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Ŝ(e) estimated epileptic signal ma-

trix
S̃(e) estimated epileptic signal ma-

trix for fixed orientation dipoles
Σn matrix of singular values associ-

ated with the noise subspace
Σs matrix of singular values associ-

ated with the signal subspace
T transform matrix
Θ matrix of Givens rotation pa-

rameters
Un matrix of left noise subspace

vectors
Us matrix of left signal subspace

vectors
Υ matrix of dipole orientations
Vs matrix of right signal subspace
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W weight matrix
X data matrix
Xa artifact data
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Xi instrumentation noise
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F STWV tensor
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J set of all dipoles of the source

space
Ωp set of dipoles belonging to the p-
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Chapter 1

Introduction

1.1 Context and motivation
ElectroEncephaloGraphy (EEG) is a non-invasive technique that records brain activity
with a high temporal resolution using an array of sensors, which are placed on the scalp.
The measurements contain valuable information about the electromagnetic brain sources
that are at the origin of the observed cerebral activity. This information is crucial for
the diagnosis and management of some diseases or for the understanding of the brain
functions in neuroscience research. In this thesis, we focus on the application of EEG
in the context of epilepsy. More particularly, we are concerned with the localization
of the epileptic regions, which are involved in epileptic activity between seizures. The
precise delineation of these areas is essential for the evaluation of patients with drug-
resistant partial epilepsy for whom a surgical intervention can be considered to remove
the epileptogenic brain regions that are responsible for the occurrence of seizures.

Figure 1.1: Illustration of the EEG forward and inverse problems.
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The objective thus consists in identifying the positions (and spatial extents) of brain
sources from the noisy mixture of signals which is recorded at the surface of the head by
the EEG sensors. This is known as the inverse problem. On the other hand, deriving
the EEG signals for a known source configuration is referred to as the forward problem
(cf. Figure 1.1). Thanks to refined models of head geometry and advanced mathematical
tools that permit to compute the so-called lead field matrix, which characterizes the
propagation within the head volume conductor, solving the forward problem has become
straightforward. By contrast, finding a solution to the inverse problem is still a challenging
task. This is especially the case in the context of multiple sources with correlated time
signals that can be involved in the propagation of epileptic phenomena. This problem is
the key issue of this thesis and motivates the development of algorithms that are robust
to source correlation.

Another difficulty encountered in EEG data analysis consists in the fact that the
recorded data do not only contain the cerebral activity of interest, but also comprise
contributions from sources outside the brain such as ElectroCardioGraphic (ECG) signals,
muscle ElectroMyoGraphic (EMG) activities or ElectroOculoGraphic (EOG) activities
(eye blinks). These “non-brain” signals are generally referred to as artifacts. The artifacts
may be of high amplitudes, masking the signals of interest, which correspond, in our case,
to the activity of one or several epileptic sources. Therefore, to prevent the artifacts from
compromising the interpretation of the EEG measurements, it is desirable to remove them
prior to the application of further EEG analysis techniques.

1.2 Proposed approach and outline of this thesis
For EEG recordings containing multiple sources and artifacts, we propose to consider the
following data processing steps to solve the inverse problem:

1. extraction of the cerebral activity of interest, i.e., the epileptic activity (removal of
artifacts),

2. separation of simultaneously active, potentially correlated sources to facilitate their
localization,

3. distributed source localization.

The first two steps consist in preprocessing operations, that are optional, but may consid-
erably simplify the source localization procedure depending on the characteristics of the
data set at hand, whereas the actual solution of the inverse problem is carried out in the
third step.

In this thesis, we develop computationally efficient, robust techniques for the three
data processing steps described above. The performance of the proposed algorithms in
comparison to conventional methods is analyzed both in terms of accuracy and compu-
tational complexity. As precise knowledge about the epileptogenic zones is generally not
available for real data, the performance evaluations are mostly based on realistic computer
simulations, which permit us to compare the obtained results with the ground truth. Nev-
ertheless, some examples with real EEG measurements are also presented to validate the
proposed methods.
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This thesis is organized as follows: In Chapter 2, we provide some background infor-
mation on the origin of electromagnetic brain signals, the characteristics of EEG systems,
as well as epilepsy. Furthermore, we describe the mathematical model of EEG data
that is employed for the simulations conducted in this thesis. In Chapter 3, we consider
two types of preprocessing methods: statistical approaches for the removal of artifacts
based on Independent Component Analysis (ICA) and deterministic tensor decomposi-
tion methods for source separation. Chapter 4 is devoted to the localization of distributed
sources. After providing a taxonomy of current state-of-the-art methods, we present sev-
eral contributions to the development of new source localization methods. We conclude
the chapter with a comprehensive performance study of eight different source localization
algorithms. Finally, in Chapter 5, we illustrate the combination of the three analyzed data
processing steps on a simulation example before summarizing our findings and discussing
perspectives for future work.

1.3 Associated publications
Parts of the work presented in this thesis can be associated with the following publications:

International conference papers

• H. Becker, P. Comon, L. Albera, M. Haardt, and I. Merlet, “Multiway space-time-
wave-vector analysis for source localization and extraction,” Proc. of European
Signal Processing Conference (EUSIPCO), Aalborg, Denmark, August 2010.
Introduction of the STWV analysis, described in Section 3.2.3.2 of this thesis.

• H. Becker, P. Comon, and L. Albera, “Tensor-based preprocessing of combined
EEG/MEG data,” Proc. of European Signal Processing Conference (EUSIPCO),
Bucharest, Romania, August 2012.
Extension of the STF and STWV analyses to the combination of EEG and MEG
data, presented in Appendix C.

• H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet, “A
performance study of various brain source imaging approaches,” IEEE Proc. of
Internat. Conf. on Acoustics Speech and Signal Processing (ICASSP), Florence,
Italy, May 2014.
Comparative performance study of seven brain source imaging algorithms similar
to the simulations conducted in Section 4.7.2 of this thesis.

• H. Becker, L. Albera, P. Comon, R. Gribonval, and I. Merlet, “Fast, variation-based
methods for the analysis of extended brain sources,” Proc. of European Signal
Processing Conference (EUSIPCO), Lisbon, Portugal, September 2014.
Presentation of the SVB-SCCD algorithm, described in Section 4.5 of this thesis.

International journal papers

• H. Becker, P. Comon, L. Albera, M. Haardt, and I. Merlet, “Multiway space-time-
wave-vector analysis for EEG source separation,” Signal Processing, vol. 92, pp.
1021–1031, 2012.
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Introduction of the STWV analysis, described in Section 3.2.3.2 of this thesis, and
application to EEG data for extended source localization in the context of a spherical
head model.

• H. Becker, L. Albera, P. Comon, M. Haardt, G. Birot, F. Wendling, M. Gavaret,
C. G. Bénar and I. Merlet, “EEG extended source localization: tensor-based vs.
conventional methods,” NeuroImage, vol. 96, pp. 143–157, August 2014.
Presentation of the STF-DA and STWV-DA methods for distributed source local-
ization and evaluation on realistic simulations and actual data similar to Section
4.4.1 of this thesis.

• H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet, “Brain
source imaging: from sparse to tensor models,” submitted to IEEE Signal Processing
Magazine, 2014.
Review and classification of different brain source imaging approaches (cf. Sections
4.2 and 4.3) as well as performance comparison of representative methods based on
realistic simulations similar to Section 4.7.2 of this thesis.

• H. Becker, L. Albera, P. Comon, A. Kachenoura, and I. Merlet, “A penalized semi-
algebraic deflation ICA algorithm for the efficient extraction of interictal epileptic
signals,” submitted to IEEE Transactions on Biomedical Engineering, 2014.
Introduction of the P-SAUD algorithm described in Section 3.1 of this thesis.

1.4 Notations
To facilitate the reading, the following notation is used throughout this thesis: vectors,
matrices, and three-way arrays are denoted with bold lowercase (a,b, . . .), bold upper-
case (A,B, . . .), and bold italic uppercase letters (A,B, . . .), respectively, while sets are
denoted by calligraphic letters (A,B, . . .). The matrix Â denotes the estimate of A. The
Kronecker product between two matrices A and B is written as A ⊗ B. Moreover, (·)T

and (·)H denote transposition and Hermitian transposition, and (·)+ stands for the Moore-
Penrose pseudo-inverse. The N ×N identity matrix is denoted by IN and 0K,Q denotes a
K×Q matrix of zeros. Furthermore, |·|, || · ||p, and || · ||F stand for the absolute value, the
Lp-norm and the Frobenius norm, respectively. The cardinality of the set S is denoted by
#S and the determinant of the matrix A is written as det(A). Finally, d·e denotes the
ceiling function.



Chapter 2

EEG signals: Physiological origin
and modeling

In this chapter, we provide some background information on the origin of the electro-
magnetic brain signals that are analyzed in this thesis. In Section 2.1, we start with a
description of the brain structure and the neurons, which can be regarded as the basic
processing units of the brain, before explaining the physiological mechanisms that lead
to the generation of brain electromagnetic fields in Section 2.2. Then, in Section 2.3,
we give a short introduction to epilepsy and epileptic signals, on which we focus in this
thesis. Furthermore, the principle of EEG recordings is presented in Section 2.4. Finally,
we describe in Section 2.5 how EEG data can be modeled based on the anatomical and
physiological knowledge about the brain. This model serves as a basis for the simulations
conducted in subsequent chapters of this thesis.

2.1 A brief introduction to brain anatomy
The brain consists of two hemispheres, each of which corresponds to a thick layer of
folded, neuronal tissue. Each hemisphere of the brain is divided into four lobes by two
deep fissures. One distinguishes the frontal, parietal, temporal, and occipital lobes as
depicted in Figure 2.1. Furthermore, one can distinguish between a large number of
cortical areas that are associated with different brain functions such as processing visual
information or controlling muscular activity.

Figure 2.1: The four lobes of the brain.
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To process large amounts of information, the brain contains a high number of nerve
cells, the neurons. The neurons are located in the gray matter, that forms the cerebral
neocortex at the surface of the brain but also deeper nuclei and structures such as the
hippcampus. The white matter, which is located underneath, contains nerve fibers that
establish connections between different cortical areas and between the cortex and other
brain structures. A neuron basically consists of three parts (see Figure 2.2):

• the dendrites, which receive stimuli from thousands of other cells,

• the soma or cell body, which contains the nucleus, and

• the axon, which transmits nerve impulses from the neuron to other cells.

The connection points at which stimuli are transmitted between the axon of one neuron
and the dendrites of neighboring neurons are called synapses.

Figure 2.2: Schematic representation of a neuron.

2.2 Physiological origin of electromagnetic brain sig-
nals

The transmission of information between neurons is based on an electrochemical process
(cf. Figure 2.3) [1, 2, 3]. Once the electric potential at the base of a neuron’s axon
reaches a certain threshold value due to stimulations from other cells, a so-called action
potential is generated by the neuron and an electric impulse is sent along the axon. This
impulse leads to the release of special molecules, the neurotransmitters, which cross the
synapses with other neurons and bind to the receptors at the dendrites of the neighbouring
neurons, in the following referred to as postsynaptic cells. This enables certain ions to
cross the cell membranes through specific ion channels of the postsynaptic cells, leading
to a change of the electric potentials at the cell membranes, also called post-synaptic
potentials, and a current flow is generated within the interior of each postsynaptic cell.
This current is called the intra-cellular or primary current and, depending on its direction,
leads to an increase or decrease of the electric potential at the base of the axon of the
postsynaptic cell. If the potential is increased, this favors the generation of a new action
potential in the postsynaptic cell, causing the transmission of the stimulus to other neurons
once the electric potential attains a certain threshold value. In this case, one speaks of
an excitatory postsynaptic potential. On the other hand, if the postsynaptic potential
hinders the generation of a new action potential by decreasing the potential at the base
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Figure 2.3: Illustration of the electrochemical process of information transmission between
neurons for an excitatory potential.

of the axon, it is called inhibitory. The intra-cellular current is counterbalanced by an
extra-cellular (or secondary) current, that flows in the opposite direction at the outside of
the cell membrane. The electric potential at the surface of the head is mostly generated
by the extra-cellular currents whereas the intra-cellular currents are at the origin of the
magnetic field.

The postsynaptic potential (if excitatory) leads to an extracellular milieu at the
synapse that becomes more negative, forming a current sink, whereas the potential on the
axonal end of the postsynaptic neuron becomes more positive, forming a current source.
This can be modeled by a current dipole, which is oriented along the dendrite of the cell
(cf. Figure 2.4), and constitutes the basis for mathematical models of brain activity. Since
the current amplitude is very small for a single neuron, a current dipole is generally used
to model the synchronized activity of a group of neurons within a small area (cf. Section
2.5). It is commonly admitted that the electrical activity as recorded at the surface of
the scalp originates mostly from the postsynaptic potentials of pyramidal cells, which
are located in the gray matter with an orientation that is perpendicular to the cortical
surface. Due to the parallel arrangement of these cells, the small current flows of the
individual neurons generally add up to generate electromagnetic activity of sufficiently
large amplitude to be measurable at the surface of the head.

2.3 Epilepsy
Epilepsy is one of the most common neuronal diseases and concerns about one percent
of the population. It leads to temporary dysfunctions of the electrical brain activity, the
epileptic seizures, as a result of sudden abnormal electric discharges, called paroxysmal
discharges. These discharges occur repeatedly in one or several brain regions. Depending
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Figure 2.4: Neuron modelled as current dipole. The red arrow also indicates the direction
of the dipole moment vector.1

on the involved cortical areas, which are different from one patient to another, the clinical
symptoms associated with the epileptic discharges vary and can lead to physical and
mental impairments.

One can distinguish two types of epilepsy: generalized epilepsy, which involves the
whole cortex, and partial or focal epilepsy, which is provoked by limited brain regions,
the so-called epileptogenic zone. Furthermore, two different types of epileptic paroxysms
can be recorded. During seizures, rhythmic discharges, also called ictal discharges, last
several seconds to a few minutes and are characterized by a rhythmic activity. Between
seizures, brief paroxysms, called interictal spikes, occur in irregular intervals.

The majority of epileptic patients can be successfully treated with drugs, which prevent
the occurence of epileptic seizures or permit to reduce their frequency. However, some pa-
tients are drug-resistant. In some of theses cases, a surgical intervention can be considered
to remove the epileptogenic zone and thus stop the occurrence of seizures. Nevertheless,
this is only possible if the epileptogenic zone involves a limited area and is located in brain
regions that can be removed without leading to important functional deficiencies. More-
over, this surgical procedure requires a precise knowledge of the location and the spatial
extent of the epileptogenic zone. To delineate the regions from where epileptic paroxysms
arise, patients usually undergo extensive pre-surgical evaluation, including EEG sessions
as well as intracranial stereotactic EEG (SEEG) recordings.

In order to identify the epileptogenic zones from scalp EEG measurements, source
localization algorithms have been applied to interictal spikes that can frequently be ob-
served on the scalp with a high Signal-to-Noise-Ratio (SNR) compared to ictal discharges
[4, 5, 6, 7, 8]. Even though the relationship between the brain regions that are at the
origin of the epileptic spikes (irritative zone), and the epileptogenic zone, which provokes
the seizures, is patient-dependent and not completely understood, it has been shown that
source imaging methods applied to interictal spikes can provide useful information during
the pre-surgical evaluation of patients with drug-resistant partial epilepsy. Following this
approach, the objective of this thesis consists in developing methods that allow for an
accurate estimation of the positions and spatial extents of brain regions involved in in-
terictal epileptic activity, based on the sole analysis of surface EEG recordings containing
interictal spikes.

1This figure is adapted from Figure 1.4 in [9].
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2.4 Electroencephalography (EEG)
Electroencephalography is a multi-channel system that records the electromagnetic brain
activity over a certain time interval with a number of sensors that are positioned on the
surface of the scalp. More precisely, it measures the difference of the electric potential
between each sensor and a reference electrode. Sometimes, one also employs the so-called
common average reference, which corresponds to an artificial reference that is obtained
by subtracting the time signal averaged over all sensors from the data of each channel.

Standard medical EEG systems comprise between 19 and 32 electrodes whereas high
resolution EEG caps include up to 256 sensors. The electrodes are positioned on the
scalp according to a standardized placement system. For 21 electrodes, the original 10-20
system [10] is employed. For higher numbers of sensors, extensions of this system such as
the 10-10 and the 10-5 electrode systems have been put forward [11, 12].

An important advantage of EEG (and of magnetoencephalography (MEG)) compared
to other techniques for the analysis of cerebral activity such as functional Magnetic Res-
onance Imaging (fMRI) lies in its high temporal resolution at a millisecond scale, which
permits to observe the brain dynamics. Furthermore, the EEG recordings are directly
related to the electrophysiological brain mechanisms, which is not the case for fMRI
recordings. Finally, EEG systems are much more affordable than fMRI or MEG sys-
tems, which require more sophisticated technical equipment. For these reasons, EEG is a
routinely used technique for brain signal analysis, in particular for epileptic patients.

2.5 Modeling of EEG signals
As described in Section 2.2, the brain electric and magnetic fields are generated by the
current flows that are associated with the transmission of information between neurons.
In order to obtain a signal of sufficient amplitude to be measurable at the surface of the
scalp, a certain number of simultaneously active neuronal populations is required. These
populations can be modeled by a number of current dipoles belonging to a pre-defined
source space, which is generally derived from structural information about the brain (see
Section 2.5.1). Furthermore, different hypotheses on the location and orientation of the
sources can be incorporated by considering either a volume or a surface grid of source
dipoles and using either fixed or free dipole orientations. This basically corresponds
to two philosophies of brain source modeling: the reconstruction of brain activity in a
tomographic way by dipoles with free orientations in a volume grid, and the concentration
on dipoles located on the cortical surface with fixed orientations perpendicular to this
surface. The latter corresponds to a physiologically plausible source model because the
surface EEG measurements are mostly generated by pyramidal cells located in the gray
matter with an orientation perpendicular to the cortex (cf. Section 2.2, [13]).

Assuming a source space with free orientation dipoles, the electric potential data that
is recorded at the N electrodes of an EEG sensor array for T time samples then consti-
tutes the superposition of all dipole signals contained in the signal matrix S ∈ R3D×T that
are transmitted to the surface of the scalp. The propagation of the signals in the head
volume conductor is characterized by the lead field matrix G ∈ RN×3D, which depends
on spatial parameters of the head, such as the geometry of the brain, skull, and scalp as
well as their conductivities, and the positions of the D source dipoles. Furthermore, the
EEG recordings may contain electromagnetic signals from other physiological origins such
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as muscular activity or eye blinks. The contributions of these artifacts are subsequently
denoted by Xa. Finally, the EEG measurements are generally corrupted by instrumenta-
tion noise Xi due to the measurement process. This leads to the following model for the
EEG data:

X = GS + Xa + Xi. (2.1)

In the case of dipoles with fixed orientations, the brain activity is described by D dipole
signals contained in the matrix S̃ ∈ RD×T , leading to the data model

X = G̃S̃ + Xa + Xi, (2.2)

where the lead field matrix G̃ ∈ RN×D is related to the lead field G by G̃ = GΥ and
Υ ∈ R3D×D contains the fixed orientations of the dipoles.

Subsequently, we focus on model (2.2), which is used for the generation of EEG data in
this thesis, considering a source space composed of dipoles located on the cortical surface
with an orientation perpendicular to this surface.

In the context of epilepsy, the regions of interest, i.e., the epileptic regions, can be
modeled by extended sources that can be described as the union of (one or) several non-
necessarily contiguous areas of the cortex (so-called patches) with highly correlated source
activities [14, 15]. All dipoles that do not belong to an extended source can be considered
to emit normal background activity. Consequently, in order to distinguish between the
extended sources, that we want to retrieve, and the noisy background activity, we can
rewrite the data model (4.2) in the following way:

X =
P∑
p=1

∑
kp∈Ωp

g̃kp s̃T
kp +

∑
l /∈∪Pp=1Ωp

g̃ls̃T
l + Xa + Xi (2.3)

X = Xe + Xb + Xa + Xi = Xe + N. (2.4)

Here, Ωp is the set of indices of the dipoles that belong to the p-th extended source,
g̃k is the lead field vector of the k-th dipole, and s̃k is the associated signal vector that
corresponds to the k-th row vector of S̃. The matrix Xe comprises the data generated by
the signals of interest whereas the noise matrix N summarizes background activity Xb,
artifacts Xa, and instrumentation noise Xi.

The instrumentation noise could be modeled by random variables drawn from a Gaus-
sian distribution, but for simplicity, it is generally neglected in the rest of this thesis.
Moreover, rather than modeling the artifacts, we will consider real measurements recorded
during an EEG session of a patient. Therefore, in the following, we concentrate on the
modeling of the EEG data of the epileptic signals of interest Xe and the EEG data due to
the background activity Xb. On the one hand, in Section 2.5.1, we consider the modeling
of the head and the source space, whose influences are reflected in the lead field matrix,
and on the other hand, in Section 2.5.2, we are concerned with the generation of the
source time signals.

Please note that model (2.3) is employed for EEG data generation whereas different
models may be considered for the data analysis. The choice of the data analysis model
depends on the objective of a given analysis step and the assumptions on the data that
are made by the method that is used to achieve this objective. In Sections 3.1.1 and 3.2.1
of this thesis, we introduce two different data analysis models that are used for source
separation purposes.
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2.5.1 Head model, source space, and lead field matrix
The simplest model of the head consists of several nested spheres which represent the
brain, the skull, and the scalp. Possibly, an additional sphere, which is located between
the brain and the skull and which corresponds to the cerebro-spinal fluid (CSF), can
be included. The considered layers are assumed to be homogeneous and of different
conductivities due to their morphological differences. Besides its simplicity, the main
advantage of the spherical head model consists in the fact that for given source and
sensor positions, the lead field matrix can be computed analytically (see, e.g., [16, 3]).

While the spherical head model is generally sufficient to obtain a good approximation
of the magnetic field, which is insensitive to changes of conductivity, it leads to significant
modeling errors in the computation of the electric potential at the surface of the head.
To enhance the accuracy of the EEG lead field matrix, a realistic head model should be
employed. In this case, the boundaries of the different layers are derived from structural
Magnetic Resonance Imaging (MRI). More precisely, the MRI images are segmented to
obtain triangular meshes for the cortical surface (gray matter/white matter interface),
the brain, the skull, and the scalp (cf. Figure 2.5). This can be achieved using software
such as BrainVISA [17, 18]. To obtain accurate source imaging results in the context of
epilepsy, a realistic head model should be derived from the MRI of each patient because
pathological variations in brain geometry cannot be ruled out.

Figure 2.5: Illustration of a realistic head model with three compartments representing
the brain, the skull, and the scalp and a source space that consists of a large number of
dipoles (represented by black dots) located on the gray matter/white matter interface.

Based on the triangular mesh that represents the cortical surface, there are two ap-
proaches for the definition of the source space: the elementary dipoles can be positioned at
the vertices of the mesh (this is the case in the Brainstorm Matlab toolbox [19]) or at the
centroids of the triangles (as in the ASA software (ASA, ANT, Enschede, Netherlands)).

Once the head model and the source space have been defined, the lead field matrix
can be computed numerically using Boundary Element Methods (BEM) or Finite Ele-
ment Methods (FEM), which are based on the quasi-static approximation of Maxwell’s
equations (see [2, 3] for more details). BEM are, for instance, implemented in the ASA
software or in OpenMEEG [20, 21].

In this thesis, for all simulations, we employ the realistic head model shown in Figure
2.5 and a source space that is defined by the triangularized inner cortical surface (gray
matter / white matter interface). These meshes are obtained from the segmentation of a
single subject MRI. A grid dipole is placed at the centroid of each of the triangles with an
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orientation perpendicular to the triangle’s surface. The grid consists of 19626 triangles
(9698 for the left hemisphere and 9928 for the right hemisphere) and on average, each
triangle describes 5 mm2 of the cortical surface. The lead field vectors contained in the
matrix G̃ are then computed numerically for all grid dipoles using the BEM implemented
in the ASA software (cf. Section 2.5.1). For the generation of distributed sources, we
consider 11 different patches each of which consists of 100 adjacent grid dipoles corre-
sponding to a cortical area of approximately 5 cm2. The patches are located on the left
hemisphere and are shown in Figure 2.6. For convenience, in subsequent chapters, we
refer to these patches using the following names that indicate the patch positions:
SupFr – superior frontal gyrus
InfFr – inferior frontal gyrus
PreC – precentral gyrus
SupTe – superior temporal gyrus
MidTe – middle temporal gyrus
BasTe – basal aspect of the temporal lobe

OccTe – occipital temporal junction
InfPa – inferior parietal lobule
SupOcc – superior occipital gyrus
Cing – cingulate gyrus
Hipp – para-hippocampal gyrus

Figure 2.6: Location of the 11 patches that are considered for the simulations in this
thesis. We provide 6 different views of the cortical surface such that all patches can be
seen.

2.5.2 Generation of physiologically plausible signals
To generate physiologically plausible brain signals, a model based on coupled neuronal
populations [14, 22] is employed. In this model, each current dipole of the source space is
associated to one neuronal population. Moreover, a model that reflects the physiological
mechanisms of information transmission between neurons based on action potentials and
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postsynaptic potentials (see Section 2.2) is used to characterize the interactions of the
neurons within the neuronal population (for more details, see [14]). In this model, three
different types of neurons are considered: excitatory neurons (pyramidal cells), inhibitory
neurons with a fast action potential profile (GABAA fast interneurons), and inhibitory
neurons with a slow action potential profile (GABAA slow interneurons). The dipole
signal is obtained as the sum of the postsynaptic activity of all neuron types belonging
to the neuronal population.

Furthermore, the dynamics of different neuronal populations, i.e., of different dipoles,
also interact. These interactions are characterized by coupling coefficients, which regulate
the synchronization between different neuronal populations.

By changing the parameters related to the generation of postsynaptic potentials of
the neurons and the coupling coefficients between neuronal populations, the model can
be employed to simulate both epileptic spikes and normal background activity of the brain.
Figure 2.7 shows an example of 100 simulated interictal spike signals for the dipoles of an
epileptic patch.
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Figure 2.7: Example of 100 simulated interictal spike signals.





Chapter 3

Preprocessing

In this chapter, we are concerned with the preprocessing steps that are applied to the raw
EEG measurements before the actual source localization.

The first step of the EEG data analysis consists in removing the artifacts, or, equiva-
lently, in extracting the activity of interest, i.e., the epileptic spikes. As little information
on the underlying sources is available a priori, this is a typical application for Blind Source
Separation (BSS) methods [23, 24]. Due to their different physiological origins, it is rea-
sonable to assume that the artifacts are statistically independent of the epileptic activity,
which motivates the application of statistical methods based on Independent Component
Analysis (ICA). This approach is treated in Section 3.1.

Furthermore, if several source regions are involved in the epileptic activity, it is desir-
able to separate these sources to facilitate the source localization process. For statistically
independent sources, this may also be accomplished by ICA. However, in the context of
propagation phenomena, the signals of the different epileptic source regions are (highly)
correlated and their separation demands a different type of approach. In this thesis, we
explore the use of deterministic tensor-based methods, described in Section 3.2.

Depending on the amount and amplitude of artifacts and the nature of the epileptic
activity (number of foci and correlation) of the EEG data at hand, one may decide to
employ only one of the described preprocessing methods (ICA or tensor decomposition) or
both. To provide some guidelines for the choice of the appropriate preprocessing approach,
a comparison of the ICA-based and tensor-based preprocessing methods is conducted in
Section 3.3, revealing the limitations and strengths of both approaches.

3.1 Artifact removal and separation of independent
patches using ICA

In the past, a large number of BSS techniques have been successfully applied to separate
the artifacts from the neuronal activities of interest (see, e.g., [25, 26, 27, 28, 29]). Among
the employed methods one can find algorithms that are based on Second Order (SO)
statistics only, such as SOBI [30] and CCA [28], as well as various ICA algorithms, which
involve the exploitation of higher order (HO) statistics. In this section, we are mainly
interested in ICA-based techniques for artifact removal. The idea and the principles of
this approach are summarized in Sections 3.1.1 and 3.1.2. Furthermore, a description of
several state-of-the-art methods, including SO algorithms, is provided in Section 3.1.3.

15
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Recent studies [31, 32] have compared the performance of a number of popular ICA
algorithms for EEG denoising. The authors of [31] concluded that the COM2 algorithm
[33] is the method that yields the best compromise between performance and compu-
tational complexity. Albeit this method extracts not only the epileptic components of
interest, but inherently identifies also a large number of other components of the mixture.
Considering a sufficiently large number of sources, this can easily lead to the separation
of a hundred signals in the context of high-resolution EEG. Since we are only interested
in the epileptic activity, the computational complexity of the algorithm could be further
reduced by extracting only the epileptic signals of interest.

To extract a reduced number of ICA components, deflation methods can be employed.
However, a remaining difficulty in deflationary approaches consists in ensuring that the
signals of interest are extracted first such that the algorithm can be stopped after the sepa-
ration of a small number of components from the mixture. This requires the exploitation
of prior knowledge about the signals of interest. In [34], the constrained ICA (cICA)
framework has been developped to this end and ICA methods that work with a reference
signal, generally referred to as ICA-R, have been put forward [35, 36, 34, 37, 38, 39] to
extract the signals with the highest resemblance to the references. However, in practice,
reference signals are not always available. Therefore, in Section 3.1.4 of this thesis, we
pursue a different approach that is based on a penalized contrast function, leading to the
development of a new, deflationary algorithm, called P-SAUD. The performance of this
method for the extraction of the epileptic activity is studied in Sections 3.1.6 and 3.1.7
on simulated and real data in comparison to several popular ICA algorithms.

3.1.1 Problem formulation
In this section, we assume that the measurements x[t] ∈ RN of the electric potential
recorded by N sensors placed on the scalp constitute a linear mixture of epileptic activity,
muscular activity, and background activity of the brain (cf. Figure 3.1) in the presence
of instrumentation noise xi[t]. The mixture is characterized by the matrix H(e) ∈ RN×Pe

for the epileptic components s(e)[t], the matrix H(m) ∈ RN×Pm for the muscle artifact
components s(m)[t], and the matrix H(b) ∈ RN×Pb for the background activity components
s(b)[t]. The three matrices H(e), H(m), and H(b) can be combined in the mixing matrix
H = [H(e),H(m),H(b)] ∈ RN×P where P = Pe+Pm+Pb denotes the number of components.
In the following, we assume that P ≤ N . This leads to the following data analysis model
for the EEG data:

x[t] =H(e)s(e)[t] + H(m)s(m)[t] + H(b)s(b)[t] + xi[t] (3.1)
=Hs[t] + xi[t] (3.2)

where s[t] = [s(e)[t]T, s(m)[t]T, s(b)[t]T]T. In this section, {x[t]}, {xi[t]}, and {s[t]} are con-
sidered as stochastic random vector processes. The measurements X correspond to one
realization of length T of the process {x[t]} and are assumed to be centered.

As epileptic, muscle, and background activity have different physiological origins, their
signals can be assumed to be statistically independent. This property can be exploited to
recover the associated random process {s[t]} and the mixing matrix H (or, equivalently,
the demixing matrix Ω = H+) from the measurements such that the extracted signals are
maximally statistically independent, which is the objective of ICA. The P components of
the extracted signal vector s[t] can be divided into three subgroups that form bases for
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the signal subspaces of the epileptic, muscle, and background activities. Although the
different sources of the same type of activity might not be independent, in this case, ICA
still permits us to separate the subspaces of the three types of activity and therefore to
extract the EEG data containing epileptic activity, which constitutes our main objective.
To distinguish between the potentially correlated signals that are emitted by the electric
current sources for each type of activity and the statistically independent signals which
are extracted by ICA and form bases for the epileptic, muscle, and background signal
subspaces, we subsequently refer to the latter as “components” instead of “sources”.

Please note that the independent components can only be extracted up to a scale
and permutation indeterminacy, which means that any random vector s′[t] = DPs[t] and
mixing matrix H′ = HP−1D−1 that are obtained from solution vector s[t] and matrix H,
where D is a diagonal matrix and P is a permutation matrix, are also solutions to (3.2).

Figure 3.1: Mixture of epileptic signals, muscular activity, and background activity
recorded by the EEG sensors.

3.1.2 Principles of ICA
In this section, we describe several building blocks of common ICA algorithms. First
of all, finding a solution to the ICA problem described above requires a mathematical
formulation. This is achieved by employing a so-called contrast function, which is based
on a measure of statistical independence. This subject is addressed in Section 3.1.2.1.
Furthermore, to simplify the problem, many ICA algorithms employ prewhitening. This
step is described in Section 3.1.2.2. Finally, in Section 3.1.2.3, we also introduce a pa-
rameterization of the mixing matrix, which is employed by several of the ICA algorithms
considered in this thesis in conjunction with prewhitening.

3.1.2.1 Contrast function

To identify independent components by linear transformation, an optimization problem
which is based on some measure of statistical independence is solved. In the context of
ICA, the cost function that is maximized is referred to as a contrast function and has the
following properties [33, 24]:

• it is invariant to a permutation of the components,
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• it is invariant to a change of scale,

• it is maximal only for independent components.

Different contrast functions can be derived based on different measures of independence,
such as mutual information or negentropy. These two measures are closely related. Indeed,
they differ only in a constant and the sign in the case of uncorrelated signals, i.e., for
prewhitened data (see Section 3.1.2.2). Therefore, we subsequently concentrate on one of
these measures, negentropy, which is described in more detail below.

The definition of negentropy is based on the differential entropy, which is given by

h(px) =
∫ ∞
−∞

px(u) log(px(u))du (3.3)

where px is the probability density function (pdf) of the random variable x. It is well
known that the differential entropy is maximal for a Gaussian distribution. The negen-
tropy J(px) is then defined as the distance between the differential entropy h(px) of a
given random variable x and the differential entropy h(φx) of a Gaussian random variable
with the same mean and variance as x:

J(px) = h(φx)− h(px). (3.4)

Therefore, the negentropy constitutes a measure of non-Gaussianity. It is equal to zero for
a Gaussian random variable and greater than zero otherwise. An intuitive explanation
for the use of negentropy as a contrast function can be found in [33, 24]: according
to the central limit theorem, the distribution of a linear mixture of random variables
tends towards a Gaussian distribution. To recover the original, independent signals, it
is therefore reasonable to search for the signals whose distributions are as far from a
Gaussian distribution as possible, i.e., for which the negentropy is maximal, because even
the mixture of two independent signals would result in a distribution that is closer to that
of a Gaussian random variable than the distributions of the original signals.

As the negentropy is difficult to compute in practice, the contrasts used in ICA al-
gorithms are usually approximations of this measure. A number of popular contrast
functions including those employed by the COM2 and DelL algorithms described in Sec-
tion 3.1.3.2 are derived using cumulant-based approximations of negentropy. Another
approach, pursued in the FastICA algorithm, consists in approximating negentropy by
appropriate non-linear functions (see Section 3.1.3.2 and [40] for more details).

3.1.2.2 Prewhitening

In order to facilitate the separation of the components, many ICA methods employ a
prewhitening step that precedes the actual component extraction. The goal of prewhiten-
ing is to decorrelate the source signals, leading to a covariance matrix of the prewhitened
data that is equal to the identity matrix. One possibility to achieve this consists in
computing an EigenValue Decomposition (EVD) of the data covariance matrix Cx =
E{x[t]xT[t]}:

Cx =
[
Us Un

] [Σ2
s 0

0 Σ2
n

] [
UT

s
UT

n

]
(3.5)

where the columns of Us ∈ RN×P and Un ∈ RN×(N−P ) span the signal and noise subspaces,
respectively. The matrices Σ2

s ∈ RP×P and Σ2
n ∈ R(N−P )×(N−P ) contain the eigenvalues
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corresponding to the signal and noise parts. In practice, the covariance matrix Cx is
unknown and is estimated based on sample statistics. The prewhitened data z[t] ∈ RP

are then obtained as
z[t] = F+x[t] (3.6)

where F+ is the Moore-Penrose pseudo inverse of F = UsΣs. Note that an alternative
way to obtain z[t] is to compute the Singular Value Decomposition (SVD) of the data
matrix X ∈ RN×T , which corresponds to one realization of the random vector process
x[t] for t = 1, . . . , T time samples. Prewhitened data are then directly given by the right
singular vectors.

As statistical independence of the signals requires uncorrelatedness, identifying the
matrix F, which permits to obtain uncorrelated signals, partially solves the ICA problem.
However, a multiplication of F by any unitary matrix Q would also result in uncorrelated
signals. The objective of all ICA algorithms that are based on the prewhitened data
z[t] then reduces to identifying the unitary mixing matrix Q ∈ RP×P which leads to
statistically independent signals. Once an estimate Q̂ of this matrix has been determined,
an estimate of the original mixing matrix can be obtained as Ĥ = FQ̂.

3.1.2.3 Parameterization of the mixing vectors

To simplify the estimation of the unitary mixing matrix Q in the case of prewhitened data,
we introduce a parameterization of the mixing vectors based on Givens rotations. As has
been originally introduced in [41] and used in [33, 42], any unit-norm vector of dimension
K whose last element is non-negative can be parameterized by K − 1 Givens rotation
angles, such that the vector corresponds to the last row of the orthonormal matrix

Q(p)T(φp) = Q(p,K−1)
g (φp,K−1) · · ·Q(p,1)

g (φp,1) (3.7)

which is composed of the Givens rotation matrices

Q(p,k)
g (φp,k) =


Ik−1 0k−1,1 0k−1,K−1−k 0k−1,1

01,k−1 cos(φp,k) 01,K−1−k − sin(φp,k)
0K−1−k,k−1 0K−1−k,1 IK−1−k 0K−1−k,1

01,k−1 sin(φp,k) 01,K−1−k cos(φp,k)

 .

Here, φp = [φp,1, . . . , φp,K−1]T and p = 1, . . . , P denotes the index of the extracted ICA
component. After prewhitening, each vector of the unitary mixing matrix Q can thus be
characterized by a sequence of Givens rotations. To identify the mixing vectors qp, it is
sufficient to search for the parameters φp,k of these Givens rotations that maximize the
statistical independence of the components.

3.1.3 State-of-the-art methods for blind source separation
In the literature, a large variety of algorithms have been proposed to solve the BSS problem
(see, e.g., [24] and references therein). In this section, we discuss SO methods, that exploit
uncorrelatedness of the signals, and ICA, which relies on the statistical independence of
the components.
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3.1.3.1 SO methods

Methods based on SO statistics have been developed to separate uncorrelated signals. In
particular, some techniques assume that the signals are stationary and that the tempo-
ral correlation profile is different for each component. Based on these assumptions, SO
methods also allow for the separation of Gaussian signals. Subsequently, we review two
SO methods, CCA and SOBI, that are commonly used in the context of EEG denoising.
Together with the ICA algorithms described in Section 3.1.3.2, these methods will serve
as benchmark algorithms in Section 3.1.6.

CCA The objective of Canonical Correlation Analysis (CCA) (see, e.g., [28]) consists
in identifying linear filters α and β for two datasets {x[t]} and {y[t]} such that the
correlation coefficient

ρ(αTx,βTy) = E{(αTx[t])(βTy[t])}√
E{(αTx[t])2}E{(βTy[t])2}

= αTCxyβ√
(αTCxα)(βTCyβ)

(3.8)

between the filter outputs αTx and βTy is maximized. Here, Cxy = E{x[t]yT[t]} de-
notes the cross-covariance matrix of the random processes {x[t]} and {y[t]} and Cx =
E{x[t]xT[t]} and Cy = E{y[t]yT[t]} correspond to the covariance matrices of the pro-
cesses {x[t]} and {y[t]}. Note that we here assume that the datasets {x[t]} and {y[t]}
are zero-mean, which can easily be achieved by centering the data if this is not the case
beforehand. It can be shown that maximizing (3.8) with respect to α and β is equivalent
to solving the following two eigenvalue problems:

C−1
x CxyC−1

y Cyxα = λ2α (3.9)
C−1
y CyxC−1

x Cxyβ = λ2β, (3.10)

which can be done efficiently using QR-decompositions.
In the context of blind source separation, this approach has been adapted to extract

uncorrelated signals with maximal autocorrelation. To this end, we consider the EEG
data {x[t]} and the measurements at a time lag τ , {y[t]} = {x[t + τ ]}, and maximize
the correlation coefficient between the extracted signal {ωTx[t]} and its delayed version
{ωTx[t + τ ]}. In this case, the two filters α and β are thus identical to the demixing
vector ω (the vector ωT corresponds to one row of the demixing matrix Ω). This leads
to the CCA contrast function

ψ(ω) = ωTCx(τ)ω
ωTCx(0)ω (3.11)

where Cx(τ) = E{x[t]x[t + τ ]T} denotes the autocorrelation matrix at time lag τ . As
α = β = ω, in [28, 43], approximate solutions to the optimization problem based on
the contrast (3.11) are obtained by solving only one of the eigenvalue problems (3.9) and
(3.10) with Cxy = CT

yx = Cx(τ) and Cx = Cy = Cx(0). Due to matrix symmetries, the P
identified eigenvectors ωp are such that the extracted signals {ωT

p x[t]} are uncorrelated.
The CCA algorithm is summarized in Figure 3.2. Note that, contrary to most ICA
methods, CCA does not require prewhitening.

SOBI The Second Order Blind Identification (SOBI) algorithm [30] is applied to pre-
whitened data, which reduces the BSS problem to the identification of the unitary matrix
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1. Estimation of the spatial covariance matrices based on sample SO moments:
Cx(0) = 1

T

∑T
t=1 x[t]x[t]T, Cx(1) = 1

T

∑T
t=1 x[t]x[t+ 1]T

2. Determination of the eigenmatrix ΩT of Cx(0)−1Cx(1)Cx(0)−1CT
x (1) by QR-

decomposition and SVD of data matrices X and Y:
XT = QxRx, YT = QyRy

QT
xQy = UΣVT

ΩT = R−1
x U

3. Extraction of the mixing matrix Ĥ = Ω−1 and the signal matrix Ŝ = ΩX

Figure 3.2: Description of the CCA algorithm.

Q. The algorithm is based on the spatial covariance matrices C(τr) = E{z[t]zT[t + τr]}
of the prewhitened data {z[t]} for a fixed set of considered delays τr, r = 1, . . . , R. These
covariance matrices are given by

C(τr) = QCs(τr)QT (3.12)

where Cs(τr) = E{s[t]sT[t + τr]} are the covariance matrices of the signals, which are
diagonal because the signals are uncorrelated. The idea of SOBI consists in identifying the
matrix QT, which jointly (approximately) diagonalizes the matrices C(τr), r = 1, . . . , R:

QTC(τr)Q = diag(λ1, . . . , λP ).

This is achieved by minimizing the sum of the squares of the offdiagonal elements of the
matrices QTC(τr)Q, giving rise to the following cost function:

ψ(Q) =
R∑
r=1

off(QTC(τr)Q) with off(X) =
∑

1≤i6=j≤P
|Xi,j|2 for X ∈ RP×P , (3.13)

or, equivalently, by maximizing the squares of the diagonal elements, leading to the cost
function:

ψ(Q) =
R∑
r=1

trace(QTC(τr)Q). (3.14)

A number of techniques (see [44] or [24, Chapter 7] and references therein) have been
proposed to solve this type of optimization problems, including, for example, the Jacobi
algorithm, which is based on Givens rotations. The matrix Q, which is identified in this
way, is unique up to scale and permutation indeterminacies if the signals have different
normalized spectra (see [30] for more details). The steps of the SOBI algorithm are
summarized in Figure 3.3.

3.1.3.2 ICA methods

In this section, we focus on ICA algorithms, which resort to HO statistics of the data (see
Appendix A for a short introduction to HO statistics). As a consequence, these methods
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1. Prewhitening: Cx = 1
T

∑T
t=1 x[t]x[t]T, Cx = UΣ2UT, z[t] = (UsΣs)+x[t]

2. Estimation of the spatial covariance matrices based on sample SO moments:
C(τr) = 1

T

∑T
t=1 z[t]z[t+ τr]T

3. Determination of the unitary matrix Q by joint diagonalization of the matrices
C(τr), r = 1, . . . , R

4. Extraction of the mixing matrix Ĥ = UΣQ and the signals ŝ[t] = Ĥ+x[t]

Figure 3.3: Description of the SOBI algorithm.

are not suited for the separation of Gaussian signals, whose cumulants of order greater
than two are null. Only mixtures with at most one Gaussian signal can be identified by
ICA methods, which constitutes an important difference compared to SO methods.

Over the last two decades, a large number of ICA methods have been proposed (see [24]
and references therein). These algorithms can be divided into two types of approaches:
joint methods, that separate all components simultaneously, and deflation methods, which
extract the components sequentially. Among the joint methods, one can find popular
algorithms such as Infomax [45], JADE [46], and COM2 [33], whereas deflation methods
include, for example, the FastICA algorithm1 [47], RobustICA [48], and the adaptive
method by Delfosse and Loubaton [42], in the following referred to as DelL.

Another aspect in which the above-mentioned ICA algorithms differ consists in the
procedure employed for the maximization of the contrast function, leading to the distinc-
tion of iterative algorithms and semi-algebraic methods. Iterative algorithms are based
on an update rule, whose repeated application permits to obtain an estimate of the mix-
ing matrix. This type of approach comprises classical optimization procedures such as
gradient-based algorithms and Newton search methods. Semi-algebraic approaches, on
the other hand, include methods based on joint diagonalizations [46, 49, 50] and polyno-
mial rooting [33, 51].

For the positionning of the techniques discussed in this thesis, the above-described
differences between ICA algorithms are the most relevant. Note though that other clas-
sifications of ICA algorithms also exist. For example, the ICA methods can be classified
according to the employed contrast function, leading to the distinction between approaches
that are based on differential entropy, such as Infomax and FastICA, and cumulant-based
techniques like JADE, COM2, and DelL. Furthermore, one can distinguish between batch
ICA methods, that process a block of observed data samples, and adaptive algorithms,
which work on a sample-by-sample basis. Finally, ICA techniques for underdetermined
mixtures [49, 52, 50, 53] can also be considered as opposed to complete and overdetermined
ICA methods, that are able to extract at most as many components as sensors. Here,
we do not consider underdetermined methods and focus on cumulant-based approaches
that are applied to blocks of EEG data. In the following, we describe three popular ICA
algorithms: FastICA, DelL, and COM2. These algorithms are all based on prewhitened
data and aim at identifying the unitary mixing matrix Q.

1Please note that a version of the FastICA algorithm which jointly extracts all components also exists.
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FastICA The FastICA algorithm [40, 24] is an iterative method which extracts the com-
ponents sequentially. For the extraction of the p-th component, it employs the contrast
function

ψ(qp) = E{f(qT
p z[t])} (3.15)

which has been derived from an approximation of negentropy for suitably chosen non-
quadratic functions f . For example, f(u) = u3 leads to a contrast that constitutes a
simplified form of kurtosis. In this case, an approximation of negentropy has previously
been derived in [33]. Please note that other choices for f lead to contrast functions which
are not based on cumulants. The contrast is optimized iteratively with respect to the
vector qp using an approximate Newton method. Based on an initial estimate q(1)

p , at the
iteration i, this leads to the following update rule for the vector qp:

q(i+1)
p = E{f(q(i)T

p z[t])z[t]} − E{f ′(q(i)T
p z[t])}qp. (3.16)

In practice, the expectations are replaced by sample means. In order to ensure that
the p-th extracted component is decorrelated with all previously identified components,
a deflation scheme based on Gram-Schmidt orthogonalization is used. More precisely,
after each iteration, the current estimate q(i+1)

p of the mixing vector is projected onto
the subspace that is orthogonal to all previously extracted mixing vectors qq with q =
1, . . . , p− 1:

q(i+1)
p ← q(i+1)

p −
p−1∑
q=1

(q(i+1)T
p qq)qq. (3.17)

Finally, the vector q(i+1)
p is normalized according to:

q(i+1)
p ←

q(i+1)
p

||q(i+1)
p ||2

. (3.18)

The steps of the FastICA algorithm are summarized in Figure 3.4 for f(u) = u3. Note
that in this case, the algorithm is not a Newton type, but deflates to a mere fixed-step
gradient, as pointed out in [54, 48].

Prewhitening: Cx = 1
T

∑T
t=1 x[t]x[t]T, Cx = UΣ2UT, z[t] = (UsΣs)+x[t]

for p = 1 to P do
initialization of q(1)

p

for i = 1 to I do
update of the mixing vector: q(i+1)

p =
(∑T

t=1(q(i)T
p z[t])3z[t]

)
− 3q(i)

p

projection: q(i+1)
p ← q(i+1)

p −∑p−1
q=1(q(i+1)T

p qq)qq
normalization: q(i+1)

p ← q(i+1)
p

||q(i+1)
p ||2

end for
extraction of the mixing vector ĥp = UsΣsq(i+1)

p

end for

Figure 3.4: Description of the FastICA algorithm.
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DelL The authors of [42] have proposed an adaptive ICA algorithm which extracts the
components sequentially. This method, subsequently referred to as DelL, is based on the
following contrast function:

ψ(sp) =
C2

4,sp

4 (3.19)

where {sp[t]} corresponds to the extracted signal for the p-th component and C4,y denotes
the fourth order (FO) cumulant of the random variable y. The signal {sp[t]} is obtained
by applying an appropriate filter q(p) to the prewhitened data {z(p)[t]}: sp[t] = q(p)Tz(p)[t].

To facilitate the determination of the filter, the parameterization based on Givens
rotations, which has been described in Section 3.1.2.3, is used. More particularly, the
vector q(p) is defined such that

Q(p)T(φp) =
[
Q̃(p)T(φp)
q(p)T(φp)

]
,

where Q(p)T(φp) can be written according to (3.7), and is entirely described by the vector
φp of Givens rotation angles. The identification of q(p)(φp) thus reduces to the estimation
of the vector φp, which is performed using a gradient ascent algorithm. Based on an initial
estimate φ(1)

p , at iteration i, the vector of rotation angles is updated according to

φ(i+1)
p = φ(i)

p + µ
∂ψ

∂φp
(3.20)

where µ is a stepsize parameter. The derivative of the contrast with respect to the
parameter vector φp is given by

∂ψ

∂φp
= 2C4,sp

∂M4,sp

∂φp
(3.21)

where M4,sp denotes the FO moment of the extracted signal {sp[t]}.
Once the p-th component has been extracted, the remaining components can be iden-

tified from the data in the subspace that is orthogonal to the extracted component. This
leads to a decrease in dimension of the analyzed data with increasing number of ex-
tracted components. To formulate the complete algorithm, we introduce the data vector
z(p+1)[t] for the extraction of the (p + 1)-th component. This vector is obtained as:
z(p+1)[t] = Q̃(p)Tz(p)[t] with z(1)[t] = z[t].

Depending on the way the FO cumulant and moment, C4,sp and M4,sp , are estimated,
we distinguish between the following two versions of the DelL algorithm:

Stochastic gradient DelL (DelL-SG) The original DelL algorithm proposed in [42]
is adaptive and estimates the moment M4,sp at iteration i based on the data sam-
ple that is available at time sample t = i, while the cumulant C4,sp is estimated
adaptively:

M
(i)
4,sp = s4

p[i] = (qT(φ(i)
p )z(p)[i])4

C
(i+1)
4,sp = C

(i)
4,sp + µ

(
s4
p[i]− 3

4 − C(i)
4,sp

)
.
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This approach leads to a stochastic gradient algorithm with the following update
rule for the parameter vector φp:

φ(i+1)
p = φ(i)

p + 2µC(i)
4,sps

3
p[i]Γ(φ(i)

p )z(p+1)[i] (3.22)

where Γ(φ(i)
p ) = diag(δ(φ(i)

p )) with

δ(φ(i)
p,`) =

{
1 for ` = 1∏`−1

i=1 cos(φ(i)
p,i) for ` = 2, . . . , P − p− 1.

Deterministic gradient DelL (DelL-DG) As EEG data are generally not processed
in real-time, here we consider a deterministic gradient algorithm, which exploits all
available time samples to estimate the FO cumulant and moment, C4,sp and M4,sp ,
required for the updates of the parameter vector φ:

M
(i)
4,sp = 1

T

T∑
t=1

(q(p)T(φ(i)
p )z(p)[t])4

C
(i)
4,sp =

(
1
T

T∑
t=1

(q(p)T(φ(i)
p )z(p)[t])4

)
− 3.

This leads to the following update rule:

φ(i+1)
p = φ(i)

p + 2µC(k)
4,sp

1
T

T∑
t=1

(q(p)T(φ(i)
p )z(p)[t])3Γ(φ(i)

p )z(p+1)[t]. (3.23)

The steps of the DelL-DG algorithm are summarized in Figure 3.5.

Prewhitening: Cx = 1
T

∑T
t=1 x[t]x[t]T, Cx = UΣ2UT, z[t] = (UsΣs)+x[t]

initialization: z(1)[t] = z[t]
for p = 1 to P {loop over components} do
initialization: φ(1)

p

for i = 1 to I {loop over iterations} do
estimation of the cumulant C(i)

4,sp =
(

1
T

∑T
t=1(q(p)T(φ(i)

p )z(p)[t])4
)
− 3

update of the parameter vector
φ(i+1)
p = φ(i)

p + 2µC(i)
4,sp

1
T

∑T
t=1(q(p)T(φ(i)

p )z(p)[t])3Γ(φ(i)
p )z(p+1)[t]

end for
computation of the mixing matrix Q(p)(φ(i+1)

p )
extraction of the mixing vector ĥp = UsΣs

(∏p−1
k=1 Q̃(k)T

)
q(p), and the signal

ŝp[t] = q(p)Tz(p)[t]
z(p+1)[t] = Q̃(p)Tz(p)[t]

end for

Figure 3.5: Description of the DelL-DG algorithm.
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COM2 The COM2 algorithm [33, 24] employs the parameterization based on Givens
rotations (see Section 3.1.2.3) to identify the unitary mixing matrix Q and resembles
the DelL algorithm in this regard. However, contrary to DelL, COM2 employs a semi-
algebraic optimization method and extracts all components at once. Furthermore, the
COM2 method exploits the fact that it is sufficient to impose pairwise independence to
solve the BSS problem described in Section 3.1.1 (cf. [33]). In order to achieve statistical
independence of a pair of signals {sp[t]} and {sk[t]}, the following contrast is used:

ψ(sp, sk) = C2
4,sp + C2

4,sk . (3.24)
Due to the employed parameterization, the signals {sp[t]} and {sk[t]} that are extracted
from the observations depend on the angle φp,k that characterizes the Givens rotation.
More particularly, setting θp,k = tan(φp,k), the signals are obtained from the elements of
the prewhitened data as[

sk[t]
sp[t]

]
=
√√√√ 1

1 + θ2
p,k

[
1 −θp,k
θp,k 1

] [
zk[t]

zP−p+1[t]

]
. (3.25)

For each signal pair (p, k), COM2 determines the optimal parameter θp,k that maximizes
the contrast (3.24). This can be achieved using the algebraic optimization method de-
scribed in Appendix B. To obtain an estimate of the mixing matrix QT(Θ), the procedure
is repeated for all signal pairs over I iterations, assembling the matrices Q(p,k)

g (θp,k). The
steps of the algorithm are outlined in Figure 3.6.

Note that there also exists an adaptive (i.e. stochastic) COM2 algorithm, along the
lines of [55, 56].

Prewhitening: Cx = 1
T

∑T
t=1 x[t]x[t]T, Cx = UΣ2UT, z[t] = (UsΣs)+x[t]

initialization: Q = IP
for i = 1 to I {loop over iterations} do
for p = 1 to P {loop over components} do
for k = 1 to P − p {loop over all signal pairs} do
optimization of (3.24) with respect to θp,k and construction of the Givens
rotation matrix Q(p,k)

g (θp,k)
QT ← Q(p,k)

g QT

z[t]← Q(p,k)
g z[t]

end for
end for

end for
extraction of the mixing matrix Ĥ = UsΣsQ

Figure 3.6: Description of the COM2 algorithm.

3.1.4 Penalized semi-algebraic unitary deflation (P-SAUD) al-
gorithm

To reduce the computational complexity of the ICA preprocessing step by extracting only
the epileptic signals of interest, we subsequently develop a new algorithm, which is based
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on a penalized deflation scheme. The proposed method builds on the SAUD algorithm,
that was first presented in [57] and which is inspired by both COM2 and DelL. SAUD
extracts the components sequentially, exploiting ideas from DelL, but is based on the
contrast function for pairwise independence and the efficient optimization procedure of
the COM2 algorithm, thereby combining the strengths of both methods. However, as
for COM2, the order of the components extracted with SAUD is arbitrary. In order to
reduce the computational complexity, we would like to extract only the epileptic activity
of interest. This would also lead to the additional benefit of avoiding high perturbations of
the epileptic signal components due to an accumulation of errors during previous deflation
steps, which constitutes a common problem of deflation algorithms.

To ensure that the epileptic activity is identified during the first deflation steps, the
idea of the proposed P-SAUD algorithm consists in exploiting the fact that the auto-
correlation of the epileptic components is higher than that of muscular artifacts. More
particularly, to extract, at each step of the deflation procedure, the signal with the highest
autocorrelation, we add a penalization term to the COM2 contrast function. This gives
rise to the P-SAUD contrast function which is given by

ψc(sp, sk) = C2
4,sp + C2

4,sk +
R∑
r=1

λr · cov(sp[t], sp[t+ τr])2. (3.26)

Here, cov(x, y) denotes the covariance of random variables x and y. Furthermore, λr,
r = 1, . . . , R, are penalization parameters that determine the influence of each of the R
penalty terms and τr denotes the signal delay included in the r-th covariance penalty. In
the following, we consider that all covariance terms are equally important and therefore
set λr = λ.

In practice, the value of the penalization parameter λ needs to be adjusted depending
on the kurtosis and the autocorrelation of the signal to extract. As the magnitudes of
these factors are generally unknown, we propose to estimate them based on the signal
{sp[t]} retrieved at the previous iteration. In order to ensure that the epileptic activity
is extracted first, we use a high value of λ during the first iterations and reduce the
penalization parameter with increasing number of iterations until it reaches a final value
that manages a balance between the COM2 contrast (3.24) and the penalization term.

As proposed in [57], the P-SAUD algorithm employs the same deflation procedure
as DelL. For the extraction of the p-th component, it identifies the matrix Q(p) and in
particular the vector q(p)T from the temporary data vector z(p)[t] (cf. Section 3.1.3.2).
Using the parameterization based on Givens rotations, this reduces to the estimation of
the rotation angles φp,k contained in the vector φp. Contrary to DelL, which estimates
the vector φp using gradient ascent, the P-SAUD algorithm determines the optimal ro-
tation angle for all signal pairs with reference signal p alternatingly, following the COM2
approach. To this end, for each considered signal pair, the P-SAUD contrast (3.26) is
maximized with respect to the parameter θp,k, which characterizes the signals {sp[t]} and
{sk[t]} as described in Section 3.1.3.2 (cf. equation (3.25)). The optimization can be
carried out algebraically and is described in Appendix B. Finally, we find the matrix Q̃(p)

and the vector z̃(p) such that:

Q(p)T =
[
Q̃(p)T

q(p)T

]
and z(p) =

[
z̃(p)

z
(p)
1

]
and initialize the temporary mixing matrix and data vector for the (p + 1)-th source by
Q(p+1) = Q̃(p) and z(p+1) = z̃(p).



28 CHAPTER 3. PREPROCESSING

The steps of the P-SAUD algorithm are summarized in Figure 3.7. The algorithm is
stopped afterM components including the epileptic signals of interest have been extracted.

Remark: To automatically determine the number of components to extract, one could
employ a spike detection method that is run on the extracted components and stops the
algorithm after several components without epileptic activity have been identified.

Prewhitening: Cx = 1
T

∑T
t=1 x[t]x[t]T, Cx = UΣ2UT, z[t] = (UsΣs)+x[t]

initializations: z(1)[t] = z[t], Q(1) = IP , α = αmax
for p = 1 to M do
for i = 1 to I do
α← α− 1

I
(αmax − αmin)

for k = 1 to P − p do
estimation of kurtosis and penalty of the current signal estimate to adjust
the penalization parameter:

C1 = kurt(z(p)
1 [t])2

P1 = ∑R
r=1 cov(z(p)

1 [t], z(p)
1 [t+ τr])2

λ = αC1
P1

optimization of (3.26) with respect to θp,k and construction of the Givens
rotation matrix Q(p,k)

g

Q(p)T ← Q(p,k)
g Q(p)T

z(p)[t]← Q(p,k)
g z(p)[t]

end for
end for
extraction of the mixing vector ĥp = UsΣsq(p), ŝp[t] = q(p)Tz[t]
Q(p+1) = Q̃(p), z(p+1)[t] = z̃(p)[t]

end for

Figure 3.7: Description of the P-SAUD algorithm.

3.1.5 Analysis of the computational complexity
An important aspect in the evaluation of different algorithms is their computational com-
plexity. This point has been addressed in [31] for a number of popular ICA methods,
including the SO and ICA methods presented in Section 3.1.3. Subsequently, we there-
fore concentrate on the calculation of the computational complexity of P-SAUD.

The computational complexity is generally assessed as the number of real-valued float-
ing point operations (FLOPs) that are required for the completion of an algorithm. As
the number of additions is usually of the same order as the number of multiplications, the
analysis of the computational cost of an operation is often limited to the determination
of the number of multiplications. Therefore, in the following, we compute the number of
real-valued multiplications involved in the P-SAUD algorithm.

The first step of P-SAUD consists in prewhitening the data, which can be accom-
plished either by an EVD or by an SVD (cf. Section 3.1.2.2), leading to a computational
complexity of min(TN2/2 + 4N3/3 + PMT, 2TN2) FLOPs [31].
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The highest computational cost of P-SAUD can be associated with the estimation of
the FO cumulants and the covariances that are exploited in the penalized contrast (3.26).
These can be obtained in two different ways:

1. Estimation of the cumulants and covariances for each pair of analyzed signals from
the temporary data vectors at each iteration.
The estimation of the cumulants for one pair of signals that is associated with
two rows of {y(p)[t]} from T time samples requires O(8T ) FLOPs if the Leonov-
Shiryaev formula for zero-mean data with unit-variance is used (cf. Appendix A.1).
Furthermore, the estimation of the covariances requires O(4T ) FLOPs for each
of the R penalty terms. On the whole, considering that the number of epileptic
components is small compared to the number of sensors and that these components
are extracted first, this leads to O(8TIMP ) and O(4RTIMP ) FLOPs for cumulant
and covariance estimations for the extraction of the first M components.

2. Estimation of the complete cumulant and covariance matrices in a first step and
derivation of the statistics required for the analysis of a certain pair of components
using the orthogonal transformation matrix Q(p) in a second step.
For real-valued data, the FO cumulant matrix contains O(P 4/24) different cumu-
lants that are estimated using O(3T ) FLOPs for each cumulant. Exploiting the
multilinearity property of cumulants (cf. Appendix A.2), the cumulants of the
data after one Givens rotation can be derived from the quadricovariance matrix
with 16 FLOPs per cumulant, i.e., O(2P 4/3) FLOPs in total. On the whole, this
corresponds to O(TP 4/8 + 2P 5MI/3) FLOPs. Similar considerations reveal a com-
putational cost of O(R(P 2T + 4MP 2I)) for the estimation and transformations of
R time-delayed covariance matrices.

The first method is called “computation on demand” in [56] and generally involves less
computations than the second method, as pointed out in this reference. For both ways of
estimating the statistics, the computational cost for all ∑M

n=1(P − n) considered pairs of
components has to be summed up over all iterations I.

Furthermore, at each iteration and for each pair of components, the optimization of
(3.26) requires the rooting of an 8-th degree polynomial (cf. Appendix B) which can
be accomplished with IMPQ8 FLOPs, where Qn denotes the computational complexity
associated with the rooting of a polynomial of degree n. The update of the temporary
demixing matrix and the data vector z(p)[t] necessitates O(4T + 4P ) FLOPs for each
pair of components, i.e., O((4T + 4P )IMP ) FLOPs for the extraction of M components.
Finally, the computation of the signal and mixing vectors of the extracted components
adds up to O(4P 2IM + PTM) FLOPs.

Table 3.1 shows the summarized computational complexity of P-SAUD in comparison
to the computational costs of CCA, SOBI, FastICA, COM2, and DelL-DG.

3.1.6 Computer results
In this section, we evaluate the performance of the proposed P-SAUD algorithm in com-
parison to the perfomances achieved by the state-of-the-arts methods described in Section
3.1.3 by means of computer simulations.
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Number of FLOPs
P-SAUD min(TN2/2 + 4N3/3 + PMT, 2TN2) + IP 2Q8/2+

4P 2IM +Rmin(4TIMP, P 2T + 2IP 3) + PTM+
min(2IP 5M/3 + P 4T/8, 8ITPM)

CCA T (3N2 + 7P ) + 32P 3/3 +NP 2

SOBI min(TN2/2 + 4N3/3 + PMT, 2TN2) + 4N3/3+
IP (P − 1)(17(Nτ − 1) + 75 + 4P + 4P (Nτ − 1))/2+
(Nτ − 1)N3/2

FastICA min(TN2/2 + 4N3/3 + PMT, 2TN2)+
(2(P − 1)(P + T ) + 5TP (P + 1)/2)I

COM2 min(TN2/2 + 4N3/3 + PMT, 2TN2) + IP 2Q4/2+
min(IP 6/6 + 2IP 3 + P 4T/8 + TP 2, 6ITP 2)

DelL-DG min(TN2/2 + 4N3/3 + PMT, 2TN2) + 3ITN2

Table 3.1: Computational complexity in terms of real-valued multiplications for P-SAUD,
CCA, SOBI, FastICA, COM2, and DelL-DG. The results for SOBI, FastICA, and COM2
are reproduced from [31]. Note that the number of iterations, denoted by I, may differ
for each algorithm in order to reach convergence.

3.1.6.1 Simulation setup

Data generation We simulate 32 s of realistic measurement data for 32 electrodes
and a sampling rate of 256 Hz originating from two patches with independent epileptic
activities. Each patch consists of 100 adjacent grid dipoles emitting highly correlated
signals. We consider three scenarios with different patch distances: patches SupFr and
SupOcc (large distance), patches InfFr and InfPa (medium distance), and patches SupFr
and InfFr (small distance). For an illustration of the patches, the reader is referred to
Figure 2.6. The data are synthesized based on a realistic head model and signals obtained
using a neuronal population model as described in Section 2.5.2. Finally, muscular activity
recorded during an EEG session is added to the epileptic data according to a given SNR,
which is computed as SNR = ||Xe||F

||N||F
where Xe denotes the epileptic data of interest and

N corresponds to the noise, i.e., in this case, to the muscular artifacts.

Tested algorithms We apply the proposed P-SAUD algorithm to 50 realizations of
simulated data with different epileptic spikes and artifacts and compare its results to
those of SAUD, SOBI, COM2, CCA, FastICA, and DelL-DG. The maximal delay for
the autocorrelation matrices considered in SOBI is fixed to 15 time samples. Note that
DelL-DG is implemented with an adaptive stepsize of the gradient algorithm, contrary
to the original method described in [42]. For P-SAUD, we compare the results obtained
for τ = 1 and τ = [1, 2, 3, 4, 5] with τ = [τ1, . . . , τR]. The parameters αmax and αmin (cf.
Figure 3.7) are set to 4 and 0, respectively.

Evaluation In order to analyze the performance of the different methods, we compute
the correlation coefficients of the original and estimated signals and of the original and
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estimated mixing vectors of the epileptic components, which are given by

ρs = (s− µs)T(̂s− µŝ)
||s− µs||2 · ||̂s− µŝ||2

(3.27)

ρh = (h− µh)T(ĥ− µĥ)
||h− µh||2 · ||ĥ− µĥ||2

(3.28)

where µx corresponds to the mean of the elements of vector x. To determine the worst
case performance of the methods, we focus on the smallest correlation coefficient obtained
for the two patches for each of the 50 realizations. To obtain a robust measure of this
correlation coefficient, we then take the median value observed over all realizations.

In addition, we determine how many components have to be extracted to identify the
epileptic activity using the P-SAUD algorithm compared to SAUD and the other consid-
ered deflation algorithms, i.e., FastICA and DelL-DG. To this end, we identify the indices
of the extracted components whose signals show the highest correlation with the original
epileptic signals and average the maximal index for each method over all realizations.
Even though CCA extracts the components simultaneously, we show the corresponding
indices after ordering the extracted components according to their autocorrelation to
demonstrate the interest in using the autocorrelation as a penalization term for P-SAUD.

3.1.6.2 Performance analysis for different patch distances

The mixing vector and signal correlation coefficients are displayed in Figure 3.8 and the
maximal index of the extracted epileptic components is plotted in Figure 3.9 as a function
of the SNR for the three considered scenarios. Figure 3.8 shows that P-SAUD for both
τ = 1 and τ = [1, 2, 3, 4, 5] and COM2 achieve approximately the same performance.
FastICA leads to similar results for distant patches and slightly worse results in the other
cases. Furthermore, SAUD generally exhibits slightly reduced correlation coefficients
compared to P-SAUD. Finally, the epileptic components extracted by the SO methods
CCA and SOBI are not as accurate as those of higher order algorithms such as P-SAUD
and FastICA, in particular concerning the spatial mixing vectors. This is due to the fact
that the epileptiform signals of the two patches exhibit identical temporal correlation
profiles, which prevents an accurate separation based on SO methods. DelL also exhibits
a clearly reduced performance in comparison to the other FO methods for SNR less than
-5 dB.

Comparing the results obtained for different patch distances, we note that the closer
the patches, the faster the correlation coefficients diminish with decreasing SNR. Never-
theless, for all considered scenarios, P-SAUD and COM2 permit to extract spatial mixing
vectors with correlation coefficients close to 0.9 for SNR as small as -20 dB. If we consider
that, as a rule of thumb, a correlation coefficient ρh of at least 0.9 is required to ob-
tain reasonable source localization results based on the estimated spatial mixing vectors,
this means that P-SAUD and COM2 accurately separate the epileptic activity from the
artifacts if the SNR is higher than or equal to -20 dB.

As shown in Figure 3.9, for SAUD, the index of epileptic signals increases with di-
minishing SNR and is very high for SNR below -15 dB. This means that SAUD extracts
the signals of interest rather late, which favors the accumulation of errors in the defla-
tion algorithm. On the contrary, due to the selection of the extracted components by
the penalization term, P-SAUD ensures that the epileptic activity is extracted first as
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Figure 3.8: Correlation coefficients of recovered signal vectors and mixing vectors for the
two distant patches SupFr & SupOcc (top), patches InfFr & InfPa with medium distance
(center), and the two close patches SupFr & InfFr (bottom) for N = 32 sensors.

confirmed by low indices less than or equal to 5 for τ = [1, 2, 3, 4, 5] and less than or
equal to 10 for τ = 1. This explains the reduced performance of SAUD in comparison
to P-SAUD. Comparing the indices of the components extracted with P-SAUD for τ = 1
and τ = [1, 2, 3, 4, 5], one can observe that for medium and small patch distances, the
indices are smaller if several penalties are used. This means that the use of several auto-
correlation terms leads to a more robust extraction of the epileptic components compared
to the case where only one penalty is used. However, this gain in robustness comes at
an increased computational cost (cf. Figure 3.10). For FastICA and DelL, in this simu-
lation, the average numbers of components that need to be extracted do not exceed 10
and 20, respectively. However, in practice, for these two methods the deflation algorithm
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Figure 3.9: Index of recovered components for the two distant patches SupFr & SupOcc
(top left), patches InfFr & InfPa with medium distance (top right), and the two close
patches SupFr & InfFr (bottom) for N = 32 sensors.

cannot be stopped after the extraction of a reduced number of components because theses
methods extract the components in an arbitrary order and there is no guarantee that all
epileptic components have been extracted after a given number of deflation steps.

3.1.6.3 Computational complexity

In Figure 3.10, we plot the performance achieved with the different tested algorithms as
a function of the number of FLOPs computed according to Table 3.1 for a fixed SNR
of -15 dB and the scenario with two distant patches. Except for CCA, which requires a
fixed number of FLOPs, the computational complexity is varied by changing the number
of iterations performed by the different algorithms. We assume that P-SAUD extracted
the epileptic activity after M = Pe = 2 sweeps. It can be seen that the computational
complexity of the SO methods CCA and SOBI (at the point of convergence) is smaller
than that of conventional ICA methods such as FastICA and COM2 by a factor of approx-
imately 100. However, FastICA, COM2, and SAUD extract the spatial mixing vectors
with a higher accuracy than the SO methods. At an order of FLOPs that is comparable
to that of the other ICA methods, DelL exhibits a very bad performance. Due to the
deflation scheme, P-SAUD extracts the epileptic signals of interest at a reduced computa-
tional complexity compared to the other ICA methods while attaining the same accuracy
as FastICA and COM2. While the gain on computational complexity of P-SAUD is
significant if only one autocorrelation term is employed for penalization, as the number
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Figure 3.10: Performance as a function of computational complexity for the scenario
SupFr & SupOcc, an SNR of -15 dB, and N = 32 sensors.

of autocorrelation terms increases, the computational complexity of P-SAUD augments.
Therefore, it is generally more efficient to consider only one autocorrelation penalty in
the P-SAUD contrast function and to extract a slightly increased number of components
if necessary.

3.1.7 Real data analysis
To demonstrate the good performance of P-SAUD on real data, we illustrate the results
obtained for 32-channel EEG recordings of a patient suffering from temporal lobe epilepsy.
The measurements were acquired with a sampling frequency of 256 Hz and we considered
an interval of about 20 s of interictal epileptic spikes corrupted by muscle artifacts and
noise (cf. Fig. 4.10 (left), which shows a segment of the considered data). To remove
the artifacts and noise, we applied both P-SAUD (with τ = 5) and COM2 to the data,
extracting 32 independent signal components, shown in Fig. 4.10 (right). Contrary to
COM2, which extracts the signals in an arbitrary order, in the case of P-SAUD, the
order of the extracted signals depends on their autocorrelation. The components that
characterize the epileptic spikes are thus extracted first whereas muscle activity, which has
a low autocorrelation, is extracted last. The data were reconstructed using the first two
P-SAUD components, which were selected by an EEG expert (see Fig. 4.10 (center left)).
A comparison with the original data shows that the muscle activity, which corrupted in
particular the recordings of electrodes FC6 and T4 has been removed in the reconstructed
data and the noise has been reduced. Comparable results have been obtained for several
other data sets. As this example shows, to reconstruct the epileptic spike data using
P-SAUD, it would have been sufficient to extract only the first few components, which
leads to a reduction of the computational complexity compared to COM2.

3.1.8 Conclusions
In this section, we have presented a new deflation algorithm that efficiently extracts the
epileptic activity from EEG data corrupted by noise and artifacts. The proposed method
exploits ideas from the COM2 and DelL algorithms, combining the efficient, semi-algebraic
optimization procedure of COM2 with the deflation method by orthogonal projection of
DelL. As shown by simulations and demonstrated on a real data example, the use of a
contrast function that is penalized by autocorrelation terms ensures that the P-SAUD
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Figure 3.11: Real EEG recordings: Noisy data, data reconstructed using the first two
components extracted by P-SAUD, and signal components extracted with COM2 and
P-SAUD.

algorithm extracts the epileptic activity in the first deflation steps. By uniting ideas
of COM2, DelL, and CCA to extract only a small number of components of interest,
the proposed P-SAUD algorithm therefore succeeds in denoising the EEG recordings of
epileptic signals with the same performance as COM2, but at a considerably reduced
computational cost.

3.2 Separation of correlated sources based on tensor
decomposition

Let us assume that artifacts have already been removed from the EEG recordings, for ex-
ample by applying one of the methods described in Section 3.1, or that the perturbations
of the data due to artifacts are insignificant. The measurements can thus be considered
to contain only the signals of interest, which may yet originate from several source re-
gions, and background activity of the brain. In this context, to simplify the problem
of localizing several potentially correlated patches, it is desirable to apply a preprocess-
ing technique to the EEG data that separates simultaneously active source regions into
different components and reduces the noise.

In the past, a number of researchers have explored the application of determinis-
tic tensor-based methods for EEG source separation. These techniques exploit multi-
dimensional data (at least one dimension in addition to space and time) and assume
a certain structure underlying the measurements. This structure is then exploited to
identify a number of components that can be associated with the sources using tensor de-
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composition methods such as the Canonical Polyadic (CP) decomposition [58], described
in Section 3.2.2, which imposes a multilinear structure on the data. A few references can
also be found where less restrictive tensor models are employed, including the PARAFAC2
model [59, 60, 61, 62], the Shift-invariant CP decomposition [63, 64] and an extension of
the latter [65].

To obtain multidimensional data, one can either collect an additional diversity directly
from the measurements, for instance, by taking different realizations of a repetitive event
(see [66, 67, 68]), or create a third dimension by applying a transform which preserves
the two original dimensions, such as the Short Term Fourier Transform (STFT) or the
wavelet transform. Several authors have studied the application of the CP decomposition
to Space-Time-Frequency (STF)-transformed EEG data, which is obtained by computing
a wavelet transform [69, 70, 71, 72, 73] or the Wigner-Ville distribution [74] over the time
dimension of the measurements. Under certain conditions on the signals, this method
provides separate space, time, and frequency characteristics for each source region and
therefore allows localizing each patch individually in a second step. This method is
detailed in Section 3.2.3.1.

In Section 3.2.3.2, we present an alternative method which is based on a local spatial
Fourier transform of the EEG measurements. This leads to a Space-Time-Wave-Vector
(STWV) tensor, that can also be decomposed using the CP model. An advantage of this
approach compared to the STF analysis consists in its robustness to correlated source
activities. This is of particular interest when patches with identical, but shortly delayed
source activities have to be identified. This problem is, for instance, encountered in the
context of interictal spikes when spreading of epileptic spikes is suspected between two
regions.

To understand the underlying mechanisms and conditions that are necessary for the
STF and STWV techniques to work, in Section 3.2.4, we conduct a theoretical analysis of
these approaches and derive sufficient conditions under which these methods yield exact
results. To our knowledge, this has not been studied before.

Finally, we analyze the source separation performance achieved by these methods on
simulated data.

3.2.1 Problem formulation
In this section, we assume that the EEG data are generated by P (distributed) sources in
the presence of background activity. The spatial distribution of each source is character-
ized by the spatial mixing vector h(e)

p whereas the temporal activity is described by the
signal vector s(e)

p . This leads to the following data analysis model for the EEG recordings:

X = H(e)S(e) + Xb (3.29)

where the spatial mixing matrix H(e) = [h(e)
1 , . . . ,h(e)

P ] contains the spatial mixing vectors
for all sources and the signal matrix S(e) = [s(e)

1 , . . . , s(e)
P ]T characterizes the associated

temporal activities. The objective then consists in estimating the matrices H(e) and S(e)

from the data X, which permits us to separate several simultaneously active patches.
Please note that contrary to Section 3.1, where the measurements and the signals are
regarded as stochastic random vector processes, in this section, they are treated as deter-
ministic matrices.
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The model (3.29) is a bilinear model in space and time. However, there is no unique
solution for such a matrix decomposition unless one imposes additional constraints like or-
thogonality or statistical independence as incorporated in Principal Component Analysis
(PCA) or ICA. Since such constraints may be physiologically difficult to justify, especially
in the context of propagation phenomena, which lead to correlated source signals, another
solution to the problem of non-uniqueness is desirable. This is what motivates the use of
tensor decomposition methods.

The idea of tensor-based approaches consists in exploiting the structure of multi-way
data, which can, for example, be obtained by applying a transform to the two-dimensional
measurements. Under the hypothesis that the resulting data, which depend on three
variables, are multilinear, the tensor can be decomposed in a unique way (under mild
conditions) up to scale and permutation ambiguities into separate characteristics for each
variable with the help of the CP decomposition (also sometimes referred to as Parallel
Factor Analysis (PARAFAC)). It is thus possible to get an accurate estimate of the spatial
mixing matrix or the signal matrix. Furthermore, this procedure leads to a reduction of the
background activity because the latter does not match the assumed multilinear structure.
In the following, we describe the CP decomposition and methods for the construction of
a data tensor in more detail.

3.2.2 CP decomposition
We start this section with an introduction of terminology, definitions, and notations:

• A tensor of order d corresponds to a d-dimensional data array for which fixed bases
have been chosen for the representation. In the following, we concentrate on third
order tensors, i.e, d = 3.

• A third order tensor X ∈ CI1×I2×I3 has rank 1 if each element of the tensor can
be written as the product of three functions ak, b`, dm, each of which depends on a
distinct index:

Xk,`,m = akb`dm (3.30)

with k = 1, . . . , I1, ` = 1, . . . , I2, m = 1, . . . , I3. Equivalently, a rank-1 tensor can
be written in the following form, based on the outer product of the three vectors a,
b, and d:

X = a ◦ b ◦ d. (3.31)

• A mode-n vector of the tensor is obtained by varying the n-th index of the tensor
elements from 1 to In, where In corresponds to the number of elements in the n-th
dimension, and by fixing all other indices. This leads to a column vector of size In.

• The mode-n unfolding matrix of the tensorX, denoted by [X](n), contains all mode-
n column vectors. Different definitions of the unfolding matrices can be found in
the literature depending on the order in which the mode-n vectors are arranged into
the matrix [X](n). Here, we consider an ordering where higher indices are varied
faster than lower indices (see [75] for more details).

• The mode-n product of a tensorX of size I1×I2×I3 with a matrix A of size In×Jn
is denoted by X •n A and corresponds to the multiplication of all mode-n vectors
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by the matrix AT such that [X •nA](n) = AT[X](n). The size of the n-th dimension
of the tensor thus changes from In to Jn.

• The Khatri-Rao product of two matrices A ∈ CI×P and B ∈ CJ×P is defined as
A � B = [a1 ⊗ b1, . . . , aP ⊗ bP ] ∈ CIJ×P and corresponds to the columns-wise
Kronecker product.

• The Kruskal rank (or k-rank) of a matrix X is the maximal number σ such that
every subset of σ columns of X is linearly independent.

• The mutual coherence of a matrix X = [x1, . . . ,xD] is the maximal correlation
coefficient between any two columns of X and is defined as µ(X) = maxi6=j |xH

i xj |
||xi||2·||xj ||2

with i, j = 1, . . . , D.

Now, based on these definitions, we can introduce the CP tensor decomposition. Since
we only consider methods based on third order tensors in this thesis, the presentation of
the CP decomposition is limited to this case.

Exact CP decomposition Let us consider an arbitrary third order tensor X of size
I1 × I2 × I3 and indices k = 1, . . . , I1, ` = 1, . . . , I2, m = 1, . . . , I3. Each element of the
tensor can be written in the form:

Xk,`,m =
Q∑
q=1

ak[q]b`[q]dm[q] (3.32)

which is generally called a polyadic decomposition of the tensor X. If Q is the smallest
integer for which equality (3.32) holds, Q corresponds to the rank of the tensor. In this
case, the model (3.32) is referred to as the Canonical Polyadic (CP) decomposition of the
tensor X [58, 75].

The CP model comprises a trilinear structure. This means that according to equation
(3.32), each element Xk,`,m of the tensor corresponds to the sum of Q components which
can be factorized into the product of three functions ak[q], b`[q], and dm[q], each of which
depends on only one variable. For this reason, the variables on which the tensor depends
are said to be separable.

The elements ak[q], b`[q], and dm[q] of the three functions can be stored in the matrices
A ∈ CI1×Q, B ∈ CI2×Q, and D ∈ CI3×Q, respectively, called loading matrices. A graphical
representation of the CP decomposition can be found in Figure 3.12.

Approximate CP decomposition As in practice, measurements are always corrupted
by noise, which generally leads to an increase of tensor rank, we are interested in approx-
imating the tensor X of rank Q by a tensor of given lower rank P , for which each of the
P rank-1 terms corresponds to a meaningful component:

X ≈
P∑
p=1

ap ◦ bp ◦ dp. (3.33)

Model (3.33) is subsequently referred to as the approximate CP decomposition. To find the
best rank-P approximation of the tensor, in practice, one generally solves an optimization
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Figure 3.12: Graphical representation of the CP decomposition as a sum of rank-1 tensors,
which are obtained by the outer product of three vectors. The resulting tensor is of size
4× 6× 5 and rank 3.

problem of the form

inf
ap,bp,dp

∣∣∣∣∣∣
∣∣∣∣∣∣X −

P∑
p=1

ap ◦ bp ◦ dp

∣∣∣∣∣∣
∣∣∣∣∣∣
F

. (3.34)

3.2.2.1 Number of components

In general, the number of sources, which correponds to the number of components in the
approximate CP decomposition, is not known a priori and needs to be estimated from the
data. A popular approach for the estimation of an appropriate number of CP components
consists in employing the Core Consistency Diagnostic (Corcondia) [76]. However, in our
experience, this method tends to overestimate the number of sources in the context of EEG
(distributed) source separation. In this thesis, we do not address this difficult problem,
but assume that the number of (distributed) sources is known.

3.2.2.2 Essential uniqueness

In practice, it is not possible to recover the exact order of the CP components and the
scaling of the loading matrices A ∈ CI1×P , B ∈ CI2×P , and D ∈ CI3×P . Therefore,
the CP tensor decomposition is said to be essentially unique if loading matrices can be
recovered up to multiplicative diagonal matrices ΛA, ΛB, ΛD such that ΛAΛBΛD = IP
and a permutation matrix Π ∈ RP×P , i.e., if Â = AΠΛA, B̂ = BΠΛB, D̂ = DΠΛD.

In the past, several conditions for essential uniqueness of the CP decomposition have
been put forward. In this context, one has to distinguish between uniqueness conditions
for the exact CP decomposition on the one hand, and existence and uniqueness conditions
for the best low-rank approximation on the other hand. The former include the well-known
Kruskal condition [77, 78], which states that the CP decomposition is essentially unique
if:

2P + 2 ≤ k-rank(A) + k-rank(B) + k-rank(D) (3.35)

as well as almost-sure conditions based on a dimension count such as (see e.g. [79] and
references therein):

P <
⌈

I1I2I3

I1 + I2 + I3 − 2

⌉
(3.36)

that are often used as a substitute of the Kruskal condition because they are easy to verify
in practical situations. Note that these conditions are sufficient but not necessary.
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In practice, we generally employ the approximate CP decomposition to cope with
noise and inaccuracies in the data model. Therefore, we consider a recently established
condition (see [79]) which is based on coherences of loading matrices. This condition
ensures that a solution to (3.34) exists and that the approximate CP decomposition is
essentially unique if

(µAµBµD)1/3 ≤ 3
2P + 2 . (3.37)

Here, µA, µB, and µD denote the coherences of matrices A, B, and D, respectively.
The sufficient condition (3.37) is more restrictive than the Kruskal condition, but it is
easy to verify. Furthermore, the Kruskal condition has not been shown to apply to the
approximate CP decomposition even if it is often used to check uniqueness in this case.

The maximal number of components which can be separated by the approximate
CP decomposition is actually larger than the bound defined by (3.37). But in most
applications, it is not an annoying restriction. In fact, in the context of EEG source
separation, the rank P of the noiseless tensor corresponds to the number of distributed
sources, which is usually small (less than 10) compared to the tensor dimensions. The
limitations of the tensor decomposition approach thus arise from the approximations that
are made when imposing a certain structure on the data (cf. Section 3.2.4) and not from
the identifiability conditions.

3.2.2.3 Algorithms

The objective of the approximate CP decomposition consists in finding a solution to
the optimization problem (3.34). To this end, a wide panel of algorithms have been used,
including alternating methods like Alternating Least Squares (ALS) [76], derivative-based
techniques such as Gradient Descent (GD), conjugate gradient, Levenberg-Marquardt
(LM) [58], or the efficient algorithms presented in [80, 81], and direct techniques (see,
e.g., [82, 83, 44] and references therein).

Subsequently, we shortly review the basic principles of ALS and the DIAG (Direct
Algorithm for canonical polyadic decomposition) algorithm [84, 44].

ALS The idea of the ALS algorithm consists in alternatingly updating the three loading
matrices A, B, and D. This is accomplished by resorting to the unfolding matrices of the
tensor, which can be used to derive the following update rules for the loading matrices:

A = [X](1)
(
(D�B)T

)+
(3.38)

B = [X](2)
(
(D�A)T

)+
(3.39)

D = [X](3)
(
(B�A)T

)+
. (3.40)

Based on initial estimates, the loading matrices are then determined by iterating over
equations (3.38) to (3.40) until convergence or a maximal number of iterations is reached.

Due to its simplicity, the ALS algorithm is very popular. It also allows for an easy
incorporation of constraints such as real-valued loading matrices. Note though that this
method may converge very slowly and that there is no guarantee that it will converge
toward the best low-rank approximation at all.
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DIAG The DIAG algorithm exploits the fact that the mode-n loading matrix of the
tensor can be obtained by multiplying the left signal subspace of the mode-n unfolding
matrix of the tensor by a transform matrix. In the following, we assume, without loss of
generality, that n = 1. In this case, A = U[s]

1 T1 where U[s]
1 is the left signal subspace of

the mode-1 unfolding matrix [X](1) and T1 is a transform matrix. The determination of
the loading matrix A can therefore be reduced to finding the transform matrix T1. As has
been shown in [84, 85], this can be achieved by searching for the matrix T1 that jointly
diagonalizes by equivalence a set of I3(I3 − 1) matrices Ψ(k,l) = ΓkΓ+

l where Γk ∈ RP×I2

is obtained from Y = [Γ1, . . . ,ΓI3 ] = (U[s]
1 )+[X](1). In our implementation, we choose

only one value for l that corresponds to the index of the best conditioned matrix Γk in
order to limit the computational complexity. The joint diagonalization of the matrices
Ψ(k,l) = T1Λ(k,l)T−1

1 is then performed using the JET (Joint Eigenvalue decomposition
based on Triangular matrices) algorithm presented in [84, 85]. Here, the diagonal matrix
Λ(k,l) = diag{d(k)}(diag{d(l)})−1 with d(k) the k-th row of the loading matrix D allows to
recover the elements of D. The loading matrix B can then be computed in a least squares
sense based on the mode-2 unfolding [X](2) of the tensor and the two already determined
loading matrices A and D:

B = [X](2)
[
(D�A)T

]+
.

By permuting the dimensions of the tensor, six different estimates for the three loading
matrices can be obtained.

Because of its good performance and robustness to collinear factors, overestimation of
the number of CP components, and initialization, we employ the DIAG algorithm for the
tensor decompositions that are computed in this thesis.

3.2.3 Transform-based tensor methods
In this thesis, we focus on approaches that construct a 3-dimensional data tensor, which
can be treated using the CP decomposition, by applying a transform to the two-dimensional
EEG recordings. To this end, one can either compute a transform over time of the elec-
tric potential measurements, which leads to the STF analysis, or a transform over space,
yielding STWV data. These methods are described in the subsequent sections in the
context of EEG data. An extension of these tensor methods to combined EEG/MEG
data is presented in Appendix C.

3.2.3.1 Space-Time-Frequency (STF) analysis

An often used technique for the time-frequency analysis of EEG data consists in applying a
wavelet transform to the time signals {x(r, t)} of the different channels [69, 70, 71, 72, 73].
The resulting three-way data can then be stored into the data tensor

W (r, t, f) =
∫ ∞
−∞

x(r, τ)ψ(a, τ, t)dτ . (3.41)

The frequency f can be estimated from the scale a of the wavelet ψ(a, τ, t) by f = fc/(aTs)
where fc is the center frequency of the wavelet and Ts is the interval between time samples.

In order to decompose the tensorW using the CP decomposition, we assume that for
each extended source, the time and frequency variables separate, leading to a trilinear



42 CHAPTER 3. PREPROCESSING

tensor. This is approximately the case under the hypothesis of oscillatory signals. The
tensor can then be decomposed as:

W [rk, t`, fm] ≈
P∑
p=1

aW [rk; p]bW [t`; p]dW [fm; p] (3.42)

where rk, t`, and fm represent the sampled space, time, and frequency variables and
aW [rk; p], bW [t`; p], and dW [fm; p] denote elements of the loading matrices AW , BW , and
DW indicating the space, time, and frequency characteristics, respectively. The number
of components P corresponds to the number of extended sources.

The loading matrix AW containing the spatial characteristics generally constitutes a
good estimate for the spatial mixing matrix H(e). By contrast, an exact separation of the
wavelet transformed data into time and frequency characteristics can only be obtained if
the frequency content of the signal is constant over time. In practice, this is not the case
and the bilinear approximation of the time-frequency data limits the accuracy of the time
signals estimated by the temporal characteristics. This is why we use the pseudoinverse
of the estimated spatial mixing matrix Ĥ(e) to obtain an improved estimate of the signal
matrix Ŝ(e):

Ŝ(e) = Ĥ(e)+X. (3.43)

3.2.3.2 Space-Time-Wave-Vector (STWV) analysis

If a local spatial Fourier transform is calculated within a certain region on the scalp,
selected by the spherical window function w(r′ − r) centered at sensor position r (see
Appendix D for more details), the STWV tensor

F (r, t,k) =
∫ ∞
−∞

w(r′ − r)x(r′, t)ejkTr′dr′ (3.44)

is obtained. Here, the third variable k is the wave vector.
Under the assumption that the space and wave vector variables separate for each

extended source, which is approximately the case for superficial sources, the tensor F can
be approximated by the CP model and be decomposed into space, time, and wave vector
characteristics aF [rk; p], bF [t`; p], and dF [km; p]:

F [rk, t`,km] ≈
P∑
p=1

aF [rk; p]bF [t`; p]dF [km; p]. (3.45)

In the case of the STWV analysis, the temporal characteristics Ŝ(e) = BF constitute a
good approximation of the signal matrix S(e). An estimate Ĥ(e) for the lead field matrix
H(e) can thus be obtained from the pseudo-inverse Ŝ(e)+ of the estimated signal matrix
Ŝ(e) and the data matrix X:

Ĥ(e) = XŜ(e)+. (3.46)

This permits to obtain better results than employing the space characteristics identified
by the CP decomposition of F because the local spatial Fourier transform does not lead
to a bilinear model with clearly separated space and wave vector characteristics, leading
to perturbations in the loading matrix AF compared to the spatial mixing matrix H(e).
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Figure 3.13: Estimation of the spatial mixing matrix and the signal matrix based on the
results of the STF and STWV tensor decompositions.

The procedure for estimating the spatial mixing matrix and the signal matrix from the
results of the CP decomposition of the STF and STWV tensors is illustrated in Figure
3.13.

3.2.4 Analysis of the trilinear approximation

Even though the STF analysis has been widely used, up to now only intuitive conditions
such as oscillatory signals that presumably lead to trilinear data have been provided. But
no theoretical validation that justifies the application of the CP decomposition to the STF
data tensor has been performed and the mechanisms underlying the STF method are still
insufficiently explored. The same is true for the STWV technique. Therefore, in this
section, we analyze what happens when applying the DIAG algorithm to STF or STWV
data, that are not exactly trilinear, and clarify under which conditions this procedure
yields exact results.

In order to treat both tensor methods simultaneously, we use a different notation
for the matrices as in the rest of this thesis to avoid confusion that may be caused by
discrepancies from the data model of equation (4.3). Please note that in the following, for
the STF method, the matrix Z replaces the data matrix X, the matrix U corresponds to
the spatial mixing matrix H(e), that we want to extract, and the matrix M corresponds
to the signal matrix S(e). For the STWV method, Z replaces the transpose of the data
matrix, XT, U corresponds to the transpose of the signal matrix S(e)T, that is to be
identified, and M corresponds to the transpose of the spatial mixing matrix H(e)T.

If a time-frequency or space-wave-vector transform is applied to the second dimension
of the matrix Z = UM where U = [u1, . . . ,uP ] ∈ RN×P is the matrix of interest and
Q ∈ RP×M , one obtains a tensor with the following structure:

T =
P∑
p=1

up ◦Mp (3.47)

where Mp ∈ CM×J , p = 1, . . . , P , are matrices of rank Lp. The objective of the STF
or STWV analysis consists in recovering the vectors up from the tensor T using the CP
decomposition.
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3.2.4.1 Sufficient conditions for perfect recovery

In practice, the matrices Mp generally have full rank and the approximate rank-P CP
decomposition of the tensor T does not lead to the correct identification of the vectors
up in general. However, for P = 2, denoting

M1 =
L1∑
l=1

σlvlwT
l =

[
v1 V2

] [σ1 0
0 Σ2

] [
w1 W2

]T
(3.48)

M2 =
L2∑
l=1

λlxlyT
l =

[
x1 X2

] [λ1 0
0 Λ2

] [
y1 Y2

]T
(3.49)

the SVD of M1 and M2 with σ1 > σ2 > . . . > σL1 , λ1 > λ2 > . . . > λL2 and assuming that
||u1||2 = ||u2||2 = 1, the vectors u1 and u2 can be perfectly recovered using the DIAG
algorithm (see Section 3.2.2.3, [84, 44]) based on the mode-2 unfolding of T if one of the
following conditions holds:

C1) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, and µ2 > ε1 or

C2) vT
1 X2 = 0T, xT

1 V2 = 0T, uT
1 u2 = 0, and µ2 > ε1.

Furthermore, perfect recovery of u1 and u2 using the DIAG algorithm based on the mode-3
unfolding of T is possible under the conditions

C3) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, and ν2 > ϕ1 or

C4) wT
1 Y2 = 0T, yT

1 W2 = 0T, uT
1 u2 = 0, and ν2 > ϕ1.

For the derivation of these conditions as well as the definition of the singular values µ2,
ν2, ε1, and ϕ1, the reader is referred to Appendix E.

3.2.4.2 Discrepancies from the above conditions

If the conditions on orthogonality are not fulfilled, which is usually the case in practice,
the vectors u1 and u2 cannot be correctly recovered, leading to errors of the estimated
vectors û1 and û2. For small correlation coefficients between v1 and X2, w1 and Y2,
x1 and V2, and y1 and W2 or correlation of v1, w1, x1, and y1 with vectors that are
associated with very small singular values, the errors on the estimated vectors û1 and
û2 can be regarded as negligible. In this case, the STF and STWV methods yield good
results for the space or time characteristics of each patch. On the other hand, for large
correlation coefficients between the singular vectors of M1 and M2 and especially in the
case where the condition on the singular values (µ2 > ε1 or ν2 > ϕ1) is not fulfilled (which
occurs, for example, if the singular values of M1 and M2 do not decrease quickly or if one
source is much stronger than the other source), the result of the CP decomposition can
be seriously perturbed (up to containing only information about one of the sources) and
does not permit to obtain an adequate estimate of the vectors u1 and u2. In this case,
the STF or STWV analysis fails.
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3.2.4.3 Interpretation of the mathematical conditions with respect to the
STF and STWV analyses

In the following, we consider three types of conditions that are involved in C1) to C4)
and point out how they intervene in the STF and STWV analyses of EEG data.

µ2 > ε1, ν2 > ϕ1 The validity of this condition depends on the one hand on the singular
value profiles of the time-frequency or space-wave-vector matrices of the patches
(matrices M1 and M2) and on the other hand on the source strengths. For slowly
decreasing singular values, it requires the source strengths to be approximately
equal whereas quickly decreasing singular value profiles enable the STF and STWV
techniques to tolerate a certain difference in source strength, which may be due to
different patch sizes, different patch locations, or different signal amplitudes. This is
the case for the STF analysis, for oscillatory signals, where one can assume that there
is one dominant frequency characteristic for each source, yielding time-frequency
matrices Mp with only one great singular value. In a similar way, superficial patches
generate focused spatial distributions that can be described by one dominant spatial
component per patch, leading to a quickly decreasing singular value profile of the
space-wave-vector matrix.

uT
1 u2 = 0 In the case of the STF analysis, the vectors u1 and u2 correspond to the spatial

mixing vectors of the patches. This condition thus requires the spatial mixing vectors
to be uncorrelated. The correlation of the spatial mixing vectors is related to the
patch distance and is generally small for distant patches and high for close patches.
For the STWV method, the source time signals are required to be uncorrelated as
the vectors u1 and u2 characterize the time courses of the patch amplitudes. In
practice, small correlation coefficients are usually sufficient to obtain reasonably
good results (cf. Section 3.2.4.2).

vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T These orthogonality conditions con-
cern correlations of the time-frequency or space-wave-vector profiles of the two
patches and are difficult to interpret in practice. For the STF analysis, this is
the case for sufficiently different time and frequency characteristics of two sources
(for example sources with uncorrelated time signals involving different frequency
bands) whereas this is achieved for sufficiently distant patches giving rise to differ-
ent dominant spatial components in the case of the STWV analysis. The influence
of each of these correlation coefficients also depends on the associated singular val-
ues. Quickly decreasing singular value profiles of the time-frequency or space-wave
vector matrix considerably reduce the importance of a large number of correlation
coefficients.

In Section 4.4.2.4 of this thesis, the findings of the theoretical analysis are discussed
with respect to the simulation results obtained for two scenarios with the STWV method.

3.2.5 Analysis of the computational complexity
In this section, we compare the STF and STWV methods relative to their computational
costs. To this end, we subsequently determine the number of FLOPs in terms of real-
valued multiplications that are required for the tensor construction and decomposition
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steps. Our analysis builds on the computational complexities of several basic operations,
which are shown in Table 3.2. The computational complexities of the STF and STWV
techniques are summarized in Table 3.3.

Number of FLOPs

Matrix multiplication
X = AB, A ∈ RN×M , B ∈ RM×L NML

X = AAT, A ∈ RN×M O(1
2N

2M)

EVD of X ∈ RN×N O(4
3N

3)

Economy-size SVD of X ∈ RN×M , rank(X) = R

N < M O(3
2N

2M + 4
3N

3 +NRT )
R� N �M O(2NRT + 4

3R
3)

Linear system solving
AX = Y, A ∈ RN×M , Y ∈ RN×L 1

6N
3 +N2L

Table 3.2: Computational complexity of several basic operations.

3.2.5.1 Tensor construction

STF analysis The construction of the STF tensor is based on a real-valued wavelet
transform, which generally requires O(T 2NF ) operations for T time samples, F scales,
and N sensors. However, the computational complexity can be reduced to O(NTF ) if
an efficient algorithm based on dyadic scales or an implementation with splines is used
[86, 87]. Please note though, that this might lead to differing results from those presented
here where no especially efficient algorithm is used to compute the wavelet transform.

STWV analysis The STWV tensor is calculated using a local non-uniform spatial
Fourier transform. The first step therefore consists in determining, for each sensor posi-
tion, the sensors that are located within the spherical window, that is used to select data
for the local transform, and the associated weights of the window function, and to discard
sensors that are positioned at the border of the grid. To this end, theN2/2−N/2 distances
between all sensors are computed. For the N ′ remaining sensors, a non-uniform Fourier
transform is computed, which requires O(N ′N̄TK) complex multiplications involving one
real-valued and one complex-valued number, corresponding to O(2N ′N̄TK) real-valued
multiplications, where N̄ denotes the average number of sensor measurements that are
considered to compute the local transform at each point and K is the number of wave
vector samples. Compared to the high complexity of the non-uniform discrete Fourier
transform, the computation of the sensor distances and sensor weights can generally be
neglected.

3.2.5.2 Tensor decomposition

For reasons of simplicity, we consider first the CP decomposition of the real-valued STF
tensor W ∈ RN×T×F . The first step of the DIAG algorithm consists in computing an
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SVD truncated to rank P of the mode-1 unfolding matrix, yielding [W ](1) = U[s]
1 Y. For

P � N � TF , this can be efficiently accomplished using the Lanczos algorithm and
requires only O(2NTFP + 4

3P
3) multiplications [88]. In the second step, the matrices

Ψ(k,l) are computed, which requires about 4
3P

3T + 3
2P

2TF + 1
2PTF + T multiplications

and is negligible compared to the computation of the SVD. Subsequently, the F matrices
Ψ(k,l) of size P × P are jointly diagonalized by equivalence using the JET algorithm
presented in [84, 85], which involves approximately FNswP (P 2 + 1

2P −
3
2) multiplications.

Here, Nsw denotes the number of sweeps performed to update all the parameters.
In order to find good estimates for the loading matrices in the presence of noise and

modeling errors, we consider all 6 possible permutations of the tensor dimensions as in
[82], leading to 6 sets of loading matrices and choose the set of loading matrices that leads
to the tensor with the smallest reconstruction error ||W − I •1 A •2 B •3 D||F , where I
is the identity tensor of size P . On the whole, the computational complexity of the most
expensive steps, namely the SVD of the unfolding matrix and the joint diagonalization
procedure, then amounts to 6NTFP and (N + T + F )NswP (P 2 + 1

2P −
3
2), respectively.

Furthermore, the determination of the six sets of loading matrices necessitates about
6PNTF multiplications and the computation of the reconstruction error to choose the
best set of loading matrices includes 7NTF additional multiplications.

Since the STWV tensor is complex-valued, the number of real-valued multiplications
required for its decomposition is increased by a factor of 4 compared to a real-valued tensor
of the same size for the computation of the SVD and different sets of loading matrices,
yielding (48P + 28)N ′TK multiplications, and changes to 56P (P − 1)Nsw(N ′ + T + K)
real-valued multiplications for the JET. Furthermore, to ensure a real-valued temporal
loading matrix for the STWV tensor, several iterations of constrained ALS are applied to
the results of the DIAG algorithm, increasing the computational cost by O(9IPN ′TK)
real-valued multiplications, where I denotes the number of executed iterations.

Number of real-valued multiplications

STF analysis
Tensor construction T 2NF

Tensor decomposition (12P + 7)NTF
+(N + T + F )NswP (P 2 + 1

2P −
3
2)

STWV analysis
Tensor construction 2N ′N̄TK
Tensor decomposition (48P + 28)N ′TK

+ 56P (P − 1)Nsw(N ′ + T +K)
+9IPN ′TK

Table 3.3: Computational complexity in terms of real-valued multiplications for the STF
and STWV methods.
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3.2.6 Computer results

In this section, we evaluate the capability of the STF and STWV analyses to separate
correlated sources on simulated data in the context of propagated epileptic spike activity.
To this end, we study the influence of several parameters on the performance of the two
methods and compare the associated computational costs. Note that further evaluations
of the STF and STWV methods are conducted in Section 4.4, where we examine the
performance of the tensor-based disk algorithm for source localization.

3.2.6.1 Simulation setup

Data generation In the following, we consider EEG data recorded with N = 91 elec-
trodes for T = 200 time samples at a sampling rate of 256 Hz and three scenarios with
two patches of different distances: patches SupFr and SupOcc (large distance), patches
InfFr and InfPa (medium distance), and patches SupFr and InfFr (small distance). To
simulate epileptic activity spreading from one brain region to another, we use the same
dipole signals except for a time delay depending on the distance between the patches. All
dipoles that do not belong to a patch are considered as generators of background activity
as described in Section 2.5. The amplitudes of the epileptic and background activities are
adjusted to achieve a given SNR of the surface data.

Tensor construction and decomposition The simulated EEG data are treated with
the STF and STWV tensor methods. The STF data tensor is constructed by computing
a wavelet transform over time of the electric potential data. Due to the application of a
real-valued Morlet-wavelet, the resulting tensorW is also real-valued and of sizeN×T×F
where F denotes the number of frequency samples. Here, we consider F = 50 frequency
samples and frequencies ranging from 0.5 to 20 Hz.

To obtain STWV transformed data, we select sensor data with the help of a spherical
window function that is centered at different electrode positions on the scalp and attribute
a weight 1 to sensors located within the sphere and 0 to all other sensors. Then we compute
a discrete non-uniform spatial short term Fourier transform of the selected data. This
leads to the complex-valued tensor F ∈ CN ′×T×K , where N ′ is the effective number of
sensors. To ensure meaningful results, the local Fourier transform is only computed for
N ′ manually selected sensors which are deemed to be surrounded by a sufficient number
of electrodes, leading to an effective number of sensors which is strictly less than N .
Here, we choose a radius of 3.3 cm for the spherical window function, and select 71
electrodes, surrounded by 7 to 12 sensors within the spherical window, for the local
spatial Fourier transform. The variable K = 63 denotes the number of wave vector
samples k = [k1, k2, k3]T, which are chosen arbitrarily to contain all possible combinations
of k1, k2, k3 ∈ {0,±1,±2} such that there are no two wave vectors k1 and k2 for which
k1 = −k2.

The tensors are then decomposed using the DIAG algorithm (see Section 3.2.2.3). In
case of the STWV tensor, it is followed by 10 constrained ALS iterations to ensure that the
loading matrix B that contains the temporal characteristics of the signal is real-valued.
The number of CP components is chosen such that it equals the number of patches, i.e.,
P = 2. Finally, the spatial mixing matrix and signal matrix estimates are obtained as
described in Sections 3.2.3.1 and 3.2.3.2.
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Evaluation To evaluate the accuracy of the estimated spatial mixing vectors and signal
vectors of the two patches, we employ the correlation coefficients between estimated and
original vectors, ρh and ρs, which have already been defined in Section 3.1.6. To ensure
robustness to outlying results, we display the median value of the minimum correlation co-
efficient of both sources observed over 50 realizations. Retaining the minimum correlation
coefficient of both sources corresponds to a worst case evaluation.

3.2.6.2 Influence of the SNR

In Figure 3.14, we plot the correlation coefficients obtained for the estimated signal vectors
and spatial mixing vectors for the three considered scenarios using the STF and STWV
analyses as a function of the SNR. Concerning the extraction of the signal vectors, the
STWV analysis achieves good performances for SNR greater than 0 dB, reaching cor-
relation coefficients that are higher than 0.9. For SNR less than 0 dB, the correlation
coefficient diminishes significantly with decreasing SNR and the source signals are no
longer correctly extracted. Here, we can also observe a difference between the correla-
tion coefficients obtained for different scenarios. The best results are obtained for distant
patches whereas the worst results are achieved for close patches. This is particularly strik-
ing when comparing the correlation coefficients obtained for the spatial mixing vectors. In
this case, for the scenario with large patch distance, the correlation coefficient exceeds 0.9
up to SNR of -2 dB, whereas this only the case for SNR greater than 2 dB for a medium
patch distance and for an SNR of 10 dB in the case of close patches.

The correlation coefficients of the signals estimated using the STF analysis do not
exceed 0.6 for all tested SNR, which means that the signals cannot be accurately extracted
by this method. In fact, due to the high correlation of the signals of the two patches, the
STF analysis does not manage to separate the sources, which explains its bad performance.
This is also reflected by the rather low correlation coefficients of maximally 0.6 obtained
for the spatial mixing vectors that are extracted by the STF method.
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Figure 3.14: Correlation of original and estimated signal vectors and spatial mixing vectors
for the STWV and STF analyses for patches SupFr & SupOcc with large distance, patches
InfFr & InfPa with medium distance, and patches SupFr & InfFr with small distance as
a function of the SNR for T = 200 time samples and N = 91 sensors.
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3.2.6.3 Influence of the number of time samples

To determine the influence of the length of the considered time interval on the performance
of the STF and STWV analyses, we examine the correlation coefficients ρh and ρs as a
function of the number of time samples for a fixed SNR of 3 dB and N = 91 sensors.
As can be seen in Figure 3.15, for the STWV analysis, the signal correlation coefficient
is approximately the same for all considered lengths of time intervals, meaning that the
temporal characteristics of the sources are accurately extracted by the CP decomposition
independent of the signal length. However, for the spatial mixing vectors, the performance
improves with increasing number of time samples. This is due to the fact that in the
STWV analysis, the spatial mixing vectors are estimated based on the pseudo-inverse
of the estimated signal matrix (cf. Section 3.2.3.2). To obtain good results with this
approach, a minimal number of time samples is required. Once the considered time
interval comprises at least 200 time samples, the correlation coefficient ρh does not change
considerably when further augmenting the number of time samples.

For the STF method, the correlation coefficient ρh remains approximately constant
because the spatial mixing vectors are directly extracted by applying the CP decompo-
sition to the tensor. However, as explained previously, this method does not permit to
separate the sources due to their correlated time signals and both the accuracies of the
extracted spatial mixing vectors and the estimated source time signals are poor.
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Figure 3.15: Correlation of original and estimated signal vectors and spatial mixing vectors
for the STWV and STF analyses for patches SupFr & SupOcc with large distance, patches
InfFr & InfPa with medium distance, and patches SupFr & InfFr with small distance
depending on the number of time samples for an SNR of 3 dB and N = 91 sensors.

3.2.6.4 Influence of the number of sensors

In Figure 3.16, we show the correlation coefficients ρh and ρs for four different electrode
configurations comprising 21, 32, 64, and 91 sensors for a fixed SNR of 3 dB. While we
observe only a slight increase of the correlation coefficients with augmenting number of
sensors for the STF analysis, the performance of the STWV method clearly depends on
the employed electrode cap. In this case, the correlation coefficients of the original and
estimated signal and spatial mixing vectors are approximately identical for 64 and 91
sensors, but they are considerably smaller for 21 or 32 electrodes. This can be explained
by the fact that for less than 64 sensors the available spatial information that is exploited
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by the method is insufficient to achieve a good source separation. To obtain accurate
results with the STWV analysis, at least 64 sensors should be employed.
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Figure 3.16: Correlation of original and estimated signal vectors and spatial mixing vectors
for the STWV and STF analyses for patches SupFr & SupOcc with large distance, patches
InfFr & InfPa with medium distance, and patches SupFr & InfFr with small distance
depending on the number of sensors (21, 32, 64, or 91) for T = 200 time samples and an
SNR of 3 dB.

3.2.6.5 Computational complexity

To illustrate the computational complexity that is associated with the application of the
tensor methods in practice, we compute the number of real-valued multiplications required
by these techniques by fixing the parameters N , T , F , K, and P according to the values
employed in the previous simulations and by assuming that N ′ ≈ N . The impact of the
employed numbers of time samples and sensors is examined by varying the data length
from 10 to 500 and by considering between 32 and 256 electrodes, corresponding to the
numbers of sensors in standard and high-resolution EEG systems. As can be seen in Figure
3.17, the number of real-valued multiplications required for STF and STWV analyses are
comparable for about 200 time samples. For identical tensor sizes, the STWV analysis
is computationally more expensive than the STF technique since the STWV tensor is
complex-valued. However, for an increasing number of time samples, the calculation
of the wavelet transform becomes computationally more expensive, which explains the
increased computational burden of the STF method compared to the STWV analysis for
a large number of time samples in Figure 3.17 (right).

3.2.7 Conclusions
In this section, we have presented tensor-based methods for EEG source separation which
exploit a third dimension that is acquired by applying a transform to the measurements.
More particularly, we have compared two methods that are based on STF and STWV
data. These methods are employed to separate the sources into different components using
the CP decomposition and to extract spatial and temporal characteristics for each source.
A performance analysis of the STF and STWV techniques, conducted on simulated EEG
data in the context of epileptic sources that are subject to propagation phenomena, has
revealed that the STF analysis is not well suited for the separation of correlated sources.
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Figure 3.17: Computational complexity of the STWV and STF analyses as a function of
the number of sensors for T = 200 time samples (left) and as a function of the number of
time samples for N = 91 sensors (right).

On the contrary, the STWV method permits to accurately separate highly correlated
sources as long as the SNR, the number of time samples, and the number of sensors are
not too small. The computational complexity of the two methods has been shown to be
comparable for moderate data lengths.

An important part of this section has been devoted to the theoretical analysis of the
STF and STWV tensor methods, where we have derived sufficient conditions under which
the application of these techniques is justified. Although these mathematical conditions
are very restrictive and it is difficult to translate them into physiological conditions, which
can be verified in practice, they permit to identify the following factors which influence
the functioning of the STF and STWV analyses:

Source strengths For a correct separation, the sources should lead to surface measure-
ments of comparable strengths. Sources with significant differences in amplitude or
combinations of deep and superficial sources often lead to the idenfication of the
source with the highest surface amplitude only.

Correlation of the source time signals The time signals of the different sources should
not be too correlated. Low correlations facilitate the source separation.

Correlation of the spatial mixing vectors For close sources, the spatial mixing vec-
tors are highly correlated, making the source separation difficult. Distant sources, on
the other hand, lead to a limited spatial correlation and favor the source separation.

Time-frequency or space-wave-vector characteristics The STF analysis assumes
the time-frequency content of each source to be of rank 1 and the STWV analysis
is based on the hypothesis of a rank-1 space-wave vector content of each source.
In practice, it is generally sufficient if the singular values of the time-frequency or
space-wave-vector matrix of each source decrease quickly.

A more detailed discussion of the tensor-based methods it provided in Section 4.4 in
the context of tensor-based source localization approaches.
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3.3 Statistical vs. deterministic preprocessing: when
to use ICA, tensor decomposition, or both

In Sections 3.1 and 3.2, we have described two types of preprocessing techniques. On the
one hand, we have introduced ICA methods to extract the epileptic signals from EEG
measurements containing artifacts. These techniques also permit us to separate statisti-
cally independent epileptic sources. On the other hand, we have presented a tensor-based
method for the separation of highly correlated sources, which assumes that the analyzed
data are not corrupted by artifacts. However, in practical situations, we generally have
to deal with several potentially correlated sources in the presence of artifacts. Therefore,
the objective of Section 3.3.1 consists in analyzing the robustness of ICA and the STWV
tensor decomposition method, employed for the separation of epileptic sources, to source
correlation and artifacts.

Since neither ICA nor tensor-based methods are well adapted to cope with EEG data
that contains both correlated sources and artifacts, we propose to combine both methods
by removing artifacts in a first step and separating the correlated, epileptic sources in a
second step. This approach is studied in Section 3.3.2 based on simulations.

3.3.1 ICA vs. tensor decomposition
In this section, we explore the limitations of ICA and tensor decomposition methods
concerning the separation of epileptic sources in the context of propagation phenomena,
leading to correlated source time signals. Furthermore, we examine the robustness of
the methods to muscle artifacts. Our analysis is based on computer simulations, which
are described in Section 3.3.1.1. The results obtained by ICA and tensor decomposition
methods are then presented and compared in Sections 3.3.1.2 and 3.3.1.3.

3.3.1.1 Simulation setup

Data generation EEG data is generated for N = 32 electrodes and T = 8192 time
samples recorded at a sampling rate of 256 Hz. We simulate two epileptic patches com-
posed of 100 adjacent grid dipoles. During the considered time interval, the patch signals
contain several interictal epileptiform spikes and background activity, which are obtained
using a neuronal population model as described in Section 2.5.2. We consider epileptic
spikes with two different morphologies, shown in Figure 3.18. As the neuronal popula-
tion model does not permit us to generate highly correlated polyspikes for the dipoles
within the same patch, we introduce this variability artificially (for both epileptic spike
types) by considering a small random delay between patch signals, drawn from a Gaussian
distribution with mean 0 and standard deviation of about 20 ms, and amplitude varia-
tions drawn from a lognormal distribution with a mean and standard deviation of the
amplitude variable’s logarithm that are equal to 0 and 0.19 mV, respectively. To model
propagation phenomena between the two patches, the patch signals are generated such
that each epileptiform spike of the first patch entails an epileptiform spike of the second
patch after a fixed time delay. By varying this time delay, different levels of correlation
between the signals of the two patches are achieved. The EEG data are corrupted by
muscle artifacts, recorded during an EEG session, which are added to the epileptic data
according to a fixed SNR. The SNR is varied by changing the amplitudes of the muscle
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artifacts.
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Figure 3.18: Interictal epileptic signals with different morphologies: spike (left) and
polyspike (right). The variability between the 100 patch signals is introduced artificially
by introducing random signal delays and amplitude variations.

Tested methods As a representative of ICA methods, we apply the P-SAUD algo-
rithm to the simulated EEG data. From the extracted ICA components, we identify
the epileptic components automatically based on the correlation coefficient between the
estimated signal components and the original epileptiform patch signals. Furthermore,
the STWV method, which has been shown in Section 3.2 to enable the separation of
correlated sources, is chosen as a reference method for the tensor-based techniques. This
method is applied to the EEG data recorded within a selected time interval of 200 sam-
ples, corresponding to one epileptic spike signal. The parameters of the STWV analysis
are fixed as described in Section 3.2.6 except for the number of effective sensors N ′, which
corresponds in this section to 20 sensors that have been selected from the 32 electrodes.

Evaluation The performance of P-SAUD and STWV is evaluated in terms of the cor-
relation coefficient ρh, defined in equation (3.28), between original and estimated spatial
mixing vectors. This coefficient is computed for 50 realizations with different signals and
muscle artifacts. To diminish the influence of outlying results, we evaluate the median of
the smaller correlation coefficient of the two sources.

3.3.1.2 Separation of correlated sources

In the following, we compare the performance of the P-SAUD algorithm and the STWV
analysis for the extraction of the spatial mixing vectors of two distant patches with cor-
related activities. The SNR between epileptic data and muscle artifacts is fixed to -5 dB.
Figure 3.19 shows the median of the correlation coefficient ρh as a function of the delay
between the signals of the two patches. First, we consider the case where the morpholo-
gies of the epileptic spikes emitted by the two patches are identical. The corresponding
results are illustrated in Figure 3.19 (left), where we also show the correlation coefficient
and the mutual information (normalized to the observed maximum value) between the
two patch signals as a function of the employed delay. Second, we consider that the two



Statistical vs. deterministic preprocessing 55

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

delay in ms

s
p

a
ti
a

l 
m

ix
in

g
 v

e
c
to

r 
c
o

rr
e

la
ti
o

n

 

 

P−SAUD

STWV

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

delay in ms

s
p

a
ti
a

l 
m

ix
in

g
 v

e
c
to

r 
c
o

rr
e

la
ti
o

n

 

 

P−SAUD

STWV

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

delay in ms

c
ri
te

ri
o

n
 o

n
 p

a
tc

h
 s

ig
n

a
ls

 

 

correlation coefficient

normalized MI

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

delay in ms

c
ri
te

ri
o

n
 o

n
 p

a
tc

h
 s

ig
n

a
ls

 

 

correlation coefficient

normalized MI

Figure 3.19: (Top) Median of the minimum correlation coefficients of original and esti-
mated spatial mixing vectors for patches SupFr & SupOcc (large distance) with identical
signals (left) and different signals (right) for an SNR of -5 dB. (Bottom) Crosscorrela-
tion coefficient and normalized Mutual Information (MI) of the two patch signals for two
patches with identical signals (left) and different signals (right).

patches generate epileptic spikes with different morphologies, which leads to the results
displayed in Figure 3.19 (right).

For identical morphologies of the patch signals, we note that the correlation coefficient
ρh is very small if the two patches emit the epileptic spikes simultaneously. In this case, the
patch signals are almost perfectly coherent and a separation is not possible. As the delay
between the patch signals augments, the correlation coefficient increases monotonically
for STWV until reaching a stable value of about 0.95 for delays of 40 ms and higher. For
P-SAUD, on the contrary, beneath a delay of 100 ms, the correlation coefficient varies
between 0.2 and 0.8 and the patches are not well separated. However, when the delay
exceeds 130 ms, P-SAUD outperforms STWV, leading to correlation coefficients close to
1. In this case, the cross-correlation and the mutual information of the two patch signals
are relatively small and approach zero for delays of about 200 ms where the coefficient ρh
is almost equal to 1.

In the case of different morphologies of the patch signals, the STWV method exhibits a
good performance with a correlation coefficient ρh of about 0.98 for all tested delays as the
correlation between the patch signals is weak. For P-SAUD, the performance varies a lot
for delays smaller than 200 ms, depending on the level of statistical dependence between
the patch signals. This is reflected by the concurrence of the two most prominent local
minima of the correlation coefficient ρh with the local maxima of the mutual information
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between the patch signals. For delays of 200 ms and higher, P-SAUD outperforms STWV.
On the whole, we conclude that STWV leads to good results as soon as the correlation

coefficient drops below 0.8, which means that patches with different signal morphologies
can be separated without difficulty whereas patches with identical signal morphologies
can only be separated if there is a minimal delay of about 20 ms between the patch sig-
nals. P-SAUD on the other hand only permits to separate the patches if the correlation
coefficient and the mutual information approach zero, i.e., when the assumption of sta-
tistical independence between the patch signals is justified. This is the case when the
delay between the patch signals is sufficiently high for the epileptiform spike signals not
to overlap. In such situations, P-SAUD leads to better results than STWV.

3.3.1.3 Robustness to artifacts

In this section, we consider a scenario with a single patch located in the superior temporal
lobe (patch SupTe), and three scenarios with two patches with different distances: patches
SupFr and SupOcc (large distance), patches InfFr and InfPa (medium distance), and
patches SupFr and InfFr (small distance). For the two patch scenarios, we use patch
signals with identical morphologies and impose a delay of about 150 ms between the
signals of the two patches. In this case, for an SNR of -5 dB, the patches can be accurately
separated by both P-SAUD and STWV (cf. Figure 3.19 (left)). To evaluate the robustness
of P-SAUD and STWV to artifacts, the SNR is now varied from -30 dB to 0 dB.
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Figure 3.20: Median of the minimum correlation coefficients of original and estimated
spatial mixing vectors for patch SupTe as a function of the SNR.

The median of the correlation coefficient ρh between original and estimated spatial
mixing vectors is shown in Figure 3.20 for the single patch and in Figure 3.21 for the
two patch scenarios. In all cases, the correlation coefficient obtained for P-SAUD does
not decrease as quickly with diminishing SNR as it does for STWV. This means that
P-SAUD is more robust to artifacts than STWV. More precisely, for the single patch
scenario, P-SAUD exhibits correlation coefficients greater than 0.9 over the whole range
of considered SNR values, which reflects a good source extraction performance, whereas
the correlation coefficient obtained for STWV drops significantly for SNR below -20 dB.
This indicates that STWV does not permit to estimate the spatial mixing vector of the
patch for small SNR.

In the case where two patches have to be separated in the presence of artifacts, both
P-SAUD and STWV display a diminished performance compared to the single patch case.
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Figure 3.21: Median of the minimum correlation coefficients of original and estimated
spatial mixing vectors for patches SupFr & SupOcc with large distance, patches InfFr
& InfPa with medium distance, and patches SupFr & InfFr with small distance and
(approximately) statistically independent signals as a function of the SNR.

For the scenarios with medium and large patch distances, P-SAUD provides good results
up to an SNR of about -20 dB whereas this is only the case for SNR greater than or
equal to -15 dB in the case of close patches. STWV only permits to accurately extract
the spatial mixing vectors of the two patches for SNR greater than or equal to -5 dB
in the case of the scenarios with small and large patch distances. For the scenario with
patches of medium distance, STWV achieves also a good performance for an SNR of -10
dB. This result is surprising as one would generally expect the performance to improve
with increasing patch distance. However, this finding could be explained by the fact that
the patches with large distance are located in the frontal and occipital regions of the
brain, which are not well covered by the 32 electrodes. In particular, for the sensors at
the border of the EEG cap, the local spatial Fourier transform cannot be computed due
to lack of information and the contributions of the distant patches to the data evaluated
in the STWV tensor may therefore be diminished.

3.3.2 Combination of ICA and tensor decomposition
To deal with EEG recordings that contain both correlated sources and artifacts with
significant amplitude, we consider in this section the combination of ICA and tensor
decomposition. This is accomplished by applying the following preprocessing procedure:

1. application of ICA to the raw EEG data,

2. reconstruction of EEG data from selected ICA components that contain the epileptic
activity,

3. separation of correlated sources by STWV tensor analysis applied to short time
intervals of the reconstructed data comprising epileptic spikes.

The objective of this section consists in confirming the enhanced performance of this
combined ICA-tensor approach compared to ICA or tensor analysis alone based on sim-
ulations.
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In contrast to the simulations conducted in Section 3.3.1, which were performed for
32-channel EEG data, we here consider EEG measurements recorded with N = 91 elec-
trodes to facilitate the separation of two patches with highly correlated signals using the
STWV method. Otherwise, the employed simulation setup is the same as described in
Section 3.3.1.1. We consider three two-patch scenarios with patches of medium and large
distances. The signals of the two patches are identical except for a delay of about 20 ms.
We evaluate the performance of P-SAUD and STWV for the estimation of the spatial
mixing vector in comparison to P-SAUD-STWV, which corresponds to the combination
of P-SAUD and STWV as described above. The results are displayed in Figure 3.22,
which shows the minimum correlation coefficient ρh of the two sources, averaged over five
realizations, as a function of the SNR.

−30 −25 −20 −15 −10 −5
0

0.2

0.4

0.6

0.8

1

SNR in dB

s
p

a
ti
a

l 
m

ix
in

g
 v

e
c
to

r 
c
o

rr
e

la
ti
o

n

 

 

P−SAUD

STWV

P−SAUD−STWV

−30 −25 −20 −15 −10 −5
0

0.2

0.4

0.6

0.8

1

SNR in dB

s
p

a
ti
a

l 
m

ix
in

g
 v

e
c
to

r 
c
o

rr
e

la
ti
o

n

 

 

P−SAUD

STWV

P−SAUD−STWV

−30 −25 −20 −15 −10 −5
0

0.2

0.4

0.6

0.8

1

SNR in dB

s
p

a
ti
a

l 
m

ix
in

g
 v

e
c
to

r 
c
o

rr
e

la
ti
o

n

 

 

P−SAUD

STWV

P−SAUD−STWV

Figure 3.22: Correlation coefficients of original and estimated spatial mixing vectors for P-
SAUD, STWV, and the combination of P-SAUD and STWV for patches SupFr & SupOcc
(top left), patches SupFr & InfPa (top right), and patches InfFr & InfPa (bottom).

For all considered scenarios, we observe a qualitatively similar outcome: for high
SNR (≥ 10 dB), STWV and P-SAUD-STWV yield the same performance, reaching a
correlation coefficient ρh that is close to 1, whereas P-SAUD exhibits a clearly dimin-
ished performance because it does not permit to accurately separate the highly correlated
sources. As the SNR decreases, the correlation coefficient decreases slowly at first before
dropping significantly after a certain point. This point marks the limit up to which the
sources can be separated. For STWV, this limit is reached at an SNR that is 5 to 10
dB higher than for P-SAUD-STWV. This shows that the combination of STWV with
P-SAUD leads to an increased robustness to artifacts.
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3.3.3 Discussion
In this section, we have compared P-SAUD and STWV as representatives of ICA and
tensor decomposition approaches, respectively, with regard to their performance for the
extraction and the separation of epileptic sources. We have observed that P-SAUD is more
robust to artifacts than STWV, in particular if there is more than one active epileptogenic
source. This can be explained by the fact that P-SAUD treats the artifacts as components
of the mixture which is recorded by the EEG sensors, whereas the STWV analysis model
does not explicitly include the artifacts. As a consequence, the artifacts add to the noise,
which complicates the source separation. Furthermore, it cannot be excluded that the
artifacts partly match the structure that is exploited by tensor decomposition methods,
which further hinders the extraction of the epileptic sources. On the contrary, the as-
sumption of statistical independence made by P-SAUD to separate epileptic sources from
other signal components can be physiologically justified and leads to an efficient source
separation in practice.

By contrast, STWV is more robust to source correlation than P-SAUD as could be
expected because correlated sources violate the assumption of statistical independence,
which forms the basis of the P-SAUD algorithm. In this section, we have considered
source correlation as a result of epileptic activity that spreads from one source region
to another, such that an epileptic spike in one region entails a spike in a second region
with a certain time delay and a potentially different signal morpholgy. Here, we have
considered delays between 0 ms and 150 ms in order to vary between highly correlated
and uncorrelated patch signals. However, in practice, the delay depends on the patch
distance and generally does not exceed 20ms. Since P-SAUD does not accurately extract
the sources even in the case of different signal morphologies as long as the source signals
overlap, this makes STWV the method of choice in the context of propagation phenomena.

Finally, we have analyzed the combination of P-SAUD and STWV to benefit from the
strengths of both approaches. We have verified by means of simulations that this proce-
dure effectively permits us to separate correlated sources while improving the robustness
to artifacts compared to STWV. Indeed, we have observed that the combination of the
two methodologies reduces the minimum SNR that is required for a correct source sepa-
ration by approximately 5 dB. Despite this encouraging result, it should be noted that a
potential drawback of the combined preprocessing approach consists in the fact that errors
may accumulate. In particular, this approach fails if the subspace of the epileptic activity
is not correctly identified by P-SAUD or if the sources cannot be correctly separated by
STWV (see also Section 3.2.4).





Chapter 4

Distributed source localization

In this chapter, we are concerned with the solution of the inverse problem, i.e., the iden-
tification of the epileptic regions, based on the preprocessed data. To this end, source
localization techniques are applied to interictal spikes as has been done in several previous
studies [4, 5, 6, 7, 8]. The source localization methods that are currently available can be
broadly classified into two types of approaches that are based on different source models:
the equivalent current dipole and the distributed source [89]. Each equivalent current
dipole describes the activity within a spatially extended brain region, leading to a small
number of active sources with free orientations and positions anywhere within the brain.
The lead field matrix is hence not known, but parameterized by the source positions and
orientations. Equivalent current dipole methods also include classical Multiple Signal
Classification (MUSIC) [90, 91, 16] and beamforming techniques (see [92] and references
therein). These methods are based on a fixed source space with a large number of dipoles,
from which a small number of equivalent current dipoles are identified.

On the other hand, the distributed source approaches aim at identifying spatially
extended source regions, which are characterized by a high number of dipoles (largely
exceeding the number of sensors) with fixed locations. As the positions of the source
dipoles are fixed, the lead field matrix can be computed and is thus known.

In this thesis, we concentrate on the localization of distributed sources, also known
as source imaging, because the epileptic paroxysms that are observable by EEG mea-
surements often involve large cortical regions as has been shown by several studies [22,
7, 93, 94, 95]. Furthermore, studies with simultaneous electrocorticography (ECoG) and
magnetoencephalography (MEG) recordings [96, 97, 98] have demonstrated that a certain
cortical area needs to be active in order to observe epileptic spikes at the surface MEG
sensors. Finally, by resorting to the distributed source model, our objective consists not
only in identifying the locations of the epileptic regions, but also in determining their
spatial extents.

Localizing distributed sources requires solving an ill-posed inverse problem, as de-
scribed in more detail in Section 4.1, and additional hypotheses about the sources have
to be made in order to restore identifiability. An overview of assumptions that can be
exploited to this end is provided in Section 4.2. Based on these hypotheses and method-
ological considerations, we propose a classification of different brain source imaging al-
gorithms, comprising regularized least squares, Bayesian, and extended source scanning
methods. A survey of these state-of-the-art approaches, including a detailed description
of representative methods, is provided in Section 4.3. After this, in Section 4.4, we in-
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troduce a new class of distributed source localization approaches, which are based on the
results of the tensor decomposition methods described in Section 3.2. More precisely, we
present a new algorithm, called Disk Algorithm (DA), that is applied to the estimated
spatial mixing vectors, leading to a separate localization of each distributed source. An-
other contribution of this chapter consists in proposing several improvements of a source
imaging algorithm that is based on structured sparsity (see Section 4.5). Furthermore,
in Section 4.6, we examine the combination of tensor decomposition methods and source
localization based on structured sparsity. Finally, in Section 4.7 we conduct a compara-
tive simulation study with eight representative algorithms belonging to different classes
of source imaging approaches.

4.1 Problem formulation
In brain source imaging, the EEG recordings are assumed to be generated by a number
of current dipoles with free or fixed orientations belonging to a pre-defined source space.
Therefore, the data analysis model employed for the localization of distributed sources is
essentially the same as the EEG data generation model (cf. Section 2.5). Assuming that
artifacts have already been removed and distinguishing between the signals of interest S
(for notational convenience, we leave out the superscript (e) that was used in Chapter
3) and background activity Sb, for a source space with free orientation dipoles, the data
analysis model is thus given by

X = GS + GS(b) + Xi = GS + N. (4.1)

For dipoles with fixed orientations, equation (4.1) is replaced by the analysis model

X = G̃S̃ + G̃S̃(b) + Xi = G̃S̃ + N. (4.2)

Subsequently, both models are employed in order to present the source imaging algorithms
in Section 4.3 with the source space that was used in the original references.

Since the lead field matrix G (or G̃ for fixed dipole orientations) can be computed
numerically (cf. Section 2.5.1), we assume in this chapter that it is known. The objective
of brain source imaging then consists in estimating the unknown sources S or S̃ (depending
on the source model) from the measurements X. As the number of source dipoles D
(several thousands) is much higher than the number of sensors (several hundreds), the
lead field matrix is severely underdetermined, making the inverse problem ill-posed. In
order to restore identifiability of the underdetermined source reconstruction problem,
additional hypotheses about the sources have to be made.

4.2 Hypotheses
The hypotheses that are exploited to solve the brain source imaging problem can be distin-
guished into three categories: hypotheses that apply to the spatial, the temporal, and the
spatio-temporal (deterministic or statistical) distributions of the sources. Subsequently,
we provide an overview and a short description of the priors which have been used in
brain source imaging.
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4.2.1 Hypotheses on the spatial distribution of the sources
S1) Minimum energy The first assumption that can be made on the sources is based
on the idea that the power of the sources is physiologically limited. A popular approach
thus consists in identifying the spatial distribution of minimum energy, which is achieved
by employing an L2-norm regularization term.

S2) Minimum energy in a transformed domain As the spatial distribution of the
sources is unlikely to contain abrupt changes, it can be assumed to be smooth. This
hypothesis is generally enforced by constraining the Laplacian of the source spatial dis-
tribution to be of minimum energy.

S3) Sparsity Another hypothesis concerns the number of active sources that generate
the measured activity. In practice, it is often reasonable to assume that only a small
fraction of the source dipoles contributes to the measured signals of interest in a significant
way. The signals of the other source dipoles are thus expected to be zero. This leads to the
concept of sparsity, which is generally imposed on the source distribution using sparsity-
inducing norms such as the Lp-norm with p ≤ 1 or mixed norms. As the L0 “pseudo-norm”
leads to an NP-hard optimization problem, most practical approaches are based on the
L1-norm relaxation.

S4) Sparsity in a transformed domain Depending on the number of dipoles that
compose the source space (i. e., the spatial resolution of the source space) and the size
of the active source regions, the number of active dipoles generally exceeds the number
of sensors. Hence the source distribution is not sufficiently sparse for standard methods
based on sparsity to yield accurate results, leading to too focused source estimates. In
this context, another idea consists in transforming the sources into a domain where their
distribution is sparser than in the original source space. The applied transform may be
redundant, including a large number of basis functions or atoms, and is not necessarily
invertible. Sparsity is then imposed in the transformed domain by resorting to appropriate
norms such as the L1-norm.

S5) Separability in space and wave vector domains This hypothesis concerns
space-wave-vector transformed data, which can be obtained by computing a local spatial
Fourier transform of the measurements. Furthermore, it is applied to each distributed
source consisting of an ensemble of dipoles with highly correlated activities (see also
Section 4.2.3). This assumption states that for each distributed source, the space-wave-
vector matrix at each time point can be factorized into a function that depends on the
space variable only and a function that depends on the wave vector variable only. The
space and wave vector variables are thus said to be separable. In the context of brain
source imaging, for instance, this is approximately the case for superficial sources. This
hypothesis serves as a basis to employ tensor decomposition methods for the separation
of several distributed sources.

S6) Gaussian joint probability density function with parameterized spatial
covariance For this prior, the source signals are assumed to be random variables that
follow a Gaussian distribution. It is further presumed that the spatial covariance matrix
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can be described by a linear combination of a certain number of basis covariance functions.
This combination is characterized by so-called hyperparameters. This assumption serves
as a basis for the application of Bayesian approaches to solve the ill-posed inverse problem.
Various methods exist that approach the problem by estimating the statistical distribution
of hyperparameters, sources, or both.

4.2.2 Hypotheses on the temporal distribution of the sources
T1) Smoothness Since the spatial distribution of sources is unlikely to contain abrupt
changes, the source time distribution should also be smooth because the autocorrelation
function of the sources of interest usually has a Full Width at Half Maximum (FWHM)
of several samples. This is, for example, the case for interictal epileptic signals or event-
related potentials. Therefore, one can impose temporal smoothness by using L2-norm or
mixed norm regularization techniques.

T2) Sparsity in a transformed domain Similar to hypothesis S3), this assumption
implies that the source signals admit a sparse representation in a domain that is different
from the original time domain. This can, for instance, be achieved by applying a wavelet
transform or a redundant transformation such as the Gabor transform to the time dimen-
sion of the data. The transformed signals can then be modeled using a small number of
basis functions or atoms. This favors smooth source signals with certain time-frequency
characteristics that are well suited to describe characteristic signal forms of brain sources.
It also permits to reduce noise and background activity. Under this hypothesis, the source
separation is reduced to identifying the coefficients of the basis functions or atoms that
best describe the activity for each active source dipole. To this end, sparsity-based ap-
proaches are employed.

T3) Pseudo-periodicity with variations in amplitude If the recorded data com-
prise recurrent events such as a repeated time pattern that can be associated with the
sources of interest, one can exploit the repetitions as an additional diversity. This does
not necessarily require periodic or quasi-periodic signals. Indeed, the intervals between
the characteristic time patterns may differ, as may the amplitudes of different repetitions.
Examples of signals with repeated time patterns include interictal epileptic spikes, which
occur at irregular intervals, but usually exhibit the same morphology (when arising from
the same brain source), and event-related potentials (ERP), that are evoked by external
stimuli and entail typical brain responses for a given stimulation paradigm. The additional
diversity can be exploited to use tensor-based methods for the separation of distributed
sources.

T4) Separability in time and frequency domains This assumption is the equivalent
of hypothesis S4) and concerns data transformed into the time-frequency domain. The
transformed data can be obtained by applying a time-frequency transform such as the
Short Time Fourier Transform (STFT) or the wavelet transform to the measurements. It
is then assumed that time and frequency variables separate, such that the time-frequency
matrix of each source can be written as the product of a function depending on the time
variable only and a function depending on the frequency variable only. The time and
frequency variables are approximately separable for oscillatory signals as encountered, for
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example, in epileptic brain activity. This hypothesis gives rise to tensor-based approaches
for source separation.

T5) Non-zero higher-order marginal cumulants This assumption is required when
resorting to statistics of order higher than two in order to solve the source imaging prob-
lem. It is generally verified in practice, as the signals of interest usually do not follow a
Gaussian distribution. As for hypothesis S6), the measurements are regarded as realiza-
tions of an N -dimensional vector of random variables. The exploitation of HO cumulants
offers a better performance and identifiability than approaches based on SO statistics.

4.2.3 Hypotheses on the spatio-temporal distribution of the
sources

ST) Synchronous dipoles Contrary to point sources, which can be modeled by a
single dipole, in practice, one is often confronted with so-called distributed sources. A
distributed source is composed of a certain number of grid dipoles, which can be assumed
to transmit synchronous signals. For example, the EEG signals recorded at the surface
are known to originate from a certain area of cortex with highly synchronized activity (cf.
Sections 2.2 and 2.5). The hypothesis of synchronous dipoles concerns both the spatial
and the temporal distributions of the sources and is generally made in the context of
data model (4.2). In this case, it permits to separate the matrix S̃Ir , which contains the
signals of all synchronous dipoles of the r-th distributed source, indicated by the set Ir,
into the coefficient vector ψr that characterizes the amplitudes of the synchronous dipoles
and thereby the spatial distribution of the r-th distributed source and the signal vector
s̄ that contains the temporal distribution of the distributed source. This gives rise to a
new data model:

X = HS̄ + N (4.3)

where the matrix H = [h1, . . . ,hP ] contains the lead field vectors for P distributed sources
and the matrix S̄ ∈ RP×T characterizes the associated distributed source signals. Each
distributed source lead field vector hp corresponds to a linear combination of the lead
field vectors of all grid dipoles belonging to the distributed source:

hp = G̃ψp. (4.4)

The distributed source lead field vectors can be used as inputs for source imaging algo-
rithms, simplifying the inverse problem by allowing for a separate localization of each
source. This is in particular exploited by the tensor-based source localization methods
(cf. Section 4.4).

4.2.4 Hypotheses on the noise
While both the instrumentation noise and the background activity are often assumed to
be Gaussian, the instrumentation noise can be further assumed to be spatially white,
whereas the background activity is spatially correlated due to the fact that signals are
mixed. To meet the assumption of spatially white Gaussian noise that is required by some
algorithms described in Section 4.3, spatial prewhitening can be applied to the data. This
preprocessing step necessitates an estimate of the noise covariance matrix Cn, which can,
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for example, be determined from intervals of data that do not contain signals of interest.
Once an estimate Ĉn of Cn has been obtained, the prewhitening matrix P ∈ RN×N is
computed as

P = Λ−
1
2 UT (4.5)

where the matrices Λ and U contain the eigenvalues and eigenvectors of Ĉn = UΛUT.
To achieve prewhitening, the data and the lead field matrices are multiplied from the left
by the prewhitening matrix.

4.3 Classification and description of state-of-the-art
methods

In this section, we provide an overview of various brain source imaging methods that have
been developed in the context of the EEG/MEG inverse problem. Based on methodolog-
ical considerations, we distinguish three main families of techniques: regularized least
squares approaches, Bayesian approaches, and extended source scanning approaches. A
fourth family, comprising tensor-based approaches, will be introduced in Section 4.4. The
brain source imaging methods within each family are further classified according to the hy-
potheses they exploit. The implementation of different assumptions is illustrated through
the detailed explanation of six representative algorithms. Table 4.1 schematically summa-
rizes the hypotheses which are employed by several source imaging methods mentioned
in subsequent sections.

- T1 T2 T3 T4 T5 ST

S1 sLORETA
S2 LORETA
S3 MCE MxNE TF-MxNE STR-DA STF-DA ExSo-MUSIC STR-DA

S4 VB-SCCD ESP
STR-DA STWV-DA

ExSo-MUSIC ExSo-MUSIC
STF-DA STF-DA

S5 STWV-DA
S6 Champagne

Hypotheses on the spatial distribution Hypotheses on the temporal distribution
S1) Minimum energy T1) Smoothness
S2) Minimum energy in a transformed domain T2) Sparsity in a transformed domain
S3) Sparsity T3) Pseudo-periodicity
S4) Sparsity in a transformed domainn T4) Separability in the time-frequency domain
S5) Separability in the space-wavevector domain T5) Non-zero higher order marginal cumulants
S6) Parameterized spatial covariance

Hypotheses on the spatio-temporal distribution
ST) Synchronous dipoles

Table 4.1: Classification of different algorithms mentioned in Sections 4.3 and 4.4.1 ac-
cording to the exploited hypotheses.
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4.3.1 Regularized least squares methods

A natural approach to solve the ill-posed EEG inverse problem consists in finding the
solution that best describes the measurements in a least squares sense. To favor source
distributions with certain properties, corresponding to different hypotheses on the sources,
additional constraints are imposed. In the presence of noise, this is generally achieved by
solving an optimization problem with a cost function of the form:

L(S) = ||X−GS||2F + λf(S). (4.6)

For methods that do not consider the temporal structure of the data, but work on a time
sample by sample basis, the data matrix X and the source matrix S are replaced by the
column vectors x and s, respectively. Furthermore, for fixed orientation dipoles, G and
S are replaced by G̃ and S̃.

The first term on the right-hand side of (4.6) is generally referred to as the data fit
term and characterizes the difference between the measurements and the surface data
reconstructed from given sources. The second is a regularization term and incorporates
additional constraints on the sources according to the a priori information. The regular-
ization parameter λ is used to manage a trade-off between data fit and a priori knowledge
and depends on the noise level, since the gap between measured and reconstructed data
is expected to become larger as the SNR decreases.

Figure 4.1 provides an overview of the regularized least squares algorithms with dif-
ferent regularization terms that are discussed in the following sections.

Figure 4.1: Overview of regularized least squares algorithms (for an explanation of the
employed notations for the different algorithms see the text in the associated sections).
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4.3.1.1 Minimum Norm Estimates (MNE) – assumption S1) or S2)

The first source imaging approach that has been proposed consisted in finding the mini-
mum norm solution to the underdetermined source reconstruction problem [99]. To this
end, a prior which imposes a minimal signal power according to hypothesis S1) is em-
ployed, leading to a regularization term that is based on the L2-norm of the signal vector:
f(s) = ||Ws||22 where W ∈ R3D×3D

+ is a diagonal matrix containing fixed weights. As the
original MNEs, obtained for W = I3D, favor superficial sources, weighted MNE (WMNE)
methods (for W 6= I3D) were proposed to compensate for the depth bias. Furthermore,
one can consider the variance of the noise or the sources, leading to normalized estimates.
This approach is pursued by the dSPM [100] algorithm, that takes into account the noise
level, and sLORETA [101], described below, which standardizes the source estimates with
respect to the variance of the sources.

The MNEs generally yield smooth source distributions. Nevertheless, spatial smooth-
ness can also be more explicitly promoted by applying a Laplacian operator L to the
source vector in the regularization term, leading to the popular LORETA method [102],
which is based on assumption S2). In this case, the L2-norm constraint is imposed on
the transformed signals, yielding a regularization term of the form f(s) = ||LWs||22. The
cLORETA algorithm [103], which corresponds to a variant of LORETA for fixed orienta-
tion dipoles, is described in more detail below. More generally, the matrix L can be used
to implement a linear operator that is applied to the sources.

Although the original MNEs have been developed for sources with free orientations,
modifications of the algorithms to account for orientation constraints are straightforward
(see, e.g., [103]). Furthermore, the incorporation of loose orientation constraints is ad-
dressed in [104]. Note that even though all of these methods work on a time sample by
sample basis, the time structure may be exploited in a preprocessing step (such as the
tensor-based source separation) to enhance the performance of the MNE.

sLORETA For f(s) = ||s||22, the solution to the optimization of the cost function (4.6)
can be obtained by applying the Tikhonov regularized inverse matrix

K = GT
(
GGT + λIN

)−1

to the measurement vector. The idea of the sLORETA algorithm consists in normaliz-
ing the solution according to the variance of each estimated dipole source, characterized
by the covariance matrix Cŝ = KCxKT, where Cx is the data covariance matrix. As-
suming that covariance matrices of original sources and noise are equal to I3D and λIN ,
respectively, corresponding to uncorrelated sources and spatially white noise, the data
covariance matrix can be written as Cx = GGT + λIN , leading to the covariance matrix
Cŝ = GT(GGT + λI)−1G of the minimum norm solution. The d-th element, d = 1 . . . D,
of the normalized source estimate can then be computed as 1

ŝd =
√
Cŝ,d,d Kd,: x. (4.7)

The resulting source vector ŝ contains continuous values for the dipole strengths. For the
localization of extended sources, all the grid dipoles whose coefficients exceed a certain
threshold are associated to the extended source.

1In equation (4.7), the Matlab notation is used to denote the d-th row of a matrix.
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Due to the normalization, sLORETA permits to obtain a source estimate which is
unbiased in the case of a single dipole source. As in practice, the background activity of
the brain, which constitutes a nuisance with respect to the signals of interest, is spatially
correlated, spatial prewhitening should be applied to the data before using sLORETA in
order to obtain accurate results.

cLORETA The cLORETA source imaging solution to the optimization problem (4.6)
with f (̃s) = ||LWs̃||22 is computed as

ˆ̃s =
(
WLTLW

)−1
G̃T

(
G̃
(
WLTLW

)−1
G̃T + λI

)−1
x (4.8)

where W ∈ RD×D is a diagonal weight matrix with Wd,d = ||g̃d||−1
2 . The elements of the

surface Laplacian matrix L are given by [103]

Li,j =


− 1∑

j
di,j

∑
j

1
di,j

for i = j
1

di,j
∑

j
di,j

if i and j are indices of adjacent dipoles
0 otherwise

where di,j denotes the distance between dipoles i and j for i, j = 1, . . . , D.
In order to obtain an estimate of the distributed source, the resulting signal vector ˆ̃s

is thresholded.

4.3.1.2 Minimum current estimates – assumption S2)

As the minimum norm estimates generally lead to blurred source localization results, as
widely described in the literature (see for example [105]), source imaging methods based
on hypothesis S3), which promote sparsity, were developed to obtain more focused source
estimates. One of the first algorithms proposed in this field was FOCUSS [106, 107],
which iteratively updates the minimum norm solution using an L0 “norm”. This grad-
ually shrinks the source spatial distribution, resulting in a sparse solution. Around the
same time, source imaging techniques based on Lp-norm (0 ≤ p ≤ 1) regularization were
put forward [108, 109]. These methods are based on the cost function (4.6) with a reg-
ularization term that takes the form f(s) = ||Ws||p where p is generally chosen to be
equal to 1, leading to a convex optimization problem2. However, by treating the dipole
components independently in the regularization term, the estimated source orientations
are biased. To overcome this problem, Uutela et al. [110] proposed to use fixed ori-
entations determined either from the surface normals or estimated using a preliminary
minimum norm solution. This gave rise to the MCE algorithm, which is summarized be-
low. An extension of this approach, which only requires the knowledge of the signs of the
dipole components to correctly estimate the source orientations, was implemented in the
VESTAL algorithm [111]. Loose orientation constraints for MCE are further treated in
[104]. In [105], a combination of the ideas of FOCUSS and Lp-norm (p ≤ 1) regularization
was implemented in an iterative scheme.

2Note that the minimization of this cost function is closely related to the optimization problem
min ||Ws||p s. t. ||x − Gs||22 ≤ δ with regularization parameter δ, on which the algorithm proposed
in [109] is based.
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MCE The first step of the MCE algorithm consists in computing an MNE solution
for the problem (4.1). The dipole moment vectors of the MNE are then used to fix the
orientations of the source dipoles and to build the matrix G̃ = GΥ. Subsequently, we can
therefore solve problem (4.2) instead of problem (4.1). To this end, the following criterion
is minimized:

L(̃s) = wT|̃s| subject to ΣsVT
s s̃ = UT

s x (4.9)

where w is a weight vector that can be used to compensate for depth bias. Furthermore,
G̃ = UΣVT is the SVD of the lead field matrix with left and right signal subspaces
span(Us) and span(Vs) and associated singular values contained in the diagonal matrix
Σs. Note that the optimization problem (4.9) is closely related to the formulation (4.6)
with f(s) = ||s||1. Here, the data fit is enforced by the truncated SVD and the effective
regularization parameter is the dimension of the signal subspace. As the orientations
including the direction of the source currents are obtained from an MNE, the signals can
be constrained to be positive. In this case, wT|̃s| becomes wTs̃ and the optimization
problem (4.9) can be solved by linear programming. Finally, the estimated sources of
model (4.1) can be reconstructed as ŝ = Υˆ̃s.

4.3.1.3 Combination of smoothness and sparsity of the spatial distribution –
assumptions S1) and S3)

Similar to Uutela et al. [110], the objective of Ding and He [112] consisted in solving the
problem of orientation bias of the sparse source estimates. To this end, they proposed to
impose sparsity dipole-wise instead of component-wise. This can be achieved by inserting
the mixed L1,2-norm regularization term f(s) = ||[sx, sy, sz]||1,2 into the cost function
(4.6). Here, the vectors sx, sy, and sz contain the x-, y-, and z-components of the D
dipoles, respectively, and ||S||1,2 = ∑D

d=1

√∑T
t=1 S

2
d,t denotes the L1,2-norm of the matrix

S ∈ RD×T . The use of the L1,2-norm regularization leads to a small number of active
dipoles, where each dipole corresponds to a group of three active components with a
smooth distribution.

While the MNE yields blurred results, the sources recovered by MCE are usually too
focused. To find a compromise between smoothness and sparsity of the spatial distribu-
tion, a prior that is composed of both an L1-norm and an L2-norm regularization term
can be employed as proposed in [113].

4.3.1.4 Sparsity in a transformed domain – assumption S4)

Depending on the expected size of the active source regions, the hypothesis of spatial spar-
sity imposed directly on the sources may be regarded as too strong, leading to too focused
source estimates. One idea thus consists in imposing sparsity in a transformed domain,
where the representation of the sources is sufficiently sparse. This is generally achieved by
employing a regularization term of the form ||Ts̃||1 where T is a transformation matrix. In
the literature, different transformations have been considered. The authors of [114] have
used a surface Laplacian, thus imposing sparsity on the second order spatial derivatives of
the source distribution, in combination with classical L1-norm regularization. A similar
approach that is based on a mixed L1,2-norm to take into account temporal smoothness
of the source distribution (see also Section 4.3.1.5) is described in [115]. Another way
to promote a piece-wise constant spatial distribution was proposed by Ding [116]. This
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approach is based on the so-called variational map that characterizes variations in ampli-
tude between adjacent dipole sources. The characteristics of this method, referred to as
VB-SCCD, are described below. Note that the VB-SCCD algorithm is closely related to
the Total Variation (TV) approach, which is well known in other domains such as image
processing [117, 118], but has also been applied to brain source imaging [119, 3]. Note,
too, that the hypothesis of a piece-wise constant spatial distribution is also exploited in
combination with other hypotheses by several other methods such as 4-ExSo-MUSIC and
the tensor-based disk algorithm, which are described in Sections 4.3.3.2 and 4.4.1, respec-
tively. A third approach that makes use of sparsity in a transformed domain considers a
spatial wavelet transform that permits to compress the signals through a sparse represen-
tation of the sources in the wavelet domain [120, 121, 114]. Finally, a combination of the
variation-based and the wavelet-based priors has been considered recently in [122].

VB-SCCD The VB-SCCD method solves the following optimization problem:

min ||Ts̃||1 s. t. ||x− G̃s̃||2 ≤ δ (4.10)

where T is a transform matrix that permits to compute the variational map of the sources.
To define T, Ding assumes that the source space is described by the triangularized cortical
surface, where a dipole source is placed at the centroid of each triangle. The orientations
of the dipoles are fixed such that they are perpendicular to the cortical surface. The
elements Te,d of T, e = 1, . . . , E, d = 1, . . . , D, where E is the number of edges of the
triangular grid, are then given by:

Te,d =


1 if d = de,1
−1 if d = de,2
0 otherwise

(4.11)

where de,1 and de,2 are the indices of the dipoles sharing the e-th edge. This definition can
also be extended to models where the source dipoles are placed at the vertices of the grid.
The optimization of (4.10) is performed using Second Order Cone Programming (SOCP)
[123, 124].

Note that the main difference between VB-SCCD and the TV approach consists in
the fact that in the TV approach, both the original and the transformed variables are
associated with the source dipoles whereas for VB-SCCD, the transformed source variables
are associated with the edges of the surface mesh, which simplifies the computations.

4.3.1.5 Mixed norm estimates – assumption S3) and T1)

To impose hypotheses simultaneously in several domains, e.g., the space-time plane, one
can resort to mixed norms. Efficient algorithms that have been developed to deal with the
resulting optimization problem are presented in [125]. In [126], a source imaging method
that imposes sparsity over space (hypothesis S2)) and smoothness over time (assumption
T1)) using a mixed L1,2-norm regularization has been proposed. This algorithm employs
temporal basis functions, which are derived from an SVD. A more flexible approach, that
permits to estimate appropriate basis functions, has been proposed recently in [127].
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MxNE The approach described in [126] is based on preprocessed data and assumes
fixed source orientations. In a first step, the data is spatially whitened using an estimate
of the noise covariance matrix. A second step consists in projecting the measurements on
a set of temporal basis functions. The latter are obtained from the data by an SVD of
X = UΣVT and correspond to a basis of the right signal subspace span(Vs). Multiplying
the data by Vs from the right, one obtains the modified data X′ = G̃S̃′+ N′. The source
localization is based on the cost function:

L(S̃′) = ||X′ − G̃S̃′||2F + λ||S̃′||1,2 = ||X′ − G̃S̃′||2F + λ
D∑
d=1

√√√√ T∑
t=1

(S̃ ′d,t)2. (4.12)

In the original paper, this cost function is minimized using SOCP and a multi-resolution
approach to cope with the high computational complexity. However, much faster conver-
gence can be achieved using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
[128] (cf. Appendix F) as suggested in [125], which renders the multi-resolution approach
unnecessary. Once the optimal solution to (4.12) has been identified, the reconstructed
source signals can be obtained as:

ˆ̃S = S̃′VT
s . (4.13)

4.3.1.6 Sparsity over space and in the transformed time domain – assump-
tions S3) and T2)

An approach that imposes sparsity over space as well as in the transformed time domain is
taken in the TF-MxNE method. This technique makes use of a dictionary Φ, from which
a small number of temporal basis functions are selected to characterize the source signals.
The method is based on mixed norms and uses a composite prior of two regularization
terms similar to [113]. This approach has been considered independently by Tian et
al. [129] and Gramfort et al. [130]. However, due to a different formulation of the
optimization problem, the computational complexity of the algorithm in [129] is much
higher than that of the method described in [130], requiring a multi-resolution approach
to obtain a feasible solution. Contrary to Gramfort et al. who use Gabor basis functions,
Tian et al. consider a data-dependent temporal basis obtained using an SVD of the
measurements and a data-independent temporal basis that is given by Natural Cubic
Splines (NCS).

Finally, let us point out that it is also possible to consider both temporal and spatial
basis functions (assumptions S3) and T2)) as suggested in [131] for the ESP algorithm.

4.3.2 Bayesian approaches – assumption S6)
Bayesian approaches are based on a probabilistic model of the data and treat the measure-
ments, the sources, and the noise as realizations of stochastic random vector processes.
In this context, the reconstruction of the sources corresponds to obtaining an estimate of
their posterior distribution, which is given by:

p(s|x) = p(x|s)p(s)
p(x) (4.14)

where p(x|s) is the likelihood of the data, p(s) is the source distribution, and p(x) is the
model evidence. The crucial point consists in finding an appropriate prior distribution
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p(s) for the sources, which in the Bayesian framework incorporates the hypotheses that
regularize the ill-posed inverse problem. We can distinguish three classes of Bayesian
approaches [132]: Maximum A Posteriori (MAP) estimation for the sources, empirical
Bayes, and variational Bayes. The first approach employs a fixed prior p(s) leading to
MNE, MCE, and MxNE solutions, which have been addressed in previous sections. In this
section, we focus on empirical and variational Bayesian approaches, which use a flexible,
parameterized prior p(s|γ), which is modulated by the hyper-parameter vector γ ∈ RL.
More particularly, in the EEG context, the source distribution is generally assumed to
be zero-mean Gaussian with a covariance matrix Cs that depends on hyper-parameters,
such that:

p(s|γ) ∝ exp(−1
2STC−1

s (γ)S). (4.15)

The hyper-parameters can either directly correspond to the elements of Cs (as in the
Champagne algorithm described below) or parameterize the covariance matrix such that
Cs = ∑L

`=1 γ`C`. Here, C`, ` = 1, . . . , L, are predefined covariance components. The
hyper-parameters are then learned from the data to perform some kind of model selection
by choosing appropriate components.

4.3.2.1 Variational Bayesian approaches

The variational Bayesian methods [133, 134] try to obtain estimates of the posterior
distributions of the hyper-parameters p̂(γ|x). To this end, additional assumptions are
required, such as (i) statistical independence of the hyper-parameters (a.k.a. mean-field
approximation), or (ii) a Gaussian posterior distribution of the hyper-parameters (a.k.a.
Laplace approximation). This permits not only to approximate the distribution p(s|x)
and thereby to estimate the sources, but also to provide an estimate of the model evidence
p(x), which can be used to compare different models (e.g., for different sets of covariance
components).

4.3.2.2 Empirical Bayesian approaches

The empirical Bayesian approaches (see, e.g., [135, 136, 137, 138, 139]) on the other hand
are concerned with finding a point estimate of the hyper-parameters, which is obtained
by marginalization over the unknown sources s:

γ̂ = arg max
γ

∫
p(x|s)p(s|γ)p(γ)ds. (4.16)

For known hyper-parameters, the conditional distribution p(s|x,γ) can be determined.
To obtain a suitable estimate of the sources, one can for instance apply the Expectation
Maximization (EM) algorithm [140], which alternates between two steps: the M-step in
which the maximum likelihood estimates of the hyper-parameters are updated for fixed s,
and the E-step in which the conditional expectation of the sources is determined based on
the hyper-parameters obtained in the M-step. In the following, we consider the empirical
Bayesian algorithm introduced in [138, 139], called Champagne.

Champagne The Champagne source localization algorithm is based on the following
source prior:

p(S|Cs) ∝ exp(−1
2tr{STC−1

s S}) (4.17)
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that is, assumes that the sources at each time point are described by a zero-mean Gaussian
random vector of covariance Cs. The activities of different source dipoles are assumed to
be independent, leading to a block-diagonal covariance matrix Cs of the sources. Each of
the blocks Cs,d, d = 1, . . . , D, contains the hyper-parameters characterizing the covariance
between the components of the d-th dipole. The main part of the Champagne algorithm
consists in finding an approximation for the hyper-parameter matrix Cs. This can be
achieved by minimizing the cost function:

L(Cs) = tr{C̃xC−1
x }+ log (det(Cx)) (4.18)

where C̃x = XXT and Cx = GCsGT + Cn with the noise covariance matrix Cn. The
latter has to be estimated from the data. An efficient algorithm for this optimization
problem has been derived in [138] by resorting to auxiliary functions and replacing (4.18)
by the cost function:

L(Cs,Y,Z) = ||X̃−
D∑
d=1

GdYd||2C−1
n

+
D∑
d=1

(
||Yd||2C−1

s,d
+ tr{ZT

dCs,d}
)

+ h∗(Z) (4.19)

where X̃ ∈ RN×rank(X) is the reduced data matrix such that X̃X̃T = Cx, Gd denotes
the matrix of lead field vectors associated with the components of the d-th dipole, and
Y = [Y1, . . . ,YD], Z = [Z1, . . . ,ZD] are auxiliary matrices. Furthermore, ||X||2C−1 =
trace(XTC−1X) and h∗(Z) is the concave conjugate3 of log (det(Cx)). The function (4.19)
can be minimized by alternating descent, a technique that consists in optimizing the cost
function alternately with respect to one of the three matrices while keeping the other two
matrices fixed. This leads to the following update rules:

Ynew
d = Cs,dGT

dC−1
x X̃ (4.20)

Znew
d = GT

dC−1
x Gd (4.21)

Cnew
s,d = Z−

1
2

d

(
Z

1
2
dYdYT

d Z
1
2
d

) 1
2
Z−

1
2

d (4.22)

with d = 1, . . . , D. Once an approximation of Cs has been obtained, the sources can be
estimated as

Ŝ = CsGT
(
Cn + GCsGT

)−1
X. (4.23)

It has been shown in [138] that in the absence of noise and for a source space with
sufficiently high resolution, finding the unique global minimum of the cost function leads
to perfect source reconstruction. Furthermore, if the dipole sources are uncorrelated, there
are no local minima which might impede on the identification of the global minimum.

4.3.3 Extended source scanning methods
Even though classical scanning methods such as MUSIC and beamforming techniques are
conceived for equivalent current dipole localization, these methods are sometimes used
for the identification of distributed sources by thresholding the employed metric instead

3In convex optimization, the concave conjugate of a function corresponds to the dual form of the
function, which permits to formulate the optimization problem in an alternative way. See [124] for more
information.
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of determining its maxima (see, for example, [141]). However, this procedure is some-
what abusive and cannot be expected to yield accurate estimates of distributed sources.
Consequently, we do not consider the classical MUSIC and beamforming techniques as
true distributed source localization methods in this thesis. On the contrary, extensions
of MUSIC and beamforming techniques that are specifically designed for the localization
of distributed sources also exist. These methods, which we refer to as extended source
scanning methods, are the subject of this section.

The idea of extended source scanning methods consists in identifying active sources
from a dictionary of potential distributed sources. To this end, a metric is computed
for each element of the dictionary. The source estimates are then obtained from the
elementary source distributions that are associated with the maxima of the metric. Based
on the employed metric, we subsequently distinguish two types of scanning methods
that correspond to adaptive spatial filtering, a.k.a. beamforming, and subspace-based
approaches.

4.3.3.1 Beamforming approaches – assumptions S3) and S4)

Beamforming techniques aim at identifying brain sources based on an adaptive spatial
filtering approach and have originally been proposed in the context of equivalent current
dipole localization from MEG measurements [142, 143, 144, 145, 92]. The basic approach
employs the Linearly Constrained Minimum Variance (LCMV) filter [142], that is based
on the data covariance matrix and which is derived for each dipole of the source space to
reconstruct its temporal activity while suppressing contributions from other sources. The
filter output is then used to compute a metric which serves to identify the active dipole
sources. To this end, an estimate of the noise covariance matrix is generally required. The
weight-normalized LCMV beamformer [143] was shown to yield unbiased solutions in the
case of a single dipole source [92], but leads to source localization errors in the presence of
correlated sources. To overcome this problem, extensions of the beamforming approach to
multiple, potentially correlated (dipole) sources have been considered [146, 147, 148, 149,
150, 151]. Furthermore, in [152], the beamforming approach has been extended to the
localization of distributed sources. This is achieved by deriving adaptive spatial filters for
all elements of a dictionary of potential source regions, also called patches. The authors
of [152] further propose a parameterization of the source regions that permits to adjust
the spatial source distribution within each patch. The source imaging solution is then
obtained from dictionary elements associated with the maxima of the metric which is
derived from the filter outputs, resulting in a spatially sparse source distribution with a
small number of active source regions according to hypotheses S3) and S4).

4.3.3.2 Subspace-based approaches – assumptions ST), T5) and S4)

Similar to Bayesian approaches, subspace-based methods also treat the measurements
recorded by several sensors as random vectors. They then exploit the symmetric 2q-th
(q ≥ 1) order cumulant matrix C2q,x of the measurements from which the signal and noise
subspaces, span(Us) and span(Un), respectively, are identified by means of an EVD:

C2q,x = UΛUT =
[
Us Un

] [Λs 0
0 Λn

] [
UT

s
UT

n

]
.
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For source imaging purposes, one then exploits the fact that the higher-order lead field
vector g̃⊗qp , p = 1, . . . , P , where g̃⊗qp is a shorthand notation for g̃p ⊗ g̃p ⊗ · · · ⊗ g̃p with
q − 1 Kronecker products, must lie in the 2q-th order signal subspace and be orthogonal
to the noise subspace. To this end, MUSIC-like algorithms can be employed, which have
first been used in the context of equivalent dipole localization [90, 91, 16]. Recently, the
2q-MUSIC algorithm [153] has been adapted to the identification of distributed sources
[15], then referred to as 2q-ExSo-MUSIC. An advantage of subspace-based techniques
exploiting the 2q-th order statistics with q > 1 over other source imaging algorithms lies
in their asymptotic robustness to Gaussian noise, because cumulants of order higher than
2 of a Gaussian random variable are null (see also Appendix A.2).

2q-ExSo-MUSIC The 2q-ExSo-MUSIC algorithm exploits the 2q-th order cumulants
of the data arranged in a matrix, C2q,x ∈ RNq×Nq . The latter is generally estimated using
the Leonov-Shiryaev formula and sample statistics (see Appendix A.1 and [154]). The 2q-
ExSo-MUSIC algorithm is based on data model (4.3) and assumes that the measurements
are generated by a small number of distributed sources, each characterized by a number
of adjacent grid dipoles with identical amplitudes: h = G̃ψ with ψd ∈ {0, 1}. The
distributed source lead field vector h is thus parameterized by the coefficient vector ψ.
The restriction of coefficients to 0 or 1 imposes a piece-wise constant source distribution
(corresponding to hypothesis S3) similar to VB-SCCD. The higher order cumulant matrix
is then given by:

C2q,x = H⊗qC2q,s(H⊗q)T (4.24)
where C2q,s ∈ RP q×P q is the 2q-th order cumulant matrix of the distributed sources. The
vectors h⊗qp are thus contained in the signal subspace of C2q,x. In analogy to the classical
MUSIC algorithm, the 2q-ExSo-MUSIC spectrum:

FMUSIC(ψ) = (h⊗q)TUsUT
s h⊗q

(h⊗q)Th⊗q
= (ψ⊗q)T(G⊗q)TUsUT

s G⊗qψ⊗q

(ψ⊗q)T(G⊗q)TG⊗qψ⊗q
(4.25)

is then computed for a number of pre-defined parameter vectors ψ. To this end, a dictio-
nary of potential elementary distributed sources is defined by a number of circular-shaped
cortical areas of different centers and sizes, subsequently called disks. Each disk is com-
posed of a number of adjacent grid dipoles and characterized by a coefficient vector ψ
with ψd = 1 for all dipoles belonging to the disk and 0 otherwise. For the true spatial
mixing vectors h⊗qp , p = 1, . . . , P , which are contained in the signal subspace of C2q,x, the
spectrum is equal to 1. In practice, the 2q-ExSo-MUSIC spectrum does not exactly reach
1 because of inaccurate modeling of the distributed source lead field vectors. The spec-
trum is hence thresholded and all coefficient vectors ψ for which the spectrum exceeds a
fixed threshold are retained and united to model distributed sources.

4.4 Tensor-based source localization
While previous studies of tensor-based methods for EEG analysis [69, 70, 71, 72, 73]
have concentrated on source separation and equivalent current dipole estimation, we here
extend these techniques to the localization of distributed sources. This leads to a new
family of source imaging algorithms: the tensor-based approaches. These methods proceed
in two steps:
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1. the separation of different distributed sources using tensor decomposition, and

2. the identification of grid dipoles characterizing each distributed source.

The first step has already been adressed in Section 3.2 where we have described two
tensor-based methods for the separation of EEG sources using the CP decomposition.
Depending on the dimensions of the employed tensor, the CP decomposition involves
different multilinearity assumptions: for Space-Time-Realization (STR) data, hypothesis
T3) is required, for STF data, hypothesis T4) is involved, and for STWV data, we resort to
hypothesis S5). This gives rise to different sub-classes of tensor-based source localization
methods.

In this section, we focus on the second step, the distributed source localization, which
is based on an estimate Ĥ =

[
ĥ1, . . . , ĥP

]
of the spatial mixing matrix H, allowing for

a separate identification of the grid dipoles for each patch. In principle, any localization
algorithm that acts on a vector of spatial measurements can be employed to this end.
Here, we introduce the Disk Algorithm (DA) that uses an optimization strategy inspired
by the 2q-ExSo-MUSIC approach (see 4.3.3.2, [15]) but with a different metric built
from the spatial mixing matrix estimated by the STF or STWV analysis. To this end,
we employ the extended source data model (see Section 4.2.3) and assume a piece-wise
constant spatial source distribution, associated with hypotheses ST) and S5).

After presenting the disk algorithm in Section 4.4.1, we analyze the performance of
the STWV-based and STF-based disk algorithms, referred to as STWV-DA and STF-DA
in the following, based on computer simulations in Section 4.4.2. Finally, in Section 4.4.3,
these methods are validated on real EEG recordings of an epileptic patient. Our findings
are summarized and discussed in Section 4.4.4.

4.4.1 Disk algorithm (DA)
Similar to 2q-ExSo-MUSIC (cf. Section 4.3.3.2), the concept underlying the disk algorithm
consists in recovering the extended source from a dictionary of potential distributed source
regions corresponding to small, circular-shaped patches of grid dipoles, the disks. For each
grid dipole, several disks composed of the 0 toDmax−1 nearest dipoles and the current grid
dipole as central point are determined. The disks are characterized by coefficient vectors
ψk, k = 1, . . . , DmaxD, with ψk,d ∈ {0, 1} as described in Section 4.3.3.2. According
to equation (4.4), the reconstructed spatial mixing vector of the k-th disk can then be
obtained as hk = G̃ψk.

To determine which disks of the parameter space best describe the spatial mixing
vector ĥp of the p-th source, which has previously been estimated using the STWV or
STF method, the vector ĥp is compared to the spatial mixing vectors hk of all disks using
the following metric, which is based on the normalized inner product:

Fiprod(ĥp,ψ) =

(
ĥT
p G̃ψ

)2

ψTG̃TG̃ψ
. (4.26)

All grid dipoles belonging to disks for which (4.26) exceeds a certain threshold are then
merged to form the p-th distributed source.

On the other hand, one could also think of identifying the disks by minimizing the
difference between estimated and reconstructed spatial mixing vectors which is done by
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minimizing the function

Fdiff(ĥp,ψ) = ||ĥp −m(ĥp,ψ) · G̃ψ||22. (4.27)

Here,

m(ĥp,ψ) =
ĥT
p G̃ψ

ψTG̃TG̃ψ
(4.28)

is a normalization factor which is introduced due to the scaling ambiguity of the estimated
spatial mixing vector inherent to the CP decomposition. The normalization factor is
computed in such a way that it minimizes the metric for given estimated and reconstructed
spatial mixing vectors. Interestingly, inserting (4.28) into (4.27), the difference metric can
be reduced to

Fdiff(ĥp,ψ) = ĥT
p ĥp −

(
ĥT
p G̃ψ

)2

ψTG̃TG̃ψ
(4.29)

= ĥT
p ĥp − Fiprod(ĥp,ψ), (4.30)

and minimizing (4.30) is equivalent to maximizing the inner product metric (4.26). There-
fore, we only consider the inner product metric in the following.

The steps of the tensor-based disk algorithm are schematically illustrated in Figure
4.2.

Figure 4.2: Schematic illustration of the tensor-based disk algorithm.

4.4.2 Computer results
In this section, the performance of the STF-DA and STWV-DA methods is analyzed by
means of realistic computer simulations. To this end, we employ a simulation setup that
is inspired by [155].

4.4.2.1 Simulation setup

Data generation EEG data are generated as described in Section 2.5 for N = 91 elec-
trodes and a source space that is composed of D = 19626 dipoles with fixed orientations
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located on the cortial surface. For the generation of extended sources, we consider a
number of patches each of which consists of 100 adjacent grid dipoles corresponding to
a cortical area of approximately 5 cm2 (see Figure 2.6). Using the neuronal population
model described in Section 2.5.2, highly-correlated epileptiform spike-like signals compris-
ing T = 200 time samples with a sampling rate of 256 Hz are created for all dipoles of
one patch (see Figure 2.7 for an example). We analyze several scenarios composed of two
patches, for which the time courses of the dipoles in the first patch are delayed by several
time samples according to the distance between the two patches and attributed to the
dipoles in the second patch. This corresponds to the case where the epileptic activity in
the first patch spreads to a second patch. For small distances, a random delay of 1 or
2 time samples (4-8 ms) is used for each signal. For medium distances the signals are
shifted by 3 or 4 time samples (12-16 ms) and for large distances, a signal delay of 5 or 6
samples (20-24 ms) is employed. Finally, using the same model of neuronal populations,
we generate normalized physiological background activity and add it to the simulated
measurement data. The normalization is carried out such that the amplitude of the back-
ground activity for dipoles outside the patch corresponds to the amplitude of background
activity between spikes in the patch.

Tested source localization methods The patches are localized using STF-DA and
STWV-DA. Furthermore, we employ sLORETA, cLORETA, and 4-ExSo-MUSIC for dis-
tributed source localization to compare the results of the tensor-based methods to other
approaches. All algorithms are tested both on the raw EEG data and on spatially
prewhitened data (see Section 4.2.4) in order to evaluate the impact of prewhitening
on the source localization results. To estimate the noise covariance matrix, we use 25000
time samples of data generated for the case where all dipoles emit background activ-
ity. For STWV-DA, we construct the tensor from the raw data, as prewhitening would
change the space-wave-vector characteristics, but we estimate the spatial mixing matrix
H from the prewhitened data matrix and the temporal characteristics identified by the
CP decomposition.

To improve the SNR, in particular for deep sources, whose measurable signals at the
surface are otherwise completely submerged by the noisy background activity, we consider
data that is averaged over 10 spikes, synchronized on the maximum of the spike. Since
sLORETA and cLORETA do not take into account the temporal information, they are
applied to the time sample that exhibits the highest variance over all EEG channels,
corresponding to the maximum of the epileptiform spike. For 4-ExSo-MUSIC, in order to
dispose of a sufficient amount of time samples to accurately estimate the FO statistics, we
concatenate the T = 200 time samples that are selected for each of the 10 spikes, leading
to a total of 2000 time samples.

The parameters of the tested algorithms are chosen as follows: the tensor-based pre-
processing with the STF and STWV methods is performed as described in Section 3.2.6.1
and if not stated otherwise, the number of CP components is chosen to be equal to the
number of patches. For STF-DA and STWV-DA, the localization is thus performed for
each patch separately. For both DA and 4-ExSo-MUSIC, we construct a dictionary of
potential sources comprising circular-shaped source regions that are composed of up to
Dmax = 100 grid dipoles. The dimension of the signal subspace of the FO cumulant
matrix used in 4-ExSo-MUSIC is chosen according to the number of distributed sources
according to the following rule: R = rank(Us) = P (P+1)

2 . For sLORETA and cLORETA,
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we fix the regularization parameter λ such that it approximately balances between the
data fit term, whose expected value is equal to the number of sensors N in the case of
prewhitening, and the regularization term.

Evaluation criteria To quantitatively evaluate the performance of the different al-
gorithms, we use two measures: the Distance of Localization Error (DLE) [156], which
characterizes the difference between the original and the estimated source configurations,
and the Receiver Operating Characteristic (ROC) [155], which reflects the ability of a
source imaging algorithm to recover the extent and the form of the distributed sources.

Mathematically, the DLE is defined as follows:

DLE = 1
2

 1
Q

∑
k∈I

min
`∈Î
||rk − r`||2 + 1

Q̂

∑
`∈Î

min
k∈I
||rk − r`||2

 (4.31)

where I denotes the set of indices of all grid dipoles belonging to an active patch, Q is the
number of active grid dipoles, i.e., Q = #I, Î denotes the set of indices of all estimated
active source dipoles and Q̂ = #Î corresponds to the number of the latter. Furthermore,
rk denotes the position of the k-th source dipole, which corresponds to the centroid of
the k-th triangle. To compare the estimated source configuration to the original source
configuration characterized by the dipoles belonging to the active patches, we consider a
number of active estimated dipoles that is equal to the true number of patch dipoles or as
close to this number as possible. To achieve this, we threshold the absolute value of the
sLORETA and cLORETA solutions and the STF-DA, STWV-DA, and 4-ExSo-MUSIC
metrics by a suitable value.

The ROC displays the True Positive Fraction (TPF) of correctly identified source
dipoles as a function of the False Positive Fraction (FPF), which represents the number
of source dipoles erroneously associated with the distributed sources:

TPF = #(I ∩ Î)
#I (4.32)

FPF = #Î −#(I ∩ Î)
#J −#I . (4.33)

Here, J denotes the set of all dipoles belonging to the source space. Different TPF and
FPF values are achieved by varying the threshold values for the extended source localiza-
tion algorithms. The ROC curves are plotted for an FPF ranging from 0 % (no dipoles
that are falsely associated to the patch) to 6 %, which corresponds to approximately
60 cm2 of cortex that is erroneously associated to the patch. Since each patch comprises
an area of about 5 cm2, we are mostly interested in the ROC curves for an FPF below
1 %.

The results are averaged over 50 realizations, obtained with different spike-like signals
and varying background activity.

4.4.2.2 Influence of the patch distance

An important factor for the distinction of two patches is their distance, especially for the
STWV analysis, which exploits the difference between spatial distributions of the electric
potential for each patch. To determine the influence of the patch distance on the source
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localization results, we consider in the following three configurations of two superficial
patches with large, medium, and small distances amounting to approximately 13.5 cm, 9
cm, and 5 cm, respectively. The analyzed scenarios are composed of patches SupFr and
SupOcc (large distance), patches InfFr and InfPa (medium distance), and patches SupFr
and InfFr (small distance). The ROC curves obtained for the tested source localization
methods are plotted in Figure 4.3 for both raw and prewhitened EEG data and the
corresponding DLE values are presented in Table 4.2. Furthermore, for the raw EEG
data, Figure 4.4 shows the original and recovered patches for the STWV-DA algorithm.
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Figure 4.3: ROC obtained for STF-DA and STWV-DA in comparison to 4-ExSo-MUSIC,
cLORETA, and sLORETA applied to raw EEG data (left) and to spatially prewhitened
EEG data (right) for three different scenarios composed of patches SupFr & SupOcc with
large distance (top), patches InfFr & InfPa with medium distance (center), and patches
SupFr & InfFr with small distance (bottom).
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raw data prewhitened data
patch distance large medium small large medium small
sLORETA 2.95 2.97 2.58 2.77 2.92 2.51
cLORETA 52.8 1.86 22.2 2.36 1.97 1.77
STF-DA 31.1 21.5 18.4 31.6 20.7 5.14

STWV-DA 0.66 0.51 0.91 0.72 0.59 0.67
4-ExSo-MUSIC 3.66 20.3 16.8 0.67 0.62 0.84

Table 4.2: Performance of source imaging algorithms in terms of DLE (in cm) for the
considered scenarios with large patch distance (patches SupFr & SupOcc), medium patch
distance (patches InfFr & InfPa), and small patch distance (patches SupFr & InfFr). The
smallest DLE obtained for each scenario is marked in red.

Figure 4.4: Illustration of recovered patches for the three considered scenarios with large
(left), medium (center), and small (right) patch distance for STWV-DA (as the method
that yields the best results among the tested source imaging algorithms) applied to the
raw EEG data. Triangles belonging to the original patches are marked in red, correctly
identified triangles are dark red and erroneously identified triangles are yellow.

In the case where the source imaging algorithms are applied to the raw EEG recordings,
according to the ROC curves and the DLE, STWV-DA clearly outperforms all other
approaches for the three considered patch configurations, and in particular for the scenario
with two close patches. This is also reflected by the good concurrence of original and
recovered patches (cf. Figure 4.4). The second best method is 4-ExSo-MUSIC, which,
in terms of ROC, comes close to the performance of STWV-DA for distant patches, but
exhibits a reduced performance for patches with medium and large distances. STF-DA
localizes only one of the two patches, reaching a TPF of only 50 % and exhibiting high
DLEs. Finally, cLORETA works only for the scenario with medium distance between
the patches whereas sLORETA achieves comparable performances for all three source
configurations, but does not permit to recover the patches as accurately as STWV-DA.

Applying the source imaging algorithms to the prewhitened data leads to an improved
performance for all methods. In particular, the 4-ExSo-MUSIC algorithm attains almost
the same performance as STWV-DA, leading even to a smaller DLE for large patch
distance. STF-DA manages to recover both patches if the FPF is increased sufficiently
after the identification of the first patch. For prewhitened data, cLORETA outperforms
sLORETA, both in terms of ROC and DLE. Furthermore, the ROC curves obtained for
each method for the three tested scenarios are comparable, which means that the patch
distance does not influence the source localization performance in the case of prewhitened
data.
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4.4.2.3 Influence of the patch depth

In the previous simulations for two patches, we considered only superficial patches. How-
ever, the depth of a patch plays an important role in the outcome of the source localization
process. To determine its impact on the source separation and localization of two patches,
we conduct a simulation study with the following three patch configurations: patches InfFr
(superficial) and Cing (deep), patches MidTe (superficial) and Hipp (deep), and patches
BasTe (deep) and Hipp (deep). The resulting ROC curves and DLE values are displayed
in Figure 4.5 and Table 4.3, respectively. In Figure 4.6, the patches that are recovered by
the source localization method that leads to the highest TPF for an FPF of 0.2% for the
raw EEG data are shown in comparison to the original patches.

raw data prewhitened data
scenario 1 2 3 1 2 3

sLORETA 12.9 2.64 7.56 12.8 2.59 7.97
cLORETA 8.23 6.30 21.4 10.2 3.51 15.8
STF-DA 11.8 3.55 10.3 11.6 4.49 9.11

STWV-DA 15.8 14.5 18.6 2.68 5.97 8.73
4-ExSo-MUSIC 11.4 3.57 9.08 11.4 3.96 8.75

Table 4.3: Performance of source imaging algorithms in terms of DLE (in cm) for the
following three scenarios: patches InfFr & Cing (scenario 1), patches MidTe & Hipp
(scenario 2), and patches BasTe & Hipp (scenario 3). The smallest DLE obtained for
each scenario is marked in red.

For source localization based on the raw EEG data, these results show that all tested
source localization algorithms have great difficulties in identifying both patches. Both the
STF and the STWV analyses fail to accurately separate the sources. The 4-ExSo-MUSIC
algorithm features the best performance in terms of ROC for the first scenario. However,
it only permits to recover the superficial patch (cf. Figure 4.6). In the second and third
scenario, sLORETA yields the best source localization result, both in terms of ROC and
DLE, closely followed by 4-ExSo-MUSIC. For the scenario MidTe & Hipp, sLORETA
identifies only part of the patch MidTe, localizing more dipoles on a gyrus close to the
patch MidTe. For the scenario BasTe & Hipp, sLORETA recovers parts of both patches,
but does not permit to identify the true patch forms and extents.

For prewhitened data, in most cases, only slight amendments of the ROC curves can
be observed. The most noteworthy improvement of performance concerns the STWV-DA
algorithm, especially for the scenario InfFr & Cing, where it outperforms the other source
imaging algorithms when prewhitening is employed.

4.4.2.4 Theoretical analysis of selected two patch scenarios

In this section, we establish a link between the theoretical findings of Section 3.2.4 and the
simulation results of the STWV-DA algorithm presented in Sections 4.4.2.2 and 4.4.2.3.
To this end, we analyze what happens when applying the STWV analysis to two ex-
amples of two-patch scenarios and explain the consequences on the source localization
results. More particularly, we are interested on the impact that the application of the
DIAG algorithm for the CP decomposition has on the STWV tensor when the model
is not exactly trilinear. As explained in Section 3.2.4, the first step of DIAG consists
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Figure 4.5: ROC obtained for STF-DA and STWV-DA in comparison to 4-ExSo-MUSIC,
cLORETA, and sLORETA applied to raw EEG data (left) and to spatially prewhitened
EEG data (right) for three different scenarios composed of patches InfFr & Cing (top),
patches MidTe & Hipp (center), and patches BasTe & Hipp (bottom).

in truncating the SVD of, e.g., the mode-2 unfolding matrix, which ideally leads to a
trilinear model where each component corresponds to one source (cf. equations (E.4) to
(E.6)). In the following, we examine whether this step is successful for the STWV data
of our simulation examples. This determines whether the patches are correctly separated
and thus has a high impact on the performance of the source localization.

In order to avoid perturbations that are not directly related to the STWV preprocess-
ing and would complicate the evaluation of the results, we generate realistic simulation
data as described in Section 4.4.2.1, but without background activity or noise. Further-
more, we attribute the same signal to all dipoles that belong to the same patch. In a
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Figure 4.6: Illustration of recovered patches for the three considered scenarios involving
deep patches using the method yielding the highest TPF for an FPF of 0.2% when applied
to the raw EEG data. Triangles belonging to the original patches are marked in red,
correctly identified triangles are dark red and erroneously identified triangles are yellow.

first step, we then compute the STWV tensors F1 and F2 separately for each of the two
patches. For each of these tensors, we determine the two dominant left singular vectors of
the space-wave-vector matrices (vectors v1 and v2 for tensor F1, and x1 and x2 for tensor
F2), which contain information about the spatial distribution. In a second step, we cal-
culate the SVD of the mode-1 unfolding matrix of the combined data tensor F = F1 +F2
and truncate it to obtain a rank-2 matrix (for P = 2 patches). If the condition C1) or
C2) of Section 3.2.4.1 is fulfilled, the resulting two left singular vectors z1 and z2 should
(at least approximately) span the same subspace as the vectors v1 and x1. Otherwise,
the separation of the two patches using the STWV analysis fails.

Figure 4.7: Dominant components of the patch SupFr (left), dominant components of the
patch SupOcc (middle) and components recovered with the truncated SVD (right).

Figure 4.7 corresponds to the scenario of two distant sources and shows the absolute
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value of the interpolated spatial distributions at the surface of the scalp described by
the two dominant singular vectors v1 and v2 of the patch SupFr and the two dominant
singular vectors x1 and x2 of the patch SupOcc, as well as the left singular vectors z1
and z2 recovered from the truncated SVD of the mode-1 unfolding matrix of the tensor
F . Obviously, the first singular vector z1 corresponds to the dominant x1 of the patch
SupOcc, while the second singular vector z2 corresponds to the dominant vector v1 of the
patch SupFr. Therefore, the STWV analysis leads to a separation of the two patches and
allows for an accurate localization (see Section 4.4.2.2).

Figure 4.8 shows the corresponding interpolated spatial distributions for the scenario
of deep patches MidTe and Hipp. In this case, the left singular vectors z1 and z2 look like
slightly perturbed versions of the two dominant vectors v1 and v2 of the patch MidTe,
which leads to the conclusion that the patch MidTe yields observations with higher am-
plitudes than the patch Hipp. This means that the condition on the singular values µ2
and ε1 is not fulfilled. The slight perturbation of the vectors v1 and v2 could be explained
by an additional violation of the orthogonality conditions. In short, the STWV analysis
fails in this case because it looses the information about the patch Hipp. This explains
the bad performance of STWV-DA for this scenario (cf. Section 4.4.2.3).

Figure 4.8: Dominant components of the patch MidTe (left), dominant components of
the patch Hipp (middle) and components recovered with the truncated SVD (right).

4.4.2.5 Influence of the number of CP components

The number of CP components identified in the decomposition of the STF and STWV
tensors should be chosen according to the number of extended sources. However, in prac-
tice, the number of sources is unknown and has to be estimated from the measurements
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(see also Section 3.2.2.1). While the estimation of the number of sources is out of the
scope of this thesis, we analyze in this section the sensitivity of the STF and STWV
based source localization methods to the number of CP components used in the tensor
decomposition. To this end, we consider a scenario with a single patch, InfPa, and a
scenario consisting of the two patches InfFr and InfPa. Then, we decompose the STF and
STWV tensors using one CP component and using two CP components. For both cases,
we perform source localization using STF-DA and STWV-DA. The resulting ROC curves
are shown in Figure 4.9. For STF-DA, the results that are achieved with one or two CP
components are the same, indicating that the spatial mixing vectors obtained for both
components must be almost identical. With a TPF close to 100% for an FPF of about
1%, the results obtained by STF-DA are good for the single patch scenario, but poor for
two patches where the TPF does not exceed 50% for an FPF smaller than or equal to 6%,
which suggests that only one patch is localized. For STWV-DA, with a 1-component CP
decomposition, one obtains the same results as with STF-DA for both scenarios. With a
2-component CP decomposition, on the other hand, the results of STWV-DA are worse
than those obtained for one component in the single patch case, but considerably better
than those obtained with one component in the two patch case. This shows that the
correct choice of the number of CP components is important to achieve accurate results
with STWV-DA.

Figure 4.9: ROC curves obtained for STF-DA and STWV-DA based on a CP decompo-
sition with one or two components for a single patch and a two-patch scenario.

4.4.3 Real data analysis
To validate the tensor-based source localization methods and in particular the STWV
analysis, we report in this section the results that we have obtained by applying the STF-
DA and STWV-DA algorithms to real EEG measurements that were recorded for a patient
suffering from epilepsy. For comparison, we also analyzed the data using 4-ExSo-MUSIC,
sLORETA, and cLORETA.

4.4.3.1 Data acquisition and processing

Real EEG data were acquired with a 62-channel measurement system using the common
average reference with a sampling rate of 1000 Hz. Our analysis is based on 9 interictal
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spikes that were selected from the recordings. We have considered data segments com-
prising the ascending and descending parts of the spikes as well as parts of the following
wave. The selected time intervals are marked in Figure 4.10. A realistic head model was
built by segmenting the patient’s MRI using the BrainVISA software [18]. The lead field
matrix was then computed for a cortical mesh with 20003 vertices using Brainstorm [19]
and OpenMEEG [20, 21]. In this case, each vertex of the mesh corresponded to one grid
dipole. The sources were localized using STWV-DA, STF-DA, and 4-ExSo-MUSIC as
well as using sLORETA and cLORETA. Contrary to STWV-DA, STF-DA, and 4-ExSo-
MUSIC, which exploit the data of the whole time interval, sLORETA and cLORETA were
applied to three time points corresponding to the first (negative) peak, the second (posi-
tive) peak, and the wave. The STWV and STF tensors were constructed and decomposed
as described in Sections 3.2.3 and 3.2.6.1. We analyzed the results obtained for P = 1,
P = 2, and P = 3 CP components in accordance with the number of sources that could
be expected according to the SEEG recordings that were available for the same patient.
For the source localization using STWV-DA, STF-DA, and 4-ExSo-MUSIC, we employed
a maximal disk size of 200 dipoles. The number of disks or grid dipoles to consider,
which determines the size of the identified patch, was chosen such that the goodness-of-fit
(GOF) value

GOF = ||X−Xrec||F
||X||F

(4.34)

was minimal. Here, Xrec corresponds to the data matrix that is reconstructed from the
estimated source configuration. In case of STF-DA, STWV-DA, and 4-ExSo-MUSIC,
Xrec = ∑P

p=1 ĥpˆ̄s
T
p where ĥp denotes the reconstructed spatial mixing vector for the com-

bination of a certain number of disks for the p-th component and ˆ̄sp denotes the corre-
sponding patch signal that can be computed as ˆ̄S = Ĥ+X with Ĥ =

[
ĥ1, . . . , ĥP

]
. For

sLORETA and cLORETA, Xrec = ĥˆ̄sT where ĥ = ∑
d∈Î g̃d corresponds to the sum of

the lead field vectors of the considered grid dipoles, which are characterized by the set Î
of dipole indices and which are identified by thresholding the coefficient vector ψ̂. The
corresponding patch signal is computed as ˆ̄s = ĥ+X.

The source localization results can be evaluated based on the findings of the SEEG,
which give a strong hypothesis on the actual source regions of the epileptic activity. To
this end, in Figure 4.10, we marked by small spheres the positions of the three SEEG
electrodes for which the highest amount of epileptic spikes were automatically detected
[157] during SEEG recordings. Note that the automatic detection was based on an in-
dependent evaluation of the recordings of each SEEG electrode which means that the
epileptic activity at the three identified sites could be independent or concomitant. A
more detailed analysis of the SEEG recordings showed that in some cases, an epileptic
spike at the anterior SEEG electrode may be associated with an epileptic spike at the
central SEEG electrode, delayed by about 20 ms, and a spike at the posterior SEEG
site delayed by 70 ms with respect to the spike at the anterior site. This suggests that
epileptic activity is propagated from the anterior SEEG electrode to the posterior SEEG
electrode.
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Figure 4.10: Results of STWV-DA and STF-DA for P = 1, P = 2, and P = 3 and of
4-ExSo-MUSIC for R = 1, R = 3, and R = 6 (corresponding to 1, 2, and 3 correlated
sources) as well as of sLORETA and cLORETA for the different spikes. The patch dipoles
are colored according to the number of spikes (from 0 to 9) for which they were identified.
Small blue spheres indicate the positions of the three SEEG electrodes for which the
highest amount of epileptic spikes was automatically detected during SEEG recordings.
We also illustrated the spike intervals considered for STWV-DA, STF-DA, and 4-ExSo-
MUSIC and the time points considered for cLORETA and sLORETA (displayed on the
time signal recorded by electrode AF7).
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4.4.3.2 Results

In Figure 4.10, the patch dipoles that were identified with STWV-DA, STF-DA, 4-ExSo-
MUSIC, sLORETA, and cLORETA for the 9 different spikes are marked in color. The
colorscale varies from 0 to 9 depending on the number of spikes for which a dipole was
determined to be active. STWV-DA, STF-DA, 4-ExSo-MUSIC, and sLORETA identified
patches mostly on the left hemisphere, at locations that were close to the two or three
SEEG contacts that recorded the highest amount of spikes. However, all tested source
localization methods also identified patches on the right hemisphere. This was particularly
the case for cLORETA. In case of STWV-DA, the patches identified for most of the
spikes were located in between the two posterior or the two frontal SEEG contacts, in the
superior frontal gyrus or in the mesial areas of the frontal lobe. Some isolated patches
were located in the posterior of the right hemisphere. Comparing the results of STWV-DA
obtained for P = 1, P = 2, and P = 3 CP components, we observe that for P = 1, only
one small patch, located in between the two frontal SEEG contacts, was identified. For
P = 2, the recovered patches were larger and located close to the three SEEG contacts,
whereas for P = 3, the majority of patches was localized between the two posterior SEEG
contacts. The patches localized by STF-DA were mostly located between the two frontal
SEEG contacts and were comparable for the three tested tensor ranks. However, for
P = 3, in some cases, patches were also identified at the equivalent position on the right
hemisphere. Moreover, a small number of patches were localized in the vicinity of the
third SEEG contact in the pre-central gyrus. The 4-ExSo-MUSIC algorithm identified
patches in between the frontal and the posterior SEEG contact, with most patches located
close to the central SEEG contact. The patch size slightly increased for larger ranks of
the signal subspace. Otherwise, the different ranks of the signal subspace lead to similar
results. As for STF-DA, patches were also localized at the equivalent positions on the
right hemisphere. The patches localized by sLORETA are globally more anterior, while
cLORETA identified patches all over the frontal parts of the left and right hemispheres.

4.4.4 Discussion and conclusions
We have conducted realistic computer simulations which have shown that STWV-DA
exhibits the best performance for scenarios with two superficial patches. In particular,
this method has proven to be robust if applied to the raw EEG data, contrary to the
other tested source imaging algorithms, which, for patches with medium to small dis-
tances, only lead to good results in the case of prewhitened data. Since it is difficult to
obtain an accurate estimate of the noise covariance matrix in practice, robustness to noise
spatial coherence is an important advantage of the STWV-DA source imaging method.
The good performance of STWV-DA can be explained by the fact that the STWV anal-
ysis correctly separates the spatial mixing vectors of the two patches as demonstrated
in Section 4.4.2.4 and therefore permits to localize each patch individually. Due to the
highly correlated signals of the two patches, which differ only by a small time delay, the
STF analysis fails to separate the patches, therefore impeding source localization. This
explains the poor performance that has been observed for STF-DA. 4-ExSo-MUSIC needs
to localize both patches simultaneously, which does not work as well as the localization
of a single patch and thus does not yield as accurate results as STWV-DA for the raw
EEG data. Nevertheless, employing prewhitening improves the source localization results
obtained by 4-ExSo-MUSIC, leading to a performance that is similar to STWV-DA in this
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case. cLORETA and sLORETA generally do not permit to achieve as accurate results
as STWV-DA. However, if we consider scenarios with one deep patch and one superficial
patch or two deep patches, the tensor-based techniques feature a poor performance be-
cause they do not accurately separate the two patches. In the presence of one superficial
and one deep patch, this is mainly due to the different strengths of the patch signals
recorded at the surface as has been shown by the analysis in Section 4.4.2.4. Further-
more, the STF technique fails because of the highly correlated signals of the patches and
the STWV method struggles with the wide-spread distribution of the electric potential
of deep sources. In summary, the performance of the STWV-DA and STF-DA depends
greatly on the validity of the trilinear approximation that is made in the tensor-based pre-
processing step, leading to superior source localization results compared to other methods
if this approximation is accurate, but failing to recover the patches if it is not.

A remaining problem of the tensor methods consists in the estimation of the number
of active patches, which we assumed to be known in this thesis. As the analysis of
STF-DA and STWV-DA with respect to the number of identified CP components (see
Section 4.4.2.5) has shown, this parameter has a high impact on the results of the STWV
analysis. An inappropriate number of components may cause the STWV analysis to
fail by separating patches into several components or by mixing different patches in one
component. For the STF analysis, the number of CP components seemingly did not
have an impact on the results. But this insensitivity may be explained by the inability
of the STF analysis to identify components that can be associated to different patches
because the time-frequency content of the simulated patch activities is nearly identical.
In practice, the number of patches has to be determined from the measurements, which
is a difficult task, especially in the context of delayed signals for simultaneously active
patches. Similarly, for 4-ExSo-MUSIC, one has to estimate the dimension of the FO signal
subspace, which raises the same difficulties.

Another source of errors for the tensor-based techniques stems from the imperfect
synchronization of the signals that are emitted by the dipoles of one patch. Both the STF
and the STWV analysis are based on the model (4.3), which approximates model (4.2)
by assuming the same signal for all dipoles within a patch. If the activities of the patch
dipoles are not sufficiently synchronous, this model is incorrect and leads to perturbations
of the estimated spatial mixing vectors and thereby of the source localization results. The
same problem also applies to the 4-ExSo-MUSIC algorithm.

The application of the STF-DA and STWV-DA algorithms to the actual EEG mea-
surements of an epileptic patient have led to the localization of patches that show a
good correspondence to the positions of the SEEG electrodes detecting frequent interictal
epileptic activity. More precisely, for all employed tensor decompositions with P = 1,
P = 2, and P = 3 components, we identified patches that are close to two or three of the
marked SEEG contacts for most spikes. In some cases, the determined patches are far-
ther away from the marked SEEG electrodes and include regions on the right hemisphere.
This could be due to lower SNRs for the single spikes or to propagation phenomena, which
occur during the spike and wave complex of the analyzed epileptic spikes. Nevertheless,
it is difficult to consider these results as a “false” localization since, in the absence of
simultaneous SEEG/EEG recordings, the involvement of these remote regions cannot be
ruled out. For STF-DA, we did not observe significant discrepancies between the results
obtained for different tensor ranks. Due to propagation effects, the source signals can be
expected to be highly correlated and the STF analysis is therefore unlikely to separate
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the sources, distinguishing rather different components of one source. This would explain
the insensibility of the results to the employed number of CP components, which has also
been observed in the simulation study. For STWV-DA, the best results were achieved
for P = 2, in which case patches were localized in proximity to the three marked SEEG
contacts. For P = 3, the source localization results are slightly less concordant with the
sites identified from the SEEG recordings and for P = 1, patches were only identified close
to the two frontal SEEG contacts. This suggests that the STWV-DA method is able to
separate only two sources. If there is a higher number of active patches, their signals
are probably too correlated or their amplitudes too different to enable their separation
using the STWV analysis, leading to worse results for higher tensor ranks. Altogether,
we deduce that the tensor-based methods are also well suited for the analysis of real data,
as is the 4-ExSo-MUSIC algorithm, for which we obtained similar results. The results of
these three methods are more concordant with the identified SEEG contacts than those
of sLORETA and cLORETA, which frequently identified patches on the contralateral
hemisphere.

4.5 Sparse, variation-based source imaging
approaches

Even though the STWV-DA and 4-ExSo-MUSIC algorithms lead to good source imaging
results in a number of cases as shown in Section 4.4, these methods have some difficulties
with the simultaneous localization of several active source regions because the employed
distributed source parameterization based on disks does not take into account that the
distributed source may be composed of several spatially distant patches. For STF-DA and
STWV-DA, this problem arises especially if the patches cannot be separated into distinct
CP components due to their highly correlated time signals. In order to overcome this
problem, we explore a different source imaging approach in this section. This approach is
based on the VB-SCCD algorithm (see Section 4.3.1.4, [116]), which showed a good per-
formance for the localization of extended sources in a recent comparison of different source
imaging algorithms [158]. In particular, this method permits to simultaneously localize
several highly correlated patches and is therefore one of the most promising approaches for
the identification of multiple active brain regions in the context of propagation phenom-
ena. However, the VB-SCCD algorithm shows some difficulties in separating close sources
and tends to combine them into one large source. Furthermore, the implementation of
VB-SCCD using SOCP [123, 124] as proposed in [116] leads to a high computational
complexity, which practically forbids the application of the method for large numbers of
time samples.

In Section 4.5.1 of this thesis, we improve on these points by proposing a new source
imaging algorithm, subsequently referred to as sparse VB-SCCD (SVB-SCCD), which
includes an additional L1-norm regularization term. Such an approach, also known as
sparse TV regularization [159], TV-L1 regularization [160] or fused LASSO [161], has
previously been used in image processing [162] and fMRI prediction [159, 160], where it
has been shown to lead to robust solutions, but is new in the field of brain source imaging.
Note though that the combination of sparsity in the original source domain and in a
transformed domain that is different from the total variation has been explored in [114] for
MEG source imaging. As shown in this section, the SVB-SCCD method permits to obtain
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more focal source estimates than VB-SCCD and achieves the separation of even close
sources. Furthermore, in Section 4.5.3, we illustrate the use of a different optimization
technique, called Alternating Direction Method of Multipliers (ADMM) [163, 164] (see
also [165]), which is much faster than SOCP. This gain on computational complexity
enables us to apply the algorithm to large time intervals and to reconstruct the source
signals. It also makes it possible to take into account the temporal structure of the data by
employing an L1,2-norm regularization as first suggested in [126] in the context of MxNE
(see also Section 4.3), leading to more robust source estimates. This approach is described
in Section 4.5.2. Finally, in Section 4.5.4.2, we demonstrate the superior performance of
the resulting L1,2-SVB-SCCD algorithm in comparison to VB-SCCD, SVB-SCCD and
L1,2-VB-SCCD by means of computer simulations.

4.5.1 The SVB-SCCD algorithm
The SVB-SCCD algorithm builds on the VB-SCCD method, described in Section 4.3.1.4,
which imposes sparsity on the variational map of the sources. However, since the regu-
larization term does not influence the source amplitudes, VB-SCCD frequently leads to
amplitude-biased solutions and shows some difficulties in separating close sources. To
overcome these problems, we introduce an additional regularization term that imposes
sparsity in the original source domain, corresponding to hypothesis S3). This leads to the
following optimization problem:

min
S̃

1
2 ||X− G̃S̃||2F + λ(||TS̃||1 + β||S̃||1) (4.35)

where T is the transform matrix that permits to obtain the variational map and which
is defined in (4.11). This approach permits us to adjust the size of the reconstructed
source regions by varying the new regularization parameter β. Setting β = 1 leads to
very focal source estimates, whereas small β only avoid the amplitude bias, but do not
influence the size of the reconstructed source regions. In our experience, reasonable results
can be achieved for 0.01 ≤ β ≤ 1. For the special case where β = 0, (4.35) reduces to
an alternative form of the VB-SCCD optimization problem (4.10). The regularization
parameter λ regulates the impact of the source priors and may be adjusted according to
the acceptable upper limit for the reconstruction error, which depends on the noise level,
as suggested in [116].

4.5.2 Exploitation of temporal structure
The SVB-SCCD algorithm as described in the previous section considers each time sample
independently and thus does not take into account the temporal structure of the data.
However, it can be expected that in the considered time interval, the active source regions
stay the same. This hypothesis can be enforced by replacing the L1-norm in equation
(4.35) by the L1,2-norm, leading to the following optimization problem:

min
S̃

1
2 ||X− G̃S̃||2F + λ(||TS̃||1,2 + β||S̃||1,2). (4.36)

This permits to obtain more robust source estimates. The resulting source localization
approach is subsequently called L1,2-SVB-SCCD.
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4.5.3 Optimization using ADMM
The optimization problems of the three different algorithms, VB-SCCD, SVB-SCCD, and
L1,2-SVB-SCCD, can be rewritten in a generalized, constrained optimization framework
with latent variables Y and Z:

min
S̃

1
2 ||X− G̃S̃||2F + λ(f(Y) + βf(Z))

s. t. Y = TS̃, Z = S̃. (4.37)

Here, f represents the regularizing function that is either the L1-norm (for SVB-SCCD and
VB-SCCD) or the L1,2-norm (for L1,2-SVB-SCCD and L1,2-VB-SCCD). Problem (4.37)
can be solved using ADMM [163, 164] (see also [165]), which is a simple and efficient
algorithm for constrained convex optimization. It is based on the idea of alternatingly
updating the variables S ∈ RD×T , Y ∈ RE×T , and Z ∈ RD×T in the augmented La-
grangian of (4.37), as well as computing alternating updates of the scaled Lagrangian
multipliers U ∈ RE×T and W ∈ RD×T . After initialization (for example, by setting all
variables to zero), at the k-th iteration, the following update rules can be derived (see
Appendix F.2):

S̃(k+1) =
[
G̃TG̃ + ρ(TTT + ID)

]−1 [
G̃TX + ρTT(Y(k) −U(k)) + ρ(Z(k) −W(k))

]
Y(k+1) = proxf,λ/ρ

(
TS̃(k+1) + U(k)

)
Z(k+1) = proxf,λβ/ρ

(
S̃(k+1) + W(k)

)
U(k+1) = U(k) + TS̃(k+1) −Y(k+1)

W(k+1) = W(k) + S̃(k+1) − Z(k+1)

where ρ > 0 denotes the penalty parameter introduced in the augmented Lagrangian
(see [165]). Please note that in practice, the computation of the inverse of the large
matrix G̃TG̃ + ρ(TTT + ID) ∈ RD×D should be avoided, for example, by resorting to
inversion lemma and matrix decompositions (such as the QR-decomposition) which can be
computed efficiently (see also Section 4.7.1). The algorithm is stopped after convergence
or a maximal number of iterations is reached.

4.5.4 Simulations
In this section, we compare the performance of SVB-SCCD, VB-SCCD, L1,2-SVB-SCCD,
and L1,2-VB-SCCD based on computer simulations.

4.5.4.1 Simulation setup

Data generation EEG data is generated for N = 91 electrodes and a source space
consisting of D = 19626 dipoles. We simulate three different scenarios with patches of
different distances. Each patch is composed of 100 adjacent dipoles. The first scenario
comprises three patches of medium to large distance: patches SupFr, InfFr, and SupOcc.
The second scenario includes two close patches, SupOcc and InfPa, and the patch InfFr.
In the third scenario, we consider three close patches: InfPa, MidTe, and OccTe.

The first patch is attributed an epileptic spike signal comprising T = 200 time sam-
ples (at 256 Hz sampling frequency) that has been segmented from SEEG recordings of a
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patient suffering from epilepsy. We then generate 100 different realizations of this signal,
one for each patch dipole, by introducing small variations in amplitude and delay (see also
Section 3.3.1.1). Assuming that the other patches are activated due to a propagation of
the epileptic activity of the first patch, we use the same signals for the dipoles of the sec-
ond and third patch, but introduce a delay of 4 to 24 ms depending on the distance to the
first patch. All source dipoles that do not belong to a patch are attributed Gaussian back-
ground activity with an amplitude that is adjusted to the amplitude of the SEEG signals
between epileptic spikes, thus leading to realistic SNRs such that ||G̃S̃||2F/||N||2F ≈ 1.

Tested source localization methods The EEG data are spatially prewhitened before
applying the source localization algorithms. For both VB-SCCD and SVB-SCCD, the
regularization parameter λ is adjusted such that the reconstruction error lies within a
confidence interval of 95 to 99 % of the noise power. In the case of SVB-SCCD, we use a
fixed parameter β = 0.67 because we found that this leads to reasonable results for the
considered scenarios. For VB-SCCD and SVB-SCCD, which provide one source estimate
per time sample, we determine the active patches by thresholding the source estimates at
the data sample of maximal power, corresponding to the maximum of the epileptic spike.
For each identified source region, comprised of adjacent dipoles, we then compute the
average of the time signals of all involved source dipoles in order to obtain one estimated
time signal per patch.

Evaluation criteria The performance of the source localization is assessed using the
DLE and the ROC curves, which have been introduced in Section 4.4.2.1.

The quality of the extracted signals is evaluated by calculating the correlation coeffi-
cients between the estimated patch signal and the averaged signal of all dipoles belonging
to a patch. We then compute the mean of the correlation coefficients for all patches.
The results are averaged over 30 realizations with different patch signals and background
activity.

4.5.4.2 Results

The performance achieved with the different source imaging algorithms in terms of DLE
and signal correlation coefficient for the three considered scenarios is summarized in Table
4.4. The corresponding ROC curves are shown in Figure 4.11.

DLE in cm corr. coeff. in %
scenario 1 2 3 1 2 3

VB-SCCD 0.99 2.57 9.73 94.9 92.5 78.5
SVB-SCCD 0.94 1.05 3.81 95.5 94.9 89.3

L1,2-VB-SCCD 0.97 1.09 10.8 97.9 97.5 77.9
L1,2-SVB-SCCD 1.03 1.06 2.24 98.5 98.3 96.6

Table 4.4: Performance of source imaging algorithms in terms of DLE and signal correla-
tion for scenario 1 (SupFr & InfFr & SupOcc), scenario 2 (SupOcc & InfPa & InfFr), and
scenario 3 (SupOcc & MidTe & OccTe). The best result for each scenario is marked in
red.
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Figure 4.11: ROC curves for (top left) scenario 1 (SupFr & InfFr & SupOcc), (top right)
scenario 2 (SupOcc & InfPa & InfFr), and (bottom) scenario 3 (SupOcc & MidTe &
OccTe).

Both the ROC curves and the DLE values show that the use of the additional L1-norm
regularization term in the SVB-SCCD approach turns out to be insignificant in the case of
three patches with medium distance (scenario SupFr & InfFr & SupOcc) as SVB-SCCD
and VB-SCCD exhibit a comparable performance in this case. However, for two close
patches (scenario SupOcc & InfPa & InfFr), one can observe a slight improvement of the
DLE obtained with SVB-SCCD compared to VB-SCCD, and for three close patches, the
SVB-SCCD approach clearly leads to better results than VB-SCCD. This can also be
seen in Figure 4.12, where we illustrate an example of the source imaging results obtained
with the different methods for the scenario with the three close patches InfPa, MidTe, and
OccTe. Obviously, the SVB-SCCD approach provides a better separation of the sources
than the VB-SCCD approach.

The exploitation of the temporal structure of the data in the VB-SCCD and SVB-
SCCD algorithms hardly has an impact on the source localization results of scenarios 1
and 2, but for SVB-SCCD, it yields more robust solutions in the case of three close patches
(cf. DLE for scenario 3). Furthermore, it L1,2-SVB-SCCD and L1,2-VB-SCCD lead to
a better performance in terms of source extraction than SVB-SCCD and VB-SCCD as
demonstrated by the obtained signal correlation coefficients shown in Table 4.4.
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Figure 4.12: Source imaging results obtained with the different tested algorithms.

4.5.5 Conclusions

In this section, we have analyzed two extensions of the VB-SCCD algorithm. Following the
fused LASSO approach, we have included an additional, sparsity-inducing regularization
term, which permits to obtain a better separation of close sources. Furthermore, we
have taken into account the temporal structure of the data, which leads to an increased
performance in terms of signal extraction. Finally, we have illustrated the use of an
efficient algorithm, ADMM, to solve the L1,2-SVB-SCCD optimization problem in a much
faster way than the previously employed SOCP algorithm. The superior performance
of the proposed approach in comparison to the classic VB-SCCD algorithm has been
demonstrated by means of realistic computer simulations.

4.6 Combination of tensor decomposition and
variation-based source localization

In Sections 4.4 and 4.5, we have considered two different source imaging approaches. The
STWV-DA and STF-DA algorithms rely on a tensor decomposition step to separate the
sources and to facilitate their localization. However, to achieve good performances, the
DA technique requires all patches to be correctly separated. On the other hand, the
SVB-SCCD approach allows for the simultaneous localization of all active source regions.
Nevertheless, even for this method, the correct identification of several patches is more
difficult than the localization of a single patch. This gives rise to the question whether
separating the patches prior to the actual localization using the tensor-based preprocessing
methods could lead to improved results of the SVB-SCCD algorithm. Such an approach
would be of particular interest in the case where some sources can be separated into
different components, which partly facilitates the source localization, but other patches
are mixed in the same component, which requires a source imaging method that can deal
with multiple patches, such as SVB-SCCD. This issue is adressed in this section, where
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we analyze the combination of the STWV tensor method with the SVB-SCCD algorithm,
subsequently called STWV-SVB-SCCD, in comparison to STWV-DA and SVB-SCCD by
means of realistic computer simulations.

4.6.1 Simulation setup
Data generation EEG data are simulated for N = 91 electrodes, T = 200 time samples
(at a sampling rate of 256 Hz), and a source space comprising D = 19626 dipoles. We
consider two scenarios with three patches (see Figure 4.13), each of which is composed of
100 adjacent grid dipoles. For the source dynamics, we compare the following two cases:

1. The three patches emit epileptiform spike-like signals with different morphologies.

2. Two patches (marked in red in Figure 4.13) are attributed the same spike signals
except for a small delay, corresponding to the propagation of the spike from one
patch to another patch, whereas the third patch (marked in green in Figure 4.13) is
associated with a signal of different morphology.

The patches with different signal morphologies are subsequently referred to as patches
with different signals whereas we speak of two delayed signals and one different signal or
mixed signals in the second case.

Figure 4.13: Illustration of considered scenarios where the patches that are associated
with propagated spikes (for the second type of considered source dynamics) are shown in
red and the patch with a different source activity is shown in green. (Left) scenario SupFr
& InfPa & InfFr and (right) scenario OccTe & MidTe & InfFr.

The epileptiform signals are obtained using the neuronal population model described
in Section 2.5.2. To obtain highly correlated signals for the dipoles within each patch,
which cannot be achieved for all signal morphologies using the neuronal population model,
we artificially introduce small variations in amplitude and signal delay, which are drawn
from a Gaussian distribution and a lognormal distribution (see also Section 3.3.1.1). An
example of the resulting patch signals is plotted in Figure 4.14 for both types of considered
source dynamics.

Tested source imaging methods We perform distributed source localization on the
spatially prewhitened data using the STWV-DA, SVB-SCCD, and STWV-SVB-SCCD
algorithms. The parameters for the STWV tensor method, DA and SVB-SCCD are
chosen as previously described in Sections 4.4.2.1 and 4.5.4.1. In the case of three patches
with different signals, the STWV tensor is decomposed into P = 3 components and the
SVB-SCCD algorithm is applied to three time samples corresponding to the maxima of
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Figure 4.14: Illustration of the average patch signals for three patches with epileptic spikes
of different morphologies (left) and two patches with delayed signals and a third patch
with a signal of different morphology (right).

the epileptiform spike signals associated with the considered patches. For two patches
with mixed signals, we employ a tensor rank of P = 2 and apply the SVB-SCCD method
to only two time samples, corresponding to the maxima of the two spike signals with
different morphologies. To evaluate the source localization results obtained with SVB-
SCCD, the source distributions at the analyzed time points are combined by retaining
the maximal amplitude observed for each grid dipole. For STWV-DA and STWV-SVB-
SCCD, the source regions identified from the different estimated spatial mixing vectors
are combined such that the sizes of the estimated patches are comparable.

Evaluation criteria The source localization results are evaluated using the DLE and
the ROC curves as defined in Section 4.4.2.1, wich are determined for 27 realizations
with different spike signals and background activity. Due to the amount of outlying DLE
values observed in particular in the case of patches with mixed signals, we distinguish in
this section between non-aberrant and aberrant source localization results. If the DLE
associated with an estimated distributed source is small and comparable to the values
obtained for the majority of tested realizations for all algorithms, the source estimate is
said to be non-aberrant. If, by contrast, the DLE is considerably higher than for most
other source estimates, the source localization result is considered aberrant. For each
scenario, the threshold value DLEa between aberrant and non-aberrant results is fixed
after visual analysis of all obtained DLE scores. For each algorithm, the DLE and ROC
curves are evaluated by taking only the realizations for which the method yields non-
aberrant results into account. Furthermore, we analyze the probability of non-aberrant
results, which is computed as

p(DLE < DLEa) = L̃
L (4.38)

where L̃ correponds to the number of realizations for which the distributed source estimate
is associated with an DLE that is smaller than the threshold value DLEa and L = 27
corresponds to the total number of tested realizations.
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4.6.2 Results
The DLE values and probabilities of non-aberrant results obtained with the tested meth-
ods for the two considered scenarios are displayed in Tables 4.5 and 4.6, respectively.
Figures 4.15 and 4.16 show the corresponding ROC curves and an example of the recov-
ered source distributions for one non-aberrant realization.

Figure 4.15: Performance of STWV-SVB-SCCD in comparison to STWV-DA and SVB-
SCCD in terms of ROC curves and illustration of source localization results for one real-
ization for the scenario SupOcc & InfPa & InfFr.

In both scenarios, considering the DLE values and ROC curves, STWV-DA outper-
forms SVB-SCCD and STWV-SVB-SCCD in case of the three patches with different
signal morphologies, but displays the worst performance for two patches with delayed
signals and one patch with a different signal. In the latter case, STWV-DA localizes only
two patches at the correct position while identifying a third, spurious patch for scenario
SupOcc & InfPa & InfFr and no third patch at all for scenario OccTe & MidTe & InfFr.
Furthermore, the probability of non-aberrant results is very small for STWV-DA in the
case of scenario SupOcc & InfPa & InfFr because it often identifies only one patch. By con-
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Figure 4.16: Performance of STWV-SVB-SCCD in comparison to STWV-DA and SVB-
SCCD in terms of ROC curves and illustration of source localization results for one real-
ization for the scenario OccTe & MidTe & InfFr.

trast, SVB-SCCD and STWV-SVB-SCCD permit to localize all three patches even in the
presence of spike propagation and therefore attain smaller DLEs in this case. For scenario
SupOcc & InfPa & InfFr, STWV-SVB-SCCD yields an intermediate performance com-
pared to STWV-DA and SVB-SCCD in terms of DLE. The ROC curves are comparable
to SVB-SCCD, but slightly worse. For scenario OccTe & MidTe & InfFr, considering the
ROC curves, SVB-SCCD clearly outperforms STWV-SVB-SCCD. Nevertheless, STWV-
SVB-SCCD leads to the smallest DLE for this scenario when considering mixed signals.
This might be explained by the fact that SVB-SCCD leads to a high number of aberrant
results and also achieves high DLE values for several other realizations (not considered
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DLE SupOcc & InfPa & InfFr OccTe & MidTe & InfFr
patch signals different mixed different mixed
STWV-DA 0.70 4.75 1.07 2.53
SVB-SCCD 0.79 1.41 2.15 2.30

STWV-SVB-SCCD 0.78 3.32 2.19 1.58

Table 4.5: Performance of source imaging algorithms in terms of DLE (in cm) for the
two considered scenarios for three patches emitting signals with different morphologies
(“different patch signals”) and two patches associated with propagated spike signals and
a third patch attributed a signal of different morphology (“mixed patch signals”). The
smallest DLE obtained for each scenario is marked in red.

p(DLE < DLEa) SupOcc & InfPa & InfFr OccTe & MidTe & InfFr
patch signals different mixed different mixed
STWV-DA 0.96 0.14 0.81 0.96
SVB-SCCD 0.96 0.78 1 0.48

STWV-SVB-SCCD 0.96 0.67 0.81 0.96

Table 4.6: Performance of source imaging algorithms in terms probability of non-aberrant
results p(DLE < DLEa) for the two considered scenarios for three patches emitting signals
with different morphologies (“different patch signals”) and two patches associated with
propagated spike signals and a third patch attributed a signal of different morphology
(“mixed patch signals”). The highest probability of non-aberrant results obtained for
each scenario is marked in red.

as aberrant), showing that this method does not yield stable results in this case. In gen-
eral, the soure regions localized by STWV-SVB-SCCD are very similar to the patches
identified by SVB-SCCD and the probability of non-aberrant results is identical to that
of STWV-DA except for scenario SupOcc & InfPa & InfFr with mixed signals. In most
cases, SVB-SCCD displays the highest probability of non-aberrant results. Considering
the overall performance, STWV-SVB-SCCD generally does not yield as accurate results
as SVB-SCCD because of perturbations in the spatial mixing vectors that are estimated
by the STWV tensor method.

4.6.3 Conclusions
In this section, we have analyzed the combination of tensor decomposition and variation-
based source localization to overcome the difficulties encountered with the STWV-DA
and SVB-SCCD source localization methods. However, we have observed that contrary
to our expectations, the STWV-SVB-SCCD algorithm generally does not yield improved
source estimates. In fact, this method is affected by inaccuracies in the spatial mixing
vector estimates due to the approximations made by the STWV tensor analysis, which
deteriorates the source localization results. If the STWV analysis works well, it has only
a slight influence on the source regions determined by STWV-SVB-SCCD, which are
comparable to those obtained by SVB-SCCD in this case, but the STWV preprocessing
step may seriously compromise the source localization in cases where the tensor-based
source separation scheme fails. These results imply that the tensor-based preprocessing is



Comparative performance study 103

only useful if the algorithm employed for distributed source localization requires separated
patches, i.e., if it cannot localize several patches simultaneously, as is the case for DA.

4.7 Comparative performance study
Over the last two decades, the brain source imaging problem has been widely studied
[166, 6, 89, 167, 132], giving rise to an impressive number of methods using different
priors and methodological approaches (see Section 4.3). Even though several studies [168,
155, 89, 169] have aimed at comparing different source imaging algorithms, a full and deep
study of these methods that takes into account recent advances in this field is still missing.
The objective of this section thus consists in conducting a thorough comparison of different
brain source imaging approaches, including the new algorithms that have been presented
in Sections 4.4 and 4.5. To this end, we evaluate the performance of eight representative
methods, including sLORETA, cLORETA, MCE, MxNE, Champagne, 4-ExSo-MUSIC,
STWV-DA, and SVB-SCCD, with respect to their computational complexity and the
accuracy of their distributed source estimates based on realistic computer simulations.

4.7.1 Analysis of the computational complexity
In order to determine the computational complexity of the selected source imaging meth-
ods, we subsequently compute the number of FLOPs (in terms of real-valued multipli-
cations) that are required for the completion of each algorithm. The obtained results
are summarized in Table 4.7. For descriptions of the analyzed algorithms, the reader
is referred to Sections 4.3, 4.4, and 4.5. Moreover, a summary of the computational
complexities associated with several basic operations can be found in Table 3.2.

sLORETA The first step of the sLORETA algorithm consists in computing the gen-
eralized inverse matrix K, which requires O(3

2N
2D + 7

6N
3) real-valued multiplications.

Once the matrix K has been computed, it can be applied to a data vector to compute the
sLORETA coefficients, which leads to a computational complexity of ND operations per
application. As the sLORETA algorithm works on a sample-by-sample basis, it is applied
T times for a data interval of length T to reconstruct the source activity at each time
point. Alternatively, if T < D, one could first multiply the second term of the generalized
inverse matrix (G̃G̃T +λIN)−1 with the data matrix (in practice, this is accomplished by
linear system solving based on the Cholesky decomposition to avoid the computation of
the inverse matrix) and then execute the multiplication with the first term G̃T, leading to
an overall computational cost of O(1

2N
2D+ 1

6N
3 +N2T +NDT ). If one is only interested

in source localization and not in the source dynamics, sLORETA can be applied to a small
number of time points corresponding to the maxima of the signal within the considered
time interval. For example, for the identification of the epileptogenic zones, sLORETA
can be applied to the maxima of the interictal spikes.

cLORETA As for sLORETA, the most important operation of the cLORETA algo-
rithm is the computation of the generalized inverse matrix. Exploiting the sparsity of
the Laplacian matrix, the computation of the matrix (WLTLW)−1 and multiplications
with this matrix can be neglected. Therefore, cLORETA has approximately the same
computational complexity as sLORETA.
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MCE The computational complexity of the MCE algorithm implemented with FISTA
corresponds to the number of real-valued multiplications that are required for solving an
L1-norm regularized minimum norm problem with FISTA and amounts to O(2NDTI)
FLOPs. Here, I denotes the number of iterations that are performed by FISTA.

MxNE The MxNE algorithm employs a set of temporal basis functions that are com-
puted from an SVD. As the number of time samples is generally larger than the number
of sensors, it is computationally more efficient to determine the R dominant right singular
vectors based on the left singular vectors derived from an EVD of the matrix XXT. In
this case, the computational complexity associated with the computation of the temporal
basis functions is equal to O(1

2N
2T + 4

3N
3 +NRT ) FLOPs. Moreover, NRT real-valued

multiplications are required to obtain the modified data matrix X′. The L1,2-norm reg-
ularized MxNE cost function is then minimized using the FISTA algorithm, which leads
to O(2NDRI) real-valued multiplications. Finally, the estimation of the signal matrix S̃
necessitates DTR FLOPs.

Champagne The first step of the Champagne algorithm consists in computing a tem-
porary data matrix, which corresponds to a square root of the data covariance matrix.
Assuming that the data matrix has full rank N , this is associated with a computational
cost of O(1

2N
2T + 4

3N
3) real-valued multiplications. The update of the three matrices Yd,

Zd and Cs,d, which are at the heart of the algorithm, requires O(2N2DI+ 7
6N

3I) FLOPs,
where I denotes the number of performed iterations. Eventually, O(1

6N
3 +N2(D + T ) +

DNT ) real-valued multiplications are needed for the determination of the signal matrix
based on the estimated source covariance matrix.

4-ExSo-MUSIC The 4-ExSo-MUSIC is based on the quadricovariance matrix of the
data that contains N(N+1)(N+2)(N+3)

4! = O( 1
24N

4) different FO cumulants. If the Leonov-
Shiryaev formula for stationary signals is applied, the cumulants are estimated from the
estimate of the SO and FO moments (cf. Appendix A.1). For zero-mean signals, the
latter are efficiently obtained by first computing the products xk,txl,t for all 1

2N(N + 1)
possible pairs (k, l) of sensor indices, k, l = 1, . . . , N , and all time samples, t = 1, . . . , T ,
as suggested in [33]. This corresponds to 1

2N(N + 1)T multiplications. The SO mo-
ments are then simply approximated by averaging these products over the time sam-
ples. Moreover, the estimation of each cumulant necessitates the estimation of a FO mo-
ment, which requires T additional multiplications of two previously computed products
(xk,txl,t)(xm,txn,t), k, l,m, n = 1, . . . , N . As the computational complexity of the estima-
tion of the SO moments is negligible compared to the estimation of the FO moments,
this procedure leads to an overall cost of approximately O( 1

24N
4T ) real-valued multipli-

cations to estimate the quadricovariance matrix. The second step of the 4-ExSo-MUSIC
algorithm consists in computing an EVD of the estimated quadricovariance matrix. This
requires O(1

6N
6) multiplications.

The source localization method employed in the 4-ExSo-MUSIC algorithm is based
on a dictionary that contains all considered disks and their associated spatial mixing
vectors and needs to be determined. This may require the computation of the distances
between all grid dipoles, which is associated with a computational cost of 3

2(D2 − D)
multiplications. However, if additional information provided by a mesh is available, the
disks can be determined by searching for adjacent dipoles within the grid. In this case,
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the main effort is accomplished based on sorting algorithms and only a small number
of, e.g., 9

2DDmax multiplications is required to ultimately determine the distances of a
few neighboring dipoles for each grid point. Then, for each disk, the FO spatial mixing
vector h ⊗ h is computed, which leads to a computational complexity of O(1

2N
2DDmax)

multiplications for Dmax considered disks with different sizes varying from 1 to Dmax

dipoles per disk for each of the D grid dipoles. Finally, the computation of the 4-ExSo-
MUSIC spectrum amounts to O(1

4N
3DDmax + 3

4N
2DDmax) multiplications.

Disk algorithm Similarly to 4-ExSo-MUSIC, the first step of the disk algorithm con-
sists in generating a dictionary of disks (cf. previous paragraph for the associated compu-
tational complexity). Once the ensemble of disks is identified, the application of the disk
algorithm necessitates 2PNDDmax multiplications (for P separately treated source spatial
mixing vectors) to compute the normalized inner product metric between the estimated
spatial mixing vector and the spatial mixing vector of each of the DDmax disks.

SVB-SCCD The SVB-SCCD algorithm is based on alternating updates of five matri-
ces, among which the update of the signal matrix is the most complex. This step involves
the multiplication of a temporary data vector with the matrix G̃TG̃ + ρ(TTT + ID)−1.
As this matrix is very large, the following inversion lemma is employed:

(G̃TG̃ + M)−1 = M−1 −M−1G̃T(IN + G̃M−1G̃T)−1G̃M−1

where M = ρ(TTT + ID). Since the matrix M is sparse, it can be computed at a low
computational cost of O(3

2D
2) and inverted using only O(4D2) real-valued multiplica-

tions. Compared to the multiplication G̃M−1G̃T, which necessitates O(N2D) FLOPs,
the computation and inversion of the matrix M can be neglected. The computation of
the inverse (IN + GM−1GT)−1 is avoided by resorting to the Cholesky decomposition
that requires O(1

6N
3) real-valued multiplications. These operations are performed only

once at the beginning of the algorithm. Furthermore, at each iteration, the update of the
signal matrix requires O((3ND+N2)TI) FLOPs. Compared to this high computational
cost, the number of real-valued mutliplications that are performed for the updates of the
four other matrices are neglible.

The formulas which have been derived above for the computational complexity of var-
ious source imaging algorithms are difficult to interpret due to their dependence on a
large number of parameters. To give an idea of the computational complexity that can be
encountered in practice for the compared methods, we compute the number of FLOPs for
fixed values of parameters that are also employed for the computer simulations in Section
4.7.2 and vary only the parameters associated with the data, namely the number of sen-
sors and the number of time samples. For the analysis of the computational complexity
as a function of the number of sensors, we consider that the algorithms are applied for
distributed source localization only, which means that we consider that only one time
sample corresponding to the maximum of the epileptic spike is employed for the source
imaging methods that work on a sample-by-sample basis, i.e., for sLORETA, cLORETA,
MCE, and SVB-SCCD, whereas T = 200 time samples are exploited for the other meth-
ods. By contrast, when determining the influence of the number of time samples on the
computational cost of the algorithms, we change this parameter for all methods.
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Number of real-valued multiplications

sLORETA 1
2N

2D + 1
6N

3 +NDT + min(N2D,N2T )

cLORETA 1
2N

2D + 1
6N

3 +NDT + min(N2D,N2T )

MCE 2NDTI

MxNE 1
2N

2T + 4
3N

3 + 2NRT + 2NDRI +DTR

Champagne 3
2(N2T +N3) +N2D +DNT + (2N2D + 7

6N
3)I

4-ExSo-MUSIC 1
24N

4T + 1
6N

6 + 1
4DDmaxN

3 + 5
4N

2DDmax

STWV-DA
STWV 2N ′N̄TK + 56R(R− 1)Nsw(N ′ + T +K)

+9IPN ′TK
DA 2PDDmaxN

SVB-SCCD DN2 + 1
6N

3 + (3ND +N2)TI

Table 4.7: Computational complexity in terms of real-valued multiplications for different
distributed source localization algorithms.

As Figure 4.17 (left) shows, the 4-ExSo-MUSIC algorithm clearly exhibits the highest
computational cost, which augments rapidly with increasing number of sensors because
the cost of the EVD of the cumulant matrix depends only on the number of sensors and
dominates the cost of all other operations. The second highest computational complexity
is attained by the Champagne algorithm. For large numbers of sensors, this method
also requires a considerably increased number of FLOPs compared to all other source
imaging algorithms except for 4-ExSo-MUSIC. SVB-SCCD requires approximately the
same number of FLOPs as Champagne for small numbers of sensors, but contrary to
Champagne, the computational complexity of SVB-SCCD stays approximately constant
for all considered numbers of sensors. MCE, MxNE, and STWV-DA exhibit smaller
computational costs for small numbers of sensors and approach the SVB-SCCD curve
for large numbers of sensors. The cLORETA and sLORETA algorithms have the lowest
computational complexities.

In Figure 4.17 (right), it can be seen that the computational complexities of 4-ExSo-
MUSIC, Champagne, and MxNE hardly change with increasing numbers of time samples.
4-ExSo-MUSIC requires about 100 times as many FLOPs as MxNE, whereas Champagne
necessitates 10 times as many real-valued multiplications as MxNE. For small numbers
of times samples, cLORETA, sLORETA, and STWV-DA have a smaller computational
complexity than MxNE, the minimal computational cost being associated with cLORETA
and sLORETA and corresponding to only one tenth of the number of FLOPs required by
MxNE. For more than 1000 time samples, the computational complexities of sLORETA,
cLORETA, and STWV-DA become comparable, augmenting linearly with the number of
time samples and exceeding the computational cost of MxNE. The number of FLOPs that
have to be executed for SVB-SCCD and MCE also increases linearly with the number of
time samples, but is about 100 times higher than for sLORETA, cLORETA, and STWV-
DA, surpassing the computational costs of Champagne and 4-ExSo-MUSIC for more than
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100 and 1000 time samples, respectively.
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Figure 4.17: Computational complexity in terms of real-valued multiplications of eight
source imaging algorithms as a function of the number of sensors for T = 200 time samples
(left) and as a function of the number of time samples for N = 91 electrodes (right).

Finally, we also examine the CPU runtimes that are required for the application of
the different source imaging methods. The algorithms are implemented in Matlab and
run on a machine with a 2.7 GHz processor and 8 GB of RAM. The average runtimes
recorded for the considered three-patch scenarios (cf. Section 4.7.2.4) are listed in Table
4.8. Note that the runtime of 4-ExSo-MUSIC cannot be compared to that of the other
algorithms because this method is partly implemented in C. Note also that we have
determined the CPU times under the assumption that all parameters have been fixed
previously and we have not considered operations that need to be performed only once
before the actual application of the methods such as the determination of the Laplacian
matrix for cLORETA or the construction of the dictionary of disks for STWV-DA and
4-ExSo-MUSIC.

CPU runtime in s
sLORETA 0.18
cLORETA 0.03
SVB-SCCD 120

MxNE 5.9
MCE 2.2

Champagne 233
STWV-DA 156

4-ExSo-MUSIC 58

Table 4.8: Average CPU runtime of the different source imaging algorithms for the con-
sidered three-patch scenarios.

The CPU runtimes confirm our observations with respect to the computational com-
plexities of the methods. Champagne displays the longest CPU time, followed by STWV-
DA and SVB-SCCD whereas sLORETA and especially cLORETA are faster by a factor
of about 1000.
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4.7.2 Evaluation of the source imaging results
In this section, we evaluate the source localization results obtained with the different
source imaging algorithms for a number of realistic simulation scenarios.

4.7.2.1 Simulation setup

Data generation We simulate EEG recordings for an electrode cap comprising N = 91
electrodes and data intervals with a length of T = 200 time samples (at a sampling
frequency of 256 Hz). The data are generated by D = 19626 source dipoles emitting
either interictal epileptiform spike-like signals, originating from the considered patches,
or background activity. Both types of signals are obtained using the neuronal population
model described in Section 2.5.2.

Tested methods All source imaging algorithms are applied to spatially prewhitened
data, except for Champagne, which exploits the knowledge of the noise covariance instead.
To improve the SNR, we average the data of 10 spikes. The STWV-DA, 4-ExSo-MUSIC,
sLORETA, cLORETA, and SVB-SCCD algorithms are implemented as described in Sec-
tions 4.4.2.1 and 4.5.4.1. Note, however, that we increase the size of the disks employed
for STWV-DA and 4-ExSo-MUSIC to Dmax = 400 dipoles in the case of the large patch
considered in Section 4.7.2.3. Like STWV-DA, MxNE and Champagne are applied to
200 time samples of epileptic activity, whereas MCE, which does not exploit temporal
information, is applied to the time sample which corresponds to the maximum of the
spike. For MCE, as the orientations of the dipoles of the source space are fixed, we do not
need to determine them using a preliminary MNE solution. Instead, we directly minimize
the cost function L(̃s) = ||x − G̃s̃||22 + λ||̃s||1 using FISTA, which is more efficient than
linear programming and also permits to retrieve the sign of the source signals. For MxNE,
we also use FISTA to solve the optimization problem. In both cases, the regularization
parameter is chosen according to the level of sparsity that we aim to achieve.

Evaluation criteria The obtained source localization results are evaluated using the
ROC curves and the DLE (see Section 4.4.2.1), which are averaged over 50 realizations
of EEG data for different epileptiform signals and background activity. Furthermore, we
plot the source distributions that are estimated by the tested source imaging methods for
one realization in comparison to the original patches.

4.7.2.2 Influence of the patch position

Since superficial sources exhibit more focal distributions of the electric potential than
deep sources, this may favor the source localization procedure. Furthermore, the signals
emanating from deep sources lead to smaller amplitudes at the sensor level than those
of superficial sources and therefore correspond to smaller SNRs for the same background
activity. It is thus significant to determine the influence of the patch position on the
localization accuracy of the different source localization methods. To this end, in the first
simulation, we consider 8 different patches: InfFr, InfPa, Cing, SupOcc, PreC, BasTe,
MidTe, and Hipp (see Figure 2.6 for an illustration of the patches). We evaluate the
performance of the distributed source localization algorithms based on the ROC curves,
which are plotted in Figure 4.18, and the DLE, displayed in Table 4.9. The patches that
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are recovered by the algorithm which yields the highest TPF at an FPF of 0.2 % are
shown in Figure 4.19 in comparison to the original patches.

patch InfFr InfPa Cing SupOcc PreC BasTe MidTe Hipp
sLORETA 3.61 2.41 3.28 2.05 4.07 2.26 6.28 3.11
cLORETA 1.43 2.72 24.8 1.28 3.17 3.56 7.43 11.1
SVB-SCCD 1.06 0.13 6.44 0.37 3.33 1.41 0.74 6.22

MxNE 8.18 6.18 27.9 4.53 10.6 9.89 8.53 18.4
MCE 3.99 3.19 22.5 3.07 4.86 6.45 5.20 14.7

Champagne 4.60 4.03 2.95 2.47 2.95 2.29 4.37 4.09
STWV-DA 0.44 0.95 1.70 0.57 1.84 2.29 1.85 1.86

4-ExSo-MUSIC 0.44 0.96 1.70 0.58 1.84 2.39 1.83 1.83

Table 4.9: Performance of source imaging algorithms in terms of DLE (in cm) for the
8 different single patch scenarios. The smallest obtained DLE value for each patch is
marked in red.

Comparing the results achieved by the different source imaging algorithms, we note
that for 4 of the 8 examined patches (InfPa, SupOcc, BasTe, and MidTe), the best results
in terms of both DLE and ROC are achieved by SVB-SCCD, whereas STWV-DA and
4-ExSo-MUSIC yield the best performance for the 4 other scenarios (InfFr, Cing, PreC,
and Hipp). These two methods lead to almost identical source localization results because
in the case of single patches, there is no source separation to be performed and the patch
estimates are mostly influenced by the employed dictionary of disks, which is the same for
STWV-DA and 4-ExSo-MUSIC. Among the focal source localization methods, sLORETA
and cLORETA generally yield better results in terms of both DLE and ROC than MCE
and MxNE. For all tested scenarios, MCE outperformed MxNE. This is surprising as one
could have expected that the exploitation of temporal information would lead to more
robust source estimates. However, the reconstructed source distributions for MCE and
MxNE are very similar and this result could be related to our somewhat abusive use of
the sparse source estimation techniques to recover patches of larger extent. Finally, the
Champagne algorithm leads to intermediate DLEs because it always identifies a small
number of dipoles at the correct source position. Albeit, as the ROC curves show, this
method is the least suited to recover the spatial extent of the patches since the TPF
remains below 40% even for high FPF of up to 6%. This is due to the fact that Champagne
recovers very sparse source estimates.

Concerning the patch location, the simulation results show that the examined source
localization methods generally yield good results for superficial patches (InfFr, InfPa,
SupOcc, and MidTe), for which the DLE of the best method is below 1 cm. This is also
reflected by the good correspondence of original and estimated patches (see Figure 4.19),
in particular for patches InfFr, InfPa, and SupOcc. The only exception is patch PreC,
for which the obtained DLE and ROC curves are slightly worse and for which the source
region recovered by SVB-SCCD is much larger than the original patch. Furthermore,
the source imaging algorithms exhibit some difficulties for accurately recovering deep
patches such as BasTe and Hipp, as well as for the patch Cing, located between the two
hemispheres. In this case, the ROC curves are less steep than for superficial patches such
as InfPa. Nevertheless, the DLE obtained for the best method is still smaller than 2 cm.
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Figure 4.18: Illustration of the ROC curves for the different single patch scenarios.
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Figure 4.19: Illustration of the recovered patches for the different single patch scenarios.
Triangles belonging to the original patches are marked in red, correctly identified triangles
are dark red and erroneously identified triangles are yellow.

4.7.2.3 Influence of the patch size

In order to determine the influence of the source extent on the performance of the different
source imaging algorithms, we vary the size of the patch SupFr and consider three patches
composed of 10, 100, and 400 grid dipoles corresponding to an area of approximately
50, 500 and 2000 mm2. The ROC curves and the estimated source reconstructions for
these three scenarios are shown in Figures 4.20 and 4.21, respectively, and Table 4.10
summarizes the obtained DLE values.

patch size 10 dipoles 100 dipoles 400 dipoles
sLORETA 3.33 1.87 5.71
cLORETA 4.72 1.36 0.71
SVB-SCCD 3.54 0.33 1.00

MxNE 9.99 6.17 6.83
MCE 5.04 3.11 4.80

Champagne 4.01 2.52 7.06
STWV-DA 0.48 0.41 1.14

4-ExSo-MUSIC 0.79 0.45 1.15

Table 4.10: Performance of source imaging algorithms in terms of DLE (in cm) depending
on the size of the patch SupFr. The smallest obtained DLE value for each patch is marked
in red.

As can be seen in Figure 4.20, the performance of sLORETA, Champagne, MCE,
and MxNE in terms of ROC decreases as the patch area increases. This is due to the
fact that these methods and in particular the algorithms exploiting sparsity are conceived
for focal sources and are not well suited to recover the spatial extent of the sources.
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Figure 4.20: ROC curves obtained for the different source imaging methods for different
sizes of the patch SupFr: (top left) 10 dipoles, (top right) 200 dipoles, (bottom) 400
dipoles

4-ExSo-MUSIC, STWV-DA, and SVB-SCCD on the other hand have been developed to
localize distributed sources and can therefore accurately recover sources of larger size. The
hypothesis of spatial smoothness exploited by cLORETA also favors the reconstruction
of extended sources, leading to the best performance among all tested methods for the
largest considered patch.

In terms of source reconstruction quality based on DLE, all methods except for
cLORETA yield the highest reconstruction accuracy for a patch of medium size. For
cLORETA, on the other hand, we observe a continually decreasing DLE for augmenting
patch size. Comparing the original and estimated source configurations for the smallest
patch, we notice that the best source reconstructions are achieved by STWV-DA and
4-ExSo-MUSIC, which is also reflected by the DLE scores. The source dipoles of maxi-
mal amplitudes identified by Champagne, MCE, and MxNE are close to the true patch,
but not exactly at the correct position. Furthermore, SVB-SCCD overestimates the size
of the patch, recovering a much larger source region, as is the case for sLORETA and
cLORETA. In fact, these three methods yield nearly the same estimated source distribu-
tions for the patches of small and medium sizes. These source reconstructions are better
suited for the medium-sized patch, which leads to smaller DLE in this case. In particular,
SVB-SCCD achieves the best DLE of all methods for the medium-sized patch. Note that
sLORETA, cLORETA, MCE, and MxNE also identify several dipoles on the right hemi-
sphere, unlike the distributed source localization algorithms VB-SCCD, STWV-DA, and
4-ExSo-MUSIC. Nevertheless, for cLORETA, the amplitudes of the contralateral source
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Figure 4.21: Illustration of the recovered source distributions for the different patch sizes.
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dipoles are rather small. For the largest patch, cLORETA and SVB-SCCD outperform
STWV-DA and 4-ExSo-MUSIC as well as the other tested methods. While the source
distribution recovered by sLORETA indicates also a patch of larger extent, the sparse
estimates obtained by MCE, MxNE, and, in particular, Champagne are not suited to de-
termine the shape of the patch and would rather suggest the existence of several distinct
point sources.

4.7.2.4 Influence of the patch number

In practice, one is often confronted with measurements that originate from several quasi-
simultaneous active source regions within the brain. In this section, we analyze the
ability of the different source imaging algorithms to identify two or three patches that are
involved in epileptic spike propagation. To this end, we first consider two scenarios with
two patches of medium distance, composed of the patch InfFr combined once with the
patch InfPa and once with the patch MidTe. In both cases, we use the same signals for the
dipoles of both patches except for a 3 to 4 sample delay from one patch to another. The
obtained source localization performance in terms of ROC and DLE is shown in Figure
4.22 and Table 4.11, respectively, and the reconstructed sources are displayed in Figure
4.23.
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Figure 4.22: ROC curves obtained for the different source imaging methods for the sce-
nario InfFr & InfPa (left) and the scenario InfFr & MidTe (right).

The patches are all located on the lateral aspect of the left hemisphere, but the patch
MidTe is partly located in a sulcus, leading to weaker surface signals than the patches
InfFr and InfPa, which are mostly on a gyral convexity. This has an immediate influence
on the performance of all source imaging algorithms, except for SVB-SCCD and Cham-
pagne, leading to a decrease in TPF for a given FPF and an increase in DLE for the
scenario InfFr & MidTe compared to the scenario InfFr & InfPa. When comparing the
estimated source distributions, this difference in performance becomes apparent through
the fact that for the scenario InfFr & InfPa, all source imaging algorithms exhibit high
dipole amplitudes for dipoles belonging to each of the true patches. For the scenario
InfFr & MidTe on the other hand, the weak patch is less visible on the estimated source
distributions of cLORETA, MCE, and MxNE, slightly better visible on the sLORETA
solution, but completely missing for 4-ExSo-MUSIC. SVB-SCCD and STWV-DA both
recover the patch MidTe, but with smaller amplitude in case of SVB-SCCD and smaller
size for STWV-DA.
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Figure 4.23: Illustration of the original patches and the recovered source distributions for
the two considered two-patch scenarios.
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InfFr & InfPa InfFr & MidTe
scenario InfFr & InfPa InfFr & MidTe & SupOcc & OccTe

sLORETA 2.92 6.11 15.3 5.45
cLORETA 1.97 2.86 2.84 3.43
SVB-SCCD 0.59 0.93 0.65 1.42

MxNE 5.19 6.26 4.59 5.61
MCE 3.63 4.52 4.01 4.54

Champagne 4.03 4.34 3.92 4.83
STWV-DA 0.59 1.17 1.30 7.68

4-ExSo-MUSIC 0.62 14.9 5.94 4.33

Table 4.11: Performance of source imaging algorithms in terms of DLE for the considered
scenarios with two and three patches. The smallest obtained DLE value for each scenario
is marked in red.

Next, we determine the performance of the source imaging algorithms when adding the
patch SupOcc to the previously considered scenario InfFr & InfPa and the patch OccTe to
the scenario InfFr & MidTe, thus further complicating the correct recovery of the active
grid dipoles. In both cases, we consider a delay of 3 to 4 samples between the signals of
the first two patches and a delay of 5 to 6 samples between the signals of the first and
third patch. For the resulting ROC curves and source reconstructions, see Figures 4.24
and 4.25. The DLEs are tabulated in Table 4.11.
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Figure 4.24: ROC curves obtained for the different source imaging methods for the sce-
nario InfFr & InfPa & SupOcc (left) and the scenario InfFr & MidTe & OccTe (right).

The best results are achieved by SVB-SCCD, followed by STWV-DA and cLORETA.
STWV-DA leads to good results for the scenario InfFr & InfPa & SupOcc, but under-
estimates the extent of the identified active source region that can be associated to the
patch MidTe for the scenario InfFr & MidTe & OccTe. Furthermore, for this scenario,
STWV-DA also identifies several spurious source regions of small size located between the
patches MidTe and InfFr for some realizations. The cLORETA solution exhibits dipoles
with high amplitudes at all three patch positions, but makes it difficult to determine the
patch shape. The same problem is exacerbated for MxNE, MCE, and Champagne, which
additionally identify a number of scattered dipoles around the three foci of brain activity.
This explains the reduced performance compared to SVB-SCCD. 4-ExSo-MUSIC yields
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Figure 4.25: Illustration of the original patches and the recovered source distributions for
the two considered three-patch scenarios.
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similar source localization results to STWV-DA for the scenario InfFr & InfPa & SupOcc,
but overestimates the size of the patch InfFr while determining a smaller source region
for the patch SupOcc. Furthermore, the estimated source region that can be associated
with patch InfPa is not at the correct position, leading to a higher DLE and worse ROC
curve than STWV-DA. In the case of scenario InfFr & MidTe & OccTe, 4-ExSo-MUSIC
recovers only one of the two patches located in the temporal lobe, namely the patch
OccTe. Finally, sLORETA leads to blurred source reconstructions and does not permit
to distinguish between the close patches InfPa and SupOcc or MidTe and OccTe.

4.7.3 Discussion
To summarize the findings of the simulation study, we can say that sLORETA, Cham-
pagne, MCE, and MxNE recover well the source positions, though not their spatial extents
as they are conceived for focal sources, while 4-ExSo-MUSIC, STWV-DA, and SVB-
SCCD also permit to obtain an accurate estimate of the source size. cLORETA leads
to intermediate results as the identified dipoles with high amplitudes and smooth source
distributions correspond well to the patches, but make it difficult to delineate the source
regions. Nevertheless, the spatial smoothness prior has proven to be especially effective
for large patch sizes where cLORETA achieves the best performance in terms of DLE.
Furthermore, from a computational point of view, cLORETA is the most efficient of all
tested source imaging methods.

Among the methods for focal source reconstruction, Champagne leads to the sparsest
source distributions, identifying only a very small number of dipoles. This result might
be explained by the fact that Champagne is based on the assumption that all grid dipoles
emit independent source activities, which is violated by the patches. Moreover, in the
Champagne algorithm, there is no parameter that can be adjusted to obtain different
levels of sparsity, contrary to MCE and MxNE where this is achieved by varying the regu-
larization parameter. At the same time, this is also an important advantage of Champagne
because in practice, the tuning of parameters is tedious and time-consuming, and even
though Champagne does not identify the source extents, it still permits to accurately
localize the foci of the source activity. Combined with an adequate scheme for distributed
source localization, Champagne could thus become a powerful tool for source imaging.
Nevertheless, the self-reliance of Champagne comes at an increased computational cost
compared to most other source imaging approaches.

While STWV-DA and 4-ExSo-MUSIC lead to similar patch estimates for the single
patch scenarios and in some cases also for multipatch scenarios, all in all, STWV-DA
outperforms 4-ExSo-MUSIC as it leads to better source estimates in the presence of
multiple patches, where 4-ExSo-MUSIC does not localize all patches or leads to erroneous
patch estimates. Furthermore, STWV-DA has a lower computational complexity than
4-ExSo-MUSIC, in particular for large numbers of sensors. Compared to SVB-SCCD,
STWV-DA only leads to better results for the smallest considered patch. Otherwise,
SVB-SCCD yields slightly better source estimates than STWV-DA, which is due to its
greater flexibility in recovering the patch shape. Because of the use of a dictionary of
disks, STWV-DA tends to recover circular-shaped source regions.

Even though this has not been explicitly shown in the above simulations, we noticed
that most of the methods except for STWV-DA require prewhitening of the data or a good
estimate of the noise covariance matrix (in case of Champagne) in order to yield accurate
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results. On the one hand, this can be explained by the assumption of spatially white
Gaussian noise made by some approaches, while on the other hand, the prewhitening also
leads to a decorrelation of the lead field vectors and therefore to a better conditioning
of the lead field matrix, which consequently facilitates the correct identification of active
grid dipoles.

Finally, we have observed that the source imaging methods generally work well for
superficial patches, but have difficulties in identifying deep patches and mesial sources,
located close to the midline.

On the whole, for the situations adressed in our simulation study, STWV-DA and
SVB-SCCD seem to be the most promising algorithms for distributed source localization,
both in terms of robustness and source reconstruction quality.





Chapter 5

Summary and conclusions

In this thesis, we have aimed at identifying the positions and spatial extents of epilep-
togenic zones based on EEG recordings. In particular, we have addressed the issue of
localizing simultaneously active brain regions with highly correlated time signals arising
from the propagation of epileptic phenomena. To deal with this challenging problem,
we have proposed a multistage approach consisting of three steps: the extraction of the
epileptic signals from the noisy data, the separation of correlated sources, and the lo-
calization of distributed sources. In Section 5.1, we summarize the techniques that have
been developed in this thesis for the individual steps and illustrate their combination on
a simulation example. Our conclusions are then summed up in Section 5.2. Finally, we
suggest some directions for future work in Section 5.3.

5.1 Summary and illustration of the complete data
analysis process

To extract the epileptic spikes from the EEG data which are corrupted by artifacts,
we have exploited the different physiological origins of the sources, assuming that the
latter are statistically independent, and have considered methods based on ICA. More
particularly, we have developed a new, semi-algebraic deflation algorithm, called P-SAUD,
that relies on the autocorrelation of the signals to extract the epileptic components using
a small number of deflation steps. The denoised EEG recordings are then reconstructed
from the identified epileptic components.

As several distributed source localization techniques show difficulties in localizing si-
multaneously active patches, in particular in the case of correlated activities, we have
then explored the use of tensor methods based on the CP decomposition to separate sev-
eral potentially correlated sources. Here, we have concentrated on transform-based tensor
methods, which construct a data tensor using a time-frequency transform, leading to the
classical STF method, or a space-wave-vector transform, resulting in the new STWV ap-
proach. These techniques aim at extracting a spatial mixing vector and a signal vector
for each distributed source.

Contrary to previous studies of tensor-based approaches [69, 70, 71, 72, 73], which have
mainly focused on source separation and equivalent dipole localization, we have then gone
a step further and have employed the results of the tensor-based preprocessing step for the
localization of distributed sources. In this context, an important contribution of this thesis

121



122 CHAPTER 5. SUMMARY AND CONCLUSIONS

consists in the proposition of the DA algorithm, which permits us to accurately localize
distributed sources based on the estimated spatial mixing vectors. This method is based
on a parameterization of the distributed source, similar to [152, 15], but utilizes a different
metric to identify the elements of the source space that best describe the measurements.
Furthermore, we have examined other distributed source localization approaches that have
been proposed in the literature, providing an overview of the different types of a priori
information that have been exploited to solve the ill-posed linear inverse problem of the
brain. These hypotheses can be broadly distinguished into constraints that are imposed
on the spatial distribution of the sources and constraints that concern their temporal
distribution. We have then presented a taxonomy of brain source imaging methods by
classifying existing algorithms based on methodological considerations and exploited a
priori information. Finally, we have proposed several improvements of the VB-SCCD
source imaging method, which is based on structured sparsity, to develop an efficient
algorithm for the simultaneous localization of multiple patches. The resulting algorithm
is termed SVB-SCCD.

To illustrate the combination of the three data processing steps using the P-SAUD,
STWV, and DA methods, we consider a simulation example. As for all simulations con-
ducted in this thesis, we employ a realistic head model, distributed sources that are char-
acterized by patches with highly-correlated, physiologically plausible epileptiform spike
signals, and artifacts recorded during an EEG session, resulting in a realistic setting for
the performance evaluation of the tested methods. We simulate 32 s of EEG data for a 91
channel system using two patches, located in the inferior frontal and the inferior parietal
lobes of the left hemisphere and emitting propagated interictal epileptiform spike signals
with a delay of about 16–18 ms between the two patches. The data are corrupted by
muscle artifacts according to an SNR of -15 dB. Figure 5.1 (left) shows an excerpt of the
noisy EEG recordings for 32 of the 91 electrodes and the original patches. To extract the
epileptic activity from the artifacts, we first apply the P-SAUD algorithm to the raw EEG
measurements, followed by the STWV analysis and DA for source separation and local-
ization, respectively. The EEG data containing only the epileptic spikes that have been
reconstructed from the P-SAUD results and the patches localized by STWV-DA based on
the denoised data are shown in Figure 5.1 (right). Comparing the original and estimated
source regions, we note the good performance of the proposed three-step procedure.

5.2 Conclusions
The P-SAUD algorithm has been shown to extract the epileptic signals with the same
accuracy as conventional ICA methods, but at a considerably reduced computational com-
plexity. To achieve this, we have combined the strengths of three classical BSS methods
to derive a new, efficient, semi-algebraic deflation procedure that resorts to the autocor-
relation of the signals to determine the order of the identified ICA components. The
exploitation of the temporal structure of the data obviates the need of reference signals,
which have previously been used in the ICA-R approach [35, 36, 34, 37, 38, 39] to extract
only the signals of interest, but can be difficult to determine in practice.

For the considered source dynamics of propagated epileptic spike signals, the STF
tensor method displayed very poor results. Indeed, this technique does not permit to sep-
arate the highly correlated sources because it exploits discrepancies in the time-frequency
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Figure 5.1: Left: Excerpt of the noisy EEG data for 32 out of 91 channels (top) generated
for two patches (bottom) with epileptiform spike-like signals, a sampling rate of 256 Hz
and an SNR of -15 dB. Right: Extract of EEG data reconstructed from epileptic signals
identified by P-SAUD (top) and patches localized by STWV-DA (bottom) based on the
denoised data.

domain to discriminate between the sources, and the differences between the time and fre-
quency characteristics of the different patches are negligible in the context of propagation
phenomena. By contrast, the STWV analysis makes use of the space-wave-vector contents
of the sources to separate them, which enables the method to cope with highly correlated
source signals as long as the sources are not completely coherent and sufficiently distant to
yield different space and wave vector characteristics. This explains the good performance
of the STWV-based source localization approach which has been observed for a number
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of scenarios and especially in the case of several simultaneously active superficial patches.
Nevertheless, the STWV analysis fails in certain cases such as for deep sources even if
there is neither noise nor artifacts and all signals within a patch are identical. This is due
to discrepancies between the structure of the EEG data and the employed trilinear tensor
model. To clarify in which cases the tensor-based methods can be applied successfully
for the separation of the sources, we have conducted a theoretical analysis, revealing that
among the correlation between space, time, and wave vector characteristics of different
sources, the source strength is also decisive for the separability of the sources.

Even though the EEG preprocessing can sometimes be accomplished by ICA or tensor
methods only, these two approaches are mostly complementary. Inherently, ICA is not
suited for the separation of correlated sources and leads to poor results for overlapping
epileptic spike signals, whereas tensor decomposition methods are not as robust to artifacts
as ICA. Therefore, to achieve good preprocessing results for EEG data that frequently
contain correlated sources due to propagation phenomena and are generally corrupted
by artifacts of high amplitudes, the two preprocessing methods should be combined.
Nevertheless, the preprocessed data should be analyzed carefully as errors in the denoising
and source separation steps may accumulate.

The performance study of different source imaging methods has shown that the tested
algorithms can be distinguished into methods that permit only to determine the source
positions, and algorithms that provide also an indication of the spatial extents of the
sources. In the context of epileptic source localization, we are particularly interested in
the second type of approach and have proposed two new algorithms. The STWV-DA
algorithm, which localizes distributed sources based on the results of the tensor decompo-
sition, has been shown to yield good results if the sources have been accurately separated
in the preprocessing step, outperforming other source imaging methods in this case. In
particular, even though prewhitening improves the source localization results obtained
by STWV-DA, this method also leads to good results when applied to the raw EEG
data, which is not always the case for other techniques such as 4-ExSo-MUSIC. This is
of great interest because prewhitening requires knowledge of the noise covariance matrix,
which is unknown and generally difficult to estimate in practice. Another advantage of
STWV-DA over 4-ExSo-MUSIC consists in its reduced computational complexity. With
an increasingly widespread use of high-resolution EEG, this is an important point to avoid
unacceptably high runtimes. However, STWV-DA is not suitable for the simultaneous
localization of several patches, i.e., for the localization of distributed sources that cannot
be separated due to their almost coherent source signals. In this case, the SVB-SCCD
algorithm should be used. This approach has the additional advantage that it is flex-
ible with respect to the shape of the patch, whereas methods such as STWV-DA and
4-ExSo-MUSIC that employ a dictionary of potential distributed source regions tend to
recover patches with similar shapes as the dictionary elements. The SVB-SCCD method
also allows for an exploitation of temporal structure, which leads to more robust source
estimates in difficult cases comprising several close patches. Finally, we have analyzed
the combination of the STWV tensor analysis and SVB-SCCD for multipatch scenarios
where only some of the patches can be separated, but the resulting STWV-SVB-SCCD
algorithm performed slightly worse than SVB-SCCD. This shows that the tensor-based
preprocessing approach for source separation is only effective when combined with source
localization methods that have difficulties in localizing several patches simultaneously,
such as DA.
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5.3 Perspectives
Based on the obtained results, we can identify several promising directions for future
research. First of all, it would be interesting to apply the P-SAUD algorithm for ar-
tifact removal from high-resolution EEG measurements. Due to the large numbers of
electrodes, in this case, one can expect a particularly high gain on computational com-
plexity compared to conventional ICA methods for joint source extraction. Furthermore,
one could consider employing the P-SAUD algorithm for the denoising of epileptic seizure
data where finding a compromise between the COM2 and CCA solutions based on the
penalized contrast function might lead to improved performances.

Concerning the separation of correlated sources based on the CP decomposition, we
have only treated STF and STWV tensors in this thesis. As discussed above, the trilinear
approximation is not always justified in this case. To overcome this problem, on the one
hand, one could explore the use of tensors with different dimensions, such as STR data,
which might better fit the structure of the CP model. On the other hand, one could
also employ other tensor decompositions with a less rigid structure that better reflect the
actual structure of the data.

Another track for future research in brain source imaging consists in further exploring
different combinations of a priori information, for example by merging successful strategies
of different recently established distributed source localization approaches, such as tensor-
based techniques, extended source scanning methods, or Bayesian approaches and sparsity.
Additionally, one could try to further improve the results of the current source imaging
algorithms by applying depth bias compensation techniques. It would also be desirable to
develop methods for the automatic thresholding of the reconstructed source distributions
in order to infer the spatial extent of the source regions from continuous source imaging
solutions as obtained by regularized least squares approaches.

The methods discussed in this thesis could also be applied to MEG data and one
could further pursue the exploitation of combined EEG/MEG recordings, which we have
discussed only briefly for the tensor-based preprocessing.

Finally, it would be important to perform more evaluations on clinical EEG data for
which a strong hypothesis on the epileptogenic source regions is available to confirm the
good functioning of the proposed algorithms in real-world settings.
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Appendix A

Higher order statistics

In this appendix, we provide some background information on higher order cumulants,
which are exploited by several ICA algorithms discussed in Section 3.1 and by the 2q-
ExSo-MUSIC algorithm for distributed source localization (see Section 4.3.3.2).

A.1 Cumulants
The definition of cumulants is based on the second characteristic function [170]

Ψ(wΨ,w∗Ψ) = ln
(
E
{

exp
(
j
wH

Ψx + wT
Ψx∗

2

)})
(A.1)

of the random vector x. The cumulants then correspond to the coefficients of the Taylor
series of Ψ(wΨ,w∗Ψ). For zero-mean stationary processes, one can exploit the relationship
between cumulants and moments, given by the Leonov-Shiryaev formula [154], which
permits to compute the cumulant of order n = 2q from the moments of order less than or
equal to 2q. For a real-valued random vector x ∈ RN , this relationship is given by:

cum(xi1 , . . . , xin) =
n∑
p=1

(−1)p−1(p− 1)! E

∏
j∈S1

xij

 ·
E

∏
j∈S2

xij

 . . .E
∏
j∈Sp

xij

 . (A.2)

Here, S1, S2, . . . Sp describe all possible partitions of (xi1 , . . . , xin) into p sets and i1, . . . , in ∈
{1, . . . , N}. The moments are computed for a zero lag between the arguments. In prac-
tice, the moments are estimated from a finite number of T time samples and the expected
values are replaced by the estimates

E{xi1 , xi2 , . . . , xin} ≈
1
T

T∑
t=1

xi1 [t]xi2 [t] . . . xin [t]. (A.3)

In particular, at orders 2 and 4, the following equalities hold:

cum(xi1 , xi2) = E{xi1xi2} (A.4)
cum(xi1 , xi2 , xi3 , xi4) = E{xi1xi2xi3xi4} − E{xi1xi2}E{xi3xi4}

− E{xi1xi3}E{xi2xi4} − E{xi1xi4}E{xi2xi3}. (A.5)
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A.2 Properties of cumulants
In the following, the most important properties of cumulants [171] are summarized:

1. Non-Gaussianity: The cumulants of order greater than 2 are 0 for Gaussian vari-
ables.

2. Sum of independent variables: The cumulant of the sum of two independent random
vectors x = [x1, . . . , xn]T and y = [y1, . . . , yn]T equals the sum of the two cumulants:
cum(x1 + y1, . . . , xn + yn) = cum(x1, . . . , xn) + cum(y1, . . . , yn).

3. Even distribution: For symmetrically distributed random variables (even probability
density function), the cumulants of odd order n ≥ 3 are 0.

4. Symmetry: Cumulants are symmetric in their arguments, which means that they
are invariant to a permutation of their arguments.

5. Subset of independent variables: If a subset of the arguments is independent of the
rest, the cumulant is 0.

6. Multilinearity: If the random vector y is obtained through a linear transforma-
tion of the random vector x such that y = Qx, the cumulants of y are given by:
cum(yk1 , . . . , ykn) = ∑

i1 · · ·
∑
in Qk1,i1 · · ·Qkn,incum(xi1 , . . . , xin).

In consequence, higher order cumulants are insensitive to Gaussian noise, which consti-
tutes an advantage of the use of cumulants over the use of higher order moments. It also
means that BSS techniques based on higher order cumulants cannot be applied to Gaus-
sian sources. Since the signals are often symmetrically distributed and due to property 3,
many algorithms exploit only higher order statistics of even order.



Appendix B

Semi-algebraic contrast optimization

In this appendix, we describe how the COM2 and P-SAUD contrast functions, corre-
sponding to equations (3.24) and (3.26), respectively, can be optimized with respect to
the parameter θ that characterizes the Givens rotation.

B.1 Parameterized contrast functions

Both contrasts make use of the FO cumulants C4,sp and C4,sk of the signals {sp[t]} and
{sk[t]}. Based on equation (3.25) and the multilinearity property of cumulants (cf. Ap-
pendix A.2), these cumulants can be computed from the cumulants of the data {zP−p+1[t]}
and {zk[t]} as follows:

C4,sp = α4θ
4 + α3θ

3 + α2θ
2 + α1θ + α0

(1 + θ2)2 (B.1)

C4,sk = α0θ
4 − α1θ

3 + α2θ
2 − α3θ + α4

(1 + θ2)2 (B.2)

where we write θ for θp,k to simplify the notation and where

α0 = cum(zP−p+1, zP−p+1, zP−p+1, zP−p+1) = C4,zP−p+1

α1 = 4 · cum(zP−p+1, zP−p+1, zP−p+1, zk)
α2 = 6 · cum(zP−p+1, zP−p+1, zk, zk)
α3 = 4 · cum(zP−p+1, zk, zk, zk)
α4 = cum(zk, zk, zk, zk) = C4,zk .

Here, cum(x1, x2, x3, x4) denotes the FO cross-cumulant of the four random variables
x1, x2, x3, and x4. The cumulants can be estimated from an estimate of the moments
according to the Leonov-Shiryaev formula (see Appendix A.1, [154]).

The contrasts are thus based on rational functions in θ. Due to the addition of the
covariance-based penalization term in the P-SAUD algorithm, the optimization of the
concrete contrast functions of COM2 and P-SAUD will be discussed separately in the
following.
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B.2 Optimization of the COM2 cost function
Due to the symmetry of the coefficients of the rational function that corresponds to the
COM2 contrast, the degree of the numerator and denominator polynomials can be reduced
from 8 to 4 by introducing the variable ξ = θ − 1

θ
. The identification of the parameter θ

that maximizes the COM2 contrast function then reduces to the following steps (see [33]
for more details):

1. determination of the optimal parameter ξ by rooting the fourth degree polynomial
with coefficients

b0 = 4(3(α3α4 − α0α1) + α1α4 − α0α3 + α2α3 − α1α2)
b1 = 12(α2

0 + α2
4)− 8(α0α4 + α1α3)− 4α2

2

b2 = 3(α3α4 − α0α1 − α1α4 + α0α3 − α2α3 + α1α2)
b3 = 4(α2

0 + α2
4)− α2

1 − α2
3 − 2(α0α2 + α2α4)

b4 = α0α1 − α3α4

and identifying the root ξ for which the contrast is maximal,

2. identification of the parameter θ ∈]− 1, 1] for which θ2 − ξθ − 1 = 0.

B.3 Optimization of the P-SAUD cost function
For the P-SAUD contrast, we need to consider the penalization term in addition to the
FO cumulants. The r-th covariance penalty that is included in the penalization term is
given by

cov(sp[t], sp[t+ τr]) = β2,rθ
2 + β1,rθ + β0,r

1 + θ2 (B.3)

with

β0,r = cov(zP−p+1[t], zP−p+1[t+ τr])
β1,r = cov(zP−p+1[t], zk[t+ τr]) + cov(zk[t], zP−p+1[t+ τr])
β2,r = cov(zk[t], zk[t+ τr]).

The penalization term in the contrast (3.26) can then be written as a fourth degree
polynomial in θ with coefficients

γ0 =
R∑
r=1

λrβ
2
0,r

γ1 = 2
R∑
r=1

λrβ0,rβ1,r

γ2 =
R∑
r=1

λr
(
2β0,rβ2,r + β2

1,r

)

γ3 = 2
R∑
r=1

λrβ1,rβ2,r

γ4 =
R∑
r=1

λrβ
2
2,r.
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Inserting (B.1), (B.2), and (B.3) into the contrast (3.26), one obtains a rational function
with polynomials of degree 8 in the numerator and denominator. Contrary to the COM2
contrast, we cannot reduce the degree of these polynomials because the coefficients are
not symmetric. Therefore, in order to find the optima of the P-SAUD contrast, we have
to determine the zeros of an 8-th degree polynomial with coefficients

δ0 =2(α0α1 − α3α4) + γ1

δ1 =2(α2
3 + α2

1 + 2α2α4 + 2α0α2 − 2γ0 + γ2)− 8(α2
4 + α2

0)
δ2 =6(α0α3 + α1α2 − α1α4 − α2α3)− 14(α0α1 − α3α4)

− γ1 + 3γ3

δ3 =− 6(α2
1 + α2

3) + 16(α0α4 + α1α3)− 12(α0α2 + α2α4)
+ 8α2

2 + 2γ2 − 8γ0 + 4γ4

δ4 =20(α1α4 + α2α3 − α0α3 − α1α2) + 5(γ3 − γ1)
δ5 =6(α2

1 + α2
3)− 16(α0α4 + α1α3) + 12(α0α2 + α2α4)

− 2γ2 − 4γ0 + 8γ4

δ6 =6(α0α3 + α1α2 − α1α4 − α2α3)− 14(α0α1 − α3α4)
+ γ3 − 3γ1

δ7 =− 2(α2
3 + α2

1 + 2α2α4 + 2α0α2 − 2γ4 + γ2)
+ 8(α2

4 + α2
0)

δ8 =2(α0α1 − α3α4)− γ3.

The optimal rotation angle θ corresponds to the real-valued zero for which the rational
function attains its highest maximum.
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Tensor-based preprocessing of
combined EEG/MEG data

In Section 3.2 of this thesis, we analyze tensor-based methods for the separation of po-
tentially correlated epileptic sources as a preprocessing step for source localization in the
context of EEG data analysis. Nevertheless, the proposed methods can also be applied to
MEG recordings. Since EEG and MEG measurements yield complementary information
about the underlying sources and can be acquired simultaneously, several authors have
examined the combination of EEG and MEG data in brain source localization algorithms
[172, 173, 174, 175, 176, 177, 178], reporting a gain on accuracy of the source position es-
timates compared to the results of each modality alone. This raises the question whether
combining EEG and MEG data in the preprocessing step also permits us to achieve an
enhanced performance. This issue is addressed in this appendix, where we analyze the
combination of EEG and MEG in tensor-based preprocessing using the STF and STWV
tensor analyses. This leads us to the problem of computing CP decompositions of third
order tensors that have one or two loading matrices in common. In order to improve the
estimates of the loading matrices of each of these tensors, we propose to apply a joint CP
(JCP) decomposition that simultaneously computes the loading matrices that are identi-
cal for all tensors. This approach is comparable to the JCP decompositions proposed in
the context of symmetric [179] or hermitian [180] tensors. We then present the modifi-
cations of the ALS and DIAG algorithms (see Section 3.2.2.3, [76, 84]) that have to be
carried out to this end. Finally, we examine the accuracy of the EEG and MEG spatial
mixing matrix estimates that are obtained by applying the JCP decomposition to STF
and STWV data, in comparison to the results achieved for a separate treatment of both
modalities by means of simulations.

C.1 EEG/MEG data model
Both EEG and MEG data are measured as a function of sensor position and time and
can be stored into two real-valued data matrices, Xeeg and Xmeg of sizes Neeg × Teeg and
Nmeg × Tmeg, respectively, where Neeg and Nmeg denote the number of EEG and MEG
sensors and Teeg and Tmeg indicate the number of time samples recorded with the EEG
and MEG systems.

Since the EEG and MEG measurements are generated by the same sources and are
generally sampled synchronously, the data can be stored into the larger EEG/MEG data
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matrix, which can, according to [91], be modelled as:

Xmeeg =
[

Xeeg

Xmeg

]
=
[

H(e)
eeg

H(e)
meg

]
S(e) +

[
Neeg

Nmeg

]
. (C.1)

Here, H(e)
eeg ∈ RNeeg×P and H(e)

meg ∈ RNmeg×P are the EEG and MEG spatial mixing
matrices, which are specific to the head model and the source positions, S(e) ∈ RP×T

with T = Teeg = Tmeg denotes the signal matrix that contains the temporal activities of
P sources, and Neeg and Nmeg are the EEG and MEG noise matrices.

C.2 STF and STWV analyses for EEG and MEG

Since the signal matrices of EEG and MEG are identical, in case of the STF analysis, the
Wavelet transform can be computed simultaneously for both EEG and MEG by applying
it to the extended data matrix Xmeeg, yielding the tensor W = [Weeg t1 Wmeg], where
t1 denotes a concatenation along the first dimension. The tensors Weeg and Wmeg can
be decomposed using the CP model and exhibit two different loading matrices Aeeg and
Ameg for the spatial characteristics of EEG and MEG. However, the two loading matrices
B and D that contain the time and frequency characteristics are the same for EEG and
MEG due to the identical signal matrices. Therefore, in order to improve the results of
the CP decomposition, we propose to exploit this property by jointly decomposing the
tensors using the JCP decomposition for two common loading matrices as described in
Section C.3.1. To this end, the tensors should be normalized to W ′

eeg = w
√
Neeg

Weeg

||Weeg ||F
,

W ′
meg =

√
Nmeg

Wmeg

||Wmeg ||F
, where w is a weighting factor to account for different separability

and SNR of EEG and MEG.
On the other hand, the STWV tensors need to be constructed separately for both

modalities because EEG and MEG yield physically different measurements and their spa-
tial mixing matrices differ. In the next step of the STWV analysis, the resulting tensors
Feeg and Fmeg can be decomposed individually using the CP model. However, in this
case, we do not exploit the fact that both modalities are generated by the same sources.
In fact, due to the identical EEG and MEG signal matrices, the loading matrices Beeg

and Bmeg containing the temporal characteristics of the tensors Feeg and Fmeg should be
equal, whereas the loading matrices associated to the space and wave vector character-
istics generally differ. To achieve this, we propose to apply a JCP decomposition to the
normalized tensors F ′eeg = w

√
Neeg

Feeg
||Feeg ||F

and F ′meg =
√
Nmeg

Fmeg
||Fmeg ||F

that enforces one
loading matrix (in this case the matrix B) to be the same for both tensor decompositions
while allowing different loading matrices A and D for the two tensors. This technique is
described in detail in Section C.3.2.

C.3 Joint CP decomposition

In this section, we describe some algorithms for the Joint CP (JCP) decomposition of
third order tensors that have one or two loading matrices in common.
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C.3.1 Two common loading matrices
Consider M tensors Wm ∈ CIm×J×K , m = 1, . . . ,M , (M = 2 for the STF analysis of
EEG/MEG data), with common loading matrices B and D in the second and third mode
andM different loading matrices Am in the first mode. These tensors can be stacked into a
larger tensorW = W1t1 . . .t1WM of size (I1+. . .+IM)×J×K. The JCP decomposition
of the M tensors can then be achieved by solely decomposing the tensor W using any
existing algorithm to fit the CP model (see, e.g., Section 3.2.2.3). This yields common
loading matrices B and D for all tensors and the loading matrix A = [AT

1 , . . . ,AT
M ]T that

contains all individual mode-1 loading matrices (cf. Figure C.1).

Figure C.1: JCP of M tensors with two common loading matrices.

C.3.2 One common loading matrix
In the following, we consider M tensors Fm ∈ CIm×J×Km , m = 1, . . . ,M , (M = 2 for the
STWV analysis of EEG/MEG data). We assume that these tensors have one common
loading matrix B in the second mode and different loading matrices Am and Dm in the
first and third mode, respectively. The objective consists in decomposing the tensors
simultaneously such that the loading matrix B is computed jointly for all tensors while
allowing different loading matrices for each tensor in the first and third mode (cf. Fig-
ure C.2). Subsequently, we present modified versions of the ALS and DIAG algorithms
described in Section 3.2.2.3 that meet these specifications.

C.3.2.1 ALS

Starting from an initial setting, the classical ALS algorithm [76] iteratively updates the
three loading matrices Am, Bm, and Dm of the tensor Fm, m = 1, . . . ,M , until conver-
gence or a certain number of iterations is reached:

Am = [Fm](1)

(
(Dm �Bm)T

)+
(C.2)

Bm = [Fm](2)

(
(Dm �Am)T

)+
(C.3)

Dm = [Fm](3)

(
(Bm �Am)T

)+
. (C.4)
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Figure C.2: JCP of the MEG and EEG STWV tensors with one common loading matrix
that corresponds to the signal matrix.

A joint update of the loading matrix B = Bm, m = 1, . . . ,M , of the M tensors Fm
can hence be incorporated by replacing equation (C.3) by

B = [F ](2) D+ (C.5)

where D = [D1 �A1, . . . ,DM �AM ]T and [F ](2) =
[
[F1](2) , . . . , [FM ](2)

]
. The other

loading matrices are updated separately according to equations (C.2) and (C.4).

C.3.2.2 DIAG

The DIAG algorithm is described in Section 3.2.2.3 and can be used for the individual
decomposition of all tensors Fm based on a JEVD and several SVDs. To enforce an
identical loading matrix B for all tensors, we can only consider joint diagonalization
problems for the mode-2 projection matrix T2, which has to be equal for all tensors.
Consequently, the mode-2 subspace U2, which is identical for all tensors, needs to be
computed jointly to prevent different representations:[

[F1](2) , . . . , [FM ](2)

]
= U2Σ2VH

2 . (C.6)

The matrix U[s]
2 then corresponds to the columns of U2 that are associated with the

P largest singular values. We then extend the joint diagonalization problem for T2 by
simultaneously diagonalizing all matrices Ψ(km,lm)

m , m = 1, . . . ,M , in the following way to
combine all tensors:

Ψ(km,lm)
m = T2 ·Λ(km,lm)

m ·T−1
2 .
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Once an estimate of the matrix T2 has been obtained, the matrix B can be computed.
The other loading matrices can be obtained either from rank-1 decompositions of the
matrices T−1

2 (U[s]
2 )H [Fm][2] according to the DIAG algorithm [84] or by recovering, for

each tensor Fm, one loading matrix from the entries of the diagonal matrices Λ(km,lm)
m

and computing the third loading matrix by ALS from the tensor Fm and the two already
known loading matrices. In fact, both latter strategies could be combined in order to
jointly use the different estimates of the same loading matrix [181].

C.4 Results
In order to analyze the gain in accuracy of the spatial mixing matrix estimates that can
be achieved by combining EEG and MEG data in the tensor-based preprocessing using
the JCP decomposition, we perform some computer simulations. Contrary to the simula-
tions conducted in the main part of this thesis, where we employ a realistic head model,
distributed sources, and physiologically plausible interictal spike signals as well as back-
ground activity generated by a neuronal population model, EEG and MEG measurements
are here generated using a simplified model. More particularly, we simulate EEG and
MEG data for two dipoles sources located at [6.33,−1.35, 4.70] cm and [6.33, 1.35, 4.70] cm
with dipole moment vectors [0.98,−0.21,−0.07] cm and [0.98, 0.21,−0.07] cm and Neeg =
64 EEG electrodes as well as Nmeg = 148 MEG sensors (magnetometers) in a 3-shell
spherical head model. The radii of the three shells representing the brain, the skull, and
the scalp are 8 cm, 8.5 cm, and 9.2 cm with conductivities 3.3 · 10−3 S/cm, 8.25 · 10−5

S/cm, and 3.3 · 10−3 S/cm, respectively. The MEG sensors are positioned on a sphere
with radius 10.5 cm. Epileptogenic signals are obtained using the Jansen model [182]
with parameters v0 = [7, 6], Br = [0, 100, 50], Aa = [7, 6], Bb = [46.6, 40], and Cc = 135
for two sources and T = 100 time samples that are acquired at a sample rate of 125 Hz.
White Gaussian noise is added to the EEG and MEG data according to a given SNR,
which is assumed to be equal for EEG and MEG.

The STF tensors are built by computing a wavelet transform of the EEG and MEG
data using a real-valued Morlet wavelet with a center frequency of 35 Hz and F = 100
frequency samples. The STWV tensors are constructed separately for EEG and MEG
by calculating a discrete local Fourier transform over space of data selected by a spher-
ical Blackman window function. For both modalities, we consider K = 63 wave vector
samples. Each of the resulting tensors is then decomposed individually using a slightly
modified version of the DIAG algorithm, yielding the spatial mixing matrices of the sepa-
rately treated data. Moreover, we compute the JCP decompositions of the EEG and MEG
tensors using the same modified DIAG algorithm. For the present source configuration,
we use a weighting factor of w = 4 for the EEG tensor, which is chosen because of the
high associated core consistency (cf. Section 3.2.2.1, [76]) of the decomposed tensors. To
ensure a real-valued loading matrix for the temporal characteristics of the STWV tensors,
one iteration of ALS is applied after the DIAG decomposition. For all cases, we assume
that the number of sources and thereby the number of CP components is known.

In Figure C.3, we plot the average correlation coefficient of the original and estimated
EEG (left) and MEG (right) spatial mixing vectors depending on the SNR. It can be
seen that for the STWV analysis, the JCP decomposition of the EEG and MEG tensors
generally results in better estimates for the spatial mixing matrices of both modalities,
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Figure C.3: Correlation coefficient of estimated and original EEG (top) and MEG (bot-
tom) spatial mixing vectors depending on the SNR for separate and JCP decomposition
of the STF and STWV tensors for two dipoles and 200 realizations.

whereas in case of the STF technique, we observe only a small improvement of the MEG
spatial mixing matrix estimate. This can be explained by the fact that for STWV prepro-
cessing the JCP decomposition improves the temporal characteristics and therefore the
signal matrix estimate and the spatial mixing matrix estimate whereas even though the
JCP decomposition of the STF tensor improves the time and frequency characteristics,
the spatial characteristics, which provide an estimate of the spatial mixing matrix, are
only slightly amended. In case of the STWV analysis, the combination of EEG and MEG
improves especially the MEG spatial mixing matrix because the electric potential is more
focused than the magnetic field, which facilitates the source separation based on EEG
measurements.

C.5 Conclusions
We have shown that, due to the approximately identical signal matrices for EEG and
MEG, the two modalities can be combined in tensor-based STF and STWV preprocessing.
This can be accomplished by simultaneously decomposing EEG and MEG data tensors
using the JCP decomposition introduced in Section C.3, and described for the ALS and
DIAG algorithms. As we have demonstrated by simulations, the application of the JCP
decomposition to STWV EEG/MEG data leads to clearly improved spatial mixing matrix
estimates, whereas in case of the STF analysis, only a slight amendment of the MEG
spatial mixing matrix can be achieved.



Appendix D

Construction of the STWV tensor

In this appendix, we describe the construction of the STWV tensor, which is based on a
local spatial Fourier transform of the EEG measurements, in more detail.1

As the space, time, and wave vector variables, r, t, and k, respectively, are sampled,
in practice, one has to compute a discrete local Fourier transform. However, this leads
to the difficulty that the electrode array used for EEG applications is highly non-uniform
and the classical Discrete Fourier Transform (DFT) can thus not be applied. Instead, a
non-uniform algorithm needs to be employed, which can – for one dimension – be derived
from the continuous Fourier transform

U(k) =
∫ ∞
−∞

u(x) · e−j2πkxdx (D.1)

as follows: In the first step, the transformed spatial frequency variable k is discretized as
usual: k = µ ·k0 where µ ∈ {0, . . . , N−1}, k0 = 1

∆x is the distance between the N samples
of the transformed variable k and ∆x is the interval which corresponds to the length of
one period of the periodic continuation of the signal used for the DFT (see also Figure
D.1). This means that the samples of k are equidistant. In a second step, the position
variable x is discretized, transforming the integral into a sum. The difference to the DFT
consists in the fact that samples of x cannot be written as a multiple of some stepsize x0
because these samples are not equidistant. Thus, the actual sampling points xi have to be
maintained, leading to the following expression for the 1D non-uniform discrete Fourier
transform:

U(µk0) =
N−1∑
i=0

u(xi) · e−j2πµ
xi
∆x . (D.2)

Remark: Note that many definitions of the DFT also include a normalization factor
1
N

where N is the number of samples in (D.2) which is left out here. Due to the scaling
ambiguity of the CP model, the normalization factor is of no importance.

In 3-dimensional space, adding a window function w with spatial intervals ∆x, ∆y, and
∆z in x-, y-, and z-direction, respectively, equation (D.2) takes the following form:

U(µ1k1, µ2k2, µ3k3) =
∑
m

∑
n

∑
l

w(ri, xm, yn, zl) · u(xm, yn, zl) · e−j2π(µ1
xm
∆x+µ2

yn
∆y+µ3

zl
∆z )

(D.3)
1Please note that the material presented in this appendix has previously been published in [183].
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Figure D.1: Non-uniformly sampled data used for the NUDFT.

where k1 = 1
∆x , k2 = 1

∆y , and k3 = 1
∆z stand for the distances between samples of

the transformed spatial frequency variables and µ1, µ2, and µ3 are the spatial frequency
indices. The variables x, y, and z denote the coordinates of the sampling points and ri is
the point at which the non-uniform DFT is to be computed.

In the case of the STWV analysis, the elements of the transformed function U cor-
respond to the elements of the tensor F in (3.45) and the function u is replaced by the
electric potential data. Furthermore, comparing equations (D.3) and (3.44) one can see
that the vectors [x, y, z]T and 1

2π [µ1k1, µ2k2, µ3k3]T constitute the discretized forms of the
position vector r′ and the wave vector k. The STWV method requires the computation
of a local Fourier transform for a number of sensor positions ri (it is not possible to deter-
mine the local Fourier tranform at each electrode location because the data available at
boundary sensors is not sufficient to compute the tranform). The window function is used
to select data within the neighborhood of a certain electrode to obtain a local transform
(compare Figures D.2 and D.3). If the window is a sphere as assumed in the following,
∆x = ∆y = ∆z and k1 = k2 = k3. Moreover, w(ri, xm, yn, zl) = w(||ri − [xm, yn, zl]T||2).
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Figure D.2: 3D Non-uniform DFT: Selection of data along the x-axis using a Blackman
window function. Window 1 chooses data for the local Fourier transform in the neighbor-
hood of the sensor located at xi. Window 2 is centered at xj and selects data for the local
Fourier transform computed at electrode position xj. The spatial interval of the window
function is denoted by the variable ∆x.

Figure D.3: Selection of data in a 2-dimensional domain using a window function that is
a circle. The black points mark the electrode positions, at which the electric potential
is measured. The window is centered at the sensor position for which the local Fourier
transform is to be computed. Data outside of the window is not considered for the
transform.





Appendix E

Theoretical analysis of the trilinear
tensor approximation

In this appendix, we analyze the trilinear approximation that is made by the STF and
STWV analyses and derive sufficient conditions under which these methods yield exact
results.

The structure of the STF and STWV tensors, which is given by

T =
P∑
p=1

up ◦Mp (E.1)

with U = [u1, . . . ,uP ] ∈ RN×P , Mp ∈ CM×J , and rank(Mp) = Lp (see Section 3.2.4),
corresponds to a block-decomposition into rank(1, Lp, Lp)-components, which is unique
up to scale and permutation indeterminacies for rank-deficient matrices Mp under certain
conditions on N , M , J , Lp and P [184]. However, in practice, the matrices Mp generally
have full rank. In this case, it is not possible to identify up and Mp from the given
tensor T . In order to restore identifiability, the matrices Mp need to be approximated by
matrices M̃p of lower rank L̃p such that one obtains a model of the form:

T̃ =
P∑
p=1

up ◦ M̃p. (E.2)

For L̃p = 1, p = 1, . . . , P , the tensor T̃ can then be decomposed using the CP decom-
position, which permits to uniquely identify the vectors of interest up up to scale and
permutation ambiguities.

The objective thus consists in transforming equation (E.1) into equation (E.2). This
can, under certain conditions, be achieved by a truncated SVD in one or several modes
of the tensor T .1 This procedure can be viewed as some kind of PCA applied to the data
in the transformed (time-frequency or space-wave-vector) domain.

Remark 1: Please note that a truncated SVD of the first mode does not change the
data because the mode-1 unfolding matrix inherently has rank P .

1The truncated SVD in mode n is obtained by calculating the SVD of the mode-n unfolding matrix
and setting all but the P greatest singular values to 0.
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Remark 2: Please note that in any case, the transformation of (E.1) into (E.2) and
thereby a perfect recovery of the matrix U is only possible if none of the matrices Mp has
full rank. Due to a loss of information when passing from (E.1) to (E.2), the matrices Mp

cannot be recovered from T̃ .

Sufficient conditions for perfect recovery
In the following, we determine the conditions under which the SVD permits to obtain the
model of (E.2) for L̃p = 1. For simplicity, we limit the considerations in the remainder
of this appendix to the case of P = 2 components. Nevertheless, we believe that it is
possible to extend our analysis to cases where P > 2.

We define the following notation for the SVD of M1 and M2:

M1 =
L1∑
l=1

σlvlwT
l =

[
v1 V2

] [σ1 0
0 Σ2

] [
w1 W2

]T
M2 =

L2∑
l=1

λlxlyT
l =

[
x1 X2

] [λ1 0
0 Λ2

] [
y1 Y2

]T
where V2 = [v2, . . . ,vL], W2 = [w2, . . . ,wL], X2 = [x2, . . . ,xL], Y2 = [y2, . . . ,yL],
σ1 > σ2 > . . . > σL1 , and λ1 > λ2 > . . . > λL2 . Moreover, without loss of generality, we
assume that ||u1||2 = ||u2||2 = 1. For simplicity, we subsequently base our considerations
on the mode-2 unfolding of the tensor T . The same considerations can be conducted for
the mode-3 unfolding in an analogous way.

With the above definitions, and ⊗ denoting the Kronecker product, the mode-2 un-
folding of the tensor T can be written as

[T ](2) = σ1v1(w1 ⊗ u1)T + λ1x1(y1 ⊗ u2)T

+ V2Σ2(W2 ⊗ u1)T + X2Λ2(Y2 ⊗ u2)T (E.3)
= σ1v1(w1 ⊗ u1)T + λ1x1(y1 ⊗ u2)T + R. (E.4)

We would like to obtain the matrix

[T̃ ](2) = σ1v1(w1 ⊗ u1)T + λ1x1(y1 ⊗ u2)T, (E.5)

which corresponds to the CP model

T̃ = σ1u1 ◦ v1 ◦w1 + λ1u2 ◦ x1 ◦ y1 (E.6)

and would therefore permit us to recover the vectors u1 and u2 from the mode-2 unfolding
matrix [T ](2) by means of a truncated SVD. This is possible if (E.4) corresponds to the
SVD of [T ](2), which is generally not the case. Our objective now consists in finding con-
ditions under which the SVD of [T ](2) takes the form of (E.4) and under which truncation
of (E.4) leads to (E.5).

Let us consider the case that vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, and yT

1 W2 =
0T. The columns of the matrices σ1v1(w1 ⊗ u1)T and λ1x1(y1 ⊗ u2)T are then pairwise
orthogonal to the columns of R and the columns of the matrices σ1(w1 ⊗ u1)vT

1 and
λ1(y1 ⊗ u2)xT

1 are pairwise orthogonal to the columns of RT. Due to the correlation
between the vectors v1 and x1, the vectors u1 and u2, and the vectors w1 and y1, the
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two associated mode-2 vectors ṽ1 and x̃1 that are obtained by the SVD correspond to a
linear combination of v1 and x1. Furthermore, the vectors ṽ1 and x̃1 are associated with
two new singular values, µ1 ≥ max (σ1, λ1) and µ2 ≤ min (σ1, λ1). These singular values
can be computed as the square roots of the eigenvalues of[

σ1v1(w1 ⊗ u1)T + λ1x1(y1 ⊗ u2)T
] [
σ1v1(w1 ⊗ u1)T + λ1x1(y1 ⊗ u2)T

]T
and are given by

µ1,2 =

√√√√σ2
1 + λ2

1 + 2σ1λ1c1c2c3

2 ±
√

(σ2
1 + λ2

1 + 2σ1λ1c1c2c3)2

4 − σ2
1λ

2
1(1− c2

1c
2
3)(1− c2

2)

with c1 = uT
1 u2, c2 = vT

1 x1, and c3 = wT
1 y1. If µ2 > ε1, where ε1 is the highest singular

value of R (which can, depending on the correlation of vectors of X2 and V2 or W2 and Y2
be greater than max(λ2, σ2)), the truncation of the SVD of [T ](2) yields the matrix [T̃ ](2)
of equation (E.6) and permits therefore to identify u1 and u2 using the CP decomposition.

In an analogous way, one can assess that for ν2 > ϕ1, where

ν2 =

√√√√σ2
1 + λ2

1 + 2σ1λ1c1c2c3

2 −
√

(σ2
1 + λ2

1 + 2σ1λ1c1c2c3)2

4 − σ2
1λ

2
1(1− c2

1c
2
2)(1− c2

3)

and ϕ1 is the greatest singular value of W2Σ2(V2⊗u1)T +Y2Λ2(X2⊗u2)T, the truncated
SVD in the third mode also leads to the CP model (E.6) when reshaping the resulting
matrix [T̃ ](3).

Please note that in the special case where u1 and u2 are orthogonal, the columns
of the matrices σ1v1(w1 ⊗ u1)T and λ1x1(y1 ⊗ u2)T in equation (E.4) are also pairwise
orthogonal to the columns of R if only vT

1 X2 = 0T and xT
1 V2 = 0T. In this case, the

conditions wT
1 Y2 = 0T and yT

1 W2 = 0T are thus not needed for the mode-2 truncated
SVD to obtain a CP model that allows to recover u1 and u2. Accordingly, for the mode-3
truncated SVD, only the conditions wT

1 Y2 = 0T and yT
1 W2 = 0T are required whereas

the conditions vT
1 X2 = 0T and xT

1 V2 = 0T are unnecessary.

As a consequence, it is possible to perfectly recover u1 and u2 based on a truncated
SVD of the mode-2 unfolding if the conditions

C1) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, and µ2 > ε1 or

C2) vT
1 X2 = 0T, xT

1 V2 = 0T, uT
1 u2 = 0, and µ2 > ε1

are fulfilled. Furthermore, perfect recovery of u1 and u2 based on a truncated SVD of the
mode-3 unfolding is possible under the conditions

C3) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, and ν2 > ϕ1 or

C4) wT
1 Y2 = 0T, yT

1 W2 = 0T, uT
1 u2 = 0, and ν2 > ϕ1.

Since the DIAG algorithm (see Section 3.2.2.3, [84, 44]) is based on a truncated SVD
in one mode of the tensor, it permits to perfectly recover u1 and u2 if one of the above
conditions holds. If DIAG is based on the mode-1 unfolding, the truncated SVD does not
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change the unfolding matrix, which is already of rank P = 2, and therefore does not lead
to a loss of information. But contrary to the unfolding matrix of a tensor that follows
the CP model, the right signal subspace of the mode-1 unfolding matrix does not have a
Kronecker structure. However, this assumed structure is exploited in the following steps of
the DIAG algorithm (more particularly during the JET) and its absence generally causes
errors on the estimated vectors û1 and û2. These errors are difficult to quantify because
they depend on the iterative optimization of the JEVD algorithm and their analysis is
not treated in this thesis.

Remark 3: For CP decomposition methods that are based on the truncated Higher
Order Singular Value Decomposition (HOSVD) such as the algorithm described in [185,
82], the following condition can be derived: The vectors u1 and u2 can be perfectly
recovered based on the HOSVD of the tensor if

C5) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, µ2 > ε1, and ν2 > ϕ1.

This condition for perfect recovery is more restrictive than those for the DIAG algorithm
described above because the HOSVD performs a truncated SVD in all modes. Therefore, it
requires that the perfect recovery conditions for each mode are fulfilled. The combination
of conditions C1) and C3) or C2) and C4) leads to condition C5).



Appendix F

Convex optimization algorithms for
source imaging

In this appendix, we describe two efficient convex optimization algorithms that can be
employed to minimize the cost functions of regularized least squares approaches: the Fast
Iterative Shrinkage Thresholding Algorithm (FISTA) [128] and the Alternating Direction
Method of Multipliers (ADMM) [163, 164] (see also [165] and references therein). These
algorithms belong to the class of proximal splitting methods [186, 187], which aim at
solving optimization problems of the form

min
S̃

M∑
m=1

fm(S̃) (F.1)

by splitting them into several subproblems, each of which involves only one of the convex
functions fm, and by resorting to proximity operators to deal with nonsmooth functions.

The proximity operator has first been introduced in [188] and is defined by

proxf,β(Y) = arg min
X

1
2 ||Y −X||2F + βf(X) (F.2)

where f is a convex function and matrices X and Y are of the same size. Solutions to
(F.2) for f corresponding to the L1-norm or the L1,2-norm of X can, for example, be found
in [189, 125]. For the L1-norm, the elements of the matrix S̃ = prox||·||1,λ(Y) ∈ RD×T are
given by

S̃d,t = Yd,t
|Yd,t|

(|Yd,t| − λ)+ (F.3)

and for the L1,2-norm, one obtains S̃ = prox||·||1,2,λ(Y) ∈ RD×T such that

S̃d,t = Yd,t

1− λ√∑T
t=1 Y

2
d,t


+

(F.4)

where (y)+ = max(y, 0) and d = 1, . . . , D, t = 1, . . . , T .
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F.1 FISTA: Optimization of the MCE and MxNE
cost functions

The FISTA algorithm corresponds to an accelerated version of the Iterative Shrinkage
Thresholding Algorithm (ISTA) (see, e.g., [190]) and has been developed to solve optimiza-
tion problems that are composed of one smooth, differentiable, convex function f1 and one
nonsmooth convex function f2. In the context of the regularized least squares approach
to source imaging, f1(S̃) = ||X − G̃S̃||22 and f2 corresponds to the regularizing function.
FISTA solves the optimization problem (F.1) for M = 2 by iterating over two steps: a
gradient step based on the function f1 and a proximal step involving the function f2. The
algorithm can be summarized as follows:

Initialization of S̃(0), Z(1) = S̃(0), τ (1) = 1, 0 < µ < L−1

for i = 1 to I do
Y(i) = Z(i) + µG̃T(X− G̃Z(i))
S̃(i) = proxf2,λ(Y(i))

τ (i+1) = 1+
√

1+4τ (i)2

2
Z(i+1) = S̃(i) + τ (i)−1

τ (i+1) (S̃(i) − S̃(i−1))
end for

where I denotes the number of iterations. Furthermore, the constant L that determines
the maximal stepsize µ corresponds to the spectral norm of the matrix G̃. For MCE and
MxNE, the function f2 corresponds to the L1-norm and the L1,2-norm, respectively.

F.2 ADMM: Optimization of the SVB-SCCD cost
function

The SVB-SCCD optimization problem (see Section 4.5.3) involves a cost function with
three terms: f1(S̃) = 1

2 ||X − G̃S̃||2F, f2(S̃) = f(S̃), and f3(S̃) = f(TS̃) where f is a
convex function correpsonding to the L1-norm or the L1,2-norm. To employ the ADMM
algorithm, we introduce latent variables Y ∈ RE×T and Z ∈ RD×T and reformulate (F.1)
as a constrained convex optimization problem:

min
S̃

1
2 ||X− G̃S̃||2F + λ(f(Y) + βf(Z))

s. t. Y = TS̃, Z = S̃. (F.5)

The ADMM algorithm is based on the augmented Lagrangian that is associated with the
optimization problem (F.5) and which is given by

L(S̃,Y,Z,U,W) = 1
2 ||X− G̃S̃||2F + λ1f(Y) + λ2f(Z) + vec(U)Tvec(TS̃−Y)

+ ρ

2 ||TS̃−Y||2F + vec(W)Tvec(S̃− Z) + ρ

2 ||S̃− Z||2F (F.6)

where ρ > 0 is a penalty parameter, U ∈ RE×T and W ∈ RD×T are the Lagrangian
mutlipliers, λ1 = λ, and λ2 = λβ. The idea of ADMM consists in alternatingly updating
the matrices S̃, Y, Z, U, and W by minimizing the Lagrangian with respect to the
matrices S̃, Y, and Z and by resorting to the dual ascent method for the updates of the
matrices U and W. Subsequently, we derive an update rule for each of these matrices.
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Update of the signal matrix S̃
To optimize the Lagrangian with respect to the signal matrix S̃, the derivative ∂L

∂S̃ is set
to 0:

∂L

∂S̃
= −G̃TX + G̃TG̃S̃ + TTU− ρTTY + ρTTTS̃ + W− ρZ + ρS̃ = 0.

Reordering the terms, one obtains:[
G̃TG̃ + ρTTT + ρID

]
S̃ = G̃TX−TTU + ρTTY −W + ρZ,

which leads to the following update rule for the matrix S̃:

S̃ =
[
G̃TG̃ + ρ(TTT + ID)

]−1
[
G̃TX + ρ

(
TTY − 1

ρ
U
)

+ ρ

(
Z− 1

ρ
W
)]

. (F.7)

Update of the latent matrices Y and Z
Minimizing the Lagrangian with respect to the matrix Y while keeping the other matrices
fixed corresponds to solving the following optimization problem:

min
Y

L(S̃,Y,Z,U,W) = min
Y

(
λ1f(Y)− vec(U)Tvec(Y) + ρ

2vec(TS̃)Tvec(TS̃)

− ρvec(TS̃)Tvec(Y) + ρ

2vec(Y)Tvec(Y)
)
. (F.8)

Adding the terms ρ
2vec(U

ρ
)Tvec(U

ρ
) + ρvec(U

ρ
)Tvec(TS̃), which are constant with respect

to the matrix Y, problem (F.8) can be rewritten as

min
Y

ρ

2 ||(TS̃ + 1
ρ
U)−Y||2F + λ1f(Y). (F.9)

This optimization problem can be solved using the proximity operator:

Y = prox
f,
λ1
ρ

(TS̃ + 1
ρ
U). (F.10)

In an analogous way, the following expression can be derived for the matrix Z:

Z = prox
f,
λ2
ρ

(S̃ + 1
ρ
W). (F.11)

Update of the Lagrangian multipliers U and W
The matrices U and W are updated using the dual ascent method. In this approach, the
convex optimization problem, which consists in minimizing the Lagrangian with respect
to the matrix U, called the primal problem, is replaced by an equivalent problem, the dual
problem, that aims at maximizing the so-called dual function g with respect to the matrix
U. This new optimization problem is then solved using the gradient ascent algorithm.

The dual function g can be derived from the Lagrangian. Its gradient corresponds
to the residual of the constraint associated with the Lagrangian multiplier U (see [165]):
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∂g
∂U = TS̃ − Y. Therefore, using gradient ascent with a stepsize that is equal to the
penalty parameter ρ, one obtains the following update rule for the matrix U:

U(k+1) = U(k) + ρ(TS̃(k+1) −Y(k+1)). (F.12)

Analogously, the matrix W is updated according to:

W(k+1) = W(k) + ρ(S̃(k+1) − Z(k+1)). (F.13)
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current
dipole, see equivalent current dipole
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intra-cellular, 6
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algorithm, 77
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data generation model, 10
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performance, 24, 29
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disk, 76, 77
disk algorithm, see DA
distributed source
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fast iterative shrinkage thresholding algo-
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FastICA

algorithm, 23
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performance, 24, 29

FEM, see finite element method
finite element method, 11
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FOCUSS, 69
forward problem, 2
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computational complexity, 46
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frontal lobe, see brain lobes
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generation model, see data generation model
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on the noise, 65
on the spatial source distribution, 63
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lobe, see brain lobes
localization, see source localization
LORETA, 68

magnetic resonance imaging
functional, 9
structural, 11

magnetoencephalography, 9, 61, 75, 135

MCE
algorithm, 70
computational complexity, 104
implementation, 108
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PARAFAC, see CP decomposition
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PCA, see principal component analysis
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separation, 2, 15
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source imaging, see brain source imaging
space–time–frequency, see STF
space–time–wave-vector, see STWV
sparsity, 63, 64, 69–71, 75, 93
spatial filter, adaptive, see beamforming
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spherical head model, see head model
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analysis, 41, 136
computational complexity, 46
hypothesis, 64
STF-DA
algorithm, 77
parameters, 79
performance, 78, 87

STR, 64, 77
STWV

analysis, 42, 136
computational complexity, 46
hypothesis, 63
STWV-DA
algorithm, 77



INDEX 173

parameters, 79
performance, 78, 87, 108, 122

STWV-SVB-SCCD
algorithm, 98
performance, 100

tensor construction, 42, 141
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Résumé de la thèse

Chapitre 1 : Introduction

Contexte et motivation

L’électroencéphalographie (EEG) est une technique non-invasive qui enregistre l’activité
cérébrale avec une haute résolution temporelle en utilisant un réseau de capteurs qui sont
placés sur la surface de la tête. Les mesures contiennent des informations précieuses sur
les sources électromagnétiques dans le cerveau qui sont à l’origine de l’activité cérébrale
observée. Ces informations sont essentielles pour le diagnostic et le suivi de certaines mala-
dies comme l’épilepsie et pour comprendre le fonctionnement du cerveau en neuroscience.
Dans cette thèse, nous nous concentrons sur l’application de l’EEG dans le contexte de
l’épilepsie. Plus particulièrement, nous nous intéressons à la localisation des régions épi-
leptiques qui sont impliquées dans l’activité épileptique entre les crises. La délimitation de
ces régions est essentielle pour l’évaluation des patients souffrant d’une épilepsie partielle
et pharmaco-résistante pour qui une intervention chirurgicale peut être considérée pour
enlever les zones épileptogènes qui sont responsables de l’occurrence de crises.

L’objectif consiste alors à identifier les positions (et étendues spatiales) des sources
cérébrales à partir du mélange bruité de signaux qui est enregistré à la surface de la tête
par les capteurs EEG. Ceci est connu sous le nom de problème inverse. De l’autre côté,
la dérivation des signaux EEG pour une configuration de sources connue est appelée le
problème direct (cf. figure 1.1). Grâce aux modèles affinés de la géométrie de la tête et
des outils mathématiques avancés permettant de calculer la matrice de lead field, qui
caractérise la propagation dans le volume conducteur de la tête, il est aisé de résoudre
le problème direct. Par contre, trouver une solution au problème inverse est toujours
une tâche difficile. Ceci est particulièrement vrai dans le contexte de sources multiples
avec des signaux temporels corrélés qui peuvent être impliquées dans la propagation de
phénomènes épileptiques. Ce sujet est le problème central de cette thèse et motive le
développement d’algorithmes qui sont robustes par rapport à la corrélation des sources.

Une autre difficulté rencontrée dans l’analyse de données EEG consiste dans le fait
que les données enregistrées ne reflètent pas uniquement l’activité cérébrale d’intérêt, mais
reflètent également l’activité de sources non cérébrales telles que l’activité cardiaque, l’ac-
tivité musculaire de la mâchoire ou encore l’activité oculaire. En général, on appelle ces
signaux “non-cérébraux” artéfacts. Les artéfacts peuvent avoir de grandes amplitudes,
cachant les signaux d’intérêt qui correspondent, dans notre cas, à l’activité d’une ou
plusieurs sources cérébrales. Ainsi, pour empêcher les artéfacts de compromettre l’inter-
prétation des mesures EEG, il est préférable de les supprimer avant d’appliquer d’autres
méthodes d’analyse de l’EEG.

i
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Approche proposée et plan de cette thèse
Pour les données EEG contenant plusieurs sources et artéfacts, nous proposons de consi-
dérer les étapes suivantes de traitement de données pour résoudre le problème inverse :

1. extraction de l’activité cérébrale d’intérêt, c’est-à-dire de l’activité épileptique (éli-
mination des artéfacts),

2. séparation de sources simultanément actives et potentiellement corrélées pour faci-
liter leur localisation,

3. localisation de sources distribuées.

Les deux premières étapes constituent des opérations de prétraitement qui sont option-
nelles, mais qui peuvent considérablement simplifier la localisation de sources en fonction
des caractéristiques du jeu de données à analyser, tandis que la solution du problème
inverse est accompli lors de la troisième étape.

Dans cette thèse, nous développons des techniques robustes et efficaces sur le plan des
calculs pour les trois étapes de traitement de données décrites ci-dessus. Les performances
des algorithmes proposés sont analysées en termes de précision et de complexité numérique
en comparaison avec des méthodes conventionnelles. Comme des informations précises
sur les zones épileptogènes ne sont généralement pas disponibles pour les données réelles,
l’évaluation des performances est principalement basée sur des simulations réalistes qui
nous permettent de comparer les résultats obtenus avec la vérité de terrain. Néanmoins,
quelques exemples avec des données EEG réelles sont également présentés pour valider
les méthodes proposées.

Cette thèse est organisée de la manière suivante : dans le chapitre 2, nous donnons
quelques informations de base sur l’origine des signaux électromagnétiques du cerveau, sur
les caractéristiques des systèmes EEG, ainsi que sur l’épilepsie. En plus, nous décrivons
le modèle mathématique des données EEG qui est utilisé pour les simulations conduites
dans cette thèse. Dans le chapitre 3, nous considérons deux types de méthodes de prétrai-
tement : des approches statistiques pour l’élimination des artéfacts basée sur l’analyse en
composantes indépendantes (ACI) et des méthodes de décomposition tensorielle détermi-
niste pour la séparation de sources. Le chapitre 4 est dédié à la localisation de sources
distribuées. Après avoir décrit et classifié les méthodes de l’état de l’art, nous présen-
tons quelques contributions au développement de nouvelles méthodes de localisation de
sources. Nous concluons le chapitre avec une étude de performances de huit algorithmes de
localisation de sources différents. Enfin, dans le chapitre 5, nous illustrons la combinaison
des trois étapes de traitement de données par un exemple de simulation avant de résumer
nos résultats et de discuter des perspectives pour la suite des travaux.

Publications associées
Certaines parties du travail présenté dans cette thèse peuvent être associées aux publica-
tions suivantes :

Articles de conférence internationale

• H. Becker, P. Comon, L. Albera, M. Haardt, and I. Merlet, “Multiway space-time-
wave-vector analysis for source localization and extraction”, Proc. of European Si-
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gnal Processing Conference (EUSIPCO), Aalborg, Denmark, August 2010.

Introduction de l’analyse STWV décrite dans la section 3.2.3.2 de cette thèse.

• H. Becker, P. Comon, and L. Albera, “Tensor-based preprocessing of combined
EEG/MEG data”, Proc. of European Signal Processing Conference (EUSIPCO),
Bucharest, Romania, August 2012.

Extension des analyses STF et STWV à la combinaison de données EEG et MEG
présentée dans l’annexe C.

• H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet, “A
performance study of various brain source imaging approaches”, IEEE Proc. of
Internat. Conf. on Acoustics Speech and Signal Processing (ICASSP), Florence,
Italy, May 2014.

Étude comparative des performances de sept algorithmes de localisation de sources
distribuées semblable aux simulations conduites dans la section 4.7.2 de cette thèse.

• H. Becker, L. Albera, P. Comon, R. Gribonval, and I. Merlet, “Fast, variation-
based methods for the analysis of extended brain sources”, Proc. of European Signal
Processing Conference (EUSIPCO), Lisbon, Portugal, September 2014.

Présentation de l’algorithme SVB-SCCD décrit dans la section 4.5 de cette thèse.

Articles de revue internationale

• H. Becker, P. Comon, L. Albera, M. Haardt, and I. Merlet, “Multiway space-time-
wave-vector analysis for EEG source separation”, Signal Processing, vol. 92, pp.
1021–1031, 2012.

Introduction de l’analyse STWV décrite dans la section 3.2.3.2 de cette thèse et ap-
plication aux données EEG pour la localisation de sources étendues dans le contexte
d’un modèle de tête sphérique.

• H. Becker, L. Albera, P. Comon, M. Haardt, G. Birot, F. Wendling, M. Gavaret,
C. G. Bénar and I. Merlet, “EEG extended source localization : tensor-based vs.
conventional methods”, NeuroImage, vol. 96, pp. 143–157, August 2014.

Présentation des méthodes STF-DA et STWV-DA pour la localisation de sources
distribuées et évaluation sur données simulées réalistes et données réelles semblable
à la section 4.4.1 de cette thèse.

• H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet, “Brain
source imaging : from sparse to tensor models”, submitted to IEEE Signal Processing
Magazine, 2014.

Exposé de synthèse et classification de différentes approches de localisation de
sources distribuées (cf. sections 4.2 et 4.3) ainsi que comparaison des performances
de méthodes représentatives basée sur simulations réalistes semblable à la section
4.7.2 de cette thèse.
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• H. Becker, L. Albera, P. Comon, A. Kachenoura, and I. Merlet, “A penalized semi-
algebraic deflation ICA algorithm for the efficient extraction of interictal epileptic
signals”, submitted to IEEE Transactions on Biomedical Engineering, 2014.
Introduction de l’algorithme P-SAUD décrit dans la section 3.1 de cette thèse.

Chapitre 2 : Signaux EEG : Origine physiologique et
modélisation
Pour traiter une importante quantité d’informations, le cerveau contient un grand nombre
de cellules nerveuses, les neurones, qui sont principalement localisées dans la matière grise
formant le cortex cérébral. La transmission d’informations entre neurones est basée sur
un processus électrochimique (cf. figure 2.3) [1, 2, 3] qui provoque un courant électrique
dans les neurones ainsi qu’un contre-courant à l’extérieur des cellules. Ceci peut être
modélisé par un dipôle de courant qui est à la base des modèles mathématiques de l’activité
cérébrale.

L’épilepsie est une des maladies neuronales les plus courantes. Cette maladie entraîne
des dysfonctionnements temporaires de l’activité électrique du cerveau que l’on appelle
les crises et qui se manifestent sous forme de décharges électriques rythmiques durant
quelques secondes à quelques minutes. La majorité des patients peuvent être traités avec
des médicaments, mais quelques patients sont pharmaco-résistants. Dans certains de ces
cas, si on connaît la position et l’étendue spatiale de la zone épileptogène, on peut envisa-
ger une intervention chirurgicale pour enlever cette zone et arrêter l’occurrence des crises.
Pour aider l’évaluation préchirurgicale de ces patients, dans cette thèse, nous appliquons
des méthodes de localisation de sources aux pointes épileptiques, qui apparaissent à in-
tervalles irréguliers entre les crises, pour identifier les régions cérébrales impliquées dans
ces paroxysmes.

L’EEG permet d’enregistrer l’activité électromagnétique du cerveau dans un certain
intervalle de temps à l’aide de capteurs placés sur la surface de la tête. Les systèmes EEG
comprennent entre 19 et 256 électrodes et mesurent la différence de potentiels électriques
entre chaque capteur et une référence. Les avantages principaux de l’EEG sont sa haute
résolution temporelle et son faible coût comparé à la magnétoencéphalographie (MEG)
ou à l’imagerie par résonnance magnétique (IRM) fonctionnelle.

Pour que l’activité cérébrale soit mesurable à la surface de la tête, un certain nombre
de populations neuronales simultanément actives est requit. Ces populations peuvent être
modélisées par une grille de dipôles formant l’espace sources prédéfini. Les données EEG
peuvent être modélisées comme un mélange linéaire et instantané de signaux émis par les
dipôles de l’espace sources, caractérisé par la matrice de lead field, auquel se superposent
les contributions d’autres signaux électromagnétiques d’origine physiologique différente,
appelés artéfacts, et le bruit d’instrumentation. Pour un modèle de tête et un espace
sources donnés, la matrice de lead field peut être calculée numériquement [3]. Dans cette
thèse, nous considérons un modèle de tête réaliste (cf. figure 2.5) qui est composé de
trois couches, segmentées d’une IRM, et représentant le cerveau, le crâne et le cuir che-
velu, et un espace sources comprenant des dipôles localisés sur la surface du cortex avec
une orientation perpendiculaire à cette surface. Pour les simulations, nous définissons 11
sources distribuées, également appelées patchs, qui sont composées d’un certain nombre
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de dipôles adjacents de l’espace sources (cf. figure 2.6). En outre, nous générons des si-
gnaux cérébraux (pointes épileptiques hautement corrélées pour les dipôles appartenant
aux sources distribuées et activité de fond pour les autres dipôles) en utilisant un modèle
de populations neuronales [14, 22] (voir figure 2.7 pour un exemple de pointes épileptiques
générées avec ce modèle).

Chapitre 3 : Prétraitement

Élimination des artéfacts et séparation de patchs indépendants
avec l’ACI
La première étape de l’analyse de données EEG consiste à éliminer les artéfacts ou, de
manière équivalente, à extraire l’activité d’intérêt, c’est-à-dire les pointes épileptiques.
Comme peu d’informations sur les sources sous-jacentes sont disponibles a priori, ceci est
une application typique pour les méthodes de séparation de sources aveugle [23, 24]. À
cause de leurs différentes origines physiologiques, il est raisonnable de présumer que les
artéfacts sont statistiquement indépendants de l’activité épileptique, ce qui motive l’appli-
cation de méthodes statistiques basées sur l’analyse en composantes indépendantes (ACI).
Cette approche traite les données et les signaux comme des réalisations d’un processus
vectoriel aléatoire et cherche à séparer autant de composantes indépendantes qu’il y a de
capteurs. Ces composantes peuvent être distinguées en trois groupes formant des bases
pour les sous-espaces de l’activité épileptique, de l’activité musculaire, et de l’activité de
fond. Notre objectif ici consiste à identifier les vecteurs de la matrice de mélange et les
signaux associés qui engendrent le sous-espace de l’activité épileptique.

Pour identifier les composantes indépendantes à l’aide d’une transformation linéaire, on
résout un problème d’optimisation qui est basé sur une mesure d’indépendance statistique
comme l’information mutuelle ou la néguentropie. Dans le contexte de l’ACI, la fonction
de coût qui est maximisée est appelée fonction de contraste. Pour faciliter la séparation
des composantes, beaucoup de méthodes d’ACI utilisent une étape de pré-blanchiment
des données qui précède l’extraction des composantes. L’objectif de cette étape consiste
à décorréler les signaux de manière à ce que la matrice de covariance des données pré-
blanchies soit la matrice d’identité. Dans ce cas, la matrice de mélange à identifier est une
matrice unitaire. L’estimation de cette matrice unitaire peut être simplifiée davantage en
utilisant une paramétrisation basée sur les rotations de Givens.

Dans la littérature, un grand nombre de méthodes de séparation de sources aveugle,
incluant les algorithmes basés sur les statistiques d’ordre deux comme SOBI et CCA ou
les techniques d’ACI basées sur les statistiques d’ordre supérieur, ont été appliquées avec
succès pour séparer les artéfacts de l’activité neuronale (voir par exemple [25, 26, 27, 28,
29]). Une étude récente [31] des performances de plusieurs méthodes populaires d’ACI a
montré que l’algorithme COM2 [33] donne le meilleur compromis entre performance et
complexité numérique. Cependant cette méthode extrait non seulement les composantes
épileptiques d’intérêt, mais identifie également un grand nombre d’autres composantes du
mélange. Comme nous nous intéressons uniquement à l’activité épileptique, la complexité
numérique de l’algorithme peut être réduite davantage en extrayant seulement les signaux
épileptiques. Pour ce faire, on peut utiliser des méthodes de déflation. Par contre, il
faut s’assurer que les signaux d’intérêt sont extraits en premier pour pouvoir arrêter
l’algorithme après la séparation d’un petit nombre de composantes du mélange. Dans la
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littérature, ceci est accompli en recourant à un signal de référence ce qui donne lieu aux
approches d’ACI avec référence (ACI-R) [35, 36, 34, 37, 38, 39]. Toutefois, en pratique,
un signal de référence n’est pas toujours disponible. C’est pourquoi nous proposons une
autre méthode dans cette thèse qui est basée sur une fonction de coût pénalisée.

Le nouvel algorithme, appelé P-SAUD, est basé sur la fonction de contraste bi-source
et la procédure d’optimisation efficace utilisées par COM2, mais extrait les sources de
manière séquentielle en suivant la méthode de déflation par projection de l’algorithme
DelL [42]. Pour extraire les composantes épileptiques en premier, nous exploitons le fait
que l’auto-corrélation de ces composantes est plus grande que celle des artéfacts muscu-
laires. Ainsi l’auto-corrélation est utilisée comme terme de pénalisation dans la fonction de
contraste. Un paramètre de pénalisation règle l’influence de l’auto-corrélation sur l’extrac-
tion des composantes. Au début, on attribue une grande valeur à ce paramètre, laquelle
est ensuite diminuée au cours des itérations de l’algorithme. La valeur finale détermine
l’équilibre entre la fonction de contraste de COM2 et le terme de pénalisation.

La performance de P-SAUD en termes de précision et de complexité numérique est
évaluée à l’aide de simulations, conduites avec deux patchs aux signaux épileptiques indé-
pendants en présence d’artéfacts musculaires, et comparée à deux méthodes de séparation
de sources aveugle d’ordre deux, SOBI [30] et CCA [28], ainsi qu’à trois méthodes clas-
siques d’ACI, COM2 [33], FastICA [47], et DelL [42]. En termes de précision, les résultats
de P-SAUD sont mieux que ceux de DelL, SOBI et CCA et comparables à ceux de
COM2 et FastICA. Les simulations confirment également que P-SAUD extrait les com-
posantes épileptiques parmi les premières composantes d’ACI. Ainsi, à précision égale, la
complexité numérique de P-SAUD est considérablement réduite par rapport à COM2 et
FastICA. Ceci a aussi été confirmé sur un exemple de données réelles.

Séparation de sources corrélées par décomposition tensorielle
Si plusieurs régions de sources sont impliquées dans l’activité épileptique, il est préfé-
rable de séparer ces sources afin de faciliter le processus de la localisation de sources.
Pour les sources statistiquement indépendantes, ceci peut également être accompli par
l’ACI. Par contre, dans le contexte de phénomènes de propagation, les signaux des diffé-
rentes régions épileptiques sont (hautement) corrélés et leur séparation nécessite un autre
type d’approche. Dans cette thèse, nous explorons l’utilisation de méthodes tensorielles
déterministes. Ces méthodes exploitent des données multidimensionnelles et présument
une certaine structure sous-jacente. Ici, nous nous focalisons sur la décomposition cano-
nique [58] qui impose une structure multilinéaire sur les données. Cette structure est alors
exploitée pour identifier les composantes associées aux sources.

La décomposition canonique (approximative) décompose un tenseur en une somme
d’un petit nombre de tenseurs de rang 1 qui représentent les composantes significatives
du tenseur. Pour un tenseur d’ordre 3, chaque tenseur de rang 1 correspond au produit
extérieur de 3 vecteurs qui dépendent de trois variables différentes. Ainsi la décomposition
canonique permet de séparer les variables. Le nombre de composantes, qui correspond au
nombre de sources, doit être estimé à partir des données, mais nous supposons dans cette
thèse que ce nombre est connu. Le grand avantage de la décomposition canonique comparé
à d’autres décompositions tensorielles est qu’elle est unique sous certaines conditions sur
le nombre de composantes. Ces conditions sont généralement vérifiées dans le contexte
de la séparation de sources en EEG. Le calcul de la décomposition canonique est basé
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sur un problème d’optimisation. Celui-ci peut être résolu à l’aide d’un grand nombre
d’algorithmes qui ont été proposés dans la littérature, incluant des méthodes alternantes
[76], des algorithmes basés sur le gradient [58, 80, 81], et des techniques directes [82, 83, 44].

Pour obtenir des données multidimensionnelles, on peut soit collecter une diversité
supplémentaire directement à partir des données, soit créer une troisième dimension en
appliquant une transformation qui préserve les deux dimensions originales, comme la
transformée de Fourier à court terme ou la transformée en ondelettes. Plusieurs auteurs
ont étudié l’application de la décomposition canonique aux données EEG transformées en
données espace-temps-fréquence (STF), obtenues en calculant une transformée en onde-
lettes sur la dimension de temps des mesures [69, 70, 71, 72, 73]. Sous certaines condi-
tions sur les signaux, cette méthode donne des caractéristiques d’espace, de temps et de
fréquence pour chaque région source et permet alors de localiser chaque patch individuel-
lement dans une deuxième étape. Dans cette thèse, nous présentons une méthode alterna-
tive qui est basée sur une transformée de Fourier locale en espace. Ceci donne un tenseur
espace-temps-vecteur d’onde (STWV) qui peut également être décomposé en utilisant la
décomposition canonique. L’avantage de cette approche consiste dans sa robustesse à la
corrélation des signaux des sources.

Pour comprendre les mécanismes sous-jacents des techniques STF et STWV et les
conditions qui sont nécessaires à leur fonctionnement, nous conduisons une étude théorique
de ces approches. Plus particulièrement, nous dérivons des conditions suffisantes pour que
ces méthodes donnent des résultats exacts. Bien que ces conditions mathématiques soient
très restrictives et qu’il soit difficile d’en déduire des conditions physiologiques que l’on
peut vérifier en pratique, nous avons déterminé que les facteurs suivants influencent le
fonctionnement des analyses STF et STWV :

• puissance des sources,

• corrélation des signaux des sources,

• corrélation des vecteurs de mélange spatial des sources,

• valeurs singulières des matrices temps-fréquence et espace-vecteur d’onde des sources.

Pour évaluer la capacité des analyses STF et STWV à séparer des sources corrélées,
nous effectuons quelques simulations dans le contexte de pointes épileptiques propagées.
Nous analysons l’influence de plusieurs paramètres sur l’estimation des signaux et des
vecteurs de mélange spatial. Les simulations montrent que l’analyse STF ne donne pas
de bons résultats pour les sources corrélées tandis que la méthode STWV permet de
séparer les sources correctement tant que le RSB, le nombre d’échantillons temporels et
le nombre de capteurs ne sont pas trop petits. Une analyse de complexité numérique des
deux méthodes a révélé que le coût de calcul des deux approches est comparable pour un
nombre d’échantillons temporels modéré.

ACI vs. décomposition tensorielle

En fonction de la quantité et de l’amplitude des artéfacts et de la nature de l’activité
épileptique (nombre de sources et corrélation) d’un certain jeu de données, on peut décider
d’utiliser seulement une des deux méthodes de prétraitement décrites ci-dessus (ACI ou
décomposition tensorielle) ou les deux à la fois. Pour déterminer dans quelle situation
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laquelle de ces méthodes de prétraitement est appropriée, nous avons comparé les deux
approches à l’aide de simulations. D’un côté, nous avons analysé la robustesse de l’ACI
(représentée par l’algorithme P-SAUD) et de la décomposition tensorielle (représentée par
la méthode STWV) à la corrélation des sources. Cette analyse nous a montré que STWV
permet de séparer des sources avec signaux de morphologie différente sans difficulté et
des sources avec signaux identiques mais retardés dès qu’il y a un certain délai minimal
entre les activités des deux sources, tandis que P-SAUD ne sépare pas correctement les
sources tant que leurs signaux se recouvrent partiellement. Ceci montre que STWV est la
méthode de choix dans le contexte de phénomènes de propagation. De l’autre côté, nous
avons étudié la robustesse de P-SAUD et de STWV aux artéfacts musculaires. Ici, nous
avons constaté que le RSB limite pour une bonne estimation des vecteurs de mélange
de deux sources non-corrélées est plus petit pour P-SAUD que pour STWV avec une
différence d’environ 10 dB. Finalement, nous avons combiné P-SAUD et STWV pour
extraire des sources propagées à partir de données EEG corrompues par des artéfacts.
Cette approche réduit le RSB minimale requit pour une séparation correcte des deux
sources par 5 dB.

Chapitre 4 : Localisation de sources distribuées
Les méthodes de localisation de sources qui sont actuellement disponibles peuvent être
distinguées en deux types d’approche : la localisation de dipôles équivalents où chacun de
ces dipôles décrit l’activité électromagnétique dans une région étendue du cerveau et la
localisation de sources distribuées qui sont caractérisées par un certain nombre de dipôles
avec des positions fixes [89]. Dans cette thèse, nous nous concentrons sur la localisation
de sources distribuées parce que les paroxysmes épileptiques que l’on observe en EEG
impliquent souvent des grandes régions corticales comme montré par plusieurs études
[22, 7, 93, 94, 95]. Par ailleurs, nous ne nous intéressons pas seulement aux positions des
sources, mais aussi à leurs étendues spatiales.

La localisation de sources distribuées consiste à estimer les amplitudes de tous les
dipôles de l’espace sources à partir des données enregistrées en surface. Comme le nombre
des dipôles de l’espace sources (plusieurs milliers) dépasse largement le nombre de capteurs
EEG (une centaine), ceci est un problème inverse mal posé. Pour rétablir l’identifiabilité
du problème, il est nécessaire de faire des hypothèses supplémentaires sur les sources.
Dans cette thèse, nous distinguons trois catégories d’hypothèses :

• les hypothèses qui s’appliquent à la distribution spatiale des sources (énergie mini-
male, énergie minimale dans un domaine transformé, parcimonie, parcimonie dans
un domaine transformé, séparabilité dans le domaine espace-vecteur d’onde, densité
de probabilité Gaussien avec covariance spatiale paramétrée),

• les hypothèses qui s’appliquent à la distribution temporelle des sources (signaux
lisses, parcimonie dans un domaine transformé, pseudo-périodicité avec variations
en amplitude, séparabilité dans le domaine temps-fréquence, cumulants marginaux
d’ordre supérieur non-zéro) et

• les hypothèses qui s’appliquent à la distribution spatio-temporelle des sources (di-
pôles synchrones conduisant à un nouveau modèle de données pour sources distri-
buées).
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Dans la littérature, un grand nombre de méthodes de localisation de sources distri-
buées ont été proposées. En se basant sur des considérations méthodologiques, on peut
différencier trois familles principales de techniques :

• les approches des moindres carrés régularisés (cf. figure 4.1) ; celles-ci incluent entre
autres des algorithmes de norme minimale, comme sLORETA [101] et cLORETA
[103], et des approches parcimonieuses, comme MCE [110], VB-SCCD [116], et
MxNE [126],

• les approches Bayésiennes (variationnelles et empiriques) ; un exemple d’une telle
méthode est l’algorithme Champagne [138, 139],

• les approches par recherche exhaustive pour sources étendues (approches de type
MUSIC et filtres spatiaux) ; un exemple de cette famille est 2q-ExSo-MUSIC [15].

Dans chaque famille, les méthodes peuvent être classifiées davantage selon les hypothèses
exploitées.

Une quatrième famille de techniques de localisation de sources distribuées comprend
les approches tensorielles qui sont proposées dans cette thèse. Ces méthodes procèdent en
deux étapes :

1. la séparation de différentes sources distribuées en utilisant la décomposition tenso-
rielle (décrite dans le chapitre 3) et

2. l’identification des dipôles de l’espace sources qui caractérisent chaque source dis-
tribuée.

Pour localiser les sources distribuées à partir des vecteurs de mélange spatial, identifiés
par la décomposition tensorielle, nous introduisons un nouvel algorithme, appelé DA.
Cette méthode est basée sur un dictionnaire de sources distribuées potentielles de forme
circulaire, les disques, qui sont comparées aux vecteurs de mélange spatial par une mé-
trique. Cette approche est inspirée par la stratégie d’optimisation de l’algorithme 2q-ExSo-
MUSIC, mais la métrique utilisée par DA est différente. La performance de cette nouvelle
méthode, appelée STWV-DA si basée sur des données espace-temps-vecteur d’onde et
STF-DA si basée sur des données espace-temps-fréquence, est évaluée sur données si-
mulées et réelles dans le contexte d’une activité épileptique propagée d’un patch à un
deuxième patch en comparaison avec 4-ExSo-MUSIC, sLORETA, et cLORETA. Les si-
mulations montrent que STWV-DA donne des bons résultats pour des patchs surfaciques
dans le cas de données spatialement pré-blanchies, comparables aux résultats de 4-ExSo-
MUSIC et supérieurs aux résultats de sLORETA et cLORETA, mais également sur les
données brutes, contrairement aux autres méthodes. Toutefois, STWV-DA a des diffi-
cultés à localiser des patchs profonds. STF-DA ne donne pas de bons résultats puisque
l’analyse STF ne permet pas de correctement séparer les sources corrélées. Sur les données
réelles, l’approche tensorielle et 4-ExSo-MUSIC localisent des régions concordantes avec
les positions des électrodes de la SEEG pour lesquels une activité épileptique fréquente a
été détectée.

Même si STWV-DA et 4-ExSo-MUSIC donnent des bons résultats dans un certain
nombre de cas, ces méthodes ont des difficultés à localiser plusieurs patchs en même
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temps. Pour surmonter ce problème, nous explorons une autre approche pour la loca-
lisation de sources distribuées en exploitant la parcimonie structurée de la distribution
spatiale des sources. Cette approche est basée sur l’algorithme VB-SCCD [116] qui a
montré une bonne performance lors d’une comparaison récente de différentes méthodes
de localisation de sources distribuées [158]. L’algorithme VB-SCCD impose la parcimonie
sur la matrice caractérisant les différences d’amplitude des dipôles adjacents de l’espace
sources et permet, en particulier, de localiser simultanément plusieurs patchs hautement
corrélés. Par contre, cet algorithme donne des distributions spatiales biaisées et montre
des difficultés à séparer plusieurs sources qui sont proches les unes des autres. En outre,
l’implémentation avec la méthode d’optimisation SOCP [123, 124] comme proposée dans
[116] entraîne une grande complexité numérique qui empêche l’application de cette tech-
nique à un grand nombre d’échantillons temporels. Dans cette thèse, nous améliorons ces
points en proposant un nouvel algorithme, appelé SVB-SCCD, qui inclut un terme de
régularisation de norme L1 supplémentaire, imposant la parcimonie sur les amplitudes
des dipôles. Ce terme évite le biais en amplitude de la distribution spatiale estimée et
facilite la séparation des sources. En plus, il est possible d’ajuster la taille des sources re-
construites en variant le nouveau paramètre de régularisation ajouté dans cette approche.
Nous utilisons l’algorithme ADMM [163, 164] (voir aussi [165]) au lieu de SOCP pour
résoudre le problème d’optimisation avec un temps de calcul considérablement réduit.
Finalement, nous considérons l’exploitation de la structure temporelle des données en
remplaçant la norme L1 dans les termes de régularisation par la norme mixte L12. L’al-
gorithme qui exploite la structure temporelle, appelé L12-SVB-SCCD, permet d’obtenir
des résultats d’estimation de sources plus robustes. La meilleure performance de SVB-
SCCD et de L12-SVB-SCCD, comparée à VB-SCCD et d’autres méthodes de localisation
de sources distribuées (4-ExSo-MUSIC et cLORETA), est confirmée par des simulations
dans le contexte de trois patchs aux signaux épileptiques hautement corrélés.

Pour répondre à la question si une séparation (partielle) des sources avant la loca-
lisation peut améliorer les résultats de l’algorithme SVB-SCCD, nous considérons une
approche qui combine la décomposition tensorielle avec la localisation de sources dis-
tribuées en exploitant la parcimonie structurée. À cette fin, nous conduisons une étude
de simulations où nous comparons les algorithmes STWV-DA et SVB-SCCD avec l’ap-
proche combinée STWV-SVB-SCCD. Néanmoins, pour la majorité des scénarios testés,
nous n’observons pas d’amélioration des performances de STWV-SVB-SCCD par rapport
à STWV-DA et SVB-SCCD. Nous en concluons alors que le prétraitement tensoriel est
seulement utile pour les algorithmes de localisation de sources distribuées qui ne sont pas
capables de localiser plusieurs patchs simultanément.

Enfin, nous conduisons une étude approfondie des performances de diverses méthodes
de localisation de sources. Plus particulièrement, nous comparons huit algorithmes repré-
sentatifs, incluant sLORETA, cLORETA, MCE, MxNE, Champagne, 4-ExSo-MUSIC,
STWV-DA et SVB-SCCD, par rapport à leurs complexités numériques et à la préci-
sion des résultats de l’estimation de sources distribuées sur données simulées réalistes
dans le contexte de signaux épileptiques propagés. Dans les simulations, nous analysons
l’influence de la position et de la taille d’une source distribuée ainsi que l’influence du
nombre de patchs. En résumé, les résultats nous montrent que sLORETA, Champagne,
MCE et MxNE estiment bien les positions des sources, mais pas leurs étendues spatiales
puisque ces algorithmes ont été conçus pour la localisation de sources focales. Cependant,
4-ExSo-MUSIC, STWV-DA et SVB-SCCD permettent également d’obtenir une bonne



RÉSUMÉ DE LA THÈSE xi

estimation de la taille des sources. cLORETA donne des résultats intermédiaires puisque
les dipôles avec grandes amplitudes correspondent bien aux patchs, mais il est difficile
de délimiter les régions sources à partir de la distribution spatiale estimée. Du point de
vue de la complexité numérique, cLORETA et sLORETA sont les plus efficaces des mé-
thodes testées tandis que 4-ExSo-MUSIC est associée au plus grand coût de calcul, suivie
par Champagne. En tout, STWV-DA et SVB-SCCD semblent être les méthodes les plus
prometteuses pour la localisation de (plusieurs) sources distribuées autant en termes de
robustesse qu’en qualité des sources reconstruites.

Chapitre 5 : Résumé et conclusions
Dans cette thèse, nous avons cherché à identifier les positions et les étendues spatiales des
zones épileptiques à partir des mesures EEG. En particulier, nous avons adressé le pro-
blème de la localisation de régions cérébrales simultanément actives aux signaux temporels
hautement corrélés qui surviennent de la propagation de phénomènes épileptiques. Pour
traiter ce problème difficile, nous avons proposé une approche composée de trois étapes :
l’extraction des signaux épileptiques des données bruitées, la séparation de sources cor-
rélées, et la localisation de sources distribuées. D’abord, nous résumons les techniques
qui ont été développées dans cette thèse pour chacune des étapes et nous illustrons leur
combinaison pour un exemple de simulation. Ensuite, nous récaptilons nos conclusions et,
finalement, nous suggérons quelques directions pour la suite des travaux.

Résumé et illustration du processus complet d’analyse de données
Pour extraire les pointes épileptiques des données EEG corrompues par des artéfacts, nous
avons exploité les différentes origines physiologiques des sources en supposant que celles-
ci sont statistiquement indépendantes et nous avons considéré des méthodes basées sur
l’ACI. Plus particulièrement, nous avons développé un nouvel algorithme semi-algébrique,
appelé P-SAUD, qui repose sur l’auto-corrélation des signaux pour extraire les compo-
santes épileptiques en utilisant un petit nombre d’étapes de déflation. Les données EEG
débruitées sont alors reconstruites à partir des composantes épileptiques identifiées.

Comme plusieurs méthodes de localisation de sources distribuées montrent des dif-
ficultés lors de la localisation de patchs simultanément actives, en particulier dans le
cas d’activités corrélées, nous avons ensuite exploré l’utilisation de méthodes tensorielles
basées sur la décomposition canonique pour séparer plusieurs sources qui sont potentiel-
lement corrélées. Ici, nous nous sommes concentrés sur les méthodes tensorielles basées
sur une transformation qui construisent un tenseur de données en utilisant une trans-
formation temps-fréquence, menant à la méthode STF classique, ou une transformation
espace-vecteur d’onde, qui a pour résultat la nouvelle approche STWV. Ces techniques
cherchent à extraire un vecteur de mélange spatial et un vecteur de signal pour chaque
source distribuée.

Contrairement aux études précédentes des approches tensorielles [69, 70, 71, 72, 73],
qui se sont principalement concentrées sur la séparation de sources et la localisation de di-
pôles équivalents, nous sommes allés plus loin et nous avons utilisé les résultats de l’étape
de prétraitement tensoriel pour la localisation de sources distribuées. Dans ce contexte,
une contribution importante de cette thèse consiste dans la proposition de l’algorithme
DA, qui nous permet de localiser précisément les sources distribuées à partir des vecteurs
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de mélange spatial estimés. Cette méthode est basée sur une paramétrisation des sources
distribuées, semblable à [152, 15], mais utilise une métrique différente pour identifier les
éléments de l’espace sources qui décrivent au mieux les mesures. En plus, nous avons
analysé d’autres approches de localisation de sources distribuées qui ont été proposées
dans la littérature et nous avons donné un exposé de synthèse sur les différents types
d’information a priori qui ont été exploités pour résoudre le problème inverse mal posé du
cerveau. Ces hypothèses peuvent être grossièrement distinguées en contraintes qui sont
imposées sur la distribution spatiale des sources et en contraintes qui concernent la dis-
tribution temporelle des sources. Ensuite, nous avons classifié les algorithmes existants
pour la localisation de sources distribuées en nous basant sur des considérations méthodo-
logiques et sur l’information a priori exploitée. Finalement, nous avons proposé quelques
améliorations de l’algorithme de localisation de sources VB-SCCD, qui exploite la parci-
monie structurée, pour développer un algorithme efficace pour la localisation simultanée
de patchs multiples. Le nouvel algorithme est appelé SVB-SCCD.

Pour illustrer la combinaison des trois étapes de traitement de données en utilisant les
méthodes P-SAUD, STWV et DA, nous considérons un exemple de simulation. Comme
pour toutes les simulations conduites dans cette thèse, nous utilisons un modèle de tête
réaliste, des sources distribuées qui sont caractérisées par des patchs avec des signaux de
pointes épileptiques, hautement corrélés et physiologiquement plausibles, et des artéfacts
enregistrés lors d’une session d’EEG. Ceci nous permet d’évaluer les performances des
méthodes testées dans un cadre réaliste. Nous simulons 32 s de données EEG pour un
système avec 91 capteurs en utilisant deux patchs qui se trouvent dans le lobe frontal
inférieur et dans le lobe pariétal inférieur de l’hémisphère gauche, et qui émettent des
signaux de pointes épileptiformes propagées avec un délai d’environ 16 à 18 ms entre les
deux patchs. Les données sont corrompues par des artéfacts musculaires selon un RSB de
-15 dB. La figure 5.1 (gauche) montre un extrait des mesures EEG bruitées pour 32 des 91
électrodes et les patchs originaux. Pour séparer l’activité épileptique et les artéfacts, nous
appliquons d’abord l’algorithme P-SAUD aux données EEG brutes, suivi par l’analyse
STWV et l’algorithme DA pour la séparation de sources et la localisation. Les données
EEG contentant uniquement les pointes épileptiques, qui ont été reconstruites à partir
des résultats de P-SAUD, et les patchs localisés par STWV-DA, appliqué aux données
débruitées, sont illustrées dans la figure 5.1 (droite). En comparant les régions de sources
originales et estimées, nous remarquons la bonne performance de la procédure en trois
étapes proposée.

Conclusions

Nous avons démontré que l’algorithme P-SAUD extrait les signaux épileptiques avec la
même précision que les méthodes d’ACI conventionnelles, mais avec une complexité nu-
mérique qui est considérablement réduite. Pour ce faire, nous avons combiné les points
forts de trois méthodes classiques pour la séparation de sources aveugle pour dériver une
nouvelle méthode efficace de déflation semi-algébrique qui repose sur l’auto-corrélation
des signaux pour déterminer l’ordre des composantes d’ACI identifiées. L’exploitation de
la structure temporelle des données évite le recours aux signaux de référence, qui ont été
utilisés précédemment dans l’approche ACI-R [35, 36, 34, 37, 38, 39] pour extraire les si-
gnaux d’intérêt, mais qui peuvent être difficile à déterminer en pratique. Pour les signaux
de pointes épileptiques propagées que nous considérons pour les dynamiques des sources,
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la méthode tensorielle STF donne des mauvais résultats. En effet, cette technique ne per-
met pas de séparer les sources hautement corrélées parce qu’elle exploite les divergences
dans le domaine temps-fréquence pour distinguer les sources, et les différences entre les
caractéristiques de temps et de fréquence des différents patchs sont négligeables dans le
contexte de phénomènes de propagation. Par contre, l’analyse STWV exploite le contenu
espace-vecteur d’onde des sources pour les séparer, ce qui permet de traiter les signaux
de sources hautement corrélés tant que les sources ne sont pas complètement cohérentes
et suffisamment distantes pour donner des caractéristiques d’espace et de vecteur d’onde
différents. Ceci explique la bonne performance de l’approche de localisation de sources
basée sur la méthode STWV qui a été observée pour un certain nombre de scénarios
et particulièrement dans le cas de plusieurs patchs surfaciques et simultanément actifs.
Néanmoins, l’analyse STWV échoue dans certains cas comme pour des sources profondes,
même s’il n’y a ni bruit ni artéfacts et si tous les signaux à l’intérieur d’un patch sont
identiques. Ceci est dû aux divergences entre la structure des données EEG et le modèle
tensoriel trilinéaire utilisé. Pour clarifier dans quels cas les méthodes tensorielles peuvent
être appliquées avec succès pour la séparation de sources, nous avons conduit une ana-
lyse théorique révélant que parmi la corrélation entre les caractéristiques d’espace, de
temps et de vecteur d’onde des différentes sources, la puissance des sources est également
déterminante pour la séparabilité des sources.

Même si le prétraitement de l’EEG peut parfois être réalisé par l’ACI ou les méthodes
tensorielles toutes seules, ces deux approches sont essentiellement complémentaires. In-
trinsèquement, l’ACI n’est pas adaptée à la séparation de sources corrélées et donne des
mauvais résultats pour des signaux de pointes épileptiques qui se recouvrent partielle-
ment, tandis que les méthodes de décomposition tensorielle ne sont pas aussi robustes
aux artéfacts que l’ACI. En conséquence, pour obtenir des bons résultats de prétraite-
ment pour les données EEG qui contiennent fréquemment des sources corrélées à cause
des phénomènes de propagation et qui sont généralement corrompues par des artéfacts
avec grandes amplitudes, les deux méthodes de prétraitement devraient être combinées.
Néanmoins, les données prétraitées devraient être analysées avec soin puisque les erreurs
des étapes de débruitage et de séparation de sources peuvent s’accumuler.

L’étude de performance des différentes méthodes de localisation de sources distribuées
a montré que les algorithmes testés peuvent être distingués en méthodes qui permettent
seulement de déterminer les positions des sources et algorithmes qui donnent également
des indications sur les étendues spatiales des sources. Dans le contexte de la localisation
de sources épileptiques, nous nous intéressons particulièrement au deuxième type d’ap-
proche et nous avons proposé deux nouveaux algorithmes. Il a été montré que l’algorithme
STWV-DA, qui localise les sources distribuées à partir des résultats de la décomposition
tensorielle, donne des bons résultats si les sources ont été correctement séparées dans
l’étape de prétraitement. Dans ce cas, cette méthode affiche une meilleure performance
que les autres techniques de localisation de sources distribuées. En particulier, même si
le pré-blanchiment améliore les résultats de localisation obtenus par STWV-DA, cette
méthode donne aussi des bons résultats si elle est appliquée aux données EEG brutes, ce
qui n’est pas toujours le cas pour les autres techniques comme 4-ExSo-MUSIC. Ceci est
d’un grand intérêt parce que le pré-blanchiment nécessite la connaissance de la matrice
de covariance du bruit qui n’est pas connue et est généralement difficile à estimer en pra-
tique. Un autre avantage de STWV-DA sur 4-ExSo-MUSIC est sa complexité numérique
réduite. Avec l’utilisation grandissante de l’EEG de haute résolution, ceci est un point
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important pour éviter des temps de calcul inacceptablement longs. Toutefois, STWV-DA
n’est pas adapté à la localisation simultanée de plusieurs patchs, c’est-à-dire à la locali-
sation de sources distribuées qui ne peuvent pas être séparées à cause de leurs signaux
quasiment cohérents. Dans ce cas, l’algorithme SVB-SCCD devrait être utilisé. Cette ap-
proche bénéficie de l’avantage supplémentaire qu’elle est flexible par rapport à la forme
du patch, tandis que les méthodes qui utilisent un dictionnaire de sources distribuées
potentielles comme STWV-DA et 4-ExSo-MUSIC ont tendance à identifier des patchs
aux formes comparables à celles des éléments du dictionnaire. La méthode SVB-SCCD
permet également l’exploitation de la structure temporelle ce qui donne des estimées de
sources plus robustes dans les cas difficiles. Finalement, nous avons analysé la combinai-
son de la méthode tensorielle STWV et SVB-SCCD pour des scénarios avec multiples
patchs pour lesquels seulement une partie des patchs peut être séparée, mais l’algorithme
STWV-SVB-SCCD a affiché une performance qui est légèrement détériorée par rapport
à SVB-SCCD. Ceci montre que l’approche de prétraitement tensoriel pour la séparation
de sources est uniquement efficace si elle est combinée avec les méthodes de localisation
de sources qui ont des difficultés à localiser plusieurs patchs simultanément comme, par
exemple, DA.

Perspectives

Basés sur les résultats obtenus, nous pouvons identifier quelques directions prometteuses
pour la suite des travaux. Tout d’abord, il serait intéressant d’appliquer l’algorithme
P-SAUD pour l’élimination d’artéfacts de données EEG de haute résolution. À cause du
grand nombre d’électrodes, on peut attendre un gain particulièrement élevé en complexité
numérique comparé aux méthodes conventionnelles d’ACI pour l’extraction de sources.
En outre, on pourrait considérer d’utiliser l’algorithme P-SAUD pour le débruitage de
données de crises épileptiques pour lesquelles un compromis entre les solutions de COM2
et de CCA, basé sur la fonction de contraste pénalisée, peut entraîner des meilleurs per-
formances.

Concernant la séparation de sources corrélées basée sur la décomposition canonique,
dans cette thèse, nous avons seulement traité des tenseurs STF et STWV. Comme discuté
ci-dessus, l’approximation trilinéaire n’est pas toujours justifiée dans ce cas. Pour sur-
monter ce problème, d’un côté, on pourrait explorer l’utilisation de tenseurs avec d’autres
dimensions comme, par exemple, des données espace-temps-réalisation (STR) qui corres-
pondraient peut-être mieux à la structure de la décomposition canonique. De l’autre côté,
on pourrait aussi utiliser diffŕentes décompositions tensorielles avec une structure plus
flexible qui reflète mieux la vraie structure des données.

Une autre piste pour la suite des travaux dans le domaine de la localisation de sources
distribuées consiste à explorer davantage les différentes combinaisons des informations
a priori, par exemple en fusionnant les stratégies des différentes approches de localisa-
tion de sources distribuées récemment établies qui donnent des bons résultats comme,
par exemple, les techniques tensorielles, les approches par recherche exhaustive pour les
sources étendues, ou les approches Bayésiennes avec la parcimonie. En plus, on pour-
rait essayer d’améliorer les résultats des méthodes de localisation de sources distribuées
utilisées actuellement en appliquant des techniques de compensation pour l’erreur systé-
matique d’estimation des amplitudes des sources profondes. Il serait également préférable
de développer des méthodes pour le seuillage automatique des distributions spatiales des
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sources reconstruites. Ceci permettrait de déterminer l’étendue spatiale des régions de
sources à partir des solutions de localisation continues comme on les obtient pour les
approches de moindres carrés régularisés.

Les méthodes discutées dans cette thèse pourraient également être appliquées aux
données MEG et on pourrait poursuivre l’exploitation des enregistrements de l’EEG/MEG
conjointe ce que nous avons discuté brièvement pour le prétraitement tensoriel.

Finalement, il serait important d’effectuer des évaluations supplémentaires sur données
EEG cliniques pour lesquelles nous avons une forte hypothèse sur les régions épileptogènes
pour confirmer le bon fonctionnement des algorithmes proposés dans un cadre réaliste.







Abstract
Electroencephalography (EEG) is a routinely used technique for the diagnosis and man-
agement of epilepsy. In this context, the objective of this thesis consists in providing
algorithms for the extraction, separation, and localization of epileptic sources from the
EEG recordings.

In the first part of the thesis, we consider two preprocessing steps applied to raw
EEG data. The first step aims at removing muscle artifacts by means of Independent
Component Analysis (ICA). In this context, we propose a new semi-algebraic deflation
algorithm that extracts the epileptic sources more efficiently than conventional methods as
we demonstrate on simulated and real EEG data. The second step consists in separating
correlated sources that can be involved in the propagation of epileptic phenomena. To
this end, we explore deterministic tensor decomposition methods exploiting space-time-
frequency or space-time-wave-vector data. We compare the two preprocessing methods
using computer simulations to determine in which cases ICA, tensor decomposition, or a
combination of both should be used.

The second part of the thesis is devoted to distributed source localization techniques.
After providing a survey and a classification of current state-of-the-art methods, we
present an algorithm for distributed source localization that builds on the results of the
tensor-based preprocessing methods. The algorithm is evaluated on simulated and real
EEG data. Furthermore, we propose several improvements of a source imaging method
based on structured sparsity. Finally, a comprehensive performance study of various brain
source imaging methods is conducted on physiologically plausible, simulated EEG data.

Résumé
L’électroencéphalographie (EEG) est une technique qui est couramment utilisée pour
le diagnostic et le suivi de l’épilepsie. L’objectif de cette thèse consiste à fournir des
algorithmes pour l’extraction, la séparation, et la localisation de sources épileptiques à
partir de données EEG.

D’abord, nous considérons deux étapes de prétraitement. La première étape vise à éli-
miner les artéfacts musculaires à l’aide de l’analyse en composantes indépendantes (ACI).
Dans ce contexte, nous proposons un nouvel algorithme par déflation semi-algébrique
qui extrait les sources épileptiques de manière plus efficace que les méthodes conven-
tionnelles, ce que nous démontrons sur données EEG simulées et réelles. La deuxième
étape consiste à séparer des sources corrélées. A cette fin, nous étudions des méthodes
de décomposition tensorielle déterministe exploitant des données espace-temps-fréquence
ou espace-temps-vecteur-d’onde. Nous comparons les deux méthodes de prétraitement à
l’aide de simulations pour déterminer dans quels cas l’ACI, la décomposition tensorielle,
ou une combinaison des deux approches devraient être utilisées.

Ensuite, nous traitons la localisation de sources distribuées. Après avoir présenté et
classifié les méthodes de l’état de l’art, nous proposons un algorithme pour la localisation
de sources distribuées qui s’appuie sur les résultats du prétraitement tensoriel. L’algo-
rithme est évalué sur données EEG simulées et réelles. En plus, nous apportons quelques
améliorations à une méthode de localisation de sources basée sur la parcimonie structu-
rée. Enfin, une étude des performances de diverses méthodes de localisation de sources
est conduite sur données EEG simulées.


