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Abstract

This thesis builds new models of music signals informed by the physics of the instruments.
While instrumental acoustics and audio signal processing target the modeling of musical
tones from different perspectives (modeling of the production mechanism of the sound
versus modeling of the generic “morphological” features of the sound), this thesis aims
at mixing both approaches by constraining generic signal models with acoustics-based
information. Thus, it is here intended to design instrument-specific models for applications
both to acoustics (learning of parameters related to the design and the tuning) and signal
processing (transcription).

In particular, we focus on piano music analysis for which the tones have the well-known
property of inharmonicity, i.e. the partial frequencies are slightly higher than those of a
harmonic comb, the deviation increasing with the rank of the partial. The inclusion of
such a property in signal models however makes the optimization harder, and may even
damage the performance in tasks such as music transcription when compared to a simpler
harmonic model. The main goal of this thesis is thus to have a better understanding about
the issues arising from the explicit inclusion of the inharmonicity in signal models, and
to investigate whether it is really valuable when targeting tasks such as polyphonic music
transcription.

To this end, we introduce different models in which the inharmonicity coefficient (B)
and the fundamental frequency (F0) of piano tones are included as parameters: two NMF-
based models and a generative probabilistic model for the frequencies having significant
energy in spectrograms. Corresponding estimation algorithms are then derived, with a
special care in the initialization and the optimization scheme in order to avoid the conver-
gence of the algorithms toward local optima. These algorithms are applied to the precise
estimation of (B,F0) from monophonic and polyphonic recordings in both supervised
(played notes are known) and unsupervised conditions.

We then introduce a joint model for the inharmonicity and tuning along the whole
compass of pianos. Based on invariants in design and tuning rules, the model is able to
explain the main variations of piano tuning along the compass with only a few parameters.
Beyond the initialization of the analysis algorithms, the usefulness of this model is also
demonstrated for analyzing the tuning of well-tuned pianos, to provide tuning curves for
out-of-tune pianos or physically-based synthesizers, and finally to interpolate the inhar-
monicity and tuning of pianos along the whole compass from the analysis of a polyphonic
recording containing only a few notes.

Finally the efficiency of an inharmonic model for NMF-based transcription is investi-
gated by comparing the two proposed inharmonic NMF models with a simpler harmonic
model. Results show that it is worth considering inharmonicity of piano tones for a tran-
scription task provided that the physical parameters underlying (B,F0) are sufficiently
well estimated. In particular, a significant increase in performance is obtained when using
an appropriate initialization of these parameters.
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Notation

This section gathers acronyms and variables repeatedly used along the manuscript. Those
which are not listed here are locally used and properly defined when mentioned in a section.

List of acronyms

EM Expectation-Maximization (algorithm)
ET Equal Temperament
EUC Euclidian (distance)
FN False Negative
FP False Positive
IS Itakura-Saito (divergence)
KL Kullback-Leibler (divergence)
MAPS MIDI Aligned Piano Sounds (music database)
MIDI Musical Instrument Digital Interface
MIR Music Information Retrieval
NMF Non-negative Matrix Factorization (model)
Ha-NMF Harmonic (strict) NMF
Inh-NMF Inharmonic (strict) NMF
InhR-NMF Inharmonic (Relaxed) NMF
PFD Partial Frequency Deviation (algorithm)
PLS Probabilistic Line Spectrum (model)
RWC Real World Computing (music database)
TN True Negative
TP True Positive
WC Whole Compass

List of variables

Time-frequency representation:

t ∈ [1, T ] time-frame index
k ∈ [1,K] frequency-bin index
fk frequency of bin with index k
τ analysis window’s length
gτ (fk) magnitude of the Fourier Transform of the analysis window
V magnitude (or power) spectrogram (dimensions K × T )
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Standard NMF with β-divergence applied to audio spectrograms:

W dictionary of spectra (dimensions K ×R)
H activation matrix (dimensions R× T )

V̂ matrix product of W and H approximating V

C(W,H) NMF cost-function
β parameter of the β-divergence
dβ β-divergence

NMF inharmonic models:

r ∈ [1, R] note index
n ∈ [1, Nr] partial rank of note with index r

θHa/Inh/InhR set of parameters, respectively, for Ha/Inh/InhR-NMF models

anr amplitude of partial with rank n of note with index r
fnr frequency of partial with rank n of note with index r
F0r fundamental frequency of note with index r
Br inharmonicity coefficient of note with index r
Ton onset detection threshold of H matrix for transcription application

Whole compass model of piano tuning:

m ∈ [21, 108] index of note in MIDI norm from A0 to C8
ξ = {sb, yb} set of parameters for the WC model of inharmonicity
ρ octave type
φ = {κ,m0, α} set of parameters for the WC model of octave type
dg global tuning deviation
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Chapter 1

Introduction

1.1 Musical sound modeling and representation

Acoustics-based vs. signal-based approaches

The issue of the representation and the modeling of musical sounds is a very active re-
search topic that is often addressed from two main different perspectives, namely those of
acoustics and signal processing.

Historically related to the branch of wave physics, and notably led by Helmholtz’s
advances in physical and physiological acoustics [Helmholtz, 1863], the community of in-
strumental acoustics has formed around this problem by studying the mechanisms that
produce the sound, i.e. the musical instruments. Such an approach usually relies on a pre-
cise physical modeling of the vibrations and couplings taking place in musical instruments
when subject to a player excitation [Rossing and Fletcher, 1995; Fletcher and Rossing,
1998; Chaigne and Kergomard, 2008]. For each specific instrument, the characteristics of
the tones are related to meaningful low-level parameters such as, the physical properties
of the materials, the geometry of each component (e.g. strings, plates, membranes, pipes),
the initial conditions related to playing techniques, etc. For different designs of the same
instrument, these modeling parameters provide a representation useful in various applica-
tions. For instance, in synthesis, the control of the characteristics of the tones can be done
intuitively by modifying the physical properties of the instrument. Such representations
are also useful for psycho-acoustics research, when studying the effects of the instrumental
design and playing techniques on the sound and its perception.

In contrast to the physics-based approach, the community of music signal processing
aims at modeling musical sounds according to their “morphological” attributes, without
necessarily paying due regard to the particular instruments that are played. Indeed, most
music signals are generally composed of tonal components (quasi-sinusoidal waves, also
called partials, having amplitude and frequency parameters that may vary over time),
but also percussive components corresponding to attack transients, and noise. However,
such kind of signal-based characteristics are hardly identifiable when having a look at a
waveform representation.

Thus, a substantial part of the research in the 60’s-70’s had focused on the design of
transforms/representations that allow for an intuitive visualization and manipulation of
these signal-based features in the time-frequency domain (as for instance the well-known
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spectrogram based on the Short-Time Fourier Transform). Also, the inversion property of
such transforms led the way for analysis/synthesis applications to audio coding [Flanagan
and Golden, 1966] and sound transformations (e.g. transposition, time-stretching, cross
synthesis) [Allen, 1977]. Based on these representations a number of parametric mod-
els of speech/music signals have been developed, such as the sinusoidal additive model
[McAulay and Quatieri, 1986; Serra and Smith, 1990] or the source-filter model (first in-
troduced as a signal-model mimicking the mechanism of speech production [Fant, 1960],
but further widely applied to various types of instrumental tones). In the following decade,
a number of enhanced transforms have been introduced (e.g. spectral reassignment, Mod-
ified Cosine Transform, Wavelet Transform, Constant Q Transform) in order to face the
time-frequency resolution trade-off or improve the coding performance by accounting for
auditory perception [Mallat, 2008; Roads, 2007].

Since then, a number of theoretical frameworks, often taken from other domains such
as image processing, statistics and machine learning, have been adopted in order to replace
ad-hoc modelings and heuristic estimation techniques. To cite only a few, sparse coding
[Mallat and Zhang, 1993; Chen et al., 1998], Bayesian modeling [Gelman et al., 2003], high-
resolution methods [Badeau et al., 2006] or approaches based on rank reduction [Cichocki
et al., 2009] have been widely spread across the audio community since the 90’s. In contrast
with acoustics-based modelings, these frameworks are generic enough to process complex
mixture of sounds that can include various types of instruments. In parallel, a new field
of applications, referred to as Music Information Retrieval (MIR), has emerged with a
need of indexing and classifying the ever-growing amount of multimedia data available
on the internet [Downie, 2006; Casey et al., 2008]. In this context, new kind of mid-level
representations (e.g. chromagrams, onset detection functions, similarity matrices) have
been found useful for extracting content-based information from music pieces (e.g. chords,
melody, genre).

Mixing both approaches

Although acoustics and signal processing model musical tones according to different per-
spectives, both communities tend to borrow tools from each other.

For instance, synthesis applications based on physical modeling require an important
number of parameters that cannot be easily estimated from instrument design only. In-
deed, such models based on coupled differential equation systems are usually non-invertible
and a joint estimation of all parameters from a target sound is hardly practicable. Thus,
the learning of the synthesis parameters often requires physical measurements on real in-
struments and/or estimation techniques derived from signal-based modeling (e.g. High
Resolution methods applied to modal analysis [Ege et al., 2009; Elie et al., 2013]). Also,
signal processing tools such as numerical methods for differential equation solving (e.g.
finite element and finite difference methods), and digital filtering are commonly used to
perform the synthesis [Rauhala et al., 2007b; Bank et al., 2010].

Conversely, a general trend in signal processing this last decade (as shown in Chapter 2)
tends to include prior information about the structure of the tones in order to tailor more
efficient models and estimation algorithms. For instance, accounting for the harmonic
structure of sustained tones, the smoothness of their spectral and temporal envelopes,
can outperform generic models in various applications such as transcription or source
separation.
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CHAPTER 1. INTRODUCTION

1.2 Approach and issues of the thesis

General framework of the thesis

The goal of this thesis is to go a step further in the mixing of both approaches. From
generic signal-based frameworks we aim at including information about the timbre of the
tones in order to perform analysis tasks that are specific to a given instrument. Issues
related to both acoustics and signal processing applications are then investigated:

• Can such classes of models be used to efficiently learn physics-related parameters
(e.g. information about the design and tuning) of a specific instrument?

• Does refining/complexifying generic signal models actually improve the performance
of analysis tasks targeted by the MIR community?

It however remains unrealistic to try to combine full synthesis models, built from
acoustics only, into complex signal-based analysis methods, and to optimize both types of
parameters. Instead, we here focus on a selection of a few timbre features that should be
most relevant. This relates to one of the core concepts of musical acoustics – but also one
of the hardest to apprehend: timbre. The simplest, and standard definition of timbre1,
is what differentiates two tones with the same pitch, loudness, and duration. However,
timbre is much more complex than this for instrument makers, as one instrument must
be built and tuned in such a way that its timbre keeps a definite consistency from note to
note (while not being exactly the same) across the whole tessitura, loudness and playing
techniques.

Focus on piano music

Such methodology is applied in this thesis to the case of the piano. Its study is particularly
relevant as it has been central to Western music in the last two centuries, with an extremely
wide solo and orchestral repertoire. Moreover, the analysis of piano music represents a
challenging problem because of the versatility of the tones. Indeed, the piano register spans
more than seven octaves, with fundamental frequencies ranging approximately from 27 Hz
to 4200 Hz, and the action mechanism allows for a wide range of dynamics. In addition,
the tones are well known for their property of inharmonicity (the partial frequencies are
slightly higher than those of a harmonic comb) that has an important influence in the
perception of the instrument’s timbre as well as on its tuning [Martin and Ward, 1961].
Thus, in this thesis particular attention is paid to the inclusion of the inharmonicity in
signal-based models. Variability of the inharmonicity along the whole compass of the
piano and its influence on the tuning are also investigated.

Signal-based frameworks

This thesis focuses on Non-negative Matrix Factorization (NMF) models [Lee and Seung,
1999]. Such models essentially target the decomposition of time-frequency representa-
tions of music signals into two non-negative matrices: one dictionary containing the spec-
tra/atoms of the notes/instruments, and one activation matrix containing their temporal

1“attribute of sensation in terms of which a listener can judge that two sounds having the same loudness
and pitch are dissimilar”, American Standards Association definition 12.9
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activations. Thus a substantial part of this thesis consists of finding a way of enforc-
ing the inharmonic structure of the spectra of the dictionary for applications related to
both acoustics (estimation of the inharmonicity parameters) and signal processing (tran-
scription). An alternative model based on a Bayesian framework is also proposed in this
thesis.

1.3 Overview of the thesis and contributions

Chapter 2 - State of the art: This chapter introduces the theoretical background
of this thesis. First, a state-of-the-art on the Non-Negative Matrix (NMF) factorization
framework is presented. Both standard and constrained approaches are detailed, and
practical considerations about the problem formulation and the optimization are discussed.
Second, basic notions of piano acoustics are presented in order to highlight some properties
of the tones that should be relevant to include in our models. Then, a state of the art on
methods taking into account inharmonicity for piano music analysis is presented. Finally,
issues resulting from the inharmonicity inclusion in signal-based models are discussed.

Chapter 3 - Estimating the inharmonicity coefficient and the F0 of piano tones:
This chapter deals with the estimation of the inharmonicity coefficient and the F0 of piano
tones along the whole compass, in both monophonic and polyphonic contexts.

Contributions: Two new frameworks in which inharmonicity is included as a
parameter of signal-based models are presented. All presented methods exhibit
performances that compare favorably to a state of the art algorithm when applied
to the supervised estimation of the inharmonicity coefficient and the F0 of isolated
piano tones.

First in Section 3.1, two NMF-based parametric models of piano tone spectra
for which different types of inclusion of the inharmonicity is proposed (strict and
relaxed constraints) are described. Estimation algorithms are derived for both
models and practical considerations about the initialization and the optimiza-
tion scheme are discussed. These are finally applied on isolated note and chord
recordings in a supervised context (i.e. with the knowledge of the notes that are
processed).

Second in Section 3.2, a generative probabilistic model for the frequencies
of peaks with significant energy in time-frequency representations is introduced.
The parameter estimation is formulated as a maximum a posteriori problem and
solved by means of an Expectation-Maximization algorithm. The precision of the
estimation of the inharmonicity coefficient and the F0 of piano tones is evaluated
first on isolated note recordings in both supervised and unsupervised cases. For
the unsupervised case, the algorithm returns estimates of the inharmonicity co-
efficients and the F0s as well as a probability for each note to have generated the
observations in each time-frame. The algorithm is finally applied on a polyphonic
piece of music in an unsupervised way.

Chapter 4 - A parametric model for the inharmonicity and tuning along the
whole compass: This chapter presents a study on piano tuning based on the consider-
ation of inharmonicity and tuner’s influences.

12



CHAPTER 1. INTRODUCTION

Contributions: A joint model for the inharmonicity and the tuning of pianos
along the whole compass is introduced. While using a small number of parame-
ters, these models are able to reflect both the specificities of instrument design
and tuner practice. Several applications are then proposed. These are first used
to extract parameters highlighting some tuners’ choices on different piano types
and to propose tuning curves for out-of-tune pianos or piano synthesizers. Also,
from the study on several pianos, an average model useful for the initialization
of the inharmonicity coefficient and the F0 of analysis algorithms is obtained.
Finally, these models are applied to the interpolation of inharmonicity and tun-
ing along the whole compass of a piano, from the unsupervised analysis of a
polyphonic musical piece.

Chapter 5 - Application to the transcription of polyphonic piano music: This
chapter presents an application to a transcription task of the two NMF-based algorithms
introduced in Section 3.1.

Contributions: In order to quantify the benefits that may result from the in-
harmonicity inclusion in NMF-based models, both algorithms are applied to a
transcription task and compared to a simpler harmonic model. We study on a 7-
piano database the influence of the model design (harmonicity vs. inharmonicity
and number of partials considered), of the initialization (naive initialization vs.
mean model of inharmonicity and tuning along the whole compass) and of the
optimization process. Results suggest that it is worth including inharmonicity
in NMF-based transcription model, provided that the inharmonicity parameters
are sufficiently well initialized.

Chapter 6 - Conclusion and prospects: This last chapter summarizes the contribu-
tions of the present work and proposes some prospects for the design of a competitive piano
transcription system and the application of such approaches for other string instruments
such as the guitar.

1.4 Related publications

— Peer-reviewed journal article —

Rigaud, F., David, B., and Daudet, L. (2013a). A parametric model and estimation
techniques for the inharmonicity and tuning of the piano. Journal of the Acoustical
Society of America, 133(5):3107–3118.

— Peer-reviewed conference articles —
Society of America, 133(5):3107–3118.

— Peer-reviewed conference articles —

Rigaud, F., David, B., and Daudet, L. (2011). A parametric model of piano tuning.
In Proceedings of the 14th International Conference on Digital Audio Effects (DAFx),
pages 393–399.

Rigaud, F., David, B., and Daudet, L. (2012). Piano sound analysis using non-negative
matrix factorization with inharmonicity constraint. In Proceedings of the 20th European
Signal Processing Conference (EUSIPCO), pages 2462–2466.
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model for musical instrument sounds and its application to piano tuning estimation. In
Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA).

Rigaud, F., Falaize, A., David, B., and Daudet, L. (2013c). Does inharmonicity improve
an NMF-based piano transcription model? In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 11–15.
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Chapter 2

State of the art

This thesis mainly focuses on the inclusion of specific properties of the timbre of piano tones
in Non-negative Matrix Factorization (NMF) models. Thus, this chapter first presents in
Section 2.1 a state-of-the-art on the modeling of audio spectrograms based on the NMF
framework. Both standard and constrained formulations accounting for specific audio
properties are detailed. Then in Section 2.2, some basic notions of instrumental acoustics
are introduced in order to highlight some characteristics of piano tones that should be
relevant to blend into the NMF model. Finally, a state-of-art of methods including the
inharmonic nature of the tones in piano music analysis is presented and issues resulting
from its inclusion in signal models are discussed in Section 2.3.

2.1 Modeling time-frequency representations of audio signals

based-on the factorization of redundancies

Most musical signals are highly structured, both in terms of temporal and pitch arrange-
ments. Indeed, when analyzing the score of a piece of western tonal music (cf. for instance
Figure 2.1) one can notice that often a restricted set of notes whose relationship are given
by the tonality are used and located at particular beats corresponding to subdivisions
of the measure. All these constraints arising from musical composition rules (themselves
based on musical acoustics and psycho-acoustics considerations) lead to a number of re-
dundancies: notes, but also patterns of notes, are often repeated along the time line.

Figure 2.1: Score excerpt of the Prelude I from The Well-Tempered Clavier Book I - J.S.
Bach. Source: www.virtualsheetmusic.com/

Taking these redundancies into account to perform coding, analysis and source separa-

15



tion of music signals has become a growing field of research in the last twenty years. Orig-
inally focused on speech and image coding problems, the sparse approximation framework
aims at representing signals in the time domain as a linear combination of a few patterns
(a.k.a. atoms) spanning different time-frequency regions [Mallat and Zhang, 1993; Chen
et al., 1998]. The dictionary of atoms is usually highly redundant, it may be given a priori
or learned from a separate dataset. It may also be structured in order to better fit the
specific properties of the data (e.g. harmonic atoms for applications to music [Gribonval
and Bacry, 2003; Leveau et al., 2008]).

In the last decade, the idea of factorizing the redundancies inherent to the structure
of the music has been applied to signals in the time-frequency domain. Unlike the signal
waveform, time-frequency representations such as the spectrogram allow for an intuitive
interpretation of the pitch and rhythmic content by exhibiting particular characteristics
of the musical tones (e.g. a comb structure evolving over time for pitched sounds, cf.
Figure 2.2). Beyond the recurrence of the notes that are played (cf. note E5 whose
spectro-temporal pattern is highlighted in black in Figure 2.2(b)), adjacent time-frames
are also highly redundant. Thus, methods based on redundancy factorization such as
the Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999], or it probabilistic
counterpart the Probabilistic Latent Component Analysis (PLCA) [Smaragdis et al., 2008]
have been applied to musical signals with the goal to decompose the observations into a few
meaningful objects: the spectra of the notes that are played and their activations over time.
Another seducing property of these approaches is that the dictionary of spectra/atoms may
be directly learned from the data, jointly with the estimation of the activations. However,
this great flexibility of factorization approaches often makes difficult the interpretation of
activation patterns as individual note activation. In order to be successfully applied to
complex tasks such as polyphonic music transcription or source separation, the structure
of the decomposition has to be enforced by including prior information on the specific
properties of audio data in the model (for instance harmonic structure of sustained note
spectra or smoothness of temporal activations).

2.1.1 Non-negative Matrix Factorization framework

The NMF is a decomposition method for multivariate analysis and dimensionality/rank
reduction of non-negative data (i.e. composed of positive or null elements) based on the
factorization of the redundancies naturally present. Unlike other techniques such as Inde-
pendent Component Analysis [Comon, 1994] or Principal Component Analysis [Hotelling,
1933] for which the factorized elements may be composed of positive and negative ele-
ments, the key point of NMF relies on the explicit inclusion of a non-negativity constraint
that enforces the elements of the decomposition to lie in the same space as the observa-
tions. Thus, when analyzing data composed of non-negative elements, such as the pixel
intensity of images, the decomposition provided by the NMF exhibits a few meaningful
elements that can be directly interpreted as distinctive parts of the initial images (for
instance the eyes or the mouth of face images [Lee and Seung, 1999]).

Although the first NMF problem seems to be addressed in [Paatero and Tapper, 1994]
under the name Positive Matrix Factorization, is has been widely popularized by the
studies of Lee and Seung [Lee and Seung, 1999, 2000] which highlighted the ability of the
method for learning meaningful parts of objects (images and text) and proposed efficient
algorithms. Since then, an important number of studies have been dealing with extend-
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Figure 2.2: (a) waveform and (b) spectrogram of the first bar of the score given in Figure
2.1. The spectral pattern of note E5 is highlighted in black.

ing NMF models and algorithms to applications in data analysis and source separation
[Cichocki et al., 2009] in various domains such as, to name only a few, image [Lee and
Seung, 1999; Hoyer, 2004], text [Lee and Seung, 1999; Pauca et al., 2004], biological data
[Liu and Yuan, 2008] or audio processing [Smaragdis and Brown, 2003].

2.1.1.1 Model formulation for standard NMF

Given the observation of a non-negative matrix V of dimension K × T , the NMF aims at
finding an approximate factorization:

V ≈WH = V̂ , (2.1)

where W and H are non-negative matrices of dimensions K ×R and R× T , respectively.
Thus, the observation matrix V is approximated by a positive linear combination of R
atoms, contained in the dictionary W whose weightings are given by the coefficients of H,
also called the activation matrix. For each element Vkt, Equation (2.1) leads to:

Vkt ≈
R∑

r=1

WkrHrt = V̂kt . (2.2)

The model is illustrated in Figure 2.3 on a toy example, where the exact factorization of
a rank-3 matrix is obtained. In real-life applications, V is usually full-rank and only an
approximate factorization can be obtained. In order to obtain a few meaningful atoms in
the dictionary W , the order of the model R is usually chosen so that KR + RT ≪ KT ,
which corresponds to a reduction of the dimensionality of the data. The optimal tuning of
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R is not straightforward. It is usually arbitrarily chosen, depending on which application is
targeted. For the interested reader, more theoretical considerations and results about the
optimal choice of R and the uniqueness of NMF may be found in [Cohen and Rothblum,
1993; Donoho and Stodden, 2004; Laurberg et al., 2008; Klingenberg et al., 2009; Essid,
2012].

Figure 2.3: NMF illustration for an observation matrix V of rank 3. The superposition of
the elements (squares, disks and stars) in V corresponds to a summation. In this particular
example, the activation matrix H is composed of binary coefficients.

2.1.1.2 Applications to music spectrograms

In the case of applications to audio signals, V usually corresponds to the magnitude (or
power) spectrogram of an audio excerpt, k being the frequency bin index and t being the
frame index. Thus, W represents a dictionary containing the spectra of the R sources, and
H their time-frame activations. Figure 2.4 illustrates the NMF of a music spectrogram
in which one can see that two notes are first played separately, and then jointly. For this
particular example, when choosing R = 2 the decomposition accurately learns a mean
stationary spectrum for each note in W and returns their time-envelopes in H, even when
the two notes are played jointly.

Figure 2.4: NMF applied to the decomposition of an audio spectrogram.
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This convenient and meaningful decomposition of audio spectrograms led the way for
applications such as automatic music transcription (the transcription task is presented in
more detail in Chapter 5) [Smaragdis and Brown, 2003; Paulus and Virtanen, 2005; Bertin,
2009], audio source separation [Virtanen, 2007; Ozerov and Févotte, 2010], audio-to-score
alignment [Cont, 2006], or audio restoration [Le Roux et al., 2011].

However, it should be noticed that although the additivity of the sources1 is preserved
in the time-frequency domain by the Short-Time Fourier Transform, a mixture spectro-
gram is not the sum of the component spectrograms because of the non-linearity of the
absolute value operator. Thus, the NMF model, as it is given in Equation (2.1), is strictly
speaking incorrect and some studies have introduced a modeling of the phase compo-
nents [Parry and Essa, 2007a,b] in order to refine the model. However, in most cases
the validity of the standard NMF model is still justified by the fact that for most music
signals the sources are spanning different time-frequency regions and each time-frequency
bin’s magnitude is often explained by a single predominant note/instrument [Parvaix and
Girin, 2011]. When several sources are equally contributing to the energy contained in a
time-frequency bin, the exponent of the representation (for instance 1 for the magnitude
spectrogram and 2 for the power spectrogram) may have an influence on the quality of the
NMF approximation. In the case of independent sources (for instance corresponding to
different instruments), it seems that a better approximation is obtained for an exponent
equal to 1 (i.e. V is a magnitude spectrogram) [Hennequin, 2011].

Besides the factorization of spectrograms, other types of observation matrices may be
processed when dealing with musical data. For instance, the NMF has been applied to
the decomposition of self-similarity matrices of music pieces for music structure discovery
[Kaiser and Sikora, 2010], or matrices containing audio features for musical instrument
[Benetos et al., 2006] and music genre [Benetos and Kotropoulos, 2008] classification.

2.1.1.3 Quantification of the approximation

In order to quantify the quality of the approximation of Equation (2.1), a measure of
the dissimilarity between the observation and the model is evaluated by means of a dis-
tance (or divergence), further denoted by D(V | WH). This measure is used to define a
reconstruction cost-function

C(W,H) = D(V |WH), (2.3)

from which H and W are estimated according to a minimization problem

Ŵ , Ĥ = argmin
W∈RK×R

+ ,H∈RR×T
+

C(W,H). (2.4)

For a separable metric, the measure can be expressed as:

D(V |WH) =
K∑

k=1

T∑

t=1

d
(
Vkt | V̂kt

)
, (2.5)

where d(. | .) denotes a measure of dissimilarity between two scalars, corresponding for
instance to each time-frequency bin of the observed spectrogram and the model. A wide

1This holds for music signals obtained by a linear mixing of the separated tracks, thus by neglecting
the non-linear mixing operations such as for instance the compression applied at the mastering.
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range of metrics have been investigated for NMF, often gathered in families such as the
Csiszar [Cichocki et al., 2006], β [Févotte and Idier, 2011] or Bregman divergences [Dhillon
and Sra, 2006]. It is worth noting that divergences are more general than distances since
they do not necessarily respect the properties of symmetry and triangular inequality.
However they are still adapted to a minimization problem since they present a single
minimum for Vkt = V̂kt.

β-divergences family: The family of β-divergences is widely used in a number of NMF
applications because it encompasses 3 common metrics: a Euclidean (EUC) distance,
the Kullback-Leibler (KL) divergence (introduced in [Kullback and Leibler, 1951] as a
measure of the difference between two probability distributions) and the Itakura-Saito (IS)
divergence (obtained in [Itakura and Saito, 1968] from a Maximum Likelihood estimation
problem for auto-regressive modelings of speech spectra). Its general formulation is given
by:

dβ(x | y) =
1

β(β − 1)
(xβ + (β − 1)yβ − βxyβ−1), β ∈ R \ {0, 1}. (2.6)

EUC is obtained by setting β = 2, while KL and IS are obtained by taking the limit,
respectively, for β → 1 and β → 0.

dβ=2(x | y) = dEUC(x | y) =
(x− y)2

2
, (2.7)

dβ→1(x | y) = dKL(x | y) = x log
x

y
+ (y − x), (2.8)

dβ→0(x | y) = dIS(x | y) =
x

y
− log

x

y
− 1. (2.9)

Figure 2.5 depicts these divergences for x = 1. A convenient property of β-divergences
is that their first and second order partial derivatives with respect to y (the model) are
continuous in β ∈ R.

∂dβ (x | y)
∂y

= yβ−2(y − x), (2.10)

∂2dβ (x | y)
∂2y

= yβ−3((β − 1)y + (2− β)x). (2.11)

Thus, when deriving update rules for optimization algorithms based on gradient descent,
a general formulation may be obtained for all metrics gathered in the β-divergence family
(cf. Section 2.1.1.5).
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Figure 2.5: EUC, KL and IS divergences for x = 1.
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Scaling properties: When dealing with a specific application, the choice of the
cost-function should be done according to the particular properties of the data. In the
case where the NMF is applied to the factorization of audio spectrograms, an important
consideration to take into account is that magnitude spectra have a large dynamic range.
As illustrated on Figure 2.6(a), audio spectra are usually characterized by a fast decrease
of the spectral envelope and only a few partials with low rank have a large magnitude.
However, some higher-rank partials with lower magnitudes still have significant loudness
for auditory perception, this latter being more closely related to a logarithmic scale (cf.
Figure 2.6(b)). Likewise, along the time-frame axis, spectrograms contain much more
energy at attack transients than in decay parts. Thus, an important feature to consider
when choosing a divergence is its scaling property [Févotte et al., 2009]. When dealing
with β−divergences the following expression is obtained from Equation (2.6):

dβ(γx | γy) = γβ · dβ(x | y), γ ∈ R
+. (2.12)

It implies that according to the value of β, different relative weights will be given in the
cost-function (Equation (2.5)) for each time-frequency bin depending on its magnitude.
For instance, for β > 0 the reconstruction of time-frequency bins presenting highest mag-
nitudes will be favored since a bad fit on these coefficients will cost more than an equally
bad fit on these with lowest magnitude. For β < 0 a converse effect will be obtained. Only
β = 0, which corresponds to the IS divergence, exhibits a scale invariance property which
should be suitable for applications to audio source separation since it should allow for a
reliable reconstruction of all coefficient regardless of their magnitude, even low-valued ones
that may be audible [Févotte et al., 2009]. For these reasons, most studies related to au-
dio applications usually consider values of β ∈ [0, 1] [Virtanen, 2007; Ozerov and Févotte,
2010; Vincent et al., 2010; Dessein et al., 2010]. EUC is rarely used, and it is sometimes
replaced by weighted Euclidean distances using perceptual frequency-dependent weights
[Vincent and Plumbey, 2007; Vincent et al., 2008]. However, a fine tuning of β within the
range [0, 1] is not straightforward and seems to be dependent on the application and on
the value of the spectrogram exponent (e.g. 1 for a magnitude or 2 for a power spectro-
gram). A detailed study on the β parameter has shown that a KL divergence for processing
magnitude spectrograms in source separation applications was leading to highest perfor-
mances (evaluated in terms of Signal-to-Distortion Ratio (SDR), Signal-to-Interference
Ratio (SIR) and Signal-to-Artifacts Ratio (SAR)) [FitzGerald et al., 2009]. When pro-
cessing power spectrograms for the same dataset, performances were found optimal for
β = 0.5, but lower than those obtained on magnitude spectrograms. In application to
polyphonic transcription [Vincent et al., 2010], optimal pitch estimation performances
(F-measure) were obtained for β = 0.5 when processing magnitude spectrograms.

Convexity: Another important property to ensure that the optimization problem
holds a single minimum is the convexity of the cost-function. Equation (2.10) shows that
β-divergences present a single minimum for x = y and increase with | x − y |. However,
the convexity with respect to y for x fixed is limited to the range β ∈ [1, 2] (cf. Equa-
tion (2.11)). Thus, IS is non-convex and present an horizontal asymptote for β → +∞.
Moreover, even for β ∈ [1, 2], the convexity of β-divergences does not necessarily lead to
the convexity of the reconstruction cost-function given in Equation (2.5) since the opti-
mization of the parameters {Wk,r}k∈[1,K],r∈[1,R] and {Hr,t}r∈[1,R],t∈[1,T ] should be jointly
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Figure 2.6: Magnitude spectrum of a piano note A3 in (a) linear and (b) dB scale.

performed. Thus, most algorithms perform updates of the parameters in an iterative way,
each coefficient being independently updated while others are kept fixed.

In the case where dependencies are considered for the elements of W or H, for instance
by setting parametric models (cf. Section 2.1.2.2), the convexity of the cost-function with
respect to the new highest-level parameters will not necessarily be verified and heuristics
may be used to ensure that the algorithm does not stop in a local minimum (as shown in
Section 3.1.2.2 where an NMF parametric model for piano sound analysis is introduced).

2.1.1.4 Notes about probabilistic NMF models

As seen so far, solving an NMF problem requires the choice of a cost-function, this latter
being usually done according to a trade-off between the specific properties of the observa-
tions and the convexity of the problem. An alternative method consists of considering the
set of observations as a realization of a generative process composed of random variables.
Thus, the choice of the probability distribution that is associated to each variable provides
a cost function, for instance by considering a maximum-likelihood formulation. A main
benefit of the probabilistic framework relies in the possibility of including information
about the data by setting a priori distributions on the NMF parameters, and according
to Bayesian inference solving a maximum a posteriori problem. For instance, in [Yoshioka
and Sakaue, 2012] a log-normal distribution is assumed for each element of the dictionary
of spectra Wkt. This choice leads to a cost-function corresponding to the squared error
between the observation and the model spectrograms with logarithmic magnitude. Such
a model can account for the high dynamic range of audio signals, as discussed above.

In some cases, both deterministic and probabilistic approaches can be shown to be
equivalent [Févotte and Cemgil, 2009]. For instance, taking standard NMF cost-function
(Equation (2.5)) with KL divergence is equivalent to considering that the sources, indexed
by r, that contribute to the generation of a time-frequency bin of the observed magnitude
spectrogram Vkt, are independent and distributed according to a Poisson distribution
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with parameter WkrHrt [Virtanen et al., 2008]. For IS an equivalence is obtained by
assuming that each source independently contributes to the time-frequency bin of the
power spectrogram | Vkt |2 according to a complex Gaussian distribution with null mean
and variance WkrHrt [Févotte et al., 2009].

2.1.1.5 Optimization techniques

A wide variety of continuous optimization algorithms can be used to solve problem (2.5)
[Cichocki et al., 2008]. For instance, standard algorithms based on gradient descent [Lin,
2007; Wang and Zou, 2008] or Newton methods [Zdunek and Cichocki, 2007] may be
applied to NMF problems. However, in order to preserve the non-negativity of the decom-
position obtained with these methods a projection onto the positive orthant is required
after each update. Thus, other methods that implicitly preserve the non-negativity are
usually preferred. Among such techniques, the most popular are very likely the multi-
plicative algorithms whose update rules can be obtained from heuristic decompositions of
the cost-function or in a more rigorous way by using Majorization-Minimization (MM)
methods [Lee and Seung, 2000; Févotte and Idier, 2011]. In the case of probabilistic NMF
models, methods such as the Expectation-Maximization algorithm [Dempster et al., 1977]
or variants such as the Space-Alternating Generalized Expectation-Maximization (SAGE)
algorithm [Fessler and Hero, 2010; Bertin et al., 2010] are commonly used.

Multiplicative algorithms are the most employed in practice because they guarantee
the non-negativity of the decomposition and it is often experimentally verified that they
lead to satisfactory solutions with a reasonable computational time. Thus, for the NMF
models proposed in this thesis we chose to focus on this method in order to perform the
optimizations.

Multiplicative algorithms: The heuristic approach for deriving multiplicative updates
consists of decomposing the partial derivatives of a cost function, with respect to a given
parameter θ∗, as a difference of two positive terms:

∂C(θ∗)
∂θ∗

= P (θ∗)−Q(θ∗), P (θ∗), Q(θ∗) ≥ 0 (2.13)

and at iteratively updating the corresponding parameter according to:

θ∗ ← θ∗ ×Q(θ∗)/P (θ∗) (2.14)

Since P (θ∗) and Q(θ∗) are positive, it guarantees that parameters initialized with positive
values stay positive during the optimization, and that the update is performed in the
descent direction along the parameter axis. Indeed, if the partial derivative of the cost
function is positive (respectively negative), then Q(θ∗)/P (θ∗) is smaller (resp. bigger)
than 1 and the value of the parameter is decreased (resp. increased). At a stationary
point, the derivative of the cost function is null so Q(θ∗)/P (θ∗) = 1.

When applied to the NMF model with β-divergences, the following expressions for the
gradient are obtained by using Equations (2.5) and (2.10):

∇HC(W,H) = W T
(
(WH).[β−2] ⊗ (WH − V )

)
, (2.15)

∇WC(W,H) =
(
(WH).[β−2] ⊗ (WH − V )

)
HT , (2.16)
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where ⊗ and .[] respectively denote element-wise multiplication and exponentiation, and
T denotes the transpose operator. Since all matrices are composed of non-negative coeffi-
cients an obvious decomposition leads to the following updates:

H ← H ⊗ W T
(
(WH).[β−2] ⊗ V

)

W T (WH).[β−1]
, (2.17)

W ← W ⊗
(
(WH).[β−2] ⊗ V

)
HT

(WH).[β−1]HT
, (2.18)

where the fraction bar denotes element-wise division.
In the general case, no proof is given for the convergence of the algorithm or even for the

decrease of the cost-function since the decomposition (2.13) is not unique and is arbitrarily
chosen. When using MM algorithms, update rules are obtained by building a majorizing
function which is minimized in an analytic way in a second step, thus proving the decrease
of the criterion. In the case of NMF with β-divergences, identical rules to (2.17) and (2.18)
have been obtained for β ∈ [1, 2] with a proof of the decrease of the criterion by using MM
algorithm formalism [Kompass, 2007]. However it should be noticed that the property of
the decrease of the criterion does not ensure that the algorithm will end in a local and even
less in the global minimum. Moreover, it can be observed in some case that an increase
of the criterion at some iterations may lead to a much faster convergence toward a local
minimum [Badeau et al., 2010; Hennequin, 2011].

2.1.2 Giving structure to the NMF

Besides the generic “blind” approach, prior information is often considered in order to
better fit the decomposition to specific properties of the data. Indeed, the standard NMF
problem, as it is given by Equation (2.4), does not guarantee that the optimal solution is
suitable regarding the targeted application. For instance, in a music transcription task it
cannot be ensured that each column of W will contain the spectrum of a unique note that
has been played and not a combination of several notes. Moreover, there is no guarantee
that an optimal solution (with respect to a given application) is obtained since different
local optima may be reached by the algorithm, depending on the initialization of the
parameters.

Thus, taking into account prior information in the initialization is a matter of impor-
tance since it should help in avoiding the convergence toward minima that may not be
optimal for the considered application. For instance, since most instrumental tones share
an harmonic structure, initializing W with harmonic combs having different fundamental
frequencies is valuable when targeting polyphonic music source separation [Fritsch and
Plumbey, 2013]. Likewise, for drum separation applications, the initialization of the acti-
vations of H by an onset detection function combined with a dictionary W for which the
drum sources span different frequency bands allows the recovery of the different elements
(bass-drum, snare, ...) in an efficient way [Liutkus et al., 2011].

Moreover, in order to reduce the search space to meaningful solutions, such informa-
tion is often also included during the optimization process. For instance, when additional
data is available (e.g. the score of the piece of music or isolated note recordings of the
same instruments with pitch labels), one can directly use the supplementary information
to perform the decomposition in a supervised way. When it is not the case, the data prop-
erties can be explicitly included in the modeling in order to constrain the decomposition in
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a semi-supervised way. In the case of audio, these can be for instance physics-based (prop-
erties about the timbre of the tones), signal-based (e.g. sparsity of notes simultaneously
played, smoothness of activations and temporal envelopes) or derived from musicological
considerations (e.g. the note activation should be synchronized on the beat, or chord
transitions may have different probabilities depending on the tonality). For each method
presented in the following, the inclusion of a specific property is highlighted but it should
be emphasized that models usually combine different types of information.

2.1.2.1 Supervised NMF

Supervised NMF methods usually consist in initializing some parameters of the decompo-
sition according to some information already available, for instance provided as additional
data, or obtained by some preliminary analysis process. These parameters are then fixed
during the optimization.

For instance, if the score of a piece of music is known, elements of the activation
matrix H are forced to 0 where is it is known that a note is not present and initialized to
1 otherwise. Such approaches may be used in audio source separation [Hennequin et al.,
2011b; Ewert and Müller, 2012] where thus the problem is to estimate the remaining
parameters (H for non-zero coefficients and W ).

In the case where a training set is available, the dictionary of spectra W may be
learned in a first step. For instance in a music transcription task, for which isolated note
recordings of the same instrument and with the same recording conditions are available, the
spectra can be learned independently for each note by applying a rank-one decomposition
[Niedermayer, 2008; Dessein et al., 2010]. Then, the supervised NMF problem reduces
to the estimation of the activation matrix H for the considered piece of music. Similar
approaches have been applied to speech enhancement and speech recognition [Wilson et al.,
2008; Raj et al., 2010].

2.1.2.2 Semi-supervised NMF

If no additional data is available, the information about the properties of the data may be
explicitly considered in the optimization (cf. Paragraph Regularization) or in the modeling
(cf. Paragraph Parameterization).

Regularization: As commonly done with ill-posed problems, the NMF can be con-
strained by considering a regularized problem. In practice, it consists of adding to the
reconstruction cost-function some penalty terms that emphasize specific properties of the
variables. When the constraints are considered independently for W and H, which is
usually the case, the optimization problem can be expressed as the minimization of a new
cost-function given by:

C(W,H) = D(V |WH) + λH · CH(H) + λW · CW (W ). (2.19)

where CH(H) and CW (W ) correspond to penalty terms respectively constraining H and W
matrices and whose weightings are given by λH and λW . The choice of the regularization
parameters λH and λW can be done using empirical rules, or through cross-validation. In
the probabilistic NMF framework, this type of constraint is equivalent to adding a priori
distributions on H and W , as −D(V | WH) corresponds to the log-likelihood, up to a
constant.
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A number of penalties have been proposed in the literature, for instance in order to
enforce sparsity of H, i.e. reducing the set of notes that should be activated [Eggert and
Körner, 2004; Hoyer, 2004; Virtanen, 2007; Joder et al., 2013], smoothness of the lines
of H in order to avoid well-localized spurious activations [Virtanen, 2007; Bertin et al.,
2009], or the decorrelation of the lines of H [Zhang and Fang, 2007].

Parameterization: Unlike regularization techniques that introduce the constraint in a
“soft” way by favoring some particular solutions during the optimization, another common
method to impose structure on the decomposition is to use parametric models for the
matrices W and H.

A common example is a parametrization of the dictionary W to fit to the structure
of the spectra. Here, the number of parameters reduces from K × T to a few meaningful
parameters corresponding for instance to magnitudes and frequencies of the partials. In
[Hennequin et al., 2010; Ewert et al., 2013] the spectra are modeled by harmonic combs,
parameterized by F0 and the partials’ magnitude. In [Bertin et al., 2010] each spectrum
is modeled as a linear combination of narrow-band sub-spectra, each one being composed
of a few partials with fixed magnitude and all sharing a single parameter F0. This latter
model of additive sub-spectra brings smoothness to the spectral envelope, which reduces
the activation of spurious harmonically-related notes (octave or fifth relations, for instance,
where partials fully overlap) [Klapuri, 2001; Virtanen and Klapuri, 2002].

For the matrix H, the temporal regularity underlying the occurrences of note onsets
is modeled in [Ochiai et al., 2012]. Thus, each line of H is composed of smooth patterns
located around multiples or fractions of the beat period. Besides avoiding spurious acti-
vations, this parametrization also makes post-processing of H easier in order to perform
transcription.

Several studies also exploit in NMF the non-stationarity of musical sounds. For in-
stance in [Durrieu et al., 2010, 2011] a source-filter model for main melody extraction
is presented. The main melody is here decomposed in two layers, one standard-NMF
(the source) where the dictionary of spectra is fixed with harmonic combs, multiplied by a
second NMF (the filter) adjusting the time-variations of the spectral envelopes with a com-
bination of narrow-band filters contained in the second dictionary. In [Hennequin et al.,
2011a], the temporal variations of the spectral envelopes are handled by means of a time-
frequency dependent activation matrix Hrt(f) based on an auto-regressive model. The
vibrato effect is also modeled in [Hennequin et al., 2010] by considering time-dependent
F0s for the dictionary of spectra. In a more flexible framework, all these temporal varia-
tions (e.g. changes in the spectral content of notes between attack to decay transitions,
spectral envelope variations or vibrato) are taken into account by considering several ba-
sis spectra for each note/source of the dictionary and Markov-chain dependencies between
their activations [Nakano et al., 2010; Mysore et al., 2010].

Such methods for enforcing the structure of the NMF will inspire the models presented
in Chapters 3 and 5 of this thesis, where we focus on specific properties of the piano.
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2.2 Considering the specific properties of piano tones

This section introduces a few basic notions from musical acoustics in order to point out
some particular features of piano tones that should be relevant for piano music analysis.
Thus, it is not intended to give a complete description and modeling of the instrument’s
elements and their interaction. We rather focus on the core element of the piano, namely
the strings, whose properties are mainly responsible for the inharmonic nature of the tones.
A more detailed study about the influence of the inharmonicity in the string design and
tuning is proposed in Chapter 4.

2.2.1 Presentation of the instrument

From the keyboard, which allows the player to control the pitch and the dynamics of the
tones, to the propagation of the sound through the air, the production of a piano note
results from the interaction of various excitation and vibrating elements (cf. Figure 2.7).
When a key is depressed, an action mechanism is activated with a purpose to translate
the depression into a rapid motion of a hammer, this latter inducing a free vibration of
the strings after the stroke. Because of their small radiating surface, the strings cannot
efficiently radiate the sound. It is the coupling at the bridge that allows the transmission
of the vibration from the strings to the soundboard, this latter acting as a resonator and
producing an effective acoustic radiation of the sound. In order to produce tones having,
as much as possible, a homogeneous loudness along the whole compass, the notes in the
treble-medium, bass and low-bass register are respectively composed of 3, 2 and 1 strings.
Finally, at the release of the key, the vibration of the strings is muted by the fall of a
damper.

In addition to the keyboard, pianos usually include a pedal mechanism that allows the
instrumentalist to increase the expressiveness of his playing by controlling the duration
and the loudness of the notes. The most commonly used is the sostenudo pedal, that raises
the dampers off the played strings so they keep vibrating after the key has been released.
In a similar way, the damper pedal activation leads to a raise of all the piano dampers,
increasing the sustain of the played notes and allowing for the sympathetic resonances
of other strings. In order to control the loudness and the color of the sound, the una
corda pedal, when activated, provokes a shift of the action mechanism so that the ham-
mer strikes only two strings over the three composing the notes in the medium-treble range.

The realistic synthesis of piano tones by physical modeling requires a precise description
of the different elements and their interactions. Thus, a number of works have focused
on modeling specific parts and characteristics of the piano such as, the action mechanism
[Hayashi et al., 1999; Hirschkorn et al., 2006], the hammer-string interaction [Suzuki,
1986a; Chaigne and Askenfelt, 1993; Stulov, 1995], the pedals [Lehtonen et al., 2007], the
phenomenon of sympathetic resonance [Le Carrou et al., 2005], the vibration of the strings
[Young, 1952; Fletcher, 1964; Fletcher and Rossing, 1998], their coupling [Weinreich, 1977;
Gough, 1981], the soundboard vibrations [Suzuki, 1986b; Mamou-Mani et al., 2008; Ege,
2009]... In order to perform the synthesis, a discretization of the obtained differential
equations is usually required [Bensa, 2003; Bensa et al., 2003; Bank et al., 2010; Chabassier,
2012] and the synthesis parameters are often directly obtained from measurements on
pianos. Thus, the inversion of such models is usually not straightforward. For the goal of
our work, which targets the inclusion of information from physics in signal-based analysis
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Figure 2.7: Design of grand pianos.
Sources: (a) www.pianotreasure.com, (b) www.bechstein.de

models, we only focus on the transverse vibrations of the strings. This simple model
explains, to a great extent, the spectral content of piano tones and their inharmonic
property.

2.2.2 Model for the transverse vibrations of the strings

• Flexible strings: First consider a string characterized by its length L and linear mass
µ, being subject to a homogeneous tension T and no damping effects. At rest position, the
string is aligned according to the axis (Ox). When excited, its transverse displacement
over time t, y(x, t) follows, at first order, d’Alembert’s differential equation:

∂2y

∂2x
− µ

T

∂2y

∂2t
= 0. (2.20)

By considering fixed end-point boundary conditions, the solutions correspond to station-
ary waves with frequencies related by an harmonic relation fn = nF0, n ∈ N

⋆, whose
fundamental frequency is given by:

F0 =
1

2L

√
T

µ
. (2.21)

• Bending stiffness consideration: This latter model for the transverse vibration is
not precise enough to accurately describe the actual behavior of piano strings. Because
of the important size of the strings and the properties of the piano wire (when compared
to other string instruments such as the guitar), the bending stiffness effect has to be
considered. Then, by introducing the diameter d of the plain string, having a Young’s
modulus E and an area moment of inertia I = πd4

64 , the following differential equation is
obtained:

∂2y

∂2x
− µ

T

∂2y

∂2t
− EI

T

∂4y

∂4x
= 0 (2.22)
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Figure 2.8: Comparison of an harmonic and inharmonic comb spectrum for B = 10−3.

The presence of the fourth order differential term reflects the fact that the piano wire is
a dispersive medium, i.e. the vibrating modes have different propagation speed. By still
considering a fixed end-point boundary condition the modal frequencies can be expressed
as an inharmonic relation [Morse, 1948; Fletcher and Rossing, 1998]:

fn = nF0

√
1 +Bn2, n ∈ N

⋆, (2.23)

where

B =
π3Ed4

64TL2
(2.24)

is a dimensionless coefficient called the inharmonicity coefficient. Since the mechanical
characteristics of the strings differ from one note to another, obviously F0 but also B are
varying along the compass (typical values for B are in the range 10−5-10−2, from the low-
bass to the high-treble register [Young, 1952; Fletcher, 1964]). Perceptual studies have
shown that inharmonicity is an important feature of the timbre of piano tones [Fletcher
et al., 1962; Blackham, 1965] that should be taken into account in synthesis applications,
especially for the bass range [Järveläinen et al., 2001]. In addition, it has a strong influence
on the the design [Conklin, Jr., 1996b] and on the tuning [Martin and Ward, 1961; Lattard,
1993] of the instrument. This latter point is presented in more detail in Chapter 4.

In the spectrum of a note, inharmonicity results in a sharp deviation of the partial
frequencies when compared to a harmonic spectrum, and the higher the rank of the partial,
the sharper the deviation. Because the inharmonicity coefficient values are quite low, the
deviation is hardly discernible for low rank partials. However, for high rank partials,
the deviation becomes important and the inharmonicity consideration must be taken into
account when targeting spectral modeling in piano music analysis tasks. For instance, the
13th partial of an inharmonic spectrum will be sharper than the 14th partial of a harmonic
spectrum when considering an inharmonicity coefficient value B = 10−3 (cf. Figure 2.8).

2.2.3 Notes about the couplings

• Influence of the soundboard mobility: The modal frequencies of transverse vi-
brations given by Equation (2.23) are obtained by assuming a string fixed at end-points.
In practice, this consideration is a good approximation for the fixation at the pin, but it
does not reflect the behavior of the string-soundboard coupling at the bridge. Indeed, such
a boundary condition considers a null mobility at the bridge fixation, while the actual aim
of this coupling is to transfer the vibration of the string to the soundboard.
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As well as the strings, the soundboard possesses its own vibrating modes [Conklin,
Jr., 1996a; Suzuki, 1986b; Giordano, 1998; Mamou-Mani et al., 2008; Ege, 2009] and their
coupling may induce changes in the vibratory behavior of the assembly. This can be seen
on Figure 2.9, where measurements of a soundboard’s transverse mobility (ratio velocity
over force as a function of the frequency) are depicted in black and red, respectively, for a
configuration “strings and plate removed” and “whole piano assembled and tuned”. When
considering only the soundboard (black lines), a few well-marked modes are usually present
in the low-frequency domain (approximately under 200 Hz). While going up along the
frequency axis the modal density increases, and because of the overlap of the modes the
resonances become less and less pronounced, until reaching a quasi-flat response for the
high-frequency domain (above 3.2 kHz, not depicted here). When assembling the strings
and the soundboard, the vibratory behavior of each element is altered (cf. red curve
for the soundboard). Thus, the modal frequencies of transverse vibrations of the strings
given by Equation (2.23) are slightly modified. This can be observed in the spectrum of
a note, as depicted in Figure 2.10, where the partial frequencies and ranks corresponding
to transverse vibrations of the strings have been picked up and represented in the graphic
f2
n/n

2 as a function of n2. When comparing the data to the inharmonic relation (2.23)
(corresponding to a straight line in this graphic) one can notice slight deviations, mainly
for low rank partials having frequencies for which the soundboard should present a strong
modal character.

(a) 0-200 Hz (b) 0 - 3.2 kHz

Figure 2.9: Bridge mobility (direction normal to the soundboard) of a grand piano at the
endpoint of the E2 strings, after [Conklin, Jr., 1996a]. Solid black and dashed red curves
respectively correspond to “strings and plate removed” and “piano assembled and tuned”
configurations.

• Other string deformations and their coupling: Beyond the one-dimensional
transverse deformations considered in Section 2.2.2, the propagation of several waves occur
in the string after the strike of the hammer, these being able to contribute to the distinct
timbre of the instrument. For instance, the propagation of longitudinal waves has been
shown to be significant for the perception, for notes in the bass range, up to A3 [Bank
and Lehtonen, 2010]. For slight deformations, produced for instance when the notes are
played with piano dynamics, the couplings between those different waves (e.g. the two
polarizations of the transverse waves, the longitudinal and the torsional waves) are neg-

30



CHAPTER 2. STATE OF THE ART

0 200 400 600 800 1000 1200 1400
−60

−40

−20

0

20

40

60

Frequency (Hz)

M
a
g
. 

s
p
e
c
tr

u
m

 (
d
B

)

 

 

spectrum

partials of transverse vibration 

(a)

0 50 100 150 200 250 300
5950

6000

6050

6100

6150

6200

6250

n
2

(f
n
/n

)2

 

 

data (partial frequencies and ranks)

linear regression

(b)

Figure 2.10: Influence of the string-soundboard coupling for a note E2. (a) Magnitude
spectrum from which the partials corresponding to transverse vibrations of the strings are
emphasized with ‘+’ markers. (b) Partial frequencies depicted in the graphic f2

n/n
2 as a

function of n2 (‘+’ markers) and linear regression corresponding to the theoretical relation
(2.23).

ligible and each deformation can be considered independently. Thus, when studying the
propagation of longitudinal vibration in the strings, a simple harmonic model is obtained
for the modal frequencies [Valette and Cuesta, 1993].

In practice, for an accurate modeling of the vibratory behavior of the strings for all
dynamics, all these deformations should be jointly considered, this leading to a non-
linear differential equation system and explaining the apparition of the so-called “phantom
partial” in the spectrum of piano tones [Conklin, Jr., 1999; Bank and Sujbert, 2005].
Moreover, for notes in the medium and treble register, one should take into account the
coupling of doublets or triplets of strings (usually slightly detuned in order to increase the
sustain of the sound) through the bridge [Weinreich, 1977; Gough, 1981] in order to model
the presence of multiple partials (cf. Figure 2.11) and the double decays and beats in the
temporal evolution of partials [Aramaki et al., 2001] (cf. Figure 2.12).
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Figure 2.11: Zoom along the frequency axis of the spectrum of a note G♭6 composed
of a triplet of strings. Multiple peaks are present while the simple model of transverse
vibration for a single string assumes a single partial.

(a)

(b)

Figure 2.12: Double decay and beating of notes composed of multiple strings. Temporal
evolution (a) in linear and (b) in dB, of the first 9 partials of transverse vibration for a
note G♯4 played with mezzo-forte dynamics.
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2.3 Analysis of piano music with inharmonicity considera-

tion

Beyond applications related to music synthesis, the estimation of the inharmonicity coef-
ficient of piano tones is an issue of importance in a number of analysis tasks such as F0

and multiple F0 estimation [Emiya et al., 2007b,a; Rauhala and Välimäki, 2007; Blanco-
Martín et al., 2008], polyphonic music transcription [Emiya et al., 2010a; Benetos and
Dixon, 2011], temperament and tuning estimation [Lattard, 1993; Dixon et al., 2012] or pi-
ano chord recognition [Ortiz-Berenguer et al., 2004; Ortiz-Berenguer and Casajús-Quirós,
2002].

The methods proposed in the literature can be classified according to two main types
of approaches, the first one considers the estimation of (B,F0) from the search of the
partials related to transverse vibrations of the strings in spectra, while the second one
considers them as particular parameters of a signal model.

2.3.1 Iterative peak-picking and refinement of the inharmonicity coef-

ficient

This first type of method is usually based on a two-step iterative scheme that requires
the knowledge of the notes that are being played. From rough initial values of (B,F0)
(F0 being usually initialized according to Equal Temperament - cf. Appendix A - and B
being set to a low value, typically in the range 10−5− 10−4) a few partials located around
the theoretical frequencies (given by the Equation (2.23)) are selected in the magnitude
spectrum in a peak-picking step. Having the frequencies and ranks of these partials,
(B,F0) are refined according to the inharmonicity relation or alternative forms of it, and
the search for partials with higher ranks is iterated. Then, the procedure is usually run
until no peak is found above a threshold on the magnitude of the spectrum. Note that
in order to increase the precision of the estimation, most methods introduce a step of
refinement of the partial frequencies after the peak-picking, this latter being often based
on a local interpolation of the peak’s magnitude. Finally, the core difference for all these
methods relies in the choice of the estimator that is used to compute (B,F0) from the
knowledge of the partial frequencies.

For instance, in [Rauhala et al., 2007a; Rauhala and Välimäki, 2007], the PFD (Partial
Frequency Deviation) algorithm estimates (B,F0) by minimizing the deviation between
the theoretical partial frequencies of the model and the frequencies of the peaks selected
in the magnitude spectra.

In [Emiya, 2008] an alternative form of the inharmonicity relation is proposed

f2
n

n2
= F 2

0 + F 2
0B · n2. (2.25)

and (B,F0) are estimated by means of a least-square linear regression in the plane f2
n/n

2

as a function of n2.
Another alternative approach estimates B by considering pairs of partials. Indeed,

in order to estimate B from the frequencies of a couple of partials (fj , fk) the following
expression can be obtained when inverting Equation (2.23):

Bjk =
j2f2

k − k2f2
j

k4f2
j − j4f2

k

. (2.26)
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In practice, B cannot be robustly estimated by the simple consideration of two partials
since this estimator is highly sensitive to the frequency deviations produced by the bridge
coupling [Ortiz-Berenguer et al., 2004] . Thus, it has been proposed in [Hodgkinson et al.,
2009] to estimate B by considering the median over the set of Bjk values computed for
each possible pair of partials. Such an estimator has been applied to the unsupervised
estimation of inharmonicity and temperament, together with a transcription task in a
polyphonic recording context [Dixon et al., 2012].

2.3.2 Inharmonicity inclusion in signal models

The second approach consists in explicitly including (B,F0) as parameters of a signal
model and is often used when targeting tasks such as multiple-F0 estimation or polyphonic
transcription.

In [Godsill and Davy, 2005], a Bayesian framework for modeling inharmonic tones in
the time domain is introduced. (B,F0), as well as the partial amplitudes, are considered
as random variables and estimated by solving a maximum a posteriori problem. In [Davy
et al., 2006], the model is extended to inharmonic tones that do not necessarily follow the
inharmonicity relation given in Equation (2.23). In the time-frequency domain, a model
based on the NMF framework has been proposed in [Vincent et al., 2008] to deal with a
transcription task. (B,F0) are here included as parameters of the dictionary of spectra
and optimized by minimizing a reconstruction cost-function based on a weighted Euclidean
norm. Surprisingly, the transcription results were found slightly below those obtained by
a simpler harmonic model. The same conclusion was found for a similar parametric NMF
model [Hennequin, 2011], where the difficulty of updating B was encountered. Such NMF-
based models will form the basis of the work presented in Chapter 3, where we investigate
how we can go beyond these limitations.

In order to avoid these difficulties in the optimization, other methods split the esti-
mation problem into two sub-problems. First, they estimate (B,F0) parameters of the
signal model by optimizing a detection function designed so that the influence of the in-
harmonicity parameters is put forward. Then, they estimate the remaining parameters of
the model according to the original problem formulation. As proposed by the following
studies, the optimization of the detection function is usually performed by means of a grid
search over (B,F0) parameters for each possible note. Such an optimization technique
may be found in [Galembo and Askenfelt, 1999], where they estimate the inharmonicity
of piano tones by performing an inharmonic comb filtering of the magnitude spectrum.
In the case of a transcription tasks, a similar approach based on an inharmonic spectral
product has been introduced in [Emiya et al., 2010a]. This latter is applied in a first
step in order to obtain a selection of note candidates, jointly with the estimation of their
parameters (B,F0), before the estimation of the amplitude and noise parameters of the
model according to a maximum likelihood problem. A similar detection function (referred
as pitch salience function) for log-frequency spectrum has been proposed in [Benetos and
Dixon, 2011].

2.3.3 Issues for the thesis

As seen in this section, considering the inharmonicity of piano tones in signal models does
not seem straightforward, particularly because of optimization issues. Some works bypass
these difficulties by separating the estimation problems of (B,F0) and amplitude/noise
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parameters, but in most studies a simpler harmonic model is considered [Monti and San-
dler, 2002; Marolt, 2004; Kobzantsev et al., 2005; Bello et al., 2008; Vincent et al., 2010].

The main goal of this thesis is thus to have a better understanding about the issues
arising from the inharmonicity inclusion in signal models and to investigate whether it
is really valuable when targeting tasks such as polyphonic music transcription. For this,
different models in which (B,F0) are included as parameters (two NMF-based models and
a generative probabilistic model for the frequencies having significant energy in spectro-
grams) and their optimization algorithms are introduced in Chapter 3. These are applied
to the precise estimation of (B,F0) from monophonic and polyphonic recording in both
supervised and unsupervised conditions. A special care is taken in the initialization of
these parameters, by introducing in Chapter 4 a model for the inharmonicity and tuning
along the whole compass of pianos. Based on invariants in design and tuning rules, the
model is able to explain the variations of piano tuning along the compass with only a few
parameters. Beyond the initialization of the analysis algorithms, it is applied to model the
tuning of well-tuned pianos, to provide tuning curves for out-of-tune pianos or physically-
based synthesizers and finally to interpolate the inharmonicity and tuning of pianos along
the whole compass from the analysis of a polyphonic recording containing only a few notes.
Finally the efficiency of an inharmonic model for NMF-based transcription is investigated
in Chapter 5.
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Chapter 3

Estimating the inharmonicity
coefficient and the F0 of piano tones

This chapter presents two new frameworks for the estimation of (B,F0). In Section 3.1, two
different NMF-based models in which (B,F0) are included as parameters are presented.
For each, update rules are derived and practical solutions concerning the optimization are
proposed in order to avoid the convergence of the algorithms toward local minima. Both
models are applied to the supervised estimation (i.e. the notes are known) of (B,F0)
from isolated note and chord recordings, and the performances are compared to the PFD
algorithm (described in Section 2.3). Portions of this work have been published in [Rigaud
et al., 2012, 2013a]. In Section 3.2, a generative probabilistic model for the frequencies
of significant energy in the time-frequency domain is introduced. From a prior peak-
picking in a magnitude spectrum, the estimation of (B,F0) is performed jointly with a
classification of each observed frequency into noise or partial components for each note of
the model. The algorithm is then applied to the unsupervised estimation of (B,F0) from
isolated note and polyphonic recordings. This latter work has been published in [Rigaud
et al., 2013b].

3.1 NMF-based modelings

The purpose of this section is to introduce the information of the inharmonicity of piano
tones explicitly into the dictionary of spectra W of NMF-based modelings. The idea is
to take into account the parameters (B,F0) as constraints on the partial frequencies of
each note, so as to perform a joint estimation. In order to limit the number of parameters
that we need to retrieve, besides the amplitude and frequency of each partial, we make
the assumption that for every recording we know which notes are being played, and the
corresponding time activations. We refer to this case as supervised estimation. Then,
short-time spectra are extracted from the recordings and concatenated to build the ob-
servation matrix V (it is therefore not strictly speaking a spectrogram). Because for each
column of V the played notes are known, the elements of H are fixed to one whenever a
note is played, and zero when it is not. Thereby, only the dictionary W is optimized on the
data. In that case, we should notice that the proposed model is not a proper factorization,
because there is no explicit modeling along the time axis. However, since the model is
developed in the NMF framework, further inclusion in transcription (cf. Chapter 5) or
source separation algorithms may still be considered, where the activations are not known
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and must be jointly optimized (unsupervised case).

3.1.1 Modeling piano sounds in W

The model for the spectra/atoms of the dictionary W is based on an additive model:
the spectrum of a note is composed of a sum of partials, in which the frequencies are
constrained by the inharmonicity relation introduced in Equation (2.23). Two different
ways of enforcing the constraint are proposed. The first model (later called Inh-NMF )
forces the partial frequencies to strictly comply with the theoretical inharmonicity relation,
while the second model (later called InhR-NMF ) relaxes this constraint, and enhances
inharmonicity through a weighted penalty term.

3.1.1.1 General additive model for the spectrum of a note

The general parametric atom used in this work is based on the additive model proposed
in [Hennequin et al., 2010]. Each spectrum of a note, indexed by r ∈ [1, R], is composed
of the sum of Nr partials. The partial rank is denoted by n ∈ [1, Nr]. Each partial is
parametrized by its amplitude anr and its frequency fnr. Thus, the set of parameters for
a single atom is denoted by θr = {anr, fnr | n ∈ [1, Nr]} and the set of parameters for
the dictionary is denoted by θ = {θr | r ∈ [1, R]}. Finally, the expression of a parametric
atom is given by:

W θr
kr =

Nr∑

n=1

anr · gτ (fk − fnr), (3.1)

where fk is the frequency of the bin with index k, and gτ (fk) is the magnitude of the
Fourier Transform of the τ -length analysis window. In order to limit the computational
time and to obtain simple optimization rules, the spectral support of gτ is restricted to
its main lobe. For the experiments proposed in this thesis, a Hann window is used to
compute the spectra. The magnitude spectrum of its main lobe (normalized to a maximal
magnitude of 1) is given by:

gτ (fk) =
1

πτ
.
sin(πfkτ)

fk − τ2f3
k

, fk ∈ [−2/τ, 2/τ ]. (3.2)

In order to estimate the parameters, the reconstruction cost-function to minimize is
chosen as the β-divergence between the observed spectra V and the model V̂ = W θH:

C0(θ,H) =
∑

k∈K

T∑

t=1

dβ

(
Vkt |

R∑

r=1

W θr
kr ·Hrt

)
. (3.3)

It is worth noting that since the partials of the model are defined on a limited set of
frequency-bins fk ∈ fnr + [−2/τ, 2/τ ], the sum over k of Equation (3.3) is applied on the
set K = {k | fk ∈ fnr + [−2/τ, 2/τ ], ∀n ∈ [1, Nr], ∀r ∈ [1, R]}.

3.1.1.2 Inharmonic constraints on partial frequencies

• Strictly inharmonic / Inh-NMF:
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The strict inharmonic constraint consists in fixing:

fnr = nF0r

√
1 +Brn2, n ∈ N

∗, (3.4)

directly in the parametric model (Equation (3.1)) so that the partials are forced to strictly
follow the inharmonicity relation. Then the set of parameters for a single atom reduces to
θInh
r = {anr, F0r, Br | n ∈ [1, Nr]} and the reconstruction cost-function can be rewritten

as

CInh(θInh, H) =
∑

k∈K

T∑

t=1

dβ

(
Vkt |

R∑

r=1

W
θInh
r

kr ·Hrt

)
. (3.5)

• Inharmonic relaxed / InhR-NMF:

An alternative way of enforcing inharmonicity is through an extra penalty term added
to the reconstruction cost-function C0 (Equation (3.3)). Thus, the global cost-function
can be expressed as:

CInhR(θ, γ,H) = C0(θ,H) + λ · C1(fnr, γ), (3.6)

where the set of parameters of the constraint is denoted by γ = {F0r, Br | r ∈ [1, R]}. λ
is a parameter, empirically tuned, that sets the weight between the reconstruction cost
error and the inharmonicity constraint. The constraint cost-function C1 is chosen as the
sum on each note of the mean square error between the estimated partial frequencies fnr
and those given by the inharmonicity relation:

C1(fnr, γr) = KτT ·
R∑

r=1

Nr∑

n=1

(
fnr − nF0r

√
1 +Brn2

)2
, (3.7)

where Kτ = Card{fk ∈ [−2/τ, 2/τ ]} is the number of frequency-bins for which the partials
of the model are defined and T is the number of time-frames. This normalization factor
allows a tuning of λ that is independent of these two values. A potential benefit of this
relaxed formulation is to allow a slight deviation of the partial frequencies around the
theoretical inharmonicity relation, that can be observed for instance in the low frequency
range due to the coupling between the strings and the soundboard (cf. Section 2.2.3).

3.1.2 Optimization algorithm

3.1.2.1 Update of the parameters

As commonly proposed in NMF modeling, the optimization is performed iteratively, using
multiplicative update rules for each parameter. For each modeling, the update rules are
obtained from the decomposition of the partial derivatives of the cost-function, in a sim-
ilar way to [Hennequin et al., 2010] (the detail of the derivation is detailed in Appendix
C). In the following, P (θ∗) and Q(θ∗) refer to positive quantities obtained by decompos-
ing the partial derivative of a cost function C(θ) with relation to a particular parameter

θ∗ so that ∂C(θ)
∂θ∗ = P (θ∗)−Q(θ∗). The parameter is then updated as θ∗ ← θ∗ ·Q(θ∗)/P (θ∗).
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The update for anr are identical for both models since these parameters only appear
in the reconstruction cost function C0 and can be expressed as:

anr ← anr ·
Q0(anr)

P0(anr)
, (3.8)

where

P0(anr) =
∑

k∈Knr

T∑

t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−1
kt

]
, (3.9)

Q0(anr) =
∑

k∈Knr

T∑

t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−2
kt .Vkt

]
, (3.10)

and Knr = {k | fk ∈ fnr + [−2/τ, 2/τ ]}. V̂ = W θH denotes the model. Note that for a
transcription task, update rules for H will be given in Chapter 5.

The update rules of the remaining parameters are specific for each of the different
NMF models. In the following, g′τ (fk) represents the derivative of gτ (fk) with respect to
fk on the spectral support of the main lobe. For a Hann window (normalized to a maximal
magnitude of 1, cf. Equation (3.2)) and fk ∈ [−2/τ, 2/τ ] its expression is given by

g′τ (fk) =
1

πτ

(3τ2f2
k − 1) sin(πτfk) + πτ(fk − τ2f3

k ) cos(πτfk)

(fk − τ2f3
k )

2
. (3.11)

• Strictly inharmonic / Inh-NMF:

Br
Inh← Br ·

(
QInh

0 (Br)

P Inh
0 (Br)

)γ

, (3.12)

F0r
Inh← F0r ·

QInh
0 (F0r)

P Inh
0 (F0r)

, (3.13)

where

P Inh
0 (Br) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−C.fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

+

(
Nr∑

n=1

anr
−C.fnr.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

]
, (3.14)

QInh
0 (Br) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−C.fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

+

(
Nr∑

n=1

anr
−C.fnr.g′τ (f − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

]
, (3.15)

P Inh
0 (F0r) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−D.fk.g

′
τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

+

(
Nr∑

n=1

anr
−D.fnr.g

′
τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

]
, (3.16)
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QInh
0 (F0r) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−D.fk.g

′
τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

+

(
Nr∑

n=1

anr
−D.fnr.g

′
τ (f − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

]
, (3.17)

with fnr = nF0r

√
1 +Brn2, C = ∂fnr/∂Br = n3F0r/2

√
1 +Brn2 and D = ∂fnr/∂F0r =

n
√
1 +Brn2. The set of frequency-bins for which the model spectrum W

θInh
r

kr is defined is
here denoted by Kr = {k | fk ∈ fnr + [−2/τ, 2/τ ], n ∈ [1, Nr]}.
One can note that an exponent γ > 0 has been included in the update of Br, in Equation
(3.12). This parameter, whose role is similar to the step size in usual gradient descents,
allows for the control of the convergence rate of the parameter Br [Bertin et al., 2009]. We
empirically found that setting γ = 10 was leading to accelerated updates while preserving
the decrease of the cost-function.

• Inharmonic relaxed / InhR-NMF:

For the inharmonic relaxed model, the following update rules are applied. Note that
for F0r, an exact analytic solution is obtained when canceling the partial derivative of the
cost-function C1 (Equation (3.7)).

fnr
InhR← fnr ·

QInhR
0 (fnr) + λ ·QInhR

1 (fnr)

P InhR
0 (fnr) + λ · P InhR

1 (fnr)
, (3.18)

Br
InhR← Br ·

QInhR
1 (Br)

P InhR
1 (Br)

, (3.19)

F0r
InhR
=

Nr∑
n=1

fnrn
√
1 +Brn2

Nr∑
n=1

n2(1 +Brn2)

, (3.20)

where

P InhR
0 (fnr) =

∑

k∈Knr

T∑

t=1

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

+

(
anr
−fnr.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

]
, (3.21)

QInhR
0 (fnr) =

∑

k∈Knr

T∑

t=1

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

+

(
anr
−fnr.g′τ (f − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

]
, (3.22)

P InhR
1 (fnr) = KτT · 2fnr, (3.23)

QInhR
1 (fnr) = KτT · 2nF0r

√
1 +Brn2, (3.24)
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P InhR
1 (Br) = F0r

Nr∑

n=1

n4, (3.25)

QInhR
1 (Br) =

Nr∑

n=1

n3fnr√
1 +Brn2

. (3.26)

3.1.2.2 Practical considerations

Choice of the reconstruction cost-function: As seen in Section 2.2, high rank par-
tials of piano tones should be taken into account when targeting the precise estimation
of (B,F0). Besides the tuning of Nr, the number of partials for a note of the model, the
choice of the reconstruction cost-function may have an influence on the precision of the
estimation. For the experiments presented in this thesis a Kullback-Leibler divergence
(β = 1) has been considered. This choice corresponds to a trade-off between the Euclidian
distance (β = 2), for which the estimation would mainly rely on low rank partials - these
having usually the greatest amplitudes in the spectrum of a note and whose frequencies
may be affected by the bridge coupling - and the Itakura-Saito divergence (β = 0) that
would consider every partial regardless of its amplitude, even high rank partials that may
be drowned out in noise.

Initialization of the parameters: A good initialization of the optimization algorithm
corresponds to the overlap of an important number of partials between the model and the
data. As shown in Figure 3.1(a), a naive initialization (F0 set to Equal Temperament and
B to a common value for every note) may lead to the overlap of only a few first partials
and cause the algorithm to stop in a local minimum.

In order to avoid these situations, special care is taken to initialize (Br, F0r). This
latter is performed using a model for the inharmonicity and the tuning of pianos along the
whole compass, with typical values of the parameters. This model, presented in Chapter
4, is based on generic rules in design and tuning. One can see on Figure 3.1(b) that such
initialization leads to the overlap of a greater number of partials (20 for this example).
However, it can be noticed around 1400 Hz that partials of the model are overlapping with
some partials of the data with different ranks. This situation may correspond to a local
minimum of the reconstruction cost-function.

Thus, it is chosen for the algorithm to initialize the spectra of the model with a few
partials (it is empirically chosen that N ini

r decreases linearly from 10 for lowest notes to
2 for highest, as displayed with gray ‘+’ markers on Figure 3.2). The number of partials
is then iteratively increased after each update of (Br, F0r) until the maximum number
of partials Nfin

r is reached (cf. black ‘+’ markers on Figure 3.2, where for each note of
the model the maximum number of partials below the Nyquist frequency limit is set to
50). This heuristic should broaden the zone where the cost-function is convex in order to
iteratively converge toward optimal values of the parameters (cf. Figure 3.3). It has been
experimentally chosen for the following experiments to add one partial for every note of
the model every 3 iterations of the optimization loop.
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Figure 3.1: Initialization of the NMF models for the analysis of a note D1. (a) Rough
initialization with F0 set to Equal Temperament and B = 5.10−3. (b) Initialization using
the model of inharmonicity and tuning along the whole compass of pianos.
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Figure 3.2: Number of partials Nr for the 88 notes of the models (r ∈ [1, 88], from A0 to
C8) at the initialization (gray markers labeled as N ini

r ) and at the end of the algorithm
(black markers labeled as Nfin

r , here depicted for a choice of 50 partials maximum). The
black dashed curve labeled as N lim

r corresponds to the maximum number of partials that
should be present below the Nyquist frequency (with a sampling frequency of 22050 Hz).
For notes in the bass range this limits, not displayed here, goes up to around 180 partials.

43



log
10

B

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6

−30

−25

−20

−15

−10

−5

0

5

10

15

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600
min

ini

(a) Nr = 10

log
10

B

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6

−30

−25

−20

−15

−10

−5

0

5

10

15

7000

7500

8000

8500

9000

9500

min

ini

(c) Nr = 30

log
10

B

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6

−30

−25

−20

−15

−10

−5

0

5

10

15

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000min

ini

(b) Nr = 20

log
10

B

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

−5 −4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6

−30

−25

−20

−15

−10

−5

0

5

10

15

1.35

1.4

1.45

1.5

1.55

1.6

x 10
4

min

ini

(d) Nr = 50

Figure 3.3: Cost-function for Inh-NMF (Eq. (3.5) with β = 1) computed on a grid of
(Br, F0r), and different numbers of partials Nr, having amplitudes anr fixed to 1, for the
analysis of the spectrum of a note D1. Black and gray markers respectively correspond to
the initialization and the minimum of the cost-function.

Discussion about the tuning of the regularization parameter for InhR-NMF :
As mentioned in Section 3.1.1.2, the tuning of the regularization parameter λ influences the
weighting between the reconstruction cost-function C0 and the inharmonicity constraint
C1. A too high value of λ will favor a good fit of the partial frequencies with the inhar-
monicity relation without considering the slight deviations, e.g. due to the soundboard-
string couplings, while a too small value will lead to an optimal reconstruction of the
spectrum, even if the partials of the model do not match with transverse vibration par-
tials. The influence of the tuning of λ for a given partial is illustrated on Figure 3.4. For
this particular example, the optimal values of fnr are different for C0 and C1 cost-functions
(these are depicted, respectively as dash-dotted and dashed vertical lines). While increas-
ing λ from 0 to 1, one can see on Figure 3.4(b) that the global minimum of CInhR is
changing from the optimal value of C0 to the one of C1. In this example, the difference
between the values of these two optima is coming from the fact that the partial frequency
actually deviates from the inharmonicity relation. In this case, a value of λ ∈ [10−4, 10−3]
should allow a good match of the partial of transverse vibrations with the observation
(i.e minimize C0), while avoiding the local minima of C0 (as can be seen on Figure 3.4(c)
around 1380 or 1412 Hz for λ = 0).
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Figure 3.4: Influence of the tuning of λ on the cost-function of InhR-NMF. (a) Partial of
transverse vibration of a spectrum (gray) and partial of the model (black) for a given fnr
and anr = 1. (b) Corresponding cost-function CInhR (Eq. (3.6)) computed on a grid of
fnr for anr fixed to 1 and different values of λ. (c) Zoom along the y-axis of sub-figure
(b). Vertical dashed-dot and dashed line bars correspond to the value of fnr, respectively,
minimizing C0 and C1.

Since we use a Kullback-Leibler divergence for the reconstruction cost-function C0, one
should note that the tuning of λ may be influenced by the amplitude of the partials of the
observations. Indeed, the Kullback-Leibler divergence is not scale invariant and dKL(γx |
γy) = γ dKL(x | y), γ ∈ R

+. In order to avoid a fine tuning of λ that depends on the
recording conditions (piano type, nuances, ...) each spectrum composing the observation
matrix is normalized to a maximal magnitude of 1. Thus, the illustrations of Figure 3.4
correspond to the tuning of λ for a partial with maximal amplitude. When considering a
partial with amplitude 0.1 (-20 dB), a similar network of curves of Figure 3.4(b) will be
obtained by multiplying every value of λ by 10. For the experiments that are presented
in Section 3.1.3, λ has been set empirically λ = 5 · 10−4.
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Dealing with noise: In theory, when analyzing piano tones, one should consider partials
in the whole frequency range. Thus, the number of partials having frequencies below the
Nyquist frequency Fs/2 (Fs being the sampling frequency) should be given, for each note,
by:

N lim
r =


Fs

2F0r

√√√√
2

1 +
√

1 +Br
F 2
s

F 2
0r

 , (3.27)

where ⌊.⌋ denotes the integer rounding towards −∞ (as depicted in black line on Fig-
ure 3.2). However in practice, some partials, mainly with high ranks, may be missing or
drowned out in noise because of their strong damping. When targeting the precise estima-
tion of (B,F0), taking into account these partials in the model may lead to bad estimates.
Thus, for each iteration of the optimization algorithm, we cancel their influence in the es-
timation of (Br, F0r) by removing them from the corresponding cost-functions (Eq. (3.5)
for Inh-NMF and Eq. (3.7) for InhR-NMF ). For the proposed application, we compute,
during a pre-processing step, the noise level NL(fk) on each magnitude spectrum compos-
ing the matrix V (see Appendix B), and at each iteration we look for the estimated partials
that have a magnitude greater than the noise. Thus, we define the set of reliable partials
of each note, being above the noise level, by ∆r = {n | anr > NL(fnr), n ∈ [1, Nr]}.
This information is taken into account by replacing the sums over the entire set of partials
Nr∑
n=1

by sums over the reliable set of partials
∑

n∈∆r

in the update rules of Br (Eq. (3.14)-

(3.15) for Inh-NMF, and Eq. (3.25)-(3.26)) for InhR-NMF ) and F0r (Eq. (3.16)-(3.17) for
Inh-NMF and Eq. (3.20) for InhR-NMF ).

3.1.2.3 Algorithms

Finally, the steps of Inh-NMF and InhR-NMF algorithms are summarized, respectively
in tables Algorithm 1 and Algorithm 2. Note that the number of iterations for each
parameter has been determined empirically.
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Algorithm 1 Inh-NMF for the estimation of (B,F0)

1: Input:

2: V set of magnitude spectra (each normalized to a max. of 1)
3: H filled with 0 and 1
4: β = 1

5: Pre-processing:

6: for each column of V compute NL(fk) the noise level (cf. App. B)

7: Initialization:

8: (Br, F0r), ∀ r ∈ [1, R] according to the model of Sec. 4.4.3
9: N ini

r and Nfin
r , ∀ r ∈ [1, R] as shown in Fig. 3.2

10: fnr = nF0r

√
1 +Brn2, anr = 1, ∀ r ∈ [1, R], n ∈ [1, N ini

r ]
11: W θ computation (cf. Eq. ((3.1))

12: Optimization:

13: for it = 1 to It do

14: if mod(it, 3) = 0 then

15: Nr ← Nr + 1, ∀r ∈ [1, R] provided Nr < Nfin
r

16: end if

17: • anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.8))
18: W θ update (Eq. (3.1))
19: deduce ∆r by comparing anr with NL(fnr)
20: for u = 1 to 10 do

21: • F0r update ∀r, n ∈ ∆r (cf. Eq. (3.13))
22: W θ update (cf. Eq. ((3.1))
23: • Br update ∀r, n ∈ ∆r (cf. Eq. (3.12))
24: W θ update (cf. Eq. ((3.1))
25: end for

26: end for

27: Output: Br, F0r, anr

Algorithm 2 InhR-NMF for the estimation of (B,F0)

1: Input:

2: V set of magnitude spectra (each normalized to a max. of 1)
3: H filled with 0 and 1
4: β = 1 / λ = 5 · 10−4

5: Pre-processing:

6: for each column of V compute NL(fk) the noise level (cf. App. B)

7: Initialization:

8: (Br, F0r), ∀ r ∈ [1, R] according to the model of Sec. 4.4.3
9: N ini

r and Nfin
r , ∀ r ∈ [1, R] as shown in Fig. 3.2

10: fnr = nF0r

√
1 +Brn2, anr = 1, ∀ r ∈ [1, R], n ∈ [1, N ini

r ]
11: W θ computation (cf. Eq. ((3.1))

12: Optimization:

13: for it = 1 to It do

14: if mod(it, 3) = 0 then

15: Nr ← Nr + 1, ∀r ∈ [1, R] provided Nr < Nfin
r

16: end if

17: • anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.8))
18: W θ update (Eq. (3.1))
19: deduce ∆r by comparing anr with NL(fnr)
20: • fnr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.18))
21: W θ update (Eq. (3.1))
22: for v = 1 to 30 do

23: ∀r, n ∈ ∆r

24: F0r update (cf. Eq. (3.20))
25: Br update (20 times) (cf. Eq. (3.19))
26: end for

27: end for

28: Output: Br, F0r, anr, fnr
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3.1.3 Results

The ability of both NMF models/algorithms to provide correct estimates of (B,F0) on
the whole piano compass is investigated here in a supervised context (i.e. the played
notes and their time-activations are known). The estimation from isolated note and chord
recordings are respectively presented in Sections 3.1.3.2 and 3.1.3.4.

3.1.3.1 Database presentation

The results presented in this section are obtained from 3 separate databases (Iowa [Uni-
versity of Iowa, 1997], RWC [Goto et al., 2003] and MAPS [Emiya et al., 2010b]) covering
a total of 11 different pianos with different recording conditions (microphones close to
the strings or in room ambient condition) and dynamics (piano, mezzo-forte, forte). The
details for all pianos are given in Table 3.1. Note, that all piano synthesizers from MAPS
database are using high-quality samples. For all pianos, isolated note recordings along
the whole compass, from A0 (21 in MIDI index)1 to C8 (108), are available. For MAPS
pianos, chord recordings are also given. An additional dataset [Rauhala et al., 2007a]
composed of synthesized isolated tones from A0 (21) to G3 (55) is used in Section 3.1.3.3
for the evaluation of the precision of B estimates.

ref. name piano type rec. conditions

Iowa Iowa grand close

RWC
RWC1 grand close
RWC2 grand close
RWC3 grand close

MAPS

AkPnBcht grand (synth.) Software preset
AkPnBsdf grand (synth.) Software preset

AkPnCGdD grand (synth.) Software preset
AkPnStgb upright (synth.) Software preset

ENSTDkAm
upright

ambiant
ENSTDkCl close
SptkBGAm

grand (synth.)
ambiant

SptkBGCl close
StbgTGd2 grand (synth.) Software preset

Table 3.1: Details of the databases.

3.1.3.2 Isolated note analysis

The dataset for each piano consists of isolated note recordings of the 88 notes composing
the compass. Each recording is here first down-sampled to Fs = 22050 Hz. In order to
obtain a sufficient spectral resolution for notes in the bass range, the observation spectra
are extracted from 300 ms Hann windows, applied to the decay part of the sounds. Then,
the matrix V is built by concatenating the 88 spectra (each column corresponding to
the magnitude spectrum of a note, from A0 (21) to C8 (108)) and H is fixed to the
identity matrix (cf. Figure 3.5). For each note, the number of partials Nr is set to
argminNr

(50, fNr,r < Fs/2), as depicted in black ‘+’ markers on Figure 3.2.

1In the following, each note is given with its MIDI note number in brackets. More details on the MIDI
norm are given in Appendix A.
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Figure 3.5: Scheme for the NMF-based estimation of (B,F0) along the whole compass of
pianos from isolated note recordings.

It is worth noting here that the experiments have been performed for three sets of
dynamics, namely forte, mezzo-forte and piano. Only the results for the mezzo-forte dy-
namics are presented in the following since the performance did not appear significantly
dependent. Also, MAPS datasets are composed of tones played with different configura-
tions for the forte pedal: active or inactive (randomly distributed).

Two selected examples are presented in Figures 3.6 and 3.7 in order to exhibit char-
acteristics of both algorithms and analyze particular cases that lead to a failure of the
estimation. The results for the 11 pianos are given in Appendix D, page 125. Sub-figures
(a) correspond to the inharmonicity curves along the compass. As discussed in Chapter 4,
all piano models have a similar B behavior for the highest notes. Sub-figure (b) represent
the curves of F0 as the deviation from Equal Temperament (ET), in cents. The initializa-
tion of (B,F0) is depicted as black dashed lines and the blue and red curves respectively
correspond to the estimates obtained by Inh-NMF and InhR-NMF algorithms.
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Figure 3.6: Iowa (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure 3.7: ENSTDkAm (a) B and (b) F0 as dev. from ET along the whole compass.

When comparing the blue and red curves one can see that for most notes, particularly
in the medium range, both estimates are in good agreement. In order to qualitatively
evaluate the results one can compare the observed spectra and the model. For instance
Figure 3.8 depicts the result of InhR-NMF algorithm for the analysis of notes C♯1 (25),
C4 (60) and G♯5 (80) of Iowa grand piano. Inh-NMF exhibits similar results (not shown
here).

However, for some particular examples a significant difference between Inh-NMF and
InhR-NMF estimates is visible, for instance in the bass range of ENSTDkAM piano be-
tween A0 (21) and A1 (33) on Figure 3.7. When comparing the observed spectrum and
the models for the note F♯1 (cf. Figure 3.9), one can see that Inh-NMF failed to fit the
partials of transverse vibrations from rank 27 (Figure 3.9(a)), while InhR-NMF correctly
fitted the 50 partials (Figure 3.9(b)). Figure 3.9(c) shows that the failure of Inh-NMF is
due to the fact that the partial frequencies significantly differ from the theoretical inhar-
monicity relation (2.23). The “+” markers correspond to a plot of the partial frequencies
obtained by InhR-NMF in the graphic (fnr/n)

2 as a function of n2. If the partial frequen-
cies were strictly following the inharmonicity relation they should be distributed according
to a straight line of equation F 2

0r(1 + Brn
2). Thus, InhR-NMF here succeeds to adapt

the parameters (Br, F0r) (red straight line) during the optimization while permitting the
partials with low ranks to deviate from the theoretical law to fit the partials of the ob-
servation. On the contrary, the strict constraint of Inh-NMF led to the estimation of an
inharmonicity relation fitting approximately the first 27 partials (blue straight line). It is
worth noting for this very particular example that the distribution of the partial frequen-
cies differs from the usual inharmonicity relation with deviations caused by the bridge
coupling (as shown in Figure 2.10, page 31) and may be resulting from other effects such
as for instance the wrapping of the strings in the bass range (cf. Section 4.2.2.1). In this
case, the validity of the estimation of (B,F0) is hardly quantifiable because the model of
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Figure 3.8: Results of InhR-NMF for the analysis of notes (a) C♯1, (b) C4 and (c) G♯5 of
Iowa grand piano.

transverse vibration is not sufficient to explain the distribution of the partial frequencies.
However, a benefit of InhR-NMF is to handle these discrepancies so that a recovery of the
complete set of partials is still possible.

Other differences between the results provided by both algorithms can be seen in the
treble range. For instance, Figure 3.10 depicts the result of InhR-NMF for the note B6
(95) of ENSTDkAM piano. In this case, the validity of the estimation cannot be assessed
so easily for some partials, mainly because these partials aggregate multiple peaks while
the model assumes only a single component. This issue typically happens in the treble
range, where the notes are associated with triplets of slightly detuned strings. Then,
the algorithm selects one peak per group, that will depend on the initialization and on
a balance between peak strength and model fitting. Thus, each algorithm might return
slightly different biased estimates for (B,F0), depending on which partials are selected.

Finally, in some cases corresponding mainly to notes in the high treble range, both
algorithms may fail because of initialization issues. This can be seen of Figure 3.6 where
the estimates of (B,F0) for notes above G7 (103) remain fixed to their initial values because
no partials of the models were overlapping partials of the data at the initialization. For
instance, a difference of 10 cents between the initialization and the actual value of F0 of
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a note G7 leads approximately to a deviation of 18 Hz between the first partial frequency
of the observation and the model. In order that the main lobes of the first partial of the
observation and the model overlap at the initialization, the limit deviation between the
partial frequencies is equal to 4/τ for a Hann window. For the presented results, a 300
ms Hann window was used so this limit is approximately equal to 13 Hz. Under these
conditions, it is very likely that no partial of the model overlaps partials of the observed
spectrum at the initialization, thus leading to a failure of both algorithms. Similar results
may be observed for AkPnBcht and AkPnBsdf in Appendix D. A possible solution to
overcome these limitations is to perform a rough estimation by means of a grid search
before running the optimization. Also, using a shorter analysis window may help in
increasing the overlapping between the observed and modeled partials (for instance a 50
ms Hann window will lead to a limit of 80 Hz).
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Figure 3.9: Estimation of (B,F0) for the note F♯1 (30) of MAPS ENSTDkAM piano.
Observed spectrum and estimated spectrum by (a) Inh-NMF and (b) InhR-NMF. (c)
Plot (fnr/n)

2 as a function of n2, with the inharmonicity relation estimated by Inh-NMF
and InhR-NMF, respectively depicted as blue and red lines.
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Figure 3.10: Results of InhR-NMF for the note B6 (95) of ENSTDkAM piano.

3.1.3.3 Performance evaluation

This section presents the quantitative evaluation of the precision of the estimation of
(B,F0) provided by both algorithms and a comparison with the state-of-the-art PFD
(Partial Frequencies Deviation) algorithm [Rauhala et al., 2007a; Rauhala and Välimäki,
2007].

Reference extraction: The evaluation is performed on both synthetic and Iowa real
piano tones on the limited range A0 (21) - G3 (55) (as done in [Rauhala et al., 2007a])
because of the lack of ground truth. Indeed, the string dimensions and properties are not
known for real pianos so the reference values of B need to be manually retrieved from the
note spectra. This requires a supervised extraction of the partial frequencies corresponding
to transverse vibrations of the strings, which can be quite difficult because of the presence
of many partials due to the string couplings, particularly for notes composed of multiple
strings. In our experiments, the partials corresponding to transverse vibrations of the
strings have been picked, up to a rank of 30, from the spectra of notes played with
piano dynamics so that the influence of the couplings should be limited. In order to
have a precise spectral resolution, the spectra have been computed from 2 seconds of
decaying sound on 217 frequency bins. In case multiple partials are produced by the
coupling of doublet/triplet of strings, several peaks have been considered (as illustrated
on Figure 3.11(a)). In the following equation, the frequencies of these peaks are denoted
by f⋆

r,n,p, where r corresponds to the index of the note, p ∈ [1, Pr,n] to the index of
the peak within n ∈ [1, Nr] the rank of the partial. Then, the reference parameters
(B⋆

r , F
⋆
0r) have been estimated by minimizing the absolute deviation (which should reduce

the influence of potential outliers) between the inharmonicity relation and the extracted
partial frequencies:

(B⋆
r , F

⋆
0r) = argmin

(Br,F0r)

Nr∑

n=1

Pr,n∑

p=1

1

Pr,n
| f∗r,n,p − nF0r

√
1 +Brn2 | . (3.28)

The 1/Pr,n factor corresponds to a weighting that allows us to consider multiple partials as
one theoretical partial in the regression. The result of the estimation of (B⋆, F ⋆

0 ) for G♯2
note of Iowa grand piano is depicted in Figure 3.11(b) by plotting (fn/n)

2 as a function
of n2. Finally, the curves of B⋆

r and F ⋆
0r (as deviation from ET) are presented for both

datasets along the range A0 (21) - G3 (55) in Figure 3.12.
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Figure 3.11: (B,F0) reference extraction on note G♯2 of Iowa grand piano. (a) Magnitude
spectrum (in gray), and selection of the peaks corresponding to transverse vibrations of
the strings (’+’ markers). (b) Results of the estimation of (B⋆, F ⋆

0 ) reference values in the
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2 as a function of n2. ‘+’ markers correspond to manually extracted peaks,
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20 25 30 35 40 45 50 55

1

2

3

note (in MIDI index)

B
*  (

lo
g

. 
s
c
a

le
)

x10
−4

20 25 30 35 40 45 50 55
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

note (in MIDI index)

F
0*
 /

 F
0
,E

T
 (

c
e

n
ts

)

(a) Synthetic

20 25 30 35 40 45 50 55

1

2

3

note (in MIDI index)

B
*  (

lo
g

. 
s
c
a

le
)

x10
−4

20 25 30 35 40 45 50 55
−25

−20

−15

−10

−5

0

5

10

note (in MIDI index)

F
0*
 /

 F
0
,E

T
 (

c
e

n
ts

)

(b) Iowa

Figure 3.12: Reference curves (B⋆, F ⋆
0 ) along the range A0 (21) - G3 (55) for (a) the

synthetic samples and (b) the Iowa piano tones.
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Evaluation results: The inharmonicity coefficient estimation performances are evalu-
ated in terms of relative error with respect to the reference:

EBr =
∣∣∣Br −B⋆

r

B⋆
r

∣∣∣. (3.29)

F0 estimates are evaluated in terms of deviation from the reference in cents:

EF0r = 1200 ·
∣∣∣log2

F0r

F ⋆
0r

∣∣∣. (3.30)

These measures for PFD and the two NMF algorithms are presented on Figure 3.13 for
the synthetic samples and the Iowa piano tones on the range A0 (21) - G3 (55). Table 3.2
returns these errors averaged for each piano and algorithm. Higher performances are ob-
tained by both NMF algorithms when compared to the PFD algorithm. The performance
obtained for the synthetic tones are similar for both NMF modelings while InhR-NMF re-
turns slightly better results than Inh-NMF for the analysis of Iowa grand piano samples.
These results on the first data set could be explained by the fact that the synthetic tones
have been generated by using the theoretical inharmonicity relation (Equation (2.23))
without considering the partial frequency deviations caused by the soundboard-strings
coupling. Results on the Iowa data set tend to show that it is worthwhile to take these
possible deviations into account, as done by InhR-NMF.

20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5

4

note (in MIDI index)

E
B

r (
%

)

 

 

PFD

Inh−NMF

InhR−NMF

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

note (in MIDI index)

E
F

0
r (

c
e
n
ts

)

 

 

PFD

Inh−NMF

InhR−NMF

(a) Synthetic

20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10

note (in MIDI index)

E
B

r (
%

)

 

 

PFD

Inh−NMF

InhR−NMF

20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

note (in MIDI index)

E
F

0
r (

c
e
n
ts

)

 

 

PFD

Inh−NMF

InhR−NMF

(b) Iowa

Figure 3.13: EBr (above, in %) and EF0r (below, in cents) along the range A0 (21) -G3
(55) for PFD (black), Inh-NMF (blue) and InhR-NMF (red) algorithms. The evaluation
is performed on (a) synthetic and (b) Iowa piano datasets.

On G♯3 (56) - C8 (108) results are not quantified because of the lack of ground truth
and data for the synthetic signals. However, it can be observed graphically (c.f. Figure
3.14) that NMF estimates seem more consistent with typical values than those obtained
by using PFD (not optimized there). It is worth noting that in the presented experiments,
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PFD Inh-NMF InhR-NMF

Synthetic
0.783 0.323 0.311 EBr (%)
0.307 0.110 0.110 EF0r (cents)

Iowa
3.30 1.25 0.847 EBr (%)
1.06 0.539 0.429 EF0r (cents)

Table 3.2: (B,F0) estimation errors averaged on the range A0-G3, for PFD and NMF
algorithms on synthetic and Iowa piano tones.

F0r was initialized to Equal Temperament for the PFD algorithm (proposed as an optional
input in the code). As an additional study, in order to investigate the influence of the
initialization, we modified the PFD code so that it can take into account the same ini-
tialization of (Br, F0r) as the one we used for the NMF algorithms. This did not improve
significantly the results in the high pitch range.
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Figure 3.14: (a) B and (b) F0 along the whole compass of Iowa grand piano for PFD
(black), Inh-NMF (blue) and InhR-NMF (red) algorithms

3.1.3.4 Chord analysis

The same protocol has been applied to the analysis of 4 chords (from MAPS SptkBGCl
grand piano synthesizer), respectively taken in the extreme bass, bass, middle and treble
range of the compass. Each chord is composed of 5 notes. In order to have a sufficient
spectral resolution the analysis window length was set to 1 second for the chords played
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in the extreme bass/bass ranges and 500 ms in the medium/treble ranges. On Figure 3.15
and 3.16, the results of (B,F0) estimates obtained respectively by Inh-NMF and InhR-
NMF from isolated notes (in thin gray lines) are compared with the ones obtained from
chords (one type of marker for each chord). The initialization is drawn as a dashed line.
It can be observed for each algorithm that both types of estimations lead to remarkably
similar results. The slight deviations in the estimation from chord recordings could be ex-
plained by the overlapping of the partials belonging to different notes, that could corrupt
the estimation of the frequencies. Moreover, it has been shown in the previous section on
isolated note analysis that, in the treble range, the precise estimation of (B,F0) cannot
be always guaranteed since the model of inharmonicity with one frequency peak per par-
tial, as given by Equation (2.23), is not sufficient to explain the spectrum of the notes.
The estimated spectrum by InhR-NMF for the chords #2 and #3 are respectively given
on Figures 3.17(a) and 3.17(b), where one can see that, despite a considerable spectral
overlap between the notes, the partials are well identified for every note.
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Figure 3.15: Inh-NMF isolated note vs. chord analysis for the MAPS SptkBGCl grand
piano. (a) Inharmonicity coefficient and (b) F0 as dev. from ET along the compass.
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Figure 3.16: InhR-NMF isolated note vs. chord analysis for the MAPS SptkBGCl grand
piano. (a) Inharmonicity coefficient and (b) F0 as dev. from ET along the compass.

0 200 400 600 800 1000 1200 1400 1600
−100

−80

−60

−40

−20

0

Frequency (Hz)

M
a

g
. 

S
p

e
c
tr

u
m

 (
d

B
)

 

 

Observation Noise Level           Gb 1 A1 C2 E2 G2

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
a

g
. 

S
p

e
c
tr

u
m

 (
d

B
)

 

 

Observation Noise Level          G#3 B3 D4 E4 F4

(b)

Figure 3.17: Result of InhR-NMF for the analysis of (a) the chord #2 (G♭1-A1-C2-E2-G2)
and (b) the chord #3 (G♯3-B3-D4-E4-F4) of MAPS SptkBGCl piano.
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3.1.3.5 Conclusion

Two NMF models based on a parameterization of the dictionary for the estimation of
(B,F0) have been presented so far in this chapter. The first model, denoted by Inh-NMF,
forces the partial frequencies to strictly follow the theoretical inharmonicity relation, while
the second model, denoted by InhR-NMF, relaxes this constraint by means of a weighted
penalty term added to the reconstruction cost-function. An algorithm is derived for each
model and special care is taken in the initialization and the optimization, in order to
avoid, as much as possible, the convergence toward local optima. Both algorithms have
been successfully applied to the supervised estimation of (B,F0) along the whole compass
of different pianos from isolated note and chord recordings. Their performance evaluation
compares favorably with the state of the art PFD method, while exhibiting a benefit of
the relaxed constraint of InhR-NMF for the analysis of real piano tones when compared
to Inh-NMF.

In Chapter 5, both models will be evaluated in a transcription task, i.e. in an unsu-
pervised context, where the activation matrix H has to be estimated as well as (B,F0)
and the partial amplitudes. A comparison of the performance with a simpler harmonic
model will be performed in order to evaluate whether it is valuable to take into account
inharmonicity for such applications.
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3.2 Probabilistic line spectrum modeling

This section introduces a probabilistic model for the analysis of line spectra – defined here
as a set of frequencies of spectral peaks with significant energy. Most algorithms dedicated
to audio applications (F0-estimation, transcription, ...) consider the whole range of audible
frequencies to perform their analysis, while besides attack transients, the energy of music
signals is often contained in only a few frequency components, also called partials. Thus,
in a time-frame of music signal only a few frequency-bins carry information relevant for
the analysis. By reducing the set of observations, i.e. by keeping only the few most
significant frequency components, it can be assumed that most signal analysis tasks may
still be performed. For a given frame of signal, this reduced set of observations is here
called a line spectrum, this appellation being usually defined for the discrete spectrum of
electromagnetic radiations of a chemical element. In the case of piano music analysis, most
observations should correspond to frequencies related to transverse vibration of the strings
and should allow estimating (B,F0) parameters of the played notes. Thus, it should be
noticed that the proposed approach is closely related to the class of methods “Iterative
peak-picking and refinement of the inharmonicity coefficient” presented in Section 2.3.
The probabilistic framework used here should help in giving a more rigorous derivation of
the estimation algorithm and allow for performing the task in an unsupervised way.

Several studies have considered dealing with these line spectra to perform analysis.
Among them, [Gómez, 2006] proposes to compute tonal descriptors from the frequencies
of local maxima extracted from polyphonic audio short-time spectra. In [Doval and Rodet,
1991, 1993] a probabilistic model for multiple-F0 estimation from sets of maxima of the
Short-Time Fourier Transform is introduced. It is based on a Gaussian mixture model
having means constrained by an F0 parameter and solved as a maximum likelihood problem
by means of heuristics and grid search. Such approach has been proposed more recently
in [Duan et al., 2010] where special care is taken to the modeling of both peaks and
non-peaks regions in order to limit the activation of spurious harmonically-related notes.
The F0 parameters are estimated jointly with a candidate note selection by means of an
iterative greedy search strategy. The other parameters of the model are learned from
monophonic and polyphonic training data. A similar constrained mixture model has
also been proposed in [Kameoka et al., 2004] to model speech spectra (along the whole
frequency range, where here a Gaussian distribution is used to model the main lobe of a
peak) and solved using an Expectation-Maximization (EM) algorithm.

The Probabilistic Line Spectrum (PLS ) model presented here is inspired by these
references. The key difference is that we focus on piano tones, which have the well-known
property of inharmonicity, that in turn influences tuning. This slight frequency stretching
of partials should allow, up to a certain point, disambiguation of harmonically-related
notes. Reversely, from the set of partial frequencies, it should be possible to estimate the
(B,F0) parameters while detecting the played notes. The model assumes that, for a time-
frame of signal, the observations have been generated by a mixture of notes composed
by partials (Gaussian mixture) and noise components. The Gaussian mixture for each
note is constrained by (B,F0) parameters to have means distributed according to the
inharmonicity relation (2.23). Then, (B,F0) parameters are estimated jointly with a
classification of each observed frequency into partial and noise classes for each note by
means of a maximum a posteriori Expectation-Maximization algorithm. This technique
is finally applied to the unsupervised estimation of (B,F0) along the compass of pianos,
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first in a monophonic context by jointly processing isolated note recordings, and then from
a musical polyphonic piece.

3.2.1 Model and problem formulation

3.2.1.1 Observations

As mentioned in the introduction of Chapter 2, the information contained in two consec-
utive frames of music signals is often highly redundant. This suggests that in order to
retrieve the (B,F0) parameters for the whole set of notes played in a piece of solo music,
a few independent frames localized after note onset instants should contain all the infor-
mation that is necessary for processing. These time-frames are indexed by t ∈ [1, T ] in the
following. In order to extract peaks that contain significant energy from the magnitude
spectra, a noise level estimation based on median filtering is first performed (cf. Appendix
B). Above this noise level, local maxima (defined as having a greater magnitude than Kmax

left and right frequency bins) are extracted. An illustration of this pre-processing is given
in Figure 3.18. The frequency of each maximum picked in a frame t is denoted by yti,
i ∈ [1, It]. The set of observations for each frame is then denoted by yt (a vector of length
It), and for the whole piece of music by Y = {yt, t ∈ [1, T ]}}. In the following of this
section, the variables denoted by lower case, bold lower case and upper case letters will
respectively correspond to scalars, vectors and sets of vectors.
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Figure 3.18: Illustration of the peak-picking pre-processing. (a) Magnitude spectrum and
(b) line spectrum of a note D3 (50).

3.2.1.2 Probabilistic model

If a single note of music, indexed by r ∈ [1, R], is present in a time-frame, most of the
extracted local maxima should correspond to partials related by a particular structure
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(harmonic or inharmonic for instance). These partial frequencies correspond to the set
of parameters of the proposed model. It is denoted by θ, and in a general context (no
information about the harmonicity or inharmonicity of the sounds) can be expressed by
θ = {fnr|∀n ∈ [1, Nr], r ∈ [1, R]}, where n is the rank of the partial and Nr the maximal
rank for the note r. For the proposed model, we consider a strict inclusion of the inhar-
monicity relation fnr = nF0r

√
1 +Brn2, as done for the Inh-NMF model presented in

Section 3.1.1.2. Thus, the set of parameters can be rewritten as θ = {F0r, Br|∀r ∈ [1, R]}.

In order to link the observations to the set of parameters θ, the following hidden
random variables are introduced:

• qt ∈ [1, R], corresponding to a candidate note that could have generated the obser-
vations yt.

• Ct = [ctir](i,r)∈[1,It]×[1,R] gathering Bernoulli variables specifying the nature of the
observation yti, for each note r. If ctir = 1, the observation yti is assumed to
correspond to a partial of the note r. If ctir = 0, it corresponds to "noise", here
defined as a non-sinusoidal component or a partial of another note.

• Pt = [ptir](i,r)∈[1,It]×[1,R] corresponding to the rank of the partial n of the note r that
could have generated the observation yti provided that ctir = 1.

Based on these definitions, the probability that an observation yti has been generated
by a note r can be expressed as:

p(yti|qt = r; θ) = p(yti|ctir = 0, qt = r) · p(ctir = 0|qt = r)

+
∑

n

p(yti|ptir = n, ctir = 1, qt = r; θ) (3.31)

· p(ptir = n|ctir = 1, qt = r) · p(ctir = 1|qt = r).

It is chosen that the observations that are related to the partial n of a note r should be
located around the frequencies fnr according to a Gaussian distribution of mean fnr and
variance σ2

r (fixed parameter):

p(yti|ptir = n, ctir = 1, qt = r; θ) = N (fnr, σ
2
r ), (3.32)

p(ptir = n|ctir = 1, qt = r) = 1/Nr. (3.33)

On the other hand, observations that are related to noise are chosen to be uniformly
distributed along the frequency axis (with maximal frequency F ):

p(yti|ctir = 0, qt = r) = 1/F. (3.34)

These distributions are illustrated on Figure 3.19.

Then, the probability to obtain a noise or partial observation knowing the note r is
chosen so that:
• if It > Nr:

p(ctir|qt = r) =
It>Nr

{
(It −Nr)/It if ctir = 0,

Nr/It if ctir = 1.
(3.35)
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Figure 3.19: Illustration of the probabilistic model.

This should approximately correspond to the proportion of observations associated to
noise and partial classes for each note.
• if It ≤ Nr:

p(ctir|qt = r) =
It≤Nr

{
1− p if ctir = 0,

p if ctir = 1,
(3.36)

with p ∈ [0, 1]. This latter expression for p < 0.5 means that for a given note r at a frame
t, most of observations should be mainly considered as noise if Nr (its number of partials),
is greater than the number of observations It. This situation may occur for instance in a
frame in which a single note from the high treble range is played. In this case, only a few
local maxima are extracted and lower notes, composed of much more partials, should not
be considered as present.

Finally, with no prior information it is chosen

p(qt = r) = 1/R. (3.37)

3.2.1.3 Estimation problem

In order to estimate the parameters of interest θ, the following maximum a posteriori
estimation problem is solved:

(θ⋆, {C⋆
t }t, {P ⋆

t }t) = argmax
θ,{Ct}t,{Pt}t

∑

t

log p(yt, Ct, Pt; θ), (3.38)

where
p(yt, Ct, Pt; θ) =

∑

r

p(yt, Ct, Pt, qt = r; θ). (3.39)

Solving problem (3.38) corresponds to the estimation of θ, jointly with a classification of
each observation into noise or partial classes for each note. Note that the sum over t of
Equation (3.38) arises from the time-frame independence assumption (justified in Section
3.2.1.1).

3.2.2 Optimization

Problem (3.38) has usually no closed-form solution but can be solved in an iterative way
by means of an Expectation-Maximization (EM) algorithm [Dempster et al., 1977]. The
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auxiliary function at iteration (k + 1) is given by

Q(θ, {Ct}t, {Pt}t|θ(k), {C(k)
t }t, {P

(k)
t }t) =

∑

t

∑

r

ωrt ·
∑

i

log p(yti, ctir, ptir, qt = r; θ)

(3.40)
where by definition,

ωrt = p(qt = r|yt, {C(k)
t }t, {P

(k)
t }t; θ(k)), (3.41)

is computed at the E-step knowing the values of the parameters at iteration (k). At the
M-step, θ, {Ct}t, {Pt}t are estimated by maximizing Equation (3.40). Note that the sum
over i in Equation (3.40) is obtained under the assumption that in each frame the yti are
independent.

3.2.2.1 Expectation

According to Equation (3.41) and model Equation (3.31)-(3.37)

ωrt ∝
It∏

i=1

p(yti, qt = r, c(k)tir, p
(k)

tir; θ
(k))

∝ p(qt = r) ·
∏

i/ c
(k)
tir=0

p(yti|qt = r, c(k)tir) · p(c
(k)

tir|qt = r) (3.42)

·
∏

i/ c
(k)
tir=1

p(yti|qt = r, c(k)tir, p
(k)

tir, θ
(k)) · p(p(k)

tir|c
(k)

tir, qt = r) · p(c(k)tir|qt = r),

normalized so that
∑R

r=1 ωrt = 1 for each frame t.
As defined in Equation (3.41), ωrt corresponds to the probability that a note r is active

at a frame t given the observations and the values of the parameters. Thus, the matrix
Ω = [ωrt](r,t)∈[1,R]×[1,T ] is similar to the activation matrix H of NMF models.

3.2.2.2 Maximization

The M-step is performed by a sequential maximization of Equation (3.40):

• First, estimate ∀ t, i and qt = r the variables ctir and ptir. As mentioned in Section
3.2.1.3, this corresponds to a classification step, where each observation is associated,
for each note, to noise class (ctir = 0) or partial class with a given rank (ctir = 1 and
pitr ∈ [1, Nr]). This step is equivalent to a maximization of log p(yti, ctir, ptir | qt = r; θ)
which, according to Equations (3.31)-(3.37), can be expressed as:

(c(k+1)

tir , p(k+1)

tir ) = (3.43)

argmax
({0,1},n)





− logF + log p(ctir = 0|qt = r),

−(yti − nF (k)

0r

√
1 +B(k)

r n2)2/(2σ2
r )− logNr

√
2πσr + log p(ctir = 1|qt = r).

• Then, the estimation of θ is equivalent to (∀r ∈ {1...R})

(F (k+1)

0r , B(k+1)
r ) = argmax

F0r,Br

∑

t

ωrt

∑

i/c
(k+1)
tir =1

log p(yti, c
(k+1)

tir = 1, p(k+1)

tir , qt = r; θ), (3.44)
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which, according to Equations (3.31)-(3.37), leads to the following minimization problem:

(F (k+1)

0r , B(k+1)
r ) = argmin

F0r,Br

∑

t

ωrt

∑

i/c
(k+1)
tir =1

(
yti − p(k+1)

tir F0r

√
1 +Br p(k+1)2

tir

)2
. (3.45)

For F0r, the following update rule is obtained when canceling the partial derivative of
Equation (3.45):

F (k+1)

0r =

∑
t ωrt

∑
i/c

(k+1)
tir =1

yti · p(k+1)

tir ·
√

1 +Br p(k+1)2

tir

∑
t ωrt

∑
i/c

(k+1)
tir =1

p(k+1)2

tir · (1 +Br p(k+1)2

tir )
. (3.46)

For Br, no closed-form solution can be obtained from the partial derivative of Equation
(3.45). The minimization is thus performed by means of an algorithm based on the Nelder-
Mead simplex method (as implemented in the fminsearch MATLABTM function).

Algorithm 3 PLS model for the estimation of (B,F0)

Input:

{vt, t ∈ [1, T ]} set of magnitude spectra

Preprocessing: ∀t ∈ [1, T ]
compute the Noise Level (NL) of vt (cf. App. B) and pick the frequencies yt

of the local maxima having magnitude greater than NL and Kmax left and right
frequency bins

Initialization:

(Br, F0r), ∀ r ∈ [1, R] according to the model of Sec. 4.4.3
N ini

r and Nfin
r , ∀ r ∈ [1, R] as shown in Fig. 3.2, p. 43

compute ctir and ptir, ∀ t, i, r (Eq. (3.43))

Optimization:

for it = 1 to It do

if mod(it, 10) = 0 then

Nr ← Nr + 1, ∀r ∈ [1, R] provided Nr < Nfin
r

end if

• E-Step:
compute ωrt ∀ r ∈ [1, R], t ∈ [1, T ] (Eq. (3.42))
keep the 10 highest values of ωrt in each frame t and set the others to 0
normalize ωrt so that

∑
r ωrt = 1 for each frame t

• M-Step:
compute ctir and ptir ∀ t, i, r (Eq. (3.43))
compute F0r ∀ r (Eq. (3.46))
if F0r is outside the limits then fix its value to the closest limit

compute Br ∀ r (Eq. (3.45) + Nelder-Mead simplex method)
if Br is outside the limits then fix its value to the closest limit

end for

Output: Br, F0r, ωrt

3.2.2.3 Practical considerations

The cost-function (cf. maximization Equation (3.38)) is non-convex with respect to
(Br, F0r) parameters. Thus, as done in Section 3.1.2.2 for the NMF-based models, the
initialization of the parameters uses the model of inharmonicity and tuning of pianos along
the whole compass (cf. Chapter 4). Also, similarly to the NMF model algorithms, the
optimization is run with a few partials for each note at the initialization. Then, one partial
is added for each note every 10 iterations (number determined empirically) by initializing
its frequency with the current (Br, F0r) estimates.
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Finally, in order to avoid situations where the algorithm optimizes the parameters
of a note on data corresponding to another note (e.g. increasing F0 by one semi-tone),
the values of (Br, F0r) are prevented from being updated over limit curves. For B, these
curves are presented in Section 4.4.3 and can be seen depicted as gray dashed-line in
Figures 3.21(a) and 3.22(a). The limits curves for F0 are set to +/− 40 cents of the
initialization. Overfitting issues are also tackled by applying a threshold to ωrt that limits
the polyphony level to 10 notes for each frame t. Each step of the optimization of the PLS
model is summarized in Algorithm 3.

3.2.3 Results

In this section, we investigate the ability of the model and its algorithm to provide correct
estimates of (B,F0) from the unsupervised joint analysis of a set of single note recordings,
as from the analysis of a piece of polyphonic music.

The observation set is built according to the description given in Section 3.2.1.1. The
time-frames are extracted after note onsets and their length is set to 500 ms in order to
have a sufficient spectral resolution. The FFT is computed on 215 bins and the maxima
are extracted by setting Kmax = 20. Note that for the presented results, the knowledge
of the note onsets is taken from the ground truth (MIDI aligned files). For a complete
blind approach, an onset detection algorithm should be first run. It can be assumed that
this should not significantly affect these results, since onset detection algorithms usually
perform well on percussive tones. The parameters of the model are chosen as follows :
Nr is set to argminNr

(30, fNr,r < Fs/2), the parameter of the Bernoulli distribution is
empirically set to p = 0.1, and σr is empirically set to 3 and 2 Hz, respectively for the
applications “isolated note estimation” and “estimation from a piece of music”.

3.2.3.1 Supervised vs. unsupervised estimation from isolated notes jointly
processed

Here, we apply the algorithm to the estimation of (Br, F0r) parameters from isolated note
recordings covering the whole compass of pianos. The set of observations is composed of
88 frames (jointly processed), one for each note of the piano (from A0 (MIDI index 21) to
C8 (108)) and processed in both supervised and unsupervised ways.

In the supervised case, the activation matrix Ω is fixed to the identity matrix (as
done in Section 3.1.3.2 for the activation matrix of the NMF-based models) and only the
M-step is performed during the optimization. It is worth noting for this supervised case
that the algorithm can be seen as part of the “Iterative peak-picking and refinement of
the inharmonicity coefficient” class of methods presented in Section 2.3. Indeed, partials
corresponding to transverse vibrations of the string are iteratively selected in the classi-
fication step and (Br, F0r) are updated by minimizing the quadratic error between the
partial frequencies and the parameters. In the unsupervised case, the note activations are
also estimated by the algorithm.

The results for 2 different pianos are presented on Figure 3.21 (Iowa piano) and 3.22
(MAPS SptkBGCl piano). Subplots (a) and (b) depict respectively the estimation of B
and F0. When comparing the supervised (blue curves) and the unsupervised (red curves)
curves one can see that similar results are obtained, approximately up to note C♯6 (85). In
this range, one can see on subplot (c) that the matrix Ω estimated in the unsupervised case
exhibits the expected diagonal structure, up to one mistake at time-frame t = 53 for Iowa
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piano. This corresponds to an octave error where the note C♯6 (85) is detected instead
of C♯5 (73). Above, the detection is not correct and logically leads to different estimates
of (B,F0) when comparing to the supervised case. As seen in Section 3.1.3.2 for the
NMF-based modelings the estimation of (B,F0) in this range may encounter difficulties
because notes are composed of 3 coupled strings that produce multiple partials that do not
fit well into the inharmonicity model Equation (2.23). As also shown in Section 3.1.3.2,
the analysis in this range for both supervised and unsupervised cases may suffer from
initialization issues and lead to (B,F0) estimates frozen to their initial values (as seen
above note F7 (101) on Figure 3.22(b)).

Interestingly, below note C♯6 (85) the algorithm performs as expected, with very few
harmonically-related errors in Ω. Taking for instance frame t = 30 of Iowa piano, and the
notes D2 (38), D3 (50) and D4 (62) of the model (cf. Figure 3.20), one can see that only
D3 is detected because most observations have been classified as partials (black vertical
bars). On the contrary, a very low value of ωrt is obtained for D2 and D4 notes because
a large amount of observations have been classified as noise (gray vertical bars).
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Figure 3.20: Result of the algorithm for the analysis of the frame t = 30 from Iowa grand
piano corresponding to the line spectrum of the note D3 (50). Black and gray vertical
bars correspond to the observed frequencies respectively classified as partial (ctir = 1) and
noise (ctir = 0) for 3 octave-related notes (D2-D3-D4). The partial rank for observations
with ctir = 1 is reported above each graph.
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Figure 3.21: Analysis on the whole compass from isolated note recordings of Iowa piano.
(a) B in log. scale and (b) F0 as dev. from ET (in cents) along the whole compass. (B,F0)
estimates are depicted as blue and red ‘+’ markers, respectively for the supervised and
the unsupervised cases. The initialization is plotted as gray lines and the limits for the
estimation of B as gray dashed-lines. (c) Ω returned by the unsupervised analysis.
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Figure 3.22: Analysis on the whole compass from isolated note recordings of MAPS SP-
tkBGCl piano. (a) B in log. scale and (b) F0 as dev. from ET (in cents) along the whole
compass. (B,F0) estimates are depicted as blue and red ‘+’ markers, respectively for the
supervised and the unsupervised cases. The initialization is plotted as gray lines and the
limits for the estimation of B as gray dashed-lines. (c) Ω returned by the unsupervised
analysis.
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Finally, the precision of the estimation of (B,F0) is quantitatively evaluated according
to the protocol described in Section 3.1.3.3. The results are presented in table 3.3 and
compared with PFD and Inh-NMF algorithms. As qualitatively noticed above, the results
for both supervised and unsupervised cases are similar, and comparable to those obtained
by Inh-NMF.

PFD Inh-NMF PLS sup. PLS unsup.

Synthetic
0.783 0.323 0.307 0.307 EBr (%)
0.307 0.110 0.291 0.293 EF0r (cents)

Iowa
3.30 1.25 1.06 1.06 EBr (%)
1.06 0.539 0.607 0.601 EF0r (cents)

Table 3.3: (B,F0) estimation errors averaged on the range A0-G3, for both supervised
and unsupervised PLS (Probabilistic Line Spectrum) models applied on the synthetic and
Iowa piano datasets. PFD and Inh-NMF results are given for comparison. The metrics
are defined in Section 3.1.3.3.

3.2.3.2 Unsupervised estimation from musical pieces

Finally, the algorithm is applied to an excerpt of polyphonic music (25 s of MAPS_MUS-
muss_3_SptkBGCl file) containing notes in the range D♯1 (27) - F♯6 (90) from which
46 frames are extracted. The mean polyphony level by frame is approximately equal to
10.5. This high value results from the high time-frame duration which is set to 500 ms in
order to obtain a sufficient resolution, as mentioned above. 76 notes are considered in the
model and initialized in order to take into account notes from A0 (21) to C7 (96). This
corresponds to a reduction of one octave in the high treble range where the notes cannot
be properly processed, as seen in Section 3.2.3.1. Luckily, these notes are rarely used in a
musical context.

The proposed application is here the learning of (B,F0) along the compass of a piano
from a generic polyphonic piano recording. After the optimization, a post-processing is
performed in order to keep the most reliable estimates. First, a threshold is applied to
the matrix Ω so that elements having values lower than 10−3 (threshold set empirically)
are discarded. Second, notes having B estimates stuck to the limits (cf. gray dashed lines
in Figure 3.22(a)) are rejected.

Figure 3.23 depicts the result of the frame-wise note selection obtained after the post-
processing for the considered piece of music. As it can be seen, the drastic post-processing
leads to a greater number of True Positive (TP) than False Positive (FP). The frame-wise
evaluation returns thus a high precision of 95.7 % and a weak recall of 9.28 % (these met-
rics are properly defined in Chapter 5). This result is suitable regarding our application
for which we mainly focus on the reliable detection of a few notes in each frame in order to
perform the precise estimation of their parameters (B,F0). In a potential application of
the algorithm to a transcription task, one should consider a smaller time-frame duration
(leading to a lower frame-wise polyphony level) and a lower value for the threshold of the
activation matrix Ω at the post-processing.

Finally, the results of the estimation of (B,F0) for the detected note is presented
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Figure 3.23: Frame-wise evaluation of the note detection.

on Figure 3.24 (red ‘+’ markers). When comparing to the estimates obtained by the
supervised analysis on isolated note recordings (black ‘+’ markers) one can see that most
estimates of notes actually present are consistent. Averaged on these 19 notes correctly
detected (present below note B5 (83)) and compared to the supervised estimation from
isolated note recordings, a relative error of 5.2 % for B and a mean deviation of 0.70 cents
for F0 are obtained.

Even if only a few notes are detected (19 out of 39 actually present in the presented
example), the algorithm returned precise estimates of (B,F0). By using a model of inhar-
monicity and tuning along the whole compass of pianos, it will be shown in the applications
of Chapter 4 that (B,F0) may be interpolated along the whole compass, thus leading to
applications such as the retrieval of the tuning (related to F0) and properties about the
piano type (related to B) by the analysis of a generic polyphonic recording. Interestingly,
for this task a perfect transcription of the music does not seem necessary: only a few re-
liable notes may be sufficient. However, an extension of this model to piano transcription
could form a natural extension, but would require a more complex model taking account
both temporal dependencies between frames, and spectral envelopes.
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Figure 3.24: (B,F0) estimation along the compass from a piece of music. (a) B in log.
scale and (b) F0 as dev. from ET in cents. (B,F0) estimates are depicted as red ‘+’
markers and compared to the supervised estimation on isolated notes (black ‘+’ markers).
The initialization is plotted as gray lines and the limits for the estimation of B as gray
dashed-lines. (c) Notes detected by the algorithm (red) and notes actually present in the
piece (black).
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Chapter 4

A parametric model for the
inharmonicity and tuning along the

whole compass of the piano

This chapter introduces a model for the variations of (B,F0) parameters along the whole
compass of pianos based on instrumental design and tuning rules. Portions of this work
have been published in [Rigaud et al., 2011, 2013a].

Most of the tuning rules related to a musical temperament are based on the control
of beatings produced when playing different intervals, these assuming that the tones are
harmonic [Rasch and Heetvelt, 1985]. In the case of the piano, these beatings cannot
be exactly complied because of the partial frequency deviations inherent to the inhar-
monicity. The amount of inharmonicity being dependent on the physical characteristics
of the strings, it is different for each note and type of piano. Thus, the fine tuning of
pianos is usually done aurally and requires the expertise of a professionally-skilled tuner
unlike many string instruments such as guitar or cello, for which simple devices (so-called
“tuners”) can be used. According to the model of piano and the choices/abilities of the
tuner, the resulting tuning is unique, but within some physically-based constraints. From
a musical acoustics perspective its modeling is hence an interesting challenge that has been
tackled by different viewpoints. A simulation of aural piano tuning has been proposed in
[Lattard, 1993] to help pianists in tuning their own pianos, replicating the tuner’s work by
iteratively tuning different intervals. The method is based on a mathematical computation
of the beat rates, and requires the frequencies of the first 5 partials of each note. More
recently, an approach using psychoacoustic principles has been introduced in [Hinrichsen,
2012]. This algorithm adjusts the 88 notes at the same time, by an optimization procedure
on modified spectra of the notes according to psycho-acoustic laws and tuning updates.

Our approach is different, as it jointly models tuning and inharmonicity laws for the
whole compass from a reduced set of parameters (6 mid-level parameters instead of 88×
2 parameters corresponding to (B,F0) along the whole compass). Although such an
interpolated model can only capture the main trends in the inharmonicity and tuning of
a given piano, it should be reminded that one of the objectives of piano manufacturing
and tuning is precisely to have a timbre that is as homogeneous as possible, smoothing
out as much as possible the discontinuities of physical origins: bass break (transition
between treble and bass bridge), change in the number of strings per note, change of
string diameter and winding. Therefore, it is not only realistic, but also relevant, to try
to globally parametrize the inharmonicity and tuning with only a few parameters, at least
as a first-order approximation.

The obtained synthetic description of a particular instrument, in terms of its tuning
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/ inharmonicity pattern, can be useful to assess its state and also provides clues on some
of the tuner’s choices. In the field of musical acoustics, the use of such a model could
be helpful for instance for the tuning of physically-based piano synthesizers, where we
are otherwise faced with the problem of having to adjust a large number of parameters,
all of them being inter-dependent. Here a higher-level control can be obtained, with
a few physically meaningful parameters. In the fields of audio signal processing and
Music Information Retrieval, including a priori knowledge is often done when trying to
enhance the performance of the algorithms (cf. Section 2.3) and such models could be
used to provide a good initialization of (B,F0) parameters (as done in Chapters 3 and
5) and to constrain their estimation. Also, the models may be used for interpolating the
inharmonicity and tuning along the whole compass of a given piano from the estimation
of (B,F0) of a few notes, for instance obtained by the analysis of a piece of music, as done
in Section 3.2.3.2.

4.1 Aural tuning principles

Aural tuning is based on the perception and the control of beatings between partials
of two different tones simultaneously played [Bremmer, 2007b]. It always begins by the
tuning of a reference note, in most cases the A4 (69 in MIDI index) at 440 Hz (sometimes
442 Hz). To do so, the tuner adjusts the tension of the strings to cancel the beatings
produced by the difference of frequency between the tuning fork and the first partial of
the note. Thus, f1(m = 69) = 440 Hz. Even if there are different methods, skilled tuners
usually begin by the scale tuning sequence: the F3-F4 octave is set by approximate Equal
Temperament [Capleton, 2007; Bremmer, 2007b]. The rest of the keyboard is tuned by
adjusting beatings between the partials of two different notes, typically octave-related.

Because of the inharmonicity, simply adjusting the first partial of each note on Equal
Temperament (ET) would produce unwanted beatings, in particular for octave intervals
(cf. Figure 4.1(a)). When tuning an octave interval by canceling the beatings produced
by the second partial of a note indexed by m and the first partial of a note indexed by
m + 12, the resulting frequency ratio f1(m+12)

f1(m) is higher than 2 because f2(m) > 2f1(m)

(cf. Figure 4.1(b)). This phenomenon is called octave stretching. Depending on where
the notes are in the range of the compass, the amount of stretching can be different. This
fact is linked to the underlying choice of the octave type (related to perceptual effects and
tuner’s personal choices) during the tuning [Bremmer, 2007a]. For instance, in a 4:2 type
octave, the 4th partial of the reference note is matched to the 2nd partial of its octave
(cf. Figure 4.1(c)). Depending on the position in the compass, the piano can be tuned
according to different octave types: 2:1, 4:2, 6:3, 8:4 ... or a trade-off between two (cf.
Figure 4.1(d)). This means that the tuner may not focus only on cancelling beatings
between a pair of partials, but that he controls an average beating generated by a few
partials of the two notes.

In order to highlight this stretching, the tuning along the compass (from A0 to C8, or
for m ∈ [21, 108] in MIDI index) is usually depicted as the deviation, in cents, of the first
partial frequency of each note from ET:

d(m) = 1200 · log2
f1(m)

F0,ET(m)
, (4.1)

where F0,ET(m) is the theoretical fundamental frequency given by the ET (cf. Appendix A).
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Figure 4.1: Influence of the inharmonicity and the octave type choice on the tuning of the
octave A4-A5. Note: the inharmonicity coefficients have been significantly increased from
typical values in order to highlight the deviations of the first partial frequencies from the
harmonic reference.
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Figure 4.2: Typical measures of deviation from ET along the compass of pianos and
Railsback curve. Brian Tung, from data in [Martin and Ward, 1961].

Usually [Fletcher and Rossing, 1998; Martin and Ward, 1961] the stretching increases grad-
ually from the mid-range (deviation about ± 5 cents) to the extreme parts of the keyboard,
producing deviations down to −30 cents in the low bass and up to +30 cents in the high
treble. The goal of the proposed model is to explain the main variations of d(m) along the
compass (also known as the Railsback curve, cf. Figure 4.2) by taking into account the
piano string set design characteristics (model of B(m) along the compass) and the tuner’s
choices (model related to the octave type).

4.2 Parametric model of inharmonicity and tuning

The proposed model which simulates aural tuning on the whole compass is based on
octave interval tunings. Its successive steps are a simplified version of those actually
performed by a tuner, but the most important global considerations (stretching inherent
to the inharmonicity and the octave type choice) are taken into account. The model starts
by tuning all the octave intervals relatively to a reference note (for example the A4 at 440
Hz). From these notes, the tuning is then interpolated on the whole compass. Finally, the
possibility of a global deviation is added, in order to allow for different tuning frequencies
for the reference note.

4.2.1 Octave interval tuning

When tuning an “upper" octave interval (for instance A5 from A4), the cancellation of
the beatings produced by the 2ρ-th partial (ρ ∈ N

∗) of a reference note, indexed by m
(A4), and the ρ-th partial of its octave, indexed by m + 12 (A5), can be done by tuning
F0(m+ 12) such as:

F0(m+ 12) = 2 F0(m)

√
1 +B(m) · 4ρ2(m)

1 +B(m+ 12) · ρ2(m)
. (4.2)

This equation clearly shows the influence of the note-dependent inharmonicity coefficient
(B) and of the octave type (related to ρ) in the stretching of the octave. In the case of
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“lower" octave tuning (for instance A3 from A4), the same relation can be inverted and
applied by considering m+12 (A4) as the reference note and m (A3) as the note to tune.
The next sections describe parametric models for B and ρ along the whole compass.

4.2.2 Whole compass model for the inharmonicity

4.2.2.1 String set design influence

In order to keep an homogeneous timbre along the compass, the strings are designed in such
a way that discontinuities due to physical parameters variations are smoothed [Conklin,
Jr., 1996b; Engelbrecht et al., 1999; Stulov, 2008]. Three main design considerations might
produce such discontinuities in B along the keyboard: the bass break between the bass
and treble bridges (jump in L, the speaking length of the strings, cf. Figure 4.3), the
transitions between adjacent keys having a different number of strings (jump in T , the
tension of each string [Engelbrecht et al., 1999; Fletcher and Rossing, 1998]), and the
transition between plain strings to wrapped strings (jump in d, the diameter of the piano
wire [Engelbrecht et al., 1999]).

On the treble bridge, from C8 note downwards, B is decreasing because of the increase
of L. Down to middle C (C4 note, m = 60), the values of B are roughly the same for all
the pianos and B follows a straight line in logarithmic scale [Young, 1952]. This result
is mainly due to the fact that string design in this range is standardized, since it is not
constrained by the limitation of the piano size [Conklin, Jr., 1996b].

In the low pitch range, the strings use a different bridge (the bass bridge) to keep
a reasonable size of the instrument. Then, the linear mass of the strings is increased in
order to adjust the value of F0 according to Equation (2.21). Instead of increasing only the
diameter d, which increases B (cf. Equation (2.24)), the strings are wound with a copper
string wire, which increases the linear mass. Thus, on the bass bridge, B is increasing from
sharpest notes downwards. Note that the number of keys associated to the bass bridge
and the design of their strings are specific to each piano.

Figure 4.3: Grand piano string and bridge design. From [Conklin, Jr., 1996b].

77



4.2.2.2 Parametric model

According to the string design considerations, B could be modeled by two distinct func-
tions corresponding to the two bridges, and could present discontinuities at the bass break
or at the changes single-doublets and doublets-triplets of strings. The difficulty when
modeling B on the whole compass is to know the position of these possible discontinuities,
because they are specific to each piano model. Therefore, we propose a “continuous” ad-
ditive model on the whole compass, discretized for m ∈ [21, 108]. We denote it by Bξ(m),
ξ being the set of modeling parameters.

Usually, the evolution of B along the keyboard is depicted in logarithmic scale and
presents two linear asymptotes. We denote by bT (m) (resp. bB(m)) the treble bridge
(resp. the bass bridge) asymptote of logBξ(m). Each asymptote is parametrized by its
slope and its Y-intercept:

{
bT (m) = sT ·m+ yT ,

bB(m) = sB ·m+ yB.
(4.3)

According to Young et al. [Young, 1952], bT (m) is similar for all the pianos so sT and
yT are fixed parameters. Then, the set of free (piano dependent) parameters reduces to
ξ = {sB, yB}. Bξ(m) is set as the sum of the contributions of these two curves (4.3) in
the linear scale:

Bξ(m) = ebB(m) + ebT (m) (4.4)

It should be emphasized that this additivity does not arise from physical considerations,
but it is the simplest model that smoothes discontinuities between the bridges. Experi-
mental data will show that it actually describes well the variations of B in the transition
region around the two bridges.

The model is presented on Figure 4.4(a) for three different typical values of the set of
parameters: ξ1, ξ2 and ξ3, corresponding to low, medium and highly inharmonic pianos,
respectively. The asymptotes corresponding to the bass and treble bridges are also drawn
for Bξ2(m).

4.2.3 Whole compass model for the octave type parameter

The octave tuning relation, given in Equation (4.2), considers the cancellation of the

beatings produced by a single pair of partials. In practice, the deviation F0(m+12)
2F0(m) could

be a weighted sum of the contribution of two pairs of partials, because the amount of
stretching may result from a compromise between two octave types [Bremmer, 2007a].
An alternative model to take into account this weighting is to allow non-integer values for
ρ ∈ [1,+∞[. For example, if the octave tuning is a compromise between a 2:1 and 4:2 type
octaves, ρ will be in the interval [1, 2]. This model loses the physical meaning because ρ
is not anymore related to a partial rank ; it will however be shown in Section 4.3 that it
allows the inversion of Equation (4.2), in order to estimate ρ from the data.

We choose arbitrarily to model the evolution of ρ along the compass as follows:

ρφ(m) =
κ

2
·
(
1− erf

(
m−m0

α

))
+ 1, (4.5)

with erf the error function, and φ = {κ,m0, α} the set of parameters. Note that ρφ is
indexed by the note m, and not by the note m + 12 (cf. Equation (4.2)). It is then

78



CHAPTER 4. A PARAMETRIC MODEL FOR THE INHARMONICITY AND TUNING ALONG THE WHOLE COMPASS

defined for m ∈ [21, 96]. κ is related to the value of the asymptote in the low bass range.
m0 is a parameter of translation along m and α rules the slope of the decrease. This
model expresses the fact that the amount of stretching inherent to the octave type choice
is decreasing from the low bass to the high treble range.

It may be justified by the fact that the perception of the pitch of complex tones is
not only based on the first partial of the notes, but on a set of partials contained in a
“dominant region” of the human hearing [Moore et al., 1984; Ritsma, 1967; Plomp, 1967].
For bass tones (with fundamental frequencies around 100 to 400 Hz, i.e. in the range G2-
G4, m ∈ [43, 67]), this dominant region covers the third to fifth partials [Ritsma, 1967].
While going up to the treble part of the compass, the dominant region tends to be localized
on the partials with a lower rank. For tones having a first partial frequency above 1400 Hz
(i.e. for a higher note than F6, m = 89) the perception of the pitch is mainly linked to the
first partial [Plomp, 1967]. Further research on the pitch perception of inharmonic tones
consistently shown that the pitch perception is based on one dominant partial whose rank
is decreasing from the bass (6 for A1) to the treble range (2 for C♯6) [Järveläinen et al.,
2002]. Moreover, the perceived pitch frequency has been found equal to the frequency of
the dominant partial divided by its rank (such as the sixth partial frequency divided by
six for the A1). In accordance with those studies, in the presented octave type model the
high treble asymptote is set to 1. It corresponds to the minimal octave type (2:1), and
means that the tuner focuses on the first partial of the highest note. In the low bass range,
the asymptote is set by the value of the parameter κ+ 1.

The model is represented on Figure 4.4(b) for three different values of the set of
parameters: φ1, φ2 and φ3, respectively corresponding to a low, mid and high octave type
choice in the low bass range.

4.2.4 Interpolation of the tuning along the whole compass

From the estimation of the sets of parameters, ξ related to the design of the strings, and
φ related to the choices of the tuner, it is possible to tune all the octaves of a reference
note. If A4 is tuned such that f1(m = 69) = 440 Hz, all the A notes of the keyboard
can be iteratively tuned by using Equation (4.2). To complete the tuning on the whole
compass, a Lagrange polynomial interpolation is performed on the deviation from ET of
the tuned notes of the model (computed by using Equation (4.1)). The interest of this
method is that the interpolated curve is constrained to coincide with the initial data. The
interpolated model of deviation from ET is denoted by dξ,φ(m).

4.2.5 Global deviation

Finally, in order to take into account the fact that the reference note is not necessarily
a A4 at 440 Hz (other tuning forks exist, for instance A4 at 442 Hz or C5 at 523.3 Hz)
we add in the model the possibility of a global “detuning”. In the representation of the
deviation from ET in cents, it corresponds to a vertical translation of the curve. Then,
the deviation from ET of the model is set to dξ,φ(m)+ dg, where dg is an extra parameter
of the model, corresponding to the global deviation.

The whole compass tuning model is depicted on Figure 4.5 for different values of the
sets of parameters ξ and φ (corresponding to those used in Figure 4.4), and for dg = 0.
The tuning of the A notes from A4 at 440 Hz is indicated with black dots on the middle
curves. Sub-figure 4.5(a) corresponds to the influence on the tuning of Bξ (for ξ1, ξ2 and
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Figure 4.5: Model for the deviation of tuning from ET along the compass. (a) Influence
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values for ξ and φ correspond to those used to generate the curves of Figure 4.4.
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ξ3), for φ2 fixed. Since the string design is standardized in the range C4-C8, the tuning
changes significantly only in the bass range. Sub-figure 4.5(b) represents the influence on
the tuning of ρφ (for φ1, φ2 and φ3), for ξ2 fixed. Its influence is visible on the whole
compass but it is mainly important in the bass range, where it can produce a deviation
up to -20 cents.

4.3 Parameter estimation

The estimation of the above presented models considers as input (B(m), F0(m)) values
that have been previously estimated, for instance by using the algorithms proposed in
Chapter 3.

Bξ estimation: We first estimate the fixed parameters {sT , yT }, corresponding to the
string set design on the treble bridge and being almost equal for all the models of pianos,
by using B(m) estimates of 6 different pianos (the databases are presented in Section 4.4)
in the range C4 (m=60) - C8 (m=108). These are obtained by an L1 regression (in order
to reduce the influence of potential outliers), i.e. by minimizing the absolute deviation,
between the model and the average of the estimated inharmonicity curves over the 6
different pianos. We find sT ≃ 9.26 · 10−2 , yT ≃ −13.64. These results are in accordance
with estimates based on physical considerations [Young, 1952]: sT [Yo52] ≃ 9.44 · 10−2,
yT [Yo52] ≃ −13.68.

Each piano is then studied independently to estimate the particular parameters ξ =
{sB, yB} on a set of notes M . ξ is estimated minimizing the absolute deviation between
logB(m) and logBξ(m):

ξ̂ = argmin
ξ

∑

m∈M
| logB(m)− logBξ(m)|. (4.6)

ρφ estimation: For each piano, the data ρ(m) is estimated for m ∈ [21, 96] from
(B(m), F0(m)) values by inverting Equation (4.2):

ρ(m) =

√
4F0(m)2 − F0(m+ 12)2

F0(m+ 12)2B(m+ 12)− 16F0(m)2B(m)
. (4.7)

Then, the set of parameters φ is estimated by minimizing the least absolute deviation
distance between ρφ(m) and ρ(m) on a set M of notes:

φ̂ = argmin
φ

∑

m∈M
|ρ(m)− ρφ(m)|. (4.8)

dg estimation: Once the ξ and φ sets of parameter have been estimated, the octaves
of the reference note are tuned according to Equation (4.2). Then, the deviation from
ET of the model dξ,φ is obtained on the whole compass after the Lagrange interpolation
stage. Finally, dg is estimated by minimizing the absolute deviation, on the reference
octave F3-F4 (m ∈ [53, 65]) between d(m), the deviation from ET estimated on the data
(see Eq. (4.1)), and dξ,φ(m) + dg:

d̂g = argmin
dg

65∑

m=53

∣∣d(m)− (dξ,φ(m) + dg)
∣∣. (4.9)

81



4.4 Applications

The results presented in this section are obtained from 6 different pianos (the Iowa and
the 3 RWC grand pianos, and the MAPS ENSTDkCl upright piano and SptkBGCl grand
piano synthesizer) of the database presented in Section 3.1.3.1, page 48. The estimates
of (B,F0) are obtained by using InhR-NMF algorithm on isolated note recordings in a
supervised way (cf. Section 3.1).

4.4.1 Modeling the tuning of well-tuned pianos

The results of the estimation of the whole compass tuning model for four different pianos
are presented on Figures 4.6 (RWC3), 4.7 (RWC2), 4.8 (Iowa) and 4.9 (MAPS SptkBGCl).
Sub-figures (a), (b) and (c), correspond to the inharmonicity coefficient B, the octave type
parameter ρ and the deviation from ET curves along the whole compass, respectively. The
data corresponding to the estimation of (B,F0) from isolated note recordings is depicted
as ‘+’ markers, and the model as black lines. The values of the parameters for each piano
are given in Table 4.1.

B along the compass (sub-figures (a)): The estimation of the parameters has been
performed from a limited set of 4 notes (black dot markers), taken in the bass range and
equally spaced by fifth intervals. As the string set design on each bridge is quite regular,
a few notes can be used to correctly estimate the model. In the case where an important
discontinuity is present in the variations of B(m) (for instance between C2 (m = 37) and
D2 (m = 38) notes, on Figure 4.7(a)) the 2-bridges additive model produces a smooth
curve. It is worth noting from RWC2 grand piano design characteristics that the slight
jump between D♯1 (m = 27) and E1 (m = 28) might be explained by the single string
to doublet of strings transition, and the important jump between C2 (m = 37) and D2
(m = 38) by the bridge change, jointly with the transition from doublet of strings to
triplet.

ρ along the compass (sub-figures (b)): The curves of ρ(m) can present a significant
dispersion around the mean model ρφ(m), but the global variations are well reproduced.
In the medium range, the estimated octave types are a trade-off between 6:3 and 4:2,
which is common in piano tuning [Bremmer, 2007a]. The variations, more important in
the bass range, could be explained by the fact that the model of the partial frequencies
(cf. Equation (2.23)) does not take into account the frequency shifts caused by the bridge
coupling, mainly appearing in the low frequency domain. Moreover, the proposed tuning
model is a simplification of a real tuning procedure, it is based on octave interval tuning,
while an expert tuner would jointly control different intervals along the keyboard and can
do local readjustments after a global tuning. Note that some values of ρ(m) can be missing
when the quantity under the square root of Equation (4.7) is negative. This happens if
the corresponding octave interval is compressed instead of being stretched.

Deviation from ET along the compass (sub-figures (c)): The curves demonstrate
that the model reproduces the main variations of the tuning in a satisfactory manner.
This confirms that, besides the well-known influence of the inharmonicity on the tuning,
perceptual effects (taken into account through the octave type consideration) can take part
in the stretching, mainly in the bass range. Note that the tuning of A notes is marked
with black dot markers.
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Figure 4.6: RWC3 grand piano. (a) Inharmonicity coefficient B, (b) octave type parameter
ρ, (c) deviation from ET along the whole compass. The data are depicted as gray ‘+’
markers and the model as black lines.
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Figure 4.7: RWC2 grand piano. (a) Inharmonicity coefficient B, (b) octave type parameter
ρ, (c) deviation from ET along the whole compass. The data are depicted as gray ‘+’
markers and the model as black lines.
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Figure 4.8: Iowa grand piano. (a) Inharmonicity coefficient B, (b) octave type parameter
ρ, (c) deviation from ET along the whole compass. The data are depicted as gray ‘+’
markers and the model as black lines.
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Figure 4.9: MAPS SptkBGCl. (a) Inharmonicity coefficient B, (b) octave type parameter
ρ, (c) deviation from ET along the whole compass. The data are depicted as gray ‘+’
markers and the model as black lines.
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RWC3 RWC2 Iowa SptkBGCl

sB -0.1239 -0.0354 -0.0773 -0.1340
yB -6.486 -9.319 -6.497 -6.265

κ 3.470 4.887 13.26 6.296
m0 58.03 50.22 -13.57 37.76
α 15.93 36.50 80.32 27.40

dg 6.067 4.491 5.354 6.907

Table 4.1: Values of the parameters for the 4 well-tuned pianos.

4.4.2 Tuning pianos

Because the model of octave type choice ρφ(m) is defined for well-tuned pianos (the stretch-
ing of the octaves is implicitly assumed to be higher than 2), it cannot be used to study
the tuning of strongly out-of-tune pianos. In this case, we generate tuning curves deduced
from a mean model of octave type choice. The model is obtained by averaging the curves
ρ(m) over three pianos (RWC2, RWC3 and Iowa grand pianos), that were assumed to be
well-tuned, by looking at the shape of their deviation from ET curves. From this averaged
data, a mean model ρ̄φ(m) is estimated. In order to give a range of fundamental frequencies
in which the pianos could be reasonably re-tuned, we arbitrarily define a high (respectively
low) octave type choice as ρ̄φ,H(m) = ρ̄φ(m) + 1 (resp. ρ̄φ,L(m) = min(ρ̄φ(m) − 1, 1)) .
These curves are shown on Figure 4.10.
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Figure 4.10: Mean octave type choice for tuning application. ‘+’ gray markers correspond
to an average of ρ(m) over 3 different pianos. The black line corresponds to the estimated
model. Circle markers (resp. in dashed line) represent the high (resp. low) octave type
choice model.

Tuning curves are then computed from the estimation of ξ and ρ̄φ(m). The global
deviation parameter dg is set to 0. The values of the parameters for each piano are given
in Table 4.2. The results are presented on Figure 4.11 and 4.12, respectively for RWC1
grand piano and MAPS ENSTDkCl upright piano. The current tuning is depicted as
‘+’ gray markers and clearly shows that the piano is not well-tuned, mainly in the bass
range where the tuning is “compressed”. The space between the tuning curves obtained
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from ρ̄φ,H(m) and ρ̄φ,L(m) corresponds to a range in which we assume the piano could be
well-tuned. For a quantitative interpretation, it will be interesting to compare our curves
with those obtained after a re-tuning done by a professional tuner.

RWC1 ENSTDkCl

sB -0.0808 -0.0864
yB -6.823 -6.336

κ̄ 3.715
m̄0 56.59
ᾱ 25.15

dg 0 (fixed)

Table 4.2: Values of the parameters for the 2 detuned pianos.
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Figure 4.11: RWC1 grand piano. (a) Inharmonicity curves along the compass. (b) Actual
tuning and proposed tuning. ‘+’ gray markers correspond to the data. The model corre-
sponding to the octave type choice ρ̄φ(m) (resp. ρ̄φ,L(m), ρ̄φ,H(m)) is depicted as black
line (resp. black dashed line, black dashed line with circle markers).
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Figure 4.12: MAPS ENSTDkCl upright piano. (a) Inharmonicity curves along the com-
pass. (b) Actual tuning and proposed tuning. ‘+’ gray markers correspond to the data.
The model corresponding to the octave type choice ρ̄φ(m) (resp. ρ̄φ,L(m), ρ̄φ,H(m)) is
depicted as black line (resp. black dashed line, black dashed line with circle markers).

4.4.3 Initializing algorithms

As show in Chapter 3, a good initialization of (B,F0) parameters in analysis algorithms
is a matter of importance in order to avoid the convergence of the algorithms toward
local optima. The curves for the initialization of these parameters are here obtained by
considering a mean model, obtained from the 6 pianos analyzed in this chapter. These
are presented on Figure 4.13. Subplot 4.13(a) depicts in black line the initialization curve
Bini, estimated from the data averaged over the 6 pianos (‘+’ markers). The low and
high limit curves (respectively denoted by BL

lim and BH
lim) used in Section 3.2.2.3 for the

PLS algorithm are obtained by means of a manual tuning of ξ so that all estimates are
contained in the delimited area (values given in Table 4.3). Then, the initialization curve
of F0 is computed from Bini and ρ̄φ, the mean octave type obtained in the previous section.

Bini BL
lim BH

lim

sB -0.0889 -0.047 -0.083
yB -7.0 -9.5 -6.0

Table 4.3: Values of the parameters for the initialization and limit curves of B.
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Figure 4.13: Mean model for the initialization of (B,F0) in piano analysis algorithms. (a)
‘+’ markers correspond to the values of B for the 6 different pianos. In black line, Bini,
the model estimated from the estimates averaged over the 6 pianos. In dashed lines, the
limit curves for B values. (b) Mean model for F0 computed from Bini and ρ̄φ.

4.4.4 Learning the tuning on the whole compass from the analysis of a

piece of music

Finally, the whole compass model is applied to the interpolation of (B,F0) estimates ob-
tained on a restricted set of notes from the analysis of a piece of music. The results are
depicted in Figure 4.14 for the example presented in Section 3.2.3.2. The input data is
here depicted as ‘+’ red markers and the interpolated curves are plotted as black lines.
The gray curve, displayed for comparison purposes, corresponds to the estimates along
the whole compass obtained by the PLS algorithm from isolated notes processed in a
supervised way (the algorithm knows which notes are being played). When comparing the
interpolated model and the reference curve, one can see that the main trends are fairly
well reproduced. Averaged below note C♯7 (97) (i.e. for the range where the reference
data is reliable, as discussed in Section 3.2.3.1), a mean relative error of 9.48 % is obtained
for B and a mean deviation of 2.20 cents for F0.

It is worth noting that a few requirements are needed for this interpolation application.
First, since the variations of B between different pianos are mainly present for the notes
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associated to the bass bridge, the interpolation requires estimates in the bass range. One
can see on Figure 4.14(a), that 4 notes were present below note E2 (40) in the input data.
Here, one can assume that the interpolation may have been improved with a few more
estimates below note E1 (28). Second, since the tuning model, given in Equation (4.2), is
based on the tuning of octave intervals, the input data has to contain, as much as possible,
(B,F0) estimates for octave-related notes. In the presented example, 6 octave intervals
were present. Thus, in order to increase the number of input data, that should lead to a
higher precision of the interpolation, one could consider processing several pieces of music
played by the same instrument.
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Figure 4.14: (B,F0) interpolation along the whole compass from a few estimates obtained
on a piece of music with PLS algorithm (cf. Section 3.2.3.2). (a) B in log. scale and
(b) F0 as dev. from ET in cents. The whole compass models (black lines, denoted as
“WC interpolation”) are estimated from the data obtained by the unsupervised analysis
of a piece of music (red markers). These are compared with the reference curves (gray
markers) obtained from the supervised analysis on isolated note recordings.
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Chapter 5

Application to the transcription of
polyphonic piano music

This chapter presents the evaluation on a transcription task of the two inharmonic NMF-
based models introduced in Chapter 3. In order to quantify the benefits or losses that may
result from the inclusion of the inharmonicity, the performances are compared with those
obtained by a simpler harmonic model. Influence of the model design, the initialization
and the optimization are then investigated. Portions of this work have been published in
[Rigaud et al., 2013c].

5.1 Automatic polyphonic music transcription

This section introduces briefly the music transcription task, and defines the metrics com-
monly used when assessing the performance of the methods. For a complete description
and an exhaustive state of the art of this domain, the interested reader may refer to
[Klapuri and Davy, 2006; Emiya, 2008; Bertin, 2009; Benetos, 2012].

5.1.1 The task

Automatic music transcription is the process of recovering a symbolic representation of a
musical piece, such as for instance a score, a chord grid or a guitar tablature, from the
unsupervised analysis of a performance recording. According to the degree of information
which is targeted, the problem is usually decomposed into several sub-tasks, each focusing
on the extraction of a specific feature related to the musical structure. These can be for
instance the recovery of the played notes (their pitch, loudness, onset time and duration),
but also higher-level information, such as the instruments, the rhythmic structure (e.g.
tempo and time signature), the tonality, or the detection of musical sequence repetitions.

Automatic music transcription, and more generally tasks related to Music Information
Retrieval, have become a very active field of research this last decade due to their wide
range of applications. Beyond straightforward uses as supports for musical practice or
musicological analysis, applications include automatic music data indexing for classifica-
tion/search purposes. Also, when processed in real-time during a musical performance,
the extracted information can be used as control inputs in human-machine interactive
systems (e.g. score following or rhythm tracking for automatic accompaniment).
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In the case of the analysis of a Western tonal piece of music, the most complete
transcription task corresponds to the retrieval of the score. However as mentioned above,
this complex representation requires the processing of a large number of sub-tasks. Thus,
in this thesis as in most works related to music transcription using NMF-based models,
we restrict the transcription problem to the detection of the notes (pitch) that are played,
jointly with their onset and duration. Thus the obtained representation is usually displayed
in the form of a piano roll (i.e. binary activation of the notes according to the time axis,
as shown in Figure 5.1).

As seen in Chapter 2, NMF-based methods seem particularly relevant for the task of
audio to piano roll transcription as the activation matrix H naturally presents a structure
similar to the desired representation. However, a binary decision (note active/inactive)
along the lines of H is required after the NMF optimization. Such post-processing may
include additional temporal modeling of notes, based for instance on Hidden Markov
Models [Poliner and Ellis, 2007; Emiya et al., 2010a], or heuristics based on thresholding
and gathering of adjacent activated frames [Vincent et al., 2010; Dessein et al., 2010].
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Figure 5.1: Piano roll of the first bar of the score given in Figure 2.1.

5.1.2 Performance evaluation

The performance evaluation of transcription algorithms requires a ground truth, for in-
stance in the form of a synchronized MIDI file. Such reference may be obtained after a
manual annotation of the data (as for the RWC database), or by synthesizing the mu-
sic signals directly from the MIDI reference file. This latter case presents the advantage
of ensuring the near-perfect alignment between the audio and the ground truth and of
avoiding errors inherent in the manual annotation process. This is the case for the MAPS
database used for our experiments, and for which the generation of the audio is using
either piano synthesizers based on high quality sampling, or a MIDI controlled acoustic
piano (cf. details in Section 3.1.3.1).

Thus, when evaluating the performance, each note detected by the algorithm can be
classified into two classes. If the note is actually present in the ground truth, it is labeled
as True Positive (TP). If not, it corresponds to a false detection and it is labeled as False
Positive (FP). Finally, the notes that are missing (i.e. not detected by the algorithm,
although present in the ground truth) are labeled as False Negative (FN). These classes,
common in classification task evaluations, are summarized in Table 5.1. Note that a fourth
category True Negative (TN) exists but it is not used in a transcription context since it
is not relevant. Indeed, it corresponds to a non-detection when the note is not present in
the ground truth.
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Such classification of the results may be performed according to two evaluation con-
figurations. In a frame-wise evaluation, the notes detected by the algorithm are compared
with the reference in each time-frame, independently (as for instance performed in Section
3.2.3.2). However, this type of evaluation is more adapted to multi-pitch algorithms that
do not target the retrieval of the note onset and duration. Thus, a note-wise evaluation is
often preferred for transcription tasks. In that case, a note is considered as TP if its onset
is contained in a time interval centered in the ground truth onset (usually +/− 50 ms).

Ground truth
(presence of note)

True False

Algorithm Positive TP FP
(detection of note) Negative FN TN

Table 5.1: Classification of the results provided by a transcription algorithm when com-
paring to the ground truth.

Finally in order to evaluate the performance for a whole piece of music, commonly used
metrics are the precision P and the recall R. These are respectively defined as [Rijsbergen,
1979]:

P =
#{TP}

#{TP}+#{FP} , (5.1)

R =
#{TP}

#{TP}+#{FN} , (5.2)

where #{} denotes the cardinality of each set of class obtained over the considered piece
of music. As defined by Equation (5.1) the precision evaluates the ability of the algorithm
to provide correct detections, no matter the number of forgotten notes (FN). The recall,
defined in Equation (5.2), acts as a complementary metric since it gauges the ability of
the model to detect all the notes actually present, no matter the number of false notes
added (FP). Thus, a combination of both metrics is often used in order to assess the global
performance, as for instance the F-measure F which corresponds to the harmonic mean
between P and R:

F = 2 · P · RP +R . (5.3)

5.1.3 Issues arising from the inharmonicity inclusion in NMF-based

transcription model

As mentioned in Section 2.3, in the case of piano music transcription, taking into account
the inharmonicity of the instrument tones in an NMF-based transcription model has been
proposed [Vincent et al., 2008], but surprisingly the results were found slightly below
those obtained by a simpler harmonic model. These results seem in contradiction with
a naive intuition that inharmonicity should help lifting typical ambiguities such as with
harmonically-related notes (octave or fifth relations, for instance). The goal of the study
presented in this chapter is to have a better understanding about this issue. Although
we found in Chapter 3 that the two inharmonic NMF-based models (namely Inh-NMF
and InhR-NMF ) were performing well when applied to the supervised (i.e. the played
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notes were known) estimation of (B,F0), it is not straightforward that such models may
provide good results in the context of unsupervised analysis, i.e. when the matrix H has
to be estimated jointly with the inharmonicity relation parameters. Since it is difficult
to gauge intrinsically the quality of NMF decompositions, these are here evaluated on a
transcription task, on a large database of piano recordings from MAPS where we have a
ground-truth transcription at hand. Performances of both inharmonic models are eval-
uated and compared with a similar parametric harmonic model. Influence of the model
design (harmonicity vs. inharmonicity and number of partials considered), of the initial-
ization (naive initialization vs. mean model of inharmonicity and tuning along the whole
compass) and of the optimization process (number of partials fixed at the initialization
vs. iterative inclusion) are then investigated. The parameter of the β-divergence used to
define the reconstruction cost-function is here fixed to β = 1 (KL divergence).

It should be emphasized that the proposed algorithms do not target to be compet-
itive with state-of-the-art fully dedicated piano transcription algorithms, since the only
information that is taken into account is the inharmonicity of piano tones (for instance, no
model of smooth spectral envelope or temporal continuity of the activations is considered).
Here, the use of a simple threshold-based post-processing of H should allow one to better
highlight the differences in the core model.

5.2 Does inharmonicity improve an NMF-based piano tran-

scription model?

5.2.1 Experimental setup

5.2.1.1 Database

The dataset consists of 45 pieces from MAPS database (cf. details of the pianos in Section
3.1.3.1), randomly chosen (5 out of 30 for each of the 9 pianos) and re-sampled to 22050 Hz.
For each piece, 30 second excerpts are taken, starting from t0 = 5 s. The mean polyphony
level by time-frame is about 3.23. Then, the magnitude spectrograms are computed with
a Hann window of length τ = 90 ms, a hop-size of τ/8 and a 213-point Fast Fourier
Transform.

The number of spectra in the dictionary is fixed to R = 64, and initialized for notes
having MIDI note number in [33, 96] (A1 to C7). This choice corresponds to a reduction of
one octave in the extreme bass (where the spectral resolution is not sufficient to perform the
analysis) and one octave in the high treble range (where, as highlighted in Section 3.1.3.2,
the non-linear coupling between triplets of strings at the soundboard produces complex
spectra with multiple partials that cannot be fully explained by a simple harmonic or
inharmonic model). However, these notes in the extreme parts of the keyboard are rarely
played. Over the complete MAPS dataset (352710 notes for 159 different pieces), they
only account for 1.66% of the notes (cf. distribution of notes for the whole MAPS database
on Figure 5.2).

5.2.1.2 Harmonicity vs. Inharmonicity

In order to quantify the benefits that may results from the inharmonicity inclusion in
NMF-based model, the transcription performances are compared with a simpler harmonic
model (thereafter denoted by Ha-NMF ) based on a similar parametric additive model of
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Figure 5.2: Normalized histogram of note occurrences for the complete MAPS database.
Black bars corresponds to the notes that are not considered in the analysis.

spectrum (cf. Equation (3.1), page 38).

• Strictly harmonic / Ha-NMF :
We enforce harmonicity of the spectra of the dictionary by fixing

fnr = nF0r, n ∈ N
∗, (5.4)

directly in the parametric model (Equation (3.1)). Then, the set of parameters for a
single atom corresponds to θHa

r = {anr, F0r | n ∈ [1, Nr]}. Similarly to Inh-NMF, the
cost-function is defined as:

CHa(θHa, H) =
∑

k∈K

T∑

t=1

dβ

(
Vkt |

R∑

r=1

W
θHa
r

kr ·Hrt

)
, (5.5)

where, as explained in Section 3.1.1.1, the set of frequency-bins for which the modeled
spectrogram is defined is denoted by K = {k | fk ∈ fnr + [−2/τ, 2/τ ], ∀n ∈ [1, Nr], ∀r ∈
[1, R]}.

Then, the following update is obtained for F0r parameters when deriving a similar
decomposition of the reconstruction cost-function as for Inh-NMF :

F0r
Ha← F0r ·

QHa
0 (F0r)

PHa
0 (F0r)

, (5.6)

with

PHa
0 (F0r) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−n.fk.g′τ (fk − nF0r)

fk − nF0r
.Hrt

)
.V̂ β−1

kt

+

(
Nr∑

n=1

anr
−n2.F0r.g

′
τ (fk − nF0r)

fk − nF0r
.Hrt

)
.V̂ β−2

kt .Vkt

]
, (5.7)

QHa
0 (F0r) =

∑

k∈Kr

T∑

t=1

[(
Nr∑

n=1

anr
−n.fk.g′τ (fk − nF0r)

fk − nF0r
.Hrt

)
.V̂ β−2

kt .Vkt

+

(
Nr∑

n=1

anr
−n2.F0r.g

′
τ (fk − nF0r)

fk − nF0r
.Hrt

)
.V̂ β−1

kt

]
, (5.8)
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and Kr = {k | fk ∈ fnr + [−2/τ, 2/τ ], ∀n ∈ [1, Nr]}.

• Updates for all parametric NMF models:

For all NMF parametric models, the decomposition of the partial derivative of the
reconstruction cost-function with respect to Hrt parameter leads to the following update:

Hrt ← Hrt ·
Q0(Hrt)

P0(Hrt)
, (5.9)

with

P0(Hrt) =
∑

k∈Kr

W θr
kr · V̂

β−1
kt , (5.10)

Q0(Hrt) =
∑

k∈Kr

W θr
kr · V̂

β−2
kt · Vkt. (5.11)

Note that this latter decomposition is similar to the one commonly used for standard NMF
models (cf. Equation (2.17)). The difference lies here in the sum over k which is limited
to the set of frequency-bins Kr for which the spectrum model W θr

kr is defined. Note that
in the following experiments, the activation matrices are initialized with random positive
values, as commonly done in NMF applications.

For anr parameters, the update rules are the same for all parametric models and given
in Equation (3.8). In order to obtain a unique decomposition for each method (i.e. no
scaling transformations of H when running the same algorithm twice on the same data),
the anr are normalized to a maximal value of 1 for each atom indexed by r. Thus, after
each update ∀r ∈ [1, R] and ∀n ∈ [1, Nr] of the anr, the following steps are applied:

Ar = max
n∈[1,Nr]

(anr), ∀r ∈ [1, R], (5.12)

anr = anr/Ar, ∀r ∈ [1, R], ∀n ∈ [1, Nr], (5.13)

H = diag(A) ·H, (5.14)

where diag(A) is a diagonal matrix of dimension R×R containing the Ar, ∀r ∈ [1, R].

5.2.1.3 Post-processing

In order to obtain a list that contains the detected notes, their onset and offset time, a
post-processing is applied to the activation matrix H. Each line is processed by a low-pass
differentiator filter. The obtained matrix dH is then scaled so that its maximal element
is 1. Finally, in each line, an onset is detected if dH increases above a threshold 10Ton/20,
and the corresponding offset found when dH crosses (from negative to positive values) a
second threshold −10Toff/20 < 0 (cf. illustration on Figure 5.3). If the same note is found
to be repeatedly played at less than 100 ms of interval it is then considered as a unique
note. As discussed in Section 5.1.3, this very simple post-processing has been chosen in
order to better highlight the differences in the model itself.
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It should be noticed that when targeting a transcription algorithm that is competi-
tive with state-of-the-art methods, the optimal values of these thresholds should be first
estimated on a learning dataset. As mentioned above, our goal here is to study whether
inharmonicity may improve an NMF-based piano transcription model rather than propos-
ing a new competitive algorithm. Then, performances of all methods will be studied on a
grid Ton ∈ [−50, 1] dB, with Toff arbitrarily fixed to -80 dB.
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Figure 5.3: Post-processing of the activation matrix H. (a) Results of the note activation
decision (blue) for a line of H (black). (b) Illustration of the thresholding (detection of
onsets in green and offsets in red) applied to the derivative of the line of H (black).

5.2.2 Supervised transcription

In order to separate the influence of the design of the model from the initialization /
optimization process, we compare as a preliminary study all three parametric models
(respectively Ha-NMF, Inh-NMF, and InhR-NMF ) on a supervised transcription task,
i.e. by learning first the dictionary on isolated note recordings for each piano of the
database and keeping it fixed during the transcription optimization. This study should
thus exhibit the performance bounds that may be obtained using such models, in case the
amplitude and frequency parameters of the dictionary are properly estimated.

5.2.2.1 Protocol

As a first step, for each piano and each NMF model, the parameters of the dictionary are
learned according to the protocol defined for the supervised estimation of (B,F0) from
isolated note recordings (cf. Section 3.1.3). The analysis parameters used for the compu-
tation of the isolated note spectra are then the same as those used for the computation
of the spectrograms to transcribe. Finally, only the activation matrices H are updated
according to Equation (5.9) during the optimization of the transcription task (arbitrarily
fixed to 50 iterations).

99



We also add a fourth supervised NMF model, denoted by Oracle-NMF, for which the
dictionary is composed of the isolated note short-time spectra (H is thus optimized using
Equation (2.17)). Since all the parametric dictionaries are limited to the modeling of
a restricted set of partials (e.g. no consideration of the partials related to longitudinal
vibrations of the strings or partials resulting from couplings, but also of other effects
such as the hammer stroke noise) this latter supervised model should give a performance
bound in case the tones are modeled along the whole frequency axis. Such spectra of the
dictionary are illustrated on Figure 5.4 for all four methods.
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Figure 5.4: Spectrum of the note A3 (MAPS ENSTDkAM piano) for the dictionary of (a)
Ha-NMF, (b) Inh-NMF, and (c) InhR-NMF. The original spectrum (in gray) is used for
the dictionary of Oracle-NMF.

5.2.2.2 Results

The four methods are then applied to the supervised transcription of the 45 excerpts of
pieces presented in Section 5.2.1.1. For the 3 parametric models (Ha/Inh/InhR-NMF ) the
influence of Nr, the maximal number of partials for each note, is studied on a grid having
values in {5, 10, 20, 30, 40, 50}.

Precision, Recall and F-measure curves (averaged over the 45 pieces) as a function of
the onset detection threshold Ton are depicted in Figure 5.5, for Nr = 20. When comparing
the four methods, one can see that refining the model of piano tone spectra leads to a
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CHAPTER 5. APPLICATION TO THE TRANSCRIPTION OF POLYPHONIC PIANO MUSIC

higher Precision but does not improve the Recall (consistent for all methods). Thus, it
seems that including more information in the dictionary model mainly helps in avoiding
the detection of FP notes. This finally results in an increase of the F-measure.
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Figure 5.5: Supervised transcription performances. (a) Precision, (b) Recall, and (c) F-
measure (in %) as a function of the onset detection threshold Ton (in dB) for Ha/Inh/InhR-
NMF with Nr = 20, and Oracle-NMF.

The influence of Nr for the three parametric models is also presented on Figure 5.6
for a detection threshold fixed to Ton = −22 dB (that corresponds approximately to the
value leading to optimal F-measure performances for all methods). Again, increasing the
number of partials of the spectra tends to improve the Precision but does not seem to have
a significant influence on the Recall. Logically, when increasing the number of partials,
the performance gap between the two inharmonic models and the harmonic model is
increasing. However, for all parametric models a limit is reached for Nr = 20. This result
is surprising (particularly for the inharmonic models for which the partials of transverse
vibration were accurately learned up to rank 50 in the first step) since notes below A♯4
(70) are usually composed of more partials, up to more than a hundred in the bass range.
A possible explanation for this may be that these experiments have been performed using
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a KL divergence (β = 1) for the reconstruction cost-function. As highlighted in Section
2.1.1.3, the KL divergence is not scale invariant and thus favors the reconstruction of the
components having highest magnitudes in the spectrogram. As it can be seen on Figure
5.4, partials with a rank greater than 20 have magnitudes below -50 dB when compared
to the first partial. These may thus be neglected in the optimization of the activation
matrix H. It should be then interesting to study the influence of Nr on the performance,
jointly with a grid of β values (for instance ∈ [0, 1])1. Indeed, such an application of
parametric NMF-based models to transcription has shown optimal performances for β =
0.5 in [Vincent et al., 2010].
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Figure 5.6: (a) Precision, (b) Recall and (c) F-measure (in %) obtained for all methods
as a function of the number of partials Nr for Ton = −22 dB.

Finally, the FP errors made by all methods are analyzed in detail. Each FP is classified

1Further experiments have been conducted after the writing of this thesis. When setting Nr = 50 and
computing the supervised transcription for a grid of β having values linearly distributed in [0, 2] (step of
0.1), we found that β = 0.9 leads to the highest F-measure for Inh/InhR/Oracle-NMF and β = 1 for
Ha-NMF.
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according to its distance (in semitones, modulo 12) with respect to the notes that are
actually present in the ground truth within +/− 50 ms. Another class (denoted by ‘NO’)
is considered for FP detected while no onset is present in the ground truth. Histograms
of these errors are presented on Figure 5.7 for all methods with Nr ∈ {5, 10, 20} and
Ton = −22 dB.

In accordance with the results presented above, the improvement of Precision (from
Ha-NMF to Oracle-NMF, with Nr increasing) is related to a decrease of the number of
FP. The inharmonicity inclusion is relevant for Nr > 5 and interestingly, as expected,
tends to mainly reduce harmonically-related FP (e.g. major thirds, fifths and octaves
corresponding respectively to 4, 7 and 12 semitones).
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Figure 5.7: Histogram of FP errors returned by all methods for different values of Nr and
Ton = −22 dB. Error types are given in semitones (modulo 12), except for ‘NO’ which
corresponds to FP errors of the algorithms while no onset was present in the reference.
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5.2.2.3 Conclusion

This preliminary study shows that increasing the precision of the piano tone spectra model
may really improve the performance of an NMF-based transcription system, in the case
when the parameters of the dictionary are properly estimated. In particular it helps in
reducing FP detections. However, there is no guarantee that similar results are obtained in
the case of an unsupervised transcription. As mentioned in Section 2.1.2, and highlighted
in Section 3.1.2.2 for piano tone analysis, the NMF cost-functions are often non-convex
and special care has to be taken for the initialization and the optimization scheme, in such
a way that the algorithm converges toward the desired optimum.

5.2.3 Unsupervised transcription

Finally all three parametric models (Ha/Inh/InhR-NMF ) are evaluated on the same
dataset in an unsupervised transcription task. Thus, at each loop of the optimization
algorithms H and W θ matrices are iteratively updated.

5.2.3.1 Protocol

Initialization: For both inharmonic models, the influence of the initialization of (B,F0)
parameters is investigated. Two configurations are then proposed. First, a naive initializa-
tion for which F0r is set to Equal Temperament (no “octave stretching”) and Br to 5.10−3,
∀r ∈ [1, R] is used. Second, (Br, F0r) parameters are initialized according to the mean
model of inharmonicity and tuning along the whole compass of pianos presented in Section
4.4.3. These two initialization configurations are respectively denoted by ‘ini1’ and ‘ini2’
in the following. For Ha-NMF, F0r is simply initialized to exact Equal Temperament.

Optimization scheme: The optimization is detailed in Algorithms 4, 5 and 6, respec-
tively for Ha-NMF, Inh-NMF and InhR-NMF.

It is worth noting here that the optimization for the transcription task slightly differs
from the one presented in Section 3.1.2.3 for the supervised estimation of (B,F0). Besides
the inclusion of the update of H and the normalization of anr values, a few modifications of
the steps of the algorithms are done. First, we did not retain the noise level as discussed in
Section 3.1.2.2, where it is used to remove the influence of partials drowned in noise; such a
component cannot be simply adapted to a transcription application. Second, the number
of partials for each note Nr is here fixed at the initialization instead of being initialized
with a small number and iteratively increased (as done in lines 14-16 of Algorithms 1
and 2, page 47). However, further work will investigate the influence of such an iterative
optimization scheme on transcription performance as it has been shown in Section 3.1.2.2
that it should help in avoiding the convergence of (B,F0) parameters toward local optima.

Learning of the regularization parameter of InhR-NMF : In order to estimate an
appropriate value for the regularization parameter λ of the InhR-NMF method, a learning
set composed of 9 pieces is built (1 piece for each piano, none of them in the test set). The
influence of λ is then studied for Nr = 10 on a grid covering the range [10−11, 10−3] with
values logarithmically distributed. Also, as mentioned in Section 3.1.2.2, the spectrograms
are normalized to a maximal value of 1 in order to limit the influence of the scaling property
of KL divergence in the tuning of λ. The optimal F-measure is obtained for λ = 2 · 10−5,
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and it should be noted that the performance did not depend on a fine tuning of this
parameter2.

Algorithm 4 Ha-NMF unsupervised transcription

1: Input:

2: V spectrogram (normalized to a max. of 1)
3: β

4: Initialization: ∀ r ∈ [1, R], n ∈ [1, Nr],
5: F0r according to ET
6: fnr = nF0r, anr = 1,
7: W θ computation (cf. Eq. (3.1))
8: H with random positive values

9: Optimization:

10: for it = 1 to It do

11: • Hrt update ∀ r ∈ [1, R], t ∈ [1, T ] (Eq. (5.9))
12: • anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.8))
13: anr normalization ∀ r ∈ [1, R] (Eq. (5.12)-(5.14))
14: W θ update (Eq. (3.1))
15: for u = 1 to 10 do

16: • F0r update ∀r ∈ [1, R] (cf. Eq. (5.6))
17: W θ update (cf. Eq. (3.1))
18: end for

19: end for

20: Output: H,Br, F0r, anr

Algorithm 5 Inh-NMF unsupervised transcription

1: Input:

2: V spectrogram (normalized to a max. of 1)
3: β

4: Initialization: ∀ r ∈ [1, R], n ∈ [1, Nr],
5: (Br, F0r) according to ini1 or ini2
6: fnr = nF0r

√
1 +Brn2, anr = 1,

7: W θ computation (cf. Eq. (3.1))
8: H with random positive values

9: Optimization:

10: for it = 1 to It do

11: • Hrt update ∀ r ∈ [1, R], t ∈ [1, T ] (Eq. (5.9))
12: • anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.8))
13: anr normalization ∀ r ∈ [1, R] (Eq. (5.12)-(5.14))
14: W θ update (Eq. (3.1))
15: for u = 1 to 10 do

16: • F0r update ∀r ∈ [1, R] (cf. Eq. (3.13))
17: W θ update (cf. Eq. (3.1))
18: • Br update ∀r ∈ [1, R] (cf. Eq. (3.12))
19: W θ update (cf. Eq. (3.1))
20: end for

21: end for

22: Output: H,Br, F0r, anr

2The actual value found in [Rigaud et al., 2013c] is λ = 1. However, in this latter study the penalty
terms of InhR-NMF cost-function does not account for the constant multiplicative factor KτT introduced
in this thesis (cf. Equation (3.7)). Thus, the value λ = 2 · 10−5 given in this section is considering this
scaling factor, with – according to the analysis parameters – Kτ = 17 bins and T = 2660 time-frames.
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Algorithm 6 InhR-NMF unsupervised transcription

1: Input:

2: V spectrogram (normalized to a max. of 1)
3: β, λ

4: Initialization: ∀ r ∈ [1, R], n ∈ [1, Nr],
5: (Br, F0r) according to ini1 or ini2
6: fnr = nF0r

√
1 +Brn2, anr = 1,

7: W θ computation (cf. Eq. (3.1))
8: H with random positive values

9: Optimization:

10: for it = 1 to It do

11: • Hrt update ∀ r ∈ [1, R], t ∈ [1, T ] (Eq. (5.9))
12: • anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.8))
13: anr normalization ∀ r ∈ [1, R] (Eq. (5.12)-(5.14))
14: W θ update (Eq. (3.1))
15: • fnr update ∀ r ∈ [1, R], n ∈ [1, Nr] (Eq. (3.18))
16: W θ update (Eq. (3.1))
17: for v = 1 to 30 do

18: F0r update ∀r ∈ [1, R] (cf. Eq. (3.20))
19: Br update ∀r ∈ [1, R] (20 times) (cf. Eq. (3.19))
20: end for

21: end for

22: Output: H,Br, F0r, anr, fnr

5.2.3.2 Results

The influence of Nr, the maximal number of partials is here studied on the grid {5, 10, 20, 30}
for Ton ∈ [−50, 1] dB.

The Precision, Recall and F-measure performances are presented on Figure 5.8 for
Nr = 20. For the first initialization, Inh-NMF and InhR-NMF do not perform as well as
Ha-NMF (this is consistent with the observation in [Vincent et al., 2008]). Conversely, for
the second initialization with the mean model of inharmonicity and piano tuning, these
methods perform significantly better than Ha-NMF (ANOVA p-values lower than 0.05
for Nr < 30 and Ton = −18 dB). Furthermore, both inharmonic models give comparable
mean F-measures (p-values higher than 0.5). Standard deviations are not reported in the
plots but are around 10 to 14 %.

The influence of Nr on the performances, for Ton = −18 dB, is presented on Figure 5.9.
Again, for all different values of Nr, both inharmonic models return highest performances
than Ha-NMF in the case where the initialization of (B,F0) parameters was performed
according the mean model of inharmonicity and tuning. In accordance with the results
obtained for the supervised case, increasing the number of partials tends to improve the
performances of Inh/InhR-NMF up to Nr = 20. Surprisingly, the performance of Ha-
NMF keeps increasing for Nr = 30. It seems here that adding more partials avoids a
situation where high notes explain high rank partials belonging to lower notes. It is also
interesting to notice that Ha-NMF results for Nr = 30 are comparable to those obtained
by the NMF under the harmonicity constraint presented in [Vincent et al., 2010] (Section
V.B) for similar experimental setups.

These experiments tend to demonstrate that such parametric NMF models with inhar-
monicity constraints are highly dependent on the initialization. Indeed, the reconstruction
cost function is non-convex with respect to fnr, F0r or Br parameters, and present a large
number of local minima. Hence, multiplicative update rules (as well as other optimization
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Figure 5.8: (a) Precision, (b) Recall and (c) F-measure (in %) as a function of the detection
onset threshold Ton. Performances of Ha, Inh and InhR are respectively depicted as black,
blue and red curves. For Inh and InhR, dashed and plain lines respectively correspond to
the results obtained for ‘ini1’ and ‘ini2’.

methods based on gradient descent) cannot ensure that these parameters will be correctly
estimated. This results in the fact that the initialization of such parameters requires spe-
cial care. Also, an alternative optimization scheme that would consider initializing the
notes with a few partials and increasing the number iteratively (as proposed in Section
3.1.2.2) may be an efficient mean for avoiding the convergence toward local optima.

In contrast with the results for the supervised estimation of (B,F0) presented in Chap-
ter 3, taking into account the dispersion of the partial frequencies from a theoretical in-
harmonic relation in InhR-NMF does not seem valuable for a transcription task, when
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compared to Inh-NMF. A possible explanation for this result may be that InhR-NMF was
found particularly useful for the analysis of low-bass tones, as the deviations related to the
string-bridge couplings are mainly present in the very low pitch range. However, as shown
in Figure 5.2, these notes are rarely played in a musical context. Also, introducing a larger
number of free parameters in the model may not be valuable when targeting complex tasks
such as transcription.
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Figure 5.9: (a) Precision, (b) Recall and (c) F-measure (in %) as a function of the number
of partials Nr for Ton = −18 dB. Performances of Ha, Inh and InhR are respectively de-
picted as black, blue and red curves. For Inh and InhR, dashed and plain lines respectively
correspond to the results obtained for ‘ini1’ and ‘ini2’.
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CHAPTER 5. APPLICATION TO THE TRANSCRIPTION OF POLYPHONIC PIANO MUSIC

5.3 Conclusion

Including inharmonicity in parametric NMF models has been shown to be relevant in
a piano transcription task, provided that the inharmonicity and tuning parameters are
sufficiently well estimated, this being highly dependent on the initialization. More pre-
cisely, an initialization with the same average value for the inharmonicity of all notes, and
Equal Temperament for the tuning, turns out to provide worse estimates than the simpler
purely harmonic model. However, a note-dependent inharmonicity law, and the corre-
sponding “stretched” tuning curves, provide a good initialization to our models, that lead
to significant improvement in the transcription results. Further work will investigate if an
optimization based on an iterative addition of partials in the model may still increase the
performance. Also, in order to build a competitive transcription system, additional studies
will examine how these models on partials frequencies can be combined with amplitude
models (smooth spectral envelopes), or frame dependencies in time.
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Chapter 6

Conclusions and prospects

6.1 Conclusion

In this thesis, we have tackled the issue of the modeling and the representation of musical
sounds by an approach inspired by both acoustics and signal processing perspectives. We
focused our studies on the analysis of piano music, with particular attention paid to the
inclusion of the inharmonic structure of the tones (as given by the model of transverse
vibration of stiff strings) in signal-based modelings. To this end, two frameworks have
been presented in Section 3.

We first considered enforcing the inharmonicity in the dictionary of spectra of NMF-
based models. Two different ways of including such a constraint have been studied. The
first one strictly enforces the partial frequencies of the model to follow the inharmonic-
ity relation (Inh-NMF model). The second one includes inharmonicity by considering a
regularized problem, i.e. by adding a penalization term to the NMF reconstruction cost-
function (InhR-NMF model). Optimization algorithms as well as practical considerations
have been given for both models in order to perform the estimation of the parameters.

We then introduced a probabilistic line spectrum model (PLS ). From a prior peak-
picking in time-frequency representations, the model assumes that the observed frequen-
cies have been generated by a mixture of notes, each being composed of partial and noise
components. The partial components are modeled by Gaussian mixtures having means
constrained by the inharmonicity relation parameters. The proposed optimization algo-
rithm returns a classification of each observation in partial and noise components for each
note as well as their inharmonicity relation parameters and the probability for each note
to have generated the observations of each time-frame.

Such models have been successfully applied to both acoustics and signal processing
applications giving answers to the issues raised in the introduction:

• Can such classes of models be used to efficiently learn physics-related parameters (e.g.
information about the design and tuning) of a specific instrument?

In Chapter 3 we focused on the precise estimation of the inharmonicity coefficient
B and the F0 of piano tones. All models have been tested on the whole compass of 11
different pianos in order to access the robustness with respect to the variability of the
tones. These have been compared favorably to one state the art algorithm.
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Both NMF-based models have been successfully applied to the supervised (i.e. having
the knowledge of the played notes) estimation of (B,F0) of isolated note and chord record-
ings. In this context, the relaxed inclusion of the inharmonicity constraint in InhR-NMF
has shown benefits in allowing for slight deviations of the partial frequencies around the
inharmonicity relation (as for instance caused by the string-bridge coupling).

On the same dataset of isolated note recordings, the PLS model has shown benefits
in still performing well for a large range of the piano compass in the context of an un-
supervised analysis. It has also been applied on a generic polyphonic piece of music, for
which (B,F0) parameters were accurately learned for a restricted set of notes that were
played. Interestingly for the proposed application a perfect transcription of the music did
not seem necessary.

In Chapter 4, a model for the inharmonicity and the tuning variations along the whole
piano compass have been presented. While considering a small set of high-level parame-
ters (only 6 global parameters to account for the main trends of 88× 2 string parameters)
these models have been found useful for various applications. In particular these have
been applied to the retrieval of parameters highlighting some tuner’s choices on different
piano types, the generation of tuning curves for out-of-tune pianos or piano synthesizers,
the initialization of the inharmonicity coefficient and the F0 of analysis algorithms, and
finally to the interpolation of inharmonicity and tuning along the whole compass of a
piano from a prior estimation of these parameters on a restricted set of notes played in a
polyphonic piece of music.

• Does refining/complexifying generic signal models actually improve the performance of
analysis tasks targeted by the MIR community?

In Chapter 5, the two inharmonic NMF-based models have been applied to a tran-
scription task and compared to a simpler harmonic model. The results have shown that
inharmonicity inclusion was relevant in transcription tasks, in particular because it helps
in reducing the detection of False Positives corresponding to harmonically-related notes
(thirds, fifths and octaves). However, the performances of such models are highly depen-
dent on the initialization of (B,F0) parameters because of the non-convexity, with respect
to these parameters, of the cost-functions. Thus, it has been found, in accordance with
previous studies, that a naive initialization of such parameters can lead to a degradation
of the results, when compared to a simpler harmonic model. Conversely, the use of a
mean model of inharmonicity and tuning along the whole compass (introduced in Chap-
ter 4) for the initialization has shown here a significant improvement in the transcription
performances. The investigation of alternative optimization schemes that should be less
sensitive to local optima will be investigated in further studies.

6.2 Prospects

6.2.1 Building a competitive transcription system

All the models that have been presented in this thesis focus on the inclusion of the inhar-
monic structure of the piano tones. However, when targeting the design of a competitive
transcription system, a few more elements of sound modeling have to be taken into ac-
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count. This could consist in constraining the shape of the spectral envelopes of the spectra
(possibly varying over time in order to account for the fact that high rank partials are de-
caying faster than low ranks in piano tones) or the temporal activations. Such modelings
have been widely investigated in the literature on NMF (as detailed in Section 2.1.2) and
should be easily adapted to our model formulation. Including such additional informa-
tion in the unsupervised transcription algorithm should also help obtaining more robust
estimates of (B,F0) parameters. While performing the transcription of a piece of music,
one could imagine retrieving the model of piano that has been played by comparing the
B estimates with reference curves of inharmonicity of several pianos.

Future research may also be conducted on the extension of the model to poly-instrumental
music composed of harmonic and inharmonic instruments (possibly combining Ha-NMF
and Inh-NMF models). This could be of interest in order to investigate whether inhar-
monicity is able to lift ambiguities of harmonically-related notes played by different in-
struments (e.g. C on piano and G on trumpet) while providing a clustering of all detected
notes in the different instruments of the model.

6.2.2 Extension to other string instruments

The models that have been presented in this thesis are sufficiently generic to be applied
to other struck but also plucked string instruments, such as for instance the harpsichord,
the guitar or the harp. However, as it has been shown for the case of the piano, a prior
study of the variations of (B,F0) parameters along the compass seems essential for the
initialization of the algorithms.

We propose here some prospects for an application to the guitar. As for the piano,
some invariants in the design of the instruments can be used to build parametric models
for the inharmonicity along the whole compass. Figure 6.1 presents the evolution of the
inharmonicity coefficient along the register covered by the 6 strings of an electric guitar
(e, B, G and D, A, E respectively correspond to plain and wrapped set of strings). These
have been estimated on isolated note recordings using InhR-NMF model according to
the protocol detailed in Section 3.1.3.2, with a manual tuning for the initialization of the
parameters. One can notice here that the evolution of the inharmonicity coefficient along
the range covered by each string has a linear behavior in logarithmic scale. For each
string, the slope is related to the position of the frets that modify the vibrating length
of the string. For most guitars the fret position is designed so that the guitar is tuned
according to Equal Temperament. Thus, in the case where the tension is constant (no
string bending), according to the expression of B (Equation (2.24)), the slope is equal
to log 22m/12, where m denotes the MIDI note index (as depicted in gray dashed lines in
Figure 6.1). Then, in order to model the inharmonicity variations along the compass of a
guitar, one could consider 6 different parameters corresponding to the Y-intercept of the
straight lines (the jump between the 6 lines being mainly affected by the changes in the
string diameters).

As the guitar allows us to play the same note with different combinations of string
/ neck position, such a parametric model of inharmonicity may potentially be used in
audio to tablature transcription tasks [Barbancho et al., 2012], where beyond retrieving
the notes that are played, inharmonicity could help here in assessing the position of the
player’s fingers along the guitar neck (as illustrated on Figure 6.2).
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Figure 6.1: Inharmonicity curves along the range covered by the 6 strings of an electric
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Figure 6.2: (a) A Minor (Am) chord played for two different positions on the guitar neck.
(b) Inharmonicity patterns for the two positions.
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Appendix A

Piano compass / MIDI norm

The register of pianos is usually composed of 88 notes spanning 9 octaves, from A0 to
C8 (cf. Figure A.1). In MIDI norm, theses notes are indexed by m ∈ [21, 108] and their
fundamental frequency is given by the Equal Temperament (ET), this latter considering
the A4 (m = 69) at 440 Hz as a reference note for the tuning, and a constant ratio of
21/12 (100 cents) for every semitone:

F0,ET(m) = 440 · 2(m−69)/12. (A.1)

In practice, pianos are never exactly tuned to ET because of the inharmonic structure of
their tones and the actual F0 values may deviate from Equation (A.1), up to 30 cents in
the high and low register (cf. Chapter 4).

A summary of the piano notes, their MIDI index and fundamental frequency according
to ET is given in Table A.1.

Figure A.1: Keyboard of the piano.
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Octave C C ♯ D E ♭ E F F ♯ G G ♯ A B ♭ B
# (Do) (Do ♯) (Ré) (Mi ♭) (Mi) (Fa) (Fa ♯) (Sol) (Sol ♯) (La) (Si ♭) (Si)

0 (-1)
21 22 23 MIDI index

27.50 29.13 30.86 F0ET (Hz)

1 (0)
24 25 26 27 28 29 30 31 32 33 34 35 MIDI index

32.70 34.64 36.70 38.89 41.20 43.65 46.24 48.99 51.91 55.00 58.27 61.73 F0ET (Hz)

2 (1)
36 37 38 39 40 41 42 43 44 45 46 47 MIDI index

65.40 69.29 73.41 77.78 82.40 87.30 92.49 97.99 103.82 110.00 116.54 123.47 F0ET (Hz)

3 (2)
48 49 50 51 52 53 54 55 56 57 58 59 MIDI index

130.81 138.59 146.83 155.56 164.81 174.61 184.99 195.99 207.65 220.00 233.08 246.94 F0ET (Hz)

4 (3)
60 61 62 63 64 65 66 67 68 69 70 71 MIDI index

261.62 277.18 293.66 311.12 329.62 349.22 369.99 391.99 415.30 440 466.16 493.88 F0ET (Hz)

5 (4)
72 73 74 75 76 77 78 79 80 81 82 83 MIDI index

523.25 554.36 587.32 622.25 659.25 698.45 739.98 783.99 830.60 880 932.32 987.76 F0ET (Hz)

6 (5)
84 85 86 87 88 89 90 91 92 93 94 95 MIDI index

1046.50 1108.73 1174.65 1244.50 1318.51 1396.91 1479.97 1567.98 1661.21 1760.00 1864.65 1975.53 F0ET (Hz)

7 (6)
96 97 98 99 100 101 102 103 104 105 106 107 MIDI index

2093.00 2217.46 2349.31 2489.01 2637.02 2793.82 2959.95 3135.96 3322.43 3520.00 3729.31 3951.06 F0ET (Hz)

8 (7)
108 MIDI index

4186.01 F0ET (Hz)

Table A.1: Correspondence between notes, MIDI indices and fundamental frequencies given by ET along the compass of the piano.
French notations for the notes and octave numbers are given in parenthesis.
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Appendix B

Noise level estimation

This appendix presents the noise level estimation method used in the pre-processing step
of the (B,F0) estimation algorithms introduced in Chapter 3. The method assumes an
additive colored noise, i.e. generated by the filtering of a white Gaussian noise and added
to the signal of interest [Yeh and Röbel, 2006]. In a given narrow band, if the noise filters
have a quasi flat frequency response, the noise can be considered as white Gaussian and
its spectral magnitude follows a Rayleigh distribution:

p(xf ;σf ) =
xf
σ2
f

· e−x2
f
/(2σ2

f
) , xf ∈ [0,+∞[. (B.1)

In this pre-processing stage, we want to estimate the noise distribution in each band
without removing the partials. To do so, a good estimator for σf is the median medf =
σf
√
log 4. Indeed, when the length of the analysis window is adapted to the resolution,

in a given narrow band, there are much less bins corresponding to partials than bins
corresponding to noise, so partials have a reduced influence on the estimate of the noise
median. The tradeoff sits in the choice of the bandwidth: the bands have to be narrow
enough so that the white noise approximation holds, but wide enough so that most of the
bins correspond to noise. We chose a 300Hz median filtering on the magnitude spectrum
S(f) to estimate σf . Finally, we define the noise level in each band NL(f) as the magnitude
such that the cumulative distribution function is equal to a given threshold T , set to
T = 0.9999. With this choice of T , only 6 bins corresponding to noise on average (out
of 216) should be above the noise level. The cumulative density function of a Rayleigh
distribution is given by:

c(xf ;σf ) = 1− e−x
2
f
/(2σ2

f
). (B.2)

Thus the noise level can be expressed as:

NL(f) =
medf√
log 4

·
√
2 log

1

1− T
. (B.3)

An illustration of the noise level computation for a note C4 is given in Figure B.1.
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Appendix C

Derivation of Inh/InhR/Ha-NMF

update rules

This appendix presents the mathematical derivation of the update rules used in the op-
timization of Inh/InhR-NMF (cf. Section 3.1.2.1) and Ha-NMF (cf. Section 5.2.1.2)
models.

C.1 Multiplicative update rules

As presented in Section 2.1.1.5, multiplicative update rules can be obtained by decompos-
ing the partial derivative of a cost-function, with respect to a given parameter θ∗, as a
difference of two positive terms:

∂C(θ∗)
∂θ∗

= P (θ∗)−Q(θ∗), P (θ∗), Q(θ∗) ≥ 0. (C.1)

In the case the cost-function includes a regularization term, for instance in the form

C(θ) = C0(θ) + λ · C1(θ, γ), (C.2)

the same kind of decomposition can be performed independently for each term so that

∂C(θ∗, γ)
∂θ∗

= (P0(θ
∗) + λ · P1(θ

∗))︸ ︷︷ ︸
P (θ∗)

− (Q0(θ
∗) + λ ·Q1(θ

∗))︸ ︷︷ ︸
Q(θ∗)

, (C.3)

Then, the parameter is updated as follows:

θ∗ ← θ∗ ×Q(θ∗)/P (θ∗) (C.4)

C.2 Partial derivatives of the reconstruction cost-function

C.2.1 Problem reminder

For all three parametric models, the reconstruction cost-function is given by (cf. Section
3.1.1):

C0(θ,H) =
∑

k∈K

T∑

t=1

dβ

(
Vkt | V̂kt

)
, (C.5)
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where

V̂kt =

R∑

r=1

W θr
kr ·Hrt, (C.6)

and

W θr
kr =

Nr∑

n=1

anr · gτ (fk − fnr), (C.7)

with θr = {anr, fnr | n ∈ [1, Nr]}, and K = {k | fk ∈ fnr + [−2/τ, 2/τ ], ∀n ∈ [1, Nr], ∀r ∈
[1, R]}.

C.2.2 Derivative with respect to θ

According to the partial derivative of β-divergences (∂dβ(x | y)/∂y, cf. Equation (2.10)),
the partial derivative of the reconstruction cost-function with relation to a specific param-
eter θ∗ ∈ θ is given by:

∂C0(θ,H)

∂θ∗
=
∑

k∈K

T∑

t=1

∂V̂kt

∂θ∗
· V̂ β−2

kt (V̂kt − Vkt), (C.8)

with

∂V̂kt

∂θ∗
=

R∑

r=1

∂W θr
kr

∂θ∗
·Hrt, (C.9)

which can be decomposed as a difference of two positive terms

∂V̂kt

∂θ∗
=

R∑

r=1

∂W θr ⊕
kr

∂θ∗
·Hrt

︸ ︷︷ ︸
∂V̂

⊕

kt
∂θ∗

−
R∑

r=1

∂W θr ⊖

kr

∂θ∗
·Hrt

︸ ︷︷ ︸
∂V̂

⊖

kt
∂θ∗

. (C.10)

Finally, the quantity ∂C0(θ,H)/∂θ∗ can also be expressed as a difference of two positive
quantities:

∂C0(θ,H)

∂θ∗
=
∑

k∈K

T∑

t=1

[
∂V̂ ⊕

kt

∂θ∗
· V̂ β−1

kt +
∂V̂ ⊖

kt

∂θ∗
· V̂ β−2

kt · Vkt

]

︸ ︷︷ ︸
P0(θ∗)≥0

−
∑

k∈K

T∑

t=1

[
∂V̂ ⊕

kt

∂θ∗
· V̂ β−2

kt · Vkt +
∂V̂ ⊖

kt

∂θ∗
· V̂ β−1

kt

]

︸ ︷︷ ︸
Q0(θ∗)≥0

.

(C.11)

C.2.2.1 Derivative with respect to anr

∀r ∈ [1, R] and n ∈ [1, Nr]

∂V̂kt

∂anr
= gτ (fk − fnr) ·Hrt > 0 (C.12)
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It is then chosen,





∂V̂ ⊕kt
∂anr

= gτ (fk − fnr) ·Hrt,

∂V̂ ⊖

kt

∂anr
= 0.

(C.13)

Finally, by replacing in Equation (C.11), Equations (3.9) and (3.10) are obtained:





P0(anr) =
∑

k∈Knr

T∑

t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−1
kt

]
,

Q0(anr) =
∑

k∈Knr

T∑

t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−2
kt .Vkt

]
,

with Knr = {k | fk ∈ fnr + [−2/τ, 2/τ ]}.

C.2.2.2 Derivative with respect to fnr, F0r and Br

• InhR-NMF :
∀r ∈ [1, R] and n ∈ [1, Nr]

∂V̂kt

∂fnr
= −anr · g′τ (fk − fnr) ·Hrt (C.14)

Regardless the analysis window that has been used, the quantity g′τ (fk − fnr) changes its
sign on each lobe of gτ . In order to obtain a satisfying expression (i.e. a difference of two
positive terms), the spectral support of gτ (fk−fnr) is limited to its main lobe (so the sign
of its derivative is changing once) and its derivative is expressed as:

g′τ (fk − fnr) = (fnr − fk) ·
−g′τ (fk − fnr)

fk − fnr
. (C.15)

The quantity −g
′
τ (fk−fnr)
fk−fnr

stays positive on the main lobe, for every kind of analysis window
(an illustration can be found in [Hennequin et al., 2010]). Thus,





∂V̂ ⊕kt
∂fnr

= anr · fk ·
−g′τ (fk − fnr)

fk − fnr
·Hrt,

∂V̂ ⊖

kt

∂fnr
= anr · fnr ·

−g′τ (fk − fnr)

fk − fnr
·Hrt.

(C.16)
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And finally, by replacing in Equation (C.11), Equations (3.21) and (3.22) are obtained:





P InhR
0 (fnr) =

∑

k∈Knr

T∑

t=1

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

+

(
anr
−fnr.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

]
,

QInhR
0 (fnr) =

∑

k∈Knr

T∑

t=1

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2

kt .Vkt

+

(
anr
−fnr.g′τ (f − fnr)

fk − fnr
.Hrt

)
.V̂ β−1

kt

]
,

Very similar decompositions can be performed for Inh-NMF and Ha-NMF. We just give
here the expression of the partial derivatives of V̂kt.

• Inh-NMF : fnr = nF0r

√
1 +Brn2

∀r ∈ [1, R]

∂V̂kt

∂Br
= −

Nr∑

n=1

Cnr · anr · g′τ (fk − fnr) ·Hrt, (C.17)

∂V̂kt

∂F0r
= −

Nr∑

n=1

Dnr · anr · g′τ (fk − fnr) ·Hrt, (C.18)

with

Cnr =
∂fnr
∂Br

=
n3F0r

2
√
1 +Brn2

, (C.19)

Dnr =
∂fnr
∂F0r

= n
√
1 +Brn2. (C.20)

• Ha-NMF : fnr = nF0r

∀r ∈ [1, R]

∂V̂kt

∂F0r
= −

Nr∑

n=1

n · anr · g′τ (fk − fnr) ·Hrt, (C.21)

(C.22)

C.2.3 Derivative with respect to Hrt

Similarly to Equation (C.8), the partial derivative of C0 with respect to Hrt can be
expressed as:

∂C0(θ,H)

∂Hrt
=
∑

k∈Kr

T∑

t=1

W θr
kr · V̂

β−2
kt (V̂kt − Vkt), (C.23)
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with Kr = {k | fk ∈ fnr + [−2/τ, 2/τ ], ∀n ∈ [1, Nr]}. A straightforward decomposition in
the form

∂C0(θ,H)

∂Hrt
=
∑

k∈Kr

T∑

t=1

W θr
kr · V̂

β−1
kt

︸ ︷︷ ︸
P0(Hrt)

−
∑

k∈Kr

T∑

t=1

W θr
kr · V̂

β−2
kt Vkt

︸ ︷︷ ︸
Q0(Hrt)

, (C.24)

leads thus to the update rule given in Equation (5.9).

C.3 Partial derivatives of the regularization term of InhR-

NMF

C1(fnr, γr) = KτT ·
R∑

r=1

Nr∑

n=1

(
fnr − nF0r

√
1 +Brn2

)2
, (C.25)

where Kτ = Card{fk ∈ [−2/τ, 2/τ ]} is the number of frequency-bins for which the partials
of the model are defined and T is the number of time-frames T .

C.3.1 Derivative with respect to fnr

∀r ∈ [1, R], n ∈ [1, Nr]

∂C1

∂fnr
= KτT · 2

(
fnr − nF0r

√
1 +Brn2

)
(C.26)

Then Equations (3.23) and (3.24) are directly obtained:

{
P1(fnr) = KτT · 2fnr,
Q1(fnr) = KτT · 2nF0r

√
1 +Brn2.

C.3.2 Derivative with respect to Br

∀r ∈ [1, R]:

∂C1

∂Br
= KτT ·

Nr∑

n=1

2
(
fnr − nF0r

√
1 +Brn2

)
· −n3F0r

2
√
1 +Brn2

= KτT · F0r

Nr∑

n=1

(
n4F0r −

n3fnr√
1 +Brn2

)
(C.27)

Thus, Equations (3.25) and (3.26) are obtained:





P1(Br) = F0r

Nr∑

n=1

n4,

Q1(Br) =

Nr∑

n=1

n3fnr√
1 +Brn2

.
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C.3.3 Derivative with respect to F0r

∀r ∈ [1, R]:

∂C1

∂F0r
= KτT ·

Nr∑

n=1

2
(
fnr − nF0r

√
1 +Brn2

)
·
(
−n
√

1 +Brn2
)
. (C.28)

An exact analytic solution allows to cancel the partial derivative (corresponding to the
update rule (3.20)):

F0r =

Nr∑
n=1

fnrn
√
1 +Brn2

Nr∑
n=1

n2(1 +Brn2)

.
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Appendix D

(B,F0) curves along the whole
compass estimated by the

NMF-based models

This appendix presents the results for the estimation of (B,F0) from isolated note record-
ings along the whole compass of the 11 considered pianos. The details of the experimental
protocol are given in Section 3.1.3.2. The initialization of (B,F0) is depicted as black
dashed lines and the blue and red curves respectively correspond to the estimates obtained
by Inh-NMF and InhR-NMF algorithms. Note that some estimates may be missing when
the notes were not given in the databases.
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Figure D.1: Iowa (a) B and (b) F0 as dev. from ET along the whole compass.
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• RWC database:
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Figure D.2: RWC1 (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.3: RWC2 (a) B and (b) F0 as dev. from ET along the whole compass.
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APPENDIX D. (B,F0) CURVES ALONG THE WHOLE COMPASS ESTIMATED BY THE NMF-BASED MODELS

20 30 40 50 60 70 80 90 100

10
−4

10
−3

10
−2

m (note in MIDI index)

B
 (

lo
g

. 
s
c
a

le
)

 

 

ini

Inh−NMF

InhR−NMF

(a)

20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

m (note in MIDI index)

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

ini

Inh−NMF

InhR−NMF

(b)

Figure D.4: RWC3 (a) B and (b) F0 as dev. from ET along the whole compass.

• MAPS database:

20 30 40 50 60 70 80 90 100

10
−4

10
−3

10
−2

m (note in MIDI index)

B
 (

lo
g

. 
s
c
a

le
)

 

 

ini

Inh−NMF

InhR−NMF

(a)

20 30 40 50 60 70 80 90 100
−25

−20

−15

−10

−5

0

5

10

15

m (note in MIDI index)

F
0
/F

0
,E

T
 (

c
e

n
ts

)

 

 

ini

Inh−NMF

InhR−NMF

(b)

Figure D.5: AkPnBcht (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.6: AkPnBsdf (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.7: AkPnCGdD (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.8: AkPnStgb (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.9: StbgTGd2 (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.10: ENSTDkAm (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.11: ENSTDkCl (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.12: SptkBGAm (a) B and (b) F0 as dev. from ET along the whole compass.
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Figure D.13: SptkBGCL (a) B and (b) F0 as dev. from ET along the whole compass.
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Modèles de signaux musicaux informés par la physique des instruments. Application à 
l'analyse de musique pour piano par factorisation en matrices non-négatives. 

RESUME : Cette thèse introduit des nouveaux modèles de signaux musicaux informés par la physique des instruments. 

Alors que les communautés de l'acoustique instrumentale et du traitement du signal considèrent la modélisation des sons 
instrumentaux suivant deux approches différentes (respectivement, une modélisation du mécanisme de production du son, 
opposée à une modélisation des caractéristiques "morphologiques" générales du son), cette thèse propose une approche 
collaborative en contraignant des modèles de signaux génériques à l'aide d'information basée sur l'acoustique. L'effort est 
ainsi porté sur la construction de modèles spécifiques à un instrument, avec des applications aussi bien tournées vers 
l'acoustique (apprentissage de paramètres liés à la facture et à l'accord) que le traitement du signal (transcription de 
musique). En particulier nous nous concentrons sur l'analyse de musique pour piano, instrument pour lequel les sons 
produits sont de nature inharmonique. Cependant, l'inclusion d'une telle propriété dans des modèles de signaux est connue 
pour entraîner des difficultés d'optimisation, allant jusqu'à endommager les performances (en comparaison avec un modèle 
harmonique plus simple) dans des tâches d'analyse telles que la transcription. Un objectif majeur de cette thèse est d'avoir 
une meilleure compréhension des difficultés liées à l'inclusion explicite de l'inharmonicité dans des modèles de signaux, et 
d'étudier l'influence de l'apport de cette information sur les performances d'analyse, en particulier dans une tâche de 
transcription. 
       Dans ce but, nous introduisons différents modèles basés sur des méthodes génériques tels que la Factorisation en 
Matrices Non-négatives (deux modèles de spectres inharmoniques NMF) et le cadre Bayésien (un modèle probabiliste 
génératif des fréquences inharmoniques du spectre). Les algorithmes d'estimation correspondant sont introduits, avec une 
attention particulière portée sur l'initialisation et l'optimisation afin d'éviter une convergence vers des minima locaux. Ceux-ci 
sont appliqués à l'estimation précise de paramètres physiques liés à la facture et à l'accord de différents pianos, à partir 
d'enregistrements monophoniques et polyphoniques, pour des conditions supervisées (les notes jouées sont connues) et 
non-supervisées.  
      Les variations le long de la tessiture de ces paramètres physiques sont ensuite étudiées en introduisant un modèle joint 
d'inharmonicité et d'accord basé sur des invariances dans les règles de facture et d'accord. Outre des applications à 
l'analyse, l'utilité de ces modèles est démontrée pour l'obtention de courbes d'accord de références pour les pianos 
désaccordés ou les synthétiseurs basés sur une modélisation physique, pour l'initialisation des paramètres des algorithmes 
d'analyse, et finalement pour interpoler l'inharmonicité et l'accord le long de la tessiture d'un piano à partir de l'analyse d'une 
pièce de musique polyphonique contenant un ensemble réduit de notes. 
      Finalement, l'efficacité d'un modèle NMF inharmonique pour la transcription de musique pour piano est étudiée en 
comparant les deux modèles inharmoniques proposés avec un modèle harmonique. Les résultats montrent que les 
performances sont améliorées par l'ajout de l'information d'inharmonicité, à condition que les paramètres physiques soient 
suffisamment bien estimés. En particulier, une augmentation significative des performances est obtenue lors de l'utilisation 
d'une initialisation appropriée. 

 

Mots clés : modèles de signaux musicaux, NMF, inharmonicité, accord des pianos, transcription 

Models of music signals informed by physics.  
Application to piano music analysis by non-negative matrix factorization. 

ABSTRACT: This thesis introduces new models of music signals informed by the physics of the instruments. While 

instrumental acoustics and audio signal processing target the modeling of musical tones from different perspectives 
(modeling of the production mechanism of the sound vs modeling of the generic "morphological'' features of the sound), 
this thesis aims at mixing both approaches by constraining generic signal models with acoustics-based information. 
Thus, it is here intended to design instrument-specific models for applications both to acoustics (learning of parameters 
related to the design and the tuning) and signal processing (transcription). In particular, we focus on piano music analysis 
for which the tones have the well-known property of inharmonicity. The inclusion of such a property in signal models 
however makes the optimization harder, and may even damage the performance in tasks such as music transcription 
when compared to a simpler harmonic model. A major goal of this thesis is thus to have a better understanding about the 
issues arising from the explicit inclusion of the inharmonicity in signal models, and to investigate whether it is really 
valuable when targeting tasks such as polyphonic music transcription. 
       To this end, we introduce different models of piano tones built on generic signal frameworks such as those of Non-
negative Matrix Factorization (NMF with two different models of inharmonic spectra) and Bayesian probability (an 
inharmonic line spectrum model). Corresponding estimation algorithms are derived, with a special care in the initialization 
and the optimization scheme in order to avoid the convergence of the algorithms toward local optima. These algorithms 
are applied to the precise estimation of physical parameters related to the design and tuning of different pianos from 
monophonic and polyphonic recordings, in both supervised (played notes are known) and unsupervised conditions. 
       The variations along the piano compass of such physical parameters are then modeled by introducing a joint model 
of inharmonicity and tuning based on invariants in design and tuning rules. Beyond analysis applications, the usefulness 
of this model is also demonstrated for providing tuning curves for out-of-tune pianos or physically-based synthesizers, for 
initializing the parameters of analysis algorithms, and finally to interpolate the inharmonicity and tuning of pianos along 
the whole compass from the analysis of a polyphonic recording containing only a few notes. 
      Finally the efficiency of an inharmonic model for NMF-based transcription is investigated by comparing the two 
proposed inharmonic NMF models with a simpler harmonic model. Results show that it is worth considering inharmonicity 
of piano tones for a transcription task provided that the physical parameters are sufficiently well estimated. In particular, a 
significant increase in performance is obtained when using an appropriate initialization of these parameters. 

 

Keywords: models of music signals, NMF, inharmonicity, piano tuning, transcription 
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