of data. For example, “major category” identifies what type of code was changed
to fix the error. They develop this classification schema from change reports filled out by
developers of an industry software product. Then, they present the number and percentage
of errors for each area.

In the other hand, previous works concentrate on the analysis of bug fixes. For instance,
Pan et al. [9] manually identified 27 bug fix patterns on Java software from previous bug
fixes done by developers. A bug fix pattern is set of common source code changes applied
to fix a particular kind of bug. The authors have manually analyzed bug fix commits from
open source commits to define the pattern catalog. Moreover, Nath et al. [64] have extended
this bug fix pattern catalog adding three alternative patterns discovered from this manual
inspection. There are approaches that automatically learn project-specific bug fix patterns
from software versioning history [65, 66].

2.2.4.2 Measuring Abundance of Defect and Fixes

In this thesis, we aim to knowing what source code changes are frequently used in bug fixing
activity. Our intuition is this information would allow us to improve the performance of
automatic software repair approaches. This improvement can be done by first concentrating
on synthesizing repairs frequently done by developers.

Previous work focuses on the measurement of the abundance of each element defined in
those bug or fix taxonomies. This measure is done by analyzing software artifacts such as
reports [63], or source code [67, 9,64} 168]. For instance, Pan et al. [9] present a tool to extract
instances of the 27 bug fix patterns of their catalog from SVN version control repositories.
Contrary, Nath et al. [64] replicate the experiment by manually measuring the abundance of
27 Pan et al.’s pattern plus the pattern they introduced. Both works also shows that there is
a portion of bug fix commits in the software history (detected by the method explained in
Section[2.2.2.2) that do not contain any instance of the defined bug fix patterns. That means,
it could exist more unknown bug fix patterns.

2.2.4.3 Conclusion

The main lessons that this subsection gave us are twofold. First, there are bug fix pattern
not already discovered or formalized. Second, the replication of experiments that measure

16

2.3. Automatic Software Repair

the abundance of pattern instance is difficult. The main reasons are: few tools are defined
and available, and these tools are not flexible to accept new patterns. In this thesis we aim
at measuring in a flexible way: independent of the pattern to search. We want to define an
approach that is able to measure the abundance of change pattern already defined and new
one as well.

2.3 Automatic Software Repair

Automatic software repair approaches have emerged to provide a patch (at source code level
or binary level) that fixes a software defect. Researchers have modeled the synthesis of
patches as a search problem [69,70]. Search-based software engineering seeks to reformulate
software engineering problems as search-based problems [70]. It aims at applying meta-
heuristic search-based techniques such as genetic algorithms [71]. A search space contains
all candidate solutions. In the automatic software repair context, a solution is a patch.

One of the main problems in automatic software repair is to have an oracle that indicates
whether a program is correct according to its specification (i.e., it does not contain bugs).
Automatic software repair approaches need those oracles to determine whether a program
contains a defect, and for a buggy program, to determine whether a candidate solution, cho-
sen from the search space, is a solution (i.e., fixes the bug) or not. Unfortunately, a program
specification is not always explicit or accessible in an automatic way. As consequence, a
challenge of software repair approaches is also to define those oracles. Usually, requirement
engineers and/or developers specify the behavior program in documents written in natural
language and using modeling language such as UML [72]. However, this natural represen-
tation is a barrier for automatic repair approaches. Paradigms such as design-by-contract
programming (DBC) [73] include formal specification in the software. Bertrand Meyer de-
veloped DBC as part of his Eiffel programming language. For instance, it uses preconditions
and postconditions to document (or programmatically assert) the change in state caused by
a piece of a program. Repair approaches such as AutoFix-E [74, 4] leverage on this kind
of specification to repair bug fixes. However, this contract does not supply the correctness
oracle.

Researchers on automatic software repair domain have relied on test suite as a proxy of
software specification [75, [12]. A test suite is a collection of test cases used to test a soft-
ware program to verify whether it fulfills some specified behaviors. A test suite presents as
advantage that it can be executed in an automatic way.

In this thesis we focus on a particular kind of repair approaches: Test suite-based repair
approaches. These approaches rely on test suite as bug and correctness oracles. If at least
one test case fails means the program under evaluation has a bug and it does not fulfill its
specification. Moreover, these approaches verify the whether a candidate patch is valid or
not. A synthesis patch must pass the original failing test cases, and must keep the other test
cases passing.

We aim at improving the repairability of test suite-based repair approaches. Our goal is
to define strategies that allow existing repair approaches to repair defects that were hard to
repair. We also want to carry out meaningful evaluation of repair approaches. The evalua-
tion of repair approach takes defect from a defect datasets and tries to repair each of them
with the approach under evaluation.

In subsection we present test suite-based repair approaches from the literature.

17

Chapter 2. State of the Art

Then, in subsection we present strategies to optimize the repair time. Finally, in sub-
section we present works that define defect datasets.

2.3.1 Test Suite-based Repair Approaches

Previous works have defined test suite-based repair approaches based on search-based op-
timization techniques. Arcuri presents JAFF [69], an approach that uses search-based tech-
niques (hill climbing and genetic programming) to repair software. Weimer et al. [12] in-
troduce GenProg, a genetic programming approach to C program repair. The approach
defines genetic operations that use existing code from other parts of the program to syn-
thesize patches. That means, GenProg never introduces new code into the application. As
difference with the mentioned work presented by Arcuri, GenProg was validated using real
defects from large programs. In the last evaluation of GenProg [8], the approach fixed 55
out of 105 bugs. Another approach leverages evolutionary computing techniques to gener-
ate program patches is PAR [5]. It generates program patches automatically from a set of
10 manually written fix templates. PAR synthesizes fixes by instantiating those bug fix tem-
plates and, for some of those, PAR does it taking by existing code from the same program.
The evaluation of PAR returns that the approach fixed 27 out of 119 bugs from 6 open source
projects.

Qi et al. [76] present RSRepair, an approach that tries to repair faulty programs with the
same operators as GenProg. RSRepair uses random search to guide the process of repair
synthesis rather than genetic programming. Their evaluation shows that RSRepair, in most
cases, outperforms GenProg in terms of both repair effectiveness (requiring fewer patch tri-
als) and efficiency (requiring fewer test case executions).

Dallmeier et al. [77] present a repair approach named Patchika that a) infers an object
usage model from executions, b) determines differences between passing and failing runs,
and c) generates fixes that alter the failing run to match the behavior from the passing run.
Patchika automatically builds finite-state behavioral models for a set of passing and failing
test cases of a Java class. Then, it can insert new transitions or delete existing transitions to
change the behavior of the failing model. Patchika was able to fix 3 out of 18 bugs from an
open source project. Wei et al. [74] present AutoFix-E, an automated repair tool which works
with software contracts. In particular, it repairs Eiffel classes, which are equipped with con-
tracts (preconditions, postconditions, intermediate assertions, and class invariants). Autofix
shares the same foundation with Pachika such as the use of behavior models, state abstrac-
tion, and creating fixes from transitions. AutoFix-E leverages user-provided contracts inte-
grating them with dynamically inferred information. In its evaluation, AutoFix-E repaired
16 out of 42 bugs from two Eiffel libraries.

Inspired from the field of mutation testing, Debroy et al. [13] present an approach to re-
pair bugs using mutations. For a given location, it applies mutations, producing mutants of
the program. A mutant is classified as “fixed” if it passes the test suite of the program. Their
repair actions are composed of mutations of arithmetic, relational, logical, and assignment
operators.

Using semantic analysis, SemFix [10] approach explicitly focuses on if conditional de-
fects. It generates repairs by combining symbolic execution, constraint solving, and program
synthesis.

18

2.3. Automatic Software Repair

2.3.2 Optimizing Repair Runtime

Previous works propose extensions or modifications of existing approaches to optimize the
search of the solution. These optimizations aim at repairing faster and, by consequence, to
increase the repairability strength of an approach

AE [78] is an extension of GenProg that aims at decreasing both repair time and repair
cost compared with GenProg by analyzing equivalent programs and applying test case exe-
cution reduction. The approach applies the same source code operators as GenProg, but the
solution search is not guided by genetic programming.

Some automatic software repair approaches such as GenProg use evolutionary comput-
ing to generate candidate patches. One drawback is the time cost. Qi et al. [79,80] show
that weak recompilation can reduce the time cost of repairing. Weak recompilation is only
compiling and installing the changed source code, without dealing with unchanged source
code. This approach can avoid the time cost of unchanged source code in multiple patches.
The time cost (in seconds) shows that weak recompilation can reduce at least 4/5 time cost
in large programs (namely, Php and Wireshark). Note that no accuracy is compared since
the technique of generating patches is the same.

Another optimization in program repair is done through fault-recorded testing prioriti-
zation [81]]. TrpAutoRepair is an extension of GenProg that aims at reducing the number of
test case executions in the repair process. The evaluation shows that the approach can sig-
nificantly improve the repair efficacy by reducing efficiently the test case executions when
searching a valid patch in the repair process.

Those optimization strategies focus on specific stages of the repair process such as fault
localization [82} 83], repair synthesis [79] or candidate repair validation [81]. However, no
approach focuses on the strategy of selecting the kind of repair to apply in a buggy location.
In this thesis we present one strategy using information from previous fixes to select. The
strategy aims at selecting first the most common repair shapes to decrease the repair runtime.

2.3.3 Bug Benchmarks and Datasets for Evaluation of Repair Approaches

In this section we present related works that define defect datasets and benchmarks. There
is a large number of previous works that focus on static fault localization [84, [85]. Fault-
Bench [86] provides a benchmark for evaluation and comparison of techniques that priori-
tize and classify alerts generated by static analysis tools.

Benchmarks such as BugBench [87] and BegBunch [88] are defined for evaluating bug
detection tools. Both benchmarks contain bugs in C/C++ code and more than one type of
bugs, for example, memory leak or buffer overflow bugs. Lu et al. [87] present a guidelines
on the criteria for selecting representative bug benchmark.

In this thesis we focus on evaluation of test-suite based program repair approaches. These
approaches use a test suite to validate the correctness of a program and, by consequence,
to know whether a program has a defect or not. So that, to evaluate these approaches, the
program under repair must include a test suite that validates its correctness and exposes the
defect (at least one failing test case).

Benchmarks from the literature include defects from programs with test suites. For in-
stance, Do et al. [7] present SIR, an artifact repository that includes versions of Java, C,
C++ and C# programs with defects. SIR includes real and seeded defects. In our opinion,
seeded bugs produce a bias in the result of approaches evaluation. A dataset with seeded

19

Chapter 2. State of the Art

bugs is biased by the defect classes seeded, that were artificially synthesized. These de-
fect classes usually are a subset of all defect classes existing in software. Additionally, the
distribution of each kind of defect seeded could be different from its distribution in real pro-
grams. Dallmeier et al. [89] present iBugs, a technique to automatically extract bug localiza-
tion benchmarks from a project’s history. Additionally, they present and publish a publicly
available repository containing 369 bugs. They recognize bugs and fixes from commits by
analyzing the commit’s meta-data i.e., commit message.

2.3.4 Conclusion

The main lesson we learned from this subsection is that neither existing repair approaches
nor optimization techniques consider information from previous repairs. Moreover, we
learned that nobody has defined datasets for evaluation test-based repair approaches, with
a well-defined built criteria such as the defect classes it contains. In this thesis we aim at
including information in repair strategies to decrease the repair time. Moreover, we want
to define meaningful defect datasets with explicit built definition for evaluating test-based
repair approaches.

2.4 Summary

In this chapter we studied state of the art related from domains such as test suite-based
program repair approaches and analysis of software evolution. Moreover, we have detect
their limitations and opportunities to extend and improve them.

First, we observe that the majority of state of the art approaches presented in this section
does not profit from any information of previous repairs done by developers. The exception
is PAR repair approach, which partially uses 10 bug fix templates manually mined from
one open-source project. However, the number of patterns that PAR uses is much smaller
than the number of all bug fix patterns defined in the literature. For instance, Pan et al. [9]
present 27 bug fix patterns. Moreover, no repair approach considers the abundance of each
bug fix pattern. Pan et al.’s work measures the importance of them and shows that there
are patterns that are more important (i.e., frequent) than others. Our intuition is that all this
information could be useful to increase the repairability of defects. There are repairs that are
more frequent than others. We aim at defining a repair strategy that focuses first on frequent
repair done by developers.

Secondly, we focus on the limitations of the previous works that analyze the software
evolution. In particular, we study those that discover change patterns, and those that mea-
sure the abundance of change patterns in the history of projects. The first limitation is they
do not define a formalization of change patterns. For instance, Pan et al. [9] describe each
pattern with a short paragraph and an example. As consequence, it can exist ambiguity in
the pattern definition. To our knowledge, nobody has defined an approach for formaliz-
ing change patterns. In this thesis we aim at defining a method to specify change pattern.
Then, using this formalization we want to define an approach that collects instances of those
formalized patterns from the software history.

Another limitation relies on tools that measure the importance of change patterns (i.e.,
tool that collects instances of a pattern) such as SEP from Pan et al. [9]. These tools encode
the pattern definitions inside their code. That means, the tool has source code that describes

20

2.4. Summary

each change pattern and source code to collect instances in, for instance, version control sys-
tems. So, with new proposed patterns such as those from Nath et al. [64] the tool cannot
be extended to collect instances of them without modify the source code. To our knowl-
edge, nobody has presented an approach to collect change pattern instances described from
pattern formalization.

Third, the evaluation of automatic program repair approaches sometimes includes an
experiment to compare the performance of a novel approach under evaluation against other
approaches from the literature. Unfortunately, these evaluations are not always well-defined.
For instance, the defect dataset used in an evaluation could not have explicit inclusion cri-
teria, and this could produce a risk of biased result. We aim at defining a method to define
datasets for test suite-based repair approaches evaluation with a minimized amount of bias
in their definition.

In the remaining of this thesis we aim at contributing to remove the mentioned limita-
tions presented in related work.

21

Chapter 2. State of the Art

22

Chapter

Learning from Human Repairs by
Mining Source Code Repositories

Software developers deal with bugs day to day during the development and maintenance
phases. To repair a bug, a developer usually follows these steps. First, she tries to repro-
duce the error. Then, she finds the root cause, the bug. She creates a candidate repair and
verifies whether the candidate repair fixes the bug. Finally, the developer makes visible the
repair i.e., the patch is integrated into the program. For instance, the repair is committed
to a version control system, which registers every change done over the program. Concur-
rently, automatic software repair approaches usually follow similar steps. They first localize
candidate bug location, then synthesize candidate repairs, and finally validate the repairs.

In our work, we wonder whether information from human repairs could be used in
automatic repair approaches. For instance, repair approaches that consider the knowledge
about what are the source code changes done to fix bug and how often these changes occur.
Our hypothesis is the mentioned information can be used in automatic repair approaches to
increase the repairability of defects.

In this chapter we aim at extracting knowledge from bug fixes done by developers. We
have two main motivations. The first one is to know what kinds of source code changes
developers apply to repair bugs. For example, a repair could be to change a value to a
variable, another could be to add a missing method invocation. We aim at defining models
that include the source code changes used by developers for bug fixing. We study repairs
done by developers at two different granularity levels. First, we study the repairs analyzing
the changes at the AST level. For example, we study the percentage of repairs that include, at
least, one change in assignment statements. Then, we study repairs at the pattern level. That
means, we study the structure of the repair, i.e., how changes are frequently combined to fix
a bug.

Our second motivation is to know which changes are more frequent when developers
fix bugs. Our challenge is to measure the abundance of each kind of bug fix. In this way,
automatic software repair approaches could concentrate on those repairs that are frequently
done by developers.

In this chapter we study version control systems. These systems store source code changes
made by developers during the software lifecycle. Developers commit their changes to ver-
sion control systems through versioning transactions (also known as commits). A versioning

23

Q= WODN -

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

transaction introduces one or more changes done in the program under development or
maintenance. We aim at describing those versioning transactions. For instance, we want
to know what are the more frequent changes they introduce. Then, we aim at focusing on
those transactions that introduce bug fixes. The experiments of this chapter allows us to
better understand how software evolves and to characterize the bug fixing activity.

The chapter continues as follows. Section [3.1| presents two change models to describe
versioning transaction. Section 3.2 presents techniques to filter those versioning transactions
that contain bug fixes. Section presents two probabilistic repair models from bug fix
transactions. Section 3.4 presents a repair model formed by bug fix patterns.

The content of this chapter is published in the proceedings of one conference [90] and in
one journal [11].

3.1 A Novel Way to Describe Versioning Transactions using Change
Models

Software versioning repositories (managed by version control systems such as CVS, SVN or
Git) store the source code changes made by developers during the software lifecycle. Version
control systems (VCS) enable developers to query versioning transactions based on revision
number, authorship, etc. For a given transaction, VCS can produce a difference (“dift”) view
that is a line-based difference view of source code. For instance, let us consider the diff
presented in listing

Listing 3.1: Example of line-based difference

while (i < MAX_VALUE) {
op.createPanel (i);

— i=i+1;
+ 1i=i1+2;

}
The difference shows one line replaced by another one: line 4 per line 3. We observe that this
representation does not provide much information about the change. It describes the change
at a coarser granularity: a line. We only know that a statement (a line) have been updated,
i.e. one statement was removed (line 3), and another was inserted in the same place (line 4).
Even for this trivial source code example, it is hard to realize that it is the change about. One
has to read the removed statement, then the added, and finally compare them.

However, one could also observe the changes at the abstract syntax tree (AST) level,
rather than at the line level. In this case, the AST diff is an update of an assignment statement
within a while loop. The AST diff gives us two main advantages. First, it works at a finer
granularity. It focuses only in those source code elements (AST nodes) that have changed.
Then, it identifies the affected elements by the change. For instance, the change could affect
an assignment or a loop condition. At this level, humans are able to easier understand the
changes.

Our goal in this section is study the content of versioning transactions to know how de-
velopers evolve a given program. For that, we need a mechanism to describe versioning
transactions. Previous empirical studies on versioning transactions [41} 40, 39, 38, [55] focus
on metadata (e.g., authorship, commit text) or size metrics (number of changed files, num-
ber of hunks, etc.). However, we aim at describing versioning transactions in terms of con-

24

3.1. A Novel Way to Describe Versioning Transactions using Change Models

tents: what kind of source code change they contain: addition of method calls; modification
of conditional statements; etc. We choose an AST level granularity to describe versioning
transactions. We believe this level of granularity is robust enough for human (developers) to
understand how software evolves. There is previous work on the evolution of source code
(e.g. [25,129,91]). However, to our knowledge, they are all at a coarser granularity compared
to what we use in this work.

Formally, the research question of this section is: what are versioning transactions made of
at the abstract syntax tree level?

To answer our research question, we follow the following methodology. First, we choose
an AST differencing algorithm from the literature. Then, we constitute a dataset of software
repositories to run the AST differencing algorithm on a large number of transactions. Finally,
we compute descriptive statistics on those AST-based differences.

Note that other terms exist for referring to versioning transactions: “commits”, “change-
sets”, “revisions”. Those terms reflect the competition between versioning tools (e.g. Git
uses “changeset” while SVN “revision”) and the difference between technical documenta-
tion and academic publications which often use “transaction”. In this section, we equate
those terms and generally use the term “transaction”, as previous research does.

The rest of the section is organized as follows. In section [3.1.1we present an AST differ-
encing algorithms from the literature. Then, in section we present a model to describe
source code changes. Finally, in section we present a study that describes versioning
transactions of open-source projects using the defined change model.

3.1.1 Abstract Syntax Tree Differencing

There are different propositions of AST differencing algorithms in the literature. Important
ones include Raghavan et al.’s Dex [18], Neamtiu et al’s AST matcher [19] and Fluri et al’s
ChangeDistiller [20]. For our empirical study on the contents of versioning transactions, we
have selected the latter.

ChangeDistiller [20] is a fine-grain AST differencing tool for Java. We list the most im-
portant reason, in our opinion, for selecting this algorithm. First, it expresses fine granular-
ity source code changes using a taxonomy of 41 source changes types, such as “statement
insertion” of “if conditional change”. ChangeDistiller handles changes that are specific to
object-oriented elements such as “field addition”, “method declaration”. The smallest ele-
ment used are statements. Then, Fluri and colleagues have published an open-source stable
and reusable implementation of their algorithm for analyzing AST changes of Java code. We
use this implementation to develop our experiments.

ChangeDistiller produces a set of “source code changes” for each pair of Java files from
versioning transactions. For a source code change, the main output of ChangeDistiller is
a “change type” (from the taxonomy aforementioned). However, for our analysis, we also
consider two other pieces of information. We describe the output of ChangeDistiller as fol-
lows. Each AST source code change is represented as a 2-value tuple: scc = (ct, et) where ct
is one of the 41 change types, et (for entity type) refers to the source code entity related to the
change (for instance, a statement update may change a method call or an assignment). For
example, the listing [3.1) would be represented as one single AST change that is a statement
update (ct) of an assignment (et). Since ChangeDistiller is an AST differencer, formatting
transactions (such as changing the indentation) produce no AST-level change at all.

25

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.1.2 Definition of Change Models

All versioning transactions can be expressed within a “change model”. We define a change
model as a set of “change actions”. For instance, the change model of standard Unix diff is
composed of two change actions: line addition and line deletion. A change model represents
a kind of feature space, and observations in that space can be valued. For instance, a standard
Unix diff produces two integer values: the number of added lines and the number of deleted
lines. ChangeDistiller enables us to define the following change models.

CT (Change Type) is composed of 41 features, the 41 change types of ChangeDistiller. For
instance, one of these features is “Statement Insertion” (we may use the shortened name
“Stmt_Insert”). CTET (Change Type Entity Type) is made of all valid combinations of the
Cartesian product between change types and entity types. CTET is a refinement of CT. Each
change action of CT is mapped to [1...n] change actions of CTET. Hence the labels of the
change actions of CTET always contain the label of CT. There are 104 entity types and 41
change types but many combinations are impossible by construction, as a result CTET con-
tains 173 features. For instance, since there is one entity type representing assignments, one
feature of CTET is “statement insertion of an assignment”.

3.1.2.1 Presenting Probabilistic Change Models

A probabilistic change model is a change model where each “change action” has associated a
value with the probability that this action occurs.

We define two measures for a change action i: «; is the absolute number of change action
i in a dataset; x; is the probability of observing a change action 7 as given by its frequency
over all changes (x; = «;/) ;). For instance, let us consider feature space C'I" and the
change action “statement insertion” (StmtIns). If there is a.symirns = 12 source code changes
related to statement insertion among 100, the probability of observing a statement insertion
is XStmtins = 12%.

3.1.2.1.1 Computing Measures from Versioning Transactions Measures o and x implic-
itly depend on the set of transactions that are computed. We call transaction bag to a set of
transaction that contains a defined inclusion criterion. For example, one can define a trans-
action bag of all transactions done by one developer or another that includes all transactions
that add one method invocation. In this section, we consider that all transactions from the
version control system are included in the transaction bug. Further, in Section (3.3l we define
another kind of transaction bug: bug fix transaction bugs.

In the rest of this section, we express versioning transactions within CT and CTET change
models. There is no better change model per se: they describe versioning transactions at
different granularity. In Section we show that, depending on the perspective, both
change models have pros and cons.

3.1.3 Empirical Evaluation

In this section, we aim at responding our research question: What are versioning transactions
made of at the abstract syntax tree level?

To respond this question, we present a study about the content of versioning transactions
of 14 repositories of Java software. We first describe versioning transactions using change

26

3.1. A Novel Way to Describe Versioning Transactions using Change Models

Change Action a; Prob. x;
Statement insert 345,548 289
Statement delete 276,643 23.1
Statement update 177,063 14.8
Statement parent change 69,425 5.8
Statement ordering change 56,953 4.8
Additional functionality 49,192 4.1
Condition expression change 42,702 3.6
Additional object state 29,328 2.5
Removed functionality 26,172 2.2
Alternative part insert 20,227 1.7
Total 1,196,385

Table 3.1: The Top-10 AST-level Changes of Change Model CT Represented Among 62.179
Versioning Transactions.

models CT and CTET. Then, we calculate the probability distribution of the change actions
for those models.

3.1.3.1 Dataset

CVS-Vintage is a dataset of 14 repositories from open-source Java software [92]. The in-
clusion criterion of CVS-Vintage is that the repository mostly contains Java code and has
been used in previous published academic work on mining software repositories and soft-
ware evolution. This dataset covers different domains: desktop applications, server appli-
cations, libraries such as logging, compilation, etc. It includes the repositories of the follow-
ing projects: ArgoUML, Columba, JBoss, JHotdraw, Log4j, org.eclipse.ui.workbench, Struts,
Carol, Dnsjava, Jedit, Junit, org.eclipse.jdt.core, Scarab and Tomcat. In all, the dataset con-
tains 89,993 versioning transactions, 62,179 of them have at least one modified Java file.
Overtime, 259,264 Java files have been revised (which makes a mean number of 4.2 Java files
modified per transaction).

3.1.3.2 Empirical Results

We have run ChangeDistiller over the 62,179 Java transactions of our dataset, resulting in
1,196,385 AST-level changes for both change models. Table presents the top 10 change
actions and the associated measures for change model CT. For change model CT, which
is rather coarse-granularity, the three most common changes are “statement insert” (28%
of all changes), “statement delete” (23% of all changes) and “statement update” (14% of
all changes). Some changes are rare, for instance, “addition of class derivability” (adding
keyword final to the class declaration) only appears 99 times (0.0008% of all changes).

Table presents the top 20 change actions and the associated measures for change
model CTET. One sees that inserting method invocations as statement is the most common
change, which makes sense for open-source object-oriented software that is growing.

Let us now compare the results over change models CT and CTET. One can see that
statement insertion is mostly composed of inserting a method invocation (6.9%), insert an
“if” statement (6.6%), and insert a new variable (4.6%). Since change model CTET is at a
finer granularity, there are fewer observations: both a; and x; are lower. The probability
distribution (x;) over the change model is less sharp (smaller values) since the feature space
is bigger. High value of x; means that we have a change action that can frequently be found

27

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

Change Action a; Prob. x;
Statement insert of method invocation 83,046 6.9%
Statement insert of if statement 79,166 6.6%
Statement update of method invocation | 76,023 6.4%
Statement delete of method invocation 65,357 5.5%
Statement delete of if statement 59,336 5%
Statement insert of variable declaration | 54,951 4.6%
statement

Statement insert of assignment 49,222 4.1%
Additional functionality of method 49,192 4.1%
Statement delete of variable declaration | 44,519 3.7%
statement

Statement update of variable declaration | 41,838 3.5%
statement

Statement delete of assignment 41,281 3.5%
Condition expression change of if state- | 40,415 3.4%
ment

Statement update of assignment 34,802 2.9%
Addition of attribute 29,328 2.5%
Removal of method 26,172 2.2%
Statement insert of return statement 24,184 2%
Statement parent change of method in- | 21,010 1.8%
vocation

Statement delete of return statement 20,880 1.7%
Insert of else statement 20,227 1.7%
Deletion of else statement 17,197 1.4%
Total 1,196,385

Table 3.2: The abundance of AST-level changes of change model CTET over 62,179 version-
ing Transactions. The probability x; is the relative frequency over all changes (e.g. 6.9% of
source code changes are insertions of method invocation).

in real data: those change actions have of a high coverage of data. CTET features describe
modifications of software at a finer granularity. The differences between those two change models
illustrate the tension between a high coverage and the analysis granularity. For example, let us
suppose an algorithm that predicts the changes that a versioning transaction contains. If
we describe a transaction using the CT model, the prediction algorithm would have more
probability to predict correctly changes than in the case the transaction is described using the
CTET model. Remember CT model has fewer elements than CTET. However, after a correct
prediction, the algorithm has a more complete picture of the transaction, i.e., more detailed
information, when CTET model is used. The main reason of that is the CTET model is more
descriptive than the CT model. Its elements have more information within, for instance, the
type of entity affected by the change. In Section we show that the tension between
those models exists in the process of synthesizing bug fixes.

3.1.3.3 Project-independence of Change Models

An important question is whether the probability distribution (composed of all ;) of Tables
and 3.2|is generalizable to Java software or not. That is, do developers evolve software
in a similar manner over different projects? To answer this question, we have computed the
metric values not for the whole dataset, but per project. In other words, we have computed
the frequency of change actions in 14 software repositories. We would like to see that the val-
ues do not vary between projects, which would mean that the probability distributions over
change actions are project-independent. Since our dataset covers many different domains,
having high correlation values would be a strong point towards generalization.

28

3.1. A Novel Way to Describe Versioning Transactions using Change Models

Correlation is a statistical measure of the strength of a linear relationship between paired
data. It is used to measure the dependence between two variables. We compute the corre-
lation values between the probability distributions of all pairs of project of our datasets (i.e.
14213 — 91 combinations). One correlation value takes as input two vectors representing the
probability distributions (of size 41 for change model CT and 173 for change model CTET).

As correlation metric, we use Spearman’s p [93]. We choose Spearman’s p because it is
non-parametric. In our case, what matters is to know whether the importance of change
actions is similar. For instance, that “Statement Update” is more common than “Condition
Expression Change”. The importance of a change corresponds to its ranking, i.e., the posi-
tion of the change in the list of changes ordered (in decreasing manner) by the probability
Xi- For example, “Statement Update” is the 3rd most frequent change in Table[3.1|(y; = 14.8),
while “Condition Expression Change” is the 7th (x; = 3.6). Contrary to parametric correla-
tion metric (e.g. Pearson [94]), Spearman’s p only focuses on the ordering between change
actions, which is what we are interested in.

Spearman’s correlation coefficient p measures the strength of association between two
ranked variables. The closer p is to &1 the stronger the relationship between the two vari-
ables. The closer p is to 0, the weaker the association between the ranks. For instance, a p =
1 indicates a perfect association of ranks, a p = 0 indicates no association between ranks and
a p = -1 indicates a perfect negative association of ranks. The critical value of Spearman’s
p depends on size of the vectors being compared and on the required confidence level. At
confidence level a = 0.01, the critical value for change model CT with 41 features is 0.364
and is 0.3018 for change model CTET (values from statistical tables, we used [95]). If the
correlation is higher than the critical value, the null hypothesis (a random distribution) is
rejected.

For instance, in change model CT, the Spearman’s correlation between Columba and
ArgoUML is 0.94 which is much higher than the critical value (0.364). This means that the
correlation is statistically significant at o = 0.01 confidence level. The high value shows
that both projects were evolved in a very similar manner. All values are given in [Al Figure
gives the distribution of Spearman’s correlation values for change model CT. 75% of the
pairs of projects have a Spearman’s correlation higher than 0.85°. For all project pairs, in
change model CT, Spearman’s p is much higher that the critical value. This shows that the
likelihood of observing a change action is globally independent of the project used for computing it.

To understand the meaning of those correlation values, let us now analyze in detail the
lowest and highest correlation values. The highest correlation value is 0.98 and it corre-
sponds to the project pair Eclipse-Workbench and Log4j. In this case, 33 out of 41 change
actions have a rank difference between 0 and 3. The lowest correlation value is 0.80 and it
corresponds to Spearman’s correlation values between projects Tomcat and Carol. In this
case, the maximum rank change is 23 (for change action “Removing Method Overridability”
— removing final for methods). In total, between Tomcat and Carol, there are six change
actions for which the importance changes of at least 10 ranks. Those high values trigger the
0.80 Spearman’s correlation. However, for common changes, it turns out that their ranks do
not change at all (e.g. for “Statement Insert”, “Statement Update”, etc.).

We have also computed the correlation between projects within change model CTET (see

8Most statistical tables of Spearman’s p stop at N=60, however since the critical values decrease with N, if
p > 0.301 the null hypothesis is still rejected.

9Spearman’s correlation is based on ranks, a value of 0.85 means either that most change actions are ranked
similarly or that a single change action has a really different rank.

29

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

40 7

35

30 7

)
o
|

of project pairs
N
o
|

N
3
|

10

0.75 0.80 0.85 0.90 0.95 1.00
Spearman correlation value

Figure 3.1: Histogram of the Spearman correlation between changes action frequencies of
change model CT mined on different projects. There is no outlier, there are all higher than
0.75, meaning that the importance of change actions is project-independent.

A). They are all above 0.301, the critical value for vectors of size 173 at o = 0.01 confi-
dence level, showing that in change model CTET, the change action importance is project-
independent as well, in a statistically significant manner. Despite being high, we note that
they are slightly lower than for change model CT, this is due to the fact that Spearman’s p
generally decreases with the vector size (as shown by the statistical table).

3.1.3.4 Threats to Validity

The threats to the validity of our results are of two kinds. From the internal validity view-
point, a bug somewhere in the implementation or in the third-party tools used (AST diff)
may invalidate our results. From the external validity viewpoint, there is risk that our
dataset of 14 projects is not representative of Java software as a whole, even if they are writ-
ten by different persons from different organizations in different application domains. Also,
our results may not generalize to other programming languages.

3.1.3.5 Summary

In this section we learned how to build change models that represent changes done by de-
velopers during the software evolution. These models allow us to understand how software
evolves i.e., what are the source code changes that are done to evolve software and their fre-
quencies. In particular, in this section we provided the empirical importance of 173 source
code change actions; we showed that the importance of change actions is project indepen-
dent; we showed that the probability distribution of change actions is very unbalanced. Our

30

3.2. Techniques to Filter Bug Fix Transactions

results are based on the analysis of 62,179 transactions. In the remaining sections of this
chapter we focus on representing models built from those changes that fix bugs.

3.2 Techniques to Filter Bug Fix Transactions

In Section3.1.2]we have defined two probabilistic change models CT and CTET. Both models
describe all types of source code changes that occur during software evolution. For each
of their change action, we calculated two measures, o and x, considering all versioning
transactions of the repository.

In this section we focus on bug fix transactions. A bug fix transaction contains changes
to fix a bug. Popular version control systems such as CVS, GIT or SVN do not provide a
mechanism to label a transaction that introduces a fix as a bug fix transaction. The challenge
of this section is to define criteria to filter those bug fix transactions. The transactions that
fulfill a criterion are grouped in a transaction bag, defined in section[3.1.2.1] In this section we
first present two criteria. Then, we measure the metrics «; and x; (see Section for each
transaction bug. Before going further, let us clarify the goal of the transaction classification:
the goal is to have a good approximation of the probability distribution of change actions for
software repair'?.

The rest of the section is organized as follows. In Section [3.2.1| we present a criterion to
filter transactions based on commit messages. In Section [3.2.2] we present a second filtering
criterion based on the number of AST changes associated to a versioning transaction. In
Section we present a study to validate that transactions with a small number of AST
changes are related to bug fixing activity.

3.2.1 Slicing Based on the Commit Message

When committing source code changes, developers may write a comment explaining the
changes they have made. For instance when a transaction is related to a bug fix, they may
write a comment referencing the bug report or describing the fix.

To identify transaction bags related to a bug fix, previous work focused on the content of
the commit text: whether it contains a bug identifier, or whether it contains some keywords
such as “fix” (see [50] for a discussion on those approaches). To identify bug fix patterns, Pan
et al. [9] select transactions containing at least one occurrence of “bug”, “fix” or “patch”. We
call this transaction bag BFP. The acronym BFP comes from the words Bug, Fix and Patch. For
example, in log4j project the developer C.Gulcu introduced a fix in the revision 310908 and
wrote in its commit message log: “Fixed an infinite loop bug in the AppenderSkeleton guard
logic.” This transaction fulfills the BFP criterion and can be included in the BFP transaction
bag.

Such a transaction bag makes a strong assumption on the development process and the
developer’s behavior: it assumes that developers generally put syntactic features in commit
texts enabling to recognize repair transactions, which is not really true in practice [50, 49| 47].
For instance, there are transactions that include the word "bug" or "fix" but indeed they do
not introduce bug fixing source code.

"Note that our goal is not to have a good classification in terms of precision or recall.

31

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.2.2 Slicing Based on the Change Size in Terms of Number of AST Changes

We may also define fixing transaction bags based on their “AST diffs”, i.e., based on the type
and numbers of change actions that a versioning transaction contains. This transaction bag is
called N-SC (for N Abstract Syntactic Changes), e.g. 5-SC represents the bag of transactions
containing five AST-level source code changes.

In particular, we assume that small transactions are likely to only contain a bug fix and
unlikely to contain a new feature. Change actions may be those that appear atomically in
transactions (i.e., the transaction only contains one AST-level source code change). “1-SC”
(composed of all transactions of one single AST change) is the transaction bag that embodies
this assumption. Let us verify this assumption.

3.2.3 Do Small Versioning Transactions Fix Bugs?

In Section we present a definition of transaction bag based on the type and numbers
of changes that a transaction introduces. In this section we aim at determining whether
small transactions correspond to bug fix changes. In particular, we define small as those
transactions that introduce only one AST change.

3.2.3.1 Overview

The study consists in manual inspection and evaluation of source code changes of versioning
transactions. First, we randomly take a sample set of transactions from our dataset (see
B.1.3.1). Then, we create an evaluation item for each pair of files from the sample set (the
file before and after the revision). A rater is a person who decides whether an evaluation
item corresponding to a bug fix or not. An evaluation item contains enough data to help the
raters to carry out that decision. To help understanding the changes, it includes the syntactic
line-based differencing between the revision pair of the transaction. Moreover, it includes
information about the changes between at AST level such as the change type and location,
e.g., insertion of method invocation at line 42. Finally, evaluation item shows the commit
message associated with the transaction.

3.2.3.2 Sampling Versioning Transactions

We use stratified sampling to randomly select 1-SC versioning transactions from the soft-
ware history of 16 open source projects (mostly from [92]). Recall that a “1-SC” versioning
transaction only introduces one AST change. The stratification consists of picking 10 items
(if 10 are found) per project. In total, the sample set contains 144 transactions sampled over
6,953 1-SC transactions present in our dataset.

3.2.3.3 Evaluation Procedure

The 144 evaluation items were evaluated by three raters: the author of this thesis and two
University professors. During the evaluation, each item (see is presented to a rater,
one by one. The rater has to answer the question Is a bug fix change?. The possible answers
are a) Yes, the change is a bug fix, b) No, the change is not a bug fix and c) I don’t know. Optionally,
the rater can write a comment to explain his decision.

32

3.3. Learning Repair Models from Bug Fix Transactions

Full Agreement (3/3) Majority (2/3)

Transaction is a Bug Fix 74 21
Transaction is not a Bug Fix 22 23
I don’t know 0 1

Table 3.3: The Results of the Manual Inspection of 144 Transactions by Three Raters.

3.2.3.4 Experiment Results

3.2.3.4.1 Level of Agreement The three raters fully agreed that 74 of 144 (51.8%) trans-
actions from the sample transactions are bug fixes. If we consider the majority (at least 2/3
agree), 95 of 144 transactions (66%) were considered as bug fix transactions. The complete
rating data is given in

Table[3.3|presents the number of agreements. The column Full Agreement shows the num-
ber of transactions for which all raters agreed. For example, the three rates agreed that there
is a bug fix in 74/144 transactions. The Majority column shows the number of transactions
for which two out of three raters agree. To sum up, small transactions predominantly con-
sists of bug fixes.

Among the transactions with full agreement on the absence of bug fix changes, the most
common case found was the addition of a method. This change indeed consists of the ad-
dition of one single AST change (the addition of a “method” node). Interestingly, in some
cases, adding a method was indeed a bug fix, when polymorphism is used: the new method
fixes the bug by replacing the super implementation.

3.2.3.4.2 Statistics Let us assume that p; measures the degree of agreement for a single
item. In this experiment is {%, %, %} The overall agreement P [96] is the average over the
degree of agreement p;. We have P = 0.77. Using the scale introduced by [97], this value
means there is a Substantial overall agreement between the rates, close to an Almost perfect
agreement.

The coefficient £ (Kappa) measures the confidence in the agreement level by removing
the chance factor!! [96,98]]. The « degree of agreement in our study is 0.517, a value distant
from the critical value which is 0. The null hypothesis is rejected, the observed agreement

was not due to chance.

3.2.3.5 Conclusion

The manual inspection of 144 versioning transactions shows that there is a relation between
the one AST change transactions and bug fixing. By consequence, we can use the 1-SC
transaction bag to estimate the probability of change actions for software repair.

3.3 Learning Repair Models from Bug Fix Transactions

As discussed in Section 3.1|, a change model describes all types of source code change that
occur during software evolution. Now, we aim at defining a change model made from a

"'Some degree of agreement is expected when the ratings are purely random[96} 98].

33

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

subset of the software evolution: the bug fixing. We call “repair model” to this kind of
models. This section presents how we transform a “change model” into a “repair model”
usable for automated software repair.

We define a “repair action” as a change action that often occurs for repairing software,
i.e. often used for fixing bugs. By construction, we define a repair model as a subset of a
change model in terms of features. But more than the number of features, our intuition is that
the probability distribution over the feature space would vary between change models and
repair models. For instance, one might expect that changing the initialization of a variable
has a higher probability in a repair model. Hence, the difference between a change model
and a repair model is matter of perspective. Since we are interested in automated program
repair, we now concentrate on the “repair” perspective hence use the terms “repair model”
and “repair action” in the rest of this chapter.

In this section we define repair models from the transaction bags presented in The
result of this section shows that, depending on the transaction bug criteria used, we obtain
different topologies for repair models.

ALL

BFP

1-SC

5-SC

10-SC

20-SC

Stmt_Insert-29%
Stmt_Del-23%
Stmt_Upd-15%

Param_Change-
6%
Order_Change-
5%
Add_Funct-4%

Cond_Change-
40/0
Add_Obj_St-2%

Rem_Funct-2%

Alt_Part_Insert-
2%

Stmt_Insert-32%
Stmt_Del-23%
Stmt_Upd-12%

Param_Change-
7%
Order_Change-
6%
Add_Funct-4%

Cond_Change-
3 (70
Add_Obj_St-2%

Alt_Part_Insert-
2%
Rem_Funct-2%

Stmt_Upd-38%
Add_Funct-14%
Cond_Change-
13%
Stmt_Insert-12%

Stmt_Del-6%
Rem_Funct-5%
Add_Obj_St-3%
Order_Change-

2%
Rem_Obj_5t-2%

Stmt_Insert-28%
Stmt_Upd-24%
Stmt_Del-11%

Add_Funct-10%

Cond_Change-
7%
Param_Change-
5%
Add_Obj_St-3%

Rem_Funct-3%

Order_Change-
1%

Inc_Access_Change Rem_Obj_St-1%

1%

Stmt_Insert-31%
Stmt_Upd-19%
Stmt_Del-14%

Add_Funct-8%

Param_Change-
7%
Cond_Change-
6%
Add_Obj_St-3%

Rem_Funct-2%

Order_Change-
2%
Alt_Part_Insert-
1%

Stmt_Insert-33%
Stmt_Del-16%
Stmt_Upd-16%

Param_Change-
7%
Add_Funct-7%

Cond_Change-
5%
Add_Obj_St-3%

Order_Change-
3%
Rem_Funct-2%

Alt_Part_Insert-
2%

C1

C2

C3

C4

Cs5

Cé6

Table 3.4: Top 10 Change Types of Change Model CT and their Probability x; for Different
Transaction Bags. The different heuristics used to compute the fix transactions bags has a
significant impact on both the ranking and the probabilities.

3.3.1 Methodology

We have applied the same methodology as in We have computed the probability dis-
tributions of repair model CT and CTET based on different definitions of fix transactions, i.e.
we have computed «; and y; based on the transactions bags discussed in ALL transac-
tions (column 6 in Table 3.4), BFP (column 2), and N-SC. For N-SC, we choose four values of
N: 1-SC, 5-5C, 10-SC and 20-SC (columns 3, 4, 5 and 6, respectively). Transactions larger than
20-SC have almost the same topology of changes as ALL, as we will show later (see section
5332).

The research question we ask in this section is: Do different definitions of “repair transac-
tions” (ALL, BFP, N-SC) yield different topologies for repair models?

34

3.3. Learning Repair Models from Bug Fix Transactions

3.3.2 Empirical Results

Table [3.4] presents the top 10 change types of repair model CT associated with their proba-
bility x; for different versioning transaction bags. Overall, the distribution of repair actions
over real bug fix data is very unbalanced, the probability of observing a single repair action
goes from more than 30% to 0.000x%. We observe the Pareto effect: the top 10 repair actions
account for more than 92% of the cumulative probability distribution.

Furthermore, we have made the following observations from the experiment results.
First, the order of repair actions (i.e. their likelihood of contributing to bug repair) varies
significantly depending on the transaction bag used for computing the probability distri-
bution. For instance, Table shows that a statement insertion is #1 when we consider all
transactions (column ALL), but only #4 when considering transactions with a single AST
change (column 1-SC). In this case, the probability of observing a statement insertion varies
from 29% to 12%.

Second, even when the orders obtained from two different transaction bags resemble
such as for ALL and 20-SC, the probability distribution still varies: for instance X s¢mt tpd is
29% for transaction bag ALL, but jumps to 33% for transaction bag 20-SC.

Third, the probability distributions for transaction bags ALL and BFP are close: repair
action has similar probability values. As consequence, transaction bag BFP maybe is a ran-
dom subset of ALL transactions. All those observations also hold for repair model CTET,
the complete table is given in the appendix |Al Those results are a first answer to our ques-
tion: different definitions of “bug fix transactions” yield different probability distributions over a
repair model. That means, there are changes that occur more frequent in a particular kind of
transactions than in others. It could have an immediate implementation: by considering this
information, repair approaches could be able to focus first in those frequent repair actions.

3.3.3 Discussion

We have shown that one can base repair models on different methods to extract repair trans-
action bags. There are certain analytical arguments against or for those different repair space
topologies. For instance, selecting transactions based on the commit text makes a very strong
assumption on the quality of software repository data, but ensures that the selected trans-
actions contain at least one actual repair. Alternatively, small transactions indicate that they
focus on a single concern, they are likely to be a repair. However, small transactions may
only see the tip of the fix iceberg (large transactions may be bug fixing as well), resulting
in a distorted probability distribution over the repair space. At the experimental level, the
threats to validity are the same as for Section[3.1.2}

3.3.3.1 Correlation between Transaction Bags

| 1-SC 5-5C 10-SC 20-SC BFP
ALL | 068 095 097 098 0.99

Table 3.5: The Spearman correlation values between repair actions of transaction bag “ALL”
and those from the transaction bags built with 5 different heuristics.

35

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

In this section we present a study to know to what extent the 6 transactions bags are
different. We have calculated the Spearman correlation values between the probabilities
over repairs actions between all pairs of distribution. In particular, we would like to know
whether the heuristics yield significantly different results compared to all transactions (trans-
action bag ALL). Table 3.5/ presents these correlation values.

For instance, the Spearman correlation value between ALL and 1-SC is 0.68. This value
shows, as we have noted before, that there is not a strong correlation between the order of
their repair actions of both transaction bags. In other words, heuristic 1-5C indeed focuses
on a specific kind of transactions.

On the contrary, the value between ALL and BFP is 0.99. This means the order for the
frequency of repair actions are almost identical. Moreover, Table |3.5/ shows the correlation
values between N-SC (N =1, 5, 10 and 20) and ALL tend to 1 (i.e., perfect alignment) when N
grows. This validates the intuition that the size of transactions (in number of AST changes)
is a good predictor to focus on transactions that are different in nature from the normal
software evolution. Crossing this result with the results of our empirical study of 144 1-
SC transactions (see Section [3.2.3), there is some evidence that by concentrating on small
transactions, we get a good approximation of repair transactions.

3.3.3.2 Skewness of Probability Distributions

Figure 3.2/ shows the probability for the most frequent repair actions of repair model CTET
according to the transaction size (in number of AST changes). For instance, the probability
of updating a method invocation decreases from 15% in 1-SC transactions to 7% in all trans-
actions. In particular, we observe that: a) For transaction with 1 AST change, the change
probabilities are more unbalanced (i.e. less uniform than for all transactions). There are 5
changes that are much more frequent than the rest. They are: “statement update of method
invocation", “add method", “if condition change", “statement update of variable declara-
tion", and “statement update of method invocation". b) For transactions with more than 10
AST changes, the probabilities of top changes are less dispersed and all smaller than 0.9%
c) The probabilities of those 5 most frequent changes decrease when the transaction size
grows. This is a further piece of evidence that heuristics N-SC provide a focus on transac-

tions that are of specific nature, different from the bulk of software evolution.

3.3.3.3 Summary

Those results on repair actions are especially important for automated software repair: we
think it would be fruitful to devise automated repair approaches that “imitate” how human
developers fix programs. In Section we use the presented repair models for reasoning
on the repair search space. To us, using the probabilistic repair models as described in this
section is a first step in that direction. In the next Section 3.4} we analyze bug fix transactions
in another granularity: at pattern level. We study how the elements from the CTET models
frequently appear together in bug fix transactions. From this study, we are able to define a
repair model composed by bug fix patterns. This model could be used by repair approaches
based on bug fix pattern such as PAR [5].

36

3.3. Learning Repair Models from Bug Fix Transactions

0.16 —|

0.14 —

0.12 —

0.10 —

0.08 —

AST change probability

0.02 —

i

CeOPDIPO
CeOPIPO
eSO

1

D>—>—1> stmt update of method invocation

Add funct of method
Condition change of If
Stmt update of variable declaration
Stmt Insert of method invocation
Stmt update of assignment

Stmt update of return

Remove funct of method

Stmt delete of method invocation
Add Object State of attribute
Stmt Insert of assignment
Remove obj State of attribute

0.00

N
N
w
IS
v
()
~
o —

Transaction size (In AST changes)

Figure 3.2: Probabilities of the 12 most frequent AST changes for 11 different transaction
bags: 10 that include transactions with ¢ AST changes, with ¢ = 1...10, and the ALL transac-

tion bag.

37

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.4 Defining a Repair Model of Bug Fix Patterns

In Section [3.3) we present two repair models built from bug fix transactions. Those models
represent modifications of software at the AST change level. For instance, the change model
CT has a change action called "statement parent change", and the CTET model has one called
"statement update of assignment".

We observe changes in versioning transactions do not appear isolated. For instance, from
the same corpus that experiment of Section [3.1, we observe that 3095 out of 3667 BFP trans-
actions (84%) have two or more changes (AST changes from ChangeDistiller’s granularity).
That means the majority of repairs done by developers are composed of more than two of
those changes.

Let us present an example. Suppose a program defines one variable a that it is not ini-
tialized. A failure occurs when the program attempts to use the variable’s value. A possible
fix could is presented in Listing 3.2/ 2.

Listing 3.2: Example of bug fix condition

if (var a is not initialized) then
initialize a;

Let us represent using CTET repair model the transaction that introduces this fix in the
version control system. The representation of this transaction has two repair actions: one for
the addition of if statement, another for the initialization of the variable i.e., “addition of an
assignment”.

In this section we aim at presenting a repair model that describes this kind of fixes done
by developers. That is, a model where each of element are a composition of one or more
elements of, for instance, the CTET model. A bug fix pattern encodes a kind of bug fix. The
model is composed of bug fix patterns defined in the literature. For example, Pan et al.[9] call
Addition of precondition check (IF-APC) to the fix presented in the example of listing Our
challenge is to define a probabilistic repair model for automatic software repair that captures
the importance of each bug fix pattern. In a probabilistic model, each of their elements
contains a value related to probability that the element is selected when one aims at picking
one element from the model.

The goal of this section is twofold. First, we aim at presenting a mechanism to spec-
ify bug fix patterns from the literature (Section 3.4.2). We define bug fix pattern in Section
Second, we aim at measuring the importance of each bug fix pattern in version control
systems (Section For that, we define a mechanism to search for instances of bug fix
patterns. The input of this mechanism is a specification of one pattern, while the output is a
set of versioning transactions that contain instances of that pattern.

We also present two experiments to evaluate those mechanisms. In the first one, we
aim at measuring the genericity of the pattern specification mechanism (Section [3.4.5). This
evaluation allows us to measure the capacity of the approach to encode bug fix patterns
from the literature. In the second experiment, we evaluate our mechanism of search of bug
fix pattern instances (Section [3.4.6). Finally, we aim at measuring the abundance of bug fix
patterns (Section [3.4.7) for defining a probabilistic repair model formed by bug fix patterns.

12 Another fix is to initialize the variable with one value when it is defined.

38

3.4. Defining a Repair Model of Bug Fix Patterns

3.4.1 Defining Bug Fix Patterns

Bug fix patterns capture the knowledge on how to fix bugs. Bug fix patterns are essential
building blocks of research areas such as automatic program repair [12, 5]. One such bug fix
pattern called Change of If Condition Expression (IF-CC) has been identified by Pan et al. [9]].
Figure 3.3| presents one instance of this pattern by showing two consecutive revisions of a
source code file. Revision N (on the left-hand side) contains a bug inside the if condition, a
wrong call to the boolean method isEmpty instead of a call to the method isFull. In revision
N + 1 (the right-hand side piece of code) a developer fixed the bug by modifying the if
condition expression.

Log message:

e.g: Fixed related
Revision N Revision N+1_ to the empty
Time account....
__)
if (myAccount.isEmpty () { if (myAccount.isFull () {

} m } W

Figure 3.3: Example of a bug fix pattern called Change of If Condition Expression (IF-CC) [9], in
two consecutive revisions of a source code file. The left-hand side revision contains a bug in
the if condition: an incorrect method invocation. On the right-hand side, the developer fixed
it by modifying the if condition, i.e. updating the method invocation.

3.4.2 A Novel Representation of Bug Fix Patterns based on AST changes.

Previous work such as Pan et al. [9]] present catalogs of bug fix patterns. For example, Pan et
al. present a catalog of 27 bug fix patterns. The authors describe each bug fix pattern with a
brief textual description and one listing that shows the changes (at line level) corresponding
to the pattern’s instance. For example, the pattern Change of If Condition Expression (IF-CC)
from Pan et al. is described as follows:

Description: “This bug fix change fixes the bug by changing the condition expression of
an if condition. The previous code has a bug in the if condition logic.”

Listing 3.3: Pattern Change of If Condition Expression defined by Pan et al.

— if (getView ().countSelected () == 0)
+ if (getView ().countSelected () <= 1)

Then, they measure the importance of each bug fix pattern by mining bug fix pattern
instances from commits of version control systems. For that, the authors use a tool called SEP
to automatically identify pattern instances. In the case of this tool, we observe a dual pattern
definition. On one hand, Pan et al. present pattern definitions that target humans, such as
we have seen for pattern [FCC. On the other hand, the authors encode these definitions in
the same code as their tool.

In our opinion, this adoption produces some drawback. For instance, to add a new pat-
tern it is necessary to modify the source code of the tool. Moreover, it impacts on the pattern

39

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

definition’s understandability. In the case of SEP, it is necessary to inspect and debug hun-
dreds of line of code to discover the encoded definition of one pattern.

Our motivation is to introduce a new mechanism to formalize bug fix patterns. In partic-
ular, we aim this formalization be both: 4) human comprehensible; and b) used as input of
mining algorithms that search pattern instances.

In this section, we present a methodology to formalize bug fix pattern from the literature.
The method is based on AST analysis and tree differencing. In subsection[3.4.2.T, we present
a formalization of source code changes at the AST level. Then, in subsection we
present a formalization of bug fix patterns at the AST level.

3.4.2.1 Representing Versioning Changes at the AST Level

Our method identifies bug fix pattern instances from version control system revisions. It
works at the abstract syntax tree (AST) level. This means we represent a source code file
revision with one AST. The advantage of this representation is it allows us to extract fine-
grained changes between two consecutive revisions by applying an AST differencing algo-
rithm. This involves representing source code revisions as changes at the AST level. As in
the experiment of Section 3.1 we use ChangeDistiller as AST differencing algorithm.

if (myAccount.isEmpty () {.. if (myAccount.isEmpty () {..

}) }

else! Bug hunk J myAccount.close(); Fxhunk
myAccount.operate () ; [

}

myAccount.close () ;

| 74 74
Revision N Revision N+1

Figure 3.4: A lined-based difference of two consecutive revisions. The bug hunk in revision
N (the left one) contains an “else” branch. The fix hunk in revision N+1 is empty. The
corresponding AST hunk (introduced in section consists of two nodes removal i.e.
the ‘else’ node and the method invocation.

Let us take as example the change presented in Figure It shows a lined-based dif-
ference (syntactic) of two consecutive revisions. The bug hunk in revision N (the left one)
contains an “else” branch. The fix hunk in revision N+1 is empty. The change consists of a
removal of code: removal of “else” branch. At the AST level, the AST differencing algo-
rithm finds two AST changes: one representing the removal of an else node and another for
the removal of a method invocation (i.e. myAccount.operate()) node surrounded by the else
block.

As we have shown in Section ChangeDistiller handles a set of 41 source change
types included in an object-oriented change taxonomy defined by Fluri and Gall [22]. For
example, the taxonomy includes source code change types such as “Statement Insertion” or
“Condition Expression Change”. A code change type affects object-oriented elements such
as “field addition”. These elements are represented by 142 entity types.

Formally, ChangeDistiller produces a list of “AST source code changes”. For the pattern
formalization, we need a more robust definition of AST change compared to that one used

40

3.4. Defining a Repair Model of Bug Fix Patterns

for defining the CT and CTET models (see Section. For instance, we need that a change
includes the location where it is done (we call it parent entity). We formalize each change
(scc) in a 7-value tuple:

sce = (ct, et,id_e, pt,id_p, opt,id_op)

where ct is one of the 41 change types, et (for entity type) refers to the source code entity
type related to the change. For example, a statement update may change a method call or
an assignment. The field id_e is the identifier of the mentioned entity. As ChangeDistiller
is an AST differencing, that field corresponds to the identifier of the AST node affected by
the change. The field pt (for parent entity type) indicates the parent code entity type where
the change takes place. For example, it corresponds to a top-level method body or to an “If”
block. id_p is the identifier of the parent entity. For change type “Statement Parent Change”,
which represents source code movement, pt points to the new parent element. Moreover,
opt and id_op indicate the parent entity type and the identifier for the old parent entity. Both
fields specify the place the moved code was located before the change occurs, and they are
omitted in tuples related to changes types different from “Statement Parent Change”.

Let us present two examples of AST source code changes representation. As first exam-
ple, a removal of an assignment statement located inside a “For” block is represented as:
sccl =(“Statement delete" (ct), “Assignment” (et), node_id_23 (id_e), “For" (pt), node_id_14
(id_pt)).

As a second example, a movement of an assignment located in a method body to inside
an existing “Try” block located in the same method is represented as: scc2 =(“Statement
Parent Change" (ct), “Assignment" (et), node_id_24 (id_e), “Try" (pt), node_id_15 (id_p),
“Method” (opt), node_id_10 (id_op)). As this change is a movement i.e. “Statement Parent
Change", its tuple includes the identifiers and type from the location the code comes from
(opt and id_op, both ignored in sccl) and the new location as well (pt and id_p).

This structure for describing changes (scc) is more complex than the representation of
changes used for CT and CTET models, presented in Section The structure contains
more information necessary to describe pattern’s changes. In particular, it includes informa-
tion of the parent entity type (and eventually the new parent entity type for movement of
code) to describe the entity type where the changed entity is located. Moreover, the structure
includes the identifiers (ids) of each entity involved in the change. This allows us to link the
entities (AST nodes) affected by the change. For instance, let us consider a pattern that adds
an if precondition just before a statement. An instance of this pattern has two changes: one
that corresponds to the addition of the if; the other a movement of the assignment (now the
parent entity is the added if statement). The ids fields are used to validate whether the new
location (parent entity) of the moved assignment is the added if precondition. In the following
section we go deeper in the formalization of change patterns.

3.4.2.2 AST-based Pattern Formalization

In this section, we present a structure to formalize a bug fix pattern. This structure is used to
identify bug fix pattern instances from the AST-level representation of revisions presented

in section B.4.2.1
We specify a bug fix pattern with a structure composed by three elements: a list of micro-
patterns L, a relation map R, and a list of undesired changes U.

pattern = {L, R, U}

41

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

In the following subsection we describe each of those pattern elements.

3.4.2.2.1 Listof Micro-patterns A micro-pattern represents a change pattern over a single
AST node. It is an abstraction over ChangeDistiller’s AST changes, i.e., instances of source
code changes of a given type. A micro-pattern is a 5-value tuple

mp = (ct, et, pt, opt, cardinality)

where ct, et, pt and opt'® have the same meaning as the source code change formalization
in section The ct field is the only mandatory, while fields et, pt and opt can take a
wildcard character “*”, meaning they can take any value. The field cardinality takes a natural
number that indicates the number of consecutive equivalent (with the same value in fields
ct, et and pt) AST changes it represents. It also can take the value wildcard, meaning that
the micro-pattern can represent undefined number of consecutive equivalent changes. By
default (absence of explicit value in mp tuple), the cardinality is value one. For example, a
micro-pattern (“Statement Insert”,*,*) means that an insertion of one statement of any type
(e.g., assignment) inside any kind of source code entity, e.g. “Method” (top-level method
statement) or “If” block. This micro-pattern is an abstraction of all AST source code changes
corresponding to the addition of one AST node, whatever the node type and place in the
AST.

The list of micro-patterns L represents the changes done by the pattern. The list is or-
dered according to their position inside the source code file. It is not commutative: a pattern
formed by micro-pattern mpl followed by mp2 is not equivalent to another formed by mp2
followed by mpl. The former means that mpl occurs before mp2, while the latter means the
opposite.

As example, let us present the AST representation of pattern “Addition of Precondition
Check with Jump” [9]. This pattern represents the addition of an if statement that encloses
a jump statement like return. It is represented by two micro-patterns'*: mpl = (“Statement
Insert”, “If”, *) and mp2 = (“Statement Insert”, “Return”, “If"”).

3.4.2.2.2 Relation Map The relation map R is a set of relations between entities involved
in micro-patterns of L and U. Each relation links two entities (et, pt or opt) of two different
micro-patterns. The relation is written as:

r = mpl.entity; comp mp2.entitys

A relation formalizes a link between two elements (AST) from a pattern instance. That
means, the elements of a pattern instance must fulfill all the relations from the pattern’s
relation map.

Each relation has three elements: two operands and one operator. The operator comp is
used to compare the related entities. In particular, we use two operators: equal (==) and not
equal (!=). For example, the relation written as mpl.pt == mp2.pt uses the former operator,
and relation as mpl.pt = mp2.pt the latter.

The operands entity; and entity, specify which entity field from each micro-pattern (et,
pt or opt) is involved in the relation. For instance, relation mpl.pt == mp2.pt defines a

BWe omit to specify opt in the tuple for addition, updates and removes operations.
to simplify the example, we exclude jump statements ‘break’ and ‘continue’.

42

3.4. Defining a Repair Model of Bug Fix Patterns

relation between entity pt from micro-pattern mpl and entity pt from micro-pattern mp?2.
This relation expresses that two changes affect entities with the same type of parent. Contrary,
mpl.pt != mp2.pt expresses that two changes affect entities with a different type of parent.

Another case of entity relation is expressed as mp2.pt == mpl.et. It defines that a change
(matched with mp1) is done in an entity whose parent entity is affected by the second change
(matched mp2).

As we mentioned, a pattern instance (i.e., a set of AST changes) must fulfill all the rela-
tions defined by the pattern. For example, let us consider a pattern P composed by micro-
patterns mpl and mp2 and one relation R1 = (mpl.pt == mp2.et). Then, let us suppose
that a set of changes composed by changes sccl and sce2, are instances of mpl and mp2, re-
spectively. Changes sccl and scc2 form an instance of P iff R1 is fulfilled by them. To verify
whether those changes fulfill relation R1, we compare the identifiers of the entities affected by
the changes. The first term of R1, i.e. mpl.pt, corresponds to the parent of sccl, i.e. sccl.id_p.
The second term of R1 (mp2.et) corresponds to the entity of scc2 (scc.id_e). As consequence,
the relation R1 is fulfilled when sccl.id_p == scc2.id_e.

3.4.2.2.3 Undesired Changes Our bug fix pattern formalization is composed by a second
list of micro-patterns. The list of undesired changes U represents micro-patterns that must not
be present in the pattern instance. For example, the bug fix pattern “Removal of an Else
Branch” [9] requires only the “else” branch being removed, keeping its related “if” branch
in the source code. In other word, the related “if” must not be removed.

As example, let us formalize this pattern. L contains one micro-pattern mpl = (“State-
ment delete”, “else”,”If”), U contains one undesired change u_mpl= (“Statement delete”,
“If”,*) and R contains the relation u_mpl.et != mpl.opt. Generally, relations associated to
micro-patterns from U have an operator “!=" and relate a micro-pattern of U with another
from L. Hence, the relation restricts that no undesired change be related to changes associ-
ated to micro-patterns from L. In the example, the formalization of the pattern specifies that:
a) there is a deletion of a “else” (mpl); b) it does not exist a deletion of an “if” entity that, in
turn, is the parent entity of the deleted “else” (u_mp1)).

3.4.2.24 Summarization In this section we have defined a structure to formalize bug fix
patterns. In section we present a method to identify pattern instances from this pattern
formalization.

3.4.3 Defining the Importance of Bug Fix Patterns

The notion of importance of bug fix patterns refers to whether some bug fix patterns are more
important than others. A measure of importance is the number of commits in which one
observes an instance of the pattern, we call it the abundance of the pattern. The abundance
reflects to what extent those bug fix patterns are used in practice.

For instance, Pan et al. report [9] that in the history of Lucene'®, the bug fix pattern
“Change of if condition expression” (IF-CC) is the most common pattern with 370 instances
(12% of all bug fix pattern instances identified). On the contrary, the pattern “Addition of
operation in an operation sequence of field settings" (SQ-AFO) is the less abundant pattern,
with only 5 instances being observed (0.2%).

Phttp:/ /lucene.apache.org/core/

43

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

To measure the importance of one bug fix pattern we need to identify instances of that
pattern. The accuracy of bug fix pattern instance identification refers to whether an approach
yields the correct number of pattern instances. The threat to the accuracy of the abundance
measurement of bug fix patterns is two-fold. First, one may over-estimate it by counting
commits as instances of the pattern while they are actually not (false positives). Second, one
may under estimate it by not counting commits, i.e. by missing instances (false negatives).
The challenge we address is to provide a mechanism to obtain an accurate measure of bug
fix pattern abundance, by minimizing both the number of false positives and the number of
false negatives.

Before to present an accurate pattern instance identifier in Section we present the
notion of AST hunk.

3.4.3.1 Defining “Hunk” at the AST level

Previous work has set up the “localized change assumption” [9]. This states that the pattern
instances lie in the same source file and even within a single hunk i.e., within a sequence of
consecutive changed lines. For example, Figure (3.4 shows an example of two consecutive
revisions of a Java file and a hunk pair representing the changes between the two revisions.
The differences between the two files are grouped in consecutive changed lines which are
called “hunk”. In Pan et al.’s work [9], the authors identify pattern instances inside each
hunk pair. As consequence, a pattern instance belongs to only one hunk pair and, by transi-
tion, to one revision file.

From our experience, the “localized change assumption” is relevant in the process of
identification of bug fix pattern instances. Since we work at the level of AST and hunk are
the level lines (syntactic level), we define the notion of “hunk” at the AST level. AST hunks
are co-localized source code changes, i.e., changes that are near one from another inside the
source code.

The notion of hunk is important for searching pattern instances. Our identifier aims at
identifying pattern instances from AST source code changes that are in the same hunk. That
means, a pattern instance never contains AST instances from different AST hunks.

For us, an AST hunk is composed of those AST changes that meet one of the following
conditions: a) they refer to the same syntactic line-based hunk; or b) they are moves within
the same parent element. For instance, the two AST changes from the example of Figure
are in the same AST hunk (both changes occur in the same syntactic hunk). By construction,
there is no AST hunk for changes related to comments or formatting, while, at the syntactic,
line based level, those hunks show up.

3.4.4 An Novel Algorithm to Identify Instances of Commit Patterns from Ver-
sioning Transactions

This section presents an algorithm to identify bug fix pattern instances inside an AST hunk
(see Section 3.4.3.T). The pattern instance identifier algorithm is composed by three serial
phases: a) change mapping (Section ; b) exclusion of AST hunks containing undesired
changes (Section [3.4.4.2); and c) identification of change relations (Section [3.4.4.3). Let us
explain each phase in the remain of the section.

44

3.4. Defining a Repair Model of Bug Fix Patterns

3.4.4.1 Mapping Phase

The pattern instance identification algorithm first processes the phase named Mapping phase.
The goal of the phase is to map each micro-pattern mp; of L (list of micro-patterns, see
section with one AST change scc; of the hunk. The output of the phase is a map of
micro-patterns and AST changes. The result of the mapping phase is successful if all micro-
patterns of the bug fix pattern appear in the AST hunk i.e., they have at least one mapping
with AST changes of the hunk. If this condition is not satisfied, the outcome phase is a fail,
stopping the execution of the following phases. In other words, a pattern instance could not
be identified in the hunk.

The mapping algorithm is explained in Section 3.4.4.1.2l Before, in Section [3.4.4.1.1| we
detail the algorithm to match AST changes with micro patterns.

Input: micro_pattern > Micro-pattern

Input: change > AST change (scc)

Output: boolean value: true if the AST change change matches with the micro-pattern
micro_pattern

1 begin
/+ First, comparison of change types */
2 if micro_pattern.ct == change.ct then
/* Then, comparison of entity types */

if micro_pattern.et = “*” and micro_pattern.et /= change.et then
4 L return false;

/+* Finally, comparison of parent entity types */
5 if micro_pattern.pt /= “*” and micro_pattern.pt /= change.pt then
6 ‘ return false;
7 else
8 L return true;
9 else
10 L return false;

Figure 3.5: Algorithm to verify the matching between a micro-pattern and an AST
change

3.4.4.1.1 Mapping creation criterion A change scc is mapped to the micro-pattern mp if
scc is an instance of the change described by the mp. This relation is verified by matching
the structures scc and mp. Algorithm 3.5shows the matching algorithm pseudo-code. Both
match (the matching is true) if their change types (line 2), entity types (line 3) and parent
types (line 5) are the same. Note that if one wildcard (see Section is specified, the
field comparison is ignored (lines 3 and 5).

3.44.1.2 Mapping Algorithm Overview Let us first explain the mapping procedure and
then we detail the algorithm step by step in Section (3.4.4.1.3

45

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

First, the mapping algorithm tries to find a mapping between list of micro patterns and
a sequence of AST changes of the hunk. The algorithm first searches all possible beginnings
of the pattern in the hunk. A beginning is an AST change from the hunk and candidate to be
the first element of the pattern inside the hunk. In other words, it must match with the first
micro pattern.

Then, the algorithm tries to search a pattern instance from each of those beginnings. For
each beginning, it proceeds to map the changes that follow the beginning with the list of
micro-patterns. It iterates both the sequence of changes and the list of micro-patterns at
the same time. A matching between a change and a micro-pattern is done in each iteration
(as we explain in Section [3.4.4.1.T). If both match, the algorithm continues with the iteration,
otherwise it stops analyzing the sequence and continues with the following beginning. Once
the algorithm maps all micro-patterns with a sequence of changes, it returns that mapping.
This sequence of AST changes is candidate to be a pattern instance.

It is important to note that the mapping phase defines two restrictions for the mappings
between AST changes in a hunk and the micro-patterns. We call the first restriction mapping
total order. It defines that the mapped AST changes must satisfy the order defined by L. Let
us consider the list of micro patterns L= {mpl, mp2} and an AST hunk H = {sccl, scc2}. The
mapping sccl with mpl and scc2 with mp?2 is valid. Let us explain why. The mapped AST
changes respect the order imposed by the pattern i.e., through L, the first AST element of
the hunk mapped with the first micro pattern, and so on. However, the mapping sccl with
mp2 and scc2 with mpl is not valid. As mpl appears before mp2 in L, then scc2 (mapped to
mpl) must appear before sccl in the hunk, and this is not the case. As consequence, this last
mapping is not valid.

We call consecutive mapping to the second restrictions. It defines the mapped AST changes
must be consecutive inside the hunk. In other words, it cannot exist one no-mapped change
between two mapped changes. For instance, given a pattern formalization with 2 micro-
patterns mpl and mp2, and an AST hunk composed by 3 AST changes sccl, scc2 and sce3.
Then, the mapping mpl, sccl and mp2, scc3 is invalid due scc2 is not mapped and it is
located between sccl and scc3, both mapped changes.

3.4.4.1.3 Mapping Algorithm Pseudo-code Now, let us analyze the algorithm in detail.
Algorithm 3.6/ shows the pseudo-code of this mapping phase. The input of the algorithm is
the list of micro-patterns L that represents the pattern, and a list of changes C'hanges that
represents one AST hunk.

The algorithm starts by searching a list initial_changes of AST changes. The list contains
“candidates beginning” of the pattern inside the hunk i.e., in list Changes (line 3). Each
change of initial_changes matches with the first micro-pattern (see Algorithm 3.5/and expla-
nation in Section [3.4.4.1.2).

Then, for each AST change initial of the mentioned list initial_changes, the algorithm
tries to map all micro-patterns of L with the sequence S of consecutive AST changes that
follow initial. The algorithm defines two cursors change_i and micro_pattern_i to iterate
the sequence S and L, respectively. In each iteration (line 6), the algorithm matches the head
of both cursors (line 12) using Algorithm If both match, the algorithm maps them and
saves the association (line 13). After that, the cursors are updated (line 14 to 18 and from 22
to 23). The micro-pattern cursor is only updated once the algorithm has analyzed as many
AST changes as the micro-pattern’s cardinality indicates (line 16). When the cardinality is

46

3.4. Defining a Repair Model of Bug Fix Patterns

“_
*

(wildcard), the cursor micro_pattern_i is updated (line 22) if at least one change from S
is mapped to the current micro pattern (line 20).

The algorithm finishes successfully when all micro-patterns are mapped to consecutive
AST changes (line 23 and 24).

3.4.4.2 Undesired Changes Validation Phase

The second phase verifies that no change of the undesired changes U list is present in the hunk.
The algorithm of this phase maps changes for U with AST changes from the hunk. So it is
similar to that one corresponding to the Mapping phase.

Different from the previous phase, an empty set of mappings is a good signal: no un-
desired change is present in the hunk. Contrary, in case that the micro-patterns of U are
mapped to changes of the hunk, the relations over them must be fulfilled by the phase de-
fined in section3.4.4.3|

3.4.4.3 Relation Validation Phase

The change relation validation phase verifies that the relations defined by the pattern’s rela-
tion map are satisfied by the mapped AST changes of the hunk. For the validation, the maps
calculated in the two previous phases (3.4.4.1jand [3.4.4.2) are used.

Algorithm [3.7| shows the corresponding pseudo-code. First, for each relation the algo-
rithm retrieves the two micro-patterns it relates (lines 3 and 4). Then, it retrieves the AST
changes mapped to those micro-patterns (lines 5 and 6). After that, the algorithm retrieves
the identifiers of the entities related to the changes. For that, function get/dFromEntityType
first determines which kind of entities (et, pt, or opt) the relation pinpoints. Then, it returns
the identifier of the corresponding entity (lines 9 and 10). Finally, the two entity identifiers
are compared (line 12) according to the operator defined by the relation (line 11). The com-
parison involves comparing ids of the entities i.e., AST nodes affected by the changes. As
this phase is the last one from the AST change pattern identification, a successful validation
of all relations means the presence of a pattern inside the analyzed hunk.

3.4.4.4 Algorithm Result

Once all phases were executed, the pattern instance identification algorithm determines the
presence of a pattern instance inside the analyzed hunk if the following conditions are valid:
a) all micro-patterns of L are mapped and the mapped AST changes from L fulfill relations
of R; and b) no micro-pattern of U is mapped or every mapped AST change from U fulfill
relation of R.

3.4.4.5 Conclusion

In this subsection we present an algorithm to identify bug fix pattern instance in versioning
transactions. This algorithm allows us to measure the importance of bug fix patterns. Then,
the importance can be used in the automatic software repair field, for example, to define
probabilistic repair models.

In the remain of the section we present two evaluations. In section we evaluate
the genericity of our bug fix pattern formalization approach. In section we evaluate

47

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

the accuracy of our approach with a manual analysis of a random sample of bug fix pattern
instances found in commits of an open-source project.

3.4.5 Evaluating the Genericity of the Pattern Specification Mechanism

In this section, we focus on the bug fix formalization we presented in section and
present an evaluation of its genericity. That means, we evaluate whether it is possible to
specify known and meaningful bug fix patterns using our formalism.

The evaluation is built on the research question: Can our specification format represent
known and meaningful bug fix patterns?

To answer this research question, we first present bug fix patterns from the literature in
section 3.4.5.1) and a set of new bug fix patterns in section [3.4.5.2] We eventually formalize

these patterns in section 3.4.5.3

3.4.5.1 Source #1: Bug Fix Patterns from the Literature

Pan et al. [9] have defined a catalog of 27 bug fix patterns divided in 9 categories. The
categories are: If-related, Method Calls, Sequence, Loop, Assignment, Switch, Try, Method
Declaration and Class Field. According to the number of citations, this is one of the most
important papers on bug fix patterns.

Furthermore, we also consider three additional new bug fix patterns proposed by Nath
et al. [64]. The patterns are named as: “method return value changes”, “scope changes” and
“string literals”.

The existing definitions of bug fix patterns are written in natural language and are some-
times ambiguous. Before formalizing them, we clarify four bug fix patterns from Pan et al.
to facilitate their comprehension and formalization. We split into two those patterns whose
definition mixes adding and removing code. For instance, “Add/removal of catch block” be-
comes “Add of catch block” and “Removal of catch block”. Within the 27 original patterns,
four of them were split, this results in a restructured catalog of 31 patterns.

3.4.5.2 Source #2: New Bug Fix Patterns

In this section, we present new meaningful bug fix patterns. We found them while browsing
many commits that were done to repair bugs [11]. In section we formalize these
patterns to demonstrate the flexibility our specification mechanism.

Pattern DEC-RM: Deletion of variable declaration statement This bug fix pattern con-
sists of the removal of a variable declaration inside the buggy method body (e.g. after a
refactoring to transform a variable as field). This pattern is a sibling of Pan’s patterns related
to Class Field (i.e. Removal of a Class Field) but at method level.

Pattern THR-UP: Update of Throw Statement This bug fix pattern corresponds to the
update of a throw statement. It includes changing the type of exception that is thrown, or
modifying the exception’s parameter.

Pattern MC-UP-CH: Update of Method Invocation in Catch Blocks This bug fix pattern
consists in modifying the source code inside a catch body. This bug fix pattern hints that
some bug fixes change the error handling code of catch blocks.

Pattern CONS-UP: Update of Super Constructor Invocation This bug fix pattern refers
to the modification of super statement invocation, e.g., to change the parameter values. This

48

3.4. Defining a Repair Model of Bug Fix Patterns

bug related to incorrect calls to super were so far not discussed. “Super” is, according to our
teaching experience, a hard concept of object-oriented design.

Pattern IF-MC-ADD: Addition of Conditional Method Invocation This bug fix pattern
adds an if whose block contains one method invocation. This change could correspond to
the addition of a guarded invocation, typically done in a bug fix to add missing logic in
a limit cases. In Pan et al.’s catalog, there is a pattern “Addition of Precondition Check”,
that only adds the guard around an existing block. In contrast, our pattern also specifies the
addition of both the precondition and the code of the “if block”. Consequently, both patterns
are related, they share the same motivation, but they are conceptually disjoint.

Pattern IF-AS-ADD: Addition of Conditional Assignment This bug fix pattern repre-
sents the case of adding an if statement and an assignment inside its block. It corresponds
to a modification of a variable value under a specific condition defined by the if.

3.4.5.3 Results

In this section, we present a formalization of bug fix patterns, using the formalization pre-
sented in section We formalize: a) 18 bug fix patterns from Pan et al., belonging
to the categories If, Loops, Try, Switch, Method Declaration and Assignment; b) 2 patterns
proposed by Nath et al. [64]; c) 6 new ones presented in section[3.4.5.2]

Table|3.6|shows the result of the formalization of those bug fix patterns. The table groups
the formalization according the source of the patterns i.e., Pan, Nath, and the new bug fix
patterns presented in section[3.4.5.2] Column Name shows the bug fix pattern identifier. The
remaining three columns correspond to the formalization itself: L (Micro-Patterns) the list of
micro-patterns, U (Undesired Micro-Patterns) the list of undesired changes and R (Relational
Map relations between micro-patterns.

The table presents bug fix patterns that are formalized by two or more sub-patterns. For
example, pattern IF-APCJ (Addition of If PreCondition and Jump statement) is formalized
by three sub-patterns. Each of these sub-patterns identifies pattern instances with a concrete
jump statement. One corresponds to “break” jump statement, the other to “continue” jump
statement and the last one to “return” statement.

The table also shows that the size of the micro-pattern list L varies between one and three.
For those that L has two or three micro-patterns such as TY-ARTC, it exists a relation in R
that defines a relation between micro-patterns (See Section [3.4.2.2.2).For those that U is not
empty, a relation from U links a micro-pattern from R with another U (See Section[3.4.2.2.3)).

In section we discuss the limitations of our approach to formalize the remaining
patterns from Pan et al. bug fix catalog.

3.4.5.4 Summary

In this section, we have shown that our approach is able to formalize 26 bug fix patterns.
This answers our research question: our approach is flexible enough to formalize bug fix
patterns from the literature and can also be used to specify new bug fix patterns.

49

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

[¢)]

O© g o

11

12
13
14
15
16
17
18

19

20
21
22
23
24
25

26
27

28

Input: L > List of micro-patterns

Input: Changes > List of AST changes of a hunk

Output: boolean value: true if all micro-patterns of the pattern are mapped to AST

changes of the hunk, false otherwise

Output: Mapping of Micro-Patterns and Changes from Changes

begin

/* Retrieves the first micro-pattern x/

micro_pattern_i «— getMicropattern(L,0) ;

/+ Search AST changes of the hunk that matches with
micro_pattern_i */

initial_changes < getFirstMatchingChanges(Changes, micro_pattern_i) ;

if initial_changes is null then

L return false, ()

foreach change initial of the list initial_changes do

change_i < initial; M <) ;

partialMapping <« true;

cardinality_iter + 0 ;

while partialMapping and micro_pattern_i is not null and change_i is not null do

/= cardinality receives a natural number or x (wildcard) =*/

cardinality « cardinality(micro_pattern_i);

/+ Comparison of AST change and micro-pattern */

if match(micro_pattern_i, change_i) then

saveMapping(M, micro_pattern_i, change_i) ;

change_i + getNextASTChange(Changes, change_i);

cardinality_iter <—cardinality_iter +1 ;

if cardinality /= “*” and cardinality_iter == cardinality then
micro_pattern_i <— getNextMicropattern(L, micro_pattern_i);

L cardinality_iter < 0;

else

/* if current micro_pattern_i could be mapped, analyze
next micro-pattern */

if cardinality == “*” and isMapped(M, micro_pattern_i);

then
micro_pattern_i <— getNextMicropattern(L, micro_pattern_i);
cardinality_iter «+- 0;

else

| partialMapping « false;

/+ Return true if all analyzed changes are mapped and all
micro-patterns from L are mapped to changes from
Changes */

if partialMapping and allMapped(M, L, Changes) then

L return true, M

return false, ()

Figure 3.6: Algorithm to map micro patterns to AST changes

50

3.4. Defining a Repair Model of Bug Fix Patterns

12

13

14

15

17
18
19
20
21
22
23

Input: R > List of relations of a pattern
Input: M > Mapping of Micro-Patterns and Changes
Output: boolean value: true if the mapped AST changes respect the relations defined
by the pattern, false otherwise
begin
foreach relation relation of the list R do
micro_pattern_1 < getFirstMicropattern(relation);
micro_pattern_2 « getSecondMicropattern(relation);
changes_1 « getMappedChanges(micro_pattern_1, M);
changes_2 «+ getMappedChanges(micro_pattern_2, M);
foreach change change_1 of the list changes_1 do
foreach change change_2 of the list changes_2 do
id_entity_1 < getldFromEntityType(relation.entity;, change_1);
id_entity_2 « getldFromEntityType(relation.entity,, change_2);
/= operator receives values “==" or “!=" x/
operator « relation.comp;
/* Applies the comparison operator operator to
id_entity 1 and id_entity 2 */
comparison « evaluate(id_entity_1, id_entity_2, operator) ;
/+* If the relation is not valid, the phase returns
false */
if comparison == false then return false;

/* All relations were valid x/
return true;

/+ Return an entity identifier according to the field (et, pt

and opt) that a relation links */
Function(getldFromEntityType(relation, change) : id)
begin

if relation.entity is a et field then
| return change.id_et;
else
if relation.entity is a pt field then
‘ return change.id_pt;
else
L return change.id_opt;

Figure 3.7: Algorithm to verify the relation between AST changes

51

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

(x7UduIdIBIG UOIIMG 1138

youerg

jdpdwr =jjorrdurn | -ug jusweeig) = Tdw ™ (495D U0IIMG “I9su] Juswdlelg) = Tdwl | YojImMg JO UONIPPY 4SAvV-MS
(0 “a8uey) uorssardxg uonrpuo)) = Tdwt
(10, “98urey)) uorssardxg uonTpuo)) = TduL
(saseoqgns ¢)ared
(9IYM “@8uey) uorssardxyg uontpuo)) = Tdwe | -1paig dooT jo aduey) JD-d1
uorssardxyg
LJ1 “98ueyD uorssardxyg uonpuo)) = Tdwe | uonrpuo)) jI jo a3ue A1
S) puod puod J1 § L) 20
(yuawaye)g As[y “,‘e8urey)) JusreJ Juswle)g) = gdws
(I1°eRA youerg
1du=jjdordun | juoweelg) = Tdwn (,7uduIaIeIG IS[H ‘19[(] MeJ AN Y) = Tdwr | JS[Ue JO [eAOWY N1
(+71 1108 youerg
ydpdw =j3d pdun | -up juowdeig) = tdw (yusuIayeIg S[H ‘OS] M QANPUId[Y) = Tdwt | 9S[{ Ue JO UOnIppY NGV-AI
(31 “x"98ureyD) Jusre] yusurdle)g) = gdus
aed
3d-1dw ==3d-zdw (31 “019[(yudswdYeIG) = Tdut | -IPai] J[Ue JO [RAOWY AT
31 :.:.Lm\m \tmwﬁ JuauIR}eIg) w zdw (soseaqns
(431 ‘1I9su] JuowRIEIg) = Tdwt) dwmf
(31 ‘onunuo) ‘}19su] JuLWRIR}G) = gduws €
& - UHM ™YD
(/31 ‘119su] JuowRIEIg) = Tdwt HonIpUODa
(31 “yea1g “319su] JuswIvleIg) = gdwt Hp d
1o'1dwr == 3d zdw (/31 110su] JuswdR)G) = Tdw PPV V-l
(31 “y98ueyD JuaIeJ JuswdlRIg) = gdut
2ayD uon
1 pdw ==3d-zdw (71 ‘428U JuswRle)G) = Tdwus | -IpUoddIJ JO UOWIPPY DdV-dI
suajyed xiy Snq ‘[e 12 ueg

- 1du == 1d'gdu

(31 ‘yuowuSISsy “J19sul Juawdle)g) = gdw

JuswugIsse uon

(POWOIN “J1 ‘Masul juowdje)g) = [dwr | -puodard jo uonippy aav-sv-i
(31 “UOTyLDOAUL POYIRIA “}IISUI JusWA)E)G) = gdw
UOT}EO0AUL POYIaW UOH
yor1du == 1d'gdu (POWdIA “Jr31asur yuswajeyg) = Tdwr | -rpuodsard jo uonippy aav-ON-AI
(PowaN UOTJEDOAUT J0JONIIS
“UOIED0AUT J0}oN1suod 1adng ‘arepdn juswsjelg) = 7dwr | -uod 1adng jo ayepdn dIN-SNOD
(asnep asnep Ypje)) Ul uoned
yojeD ‘uoredoAur poypA ‘erepdn jusurdjeg) = rdwr | -oaur poyaA jo arepdn HD-dN-DN
juawr
(powyay ‘moay [, ‘oyepdn juswaye)s) = [dur | -ajeps moayy jo ayepdn JN-¥HL
JuaWId)E)S UoHeI
(POUISIAl “UOTIRIR[OSP J[CRLIBA ‘919[op Judwle)s) = Tdwr | -epap o[qeriea Jo 919 NI-OHa
suajped xy Snq maN
(dej\l [euonerdy) ¥ | (SUINEJ-0IIA paIIsapun) N | (SWIdEJ-0DIA) T | dureN

52

3.4. Defining a Repair Model of Bug Fix Patterns

‘surajed x1y 3nq Jo uonjeZIfEWLIO] :9°¢ d[qeL

sadued
(,'umyay ‘eyepdn) juswreje)g) = Tdwr | anfea WINRI PO c-eN
(' 4108
ydpdw =j3orpdu™n | -uf Juswgelg) = Tdw (445 “@SureyD Juare yusuraye)g) = Tdus
(4 @19RA (saseoqns)
ydopdw =j3orpdw™n | Juswojerg) = 1dwn (" “@8ueyD yuare yuswdle)s) = Tduws sadueyp adoog T-J1eN

suaped x1y Snq ‘e 19 yreN

(+’9INquNY ‘91815 199[qQ pasowRY) = [duws | P[OL] SSE[D) B JO [EAOWY AWI-1D
PP
(+'2IMquIY ‘21835 193(qO [euonIppy) = [dw | SSB[D B JO UONIppY aav-1o
uoneIe[da(]
(' POPIA “ATeUonoun, paAoway) = TduL | POYRIN € JO [eAOWdY ANI-ON
UOTjeIRI(]
('POYISIN “A1TRUOnOUN,] [PUORIPPY) = [dWl | POYOWN B JO UOHIPPY aav-an
(,'9dAT aanuLL ‘@8uey) adAT wniay) = rdw
(,2d£1 ardung ‘@8ueyD adAT umnyey) = Tdw
(s‘'uonerepPsq
mSmEm\J o[durg ‘a08uey) Suuepip mwjewere]) = 1dwt (soseaqns) vonerepaq
(,'9dAT aanTuunL ‘@8uey)) 9dAT, 1e30wrere) = Tdw OUIaTAT 10 28 UE
(,9dA], apdunrg “98ueyD) adAJ, 193owrerey) = 1dws POWPIN JO 95UBYD
(,"uoneIe[dd(] SqrLIEA J[3UIS ‘939[3(] IeweIe]) = Tdut
(,'uonyeIe[dd(] SqeLIeA [3UIg “4Iasu] 19jowere]) = Tdwt SHO-AN
(+A1L, ‘019101 o01g
jd'pdw =jj'rdun | juoujeis) = Tdwn (yasner) yoje)) ‘9199 JuPwLRe)g) = Tdws | ydje) e JO [RAOWY ADIV-AL
(K11 1198 yo01g
yd-pdwr =jjorrdwrn | -up juswaeig) = Tdw ™ (y'asne[D) yoje) ‘1asuf Juswdjeis) = Tdws | ydje) e JO UORIppY aOAV-AL
(‘@sner) yoye)) ‘9319[9(] Juswaels) = gdus
(A1, “98ureyD) yuareJ Juswdle)g) = gdws
- gdu == g2 1dw JUswLYe)S
pue 3d-gdw == 30 Tdw (+A11, 9190 yuPwRYRIG) = Tdwe K11 JO TerowDy JINV-AL
('asneD) yore) ‘419su] Juswvels) = gdus
. s (11, “,, “ 98ueyD) yuareJ jusursyerg) = gdw JuewRIIS
1d eduw == j9'Tdw <
pue d-zdw == g2'Tdw (A1, 4198U] JULWIRYLIG) = TdwL L3O UoHIPPY DINV-AL
(xuPwr
-9jeIg YPONIMG ‘9191 youerg
i pdw =jprpdwn | Juowegess)) = jdwn (95D YONMG ‘9393 JUsWRje)g) = TdW | YOUMG JO TeAousy 4SIV-MS

53

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

3.4.6 Evaluating the Accuracy of AST-based Pattern Instance Identifier

In this section, we present an experiment to measure the accuracy of our bug fix pattern in-
stance identifier presented in section[3.4.4). This evaluation is built on the following research
question: Is our AST-based pattern instance identifier more accurate than the state-of-the-art pattern
identifier presented by Pan et al. [9]?

The experiment consists of a manual inspection and validation of bug fix pattern in-
stances identified in commits of an open-source project. Given a bug fix commit and an
instance of pattern P; identified by an identifier, the instance is considered valid if the man-
ual inspection validates that the change indeed corresponds to pattern P;. Otherwise, the
instance is considered invalid.

3.4.6.1 Evaluated Pattern Instance Identifiers

3.4.6.1.1 Baseline Classifier The baseline tool we selected is called SEP'. SEP is a token-
based classifier used to identify bug fix instances from revisions of Java files (a revision is a
pair of file, say Foo.java version 1.1 and Foo.java version 1.2). According to the code symbols,
this tool was used to gather the results presented in Pan et al.’s study [9].

3.4.6.1.2 AST-based Classifier We develop a tool that implements the AST classifier pre-
sented in Section The tool is implemented in Java and uses ChangeDistiller [22] to
obtain AST-level differences between consecutive revisions of a file. We use a publicly avail-
able implementation of ChangeDistiller!”.

We limit both tools to identify instances of 18 bug fix patterns from Pan et al. bug fix
catalog. These patterns are those we are able to represent using our pattern formalization

presented in section3.4.5.3

3.4.6.2 Analyzed Data

We randomly selected a sample of 86 revisions (pairs of Java files) from the CVS his-
tory of the Lucene open-source project (from 09/2001 to 02/2006). The sampling strategy
is that those revisions contain a small number of source code changes, less than 5 AST
changes (this excludes formatting and documentation changes). Lucene is one of the six
open-source software applications used in Pan et al.’s work. The dataset is available on
https://sites.google.com/site/matiassebastianmartinez/journal.zipl

3.4.6.3 Experimental Results

Table |3.7| shows the result of the manual inspection for pattern instances from Lucene’s re-
visions identified by our AST-based approach and SEP tool. For each algorithm, the table
shows the number of valid pattern instances, i.e. the true positives (column “Valid”) and the
number of invalid instances, i.e., the false positive instances (column “Not Valid”). More-
over, it shows a number of missing instances (false negatives) i.e. valid instances that an
approach could identify but the other could not (column “Missing”). This number is not an

1Shttp:/ / gforge.soe.ucsc.edu/gf/project/sep/scmsvn/
http:/ /www.ifi.uzh.ch/seal /research/tools/changeDistiller.html

54

https://sites.google.com/site/matiassebastianmartinez/journal.zip

3.4. Defining a Repair Model of Bug Fix Patterns

Valid | Not Valid | Missing
Pan et al’s Token-based Approach 62 74 27
Our AST-based Approach 78 0 11

Table 3.7: The Results of the Manual Inspection of Bug Fix Pattern Instances. The row
“Token-Based” corresponds to the instances identified by the token-based classifier. The
row “AST-Based” corresponds to the instances identified by the AST classifier.

absolute number of false negatives, it is only relative with respect to the approach. In the
remaining of this section we study the accuracy of both approaches.

3.4.6.3.1 Accuracy Definition We define the accuracy of a bug fix pattern identifier as
follows:

number of bug fix instance correctly identified
total number of instance identified + missing pattern instance

accuracy =

For instance, a pattern identifier that identifies 5 instances, all correctly, but misses 2 in-
stances, has an accuracy of 5/(5 + 2) = 0.71. Another example is an identifier that correctly
identifies 4 instances, incorrectly 1 and misses 2. Its accuracy is 4/(4 +1+2) = 0.57. Accord-
ing to the accuracy values, the first identifier is more accurate than the second one.

3.4.6.3.2 Accuracy of Token-based Identification The token-based identifier finds 136 in-
stances of bug fix patterns. Table [3.7|shows that our manual inspection found 62 valid pat-
tern instances (true positives), 74 invalid (false negatives) and 27 missing instances. The
accuracy of the token-based instance identifier is 62/(62 + 74 + 27) = 0.38.

Let us analyze some cases where the identifier finds invalid instances. For instance, the
token-based identifier identifies from revision 1.4 of class “FilteredQuery”, an invalid in-
stance of pattern “Change of Method Declaration” (MD-CHG) and another invalid instance
of pattern “Addition of precondition with jump” (IF-APCJ). The actual bug fix pattern in this
commit is “Addition of Method Declaration” (MD-ADD). The first invalid instance is due to
a wrong mapping between the lines of the revision. The added method is “mapped” to an
existing method (with different signature), resulting in the change being interpreted as an
update of the method declaration. For the second false positive, the invalid pattern instance
is identified inside the code of the added method.

We also found false positive instances caused by formatting changes between consecu-
tive revisions. For example, the revision 1.3 of Lucene’s class GermanStemmer applies for-
matting changes in the source code and among the many modified lines, one local variable
is initialized. The token-based identifier incorrectly identifies from this pair 21 instances of 9
different bug fix patterns. The formatting changes produce a complex mapping between the
revision and its predecessor in many hunks. Consequently, the code inside these formatting
hunks matching with a bug fix pattern definition is incorrectly identified as an instance.

3.4.6.3.3 Accuracy of AST-based Identification The AST-based identifier found 78 bug
fix pattern instances. These instances were present in 53 different revisions. Moreover, the

55

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

identifier could not identify 11 instances (missing). The accuracy of this identifier is 78 /(78 +
11) = 0.88.

Our manual inspection found that 100% (78/78) of the pattern instances were valid (the
data is available). This implies all bug fix instances were true positives. These identified
instances correspond to 9 different bug fix patterns. However, the algorithm also missed
some instances, i.e., suffers from false negatives, which are discussed in Section[3.4.6.3.4]

3.4.6.3.4 False Negatives A false negative (or missing) instances is a valid bug fix pattern
instance which is not identified by a pattern instance identifier. To detect those instances
from the analyzed data, we cross the results obtained from both AST and token-based ap-
proaches. A missing instance of a pattern instance identifier A is not identified by A but is
identified correctly by the other approach.

Table3.7)presents the classification result. The token-based approach had 27 missing bug
fix instances while the AST-based one had 11 false negatives.

Let us now analyze the false negatives of our approach. For 7 of 11 missing instances,
the cause is due to the tree differencing tool (ChangeDistiller) we use to compute the differ-
ences between two consecutive revisions. ChangeDistiller does not compute changes inside
anonymous and inner classes and there were 7 pattern instances in such classes in our data.
For example, our algorithm does not identify an instance of pattern “Removal of if predicate
(IF-RMV)” in revision 1.21 of class IndexSearcher, the instance is in the inner class HitCol-
lector. Another case is that our approach does not see changes in the specification of thrown
exceptions (keyword “throws” in Java), which are instances of pattern “Change of method
declaration (MD-CHG)”. For example, revision 1.4 of class TestTermVectorsWriter modifies
the signature of the method by adding a clause “throws IOException”. Our tree differencing
algorithm does not consider those changes and this limitation impacts the accuracy of this
particular bug fix pattern.

3.4.6.4 Conclusion

The manual analysis done in the presented experiment allows us to respond to our research
question: our AST-based identifier is more accurate than the token-based used by Pan et al.
in their experiments.

The results of our experiment are summarized in Table It shows that our AST-based
identifier is able to identify: more valid bug fix instances (more true positives); less invalid
instances (less false positives); less number of missing instances (less false negatives). Con-
sequently, we can say that it is more accurate (0.88 vs. 0.38) than the token-based approach.

3.4.7 Learning the Abundance of Bug Fix Patterns

In this section, we use the bug fix pattern instance identifier presented in Section to
measure the abundance of bug fix patterns. The abundance allows us to measure the impor-
tance of bug fix patterns. Then, one can define a probabilistic repair model formed of bug fix
patterns and their frequencies.

This kind of probabilistic repair model could be used by bug fix pattern-based repair
approaches such as PAR [5]. Let us explain how using PAR approach as example. PAR is a
repair approach guided by evolutionary computation. To create candidate fixes, it instanti-
ates 10 bug fix templates, derived from bug fix patterns. PAR navigates the search space in a

56

3.4. Defining a Repair Model of Bug Fix Patterns

uniform random way, that means, it takes randomly one bug fix template to be applied in a
buggy location. The pattern abundance could be used in an extension of the strategy to nav-
igate the search space. Instead of a random strategy, the extension could start navigating the
space from the most abundant bug fix templates (i.e., the most frequent kind of fixes applied
by developers) to the less abundant. This strategy could help to find a fix faster, avoiding
applying infrequent changes in bug fixing.

#Commits #Revisions #Java Revisions
All 24,042 173,012 110,151
BFP 6,233 33,365 23,597

Table 3.8: Versioning data used in our experiment. Since we focus on bug fix patterns, we
analyze the 23,597 Java revisions whose commit message contains “bug”, “fix” or “patch”.

3.4.7.1 Dataset

We have searched for instances of the 18 patterns mentioned inin the history of six Java
open source projects: ArgoUML, Lucene, MegaMek, Scarab, jEdit and Columba. In Table
we present the total number of commits (versioning transactions) and revisions (file pairs)
present in the history of these projects. In the rest of this section, we analyze the 23,597
Java revisions whose commit message contains “bug”, “fix” or “patch”, in a case insensitive
manner (row “BFP” in Table 3.8).

3.4.7.2 Empirical Results

Table 3.9 shows that our approach based on AST analysis scales to the 23,597 Java revisions
from the history of 6 open source projects. This table enables us to identify the importance
of each bug fix pattern. For instance, adding new methods (MD-ADD) and changing a con-
dition expression (IF-CC) are the most frequent patterns while adding a try statement (TY-
ARTC) is a low frequency action for fixing bugs. Overall, the distribution of the pattern
instances is skewed, and it shows that some of Pan’s patterns are really rare in practice. In-
terestingly, we have also computed the results on all revisions — with no filter on the commit
message — and the distribution of patterns is rather similar. It seems that the bug-fix-patch
heuristic does not yield a significantly different set of commits.

3.4.7.3 Summary

In this subsection, we presented the abundance of 18 bug fix patterns from the analysis of
6 open-source projects. We found that the most frequent changes to fix bugs are changes
in if condition statements. Knowing this distribution is important in some contexts. For in-
stance, from the viewpoint of automated software repair approaches: their fix generation
algorithms can concentrate on likely bug fix patterns first in order to maximize the probabil-
ity of success.

57

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

Pattern name Abs
Change of If Condition Expression-IF-CC 4,444
Addition of a Method Declaration-MD-ADD 4,443
Addition of a Class Field-CF-ADD 2,427
Addition of an Else Branch-IF-ABR 2,053
Change of Method Declaration-MD-CHG 1,940
Removal of a Method Declaration-MD-RMV 1,762
Removal of a Class Field-CF-RMV 983
Addition of Precond. Check with Jump-IF-APC]J 667
Addition of a Catch Block-TY-ARCB 497
Addition of Precondition Check-IF-APC 431
Addition of Switch Branch-SW-ARSB 348
Removal of a Catch Block-TY-ARCB 343
Removal of an If Predicate-IF-RMV 283
Change of Loop Predicate-LP-CC 233
Removal of an Else Branch-IF-RBR 190
Removal of Switch Branch-SW-ARSB 146
Removal of Try Statement-TY-ARTC 26
Addition of Try Statement-TY-ARTC 18
Total 21,234

Table 3.9: Context-independent Bug Fix Patterns: Absolute Number of Bug Fix Pattern In-
stances in 23,597 Java Revisions.

58

3.5. Recapitulation

3.4.8 Discussion
3.4.8.1 Threats to Validity

Our results are completely computational and a severe bug in our implementation may in-
validate our findings. During our experiments, we studied in details dozens of bug fix pat-
tern instances (the actual code, the fix and the commit message) found by the tool and they
were meaningful.

Another threat is the criterion to manually classify a bug fix pattern instance as valid or
not. It could vary depending on who inspects it (an expert, a developer, a novice, etc.).

3.4.8.2 Limitations

In this section we sum up the limitations of our bug fix pattern formalization approach.

3.4.8.2.1 Context Dependence We notice that some patterns only describe the nature of
change itself, while others describe the change in a given context. By nature of change, we
mean only the added and removed content; by context, we mean the code around the added
and removed content. For instance, Pan et al. define a pattern representing the removal of a
method call in a sequence of method calls. To us, this pattern is context-dependent. To observe
an instance of removal of a method call in a sequence of method calls: 1) the change itself
has to be a removal of a method call 2) the context of the removal has to be a sequence of
method calls on the same object. In total, there is a minority of 8/31 bug fix patterns of the
refined catalog presented in section [3.4.5.1] that are context-dependent.

We do not consider those context-dependent bug fix patterns. This limitation could prob-
ably be overcome with a way to specify the “context” (the code surrounding the diff) at the
AST level.

3.4.8.2.2 Limitations inherited from ChangeDistiller Another limitation of our pattern
formalization approach is due to the change taxonomy used by tree differencing algorithm.
ChangeDistiller misses some kinds of source code changes. For instance, an update oper-
ation in a class field declaration is not detected. This limitation prevents us to represent
pattern “Change of Class Field Declaration” (CF-CHG) using AST changes as well as 4 other
patterns. Those 5 patterns contain at least one change that is not covered by the change
taxonomy of ChangeDistiller.

Another limitation is the granularity of the tree differencing algorithm. ChangeDistiller
works at the statement level. This prevents us to study certain fine-grain patterns. For ex-
ample, the addition of a new parameter or the change of an expression passed as parameter
of a method call cannot be detected. Also, as we discussed in Section the tree
differencing algorithm does not detect changes inside anonymous classes. Improvement or
replacement of the tree differencing algorithm could potentially decrease the number of false
negatives.

3.5 Recapitulation

In this chapter, our challenge was to learn how developers fixed bugs. There is information
from them that could be useful in automatic software repair domain. We first studied how

59

Chapter 3. Learning from Human Repairs by Mining Source Code Repositories

software evolves. In particular, we studied all changes that developers do in the history
on a set of open-source software. Furthermore, we studied the importance of source code
changes. We learned that there are changes that appear more frequent than others in the
software evolution.

Then, we focused in how software is repaired. We first presented a technique to recognize
repairs from the history of a program. Then, we analyzed the composition of these repairs
in two levels of granularity: at the AST level and a change pattern level. We proposed
mechanism to measure the importance of those levels.

The contributions of this chapter are:

1. One technique to filter repairs from version control system.

2. Two models that describe the kind of source code changes done by developers to fix
bugs, and include a measure of the importance of those changes.

3. One mechanism to formalize change patterns.
4. One mechanism to identify pattern instances using the formalization.

The work presented in this section has direct applications. For instance, one is for the
repair approaches evaluation. It allows to define a fair and unbiased defect dataset for
approaches evaluation (Chapter [5). An evaluation dataset that targets a defect class (de-
fined further) can be composed of instances of bug fix patterns identified by our mechanism.
Moreover, this work can be used for the improvement of software repair approaches (Chap-

ter).

60

Chapter

Two Strategies to Optimize
Search-based Software Repair

In Chapter 3| we presented models that characterize the behavior of developers fixing bugs.
In this Chapter, we aim at studying repair search spaces built from those repairs models.

The search space of automated program repair consists of all explorable bug fixes for a
given program and a given bug. A naive search space is huge, because even in a bounded
size scenario, there are a myriad of elements to be added, removed or modified: statements,
variables, operators, literals. The search of the solution, i.e., a bug fix, is guided by a search
strategy. For instance, GenProg [12] uses a fix search guided by genetic programming, while
Qi et al.[76] use random search. The time those strategies spend to navigate the search space
could be infinite, especially when the size of the search space is huge. As consequence, the
search of the fix is delimited by some criteria such as the time or number of candidate re-
pairs validated. For example, the search in GenProg is delimited by the number of program
variants (each with one candidate fix) to validate. This number depends on two variables of
the genetic programming search: size of the initial population and number of generations to
evolve each member of the population. For instance, in one of its evaluations [99], GenProg
executes 400 variants (from an initial population of 40 and 10 generations).

Unfortunately, during repair approach evaluations, there are bugs that remain unre-
pairable. For example, GenProg [8] is able to repair 55 out of 105 bugs. We have two hy-
potheses about the reason a solution is not found. The first one states the repair approach
is not able to fix the bug. This means, its repair search space does not contain the fix. The
second one states that at least one fix exists in the solution space but it was not discovered
by the search strategy.

In this chapter we focus on the latter hypothesis. We aim at defining strategies to find
those undiscovered solutions in the repair search space. These strategies focus on the way a
search space is navigated.

We present two navigation strategies. The first strategy, presented in Section takes
as input human bug fixes. The strategy aims at navigating the search space in the following
manner: the probability to select a fix from the space depends on the frequency this kind
of fixes is used by developers to fix. By focusing on frequent repairs, the strategy aims at
reducing the time to fix a bug and, by consequence, to increase the probability of finding a
repair.

61

Chapter 4. Two Strategies to Optimize Search-based Software Repair

The second strategy, presented in Section {4.2] aims at improving the search space navi-
gation of redundancy-based repair approaches such as GenProg. Redundancy-based repair
approaches synthesize fixes reusing already written source code. Our strategy aims at re-
ducing the locations where the reusable code is picked to synthesize a fix. As consequence,
the strategy produces a smaller search space without losing repair strength. That means, the
reduced space contains as much solutions as the original (not reduced) space.

This chapter contains material published in the proceedings of ESEM'13 [11],
ICSE’14 [100] and unpublished material.

4.1 Adding Probabilities to the Search Space to Optimize the Space
Navigation

This section discusses the nature of the search space size of automated program repair. In
Section we defined two change models, CT and CTET, and we showed in Section
that both models can be extended adding probabilistic distribution over their repair actions.

In this Section we present a strategy to optimize the navigation of the search space. Our
challenge is to know whether exists a repair model that allows repair approaches to navigate
the shaping phase faster than others, in other words, in a more efficient way. This allows
repair approach to increase the probability to find a fix.

The Section remains as follows. In Section we present a typical composition of re-
pair search spaces. In Section we present a strategy to reduce the time for searching
elements in the search space. In Section we present the evaluation of the strategy. Sec-
tion presents a theoretical study case that includes probabilistic search space over a
repair approach from the literature. Finally, Section[4.1.4] concludes the section.

4.1.1 Decomposing Repair Search Space

We consider that the repair search space can be viewed as the combination of three spaces:
the fault localization space, the shaping space, and the synthesis space.

The search space can then be loosely defined as the Cartesian product of those spaces
and its size then reads:

|FAULT LOCALIZATION| X |SHAPE| X |SYNTHESIS|

The fault localization space contains the location where a repair is likely to be successful.
The shaping space contains the kind of repair that can be applied. Informally, the shape of
a bug fix is a kind of patch. For instance, the repair shape of adding an “if” throwing an
exception for signaling an incorrect input consists of inserting an if and inserting a throw.
The concept of “repair shape” is equivalent to what Wei et al. [74] call a “fix schema”, and
Weimer et al. [12] a “mutation operator”. We define a “repair shape” as an unordered tuple
of repair actions (from a set of repair actions called R, see Section 18. For the if/throw
example aforementioned, in repair space CTET, the repair shape of this bug fix consists of
two repair actions: 1) statement insertion of “if” and 2) statement insertion of “throw”. The
shaping space consists of all possible combinations of repair actions.

!8Since a bug fix may contain several instances of the same repair actions (e.g. several statement insertions),
the repair shape may contain several times the same repair action.

62

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

Finally, the synthesis space contains the initializations of the repair shapes. The com-
plexity of the synthesis depends on the repair actions of the shaping space. For instance, the
repair actions of Weimer et al. [12] (insertion, deletion, replace) have an “easy” and bounded
synthesis space. The approach does not synthesize new code. Instead, it instantiates inser-
tion and replace repair actions with code that already exists in the program.

In this section we present a strategy to decrease the navigation time of a shaping search
space. If one can find efficient strategies to navigate through this shaping space, this would
contribute to efficiently navigating through the repair search space as a whole, thanks to the
combination.

4.1.2 A Strategy to Optimize Shaping Space Navigation

We present a strategy to optimize the navigation of the shaping space. The strategy aims
at finding faster a fix from the search space. For that, it aims at exploring the parts of the
space that are likely to be more fruitful. The strategy relies on probability repair models
presented in Section[3.3} a repair action is selected from the space according to its probability
distribution. That means that the probabilistic distributions P over the repair actions guide
the navigation of the repair space. As a consequence, the probability distribution is crucial
for minimizing the search space traversal: a good distribution P results in concentrating on
likely repairs first. We aim at providing the search strategy a probability distribution Py,
allows minimizing the time of navigating the search space. The challenge of this section
is to find a way to compare probabilistic distributions for finding P,,,. For that, we need
to: a) estimate the navigation time of the shaping space for a given probability distribution
over a repair model; b) set up a probability distribution over repair actions; c¢) compare the
efficiency of different probability distributions to find good repair shapes. In the remaining
of this section we target these points.

4.1.2.1 Mathematical Analysis Over Repair Models

To analyze the shaping space, we now present a mathematical analysis of our probabilistic
repair models. So far, we have two repair models CT and CTET (see and different ways
to parametrize them.

According to our probabilistic repair model, a good navigation strategy consists on con-
centrating on likely repairs first: the repair shape is more likely to be composed of frequent
repair actions. That is a repair shape of size n is predicted by drawing n repair actions accord-
ing to the probability distribution over the repair model. Under the pessimistic assumption
that repair actions are independent!?, our repair model makes it possible to know the exact
median number of attempts IV that is needed to find a given repair shape R (demonstration

given in[A):

k
N = k such that Zp(l —p)t>05 4.1)
i=1

Equation (1) holds if and only if we consider them as independent. If they are not, it means that we under-
estimate the deep structure of the repair space, hence we over-approximate the time to navigate in the space to
find the correct shape. In other words, even if the repair actions are not independent (which is likely for some of
them) our conclusions are sound.

63

Chapter 4. Two Strategies to Optimize Search-based Software Repair

with p = —

I, (e,

where e; is the number of occurrences of r; inside R

x ILerPp(r)

For instance, the repair of revision 1.2 of Eclipse’s Checked TreeSelectionDialog?” consists
of two inserted statements. Equation 4.1|tells us that in repair model CT, we would need in
average 12 attempts to find the correct repair shape for this real bug.

Having only a repair shape is far from having a real fix. However, the concept of repair
shape associated with the mathematical formula analyzing the time to navigate the repair
space is key to compare ways to build a probability distribution over repair models.

Input: C > A bag of transactions
Output: The median number of attempts to find good repair shapes
1 begin
2 Q<+ {} > Result set
3 T,E + split(C) > Cross-validation: split C into Training and Evaluation data
4 M < train_model(T) > Train a repair model (e.g. compute a probability
distribution over repair actions)
5 forsc I/ > For all repairs observed in the repository
6 do
7 n < compute_repairability(s, M) > How long to find this repair according to
the repair model
8 Q<+ QUn > Store the “repairability” value of s
9 return median(§2) > Returning the median number of attempts to find the repair
shapes

Figure 4.1: An Algorithm to Compare Fix Shaping Strategies. There may be different
flavors of functions split, f and compute Repairability.

4.1.2.2 Defining Probabilistic Repair Models

To compute a probability distribution over repair actions, we propose to learn them from
software repositories. For instance, if many bug fixes are made of inserted method calls,
the probability of applying such a repair action should be high. Despite our single method
(learning the probability distributions from software repositories), we have shown in
that there is no single way to compute them, they depend on different heuristics. In the
evaluation (Section , we use those heuristics BFP and N-SC to define shaping spaces.

4.1.2.3 Comparing Different Distributions

To compare different distributions against each other, we set up the following process. One
first selects bug repair transactions in the versioning history. Then, for each bug repair trans-
action, one extracts its repair shape (as a set of repair actions of a repair model). Then one

DFix for 19346 integrating changes from Sebastian Davids” http://goo.gl/d40Si

64

http://goo.gl/d4OSi

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

computes the average time that a maximum likelihood approach would need to find this
repair shape using equation [4.1]

Let us assume two probability distributions P; and P, over a repair model and four
fixes (F7 ... Fy) consisting of two repair actions and observed in a repository. Let us assume
that the time (in number of attempts) to find the exact shape of F; ... Fy according to P; is
(5,26,9,12) and according to P, (25,137,31,45). In this case, it is clear that the probability
distribution P; enables us to find the correct repair shapes faster (the shaping time for P; is
lower). Beyond this example, by applying the same process over real bug repairs found in
a software repository, our process enables us to select the best probability distributions for a
given repair model.

Since equation is parametrized by a number of repair actions, we instantiate this
process for all bug repair transactions of a certain size (in terms of AST changes). This means
that our process determines the best probability distribution for a given bug fix shape size.

4.1.2.3.1 Comparison Algorithm Figure4.1{sums up this algorithm to compare fix shap-
ing strategies. The algorithm uses cross-validation to avoid bias in the result. This bias can
emerge due we use the same data, i.e., transactions found in repositories, to: compute differ-
ent probability distributions P,, and to evaluate the time to find the shape of real fixes (bug
fix transactions). To overcome this problem, we always use different sets of transactions to
estimate P and to calculate the average number of attempts required to find a correct repair
shape. Using cross-validation reduces the risk of overfitting. Let us analyze the algorithm.
From a bag of transactions C, function split (line 3) creates a set of testing transactions and
a set of evaluation transactions. Then, one trains a repair model, with function trainM odel
(line 4), for repair models CT and CTET it means computing a probability distribution on a
specific bag of transactions. Finally, for each repair of the testing data, one computes its “re-
pairability” according to the repair model, with Equation [4.1|(line 7). The algorithm returns
the median repairability, i.e., the median number of attempts required to repair the test data
(line 9).

4.1.3 Evaluation
4.1.3.1 Evaluation set up

We run our fix shaping process on our dataset of 14 repositories of Java software considering
two repair models: CT and CTET (see Section. We remind that CT consists of 41 repair
actions and CTET of 173 repair actions. For both repair models, we have tested the different
heuristics of B.3.1]to compute the median repair time: all transactions (ALL); one AST change
(1-SC); 5 AST changes (5-SC); 10 AST changes (10-SC); 20 AST changes (20-SC); transactions
with commit text containing “bug”, “fix”, “patch” (BFP); a baseline of a uniform distribution
over the repair model (EQP for equally-distributed probability).

Since we have a dataset of 14 independent software repositories, we use this dataset
structure for cross-validation. We take one repository for extracting repair shapes and the
remaining 13 projects to calibrate the repair model (i.e. to compute the probability distribu-
tions). We repeat the process 14 times, by testing each of the 14 projects separately. In other
words, we try to predict real repair shapes found in one repository from data learned on
other software projects.

65

Chapter 4. Two Strategies to Optimize Search-based Software Repair

We extracted all bug fix transactions with less than 8 AST changes from our dataset. For
instance, the versioning repository of DNSJava contains 165 transactions of 1 repair action,
139 transactions of size 2, 71 transactions of size 3, etc. The biggest number of available
repair tests are in jdt.core (1,605 fixes consist of one AST change), while Jhotdraw has only
2 transactions of 8 AST changes. We then computed the median number of attempts to find
the correct shape of those 23,048 fix transactions. Since this number highly depends on the
probability distributions P,, we computed the median repair time for all combinations of fix
size transactions, projects, and heuristics discussed above (8 x 14 x 6).

66

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

‘sydwrayye o1 uey) ssaf ur auop st aoeds yoreas oy ur adeys aredax
3091100 3} Surpury ‘suoroesueI) [[ews 10 ‘S3eq UondesueI} DG-G Ul papnpur sadueypd jo Ariqeqoid uonnqrysip sy woijy dpew S
1D Ppow aredax ayy, "1 [opow Jredar 105 9z1s uonoesuer 1od pue 10sloxd 10d pajse) suonoesue) X1y JO IDqUINU 3} 3)LITPUT S}adeIq
ur sanjea oy ‘suondesuern; xy jo adeys aredar 3091100 sy puy o3 parmbar (proq ur) sydwaye jo pquNu ueIpaw Y], :I'F [qeL

(19) ovTve (19) LO¥L (£8) L6v€ (#8)890T (0c1) Ieh (TTT)SET (L91) €L (180) € 3edowo],

(F¢) 88956 (6€) 96491 (22)S8LF (19)SZ9 (¢or) ez (98) 00T (ge1) 21 (ITo) € smmg

(22)TeTes (68) POLEL (Z€1) ¥I6€ (ST ¥9Z (6S1) 0T (C07) €I (9%€) 9T (€99)9 qereds

(zo1) TessiL (S12) ¥98TT (S0€) S€09 (9T€) €201 (79%) TIE (FIH) PL (€82) €T (F8ID) € Yousprom m-asdipe-310
(60€) €98FZ (F1€) PPEST (9TF) 6€9% (T6€) POLL (1€9) T6T (£59) €6 (STOT) 9T (9091) 9 °10073pl-asdide-310
(8%)o0 (17) z8sss (h) 64891 (39) 65%9 (02) S99 (89)9%T (F€1) ST (€20)9 807

(9)< (6) F€91€ (11)%0 (2) s¥e6b (1T)>© (81) 968 (6€) TH (o) e un!l

(2) 16€95 (g)oo () 119 (01) 6221 (0T) 48T (6) 6ST (12) €1 (12) L gmerpjoH(

(c11) s8p8e (98) SFIEL (0ST) €09 (£¥1) LSOL (681) TZT (802) 88 (€9€) ST (F19)9 ssogl

(ze) seeec (67) 8795 (0g) 681 (29)906T (8F) 1ST (€9) 8S (#8) €1 (ctr) e wpal

(F¥)o< (€9) €9€91 (09) €90 (¥) €ssT (28) 81z (1L T0L (6€T) €T (591)9 eaelsuq

(¥6) 909%9 (€2) 80601 (80T) TIIT (£I1)0F6 (9F1) 2SS (FF1)89 (SO €L (T8) € equuniod

(6) T€90€ (9) 61071 (€1) Z1T¥T (2) $6¥ (01)99% (01) 1TL (ST) €I (0g)z 101D

(991) oeveL (L61) 8PLIT (¥€T) £L6S (¥ST) FOEL (29€) 9T (98€) 98 (8€9) €L (966)9 TINNOSIY

8 L 9 g ¥ € z I 071§ areday / aredoy

67

Chapter 4. Two Strategies to Optimize Search-based Software Repair

4.1.3.2 Empirical Results

Table presents the results of this evaluation for repair space CT and transaction bag
5-SC. For each project, the bold values give the median repairability in terms of number
of attempts required to find the correct repair shape with a maximum likelihood approach.
Then, the bracketed values give the number of transactions per transaction size (size in num-
ber of AST changes) and per project. For instance, over 996 fix transactions of size 1 in the
ArgoUML repository, it takes an average of 6 attempts to find the correct repair shape. On
the contrary, for the 51 transactions of size 8 in the Tomcat repository, it takes an average
of 34,240 attempts to find the correct repair shape. Those results are encouraging: for small
transactions, it takes a handful of attempts to find the correct repair shape. The probability
distribution over the repair model seems to drive the search efficiently. The other heuristics
yield similar results — the complete results (6 tables — one per heuristic) are given in appendix
[Al

About cross-validation, one can see that the performance over the 14 runs (one per
project) is similar (all columns of Table contain numbers that are of similar order of
magnitude). Given our cross-validation procedure, this means that for all projects, we are
able to predict the correct shapes using only knowledge mined in the other projects. This
gives us confidence that one could apply our approach to any new project using the proba-
bility distributions mined in our dataset.

Furthermore, finding the correct repair shapes of larger transactions (up to 8 AST
changes) has an order of magnitude of 10* and not more. Theoretically, for a given fix shape
of n AST changes, the size of the repair model is the number of repair actions of the model
at the power of n (e.g. |CT|"). For CT and n = 4, this results in a space of 41* = 2,825,761
possible shapes (approx 10°). In practice, overall all projects, for small shapes (i.e. less or
equal than 3 changes), a well-defined probability distribution can guide to the correct shape
in a median time lower than 200 attempts. This again shows that the probability distribution
over the repair model is so unbalanced that the likelihood of possible shapes is concentrated
on less than 10* shapes (i.e. that the probability density over |C'T|" is really sparse).

Now, what is the best heuristic, with respect to shaping, to train our probabilistic repair
models?

For each repair shape size of Table and heuristic, we computed the median re-
pairability over all projects of the dataset (a median of median number of attempts). We
also compute the median repairability for a baseline of a uniform distribution (EQP) over
the repair model (i.e. Vi, P(r;) = 1/|CT})). Figure |£.2) presents this data for repair model CT.
It shows the median number of attempts required to identify correct repair shapes as Y-axis.
The X-axis is the number of repair actions in the repair test (the size). Each line represents
probability estimation heuristics.

Figure 4.2| gives us important pieces of information. First, the heuristics yield different
repair time. For instance, the repair time for heuristic 1-SC is generally higher than for 20-SC.
Overall, there is a clear order between the repairability time: for transactions with less than 5
repair actions heuristic 5-SC gives the best results, while for bigger transactions 20-SC is the
best. Interestingly, certain heuristics are inappropriate for maximum-likelihood shaping of
real bug fixes: the resulting distributions of probability results in a repair time that explodes
even for small shape (this is the case for a uniform distribution EQP even for shape of size
3). Also, all median repair times tend toward infinity for shape of size larger than 9. Finally,
although 1-SC is not good over many shape size, we note that for small shape of size 1 is

68

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

500 -
20000
i 400 -
(2] J
-—
g. - 300
) 15000
= B 200
© 4
b 4
(_U 100
a 4
e 10000 1
H 4 10
C i
0]
- R
5000 —|
= 1
= ‘ |
0 i1 2 4 i 5 6 7 8 9

Repair size (in # AST changes)

Figure 4.2: The repairability of small transactions in repair model CT. Certain probability
distributions yield a median repair time that is much lower than others.

better. This is explained by the empirical setup (where we also decompose transactions by
shape size).

4.1.3.2.1 On The Best Heuristics for Computing Probability Distributions over Repair
Actions To sum up, for small repair shapes heuristic 1-SC is the best with respect to prob-
abilistic repair shaping, but it is not efficient for shapes of size greater than two AST-level
changes. Heuristics 5-SC and 20-SC are the best for changes of size greater than 2. An impor-
tant point is that some probability distributions (in particular built from heuristics EQP and 1-SC)
are really suboptimal for quickly navigating into the search space.

Do those findings hold for repair model CTET, which has a finer granularity?

4.1.3.2.2 On The Difference between Repair Models CT and CTET We have also run
the whole evaluation with the repair model CTET (see[3.1.2). The empirical results are given
in appendix[A] (in the same form as Table[A.T7).

Figure [4.3|is the sibling of figure [4.2| for repair model CTET. They look rather different.
The main striking point is that with repair model CTET, we are able to find the correct repair
shape for fixes that are no larger than 4 AST changes. After that, the arithmetic of very low
probability results in virtually infinite time to find the correct repair shape. On the contrary,
in the repair model CT, even for fixes of 7 changes, one could find the correct shape in a
finite number of attempts. Finally, in this repair model the average time to find a correct
repair shape is several times larger than in CT (in CT, the shape of fixes of size 3 can be
found in approx. 200 attempts, in CTET, it’s more around 6,000).

69

Chapter 4. Two Strategies to Optimize Search-based Software Repair

i XXX 5
1-SC
. &< 5-8C
® & & 10-sC
_ DD @ 20-sc
100000 VIRV e
€9 H—+—+ ALL
=]
e
g 80000 1
@©
=]
@®
8 60000
| -
=+ i
- &
0]
5 40000 4
(0]
E i
20000
. / ‘ |

1 2 3 4

Repair size (in # AST changes)

Figure 4.3: The repairability of small transactions in repair space CTET. There is no way to
find the repair shapes of transactions larger than 4 AST code changes.

70

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

For a given repair shape, the synthesis consists of finding concrete instances of repair
actions. For instance, if the predicted repair action in CTET consists of inserting a method
call, it remains to predict the target object, the method and its parameters. We can assume
that the more precise the repair action, the smaller the “synthesis space”. For instance, in
CTET, the synthesis space is smaller compared to CT, because it only composed of enriched
versions of basic repair actions of repair model CT (for instance inserting an “if” instead of
inserting a statement).

Our results illustrate the tension between the richness of the repair model and the ease of
fixing bugs automatically. When we consider CT, we find likely repair shapes quickly (less
than 5,000 attempts), even for large repair, but to the price of a larger synthesis space. In
other words, there is a balance between finding correct repair actions and finding concrete
repair actions. When the repair actions are more abstract, it results in a larger synthesis space,
when repair actions are more concrete, it hampers the likelihood of being able to concentrate
on likely repair shapes first. We conjecture that the profile based on CT is better because it
enables us to find bigger correct repair shapes (good) in a smaller amount of time (good).

Finally, we think that our results empirically explore some of the foundations of “re-
pairing”: there is a difference between prescribing aspirin (it has a high likelihood to con-
tribute to healing, but only partially) and prescribing a specific medicine (one can try many
medicines before finding the perfect one).

4.1.3.3 Case Study: Reasoning on GenProg within our Probabilistic Framework

We now aim at showing that our model also enables to reason on Weimer et al.’s example
program [12]. This program, shown in Listing implements Euclid’s greatest common
divisor algorithm, but runs in an infinite loop if @ = 0 and b > 0. The fix consists of adding
a “return” statement on line 6.

4.1.3.3.1 Probability Distribution In Weimer et al.’s repair approach, the repair model
consists of three repair actions: inserting statements, deleting statements, and swapping
statements?!. By statements, they mean AST subtrees. With a uniform probability distribu-
tion, the logical time to find the correct shape is 4 (from Equation [4.1). If one favors insertion
over deletion and swap, for instance by setting pinsert—0.6, the median logical time to find the
correct repair action becomes 2 which is twice faster. Between 2 and 4, it seems negligible,
but for larger repair models, the difference might be counted in days, as we show now.

4.1.3.3.2 Shaping and Synthesis In the GCD program, there are n,,.. = 13 places where
nast = 8 AST statements can be inserted. In this case, the size synthesis space can be formally
approximated: the number of possible insertions is npjgce * nqst; the number of possible
deletions is n4s; the number of possible swaps is (Nast)?.

This enables us to apply our probabilistic reasoning at the level of concrete fix as follows.
We define the concrete repair distribution as: pinsere (ast;, placey,) = —Lnsert— pooe0(ast;) =

Nplace*Nast

Pdelete =G
fdelete pswap(aSti? CLSt]’) - (TLS:;:§J2 i

Nast
With a uniform distribution pinsert = Pdeiete = Pswap = 1/3, formula [£.1] yields that the
logical time to fix this particular bug (insertion of node #8 at place #3) is 219 attempts (note

that it is not anymore a shaping time, but the real number of required runs). However, we

*'In more recent versions of GenProg, swapping has been replaced by “replacing”.

71

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Listing 4.1: The infinite loop bug of Weimer et al.’s bug [12]. Code insertion can be made on
13 places, 8 AST subtrees can be deleted or copied.

1 // insert 1

2 if (a ==0) { // ast 1

3 // insert 2

4 System.out. println(b); // ast 2
5 // insert 3

6 }

7 // insert 4

8 while (b != 0) { // infinite loop // ast 3
9 // insert 5

10 if (a >b) { // ast 4

11 // insert 6

12 a=a—>b; // ast 5

13 // insert 7

14 } else |

15 // insert 8

16 b=Db—a; // ast 6

17 // insert 9

18 }

19 // insert 10

20 }

21 // insert 11

22 System.out. println(a); // ast 7
23 // insert 12

24 return; // ast 8

25 // insert 13

26 }

72

4.1. Adding Probabilities to the Search Space to Optimize the Space Navigation

Dinsert | Pdelete | Pswap LOgiCal time
33 .33 .33 219
.39 .28 33 185
45 22 33 160
40 .40 20 180
.50 .30 20 144
.60 .20 .20 120

Table 4.2: Different probability distributions over the GenProg’s repair model.

observed over real bug fixes that pinsert > Daeiete (See Table from Section . What if we
distort the uniform distribution over the repair model to favor insertion? Table 4.2|gives the
results for arbitrary distributions spanning different kinds of distribution. This table shows
that as soon as we favor insertion over deletion of code, the logical time to find the repair
does actually decrease.

Interestingly, the same kind of reasoning applies to fault localization. Let’s assume that
a fault localizer filters out half of the possible places where to modify code (i.e. nyjqce = 7).
Under the uniform distribution and the space concrete repair space, the logical time to find
the fix decreases from 219 to 118 runs.

4.1.3.3.3 Repairability and Fix Size We consider the same model but on larger programs
with fault localization, for instance 100 AST nodes and 20 potential places for changes. Let
us assume that the concrete fix consists of inserting node #33 at place #13. Under a uniform
distribution, the corresponding repair time according to formula [4.1]is > 20,000 runs. Let us
assume that the concrete fix consists of two repair actions: inserting node #33 at place #13
and deleting node #12. Under a uniform distribution, the repair time becomes 636,000 runs,
a 30-fold increase.

Obviously, for sake of static typing and runtime semantics, the nodes cannot be inserted
anywhere, resulting in lower number of runs. However, we think that more than the logical
time, what matters is the order of magnitude for the difference between the two scenarios.
Our results indicate that it is very hard to find concrete fixes that combine different repair
actions.

Let us now be rather speculative. Those simulation results contribute to the debate on
whether past results on evolutionary repair are either evolutionary or guided random search
[101]. According to our simulation results, it seems that the evolutionary part (combining
different repair actions) is indeed extremely challenging. On the other hand, our simula-
tion does not involve fitness functions, it is only guided random search, what we would
call “Monte Carlo” repair. A good fitness function might counter-balance the combinatorial
explosion of repair actions.

414 Summary

In this Section we have presented a strategy to optimize the time to navigate the search
space. The strategy relies on the probability distribution over repair actions. It focuses on
concentrating on likely repair actions first. We present a mathematical analysis to compare

73

Chapter 4. Two Strategies to Optimize Search-based Software Repair

and evaluate probability distributions with the goal of finding that one that optimize the
navigation.

We have shown that certain distributions over repair actions can result in an infinite time
(in average) to find a repair shape while other fine-tuned distributions enable us to find a
repair shape in hundreds of repair attempts.

In the following section we present a second strategy to reduce the synthesis search space
of redundancy-based repair approaches such as GenProg.

4.2 Reducing Synthesis Search Space for Software Redundancy-
based Repair

In Section {4.1| we presented a strategy to optimize the time to navigate the shaping search
space. In this Section we present a strategy that aims at optimizing the repair time for a
particular kind of repair approaches: redundancy-based repair approaches.

To some extent, each program repair technique is based on a underlying assumption.
GenProg’s “secret sauce” [12,[8] is the assumption that large programs contain the seeds of
their own repair and thus that re-arrangements of existing statements can fix most bugs. This
redundancy assumption is also behind four out of ten PAR’s repair templates [5]. We call
redundancy-based repair approach to those approaches that work under this redundancy
assumption. By contrast, SemFix [10] makes different assumptions: it is based on the idea
that some bugs can be repaired by changing only one variable assignment or if conditional

expression.

Redundancy-based repair approaches synthesize repairs by picking source code from
somewhere in the program. The search spaces of these approaches are formed by source
code found in other places of the program. This assumption could produce large search
spaces, especially when the program to be repaired is large. By consequence, the navigation
of the repair search space could take infinite time (in other words, the approach is not able
to find a fix).

In this Section we aim at presenting a strategy to optimize the solution search for
redundancy-based repair approaches. Our challenge is to know whether there exist alter-
native repair search spaces, smaller than the original (defined by one repair approach such
as GenProg) and with similar repairability strength. This means, we aim at reducing the size
of the space but keeping the number of solutions that the “original” search space has.

This experiment also allows us to validate the redundancy assumption. We wonder
whether it makes sense to re-arrange existing code to fix bugs. The results enable us to un-
derstand the foundational assumptions of program repair approaches based on redundancy
such as GenProg or PAR.

The section remains as follows. In Section[4.2.1jwe present two redundancy-based repair
approaches from the literature. In Section we study the search space of this kind of
repair approaches. In Section we present our strategy to optimize the navigation in
those spaces. In Section we present an evaluation of the strategy, then in Section
we present the results of the evaluation. Finally, Section[4.2.6|concludes the section.

74

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

4.2.1 Software Redundancy-based Repair Approaches

In this section we present two state-of-the-art program repair approaches: GenProg and
PAR. Both approaches work under the assumption that the code of a fix was already written
before in the program.

GenProg is an automatic program repair approach guided by genetic programming. It
applies evolutionary computation to evolve a failing version, i.e., with one defect, of a pro-
gram to a version without the defect. It evolves the program applying three kinds of opera-
tors: inserting, replacing, and removing source code. The approach relies on the presence of
software redundancy: it assumes that the code that forms a fix (the fix ingredients) already
exists somewhere in the program. This assumption involves that GenProg always instanti-
ates inserting and replacing operators with code taken from elsewhere in the program. As
consequence, it never synthesizes fixes that introduce new code.

Another redundancy-based repair approach is PAR [5]. In contrast to GenProg, the repair
operators of PAR correspond to bug fix templates derived from bug fix patterns manually
identified. The approach uses existing source code to instantiate four bug fix templates. For
example, templates Expression replace for an if conditional and Expression added and removed in
if conditional are instantiated with boolean expression collected in the same scope from the
location of the if condition defect.

Let us present as example one defect that, in theory, both redundancy-based repair ap-
proaches are able to fix. The defect corresponds to an issue reported in Apache Commons
Math project 22. Listingpresents a chunk of the file that contains the defect. The defect is
located in line 16: the if condition uses an incorrect relational operator. The fix proposed by
developers 2* changes the operator >= by >.

GenProg and PAR are able to synthesize this fix (and eventually others that also fix the
bug). GenProg could generate it applying replace operator. This operator replaces the AST
node that corresponds to the buggy if condition, i.e., fa x fb >= 0.0, by one AST node of
boolean expression, i.e., fa * fb > 0.0, taken from line 13 (a while statement with a condi-
tion formed by three sub-terms). The synthesized patch is equal (same code) to the real fix
proposed by the Apache developers.

PAR could also generate this fix by applying Expression replace for an if conditional bug fix
template. In the same way, PAR replaces the buggy if conditional by the mentioned sub-term
found in line 13.

Zhttps://issues.apache.org/jira/browse/MATH-280
Bnttps://fisheye6.atlassian.com/changelog/commons?cs=791766 fix introduced in file Uni-
variateRealSolverUtils.java

75

https://issues.apache.org/jira/browse/MATH-280
https://fisheye6.atlassian.com/changelog/commons?cs=791766

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Listing 4.2: Buggy If condition from issue MATH-280. Redundancy-based approaches are
able to fix the bug by replacing its boolean expression by another from the same method.

1 double a = initial;

2 double b = initial;

3 double fa;

4 double fb;

5 int numlIterations = 0 ;

6

7 do {

8 a = Math.max(a — 1.0, lowerBound);

9 b = Math.min(b + 1.0, upperBound);

10 fa = function.value(a);

11 fb = function.value(b);

12 numlterations++ ;

13 } while ((fa * fb > 0.0) && (numlterations < maximumlterations) &&
14 ((a > lowerBound) Il (b < upperBound)));

15

16 if (fa = fb >= 0.0) { //buggy if condition; fix: if (fa = fb > 0.0
17 throw new ConvergenceException(...);

18 }

4.2.2 Defining Search Spaces for Redundancy-based Repair Approaches

In Section [f.1.T|we decompose a repair search space into three spaces: fault localization space,
shape space and synthesis space. In this section, we focus on the synthesis space of redundancy-
based approaches. Repair approaches navigate this space to instantiate a repair shape. For
instance, GenProg does it to instantiate two of its repair actions: insert and replace. By the re-
dundancy assumption behind them, redundancy-based approaches never synthesis source
code, i.e., they reuse existing code from somewhere in the application. As consequence, their
synthesis space is composed of already written code.

In the remaining of the section we focus on how to define a synthesis space. We analyze
how the topology of this search space impacts on the performance of redundancy-based
repair approaches. For that, we introduce a new measurement of source code redundancy.
In the remaining of the section, we define the concept temporal redundancy in detail.

4.2.2.1 Fragment Redundancy

We use fragment to denote a substring of source code. For instance, the source code line
“for (int i=0; i<n; i++)” is a fragment. Fragments are always defined according to a level of
granularity.

A fragment F is snapshot redundant at time T if another instance of that same fragment F’
exists elsewhere in the program at time 7'. This is the redundancy studied by Gabel and Su
[36] and used by GenProg [12]. In this work we consider a richer notion of redundancy that
includes historical context.

A fragment F' is temporally redundant at time T if that same fragment F" has already been
seen during the history of the software under analysis (i.e., at time 7" < T). For instance,

76

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

literal “42” might be added in version #1, be removed in version #2 and reused again in
version #3. In the commit of version #3, the “42” fragment is temporally redundant. Thus,
once a fragment has appeared it is always subsequently viewed as a potential source of
redundancy. We consider the first version of a program to be created by insertions from an
empty initial program.

Consequently, a temporally redundant fragment is associated with a birth date, the very
first time when it has been used in the software under study. At the point in time it appears,
the fragment is called unique fragment, and remains unique as long it is not used a second
time in a subsequent commit.

4.2.2.2 Fragment Pool

We propose that the repair search space of redundancy-based repair approaches is com-
posed of two components: the search space of fragments (the atomic building blocks) and
the search space of their combinations. In this section we focus on the former. We call it
fragment pool. It has all the fragments seen up in the history of a program to a given point in
time. Fragment Temporal Redundancy is measuring using the fragment pool: if a fragment
exists in the pool means it is redundant. Otherwise, the fragment is new, i.e., not redundant.

4.2.3 A Strategy to Reduce the Size of the Redundancy-based Synthesis Search
Space

In this Section we present one strategy to optimize the search of the solution in the
search space of redundancy-based repair approaches such as GenProg. Synthesis search
spaces of this kind of repair approach include source code fragments from the application
under repair. However, for large applications, these spaces could contain a large number of
fragments. As consequence, the time to navigate them could be large or even infinite. In face
to this situation, redundancy-based repair approaches are not able to find a solution to the
bug. Remember that repair approaches have criteria to limit the search of a solution in the
repair space. For example, the navigation in GenProg is limited by parameters from genetic
programming such as the number of generations and the size of the initial population. In
one of the most recent experiments [8], these values are 10 and 40, respectively.

Our motivation is redundancy based approaches be able to find undiscovered solutions
from the search space. The intuition we have is these undiscovered solutions can be dis-
covered by decreasing the time to navigate the synthesis search space. In this section we
present one strategy that aims at finding a solution faster. The strategy aims at defining
smaller synthesis spaces without losing fertility. That means, to have a search space with a
similar number of solutions that the original space has. A smaller search space allows repair
approach to transverse all its elements faster than a larger one.

To reduce the search spaces, the strategy defines spaces collecting fragments that are in a
given scope. According to the selected scope, the space’s definition yields different topologies
of search spaces. By consequence, this impact on the repair strength of the repair approaches.
In this work, the strategy considers two temporal redundancy scopes: global and local. We
present them in the following section.

77

Chapter 4. Two Strategies to Optimize Search-based Software Repair

4.2.3.1 Defining Two Scopes of Temporal Redundancy

A fragment is temporally redundant if that same fragment was written before in the ap-
plication. As we study redundancy from version control systems, it means a fragment is
temporally redundant if that same fragment appeared in a previous commit. This kind of
redundancy has a global scope: the location of the previous fragment instance does not matter.
At global scoping, there is one fragment pool. It contains all the fragments from everywhere
in the application.

We now define a more restricted local scope notion of temporal redundancy. A fragment
is locally temporally redundant if that same fragment has been used in a previous commit
to the same file.

For example, consider two files, F; and F», each containing 3 fragments: F = {a,b, c},
Fy ={d,e, f}. Suppose commit C; adds fragment c to file F,. For that commit, fragment c is
global temporally redundant (already available in F}), but not locally temporally redundant
(never previously available in F,). Suppose commit Cy introduces another version of F
replacing fragment e with d. In that commit, fragment d is locally redundant (since d was
previously available in F3).

At local scoping, there is one fragment per each file from the application. A fragment
from file Fis locally redundant if it exists in the fragment pool associated to file F'. Otherwise,
it is not locally redundant.

4.2.4 Definition of Evaluation Procedure
4.2.4.1 Evaluation Goals

In this Section we aim at evaluating the strategy presented in Section The strategy re-
duces the size of synthesis search space by considering fragments included in a given scope.
In Section [4.2.3.1] we present two scopes: local and global. We wonder whether this strategy
affects the repair strength of redundancy-based repair approach. Our intuition is local scope
allows repair approach to define smaller search space without losing repair strength. We set
up an evaluation to validate these ideas.

The evaluation analyzes the software history of applications. We aim at measuring the
temporal redundancy of commits. We carry out the experiment considering global and local
redundancy levels. Our goal is to prove that: a) the assumption behind redundancy-based
approaches makes sense, i.e., it has sense to reuse already written code to synthesize com-
mits; and b) the strategy of reducing the search space allows repair approaches to synthesize
commits using a smaller search space than without the strategy.

4.24.2 A Method to Validating Redundancy-based Assumption

In this section we present an experiment to validate the redundancy assumption used by
redundancy-based repair approaches such as GenProg. We ask whether it makes sense to re-
arrange existing code or code changes to fix bugs. For that, the experiment aims at studying
how the software evolves, in particular whether the code that is added to the application in
the evolution was already written before in the application.

In our experiment we analyze version control systems (VCS). We analyze the source code
introduced by each commit from the VCS . We want to measure the number of commits
that introduce only already written code i.e., redundant fragments. This measure allows us to

78

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

validate the redundancy assumption: In theory, a redundancy-based repair approach should
be capable of synthesizing the code of these commits.

As we analyze commits from a version control system, in the following section we define
a redundancy measure at the commit level.

4.2.4.21 Defining Commit Redundancy A commit in a version control system consists of
new file versions. Conceptually, a commit can be viewed in two ways: as a set of file pairs
(before and after the commit), or as a set of changes (applied to the version before the commit
to obtain the version after it).

In this section, we use this change-based view of commits. We consider that a commit
adds and/or deletes new source code fragments. An update is considered as the combination
of a deletion and an addition. We do not consider commits done on other artifacts than
source code.

A source code commit is composed of added and/or deleted fragments. Using a cooking
metaphor, the added fragments are the “ingredients” of the commit.

We define a temporally redundant commit as a commit for which all added fragments are
(individually) temporally redundant. More formally, we define a commit C; performed at
the time T} as a set S; of added fragments and a set R; of removed fragments. Let C be the
set of all commits for a program. Then a temporally redundant commit C; satisfies

ViesS;|3C;eC|Ti<T;NfeS,;

For such commits, no new fragments are invented and no fresh material is introduced:
the commit is only a re-arrangement of insertions that have already been seen in previous
commits.

Along the same line, a unique commit only introduces unique fragments and a partially
redundant commit introduces already written fragment as well as unique fragments. Along
the same line, a partially redundant commit C; satisfies Je,,, € S;,3C;... and the formal
definition of unique commits is trivial.

4.2.4.2.2 Commit Classification Example Let us present an example of commit classifica-
tion at line-level granularity. In the example, the software history of a program contains four
commits Cj,¢ = 1..4. A commit is represented by a set of fragments F,, and a date d; where
the commit was done. Being the fragment history:

Ci = {Fa,Fb,Fc},CQ = {Fb,Fd},Cg = {Fe},C4 = {Fc,Fd} and d; < do < d3 < dy.

Let us classify the commits:
Cy is partially redundant. It introduces existing code (F}, from Cj) but also unknown code
(Fa).
Cly is redundant. It introduces exclusively existing code (F, from C; and Fy from C»).
On contrary, C1 and C3 are unique, they introduce unknown source code at time d; and d3,
respectively.

4.24.3 Experimental Protocol

Given a level of granularity and a scoping level, our experimental protocol to measure the
temporal redundancy of the evolution of a program consists of the following phases: It is
depicted in Figure

79

Chapter 4. Two Strategies to Optimize Search-based Software Repair

3
a) Retrieving commits W
Revld: 42 ¥ commits
b) Filtering commit files | Foo.java FooTest java .
discarded
c¢) Fragmenting commits Lpoo,java | LFoo.java |
before after
s |
i pathidien]=='/)
d) Filtering
fragments

e) SeIeCtlng acceptable | Revlds: 42, 53, ... | at least 1 added fragment

commits
. "subpath +=dlen +1;"
f) IndeX| ng first seen on 2009/05/12
fragments added on 2010/04/13
added on 2013/06/10

i

20% of commits only add
known fragments

g) Measuring
temporal
redundancy

Figure 4.4: OVERVIEW AND EXAMPLE OF OUR METHODOLOGY FOR CALCULATING SOFT-
WARE TEMPORAL REDUNDANCY (LINE LEVEL GRANULARITY)

80

—_

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

a) Retrieving commits. All commits of the program under analysis are collected from the
repository.

b) Filtering commit files. Only commits to executable code are retained; commits to test
cases are discarded.

c) Fragmenting commits. We split each relevant file into fragments at a given level of
granularity (e.g., lines or tokens, see Section [£.2.4.4). This results in a before-commit and
an after-commit sequence of fragments. At line and token granularity level, we use the
Myers differencing algorithm [14] to compare both fragment sequences and obtain the added
fragments of the commit.

d) Filtering fragments. We filter out whitespace and comments. In this paper we are only
interested in the evolution of executable code and not in indentation or documentation.

e) Selecting acceptable commits. We select those commits that introduce at least one
fragment after filtering. We call such commits acceptable.

f) Indexing fragments. We consider each added fragment in each acceptable commit in
ascending temporal order. If a fragment has not been encountered previously at the given
scoping level (i.e., global or local), we index it with the date of its first introduction. For a
global scope level, we define one fragment pool where we store all fragment introduced by
commits. For a local scope level, we define one fragment pool per each file of the application.
Each of those pools contains the fragments written in the history of the associated file.

g) Measuring temporal redundancy. The temporal redundancy of the entire program’s
evolution is the fraction of acceptable commits that are temporally redundant (see Sec-

tion4.2.4.2.1).

4.2.4.4 Fragment Granularities

We consider two different levels of granularities of source code fragments: Lines and Tokens.
At line level, we split a source code chunk in lines, as separated by line breaks. For
example, for the following source code chunk:

int i = getSum();
if (j > 1000){

We obtain two fragments at the line level, one per each line: int i = getSum(); and
if(j > 1000).

At the token level, we split one source code chunk in tokens, as separated by lexing rules.
From the former listing, we obtain seven fragments: int, i, getSum(), if, j, > and 1000.

4.2.5 Empirical Results

We now present our empirical results on the temporal redundancy of software (as defined

in Section |4.2.4.2.1) following the experimental design presented in Section |4.2.4.3| First, in
subsection we present the project used in the evaluation. Then, in subsection

we present the result of the validation of the software redundancy assumption. Finally, in
subsection we analyze the result of the space size reducing strategy.

4.2.5.1 Dataset

We use six open-source Java projects to measure the temporal redundancy. They are: Apache
Log4j, JUnit, Picocontainer, Apache Commons Collections, Apache Commons Math, and

81

Chapter 4. Two Strategies to Optimize Search-based Software Repair

Table 4.3: The temporal redundancy of six open-source applications.

Line granularity Token granularity

Program ég;fﬁfi};le Global Local Global Local

Temporal Pool | Temporal Pool Temporal Pool | Temporal Pool

redundancy Size redundancy | Size redundancy Size redundancy Size
c1 C2 c3 c4 Cs Cé c7 cs C9 c10
log4 1687 9% | 43313 6% 57 39% | 14294 19% 71
junit 713 17% | 8855 16% 18 43% | 3256 29% | 725
pico 157 3% | 16911 2% | 22.5 31% | 6273 8% 46
collections 1019 7% | 25406 4% 35 52% | 4163 23% | 855
math 2210 6% | 69943 4% 37 45% | 20742 18% | 100.5
lang 1290 8% | 22330 6% 63 50% | 6692 29% 98

Apache Commons Lang. The inclusion criterion is as follows: the Apache projects were
used in previous research on automatic program repair [5], while the remaining two are
Java projects mentioned in previous research on software evolution [102]. After applying
the filters presented above on the 16071 commits of the dataset, we obtain 7076 acceptable
commits.

4.2.5.2 Measuring Temporal Redundancy

4.2.5.2.1 Line-Level Temporal Redundancy Research question: What is the amount of line-
based temporal redundancy?

For each application of our dataset, we measured the total number of acceptable commits
within the analysis timespan (the complete data is available at http://goo.gl/k0rZWc)
and the global-scope line-level temporal redundancy. Columns #2 and #3 of Table .3 report
the results.

For instance, for log4j (the first row), there are 1687 commits which add at least one
executable line. Only 9% of those 1681 are temporally redundant commits.

Overall, at the level of lines, 3-17% of the accepted commits are temporally redundant
commits. Their basic ingredients are only previously-inserted code.

This has additional implications for automatic repair and code synthesis: for syn-
thesizing those commits, the search-space has a finite number of atomic building blocks
(previously-observed line-level fragments). Theoretically, a redundancy-based approach
should be able to synthesize all the temporally-redundant commits.

The interval 3-17% is large and the reasons behind this variation are not obvious. One
reason could be that the commit conventions used by the developers of a project are different.
For instance, some projects prefer to have small and atomic commits (one bug fix or feature
per commit). Other projects are less restrictive on this point. This has a direct impact on the
redundancy: small and atomic commits are more likely to be redundant.

4.2.5.2.2 Token-Level Temporal Redundancy Research question: Is there a difference between
line-based and token-based temporal redundancy?

Before answering this question, we note that, analytically, all temporally redundant com-
mits at the level of lines are necessarily temporally redundant commits at the level of tokens.

82

http://goo.gl/k0rZWc

4.2. Reducing Synthesis Search Space for Software Redundancy-based Repair

Furthermore, a unique new line might be exclusively composed of existing tokens. Conse-
quently, the token-based temporal redundancy must be equal to or greater than line-based
temporal redundancy. We now measure the temporal redundancy at the line and token level.

Table [4.3| reports global scope line-level (column #3) and token-level temporal redun-
dancy (column #7). For instance, in log4j, there is a line-level temporal redundancy of 9%
but a token-level redundancy of 39%. Overall, at the token level, 29-52% of commits are
temporally redundant.

For all projects, token-based temporal redundancy exceeds line-based. This follows from
the analytical argument above and gives confidence in the experiment’s construct validity.

Overall, token-level temporal redundancy (between 29% and 52%) is much higher than
the line-level temporal redundancy. For automated repair and code synthesis, a high tempo-
ral redundancy implies a smaller search space. This holds for both the line and token level
of granularity. Our token-level temporal redundancy measurements imply that for between
29% and 52% of accepted commits, synthesis and repair need never invent a new token.
For instance, repair or synthesis of arithmetic code need only consider recombining existing
literals and operations for one-third to one-half of commits.

4.2.5.3 Redundancy Scope Experiment

The results presented in Section allow us to validate the redundancy assumption be-
hind redundancy-based repair approaches. We can affirm that it makes sense to reuse to
synthesis commits from version control systems. In this section we focus on validating the
strategy to optimize the navigation of the search space presented in Section For that
we compare two measures for local and global scopes: amount of temporal redundancy and
size of the fragment pool.

Let us first analyze the differences fragment pools for the same scope, in particular, global
scope. Table [4.3| gives the size of the global scope fragment pool for line-level (column #4)
and token-level (column #8) analyses. For instance, in the considered slice of history of log4j,
there are 43313 different lines (i.e., size of global fragment pool) and 14294 different tokens
that are involved in the software evolution. For all applications under study, the token pool
at the point in time of the last commit is much smaller than the line pool.

For automated repair or code synthesis, there is a tension between working with the line
pool or the token pool. To some extent, the temporally redundant commits correspond to
the number of commits that can be synthesized. With the line pool, the combination of lines
is much smaller (the combination space is smaller) but fewer commits can be synthesized
(~10%). With the token pool, more commits can be synthesized (~40%), but at the price of
exploring a much bigger combination space.

Now, let us focus on evaluating the strategy. Our research question is: Do local (that is,
file) scope restrictions impact the amount of temporal redundancy?

We now measure the temporal redundancy available at the local scope in the same file
(as defined in Section [4.2.3.1).

Table |4.3| reports global and local scope temporal redundancy in our dataset. For each
granularity, there is one column “Global” and one column “Local” corresponding to the
different scope. For instance, at the line level, column #3 is the temporal redundancy at the
global scope and column #5 gives it when considering a local scope.

As discussed in Section [#.2.5.2.T) at the line granularity, there are between 3% and 17% of
temporally redundant commits at the global scope. At the local scope, there are between 2%

83

Chapter 4. Two Strategies to Optimize Search-based Software Repair

and 16%.

The temporal redundancy of both scopes is of the same order of magnitude. In all
projects, more than half of the temporally redundant commits actually have local tempo-
ral redundancy. Consequently, at line granularity, most of the temporal redundancy is localized in
the same file.

At token-level granularity, the results are similar: we find a large amount of token-level
local-scope temporal redundancy. Tokens are likely to be reused in commits impacting the
same file. This further indicates that the fragment locality matters during software evolution.
We note that the difference of redundancy between global and local scopes is slightly higher
at the token level (col. #7 vs. #9) than at the line level (col. #3 vs. #5).

These results validate our strategy for reducing the repair time presented in Section[4.2.3|
We observe two main conclusions. First, at the line level, the local scope pool is able to seed
the same order of magnitude of commits as the global one. In other words, it is almost as
fertile as the global pool. Second, when one considers the local scope pool, the search space
is much smaller. For instance, for log4j, the median local pool size at the line level is 57 lines,
compared to 43313 at the global scope level. As consequence, the time to navigate a local
pool is much smaller than the time to navigate the global pool.

Restricting attention to the local scope reduces the search space greatly while still en-
abling the synthesis of a large number of commits. Those results are directly actionable for
improving GenProg and other redundancy-based approaches: our results indicate that ap-
plying a strategy to reduce the search space by only considering local redundancy would
decrease the repair time while keeping a high repair success potential.

4.2.6 Summary

In this section we presented a strategy to reduce the time to navigate a synthesis search space
for redundancy-based repair approaches such as GenProg. The strategy proposes to reduce
the synthesis search space, composed by already written source code from the application
to repair. A reduced space contains code that belongs to a given scope. In the evaluation we
consider two scopes: local (file) and global (all application). We have shown that considering a
local scope allows repair approaches to have smaller space without resigning repair strength.
This evaluation also allows us to validate the assumption behind redundancy-based repair
approaches such as GenProg. It makes sense to use already written source in the application
to synthesize bug fixes.

4.3 Conclusion

In this chapter we presented two strategies to optimize search-based repair approaches. The
first one helps to reduce the time to find a solution, i.e., to navigate the search space. The
strategy relies on source change probabilities taken from version control system. It first se-
lects those frequent repair changes. We proved that there are distribution probabilities over
repair models that are better than others, i.e., it allows approaches to find faster a solution.
The second strategy reduces the search space from redundancy-based repair approaches
such as GenProg [12]]. We proved that these kinds of approaches can reuse source code from
the file where the bug is located to synthesis fixes.

84

Chapter

A Unified Repair Framework for
Unbiased Evaluation of Repair
Approaches

In this thesis one of the main motivations is to improve the repairability of bugs. This im-
provement means to increase the number of bugs fixed by repair approaches. Repair ap-
proach evaluations from literature show that a fraction of these defects remain unrepairable.
For instance, GenProg is able to repair 55 out of 105 defects, remaining 50 unrepairable [8].
In Section [we have presented two strategies that help repair approaches to reduce the time
of searching bug fixes.

We observe that the proportion of repairable and unrepairable defects depends on the
way the evaluation dataset is built. A dataset could include defects that an approach is able,
at least in theory, to repair, and defects that are not repairable by construction. If one defines
a dataset that includes majority of repairable defects, the repair efficacy of the approach
should be higher. Otherwise, if the majority of the defects are unrepairable by the approach
under evaluation, the repair efficacy of the approach should be low. As consequence, the
way the dataset is built can bias the result of the evaluation.

In this chapter we propose a method to obtain conclusive evaluations of automatic soft-
ware repairs. For that, we need to characterize how the dataset is built and what it contains.
In Section 5.1} we first present a methodology to define evaluation datasets with a controlled
bias in the dataset definition. This dataset contains defects of a unique defect class.

Then, we focus on the execution of a repair approach evaluation. Our motivation is to
execute evaluations of repair approaches that produce reliable and conclusive results. We
aim at setting up an experiment that allows us measuring the real strength of the repair
operators used by the evaluated approaches. This experiment allows us to instantiate our
methodology of repair approach evaluation in order to validate it. In particular we aim at
studying the repairability of a particular defect class: if conditions. Those defects are common:
previous works [9} [11] have shown that there are the most repaired elements in source code.
For instance, the results of Pan et al.[9] over six open source projects, between 5% and 18.6%
of bug fix commits are modifications done in if conditions.

In our study, we consider three repair techniques from the most authoritative literature:
GenProg [12], PAR [5] and the mutation-based approach defined by Debroy and Wong [13]].

85

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

We propose a framework that unifies differences across the repair approaches, and encodes
the particular repair operators of them.

In this chapter we propose: in Section[5.1} we first present a methodology to define eval-
uation dataset and a dataset of if condition defects. In Section 5.2 we present a methodology
to develop repair approach evaluations. For subsequent work, we explain the decision taken
to replicate the approaches. Finally, in Section [5.3|we present the results of the evaluation of
the three repair approaches.

5.1 Defining Defect Datasets for Evaluating Repair Approaches

In this section, we design a procedure to evaluate repair approaches. In particular, we focus
on the design of the evaluation dataset due to a main reason: we need unbiased evaluations.
We present a procedure to evaluate repair approaches with controlled biases.

5.1.1 Defining a Defect Class

A defect class is a family of defects that have something in common [103]. There are three
dimensions for defining a defect class: a) the root cause e.g., the use of a not initialized vari-
able, b) the symptom e.g., a null pointer error exception, and c) the kind of fix e.g., initialization
of a variable or addition of a null-pointer checker precondition.

A repair approach should always target explicit defect classes [103]. These defect classes
could be repaired by an approach. For some approaches such as Semfix [10] the target de-
fect classes are specific and explicit: it fixes a) if condition defects and b) integer initialization
defects. On the contrary, approaches such as GenProg [12] do not explicitly target any defect
class. However, more recent GenProg’s evaluation [1] shows that the approach fixed segfault,
infinite loop and buffer exploit defects.

5.1.2 Bias in Evaluation Datasets

A typical method used in previous publications [12, 5] 77, [13] to evaluate a repair approach
consists of taking, one by one, defects from a defect dataset and trying to find a solution,
i.e., a repair, using the repair approach. As discussed in [103]], the way one builds a dataset
directly impacts on the evaluation result. For example, let us consider an approach appr;
that targets defect classes A and B, and another approach appr, that targets classes B and C.
The evaluation of those approaches using a defect dataset formed with 80% class A and 20%
of class B would clearly favor appr;. Biased evaluation result can arise when the dataset is
built without following defined inclusion criteria.

We claim that the procedures for defining an evaluation dataset and for evaluating a
repair approach should be as separated as possible. A dataset tailored for a particular ap-
proach evaluation could produce inconclusive results. Both procedures should share only
one single concept: a defect class. This means the dataset should contain only defects from the
same defect class; and the repair approach targets defects from that class. Then, the dataset
can be considered as well formed with respect to this defect class, and competing approaches
can be quantitatively compared. From the previous example, a conclusive evaluation could
be that one that defines, for instance, three defect datasets, one for each target defect: dataset
with defect class A, dataset with defect class B, and finally dataset with defect class C. Now,

86

5.1. Defining Defect Datasets for Evaluating Repair Approaches

the evaluation can concentrate on evaluating the repairability over one each class: appr; fixes
more defects of class A that apprs, but the latter fixes more defects from class C.

In this section we present a methodology to built evaluation datasets with a specific
focus on minimizing the evaluation biases and fallacies. Moreover, we illustrate it to build a
dataset of if condition defects for repair approach evaluations.

5.1.3 A Methodology to Define Defect Datasets

The challenge we tackle is to define a methodology to build defect datasets for evaluation of
automatic software repair aproaches. The methodology must fulfill the following require-
ments: a) the dataset includes inclusion criteria of defects, such as the target defect class;
b) for each included defect, the source code of the defective version is publicly available for
evaluation replication; c) the defects included are reproducible; d) optionally, it includes de-
fects reported in, for example, bug trackers or mail lists; these sources of information allow
us to better understand, for instance, the defect’s causes, their proposed repairs and their
priority.

We propose a methodology that has two inclusion criteria: one that defines criteria for
project selection (Section [5.1.3.1), and another that defines criteria for selecting defects (Sec-

tion|5.1.3.2).

5.1.3.1 Methodology for Choosing Projects

In this subsection we present a methodology to select a project to search defects. We enu-
merate the most important criteria that, for us, should be considered in the project selection.

5.1.3.1.1 Availability of project history Collecting defects from a project involves finding
versions that contain one or more defects. For that, it is necessary that a project has publicly
available either: a) a set of isolated versions of a program (e.g., v.1.1, v.1.2); or b) a version
control system (VCS) such as CVS, GIT or SVN that manages versions of a project through
its development and maintenance life-cycle.

5.1.3.1.2 Project features Larger projects, in terms of number of revisions and versions,
increase the probability to have a richer history and, by consequence, more defects to include
in the dataset.

5.1.3.1.3 Existence of correctness validation mechanism Each version of the project must
include, at least, one mechanism to automatically measure and validate its correctness ac-
cording to the program specification. Moreover, these mechanisms must cover at least the
most critical components. An example of a validation mechanism is a test suite. Repair ap-
proaches such as GenProg, PAR and SemFix [10] use test suites as a mechanism of validation
of their repairs.

5.1.3.1.4 Availability of reporting track system A project with publicly available issue
tracking system or mailing lists allows us to collect defects from there. For example, we will
able to query tracking systems to collect those issues labeled as “bug”.

87

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

5.1.3.1.5 Conventions, rules and best practices Coding rules or management of VCS con-
ventions used in projects help to increase the software quality. We focus on three conven-
tions: 1) the use of atomic commits to introduce new features or bug fixes; 2) the inclusion
of a description in the commit message log of the changes introduced by the commit; 3) the
inclusion of a link to the issue tracker in the message log when changes correspond to a
reported issue.

These three conventions will help us to filter commits that introduce bug fixes from the
version control systems in an accurate way.

5.1.3.1.6 Summary In this subsection we presented a methodology to select software
projects to be used in evaluations of software repair approaches. In the following subsec-
tion we present a methodology to collect defects from those projects.

5.1.3.2 Methodologies of Collecting Defects

The methodology collects defects of one target defect class such as if condition defects. A tech-
nique for collecting defects, used for example in [89], first searches commits that introduce
fixes; then, it searches for the versions just before those commits (without the fix changes)
that probably contain defects.

There are two methods to collect defects. One is to first navigate reports from issue
tracking system or a mailing list of a project to find defects, and then to obtain the versions
with those defects. The other way is to first collect from the VCS commits that include
defects, then, to analyze the associated issue reports. For that, it is necessary to link VCS
commits that fix bugs with the issue reports of those bugs. Proposed techniques such as the
one presented by Fischer et al. [46] can be used to automatically discover these links. Once
a commiit is linked to one issue report, a validation step determines whether the linked issue
is a bug or not. Antoniol et al. [48] study reports from issue tracker and obtain that less
than half of them were related to corrective maintenance (bug fixing). A risk of bias could
be present in the linkage heuristic used. For instance, Bird et al. [47] found that heuristics
based on mining explicit links could produce bias results. A reason is that developers can
omit bug references (the links) in the commit message log. Approaches such as Wu et al. [49]
have emerged to discover missing links. In case these approaches can be used to link and
collect more defects, the criteria behind the linking process should be clearly specified and
included in the dataset definition. In the context of automatic software repair, this bias could
affect the evaluation of the repairability of a given defect class. The repairability of reported
defects could be different (easier or harder) from those that were not reported in the issue
tracker.

Both methods for collecting defects are equally valid. In the following section we im-
plement the second method. We first collect VCS commits and then we analyze the issue
reports of linked bug fix commits.

5.1.4 Methodology Implementation

In this section we present an implementation of the methodology to build a sound dataset.
In the presented implementation we focus on collecting if condition defects.
The implementation has three steps:

88

5.1. Defining Defect Datasets for Evaluating Repair Approaches

1. Automatic filtering of if condition fixing commits;
2. Manual validation of the commit content; and
3. Validation of defect reproducibility.

The implementation combines an automatic and a manual processing. It starts by au-
tomatically mining defects from version control systems (VCS) (step 1). The advantage of
this processing is that it allows the automation of candidate defects search. Then, a manual
processing validates those candidate defects to remove noisy results (step 2) and validates
whether they are reproducible (step 3).

The implementation of this method defines defect dataset destined for evaluations of
repair approaches known as test suite-based program repair. This kind of repair approach uses
Unit test for validating the repair correctness. A program satisfies its specification if the test
suite passes all the test cases. Otherwise, the program contains a bug. Examples of those
kind approaches are GenProg [12], PAR [5], SemFix [10], PATCHIKA [2], AE [78], Debroy
and Wong [13]].

5.1.4.1 Automatic Filtering of If Condition Fixing Commits

The process is guided by one defect class. A defect class groups a family of defects that
have something in common [103]. In this work, we consider that defects of a particular class
share the same kinds of fixes. For example, a defect class groups defects fixed by modifying
assignments, another class groups those fixed by modifying if condition statements. In this
work we analyze the latter defect class.

The automatic process starts by selecting those commits that introduce:

1. atleast one source code change to fix an if condition defect;

2. code in test cases files to validate the introduced fix, for example, through JUnit asser-
tions; and

3. alink in the commit message log to the defect issue from the issue tracker.

For the first requirement, we use the abstract syntax three (AST) based technique pre-
sented in Section[3.4]to mine instances of change patterns in commits. The technique encodes
change patterns using a taxonomy of changes over an AST. To mine if condition defects, we
encode one change pattern: Update of if condition. The process mines instances of this pattern
in commits and it saves those commits that have at least one instance. In case one wants to
define a dataset of another defect class, it is necessary to encode the change pattern related to
that defect class. For example, to define a dataset of missing precondition for evaluate repair
approaches such as Nopol [104], we can encode a change pattern Addition of If condition as
we have done in Section

For the second requirement, the process checks if one commit introduces modifications in
one or more test case files. The process selects those files which name finishes in “Test.java”.
For the last requirement, the process searches for explicit issue report links in the commit
message log. For instance, to match those explicit links in Apache Commons Math project,
we use the following regular expression:

(M ATH|Math|math) — [0 — 9]+

89

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

If all those requirements are fulfilled for one commit, we call it “candidate commit” and
we consider it for a subsequence manual validation.

5.1.4.2 Manual Validation of Commits Content

Through a manual processing, a candidate commit is evaluated to determine whether it
introduces a fix or not. For example, it could introduce an improvement or a new feature. We
propose two validations. One is the analysis of linked issue report: we keep those commits
that are related to bug reports. The other is a validation at the source code level. The commit
diff can introduce:

1. one update of if condition; it corresponds to the fix.

2. one update of if condition (the fix) plus other changes not related to bug fixing such as
refactor changes.

3. if condition updates plus other changes where all of them are part of the same fix (We
call it a complex fix).

We keep those commits that only introduce fixes for if condition defects, that is, the first two
cases listed above.

5.1.4.3 Validation of Defect Reproducibility

Finally, we process each fix commit that passes the manual validation. First, we retrieve
the previous version to the fix commit. That version contains the defect. Then, we ver-
ify whether the defect is reproducible. This involves executing the retrieved version (e.g.,
through test suite) and to observe whether the defect is exposed (e.g., failing test cases).

5.1.5 Dataset of If Condition fixing Defects

In this section we present the dataset of if condition defect class using the methodology pre-
viously presented. The dataset is publicly available at http://goo.gl/AS1Yj9.

5.1.5.1 Target Projects

The dataset is formed by defects of Apache Commons Math?* and Apache Commons Lang?.
We select both since: a) they have a large history: for Math project more that 4700 commits
in 10 years of development; for Lang project, more that 3700 commits in 11 years; b) they
contain publicly issue trackers; c) the developers link commits with reports from the issue
tracker: Apache Commons Math and Lang use keywords “MATH-n" and “LANG-n", re-
spectively, where n is the issue number; and d) previous repair approaches such as PAR
include defects from these projects in their evaluation. We analyze the commits from the
5/12/2003 to 7/08/2013 for Math and from 19/07/2002 to 7/08/2013 for Lang.

90

http://goo.gl/AS1Yj9

5.1. Defining Defect Datasets for Evaluating Repair Approaches

Project Type-Priority Issue Tracker Identifier
Bug-Minor 238, 240, 243, 309, 644, 691, 722, 836
MATH Bug-Major 198, 273, 280, 288, 340, 780, 904
Bug-Critical 947
LANG Bug-Minor 428
Bug-Major 719,746

Table 5.1: Overview of our dataset of if condition defects. The bugs come from the Apache
Commons Math and Apache Commons Lang projects. The dataset has been carefully crafted
to minimize the biases.

5.1.5.2 Resulting Dataset

Table 5.1 shows the 19 if condition defects that form the dataset, grouped by the priority (mi-
nor, major, critical) specified in the associated bug reports. For Math project the automatic
process returns 41 candidates if condition fix commits. 28/41 were linked to their correspond-
ing reports from the issue tracker and validated as bugs. We discarded 12/41 defects. Those
were related to: improvement or new feature issues (4 of them), complex fixes i.e. bug lo-
cated in more than one statement (5), or not reproducible (3). We accept 16/41 defects. For
Lang project, the automatic process returns 18 candidate if condition fix commits. All of them
were related to issue reports. We accept 3/18 defects, the remaining were changes related to
improvement issues (4), complex fixes (9) and not reproducible bugs (2). Regarding with the
critically of the defects, our dataset contains the same number of major and minor defects (9
issues each category).

5.1.5.3 Advantages of Our If Condition Defect Dataset

Previous works have defined datasets for evaluating their repair approaches [12, 5, 2]. For
instance, the authors of PAR approach [5] define a dataset with 119 defects. If we compare
the dataset sizes, our dataset is smaller: it has 19 defects. However, in our opinion, our
defect dataset is more meaningful for evaluating automatic software repair approaches. Let
us explain why. As we present in this Section, our dataset is built with a clear definition: It
is a collection of defect of one particular defect class (if condition defects), exposed through
unit test execution. Contrary, PAR’s authors do not include a dataset build criterion. It
is not possible to determine neither: a) the defect classes of the included defect (and by
consequence, the abundance of each defect classes); b) the criteria for justifying the inclusion
of defects; nor c) the criteria for justifying the absence of defects.

On the contrary, using a well-defined dataset is possible to measure: a) the defect class
that a repair is able to fix; b) the proportion of repairable defects from a defect class; and c)
the defect class that the approach is not able to repair (i.e., the defect class of the unrepaired
defects from the dataset).

In our opinion, a clear-defined dataset but smaller than another without a clear definition
criterion, gives more conclusive results about a repair approach evaluation. For this reason,

*http:/ /commons.apache.org/proper/commons-math/
Zhttp:/ /commons.apache.org/proper/commons-lang /

91

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

we believe our dataset can be used for meaningful repair approaches evaluations.

5.1.5.4 Summary

In this section we presented a methodology to define defect dataset for automatic software
repair evaluations. Using the methodology, we defined a dataset with defects of the same
defect class: if condition defects. The dataset can be used to evaluate existing or future repair
approaches that target the if condition defects, making easier the comparison of evaluation
results. This dataset has the advantage that its definition is not influenced by any decision
that could favor a particular repair approach. Moreover, it does not analyze what kinds of
fine-grained changes are involved in an if condition update. For example, an if condition up-
date could correspond to a relational operator change (the mutation-based approach targets
it) or to the addition of a new term in the if expression (PAR [5] targets it). This decision avoids
having bias to a particular kind of bug fix change in if condition fixing and, by consequence,
it avoids favoring a particular repair approach. Finally, we implemented the methodology
to build datasets that target other defect classes. For example, we could define a dataset of
missing method invocation defects to evaluate PATCHIKA [2].

5.2 A Repair Framework for Fixing If Condition Defects

In section[5.I|we present a methodology to define evaluation dataset. Now, in this section we
aim at presenting a method to evaluate the performance of repair approaches. The combina-
tion of both methodologies allows us to design automatic repair approach evaluations with
controlled bias. In particular, we focus on the repairability of one particular defect class:
if condition defects. Empirical studies over software repositories [9} [11] show that changes
in if condition are some of the most frequent changes done by developers to repair defects.
Our motivation is to know whether major and recent automatic repair techniques are able
to synthesize fixes for these defects. For this purpose, in Section [5.2.1) we first introduce the
if condition defect class. Then, we analyze state-of-the-art repair approaches that, in theory,
target to if condition defect class. In Section[5.2.2] we present a unified repair framework used
to replicate those approaches for measuring the repairability of if condition defects.

5.2.1 Repair Approaches that Target If Condition Defects

The goal of this section is to determine whether three repair approaches from the literature
are able, at least in theory, to repair if condition defects. In this section, we first introduce the
if condition defect class (Section [5.2.1.1). Then, we present a typical design of search-based
repair approaches, shared by the repair approaches under consideration (Section[5.2.1.2). Fi-
nally, we justify why the selected repair approaches target if condition defects (Section[5.2.1.3).

5.2.1.1 Defining If Condition Defect Class

The if conditions defect class characterizes those defects that can be fixed modifying an if con-
dition expression. This class encompasses a diversity of kinds for source code changes. For
example, the update of one relational operator for > to >=; the addition of a new term with
a logical operator for if(a > b) to if((a > b) && (¢ < f)); or the removal of one arithmetic
operator and one constant for if(a > (b+c+d))toif(a > (b+c)).

92

5.2. A Repair Framework for Fixing If Condition Defects

5.2.1.2 Design of Repair Approaches

The search of valid repairs is a kind of search-based software engineering. The repair search
space is a set of candidate program fixes. To find a solution, i.e., a repair, an approach nav-
igates the repair search space. The navigation involves selecting one candidate repair and
then to determine whether it is valid or not. Weimer et al. call this kind of repair approach
design Generate and Validate [78].

From previous approaches we identify a repair space as the product of two spaces. One
is the fault localization space. It contains those source code elements (classes, methods, state-
ments, etc.) that are suspicious to contain a bug. The other, the fix synthesis space, contains
all possible candidate repairs for a given suspicious statement. Each of those spaces can be
navigated on different way, for example, randomly or in a defined order.

Once a candidate repair is selected from the repair space, repair approaches determine
whether a candidate repair is valid or not. For this, repair approaches need automatic cor-
rectness oracles, which automatically verify whether a program is valid with respect to its
specification. The specification defines the target behavior of the program. GenProg uses test
suite as oracle of program correctness, i.e. as a proxy to the program specification. We call
this kind of approaches test suite-based program repair. If the repaired program passes all test
cases from the test suite, it means the program satisfies the program specification encoded
in the test cases.

5.2.1.3 Analyzing State-of-the-Art Repair Approaches

In the previous subsection, we present the basic design of repair approaches that follows
two paradigms: Generate and validate and Test suite-based program repair. In this section we
select three major and recent automatic repair techniques from the literature: GenProg [12],
PAR [5] and the mutation-based repair approach from Debroy and Wong [13]. The three of
them follow the mentioned two paradigms. In the remaining of this thesis, we use these
approaches to carry out our experiments. As we aim at analyzing the repairability of if
condition defects, in this subsection we analyze whether they are able to repair this defect
class.

5.2.1.3.1 GenProg GenProg applies evolutionary computation to evolve a failing version
of a program, i.e., with one defect, to a version without the defect. It evolves the program
applying three kinds of operators: inserting, replacing, and removing source code. The
approach relies on the presence of software redundancy: it assumes that the fix probably
exists somewhere in the program. For that reason, GenProg takes the code to insert from
elsewhere in the application, and never synthesizes fixes that introduce new code.

As GenProg does not explicitly target to defect classes, it is not possible to predict in
advance whether GenProg can fix a given defect class or not. Let us suppose a defect is in
conditional statement i f(a > b), and it can be repaired by changing the relational operator
for > to >=. GenProg could synthesize this repair if a boolean expression (¢ >= b) exists
somewhere in the program. As consequence, it is not possible to predict the repairability
of this defect without analyze the remaining code of the program. The operators defined
by GenProg give us the suspicion that it is capable of repairing if condition statements. For
example, GenProg can create a candidate repair by replacing one suspicious if expression
(or one of its sub-terms) by a term taken from another if condition located in the program.

93

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

From an analytical point of view, GenProg is able to fix some if condition defects, but not all
of them.

5.2.1.3.2 PAR The second approach analyzed in this work is PAR [5]. In contrast to
GenProg, the repair operators of PAR correspond to bug fix templates derived from bug
fix patterns. We found two of ten templates are able to fix if condition defect. They are:
1) Expression replace for an if condition; 2) Expression added and removed: it inserts or
removes a term of the if predicate. For example, the Expression remover template modifies a
if condition expression for if(a > b && ¢ < d) to if(a > b). PAR also relies on the software
redundancy assumption: the expression involved in addition and replacement operators are
collected in the same scope of the if condition defect location.

5.2.1.3.3 Debroy et al.’s mutation-based repair approach The last repair approach is
proposed by Debroy and Wong [13} 105], and is derived from the mutation testing field.
For a buggy version of one program the approach generates mutants of that program by
applying mutation operators. They apply mutation operators defined in the literature of
mutation testing. They define eight categories of mutation operators, five of them can be
applied in if condition expressions. These operators involve the replacement of: a) Op1: basic
arithmetic operator for another of the same class; b) Op2: Relational operator; c) Op3: Logical
operator; d) Op4: boolean value; e) Op8: Decision negation. The approach is not based on
evolutionary computation as GenProg or PAR. All first-order mutants (that is, program with
exact one operator applied) are generated at once. Then, the approach evaluates them (all or
a sub-set of them) one by one to find a valid mutants.

5.2.14 Summary

In this section we presented a study of the repair operations with three approaches that
all of them are able, at least in theory, to synthesize repairs for if condition defects. In the
remaining of this paper we set up an experiment to verify whether those approaches are able
to repair real defects from this class. In the following Section we present a repair framework
to replicate those approaches.

5.2.2 A Repair Framework to Replicate Repair Approaches

In this section we define a unified repair framework (URF) that allows us to implement the
behavior of the three repair approaches presented in Section[5.2.1.3|

Those repair approaches have different variabilities besides the repair operator each uses.
The most important are:

1. fault localization used to detect suspicious source code component such as statements
or methods;

2. the order these suspicious components are considered to apply a candidate fix;
3. the way a candidate fix is validated.

UREF enables us to remove those free variables in the evaluation experiments. By remov-
ing free variables, our experiment focuses on the measurement of the strength of the pure

94

5.2. A Repair Framework for Fixing If Condition Defects

repair operators. For example, using different fault localization techniques is such a free
variable. Qi et al. [106] have shown that the performance of an automatic repair approach
varies according to the fault localization technique. Within UREF, the use of the same fault
localization technique removes the disparity between the different repair approaches under
study.

Extending the framework, we implement GenProg, PAR and Debroy et al. approaches to
repair Java programs. The main reasons for re-implementing them are: PAR and Debroy et
al.’s approaches are not publicly available; and GenProg repairs C code and not Java. URF
simplifies the implementation of these repair approaches. Most of the framework’s com-
ponents are shared between the three implementations. For example, the three approaches
have the same implementation of fault localization and repair validation phases.

5.2.2.1 Unified Repair Framework Design

The unified framework is a generic search-based framework for repair and is composed of
three phases.

5.2.2.1.1 Fault localization phase This phase defines a fault localization space formed by
suspicious statements (statements suspected to contain a bug). Fault localization techniques
compute a suspiciousness value for each statement in the program. Then, they use the calcu-
lated suspicious values to create a ranking of suspicious statements. The goal of this phase
is twofold: to reduce first the search space size and second the time to navigate it.

The three approaches use fault localization techniques based on spectrum analysis. Spec-
trum based fault localization approaches execute test cases of a program and trace the soft-
ware components (e.g., methods, lines) visited by those tests. The techniques use formulas
to calculate the suspicious value of each component. These formulas usually take as input
the collected traces and the test results. The suspicious value goes for 0 (low probability
that the statement contains a bug) to 1 (high probability). GenProg and PAR use a formula
presented by Weimer et al. in [12], while Debroy et al.’s work uses the Tarantula formula
[82]. As the inputs (program code and the test suite) and output (suspicious statement list)
of these formulas do not differ, these repair approaches could change the fault localization
technique by another. Our framework uses the Ochiai formula [107] in the implementation
of the three approaches.

The navigation of a fault localization space means to pick one suspicious statement from
the space. This selected statement is modified according to the repair operators defined by
an approach. Repair approaches apply different navigation strategies. For example, the
space can be navigated: a) in order, for the most suspicious statement to the lowest; b) uni-
formly randomly: elements are uniform randomly selected; c) weighted randomly strategy:
the probability to select a suspicious statement is proportional to its suspicious value. Our
framework implements the weighted random strategy for the three approaches.

As we have mentioned, the same fault localization technique and navigation strategy for
the implementations of the three repair approaches allows us to reduce the disparity of this
phase. With our framework we unify these two free experimental variables across the three
repair approach implementations.

95

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

5.2.2.1.2 Repair synthesis phase This phase receives one suspicious statement from the
previous phase and returns a candidate repair, i.e., a patched program, to be evaluated. In
this phase, the implementation of each approach defines the particular behavior to synthe-
size a candidate repair. For example, the synthesize phase of the mutation-based approach
returns, given a suspicious if condition expression, a candidate repair that consists on the
modification of one operator for the conditional expression. In Section we discuss
these particularities.

5.2.2.1.3 Repair validation The goal of this phase is to determine whether a candidate
repair, generated in the previous phase, is valid or not. For that, the phase executes the test
suite of a program. For sake of performance, the phase does two steps. First, it executes
the originally failing test cases over the modified program. If these test cases now pass
successfully, meaning that the bug is fixed, a regression test is executed to verify whether the
candidate repair breaks the remaining functionalities. The regression test involves executing
all test cases from the test suite. If none of them fails, the candidate repair is considered
valid. If at least one test fails during the validation phase, the candidate repair is not valid
and it is discarded.

The framework uses the same implementation of the phase for the three approaches.
This phases define extension points to, for instance, integrate test case prioritization tech-
niques [108] to reduce the time to execute regression validations. For instance, Ledru et al.
[109, 110] present a test case prioritization technique based on string distances. The tech-
nique assigns high priority to a test case which is most different compared to those already
prioritised. It relies on the information present in the test suite, so, it does not need test ex-
ecution. Contrary, Qi et al. [81] present a prioritization technique applied in an automatic
program repair approach. The technique extracts information from the repair process. It
assists the patch validation process by improving the rate of invalid-patch detection in the
context of automated program repair.

5.2.2.2 Specific Implementation Decisions

In this section we enumerate the decisions taken to implement GenProg, PAR and the
mutation-based repair approach. They are essential to implement the approaches. Some
decisions aim at clarifying those hidden or ambiguous issues in the original publications.
We extend the repair synthesis phase of our framework (see Section to encode the
behavior of an approach. These implementations focus on repairing if condition defects. The
section can be skipped if the implementation details are not relevant for the reader.

5.2.2.2.1 GenProg In GenProg the repair synthesis space is the product of two spaces:
operators kind space and fix ingredient space. GenProg applies three kinds of operators: insert,
remove and replace. Our implementation of GenProg applies one operator (replace) over if
condition statements. This operator replaces a suspicious if condition (or a randomly selected
sub-term from it) by another already written in the program.

We do not consider the remaining two operators (insert, remove) in our implementation.
They are not relevant for the defect class under consideration. Both require defining addi-
tional assumptions beyond those originally proposed in GenProg. For instance, inserting
one predicate in an existing if condition involves determining: the place to insert, and one

96

5.2. A Repair Framework for Fixing If Condition Defects

logical operator (AND, OR) as well. We exclude those repair operators to avoid including
particular assumptions that alter the essence of the approach inside its implementation.

The fix ingredient space [12] contains all eligible statements for replace operator. For this
defect class, these statements are conditional expressions. A local scope strategy includes
statements from the class where the code is replaced, while global scope strategy includes
statements from everywhere in the program. According to the literature, GenProg applies a
global strategy: "A statement is chosen uniformly at random from anywhere in the program"
[99) p.5]. However, as we show in Section [4.2.2) the local strategy allows repair approaches
decreasing the search space, without neglecting “repair success potential”. Consequently,
we apply a local strategy. The fix ingredient space is formed by all predicates taken from
if condition and loops statements located in the same class. Additionally, we add to the fix
ingredient space all sub-terms included in conditional expression. For instance, given the
existing i f((a > 0) || (b == null)), the fix ingredient contains: the mentioned expression and
two more terms: (a > 0) and (b == null).

To navigate the fix ingredient space, we apply a uniform random strategy: each element
from this search space has the same probability to be selected.

As difference from GenProg, where its search algorithm is based on genetic program-
ming, our implementation of GenProg is based on randomly search algorithms. That means,
we randomly navigate the fault localization space to pick a suspicious statement, and the fix
ingredient space to pick a candidate repair. Our decision is based in recent research [76] that
shows the strength of GenProg is not due to the guidance of genetic programming, but relies
on the strength of its operators.

5.2.2.2.2 PAR The repair synthesis space of PAR is also the product of two spaces: operator
kind space and fix ingredient space. As we presented in Section PAR defines two bug fix
templates related to if condition statements that define the operators kind space: a) Expression
replace for an if condition; and b) Expression added and removed: it inserts or removes a term
of the if condition. To implement PAR we make the following assumptions.

We define the PAR’s fix ingredient space as we do with GenProg. We have implemented
the strategy to navigate this space in a different manner from PAR’s paper. PAR’s authors
state the following strategy: "Same scope of the given fault location, sorted according to
the distance". Instead, we extend PAR’s strategy: We do a weighted random choice of a fix
ingredient, where the weight is inversely proportional to the distance d (in number of lines)
between the fix ingredient and the buggy statement.

The second PAR'’s fix template we consider in this work describes modifications in exist-
ing conditional statements. Let us first focus on the addition of terms and secondly in the
removal.

To implement the “Expression Added” template we consider two assumptions. PAR’s
work does not specify both assumptions. Without them, it is not possible to implement
those templates. The first one is the place where the new clause is inserted. The PAR paper
does not discuss this point. The insertion can be placed: a) at the beginning of the if condition
expression, e.g. given the predicate i f (b == null), adding the term c at the beginning results
in if((c) && (b == null)); or b) at the end, resulting if((b == null) && (c)). The frame-
work randomly chooses between both alternatives. The second assumption is the logical
operator added to connect the new term with existing if condition. In the previous example
we consider the insertion of the logical operator AND (&&). However, it could be used an-

97

Chapter 5. A Unified Repair Framework for Unbiased Evaluation of Repair Approaches

other operator instead such as OR (||). PAR neither discusses this point. In particular, our
framework randomly chooses one logical operator among a) and; b) or.

Regarding with the removal of a term, PAR randomly selects a term to remove. Our
framework randomly removes one of the two terms related to a logical operator.

5.2.2.2.3 Debroy et al.’s mutation-based approach The framework defines a repair syn-
thesis space (formed by mutants) by applying first-order mutation operators in one suspi-
cious if condition statement. A first-order operator applies only one change in a statement.
The synthesis space size depends on the number and the kinds of operators present in the
statement. For example, given the suspicious if if(a > b) the approach considers 6 candi-
dates fix: one corresponding to the negation of the condition !(a > b), the 5 remaining the re-
placement of the operator by another compatible operator such as >= or <. The framework
applies three kinds of mutation operators: Relational, Logical and Unary. They correspond
to operators OP2, OP3 and OPS8 defined in Debroy et al. (see Section[5.2.1.3). For Relational
category the operators are six: >, >=, <,=<, ==, and <>; for Logical are two: OR, AND,
and for Unary are two: negation and positivation (remove a negation operator). Finally, the
framework randomly selects one mutant to be validated.

5.2.3 Summary

In this section we presented a framework to replicate three state-of-the art repair approac