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Abstract

This thesis is focused on decision models for human-robot interaction based on Markovian
Decision Processes. First, we propose an augmented decision model that allows a companion
robot to act considering estimated human intentions. This model addresses the problem of
estimating the intention of the human by observing his actions. We proposed to simulate the
behavior of a human to build a library of human action values toward his possible intentions.
These values are integrated into the augmented Partially Observable Markov Decision Process
(POMDP). Second, we present a coactive decision model that allows a robot in collaboration
with a human to choose his behavior according to the progress of the shared task. This model
is based on an augmented POMDP and allows the robot to act coactively to encourage the
human actions and to perform the task in harmony with him. Third, we also propose a unified
model for different types of human-robot interactions where the robot analyzes the needs of the
human and acts accordingly. To overcome the complexity of POMDPs, the unified model divides
the problem into several parts, the first estimates the human intention with a hidden Markov
model (HMM) and another is responsible for choosing the corresponding type of interaction
(collaboration, assistance, cooperation) using a Markov Decision Process (MDP). Finally, we
propose a model that alternates between verbal interaction to infer the preference of the human
using queries and non-verbal interaction in which preferences are estimated by observing the
human actions. This model switches back to the verbal interaction when an ambiguity about
the preferences is detected.

Outline: The manuscript contains: a detailed summery of the thesis and its contributions in
French followed by the complete thesis in English including an introduction, the state of the art,
the contributions and a conclusion.
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4 Le scénario coopératif de nettoyage des saletés. . . . . . . . . . . . . . . . . . . . 10
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Résumé étendu: Vers des robots

compagnons intelligents partageant

notre vie quotidienne

1 Introduction

1.1 La problématique

L’introduction des robots dans notre vie quotidienne a fait surgir de nouveaux défis pour les

robots autonomes : s’adapter à l’existence des humains dans le même environnement et interagir

avec eux. C’est une des principales raisons qui a mené à l’apparition d’un nouveau domaine de

recherche appelé l’Interaction Homme-Robot (IHR).

Aujourd’hui, l’IHR est un thème de recherche très riche et en pleine expansion dans plusieurs

directions. Cette thèse s’intéresse aux robots compagnons où l’IHR est considérée du point de vue

de la conception de robots sociables qui interagissent avec les humains d’une manière naturelle.

Un nombre croissant d’applications robotiques nécessite que les humains considèrent les robots

comme des partenaires plutôt que des outils.

Les domaines d’applications concernant les robots compagnons varient en fonction du type

d’interaction entre l’humain et le robot. Les robots compagnons peuvent agir seuls en respectant

l’humain, son existence et ses besoins. Par example, ils peuvent accomplir des tâches non désirées

par l’humain (pénibles, dangereuses, . . . ) [Cirillo et al., 2009a]. Ils peuvent également assister

l’humain pour qu’il réalise une tâche par lui-même, dans ce cas le robot doit détecter le besoin

d’assistance et offrir les informations nécessaires à l’humain pour lui faciliter la réalisation de

sa tâche. Un robot compagnon peut offrir, par example, des rappels concernant des activités

quotidiennes pour les personnes âgées [Pineau et al., 2003, Boger et al., 2005, Duong et al., ].

Récemment, beaucoup d’intérêt s’est focalisé autour des applications de collaboration homme-

robot pour réaliser une tâche commune où l’humain et le robot agissent ensemble en formant

une équipe (chacun étant responsable de ses décisions) [Hoffman et Breazeal, 2008, Sisbot et al.,

2010].

Dans le domaine de l’IHR, le robot doit être impliqué dans l’interaction. Cela nécessite qu’il

soit parfois non seulement réactif mais aussi qu’il ait des comportements différents pour inciter

1
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une réaction de la part de l’humain. À ce sujet, [Johnson et al., 2010] ont introduit le concept

de ≪ coactivité ≫. Un comportement coactif permet au robot non seulement d’exécuter sa part

du travail mais aussi d’inciter l’humain à une interaction pour une activité jointe.

Beaucoup de difficultés font face à la prise de décision d’un robot lorsqu’il est en présence,

interaction ou collaboration avec un humain [Klein et al., 2004]. De nombreux efforts sont

investis au sujet de la robotique humanöıde et ses applications dans l’IHR. Malheureusement,

il n’y a pas encore une théorie puissante ou un système robuste pour la planification des tâches

du robot compagnon.

Cette thèse aborde les capacités de raisonnement du robot dans ce contexte notamment pour

répondre à des questions telles que :

- Comment inférer les intentions de l’humain afin de connâıtre ses besoins ?

- Comment se comporter et interagir pour assurer la satisfaction des besoins ?

- Comment aider l’humain à atteindre ses objectifs ?

- Comment planifier dans un environnement dynamique pour le bien-être de l’humain et

comprendre ses intentions non observables ?

1.2 Travaux existants

Le problème de la reconnaissance de l’intention existait bien avant l’existence de l’IHR car

on s’y intéresse depuis l’interaction homme-machine. En IHR, plusieurs domaines d’interaction

nécessitent que le robot estime ou reconnaisse les intentions de l’humain. De nombreuses ap-

proches ont été utilisées dans la littérature pour la reconnaissance de l’intention. Ces approches

sont basées sur des châınes de Markov cachées (HMM) [Bui et al., 2002, Bui, 2003, Nguyen et al.,

2005, Kelley et al., 2008, Duong et al., ], des réseaux bayésiens dynamiques (DBN) [Pollack et al.,

2003, Schrempf et Hanebeck, 2005, Hui et Boutilier, 2006, Schmid et al., 2007, Natarajan et al.,

2007, Schrempf et al., 2007, Krauthausen et Hanebeck, 2009] ou les Q-valeurs des Processus de

Décision Markovien [Fern et al., 2007].

Pour leur capacité connue à planifier dans des environnements incertains et partiellement

observables, les Processus Décisionnels Markoviens Partiellement Observables (POMDP) sont

largement utilisés par la communauté d’IHR et dans divers contextes comme : la modélisation

de l’incertitude dans les systèmes de reconnaissance de la parole [Williams, 2006, Schmidt-

Rohr et al., 2008a, Schmidt-Rohr et al., 2008b, Young et al., 2010], des robot assistants [Taha

et al., 2008, J. Pineau et Thrun, 2003, Fern et al., 2007, Doshi et Roy, 2008, Hoey et al.,

2010], des robots sociables [Broz et al., 2008, Broz et al., 2011], le coût d’une action collab-

orative ≪ cost-based Markov process ≫ [Hoffman et Breazeal, 2007] et le coût d’interruption

de l’humain [Armstrong-Crews et Veloso, 2007, Kamar et al., 2009, Rosenthal et Veloso, 2011,

Rosenthal et Veloso, 2011].

De nombreuses recherches en IHR se focalisent sur les robots collaboratifs et la planification

des actions du robot afin de réaliser une tâche avec l’humain. Cependant, on trouve très peu

2
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de travaux dans la littérature qui s’intéressent à des robots capables de planifier leur façon

d’interagir avec les humains ou d’adapter leur comportement selon les besoins de l’humain.

1.3 Apports de la thèse

Nous allons introduire dans cette thèse plusieurs modèles décisionnels de l’Interaction Homme-

Robot basés sur des Processus Décisionnels Markoviens. Ces modèles s’appliquent pour des

problèmes d’interaction différents en permettant au robot compagnon de comprendre les inten-

tions et les besoins de l’humain et d’agir en conséquence. Nos apports sont plus particulièrement :

- Un modèle appelé POMDP augmenté ≪ augmented POMDP ≫ qui considère l’intention de

l’humain comme une variable cachée du POMDP. Pour avoir une estimation de cette vari-

able, nous proposons de simuler le comportement de l’humain afin de construire une bib-

liothèque de valeurs d’action de l’humain par rapport à ses intentions possibles. Ces valeurs

sont intégrées dans le modèle de décision augmenté du robot afin d’inférer l’intention de

l’humain par l’observation de ses actions.

- Un modèle coactif de collaboration homme-robot pour réaliser une tâche partagée. Ce

modèle est basé sur un POMDP augmenté et permet au robot d’avoir un comportement

coactif, c’est à dire d’agir en harmonie avec l’humain et si nécessaire de guider ses actions

afin de bien réaliser la tâche.

- Un modèle unifié d’interaction homme-robot multi-types permettant au robot de choisir

le bon type d’interaction qui respecte l’intention de l’humain et son besoin d’interaction

(assistance, collaboration, coopération).

- Un modèle mixte composé d’interactions verbales et non-verbales entre un robot et son

partenaire humain. L’interaction verbale permet au robot d’envoyer des requêtes à l’humain

afin de connâıtre ses préférences. L’interaction non-verbale permet au robot de réaliser

des tâches et à la fois d’inférer les préférences de l’humain intuitivement (en observant ses

actions). Enfin, le modèle mixte gère l’alternance entre les deux modèles selon l’ambigüıté

sur les préférences.

Dans la version complète de la thèse (écrite en Anglais), nous présentons une version détaillée

de ces modèles et des résultats expérimentaux pour montrer l’efficacité du modèle d’estimation

de l’intention et montrer que le comportement du robot est bien adapté aux différentes situations.

Nous discutons aussi quelques perspectives pour des recherches futures.

2 État de l’Art: Les Modèles Markoviens

Un modèle markovien est un modèle stochastique qui possède la propriété de Markov.

3
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Definition 1 (Propriété de Markov)

La propriété de Markov est satisfaite si l’état du système à l’instant t+1 ne dépend que de l’état

à l’instant t.

P (st+1|s0, s1, . . . , st) = P (st+1|st)

Dans la suite, nous noterons s l’état à l’instant t et s′ l’état à l’instant t+ 1.

2.1 Les Châınes de Markov et Châınes de Markov Cachées

Dans un système passif, une châıne de Markov est constituée d’un ensemble d’états S et

d’une fonction de transition T indiquant la probabilité T (s′|s) de passer d’un état s à un état

s′.

Dans une représentation sous forme de graphe (Figure 1), les nœuds du graphe correspondent

aux états du système et les arêtes aux transitions entre les états. Chaque arête allant d’un état

s à un état s′ est étiquetée par une probabilité correspondant à la valeur de T (s′|s).

0.4 0.4 0.2

0.4 0.0 0.6

0.3 0.4 0.3

s1

0.3

0.3

0.6

0.40.4

s2

s3

T =

0.2

0.4

0.4 s1 s2 s3

s1

s2

s3

Figure 1: Châıne de Markov.

Dans certains cas, l’état du système peut être non-observable ou partiellement observable.

De tels systèmes peuvent être modélisés par des châınes de Markov cachées ou Hidden Markov

Models (HMM) [Rabiner et Juang, 1986]. Le modèle est alors composé d’un ensemble d’états S,

d’un ensemble d’observations Z, d’une fonction de transitions T et d’une fonction d’observation

O. Cette dernière associe à chaque couple d’états (s, s′) et à chaque observation z ∈ Z, une

probabilité d’observation. O(z|s, s′) est la probabilité d’observer z sachant qu’on est passé de

l’état s à l’état s′.

Plusieurs algorithmes basés sur les châınes de markov sont décrits par [Rabiner et Juang,

1986]. Par example, pour une séquence d’observations, l’algorithme ≪ Viterbi ≫ calcule la

séquence d’états la plus probable, l’algorithme ≪ Forward ≫ calcule la probabilité d’une séquence

d’observations et l’algorithme ≪ Baum–Welch ≫ estime les probabilités initiales, la fonction de

transition et la fonction d’observation du HMM.

2.2 Les Processus Décisionnels Markoviens Observables

Les Processus Décisionnels Markoviens Observables (MDP) sont les formalismes les plus

courants pour des modèles de décision séquentiels.
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Definition 2 Un MDP est un tuple 〈S,A, T,R〉 où:

- S est un ensemble fini d’états s.

- A est un ensemble fini d’actions a.

- T : S × A →
∏

(S) est une fonction de transition markovienne donnant la probabilité de

passer de l’état s à l’état s′ quand l’action a est exécutée.

- R : S × A → ℜ est une fonction de récompense qui associe à chaque paire (s, a) la

récompense obtenue par l’agent lorsqu’il exécute l’action a à partir de l’état s.

Definition 3 Une politique πMDP d’un agent est une fonction πMDP : S → A, qui associe à

chaque état du système s, une action a que l’agent doit exécuter.

Une valeur V π est définie afin d’évaluer les différentes politiques. Dans les problèmes à

horizon fini H, la valeur d’une politique pour un état s traduira l’espérance de la somme des

récompenses espérées sur les H prochaines étapes en suivant la politique π à partir de l’état s,

où rt = R(s, π(s)).

V π(s) = E

[

H
∑

t=0

rt

]

∀s ∈ S

Dans le cas des problèmes à horizon infini (H = ∞), l’espérance de gain est pondérée par un

facteur d’atténuation γ.

V π(s) = E

[

∞
∑

t=0

γtrt

]

∀s ∈ S

[Bellman, 1957] a montré que la fonction de valeur d’une politique peut être calculée par

récurrence, grâce à l’équation de Bellman (Equation 1).

V π
t (s) = R(s, πt(s)) + γ

∑

s′∈S

T (s, πt(s), s
′)V π

t−1(s
′) (1)

La politique optimale π∗ est la politique qui maximise la fonction de valeur.

π∗(s) = argmax
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V ∗(s′)

]

où,

V ∗(s) = max
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V ∗(s′)

]

L’équation de Bellman est à la base de plusieurs algorithmes de résolution des MDPs no-

tamment Value Iteration [Bellman, 1957] et Policy Iteration [Howard, 1960]. L’algorithme de

Value Iteration (Algorithme 1) consiste en une amélioration itérative de la valeur de chaque état

du MDP en utilisant l’équation de Bellman. La valeur d’un état à l’itération t est calculée à

partir de sa valeur à l’itération t− 1. Le processus s’arrête lorsque la différence entre les valeurs
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successives de tous les états est inférieure à un paramètre ǫ. La complexité d’une itération de

cet algorithme est en O(|S2||A|).

Algorithm 1: Value Iteration

Entrées: Un MDP 〈S,A, T,R〉, un facteur d’atténuation γ, une paramètre de précision ǫ.
Sorties : Politique optimale π.

Initialiser arbitrairement V (s), ∀s ∈ S;1

répéter2

t = t+ 1;3

pour chaque s ∈ S faire4

Vt(s) = max
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)Vt−1(s
′)

]

5

jusqu’à max
s∈S

|Vt(s)− Vt−1(s)| ≤ ǫ ;
6

∀s, π(s) = argmax
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)Vt(s
′)

]

7

2.3 Les Processus Décisionnels Markoviens Partiellement Observables

Un Processus Décisionnels Markoviens Partiellement Observable (POMDP) est défini par

un tuple 〈S,A, T, Z,O,R, b0〉 tel que : S,A, T,R ont les mêmes définitions que dans un MDP,

et:

- Z est un ensemble fini d’observations.

- O : S × A →
∏

(Z) est une fonction d’observation donnant la probabilité O(a, s′, z)

d’observer z depuis l’état s′ quand l’action a est exécutée.
∑

z∈Z

O(a, s′, z) = 1 ∀(a, s′).

- b0(s) = Pr(s0 = s) est la probabilité que le système soit dans l’état s à l’instant t = 0.

Dans un POMDP, l’agent n’a pas une observabilité totale de son état, cependant, il maintient une

croyance distribuée sur S. bt(s) est la probabilité que le système soit dans l’état s à l’instant t,

sachant l’historique d’observations/actions que l’agent a reçues/effectuées et la croyance initiale

b0(s):

bt(s) = Pr(st = s|zt, at−1, zt−1, ..., a0, b0).

L’agent, à chaque instant, met à jour son état de croyance en appliquant la fonction de mise

à jour [Cassandra et al., 1994]

b′(s′) = τ(b, a, z)

=
Pr(z|s, a, s′, b)Pr(s′|a, b)

Pr(z|a, b)

=

∑

s∈S

O(s, a, s′, z)T (s, a, s′)b(s)

Pr(z|a, b)
(2)
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où a est la dernière action du robot, z est la dernière observation reçue et Pr(z|a, b) est un

facteur de normalisation:

Pr(z|a, b) =
∑

s′∈S

∑

s∈S

O(s, a, s′, z)T (s, a, s′)b(s).

Definition 4 Une politique πPOMDP d’un agent est une fonction πPOMDP : bt(s) → A, qui

associe à chaque état de croyance du système b(s), une action a que l’agent doit exécuter.

L’approche classique optimale pour résoudre un POMDP est Value Iteration [Kaelbling et al.,

1998], où des itérations sont appliquées pour calculer des valeurs plus précises pour chaque état

de croyance V (b). L’équation 3 décrit la fonction de valeur (l’équation de Bellman) pour les

POMDPs.

Vt(b) = max
a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

Pr(z|a, b)Vt−1(τ(b, a, z))

]

(3)

Une fois que les itérations conduisent à une convergence, une politique optimale associe

l’action qui maximise V (b) à tout état de croyance b.

π∗
t (b) = argmax

a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

Pr(z|a, b)Vt−1τ(b, a, z)

]

(4)

L’opération de mise à jour représentée dans l’équation 3 atteint une complexité de

O(|S|2|V ||Z||A|), où |V | est le nombre de α vecteurs représentant la fonction de valeur [Sondik,

1978]. Dans certains cas, si le problème a des espaces d’action et d’observation très bornés, la

complexité pourrait être O(|S|2|V |). Pour calculer une politique optimale, V doit être mis à

jour sur la totalité de l’espace d’état de croyance, ce qui conduira à un calcul très coûteux pour

les opérations de mise à jour entière.

Pour surmonter la complexité de résolution d’un POMDP d’une manière optimale, une

grande variété d’algorithmes approximatifs ont été décrits pour diminuer la complexité et trouver

des politiques acceptables pour un modèle POMDP [Smith et Simmons, 2004, Pineau et al.,

2006, Shani et al., 2007, Dibangoye et al., 2009].

Nous avons utilisé l’algorithme de ≪ Value Iteration ≫ classique pour résoudre les modèles

de MDP de cette thèse, et le logiciel (public) ZMDP [Smith, 2005] pour les modèles de POMDP

en appelant son algorithm ≪ Focused Real-Time Dynamic Programming ≫ .

3 Contributions

3.1 Un POMDP Augmenté pour inférer l’intention de l’humain

Nous nous intéressons aux scénarios d’IHR pour lesquels l’intention de l’humain n’est pas

toujours connue du robot, mais où les actions de l’humain sont observables et peuvent être
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détectées par le robot. Il faut alors que le système du robot soit à même de détecter/percevoir

toutes les actions de l’humain qui concernent la mission humain-robot. De nombreux travaux

étudient le problème de la perception des actions de l’humain via la vision [Poppe, 2010] ou via

des capteurs embarqués [Zhu et Sheng, 2011], mais il ne s’agit pas du sujet de cette thèse. Notre

objectif est de permettre au robot d’associer une action observée de l’humain à une intention

possible de celui-ci. Ainsi, nous nous basons sur la théorie de la simulation par empathie pour

proposer une façon d’évaluer les actions de l’humain, relativement à toutes les intentions qu’il

peut avoir. Pour cela, nous intégrons dans le modèle décisionnel du robot les Q-valeurs associées

aux actions de l’humain qui sont générées à partir de modèles de décision markoviens (Human-

MDPs).

Les robots compagnons devraient considérer les humains comme des entités sociales dont le

comportement est généré par des états mentaux sous-jacents. En se basant sur la théorie de

la simulation par empathie (simulation theory of empathy, définition. 5), il est suggéré dans la

littérature que l’on peut, en simulant les états mentaux d’une personne via une structure mentale

similaire à la sienne, anticiper et comprendre le comportement des autres [Gray et al., 2005].

Un robot compagnon disposant dans son système de suffisamment d’informations au sujet de

l’humain peut réussir à faire de l’inférence sur les objectifs et croyances probables de celui-ci.

Dans ce cas, le système du robot peut utiliser ses ressources non-seulement pour générer son

propre comportement, mais également pour prédire et inférer celui de l’humain afin d’agir dans

le respect de ses croyances et de ses objectifs.

Definition 5 The Simulation theory of empathy [Rameson et Lieberman, 2009, Gallese et Gold-

man, 1998] proposes that we understand the thoughts and feelings of others by using our own

mind as a model.

Le modèle POMDP augmenté

Détecter les intentions de l’humain est une part essentielle de la tâche d’un robot compagnon.

En conséquence, l’intention non-observable de l’humain doit être une des variables prise en

compte pour la décision du robot. Il est rare que le robot connaisse de façon certaine l’intention

de l’humain. Par contre, il peut maintenir une distribution de probabilités sur l’ensemble des

intentions possibles. Pour pouvoir être utilisée, cette distribution devra être mise à jour à chaque

fois que de nouvelles informations seront disponibles au sujet de l’humain ou de l’environnement.

Cela permettra au robot de détecter les changements importants dans l’intention de l’humain,

qu’ils soient dus à un changement d’avis de celui-ci ou à une mauvaise interprétation préalable

du robot. On considère donc que le modèle décisionnel du robot compagnon est partiellement

observable, ce qui nous a poussée à utiliser les POMDPs pour représenter ce modèle.

Le système du robot simule des politiques rationnelles pour l’humain et crée, à partir de

ces politiques, une librairie de valeurs pour les actions de l’humain (Q-valeurs) qui seront en-

suite intégrées au sein du modèle décisionnel du robot. Le système du robot construit pour
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cela un ensemble de processus de décision markoviens associés à l’humain (Human-MDPs).

Chaque Human-MDP (que l’on notera parfois MDPh) est construit pour simuler, par empathie,

un humain rationnel agissant conformément à l’une des intentions possibles. En résolvant le

Human-MDP associé à une intention donnée, on génère des Q-valeurs qui représentent, pour

cette intention et pour chaque état possible de l’humain, la valeur de chacune de ses actions.

Ainsi, si on connâıt l’état de l’humain et l’action exécutée, il suffit de comparer les Q-valeurs

correspondantes issues de chaque Human-MDP afin de connâıtre l’importance de cette action

relativement à chaque intention possible.

La figure 2 décrit, à haut niveau, le processus décisionnel du robot compagnon. Le robot

commence par créer les Human-MDPs, puis résout ceux-ci afin d’obtenir la librairie de Q-valeurs

qu’il intègre ensuite dans son propre modèle décisionnel.

Environnement

du robot 
ompagnon
Une librairie de Q-valeurs

Pro
essus dé
isionnel

L'a
tion

du robot

L'a
tion

de l'humain

de

Human-MDPs

Un ensemble

POMDP

Figure 2: Le processus décisionnel du robot compagnon.

Il est impossible, pour le robot, de simuler de façon exacte le comportement de l’humain, et

ce même si le robot dispose de toutes les informations au sujet de l’humain et de son état mental.

Plusieurs raisons peuvent expliquer ce constat, telles que les émotions de l’humain ou encore

des situations ne pouvant être prévues ni perçues par le robot. On peut par contre initialiser la

simulation du comportement grâce à un modèle rationnel du comportement de l’humain, puis

mettre à jour ce modèle en apprenant certaines variables au sujet de la personnalité de l’humain

que le robot accompagne. Les modèles décrits dans cette thèse incluent uniquement le modèle

rationnel de l’humain, sans améliorer celui-ci via l’apprentissage.

Afin de modéliser l’humain rationnel, le robot utilise des informations relatives à l’humain et

à son environnement, aux actions possibles pour cet humain, à l’impact de ses actions, à l’objectif

de l’humain et à ce qu’il faut et ne faut pas faire pour atteindre cet objectif. Ces informations

correspondent alors aux états, actions, transitions et récompenses du Human-MDP.

On pose TK l’ensemble des tâches de la mission coopérative et HI ⊆ TK l’ensemble des

tâches que l’humain peut chercher à accomplir durant l’exécution de la mission humain-robot.

En d’autres termes, HI contient toutes les tâches hi ∈ HI que le robot doit considérer comme

des intentions possibles de l’humain. Un Human-MDP (MDPh
hi) est créé pour chaque intention

hi ∈ HI possible de l’humain. On obtient alors un ensemble de Human-MDPs (Chapter 5) :
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MDPh
hi =

〈

Sh
hi, A

h
hi, T

h
hi, R

h
hi, γ

h
〉

∀hi ∈ HI

On calcule les Q-valeurs en résolvant ces Human-MDPs. On peut résoudre un MDP via

l’algorithme classique de Value-Iteration [Puterman, 1994] ou via des algorithmes factorisés ou

approximés [Boutilier et al., 1999, Koller et Parr, 2000, Guestrin et al., 2003, Guestrin et al.,

2011] afin de traiter des problèmes de grande taille.

La figure 3 montre l’utilité de ces Q-valeurs, via une librairie exemple. On peut voir, sur cette

figure, que la valeur de l’action ah1 appliquée dans l’état sh1 est de 0,5 pour la tâche hi1 ∈ TK et

de 0,2 pour la tâche hi2 ∈ TK. Ces valeurs, si elles sont correctement utilisées dans le système

décisionnel du robot, permettent de déduire que l’humain (lorsqu’il exécute l’action ah1 dans

l’état sh1) cherche plus probablement à accomplir hi1 que hi2.

Librairie de Q−valeurs

Qhi3(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.1 . . .

ah2 0.4 0.1 . . .

...
...

...
. . .

Qhi2(s
h, ah) sh1 sh2 . . .

ah1 0.2 0.3 . . .

ah2 0.1 0.1 . . .

...
...

...
. . .

. . .

Qhi1(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.2 . . .

ah2 0.3 0.2 . . .

...
...

...
. . .

. . .

. . .
MDP

h
hi2

Qhi2(s
h, ah) sh1 sh2 . . .

ah1 0.2 0.3 . . .

ah2 0.1 0.1 . . .

...
...

...
. . .

Qhi1(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.2 . . .

ah2 0.3 0.2 . . .

...
...

...
. . .

MDP
h
hi1

Figure 3: Une librairie de Q-valeurs créées à partir de Human-MDPs.

Expérimentations

Nous avons appliqué ce modèle décisionnel à un exemple dans lequel un robot compagnon coopère

avec un humain afin de remplir une mission commune. La figure 4 décrit l’environnement partagé

par le robot et l’humain dans lequel ils doivent nettoyer des saletés. Chaque saleté peut être

nettoyée par l’humain seul, ou le robot seul. La mission est considérée comme terminée une fois

que toutes les saletés ont été nettoyées.

Figure 4: Le scénario coopératif de nettoyage des saletés.

Afin d’analyser les politiques produites, nous avons réalisé différentes simulations avec deux

comportements différents pour l’humain. Le premier est le comportement rationnel, où l’humain

choisit au hasard une des tâches possibles à faire, puis se comporte rationnellement (en suivant
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les politiques de human-MDP) pour réaliser la tâche choisie. Le second est le comportement

semi-rationnel, où l’homme suit un comportement rationnel, mais avec une probabilité de 30%,

à chaque pas de temps, qu’il change son intention. Chaque simulation est initialisée dans l’état

décrit à la figure 4 et se termine avec la fin de la mission (une fois les quatre saletés nettoyées).

Nous nous sommes concentrés sur les estimations de l’intention de l’humain faites par le

robot à chaque pas de temps de chaque mission. Nous les avons comparées à l’intention réelle

de l’humain rationnel et semi-rationnel. Nous avons remarqué qu’il y a un petit nombre de pas

de temps où les estimations du robot ne correspondent pas à l’intention réelle de l’humain. On

peut observer ces situations juste après un changement de l’intention réelle ou juste après que

l’humain a fini de nettoyer une saleté. En effet, dans ces situations le robot n’a pas encore reçu

assez d’observations lui permettant de bien estimer la nouvelle intention de l’humain.

Pour une version plus détaillée du modèle et des expérimentations, vous êtes invités à vous

référer au chapitre 5.

3.2 Le modèle de décision coactive

Nous proposons un modèle décisionnel du robot compagnon en collaboration avec un humain

pour une tâche commune (par exemple donner un objet à l’humain, déplacer une table avec

lui ou encore remplir son verre). Pour de telles tâches, les robots doivent comprendre leurs

partenaires humains et collaborer avec eux en tant que pairs pour bien réaliser ces tâches. À

cette fin, nous proposons un modèle de décision coactive basé sur un POMDP augmenté. Cette

coactivité permet une collaboration homme-robot harmonisée, elle permet aussi au robot de

dévoiler l’intention de l’humain en cas d’ambigüıté. Le POMDP augmenté estime l’intention de

l’humain en évaluant les actions de l’humain pour chaque intention possible (Q-valeurs).

Le grand défi pour les agents collaboratifs consiste à les faire agir ensemble pour arriver

aux conditions optimales permettant la réalisation de la tâche partagée. L’agent collaboratif

doit co-agir de manière à guider ou inciter son ou ses partenaires à collaborer vers les condi-

tions de succès. Le robot compagnon doit aussi co-agir avec l’humain de la même manière,

particulièrement quand l’humain est confus pendant la collaboration.

Ce domaine de recherche exige que le robot ait une capacité à réaliser une tâche en synergie

avec un être humain, en particulier dans les situations de collaboration avec les personnes ac-

compagnées. A ce sujet, [Johnson et al., 2010] ont introduit le concept de ≪ coactivité ≫. Un

comportement coactif permet au robot non seulement d’exécuter sa part du travail mais aussi

d’inciter l’humain à une interaction pour une activité jointe.

Cette contribution est motivée par la notion d’implémentation du concept de coactivité dans

un système de IHR. Il est essentiel que le robot prenne en considération les réactions de l’humain.

De plus, lorsque le robot est certain de l’intention de l’humain et que ce dernier ne collabore pas

correctement, il doit le guider vers les actions qui lui permettent de poursuivre la collaboration

vers la réalisation de la tâche. La réponse de l’humain à un tel comportement coactif peut

être ensuite utilisée par le robot en tant qu’élément clef pour une meilleure compréhension de
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l’intention de l’humain. Toutefois, tout ceci devrait être combiné avec une inspection attentive

de l’intérêt de l’humain dans une telle collaboration. Le robot doit respecter son but principal

en tant que compagnon qui consiste à respecter le confort de l’humain. Donc, dès que l’humain

montre un désintéressement dans la collaboration, le robot ne devrait pas l’ennuyer en offrant

son aide.

Le Modèle de Décision Coactive (CDM) proposé est basé sur un modèle de POMDP aug-

menté, CDM=〈S,A,Z, T,O,R, b0〉. Toutefois le POMDP augmenté est modifié pour gérer le

comportement coactif du robot. Il est important que le robot puisse différencier si l’humain

est prêt à co-réaliser la tâche ou plutôt s’il a besoin d’y être incité. De plus, le robot doit être

capable de détecter une situation où l’humain est occupé. Pour ces raisons, le CDM distingue

deux catégories d’actions. La première catégorie d’actions est reliée au comportement coactif

Ac. La seconde catégorie est reliée à la réalisation de la tâche At.

Donc, l’ensemble A des actions est défini comme :

A = Ac ∪At

Selon la dernière action effectuée par le robot, qu’elle soit coactive ou non, il est de la

responsabilité du POMDP augmenté d’analyser l’action de l’humain observée (z ∈ Z) en tant

qu’élément essentiel permettant une meilleure compréhension de la situation de collaboration.

Cette analyse utilise une librairie de Q-valeurs créées à partir de deux ≪ Human MDPs ≫ définis

par empathie. Le premier représente un humain collaborant, rationnel et intéressé à accomplir

la tâche commune. Le deuxième représente un humain rationnel qui est occupé et n’est pas

intéressé à accomplir la tâche commune.

Figure 5: Scénario de remise d’un objet à un humain avec Jido.

Ainsi, les Q-valeurs d’une action de l’humain sont un élément essentiel pour reconnâıtre s’il

est intéressé ou non par la tâche. Ceci aidera le robot à décider, dans la prochaine étape, s’il

doit commencer ou continuer à agir d’une manière coactive ou plutôt commencer ou continuer

à co-réaliser la tâche avec l’humain, ou alors abandonner la tâche.

De plus, si la dernière action du robot était coactive, la Q-valeur de l’action de l’humain va

clarifier le succès ou l’échec du comportement coactif.
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La fonction de récompense du CDM équilibre la décision du robot entre l’impact négatif

d’un comportement coactif persistant et le but principal qui est de réussir avec succès la tâche

collaborative.

L’état de croyance initial b0 représente l’incertitude concernant la volonté de l’humain de

collaborer ou s’il est occupé.

Un modèle CDM pour un scénario démontrant la remise d’un objet à un humain a été

appliqué en collaboration avec le LAAS-CNRS (Laboratoire d’analyse et d’architecture des

Systèmes). Ce scénario a été appliqué sur deux robots du LAAS (Jido et PR2). Nous avons

présenté différents simulations des comportements humain variés et montré l’aptitude du robot

à s’adapter et co-agir pour une meilleure collaboration. Nous montrons des prises d’écrans de

vidéos 1 réalisées lors de l’exécution des scénario avec Jido (figure 5) et avec PR2 (figure 6).

Une description complète du CDM ainsi que de l’architecture du robot est donnée dans le

chapitre 6.

Figure 6: Scénario de remise d’un objet à un humain avec PR2.

3.3 Un modèle décisionnel pour une sélection adaptative du type d’interaction

Cette contribution cible deux problématiques. La première consiste à établir un système

pour des robots compagnons. Ce système doit être capable de commuter entre différents

types d’interactions afin de respecter les besoins de l’humain. La seconde problématique vise

à modéliser ce système en utilisant une structure qui permette de surpasser les Processus de

Décision Markovien Partiellement Observable (POMDP) pour des problèmes de taille impor-

tante. À cette fin, un modèle unifié d’Interaction Multi-type Homme-Robot (HRMI) est décrit.

L’objectif est d’observer le comportement de l’humain, d’essayer de prédire et estimer son in-

tention ou ses besoins et de réagir de façon appropriée (assister, coopérer, collaborer, . . . ). Il

est impossible de résoudre un HRMI pour une application de taille importante en utilisant des

POMDPs. Nous présentons une approche pour surmonter cette limitation. La problématique

du HRMI est alors divisée en trois niveaux : le premier estime l’intention de l’humain ; le second

sélectionne le type d’interaction approprié ; le troisième et dernier choisit parmi les politiques

pré-calculées celle qui respecte l’intention de l’humain et le type d’interaction requis. Ainsi, le

modèle d’HRMI inclut :

1http://users.info.unicaen.fr/~akarami/demohri/JidoHRI_1.AVI, http://users.info.unicaen.fr/

~akarami/demohri/JidoHRI_2.AVI
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Résumé étendu: Vers des robots compagnons intelligents partageant notre vie quotidienne

- un modèle d’actualisation de la croyance de l’intention de l’humain. Ce modèle utilise

plusieurs modèles MDPs de l’humain définis par rapport aux tâches réalisables par l’humain.

- un modèle MDP qui supporte la prise de décision du robot. Ces décisions sont orientées

par les besoins de l’humain, elles correspondent à une interaction appropriée.

- un algorithme qui d’abord, définit la tâche à accomplir par le robot, puis choisit la politique

pré-calculée pour la réaliser en respectant le type d’interaction.

Actuellement, la communauté IHR s’intéresse beaucoup aux robots compagnons qui assistent

des personnes âgées. Le robot compagnon peut aider l’humain de différentes façons. Cela dépend

des incapacités possibles de l’humain ou de ses préférences. Plus d’informations au sujet des

contraintes et des désirs de l’humain devraient permettre au robot compagnon d’offrir la bonne

aide au bon moment.

Pour que le robot soit capable de bien prendre sa décision, il doit déduire rapidement et avec

précision l’intention de l’humain. De plus, il doit être capable de s’adapter rapidement à ses

possibles changements d’intention.

Nous définissons I comme l’ensemble des classes d’interaction. Chaque classe d’interaction

définit de quelle façon le robot aide l’humain. On peut distinguer dans la littérature d’IHR

trois types d’interaction : Coopération CP , Assistance AS et Collaboration CL. En plus de

celles-ci, une quatrième classe Confirmation CO est ajoutée pour le cas où le robot a besoin

d’une confirmation de l’humain.

I = {CP,AS,CL,CO}

Nous présentons à présent nos définitions des trois principaux types d’interaction pour un robot

compagnon qui partage le quotidien d’un humain.

Coopération Le robot peut coopérer avec l’humain en réalisant une tâche à sa place de façon

à économiser son temps et ses efforts. Le robot doit être capable de réaliser la tâche seul

(par example, nettoyer le tapis ou mettre la table) sans que cela ne dérange l’humain. Le

choix de la tâche concomitante doit respecter l’intérêt et les préférences de l’humain.

Assistance Le robot compagnon peut assister l’humain en le guidant (typiquement le guider

verbalement). Il doit être capable de détecter le besoin d’assistance de l’humain et de

lui offrir la meilleure aide pour que l’humain soit capable de terminer sa tâche. Par

exemple, en se référant au manuel du lave-vaisselle, le robot peut assister l’humain pour

faire fonctionner la machine en le lisant étape par étape. Ce type d’interaction couvre

aussi les robots assistant des personnes âgées atteintes de la maladie d’Alzheimer.

Collaboration Les tâches de collaboration regroupent les tâches qui nécessitent, pour être

réalisées, la participation simultanée de l’humain et du robot (typiquement des actions
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physiques). Le robot compagnon doit alors être présent lorsque l’humain montre un intérêt

pour une tâche collaborative.

Le robot possède un ensemble des tâches possibles TK qui peuvent être réalisées par l’humain

uniquement H, par le robot compagnon uniquement CR, par les deux ensembles (H ∧ CR)

ou par l’un d’entre eux (H ∨ CR). Une tâche tk ∈ TK peut être définie comme tk =

〈context, agent, policy, time, type〉. context regroupe les informations sur la tâche par rapport

au contexte du problème, en incluant les relations et les dépendances entre les tâches, ainsi

que les conditions requises pour que la tâche soit réalisée. agent ⊂ {CR,H,H ∨ CR,H ∧ CR}

caractérise qui peut réaliser la tâche. policy ∈ {possess, lack} décrit si le robot possède un

manuel ou une politique permettant d’assister l’humain dans la réalisation de la tâche. time

est l’intervalle de temps normalement utilisé pour réaliser la tâche. Une tâche appartient à au

moins un type ⊂ I d’interaction selon les règles mentionnées dans le tableau 1.

Type d’interaction Condition

Coopération tk = 〈∗, {CR,CR ∨H}, ∗, ∗, {CP}〉

Assistance tk = 〈∗, {H,CR ∨H}, possess, ∗, {AS}〉

Collaboration tk = 〈∗, {CR ∧H}, ∗, ∗, {CL}〉

Confirmation tk = 〈∗, {H,CR ∨H}, possess, ∗, {CO}〉

Confirmation tk = 〈∗, {CR ∧H}, ∗, ∗, {CO}〉

Table 1: Relation entre les tâches et les différentes classes d’interaction. ≪ * ≫ signifie ≪ toutes
valeurs admises ≫.

L’ensemble des tâches peut être représenté comme TK = TKh ∪ TKcr, où le domaine de la

variable agent pour TKh est {H ∨CR,H,H ∧CR} et pour TKcr est {H ∨CR,CR,H ∧CR}.

L’intention de l’humain peut être une des tâches réalisables par lui-même ou ≪ ne rien faire ≫,

intention ∈ TKh ∪ {do nothing}. La figure 7 présente les trois niveaux du système HRMI.

L’algorithme de haut niveau pour ce système fonctionne comme suit :

1. le système observe l’action de l’humain zie.

2. Niveau 1 : Le système d’actualisation de la croyance met à jour l’état de croyance sur

l’intention de l’humain en utilisant la librairie de Q-valeurs: updateie(b
′ie|bie, zie).

3. Niveau 2(a) : le sélecteur de classe d’interaction crée l’état sis à partir de la croyance

courante bie.

4. Niveau 2(b) : le sélecteur de classe d’interaction appelle la politique πis pour choisir une

classe d’interaction.

5. Niveau 3(a) : l’algorithme de sélection de tâche choisit la tâche à accomplir par le robot

tk ∈ TKcr.
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Résumé étendu: Vers des robots compagnons intelligents partageant notre vie quotidienne

pré
al
ulées
Des politiquesSéle
teur de tâ
he et

Jeton

IE

(a
tualisation de la 
royan
e)

politique

Niveau 1

Niveau 3

zie

Base de données appelée par

(Tâ
he tk, Classe d'intera
tion i ∈ I)

Environnement

a
tion

sis ∈ Sis,

Niveau 2

Qtk3(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.1 . . .

ah2 0.4 0.1 . . .

...
...

...
. . .

Librairie de Q-valeurs

Qtk2(s
h, ah) sh1 sh2 . . .

ah1 0.2 0.3 . . .

ah2 0.1 0.1 . . .

...
...

...
. . .

Qtk1(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.2 . . .

ah2 0.3 0.2 . . .

...
...

...
. . .. . .

bie, zie,

ais ∈ Ais

Jeton

Jeton, bie,

Estimation de l'intention

Séle
teur de 
lasse

(MDP)

IS

d'intera
tion

Figure 7: Le modèle de décision HRMI.

6. Niveau 3(b) : la politique appropriée est appelée depuis la base de données et est appliquée

pour décider de l’action du robot.

7. Le robot applique son action et retourne à l’étape 1 de l’algorithme.

Le chapitre 7 décrit en détail les trois niveaux et présente plusieurs analyses sur la perfor-

mance et l’extensibilité de la taille des problèmes considérés. Il est complété par une implémentation

sur un robot réel pour un scénario inspiré de [RoboCup@home, 2011].

Ce scénario représentatif inclut trois tâches possibles et montre la capacité du modèle

décisionnel à passer d’un type d’interaction à un autre tout en respectant les besoins de l’humain.

La première tâche est une tâche d’assistance (AS), elle consiste à trouver un livre sur

l’étagère. Cette tâche peut être réalisée par l’humain seul ou avec l’assistance du robot (agent =

{H} et policy = possess). Si l’humain ne trouve pas le livre, le robot propose son assistance en

cherchant dans sa base de données et lui indique sur quelle étagère le livre peut être trouvé.

La seconde tâche est de type collaboratif (CL), elle consiste à recharger l’imprimante en

papier. Dans ce scénario, nous supposons que le robot connâıt à chaque instant l’état de charge

de l’imprimante en papier. Cependant, le robot n’est pas capable de la recharger seul, il attend

une situation où l’humain est proche de l’imprimante pour collaborer. La tâche collaborative

est réalisée à l’endroit où le robot apporte le papier à proximité de la machine, de façon à

ce que l’humain n’ait plus qu’à la remplir. Ainsi la variable agent est définie comme suit :

agent = {H ∧ CR}.
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La troisième tâche est de type coopératif (CP ), elle consiste à nettoyer les fenêtres. Cette

tâche peut être réalisée seulement par le robot (agent = {CR}).

(a) Coopération (b) Confirme Assistance (c) Confirme Assistance

(d) Coopération (e) Confirme Collaboration (f) Confirme Collaboration

(g) Collaboration (h) Collaboration (i) Coopération

(j) Coopération

Figure 8: Captures d’écran de la vidéo illustrant le scénario de HRMI.

La figure 8 présente des captures d’écran de la vidéo2 illustrant les trois types d’interaction

entre l’humain et un robot koala. Au début, dans la figure 8(a), le robot commence à se déplacer

2http://users.info.unicaen.fr/~akarami/demohri/demo_multi_interaction.avi
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vers les fenêtres pour les nettoyer. Pendant ce temps, l’humain hésite un moment en face de

l’étagère, ce qui fait, dans la figure 8(b) et 8(c), que le robot propose son assistance pour trouver

le livre et l’humain répond négativement. Dans la figure 8(e), la tâche de collaboration CL

est confirmée lorsque l’humain s’approche de l’imprimante. Dans la figure 8(h), la tâche de

collaboration est réalisée, le robot apporte le paquet de feuilles à l’humain. Enfin, la figure 8(j)

montre que le robot retourne à la tâche coopérative où il nettoie la fenêtre.

3.4 Modèles de coopération homme-robot verbal et non-verbal

Coopérer avec un humain impose que le robot connaisse les préférences de son partenaire au

sujet des tâches à réaliser de façon à satisfaire au mieux ses désirs pendant le déroulement de la

mission (par exemple, effectuer les tâches indésirables). Le robot doit aussi ajuster rapidement

son plan s’il observe un changement soudain de l’intention de l’humain au cours de la mission.

Les approches pour connâıtre l’intention de l’humain passent par des communication ex-

plicites (épistémiques) et/ou implicites (intuitives). Des communications explicites impliquent

par exemple un système de dialogue. De telles communications semblent la solution évidente

pour connâıtre les préférences du partenaire. L’inconvénient majeur est que le robot doit ques-

tionner l’humain en continu pour détecter ses changements d’intention à travers les incohérences

de son discours. Pour éviter de poser des questions en continu, nous proposons de combiner le

modèle épistémique explicite avec un modèle intuitif implicite. Ce dernier sera responsable de la

coopération pendant l’observation des actions de l’humain pour deviner ses préférences via les

Q-valeurs de ses actions. Il reste toujours possible de revenir sur des communications explicites

pour lever toute ambigüıté détectée entre les préférences données par chacun des deux modèles.

Sur cette base, nous décrivons un modèle mixte qui permet au robot de passer d’interactions

implicites intuitives à un dialogue épistémique explicite et vice-versa lors d’une mission coopérative

avec un partenaire humain. L’architecture générale du modèle mixte est donnée dans la figure 9.

ENVIRONNEMENT

HUMAIN

ROBOT

Dialogue Homme-RobotSystème d'exécution de tâche+
interaction intuitive 

Réponse
(bruyant, ambiguës,
Information partialle)

Requête

Des préférences sur 
les tâches (cachées)

Croyance sur les  
préférences

HUMAIN

ROBOT

Ambiguïté 
détectée

 action
Exécute 

tâche

Action humain 
observée

Les préférences 
désambiguïsé

Interaction intuitive Interaction intuitive Interaction épistémiqueInteraction épistémique
Renforcent les 

préférences

Figure 9: L’architecture générale du modèle mixte pour une coopération homme-robot.

Un de ces composants est un système de dialogue oral appelé modèle épistémique. Les actions

du robot pendant cette phase d’interaction, sont de questionner l’humain. Les réponses peuvent
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être alors bruitées ou ambiguës. Une fois l’ambigüıté levée le robot passe en mode d’exécution

de tâches pour accomplir les tâches qui sont cohérentes avec les préférences de son partenaire.

Le modèle de dialogue épistémique est représenté par le tuple :

POMDPep =< Sep, Aep, Zep, Tep, Oep, Rep, bep > .

L’espace d’états rassemble l’ensemble des préférences de l’humain sur toutes les tâches. Ses

préférences peuvent être :

- s(tk) = to do by robot : l’humain préfère que ce soit le robot qui fasse la tâche tk,

- s(tk) = to do by human : l’humain préfère faire la tâche tk lui même,

- s(tk) = to do by any : l’humain n’a pas de préférences sur qui devrait faire la tâche tk

(l’humain ou le robot),

- s(tk) = undecided : l’humain n’a pas encore choisi sa préférence pour la tâche tk,

- s(tk) = unknown : le robot n’a pas connaissance de la préférence de l’humain pour la

tâche tk,

- s(tk) = done : la tâche tk est réalisée.

Le second composant est le modèle intuitif, appelé aussi le système d’exécution de tâche. La

figure 10 présente un schéma plus détaillé de ce modèle.
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Figure 10: Flot de contrôle dans/entre les composants du modèle mixte.
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Principalement, dans ce modèle, le robot choisit une tâche à réaliser et, tout au long de la

réalisation de cette tâche, une reconnaissance intuitive des intentions du partenaire est active

pour détecter tous changements dans ses préférences. Les croyances sur les préférences de

l’humain (initialisées pendant le dialogue) sont renforcées par les préférences estimées via les Q-

valeurs des actions observées de l’humain. Dans le cas d’une ambigüıté entre les deux croyances

(épistémiques et intuitives) le robot revient sur un mode d’interaction épistémique pour lever

l’ambigüıté sur la préférence ; autrement il continue d’exécuter les tâches en accord avec ses

croyances sur les préférences de l’humain.

Nous avons effectué une expérience sous forme de scénario pour évaluer le comportement du

modèle décrit, particulièrement le passage entre les interactions intuitives et épistémiques. Nous

avons choisi le scénario de nettoyage des saletés où la mission consiste à nettoyer cinq saletés

disposées à différentes positions dans l’environnement décrit dans la figure 11. Cette figure

montre un numéro pour chacune des positions dans l’environnement, le numéro et la position

de chacune des tâches (saleté à nettoyer) ainsi que la position initiale de l’humain.

5410 2 3

17161312 14 15

23221918 20 21

29282524 26 27

111076 8 9

tk0

tk1

tk4

tk2

tk3

Figure 11: L’environnement du scénario ≪ nettoyer une zone ≫.

La table 2 montre une partie de l’interaction entre l’humain et le robot pendant la réalisation

de la mission. Nous mentionnons que s∗in = argmax
sin∈Sin

(bin(sin)) et s∗ep = argmax
sep∈Sep

(bep(sep)). Le

scénario décrit dans la table 2 ne montre pas les actions concernant l’exécution des tâches, mais

plutôt comment le modèle intuitif est capable de détecter un changement dans les préférences

de l’humain seulement en observant ses actions.

Les Q-valeurs pour ce scénario sont basées sur des MDP de déplacement, elles incluent la

valeur de l’action depuis chaque position possible afin de se déplacer vers chacune des tâches.

La partie de l’interaction décrite souligne les différents comportements adoptés par le robot

pendant sa coopération. Au début du scénario, l’état de croyance du modèle épistémique est

initialisé avec une préférence unknown pour toutes les tâches. Le modèle épistémique vérifie les

préférences de l’humain concernant toutes les tâches dans les étapes (1 à 5). Ensuite, le modèle

passe au mode intuitif. On peut constater à l’étape 8 que la Q-valeur de l’action de l’humain

n’était en faveur d’aucune de ses préférences, au contraire, il préférait une des tâches destinées

au robot (tk3 en position 24). L’état de croyance sur les préférences de l’humain indique à la fin
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3. Contributions

Interaction épistémique:
1 s∗ep =< unknown, unkown, unkown, unkown, unkown >

Robot: ≪ Should I do task tk3? ≫ Human: ≪ yes! ≫

2 s∗ep =< unkown, unkown, unkown, to do by robot, unkown >
Robot: ≪ Should I do task tk1? ≫ Human: ≪ no! ≫

3 s∗ep =< unkown, to do by human, unkown, to do by robot, unkown >
Robot: ≪ Should I do task tk2? ≫ Human: ≪ yes! ≫

4 s∗ep =< unkown, to do by human, to do by robot, to do by robot, unkown >
Robot: ≪ Should I do task tk0? ≫ Human: ≪ any! ≫

5 s∗ep =< to do by any, to do by human, to do by robot, to do by robot, unkown >
Robot: ≪ Should I do task tk4? ≫ Human: ≪ yes! ≫

s∗ep =< to do by any, to do by human, to do by robot, to do by robot, to do by robot >

Interaction intuitive:
6 s∗in =< 0, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
7 s∗in =< 6, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
8 s∗in =< 12, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
s∗in =< 18, to do by any, unkown, to do by robot, to do by human, to do by robot >
Interaction épistémique:

9 s∗ep =< to do by any, unkown, to do by robot, unkown, to do by robot >
Robot: ≪ Should I do task tk3? ≫ Human: ≪ no! ≫

10 s∗ep =< to do by any, unkown, to do by robot, to do by human, to do by robot >
Robot: ≪ Should I do task tk1? ≫ Human: ≪ yes! ≫

s∗ep =< to do by any, to do by robot, to do by robot, to do by human, to do by robot >

Interaction intuitive:
11 s∗in =< 18, to do by any, to do by robot, to do by robot, to do by human, to do by robot >

human: south
12 s∗in =< 24, to do by any, to do by robot, to do by robot, to do by human, to do by robot >

human: do(tk3)
13 s∗in =< 24, to do by any, to do by robot, to do by robot, done, to do by robot >

human: north
s∗in =< 16, to do by any, to do by human, to do by robot, done, to do by robot >
Interaction épistémique:

14 s∗ep =< to do by any, unkown, to do by robot, done, to do by robot >

Table 2: Une partie de l’interaction verbale/non-verbale pendant la réalisation de la mission
coopérative.
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Résumé étendu: Vers des robots compagnons intelligents partageant notre vie quotidienne

de l’étape 8 une préférence unknown pour la tâche tk1 et to do by human pour la tâche tk3. Ces

changements conduiront le détecteur d’ambigüıté à détecter les ambigüıtés dans les préférences

et le modèle mixte retournera alors au mode d’interaction épistémique pour désambigüıser la

croyance sur les préférences.

Le scénario démontre qu’en présence d’une librairie bien définie de Q-valeurs, le modèle

intuitif est capable de détecter les ambigüıtés (s’il en existe) entre les préférences données par

l’humain (en répondant aux requêtes) et ses préférences estimées lors de l’exécution. Une telle

librairie assure le bon fonctionnement du modèle mixte verbal et non-verbal.

4 Conclusion

Nous présentons dans cette thèse plusieurs modèles décisionnels pour différents problèmes

d’Interaction Homme-Robot, basés sur des Processus de Décision Markoviens Partiellement

Observable (POMDP), des Processus de Décision Markoviens (MDP) et des Châınes de Markov

Cachées (HMM).

Dans la version complète de la thèse (écrite en Anglais), nous avons présenté dans une

première partie : une introduction sur l’IHR et la forme d’intelligence qui est attendue de la

part de robots compagnons interactifs. Ensuite, nous donnons une présentation rapide des

modèles, approches et architectures utilisés dans la littérature pour modéliser ou planifier des

systèmes robotisés pour des domaines d’interaction homme-robot. Enfin, nous étudions les

travaux existants sur le sujet de robots compagnons et la prise de décision pour l’IHR.

Une deuxième partie contient nos quatre contributions avec leur motivations, modèles et

expérimentations, simulations ou scénarios appliqués sur des robot physiques.

Enfin, le manuscrit se termine par une conclusion et donne des perspectives pour les travaux

futurs.
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Chapter 1

Introduction

This thesis addresses the design of decision models for companion robots. Indeed, the introduc-

tion of robots in our daily lives have raised many challenges for autonomous robot systems. In

addition, it lead to the birth of a new research domain called Human-Robot Interaction.

We are interested in providing companion robots with decision models that allow them to

interact with humans in a natural and acceptable manner. Companion robots should be able to

understand humans, adapt to their existence and respect their well-being and desires.

1.1 Motivation

A rising number of robotic applications require robots to be involved in the human environment.

Humans have used machines as tools that they can manipulate. However, a better capacity is

expected from an intelligent robot, it should be able to act as a partner to the human instead

of being just a tool controlled by him.

Applications concerning companion robots vary according to the type of interaction with the

human. A companion robot can act alone in the environment while being aware of the existence

of the human and his needs, for example, achieving undesired tasks on his behalf [Cirillo et al.,

2009a]. It can also assist the human while achieving his own task, in this case, the robot should

detect the need of assistance and offer the necessary information to the human that will help

him achieving his task. Such interaction is mostly useful in companion robots for elderly people

(to remind them of their daily activities) [Pineau et al., 2003, Boger et al., 2005, Duong et al.,

]. Recently, a lot of research interest is focusing on applications where the human and the robot

collaborate together to achieve a common task. In such interaction, the human and the robot

form a team while each of them is responsible of his own decisions toward the success of the

common task [Hoffman et Breazeal, 2008, Sisbot et al., 2010].

When sharing a task with its partner, the companion robot should be able to behave accord-

ing to the situation of the interaction. It is not sufficient for the robot to be reactive to what

happens in the environment, it should also be able to behave differently as in inducing a reaction

from the human. In this subject, [Johnson et al., 2010] introduces the concept of “coactivity”.
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Chapter 1. Introduction

A coactive behavior allows the robot not only to execute its part of the work but also encourage

the joint activity of the human.

There are a lot of difficulties facing the decision making for a robot in presence, interaction

or collaboration with a human [Klein et al., 2004]. A lot of efforts engaging in the subject

of interactive robotics and its applications, however, we are still far from a robust system for

companion robots. We will address in this thesis questions concerning how to understand the

accompanied human and how to act and behave accordingly.

1.2 Outline

This thesis is divided into two main parts. We first give an overview of existed theoretic models

in the literature and how they were employed to establish interactive robot models (Part II).

Then we contribute by introducing several decision models for a companion robot in different

conditions (Part III). We finally conclude and we present future research perspectives (Part IV).

The remainder of this thesis is thus organized as follows:

State of the art

Chapter 2 In this chapter we explain the problem of interactive companion robots. It includes

definitions related to the aimed subject and presents the challenges facing powerful and

practical decision models for robots that share humans their daily lives.

Chapter 3 We present in this chapter models, approaches and architectures that were used in

the literature to model or plan robotic systems for Human-Robot Interaction domains. The

chapter presents classical approaches: Belief-Desire-Intention, Hierarchical Task Networks,

Bayesian Networks and Markovian models. It ends with a comparison of the advantages

and disadvantages of using such models for companion robots.

Chapter 4 We conclude the state of the art with an overview of related work in the literature

concerning the subjects of human intention recognition and planning for interactive robots.

Contributions

Chapter 5 Our first contribution concerns a decision model that respects the human intention.

This contribution proposes to build a library of human actions values that holds a value

for each pair (human action, human intention). Those values are then integrated in a

Partially Observable Markovian Decision Process which will give the model the ability to

infer the human intention while observing his actions and make decisions accordingly.

Chapter 6 The contribution described in this chapter is motivated by a companion robot that

chooses a type of behavior according to the progress in achieving the collaborative shared

task and an estimated level of the human’s engagement. We show that the proposed
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decision model allows the companion robot to choose whether to behave normally or

instead be coactive to incite the human’s joint activity.

Chapter 7 This contribution addresses two problematics. First, establishing a system for a

companion robot that is capable of choosing between different types of interaction ac-

cording to the human’s needs. Second, modeling the system using a framework that

outperforms Partially Observable Markovian Decision Processes for large-scale problems.

We contribute in this chapter with a unified model of Human-Robot Multi-type Interac-

tion. The objective is to observe the human’s behavior and try to predict/estimate the

human’s intention/need and therefore react appropriately (assist, cooperate, collaborate,

. . . ).

Chapter 8 Our last contribution in this thesis combines different approaches to create a deci-

sion model for a cooperative robot. The proposed model is inspired by verbal interaction

(queries) to reveal human preferences combined with non-verbal approaches (Chapters 5

and 7). A mixed model that allows the robot to infer the human preferences using verbal

interaction and then intuitively reinforce the inferred preferences by observing the human

actions while executing the tasks. We show that the model is able to switch between verbal

and non-verbal interactions according to possible detection of ambiguity about the human

preferences.

Conclusion In Chapter 9, we conclude this thesis by summarizing our contributions and

draw some lines for future research.
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Chapter 2

Human-Robot Interaction and

Companion Robots
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This chapter introduces definitions related to the subject of this thesis and the research

fields of companion robots and Human-Robot Interaction. We discuss the expected level and

form of intelligence in interactive companion robots while presenting several concepts that will

be the base of the contributed work, e.g. robots behavior and their different possible types of

interaction with the human. Finally, we discuss the challenges that faces the decision making of

such robots as for human intention recognition and planning in uncertain environments.

2.1 Human-Robot Interaction

Human-Robot Interaction (HRI) is the study of interactions between humans and robots. It

is a multidisciplinary research area with continuous contributions from different fields like en-

gineering (electrical, mechanical, industrial and design), computer science (Human-Computer
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Interaction, Artificial Intelligence, robotics, natural language understanding and computer vi-

sion), social sciences (psychology, cognitive science, communications, anthropology and human

factors) and humanities (ethics and philosophy) [Feil-Seifer et Matarić, 2009].

Human-Computer Interaction (HCI) offers a rich resource for research and design in HRI.

One of the main shared disciplines between HCI and HRI is the study of human factors. Much

has been learned in the last three decades about how people perceive and think about computer-

based technologies, about human constraints on interaction with machines, about the factors

that improve usability and about the effects of technology on people and organizations. A great

deal of these studies is applicable to robots [Kiesler et Hinds, 2004]. However, autonomous

robots are a very different technology from desktop computers for several reasons, among them:

- Robots are mobile and they share physical space with humans.

- Robots have access to more information about the human and the environment.

- Being autonomous in real environments, robots have more control on their actions and

decisions with important constraints (like time and resources).

- Autonomous robots have higher and more complicated levels of interaction with humans.

The HRI field studies how humans and robots interact and how best to design and implement

robot systems that are capable of accomplishing interactive tasks in human environments. Some

of its possible application domains are: entertainment, personal assistants, museum guidance,

health-care, space exploration and rescue.

The original benchmarks for HRI were proposed by Isaac Asimov in his short story

“Runaround” part of his “I, Robot” collection [Asimov, 1950], where he described the three

laws of robotics as:“

1. A robot may not injure a human being or, through inaction, allow a human being to come

to harm.

2. A robot must obey orders given to it by human beings except where such orders would

conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Law.”

These three laws of robotics respect the rules of safe interaction, knowing that close interac-

tions between the human and the robot can risk injuring the human. To avoid this issue, until

recently, manufacturing robots were closed in a safe and human-free zones where no humans

allowed in the robot workspace while it is working.

Artificial Intelligence (AI) studies the design of intelligent agents. An intelligent agent is a

system that acts intelligently: it perceives its environment and uses this perception, in addition to

prior knowledge and experiences, to take actions that maximize its chances of success in reaching
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its goals [Poole et al., 1998, Russell et Norvig, 2003]. Nowadays and with the advancements

of Artificial Intelligence, autonomous robots could eventually have more intelligent behaviors,

planning their actions in uncertain environments. These new capabilities will allow robots to

work in close distance with humans keeping safety as a primer issue in addition to efficiency.

2.1.1 HRI Paradigms

In [Breazeal, 2004], they classified the field of HRI into four interaction paradigms. These are

the following:“

- robot as tool;

- robot as cyborg extension;

- robot as avatar;

- robot as sociable partner (companion robots).

Each is distinguished from the others based on the mental model a human has of the robot

when interacting with it. In the first paradigm, the human views the robot as a tool that is used

to perform a task. The level of robot autonomy varies from complete tele-operation, to a highly

self-sufficient system that need only be supervised at the task level. In the second paradigm, the

robot is physically merged with the human to the extent that the person accepts it as an integral

part of their body. In the third paradigm, the person projects himself through the robot in order

to communicate with another from far away. The robot provides a sense of physical presence to

the person communicating through it, and a sense of social presence to those interacting with it.

The last paradigm speaks to the classic science-fiction fantasy of an artificial being. Interacting

with it is like interacting with another socially responsive creature that cooperates with us as a

partner.”

2.1.2 Robots Autonomy in HRI

The relation between the human and the robot is partly defined with the level of the robot’s

autonomy. In robotics, there are several levels of autonomy that varies between being remotely

tele-operated by the human and being fully autonomous:

- Adjustable/Sliding autonomy which refers to the ability of autonomous systems to oper-

ate with dynamically varying levels of independence, intelligence and control. Here, the

system is able to incorporate human intervention when needed and to otherwise operate

independently [Scerri et al., 2004, Mouaddib et al., 2010].

- Mixed-initiative refers to a flexible autonomy which support an efficient, natural inter-

leaving of contributions by agents (human and robot) aimed at converging on solutions to

problems [Allen et al., 1999, Ferguson et Allen, 2007].
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- Collaborative control is an approach that uses human-robot dialog (i.e., queries from the

robot and responses, or lack of them, from the human), as the mechanism for adaptation.

Collaborative control also allows robots to benefit from human assistance during perception

and cognition and not just for planning and command generation [Fong, 2001].

Autonomy is a complex property in the HRI context. It is convenient for a robot to have

a degree of autonomy when it is designed to stand in for a human in a given situation. Also,

autonomy can speed up applications for HRI by not requiring human input. However, full

autonomous systems are not the answer for sociable robots and they can lead to undesirable

behavior [Feil-Seifer et Matarić, 2009, Johnson et al., 2010]. Autonomy might lead to less

efficient robots in social environments. First, with the increase of autonomy, the robot has

less dependence on the human, but the human has more dependence on the robot, because the

robot becomes the sole owner of certain information and decisions. Second, autonomy cannot

help robots to overcome unexpected events (failures) when they occur, however, teamwork can.

Third, and not least, in situations where robots have physical contact with the human, the latter

must clearly retain authority. For example, rehabilitation should terminate if the human is in

pain. For those reasons and more, adjustable autonomy allows an appropriate adjustment of

both authority and autonomy. Moreover, [Johnson et al., 2010] introduces coactive behavior

(more details in Section 2.2.3) which is based on collaborative control allowing both parties to

participate, in different ways, during interaction.

This thesis will be concentrated on companion robots (the fourth interaction paradigm),

where HRI is viewed from the perspective of designing sociable robots that interact with people

in a human-like way. There are a growing number of applications for robots that people can

engage with as capable creatures or as partners rather than tools, yet little is understood about

how to design robots to interact this way.

2.2 Companion Robots

HRI and intelligent robotic systems are important disciplines in the study of companion robots.

Moreover, companion robots have a non-limited possibilities of interaction with humans and

should respect social constraints whether in their behavior, appearance, or cognitive skills.

[Dautenhahn, 2007] defined a companion robot as: “a robot that (i) makes itself ‘useful’, i.e. is

able to carry out a variety of tasks in order to assist humans, e.g. in a domestic home environ-

ment, and (ii) behaves socially, i.e. possesses social skills in order to be able to interact with

people in a socially acceptable manner.”

The most important applications include companion robots for elderly and people with

special needs in their homes or in assisted living facilities. Therefore, the design of a companion

robot addresses deep issues into the nature of human social intelligence, as well as sensitive ethical

issues to be able to interact with such vulnerable people. The roles that the companion robot can

adopt are: to be effective machines performing tasks on human’s behalf, assistants, companions
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or even friends. All this depends on the human possible incapabilities or preferences. More

information about the human desires and constraints would more probably lead the companion

robot to offer the good type of companionship or help when needed. For example, if the human

has the intention of doing a certain task like calling a friend, he might be able to achieve the task

himself, however, he might need assistance in finding or remembering the phone number. In the

first case, while the human is making his phone call, the robot can help the human by achieving

some other tasks (like cleaning the room) on his behalf. In the second case, an assistant robot

should offer assistance to the human to find/remember the phone number.

2.2.1 Inspiration from Human-Human Companionship

Many, in the field of HRI, study how humans interact between them in different situations and

use those studies as an inspiration to how robots should interact with humans [Green et al., 2008].

The study of companion robots behavior should be motivated by human-human companionship.

As an example: to be able to build a robot system that cooperates with a human partner in an

apartment, a similar model of human beings cooperating with each other is represented for the

same type of cooperation. Let be, Bob and Ann are committed to the mission of cleaning their

apartment. This mission can be divided into a number of tasks like cleaning bedroom, cleaning

living room, doing laundry and washing dishes. If Ann observes Bob entering the bedroom and

Ann believes in Bob’s commitment to the mission, then Ann will believe also that he is planning

to clean the bedroom and she will decide to do one of the other tasks like washing dishes. If

Bob meanwhile finishes his task and observes Ann standing near the sink, Bob will believe that

Ann is doing the dishes and he will decide to do one of the other tasks. This continues until all

tasks are done. In conclusion, it is sufficient, in most cases, to observe the partner’s actions in

order to know what task he is trying to achieve.
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Figure 2.1: A model of human-human cooperation.
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Figure 2.1 presents a simple model of human-human cooperation regarding the example of

Bob and Ann. Each partner tries to build a knowledge of the other by observing him and,

depending on this knowledge, attempt to proceed with the best interest of the cooperation.

2.2.2 Types of Interaction

Some domains in the literature discuss robot companions that help their human partners without

necessarily interacting closely with them. Those robots can be seen as servant robots that are

aware of the existence of a human partner in the same environment. Servant robots can be

of help to a human by doing undesired tasks like cleaning. In [Cirillo et al., 2009a] the robot

attempts to recognize the human plan in order to cooperate by achieving its own tasks without

disturbing the human plan.

Some other approaches were dedicated for robots as assistants to humans. Assistant robots

normally have direct relations with people around them. They are supposed to detect a need of

assistance from their human partner and offer the information that facilitate the task for him.

For example, an autonomous mobile robotic assistant can provide elderly people in nursing homes

with reminders about their daily activities [Pineau et al., 2003]. Also, a cognitive assistive system

is presented to help people with advanced dementia in their daily living activities [Boger et al.,

2005]. In the latter, they detailed a model for a hand-washing assistant which monitors the

persons progress in his activity and suggests guidance in case of an unusual observed behavior.

A similar work presents a system that learns a model of the house occupant’s activities of daily

living through observing what the occupant usually does during the days, then monitors the

person’s current activity to detect any abnormality and alert the caregiver [Duong et al., ].

Recently, some research interest is increasing about applications where a robot collaborates

with a human partner to accomplish a common task. In Human-Robot Collaboration the con-

cepts of master-slave or assistant relationship exist no more. The robot and the human act

jointly each responsible for his decision to accomplish their common task as a human-robot

team [Hoffman et Breazeal, 2008]. Acting jointly has been discussed more particularly for plan-

ning team members actions in multi-agent systems [Cohen et Levesque, 1991, Levesque et al.,

1990].

To formalize all the previously mentioned examples of interaction, the following presents our

definition of the main three types of interaction for a companion robot sharing a human partner

daily living activities:

Cooperation a robot can cooperate with a human by doing a task on his behalf to save him

time or effort. The robot should be capable to do the task alone (cleaning carpet or the

dinner table), and should not disturb the human by respecting the human’s preferences

and interests.

Assistance a companion robot can assist a human by guidance (typically spoken guidance).

The robot should be able to detect the human’s need of assistance and offer the best
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guidance that will enable the human to complete his task. For example by accessing

a manual of how to run the dishwasher the robot can assist the human by reading the

steps. This type of interaction also covers cases like robot assistants for elderly people

with dementia.

Collaboration a task that needs the participation of the human and the robot to achieve it

(typically physical action) requires a collaboration between them. A robot companion

should be of answer to the human when showing an interest in a collaboration task.

2.2.3 Types of Behavior

A robot in a human environment should choose its actions with respect to, both the human

and its own, circumstances and goals. It should be flexible with dynamic environments and

dynamic goals. Furthermore, it should learn from experience and make appropriate choices

despite perceptual, computational and time limitations.

An intelligent and flexible agent can adopt different behaviors according to different situa-

tions. The following presents some chosen definitions and a simplified example to help describe

possible behaviors of an agent while interacting with a human.

Definition 6 “Reactive” as defined in the American Heritage Dictionary of the English Lan-

guage:

1. Tending to be responsive or to react to a stimulus.

2. Characterized by reaction.

Environment

P
er
ce
p
ti
o
n A

ctio
n

Reactive
agent

Figure 2.2: A reactive agent behavior.

Definition 7 “Proactive” as defined in the American Heritage Dictionary of the English Lan-

guage and Collins English Dictionary:

1. Acting in advance to deal with an expected difficulty; Anticipatory.

2. Tending to initiate change rather than reacting to events.

3. In psychology (learning theory): As an opposition to reactive.
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Definition 8 “Deliberative” as defined in WordNet:

1. involved in or characterized by deliberation and discussion and examination;

Definition 9 “Coaction” as defined in the American Heritage Dictionary of the English Lan-

guage:

1. An impelling or restraining force; a compulsion.

2. Joint action.

Environment

Reasoning

Behaviors
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n

P
lan

A
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n

Figure 2.3: Reasoning about behavior.

Let’s take for example the bar-robot that fills client’s glasses with water. To be efficient in

its interaction with clients, the bar-robot should be able to adapt its behavior with respect to

its main job which is serving water and the situation of the human and his glass. A reactive

robot mostly reacts to possible situations or possible human actions (Figure 2.2). If the human

puts his empty glass in front of the robot, the robot will refill the glass with water. A robot

that reasons about its behavior after perceiving the human’s action is not considered as reactive

(Figure 2.3). A proactive robot would not only react to situations, but maybe initiate the action

by extending its hand with the water bottle towards a human who is standing near the bar with

an empty glass. Being coactive completes proactivity, a proactive action is an anticipatory action

which is acted in advance for certain anticipated future. However, coactive action is a guidance

action which drives the other to act with us to actually achieve the anticipated future. Indeed, if

the robot extended its arm and the human responded by extending its arm too, the human and

the robot should act coactively to make it possible to fill the glass with water. A deliberative

(communicative) robot is more characterized by communicating and deliberating plans with the

human. It will be more verbally active, as in asking the human if he wants to fill his glass.

It is very important that the robot reasons carefully about its type of behavior and chooses,

carefully as well, the actions to represent those behaviors. It is not desirable that robot actions

cause any kind of confusion to the human.
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2.3 Uncertainties in HRI and Companion Robots Systems

The environment of a companion robot, whether a hospital, an office, a home or an assisted living

facility, is a cluttered and uncontrolled environment. To interact with its human partner and be

operational in his environment, the robot must be provided with functionalities and capabilities

to support it in surviving and succeeding in a complex, dynamic and uncertain environment.

During the day, the companion robot is supposed to perform operations involving navigation,

communication, cooperation, assistance, etc. Some needed information to plan its decision might

be accessible to the robot by perception, as for detecting objects, detecting human partner

position or human vocal expressions. However, analyzed information from hardware devices

and sensors are not totally reliable. Inevitable amount of doubt and uncertainty is resulted from

such analysis.

Moreover, in order to assist or collaborate with a human (Section 2.2.2) the robot should

choose its actions in a way that minimizes the expected cost of completing the human’s task.

However, the latter is not directly observable by the companion robot, which makes the problem

of quickly inferring the human’s goals/intentions from perceived information critically important.

Therefore, a robot is rarely able to describe the real environment “the true world”, it acts

only on its “beliefs of what is a true world”.

Human intention is one of the major topics of uncertainty in HRI domains but not the

unique one. Human environments are meant first and foremost for human occupants. Therefore

companion robots need to adapt and develop the ability to handle the uncertain and the dynamic

nature of these environments and the uncertainties about the human’s goals and intentions.

2.3.1 HRI Environments

Several reasons might prevent a companion robot from maintaining an exact image of the real

environment, among them: intentional and unintentional changes in the environment state that

might be caused by the human or the robot actions.

Figure 2.4 shows a representative example of a situation where the robot is uncertain about

the state of a button in the environment. The robot in Figure 2.4(a) is not sure if the button

is pressed or not. Furthermore, robots also are not sure if their actions were well applied and

caused the good intended outcome. Figure 2.4(b), shows that the robot, after trying to press

the button, is still not sure if the button is pressed or not.

In HRI environments, the robot faces as well uncertainties related to the human. Fig-

ure 2.5(a) shows how the robot is uncertain about the human intention to press the button. In

Figure 2.5(b), the robot observed the human trying to press the button but is not sure about

the outcome of the human action.
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Is the button pressed?

(a) Uncertainty about environ-
ment states.

Did I succeed in pressing

the button?

(b) Uncertainty about action’s ef-
fects.

Figure 2.4: Different sources of uncertainty in robotic environments.

Does he want to press

the button?

(a) Uncertainty about human inten-
tions.

the button?
Did he succeed in pressing

(b) Uncertainty about human actions
effects.

Figure 2.5: Different sources of uncertainty in HRI environments.

2.3.2 Understanding Human Intentions

Definition 10 The word “intention” as defined in the Fartex Trivia dictionary, Webster dic-

tionary and Encarta respectively:

1. Intent implies a sustained unbroken commitment or purpose, while intention implies an

intermittent resolution or an initial aim or plan.

2. An anticipated outcome that is intended or that guides your planned actions.

3. Something that somebody plans to do. The quality or state of having a purpose in mind.

Those definitions emphasize two features of an intention; an intention has an aim/goal and

a plan.

Intention/plan/activity recognition [Schmidt et al., 1978] is a very expanded research subject

as it is needed in many AI domains. The study of human intention concerned HCI community

before [Babaian et al., 2002, Hui et Boutilier, 2006, Tambe, 2008, Yorke-Smith et al., 2009], and

now it is one important subject concerning the HRI planning community. Without being able to
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detect/share the intention of one another, the robot and the human will not be able to interact

correctly.

The ability to appropriately understand the intention (or internal state) of the other is

important for both the human and the robot in order to coordinate and synchronize their

behavior. It allows them to work effectively, to correct misunderstandings before success is

compromised, and to compensate for unexpected difficulties before a failure becomes manifest.

Similarly to the Bob and Ann example, a companion robot during his cooperation with a human

partner should be able to predict his partner’s intentions. Using that information, the robot

should be able to make better decisions for the mission and for the comfortability of its human

partner. In another example, an assistant companion robot is incapable of offering assistance if

it lacks the ability of detecting its human partner intention.

During social interaction with a robot partner, both parties need to appropriately convey

their intended meaning to the other. There are different ways to communicate intention: ver-

bal [Breazeal, 2004, Schmidt-Rohr et al., 2008a], gestures [Jenkins et al., 2007, Schmidt-Rohr

et al., 2008a] or implicit [Nguyen et al., 2005, Fern et al., 2007, Taha et al., 2008]. An important

role of Natural Language Processing and Image Processing is applied for verbal and gesture

analysis to detect and match them to possible intentions. However, an implicit intention com-

munication needs huge and precise knowledge of the partner in order to be able to implicitly

match situations or any possible action to a possible intention.

Humans have various ways of doing things, some people are generally committed and others

have more tendency to stall. It is one situation that risks a misunderstanding between the

companion robot and the human. Moreover, human commitment to his goal/intention might

change or be interrupted [Levesque et al., 1990]. All those possibilities and uncertainties must

be taken into account when the companion robot plans its actions.

2.4 Discussion

There are a lot of difficulties that faces the decision making of a robot in presence, interaction,

collaboration with a human [Klein et al., 2004]. Even though there are many efforts in the

domain of humanoid robotics as companions, there is still no powerful theory or robust system

for robot’s task planning. A companion robot system, with respect to the constraints and

limitations of operational resources, must be able to:

- cope with dynamic environments,

- cope with all kinds of uncertainty,

- understand its human partner and his possible needs,

- choose the way to interact with its partner,

- choose the best type of behavior,
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- make decisions that does not harm the human in any way and respects the human and his

desires.

In the following chapter (Chapter 3) we will be presenting theoretic approaches that have

been used in the literature by the HRI community. In Chapter 4 we will show how those theo-

retic approaches were used in representing HRI dynamic environments, understanding perceived

information about the human to infer his intentions, and finally planing robot decisions.
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Background on Theoretic Models
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This chapter includes a quick presentation of models, approaches and architectures that are

used in the literature to model or plan robotic systems for Human-Robot Interaction domains.

The chapter begins with presenting classical approaches: Belief-Desire-Intention architecture,

Hierarchical Task Networks, Bayesian Networks and Dynamic Bayesian Networks followed by a

detailed presentation of Markovian models: Markov chains, Hidden Markovian model, Marko-

vian Decision Processes and Partially Observable Markovian Decision Processes. The chapter

ends with a discussion including comparisons and relations between the presented models.

3.1 Belief-Desire-Intention Architecture

A Belief-Desire-Intention (BDI) architecture of practical reasoning provides a process of deciding

which action to perform to reach goals. Practical reasoning involves two important processes:

first, deciding what goals to achieve, then, how to achieve them.

The reasoning process in a BDI agent is shown in Figure 3.1. The BDI architecture includes

seven main components [Weiss, 1999]:
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Beliefs

options

Desires

filter

Intentions

action

action output

brf

sensor input p

Figure 3.1: A BDI architecture.

• A set of beliefs (Beliefs), representing the agent’s information about its current environment

(including itself and other agents). Using the term belief rather than knowledge recognizes

that what an agent believes may not necessarily be true.

• A belief revision function (brf), which takes a perceptual input P and the agent’s current

beliefs, and on the basis of these, determines a new set of beliefs.

brf : ℘(Beliefs)× P → ℘(Beliefs)

• A set of current desires (Desires), representing possible courses of actions available to the

agent They represent objectives or situations that the agent would like to accomplish.

• An option generation function (options), which determines the options available to the agent

(its desires) on the basis of its current beliefs about its environment and its current inten-

tions.

options : ℘(Beliefs)× ℘(Intentions) → ℘(Desires)
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3.2. Hierarchical Task Networks

• A set of current intentions (Intentions), representing the agent’s current focus. An intention

is a desire to which the agent has committed to trying to bring about. The set of active

intentions must be consistent.

• A filter function (filter), which represents the agent’s deliberation process and determines

the agent’s intentions on the basis of its current beliefs, desires and intentions.

filter : ℘(Beliefs)× ℘(Desiers)× ℘(Intentions) → ℘(Intentions)

• An action selection function (execute), determines an action to execute on the basis of current

intentions.

execute : ℘(Intentions) → A

The state of a BDI agent at any given moment is a triple (B,D, I), where B ⊆ Beliefs,D ⊆

Desiers and I ⊆ Intentions. The agent decision function action : P → A is defined in

Algorithm 2.

Algorithm 2: function action : P → A

Input: p ∈ P
Output: action to execute A
begin1

B = brf(B, p);2

D = options(D, I);3

I = filter(B,D, I);4

return execute(I);5

end6

The BDI model gives a clear functional decomposition. The main difficulty is knowing how

to efficiently implement these functions. By design, the architecture does not have any lookahead

deliberation or forward planning. The decided actions are planned for one step ahead.

3.2 Hierarchical Task Networks

Hierarchical Task Networks (HTN) is a planning paradigm which consists of finding a primitive

decomposition of a given set of tasks (task network) [Ghallab et al., 2004]. An HTN planner is

provided with a set of tasks to be performed and a set of restrictions (often ordering constraints)

that the tasks should satisfy. A plan is then formulated by repeatedly decomposing tasks into

smaller subtasks until primitive, executable tasks are reached.

In the following, a formal definition of an HTN planning is presented as indicated in [Sohrabi

et al., 2009]:“

Definition 11 (HTN planning problem)
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An HTN planning problem is a 3-tuple P = (s0, w0, D) where s0 is the initial state, w0 is a

task network called the initial task network, and D is the HTN planning domain which consists

of a set of operators and methods.

Definition 12 (Domain, Method)

A domain is a pair D = (O,M) where O is a set of operators and M is a set of methods. An

operator is a primitive action, described by a triple o = (name(o), pre(o), eff(o)), corresponding

to the operator’s name, preconditions and effects.

A method m, is a 4-tuple (name(m), task(m), subtasks(m), constr(m)) corresponding to the

method’s name, a non-primitive task and the method’s task network, comprising subtasks and

constraints. Method m is relevant for a task t if there is a substitution σ such that σ(t) =

task(m). Several methods can be relevant to a particular non-primitive task t, leading to different

decompositions of t. An operator o may also accomplish a ground primitive task t if their names

match.

Definition 13 (Task, Task Netword)

A task consists of a task symbol and a list of arguments. A task is primitive if its task symbol

is an operator name and its parameters match, otherwise it is non-primitive.

A task network is a pair w = (U,C) where U is a set of task nodes and C is a set of

constraints. Each task node u ∈ U contains a task tu . If all of the tasks are primitive, then w

is called primitive; otherwise it is called non-primitive.

Definition 14 (Plan)

π = o1o2...ok is a plan for HTN planning program P = (s0, w0, D) if there is a primitive

decomposition, w, of w0 of which π is an instance.”

Figure 3.2 shows a plan tree for a delivery problem with a root non-primitive task deliver objectAt.

The planner uses methods to decompose all the non-primitive tasks until reaching one of the

three primitive tasks (load truck, unload truck, drive truck).

3.3 Bayesian Networks and Dynamic Bayesian Networks

Bayesian networks are probabilistic graphical models representing joint probabilities of a set of

random variables and their conditional independence relations.

A Bayesian Network (BN) consists of the following [Jensen, 2001]:“

- A set of variables and a set of directed edges between variables.

- Each variable has a finite set of mutually exclusive states.

- The variables together with the directed edges form a Directed Acyclic Graph (DAG). A

directed graph is acyclic if there is no directed path A1 → . . . → An so that A1 = An.
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load_truck(book, truck, start)

drive_truck(truck, initial, start) drive_truck(truck, start, end)

order

truck_at(truck, start) truck_at(truck, end)

unload_truck(book, truck, end)

delivery(truck, book, start, end)

deliver_object_at(book, end)

Figure 3.2: An HTN decomposition tree for a delivery problem.

- To each variableA with parentsB1, . . . , Bn, a conditional probability table P (A|B1, . . . , Bn)

is attached. In case A has no parents, the table reduces to the unconditional probability

table P (A).”

A

C

D E

F G

B

Figure 3.3: A simple Bayesian Network represented as a Directed Acyclic Graph (DAG).

Figure 3.3 shows a simple BN represented as a DAG. To define the whole structure of a

BN, the probability distribution of all nodes that have parents must be specified given the prior

probability of the root nodes. In Figure 3.3, knowing P (A), P (B), the probabilities to specify

in this BN are P (C|A,B), P (E|C), P (D|C), P (F |D) and P (G|D,E, F ). Those probabilities are

calculated using probability theory and the Bayes’ rule.

The Bayes’ rule for computing posterior probability P (X|Y ) (Equation 3.1) is calculated

given the prior one P (X), and the likelihood P (Y |X) that Y will materialize if X is true:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(3.1)
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Bayesian Networks are a way to represent the belief about the variables of a system and the

relationships that exist between these various variables. The purpose of such representations

is to infer some belief about some processes of events in the system. Static Bayesian Networks

(SBNs) work with beliefs from a single time instant which make it impossible to model systems

that evolve over time. As a result, Dynamic Bayesian Networks (DBNs) have been developed to

overcome this limitation [Mihajlovic et Petkovic, 2001]. A DBN is made up of interconnected

time slices of SBNs, and the relationships between two neighboring time slices follow the Marko-

vian Property (see Section 3.4), which means that random variables at time t + 1 may depend

on variables at time t and possibly on other variables from the same time slice (t+1). Figure 3.4

illustrates this approach where two time slices are interconnected by temporal relations, which

are represented by the arcs joining particular variables from two consecutive time slices.

t t+ 1

A A

B C

D

B C

D

EE

Figure 3.4: A generic Dynamic Bayesian Network structure consisting of 2 time slices, where t
represents time.

DBN variables do not need to be directly observable. A DBN consists of probability dis-

tribution function on the sequence of T hidden-state variables X = {x0, . . . , xT−1} and the

sequence of T observable variables Y = {y0, . . . , yT−1}, where T is the time boundary for the

given investigated event. This can be expressed by the following:

P (X,Y ) =

T−1
∏

t=1

pr(xt|xt−1)

T−1
∏

t=1

pr(yt|xt)pr(x0), where,

pr(xt|xt−1) is the transition probability distribution function that specifies time dependencies

between the variables, pr(yt|xt) is the observation probability distribution function that specifies

dependencies of observation nodes regarding to other notes at time slice t and, finally, pr(x0) is

the initial probability distribution in the beginning of the process.

DBNs provide a unified hierarchical probabilistic framework for sensory information rep-

resentation, integration and inference over time [Mihajlovic et Petkovic, 2001, Li, 2005]. In

addition, DBNs provide the ability to predict the influence of possible future actions through

its temporal causality.
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3.4 Markovian Models

In probability theory, a Markovian model is a stochastic model that assumes the Markov prop-

erty.

Definition 15 (Markov Property)

A first order Markov property is satisfied when the system state at time t + 1 depends only on

its immediate past, which means the system state at time t.

P (st+1|s0, s1, . . . , st) = P (st+1|st)

In the following, the state at time t will be denoted with s and the state at time t+ 1 with

s′.

3.4.1 Markov Chains

A Markov Chain (the simplest of Markovian models) is composed of a set of states S and a

transition function T (s′|s) which gives the probability of passing from state s ∈ S to state s′ ∈ S.

In a finite state space, a Markov Chain can be represented with a graph as shown in Figure 3.5.

In this graph, the nodes represent the states and the arrows represent the transitions and their

probabilities T (s′|s). The transitions can similarly be presented in a matrix with probabilities

of transitioning between any pair (s, s′).

0.4 0.4 0.2

0.4 0.0 0.6

0.3 0.4 0.3

s1

0.3

0.3

0.6

0.40.4

s2

s3

T =

0.2

0.4

0.4 s1 s2 s3

s1

s2

s3

Figure 3.5: A Markov Chain graph with its transition matrix T .

3.4.2 Hidden Markovian Models

A Hidden Markovian Model (HMM) [Rabiner et Juang, 1986] is a Markov chain for which the

state is only partially observable. An HMM is composed of a set of states S, a set of observations

Z, a transition function T (s′|s) and an observation function O(z|s, s′) . The latter gives the

probability of observing z knowing that the system started in state s and ended in state s′.

Figure 3.6 presents an example of an HMM problem. Considering a museum with four main

exhibitions (Greek Art, Egyptian Art, Gothic Art and Roman Art) in addition to an information

room, a souvenir room, a snack bar and rest rooms. Figure 3.6(a) presents statistical probabilities

on the sequence that visitors usually take during their visit to the museum. It is presented as
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a Markov chain and it shows that an important number of the visitors follows the sequence of

exhibitions as the following: Greek, Egyptian, Gothic then Roman exhibitions with a break in

the snack bar in the middle of the visit (after the Egyptian and before the Gothic exhibition).

Other visitors, with lower percentages, follow the same visiting sequence while taking their break

in the snack bar in different steps of the visit (after the Greek, Gothic or Roman exhibitions).

Assuming an intelligent system in the museum that needs to represent a visitor’s sequence

of the visit for reason of assistance or guidance and that a time step of the system represent

one hour. At each time step t each visitor can be located in one of the seven possible locations

shown as circles in Figure 3.6(a). In the following time step t + 1 the visitor moves to a next

location with a probability indicated on the arrow between the corresponding circles. However,

it is important for the intelligent system to know the level of hunger of the visitor, which will

give an idea of the location from where the visitor will go to the snack bar to eat. Figure 3.6(b)

describes this problem with a Hidden Markovian Model where the system state is represented

by the location of the visitor which is an observable part of the state and the visitor’s level of

hunger (not, little or very hungry) which is the hidden non-observable part of the state.
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(a) Museum visit Markov chain: probabilities on
museum visit sequences.
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(b) Museum visit hidden Markovian model: visitor “hun-
gry?” hidden state.

Figure 3.6: Museum visit example.

Several well-known algorithms for HMMs exist [Rabiner et Juang, 1986]. For example, given

a sequence of observations, the Viterbi algorithm will compute the most-likely corresponding

sequence of states, the Forward algorithm will compute the probability of the sequence of obser-

vations and the Baum–Welch algorithm will estimate the starting probabilities, the transition

function and the observation function of a hidden Markovian model.

3.4.3 Markovian Decision Processes

The most common representations for sequential decision models in decision-theoretic planning

are Markovian Decision Processes.

Definition 16 A Markovian Decision Process (MDP) is represented by a tuple 〈S,A, T,R

where:
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- S is a finite set of states that represent the environment for an agent.

- A is a finite set of the agent’s actions.

- T : S ×A →
∏

(S) is a transition function.

- R : S ×A× S → ℜ is the reward function

The set of states: A finite set of all states denoted S = {s0, s1, . . . } includes all possible states

representing the world. A state of the world at time t, represents all information of the

world that are related to the problem at this time.

The set of actions: A finite set of possible agent actions, denoted A = {a0, a1, . . . }. At each

time t, the agent effects an action at which has stochastic effects on the world state.

The transition function: A state transition probability distribution, T (s, a, s′) = Pr(s′|s, a)

is the probability of transitioning from state s to state s′ after doing action a, where
∑

s′∈S

T (s, a, s′) = 1 ∀(s, a).

The reward function: A mapping S×A×S to the agent’s immediate reward for making action

a while being in state s and ending in state s′.

Definition 17 An MDP policy πMDP is a function π : S → A, which associates an action to

each MDP state.

Definition 18 A Horizon H is the number of actions (time steps) the system will take during

its life time. The term infinite-horizon is used when H is infinite.

A value function is defined to evaluate a policy by calculating its long-term expected reward.

For an infinite-horizon problem the value function is defined as:

V π(s) = E

[

∞
∑

t=0

γtrt

]

∀s ∈ S,

where γ is a discount factor and rt is the reward at time t.

[Bellman, 1957] showed that the value function can be calculated using the Bellman equation

(Equation 3.2).

V π
t (s) = R(s, πt(s)) + γ

∑

s′∈S

T (s, πt(s), s
′)V π

t−1(s
′) (3.2)

An optimal policy π∗ is the policy that maximizes the long-term expected reward:

π∗(s) = argmax
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V ∗(s′)

]

where,
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V ∗(s) = max
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V ∗(s′)

]

There are several algorithms to solve an MDP, classically Value Iteration [Bellman, 1957]

and Policy Iteration [Howard, 1960] which are based on Bellman equation. The Value Iteration

algorithm (Algorithm 3) consists in improving the value of each MDP state by using Bellman

equation, where the state value at time t is calculated from its value at time t− 1. The iteration

stops when the difference between successive values of all states is less that a precision creterion

ǫ. The complexity of this algorithm is O(|S2||A|).

Algorithm 3: Value Iteration

Input : An MDP 〈S,A, T,R, a discount factor γ, a precision criterion ǫ.
Output: Optimal policy π.

Randomly initialize V (s), ∀s ∈ S;1

repeat2

t = t+ 1;3

forall s ∈ S do4

Vt(s) = max
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)Vt−1(s
′)

]

5

until max
s∈S

|Vt(s)− Vt−1(s)| ≤ ǫ ;
6

∀s, π(s) = argmax
a∈A

[

R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)Vt(s
′)

]

7

Another value function called Q-value function represents a value for each pair (s, a) which

corresponds to the value of taking the action a from the state s and then continuing according

to the current policy π. This function is represented in Equation 3.3.

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′) (3.3)

Reinforcement Learning

If the agent has no knowledge about its environment, the transition and reward functions will

be hard to calculate. In this case, the agent can directly learn its policy using reinforcement

learning algorithms[Kaelbling et al., 1996, Diuk et Littman, 2009, Szepesvari, 2010] as for Q-

learning [Sutton et Barto, 1998] that does not require prior knowledge about the transition

function.

3.4.4 Partially Observable Markovian Decision Processes

A POMDP relies on a probabilistic model that is represented by a tuple 〈S,A, T, Z,O,R, b0

where: S,A, T and R are the same as in an MDP and:

- Z is a finite set of observations.
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- O : S × A × S →
∏

(Z) is a discrete probability distribution over Z. O(s, a, s′, z) =

Pr(z|s, a, s′) is the probability that transitioning from state s to state s′ by doing the

action a will produce the observation z, where
∑

z∈Z

O(s, a, s′, z) = 1 ∀(s, a, s′).

- b0(s) = Pr(s0 = s) is the probability of being in state s at time t = 0.

Given that the state is not directly observable, the agent instead maintains a belief dis-

tribution over S. b0 is the initial state probability distribution and bt(s) is the probability

that the system is in state s at time t, given the history of all observations/actions the agent

received/affected and the initial belief state b0:

bt(s) = Pr(st = s|zt, at−1, zt−1, ..., a0, b0).

Knowing the last applied action a and the recent observation z, the agent calculates a new

belief state b′(s′) by applying the belief update function [Cassandra et al., 1994]:

b′(s′) = τ(b, a, z)

=
Pr(z|s, a, s′, b)Pr(s′|a, b)

Pr(z|a, b)

=

∑

s∈S

O(s, a, s′, z)T (s, a, s′)b(s)

Pr(z|a, b)
(3.4)

where Pr(z|a, b) is a normalizing factor defined as:

Pr(z|a, b) =
∑

s′∈S

∑

s∈S

O(s, a, s′, z)T (s, a, s′)b(s).

Definition 19 A POMDP policy πPOMDP is a function πPOMDP : bt → a, which associates

an action to each POMDP belief state.

The classical optimal approach to solve a POMDP is the value iteration approach [Sondik,

1971, Kaelbling et al., 1998], where iterations are applied in order to compute more accurate

values for each belief state V (b). Equation (3.5) describes the value function (Bellman’s Equa-

tion) for POMDPs which assigns the best value for a belief state depending on a chosen action

added up with the best rewarded values the agent could receive up to time t.

Vt(b) = max
a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

Pr(z|a, b)Vt−1(τ(b, a, z))

]

(3.5)
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Once iterations lead to a convergence, an optimal policy is defined by mapping the action

that gives the maximum value given by V (b).

π∗
t (b) = argmax

a∈A

[

∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

Pr(z|a, b)Vt−1(τ(b, a, z))

]

(3.6)

It is well known that the value function V (b) can be represented as a finite collection

of |S|-dimensional vectors known as α vectors. Thus, V is both piecewise linear and con-

vex [Sondik, 1978]. The backup operation represented in (Equation 3.5) reaches a complexity of

O(|S|2|V ||Z||A|), where |V | is the number of α vectors representing the value function [Sondik,

1978]. In some cases, if the problem has very bounded action and observation spaces the com-

plexity might get to O(|S|2|V |). Knowing that for computing an optimal policy, V must be

updated over the entire belief space, this will lead to a very expensive computation for the

whole backup operations.

To overcome the complexity of optimally solving a POMDP, a large variety of approximate

approaches were described to decrease the complexity of finding acceptable policies. Some

approaches consists in finding an exact solution for an approximate model as in QMDP based on

the underlying MDP [Littman et al., 1995] or grid-based approximations [Hauskrecht, 2000, Zhou

et Hansen, 2001]. Other approaches consists in finding an approximate solution of the exact

POMDP model as in point-based approaches [Smith et Simmons, 2004, Pineau et al., 2006, Shani

et al., 2007, Dibangoye et al., 2009]. Point-Based approaches compute the value function V only

over a finite sub-set of belief states B instead of computing an optimal value function over the

entire belief space. As a result, the complexity of the value function is bounded by |B|. Point-

based approaches differ in their method to collect the reachable belief states and the way they

order the point-based backups on the collected beliefs. The publicly released ZMDP software

package [Smith, 2005] was used to solve some of the POMDP models described in Part III of

this thesis, by calling one of its solvers: Focused Real-Time Dynamic Programming (FRTDP).

The following presents a quick description for some approaches of solving POMDPs.

The QMDP approach

The QMDP [Littman et al., 1995] is a sub-optimal solution based on the Q-value function of the

underlying MDP of the solved POMDP. In a POMDP, the Q function for action a notated Qa(b)

is the expected reward for a policy that starts in belief state b, takes action a and then behaves

optimally. By choosing the action that has the largest Q-value for a given belief state, an agent

can behave optimally. To find Q-functions for POMDPs, the QMDP approach proposes to make

use of the Q-values of the underlying MDP. That is, by temporarily ignoring the observation

model and find the QMDP (s, a) values for the MDP consisting of the transitions and rewards

only. Using the QMDP values, it is possible to estimate the Q value for a belief state b (using
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the probabilities of being in a state b(s)) for each possible action as:

Qa(b) =
∑

s∈S

b(s)QMDP (s, a)

This approach assumes that after the next action, the agent will have no more uncertainty about

its state. Thus, the action with largest long-term reward from all states will be the one chosen at

each step. The QMDP algorithm is a suboptimal policy that, nevertheless, can yield acceptable

results when applied to medium or large sized environments. The main drawback is that QMDP

policies will not take actions to gain information. For instance, a “look around without moving”

action and a “stay in place and ignore everything” action would be indistinguishable with regard

to the assumption of one-step uncertainty. This can lead to situations in which the agent loops

forever without changing belief state.

Grid-based approaches

The key of finding truly optimal policis in POMDPs is to cast the problem as a completely

observable continuous-space MDP where the state set will be the set of belief states [Cassandra

et al., 1994]. A family of approximate solvers were established for finding a solution to solve

MDPs with continuous state space [Hauskrecht et Kveton, 2003, Li et Littman, 2005], one of the

first of this family is the grid-based approach [Zhou et Hansen, 2001, Bonet, 2002, Hauskrecht,

2000].

A finite grid is placed over the belief simplex, values are computed for points in the grid, and

interpolation is used to evaluate all other points in the simplex. Therefore the value function

over the continuous belief space can be approximated by the finite set of the grid points that

estimates the value of an arbitrary point of the belief space by relying only on the points of the

grid and their associated values. Different approaches were proposed related to the emplacement

of the points and the regularity of the grid to approximate the calculation of the value function

as efficiently as possible [Hauskrecht, 2000, Zhou et Hansen, 2001].

Topological Order Planning

Topological Order Planning (TOP) [Dibangoye et al., 2009], is an approximate POMDP solver

that uses the topological order of the underlying MDP to find good belief space trajectories.

TOP groups together states into layers, creating an acyclic layer graph. Layers are solved in

reversed topological order, starting with layers that contain goal states. Belief space trajectories

are directed towards the solvable layers of the model. Once a layer has been solved, trajectories

that reach that layer can be terminated, resulting in shorter trajectories and thus less backups.

The policies yield from TOP algorithm are interesting when the represented problem contains

a significant topological structure.
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Heuristic Search Value Iteration

Heuristic Search Value Iteration (HSVI) [Smith et Simmons, 2004] is an approximate POMDP

solution algorithm that provides provable bounds on the reward obtained by the polices it

produces with respect to the optimal policy. The algorithm stores a compact representation

of the upper and lower bounds of the value function over the belief state. After initializing

the lower bound according to the worst case reward for each action and the upper bound by

assuming full observability, the bounds are refined through heuristic search by making local

updates to specific beliefs. The beliefs to update are chosen by heuristic depth-first search of a

tree that represents how beliefs evolve according to the actions and observations. The policy is

obtained directly from the piecewise linear convex representation of the value function given by

the lower bound. HSVI can be modified to yield an anytime algorithm by iteratively adjusting

the convergence threshold for the bounds.

Focused Real-Time Dynamic Programming

Focused Real-Time Dynamic Programming (FRTDP) is another heuristic search-based approxi-

mation algorithm that is similar to HSVI. FRTDP maintains, as HSVI, upper and lower bounds

on the value function. However, it chooses states in a way that avoids revisiting states that do

not improve. FRTDP stores an explicit graph, a finite data structure holding information about

states which have already been visited during search. As in HSVI, the goal of the heuristic is to

achieve the greatest reduction in the width between reward bounds. This algorithm also uses

an adaptive termination criteria to prevent unnecessary exploration of long, low reward trials.

FRTDP is typically faster to converge than HSVI, at the expense of having far greater memory

costs because of the need to store the explicit graph. A description of FRTDP applied to MDP

models is given in [Smith et Simmons, 2006].

3.5 Discussion

The chapter presented different models that are used in the literature to describe and solve

HRI problems. This discussion aims to compare the different advantages and properties of the

previously mentioned models. Table 3.1, presents comparisons between the different Markovian

models, BDI, DBN and HTN. The subjects of comparison are: handling uncertainty, com-

plete/partial observability, passive/active model, planning horizon and optimality.

The table shows the ability of HMMs, POMDPs, BDI and DBN to handle uncertainty and

partial observability. HTNs, in their formal model, are not able to handle uncertainty and

partial observability, however, [Bouguerra et Karlsson, 2005] extended HTN model to overcome

both limitations. DBNs represent a generalization of systems that model dynamic events such

as HMMs.

An active model is a model that represent actions (planning and execution). Markov chains,

HMMs, DBNs and HTNs are considered as passive models. HTNs are used to hierarchically
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Uncertainty Observability Active/Passive Planning Horizon Optimality

Markov Chains true complete passive - -
HMMs true partial passive - -
MDPs true complete active long-term optimal

POMDPs true partial active long-term optimal

BDI true partial active one-step sub-optimal
DBN true partial passive - -
HTNs false complete passive - -

Table 3.1: A comparison between different Markovian models, BDI, DBN and HTN.

formulate a plan and decompose it to primitive actions but they are not actually involve in the

action execution. BDI architecture is used for deciding goal directed agent actions in dynamic

environments and to guide execution in real time.

As a heuristic approach the BDI model is likely to be sub-optimal. Moreover, BDI is a one

step planner and include no look-ahead planning.

Many efforts concentrated on comparing and finding relations between those different models

(POMDP/BDI [Schut et al., 2002], BDI/HTN [de Silva et Padgham, 2004] and BDI/MDP [Simari

et Parsons, 2006]). Some were interested in hybrid models as for the hybrid POMDP/BDI

model [Nair et Tambe, 2005] used for multi-agent teams.

The multi-agent systems community are mostly interested in BDI, Multi-agent MDP [Boutilier,

] and Decentralized POMDPs [Bernstein et Zilberstein, 2000]. These approaches are used when

planning for more than one agent in the team.
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This chapter will discuss related work to the HRI problematics described in Chapter 2 that

employ approaches from Chapter 3. The described related-work aims to solve collaborative and

assistive HRI domains in regard to: intention recognition, human-robot communication and

planning. This chapter ends with a comparison between the suggested systems in the literature

and what they offer as solutions to the difficulties facing companion robotic systems.

4.1 Intention Recognition

Following to the description of human intention in Section 2.3.2, the ability to understand a

partner’s actions in terms of goals and other mental states is an important element of coop-

erative, collaborative and assistive behaviors. Therefore, interactive robots need to recognize

their human-partner’s goals and intentions. For instance, in a human-robot collaborative task

scenario, the robot should be capable of tracking human actions and use belief and goal infer-

ences to anticipate the human’s needs and to plan actions to provide the human with timely and

relevant collaboration. Such a capability will enable robots to behave based on implicit rather

than explicit commands from humans.
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Definition 20 Intention Recognition is the procedure of recognizing the intention of an agent

using, as clues, the actions of this agent or the changes in the environment caused by the agent’s

actions.

Definition 21 Plan Recognition is the procedure of recognizing the intention of the agent as

well as his plan to achieve this intention.

Definition 22 A Plan is a sequence of actions that leads an agent to achieve an intended goal.

There are many aspects of the utility of intention recognition for robot companion applica-

tions. Cleaning robot machines, that are aware of the human plan of the day, are more likely to

avoid noisy cleaning tasks in the same room where the human is resting [Cirillo et al., 2009b].

Recognizing the human intention, in human robot collaboration, is practical for the robot in

order to plan the best action to collaborate with the human [Hoffman et Breazeal, 2007]. In

elderly assistance, suspicious activities recognition helps in detecting a need of assistance such

as a reminder to take medication [Pollack et al., 2003, Myers et al., 2007], or assist cognitively

impaired people in completing certain tasks [Adlam et al., 2009, Hoey et al., 2010].

To be able to infer the human intention, the robot should be able to evaluate the human

actions towards his possible intentions. To do this, as described in Figure 4.1, the robot needs

to perceive human actions and use them next to existing knowledge in order to translate those

actions into possible intentions. The robot, therefore, can plan most appropriate decisions

with respect to the human inferred intention. The existing knowledge can be of the form of

relational task hierarchy [Natarajan et al., 2007], policies and Q-functions [Fern et al., 2007],

trajectories [Nguyen et al., 2005], etc. This knowledge can be self-constructed by the robot

through simulation [Gray et al., 2005] or learned by observation [Taha et al., 2008] or simulated

then reinforced by learning [Fern et al., 2007] or manually given by the user.

Knowledge

Human
intention
inferrer

Inferred P lanner
action

Robot

Perceived
human
action

intentions

Figure 4.1: Inferring human intention by perceiving his actions.

Definition 23 The Simulation theory of empathy [Rameson et Lieberman, 2009, Gallese et

Goldman, 1998] proposes that we understand the thoughts and feelings of others by using our

own mind as a model.
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The simulation theory is a theory of how we understand others. The theory holds that

humans anticipate and make sense of the behavior of others by activating mental processes that,

if carried into action, would produce similar behavior.

To be able to accompany humans, robots need to understand people as social entities whose

behavior is generated by underlying mental states such as intentions, beliefs, desires, feelings,

attentions, etc. Using similar brain structure to simulate the underlying mental states of the

other person can help in anticipating and understanding his behavior. This similarity have dual

use: to be able to generate similar behavior as humans and also predict and infer the same in

them [Gray et al., 2005].

!!??

start

(a) The robot perceiving the hu-
man actions.

(b) The robot simulating
possible human intentions
(trajectories) by empathy.

start

(c) The robot matches simula-
tion with the human world.

Figure 4.2: Generating knowledge about the human by simulation.

Figure 4.2 shows an example of a robot trying to infer its human partner’s intention. Pos-

sible human intentions in this example include: going to bed to rest, watch tv or make coffee.

Figure 4.2(b) shows how the robot can generate knowledge about the human by simulating

trajectories by empathy. In Figure 4.2(c), the robot matches its generated knowledge about

the human with the real human world, allowing it to make inferences about the human’s likely

goals that would arise given these circumstances within the associated robot system. Different

approaches are proposed to actualize this matching, some of those are to be detailed in the

following of this section. Incorrect inferences present an opportunity for learning [Fern et al.,

2007]. Ideally, even incorrect inferences should at some level seem plausible to the human. This

will assist with efficient error recovery and reduce the chances of making the same incorrect

inference in the future.

4.1.1 Approaches for Intention Recognition in HRI

Different domains require different kinds of information to infer or recognize: informative robots

might need to infer their human partner’s belief states to anticipate his informational needs,

collaborative robots are more driven by the human’s goal states to physically help achieve those

goals, and servant-communicative robots need to infer the human spoken dialogs and gestures

to understand how they can serve him. Main approaches used in the literature for intention
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recognition are now detailed, they use formalism based on HMMs, DBNs and Q-value functions

from MDPs.

Intention recognition using HMMs:

Trained HMMs have been used for activity understanding, showing a significant potential for

their use in activity modeling and inferring intent [Kelley et al., 2008, Yokoyama et Omori,

2010]. Using the Baum-Welch algorithm [Rabiner et Juang, 1986], it is possible to apply re-

peated execution of a given activity to provide the data used to estimate the model transition

probabilities [Kelley et al., 2008]. As a result of training, the robot has a set of HMMs, one for

each activity. The recognition problem, then, consists of inferring the intent of the actions from

the trained HMMs. Toward this end, the robot monitors the human behavior and computes the

likelihood that the sequence of observations has been produced by each applicable HMM using

the Forward Algorithm [Rabiner et Juang, 1986]. To recognize the intent of an agent, Kelley et

al. considered the intentional state emitted by the model with highest probability. The Viterbi

Algorithm [Rabiner et Juang, 1986] detects the most probable sequence of hidden states.

HMMs are a powerful tool for modeling sequential phenomena, and have been knowingly

used in applications involving speech and sound [Rabiner, 1989].

More formalisms based on HMMs have been proposed for domains with special properties,

like: Hierarchical Hidden Markovian Model (HHMM) [Nguyen et al., 2005], Abstract Hidden

Markovian Model (AHMM) [Bui et al., 2002], Abstract Hidden Markovian Memory Model (AH-

MEM) [Bui, 2003], Switching Hidden Semi-Markovian Model (SHSMM) [Duong et al., ].

Intention recognition using DBNs:

Bayesian Networks and DBNs are known for their capability for exploiting the causal depen-

dency structure of the given domain. They were used in many human intention recognition

domains [Hui et Boutilier, 2006, Schmid et al., 2007, Natarajan et al., 2007, Krauthausen et

Hanebeck, 2009] and suspicious activity recognition [Pollack et al., 2003].

Figure 4.3 shows a generic DBN model for intention recognition inspired from [Schrempf et

Hanebeck, 2005]. They feature one node for the hidden intention state in every time step. As

human intentions are often influenced by external circumstances, they represent these environ-

mental influences by a node containing the “domain knowledge”. Possible actions are given as

nodes depending on the intention. Measurement nodes layer is proposed to be added to the

network to enable robots to reconstruct observations from sensor measurements.

To represent temporal behavior of a human, an edge is introduced from the intention node

in time step t to the intention node in time step t+1. This enables the network to cope with the

human “changing his/her mind”. The human actions depend on his intentions. These actions do

not depend on other actions in the same time step. However, actions may depend on the action

performed in the preceding time step. Hence, an edge from every action to its corresponding

node in the next step is drawn. These edges contain information on how likely it is, that the
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same action is performed twice, given a certain intention. Edges from one action in time step

t to a different action in time step t + 1 are possible as well, introducing information on the

likelihood of successive actions. Since sensor measurements depend only on the action at the

current time step and not on previous measurements, no edges are drawn between measurement

in two different time steps. The edges connecting two time steps represent the transition model

as in HMMs.

domain
knowledge

action1

measurement1

measurementn

actionn

measurement1

measurementn

domain
knowledge

action1

measurement1

measurementn

actionn

measurement1

measurementn

time step t+ 1time step t

IntentionIntention

Figure 4.3: A generic DBN model for intention recognition.

To estimate the human intention, the estimator computes a probability density over the

intention given the measurements and the domain knowledge using Bayesian forward and back-

ward inference.

Different particular DBN models were proposed as in Hybrid Dynamic Bayesian Networks

(HDBNs) [Schrempf et al., 2007] for continuous and discrete valued states and Quantitative

Temporal Bayesian Networks (QTBNs) [Pollack et al., 2003] for domains where the Markov

property is violated.

Intention recognition using Q-value functions:

As mentioned before, some approaches simulates human plans then uses observed human actions

to estimate the human intention. For such estimations, [Fern et al., 2007] suggest to build an

MDP for each human intention g including the environment states and the human actions and

then solve the Q-value function. The Q-value function gives the expected cost of executing

agent action a in world state w and then acting optimally to achieve intention g using only

human actions Q(a, w, g). Computationally, the main obstacle to this approach is computing

the Q-value function, which need only be done once for a given application domain. Then an

intention distribution G is maintained where the probability of the human having intention g

conditioned on observation sequence is Pr(g|Ot). Given the human Q-value functions calculated

from the MDPs, it is straightforward to incrementally update the intention distribution upon

each of the human’s actions Pr(g|Ot) = (1/Z)P (g|Ot−1)Q(a, w, g), where Z is a normalizing

constant. That is, the distribution is adjusted to place more weight on intentions that are more
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likely to cause the agent to execute action a in w. The accuracy of intention estimation relies

on how well the Q-value functions truly reflects the human.

4.1.2 Ambiguity in Intention Recognition

It is possible to obtain ambiguous results from intention recognition models, where the likelihood

of many possible human intentions are equal. As in the example of the bar-robot described in

Section 2.2.3, the situations where the human is standing near the bar with an empty glass

provide insufficient information to the robot to know if he wants to fill his glass or not. In this

case, it is impossible for the robot, to infer the intention of the human, therefore, to decide what

to do.

Some have thought of possible ways that can trigger a change in this ambiguity. In [Schrempf

et al., 2005, Schmid et al., 2006, Yorke-Smith et al., 2009], they used models with proactive

(Definition 7) behavior to trigger a clarifying reaction from the human. The robot proactively

supposes one of the intentions is true and acts in consequence then monitors the reaction of

the human to better recognize his intentions. In the example of the bar-robot, the robot can

proactively choose that the intention of the human is to fill his glass, so it proactively extends

its hand with the bottle towards the human and waits for the reaction. The robot should have

the means to choose which intention to suppose true and which proactive action is the safest

and most probable to reveal a human reaction.

It is possible to use communication to solve ambiguity in intention recognition. Verbal

communication is the most studied form of communication for ambiguity detection. Using verbal

communication, the robot can ask the human about his preferences over intentions. However,

audio signal on a mobile robot have poor reliability. When the robot detects a change in the

human intention, the robot must decide whether conflicting evidence has been introduced by a

speech recognition error or by an actual new user intention. Therefore, the mission is limited

by the noisy and stochastic speech input of the human which leaves to the robot’s system to

overcome the problem of uncertainty in speech recognition [Williams et Young, 2007, Schmidt-

Rohr et al., 2008a].

Cost of Communication The ultimate goal of a dialog system is, mostly, to receive a human’s

request, to acquire information from him or to give information to him. A human can be

considered for the robot as a source of information. When uncertain about the state of the world

or the state of the human, some systems allow the robot to ask the human to get information

in order to be able to continue with its tasks. Also, when collaborating with the human, the

robot might need to communicate information to the human that are important to the task

achievement. In all previous situations, however, the robot must interrupt the human to initiate

a dialog, which is not always appropriate. The robot should be able to decide when to query the

human [Kaupp et al., 2010] and it must make trade-offs between the gain of gathering additional

information and the cost of interrupting him [Kamar et al., 2009, Rosenthal et Veloso, 2011].
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Spoken dialog managers have benefited from using stochastic planners. Recent research has

shown that MDPs and POMDPs can be useful for generating effective dialog strategies [Doshi

et Roy, 2008, Roy et al., 2000].

4.1.3 Learning

Learning approaches can be used in activity recognition [Kelley et al., 2008] where a human

model of an activity is learned by observation. Once having a learned human model for each

of the human activities, a system can detect an abnormality in the human actions and propose

assistant [Hoey et al., 2010] or alert a caregiver [Duong et al., ]. Q-learning 3.4.3 can be used

to learn a human model and then evaluate observed human actions for all possible activities in

order to recognize his intention [Fern et al., 2007].

In this thesis, we do not use learning mechanisms, however, it is our priority as a future work

to integrate learned human models into some of our proposed contributions.

4.2 Planning in HRI

Most HRI environments are full of uncertainty and partially observable, they are mostly repre-

sented with non observable, hidden states like human intentions. This is a challenge for robotic

systems to be able to represent such environments in a way that allows optimal or near op-

timal planning. Environment representation must balance between two problems. First, it is

important to choose how to model companion robots environments in order to be able to plan

actions considering all possible situations. Second, robot systems act online in real human en-

vironments, this makes time a very important aspect in decision making. Larger environment

representations mean more needed time to treat those representations and to make decisions.

4.2.1 Dynamic Environments

Environment representations must include information that represent all needed facts about the

environment regarding the problem domain, in addition to information about the human who

is a part of this environment. Changes in the environment can be caused by the human, by the

robot or other ways. The changes by the robot can be known with uncertainty by knowing the

executed robot action. Changes made by the human can be known with uncertainty if the human

action is observed or can be tracked by the robot. Spontaneous changes in the environment (not

necessarily caused by the human nor the robot) can be represented by a probability distribution

so that the system is aware that they may occur.

Supposing a robotic system that follows a time-step protocol to update its knowledge about

the state of the environment, the literature includes three possible ways for the environment to

evolve at each time step. Figure 4.4(a) shows a simple turn taking type of evolving where the

human and the robot switch turns and only one action from one of them is applied at each time

step, as in [Hoffman et Breazeal, 2007]. Figure 4.4(b) shows a special case from the previous
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Figure 4.4: Different models of alternance between human and robot actions.

model, where the human and the robot switch turns, however, the robot takes turn over several

time steps, applying an action at each of them, until its planner has no more useful actions

to do, and after that, the human takes turn for only one time step to make one action, this

is presented in [Fern et al., 2007] and will be referred to as one/several turn taking. Finally,

Figure 4.4(c), shows the case where both human and robot apply in parallel an action at each

time step, as in [Taha et al., 2008, Rosenthal et Veloso, 2011].

The update blocks in Figure 4.4 updates the robot knowledge about the environment using

the robot action, the representation model and the observations (human action and changes in

the environment).

4.2.2 Planning Under Uncertainty

The sense of expectation is very important for planning. To plan optimally and under uncer-

tainty, the agent has to consider not only what will “most likely” happen but everything that

“may” happen. POMDPs have proved very useful for modeling, planning and learning under

uncertainty and for long term horizons [Cassandra et al., 1994, Kaelbling et al., 1998], which

make them appropriate to use for companion robots systems.

Uncertainty about the changes, caused by possible human or robot actions, can be repre-

sented in POMDPs by the transition function. Human actions can be dealt with as observations,

and the human intention is represented as a non observable part of the state (hidden state).

Some approaches that use POMDP planners have used to infer human intentions: trained

HMMs [Taha et al., 2008], DBNs [Natarajan et al., 2007] and Q-functions [Fern et al., 2007].
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Companion robots are mostly intruders to human environments. Humans are free in choosing

their actions, and robots must adjust and plan for best interaction with the human (collaborate

with, cooperate with or assist the human). As part of this adjustment, robots must be able

to infer human intentions and choose their actions almost instantly. This will prevent situa-

tions where human loose patience, especially in human-robot collaboration including joint tasks

and related manipulation of objects [Hoffman et Breazeal, 2007], or in assisting and detecting

abnormality for elderly people in their daily living activities [Boger et al., 2005].

As shown in Figure 4.4 a robot decision must be taken:

- each time step while observing the human action at each of them.

- each two time steps while observing the human action from the previous time step.

- each time step except when the planner fails to choose an action, one human action is

observed once before the sequence of actions starts.

Each of these models is chosen depending on the domain to solve, however, the second model

(Figure 4.4(b)) prevents the human from acting while the robot still believes that it can make

important actions for its mission.

When the system has not enough information to decide an action, the best decision for a

reactive robot system can be to wait for a time step or more expecting future observations to

give better information about the situation, consequently, being able to make a decision. When

the lack of information is related to the human, as described in Sections 2.2.3 and 4.1.2, it is

possible to behave proactively/coactively instead of waiting. The challenge for those planners

is to select a robot action that urges the human to react in a way that unravels his intention

or guide him to collaborate. The corresponding robot actions need to be executed with care,

since the recognized intention is uncertain and the human is meant to close the loop of intention

recognition.

4.2.3 Planning versus Interaction Type

Planning depends on the relation between the human and the robot during the interaction:

Planning for human-robot team (collaboration): For a human-robot team sharing a task,

the planning can be assigned as followed: the human plans for both team members and

the robot follow the human orders, the robot plans for both team members and the human

follows the robot orders or both team members are responsible for their own actions with

respect to the team goal and the actions of the other member. The first two categories

have a resemblance to multi-agent planning for a task [Wooldridge, 2002, Nair et Tambe,

2005]. Companion robots systems should not be considered in those two categories be-

cause in the first the robot is considered as a tool and not an intelligent system, and the

second category does not totally respect the ethics of companion robots. However, it is

possible that the robot proposes different plans and then negotiates with the human, who
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chooses the optimal plan for the task and his preferences [Montreuil et al., 2007, Alili

et al., 2009]. In the first category, which is the most appropriate to companion robots, the

robot plans its actions while observing the human actions. For example, in collaborative

assembly tasks, the robot must be able to recognize human’s basic movements like grasp-

ing or lifting and be able to place these in the context of the task. This would allow the

robot to plan its actions in the best way to collaborate with the human. For instance, if

the robot understands that the plan of the human is to assemble two pieces together, it

can collaborate by passing the right type of screwdriver to the human.

Planning for a human aware robot (cooperation): Here the robot plans his actions with

respect of the human existence and the constraints of this existence on choosing the task

to do. Human intention in this category is an important information to the robot planner.

However the robot will not be interested in the exact human intention but it will help in

planning to choose the robot’s tasks with respect to the human plan (intention).

Planning for assistance: Assistant robots are mostly interested in the current task the human

is doing. When a need for assistance is detected (abnormality detection) the robot planner

must first verify this need. If confirmed, it plans for the best action to assist the human

knowing the current situation and the level of progress of the intended task.

4.3 Discussion

This chapter included related work in the fields of HRI and companion robots, especially in the

subject of human intention recognition and planning under uncertainty.

The chapter discussed the proposed state of the art models for representing human informa-

tion and approaches for recognizing human intentions and deal with ambiguity. It also discussed

the uncertainty in companion robots environments and the non-observability of some human

variables and the high utility of POMDPs as planners under those circumstances. Section 3.4.4

discussed that POMDPs are not tractable for large state space and mentioned some proposed

approximate algorithms in the literature.

Several research projects have concentrated on applicable companion robots and put their

robots in real experimental situations. In [Dautenhahn et al., 2005], they explored people’s

perceptions and attitudes towards the idea of a future robot companion for the home. The

approach was adopted using questionnaires and human-robot interaction trials to derive data

from 28 adults:“Results indicated that a large proportion of participants were in favor of a robot

companion and saw the potential role as being an assistant, machine or servant. Few wanted

a robot companion to be a friend. House-hold tasks were preferred to child/animal care tasks.

Human-like communication was desirable for a robot companion, whereas human-like behavior

and appearance were less essential”. This proves the humans acceptance of robots in their daily

life. However, it also reminds us of the many important features that are still needed to fulfill

the expectations of the accompanied humans.
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To conclude the state of the art, Table 4.1 shows a comparison between different studies that

were referenced in this chapter in regard to their focus problem, capabilities and the approaches

they used. The symbol “-” is used when information are not available or not related. The

table includes for each referenced study the intention recognition approach (HMM, DBN or Q-

value functions), the robot action planner (POMDP or other), the type of interaction between

the human and the robot (collaboration, cooperation or assistance), the robot behavior type

(reactive or proactive) and the human robot action turn taking in time steps (simple turn taking,

one/several turn taking and parallel). The “*” in the planner column indicates a planner that is

not presented in the section. For example [Cirillo et al., 2009b] uses PTLPlan (probabilistic

conditional planner), [Hoffman et Breazeal, 2007] uses an anticipatory action selector after

calculating the cost of possible action sequences, [Pollack et al., 2003] uses local search approach

called planning by rewriting and [Schmid et al., 2007] uses a human expert entry of possible set

of actions for each possible human intention where the planner calculates the best action if the

intention is known and unique or else it calculates the best proactive action if the belief over

the intention is very ambiguous.

Important advancements have been achieved in the domain of intention recognition for HRI.

However, most accomplishments concerning decision making for companion robots have been

specialized in one type of interaction or even a certain interactive task.

We are interested, in this thesis, in decision models that give a companion robot the ability

to recognize the human intention and act accordingly by exploring new and original directions.

Indeed, we are interested in high level models that enables companion robots to

switch between different types of interactions and different types of behaviors de-

pending on the recognized human intention or his needs. To our knowledge, this

issue has not been addressed before.
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Intention Recognition Planner Interaction Type Behavior action/time step

[Nguyen et al., 2005] HHMM - - - -
[Kelley et al., 2008] HMM - - - -

[Schrempf et Hanebeck, 2005] DBN - - - -
[Cirillo et al., 2009b] HMM * cooperation reactive parallel

[Hoffman et Breazeal, 2007] - * collaboration reactive simple turn taking
[Pollack et al., 2003] QTBN * assistance reactive parallel
[Hoey et al., 2010] action recognition/tracking POMDP assistance reactive parallel

[Natarajan et al., 2007] DBN POMDP collaboration reactive one/several turn taking
[Fern et al., 2007] Q-functions POMDP collaboration reactive one/several turn taking
[Taha et al., 2008] - POMDP assistance reactive parallel
[Boger et al., 2005] action recognition/tracking POMDP collaboration reactive parallel
[Schmid et al., 2007] BN * - proactive -

[Schmidt-Rohr et al., 2008a] HMM POMDP assistance proactive parallel

Table 4.1: A Comparison between state of the art studies concerning approaches for intention recognition and companion robots planning.
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This chapter proposes a companion robot decision model that is augmented with a capability

of estimating the human intention. The described decision model can be solved with POMDP

The work presented in this chapter was published in the proceedings of 23rd IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2009 [Karami et al., 2009] and in the proceedings of the 5th ACM/IEEE
International Conference on Human Robot Interaction, HRI 2010 [Karami et al., 2010]
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techniques. The chapter explains how the decision model is enriched to help in estimating human

intentions while making decisions in regard to those estimations.

The chapter starts with a motivation for simulating rational human policies to generate a

library of human action values (Q-values). Furthermore, a description of how to integrate the

Q-values into the robot decision model, while clarifying the role of this integration in updating

the estimations over the human intention. This chapter also describes a domain example of

a human-robot cooperation. The example consists of a shared mission divided into a number

of tasks. It illustrates, throw a real scenario, the use of the described decision model and the

integration of the human Q-values. Different experiments are presented to show scalability and

performance analysis and to compare results of different policies using simulations with a human

acting randomly, rationally or semi-rationally. The experiments also statistically compare the

estimated human intention with the real chosen task by the rational and semi-rational human

to demonstrate the efficiency of the presented model in estimating the human intention.

5.1 Motivation

As pointed in Chapter 4, companion robots should understand people as social entities whose

behavior is generated by underlying mental states. Inspired from the simulation theory of

empathy (Definition 23), it was suggested in the literature that with similar brain structure

to simulate the underlying mental states of the other person, it is possible to anticipate and

understand the behavior of others. A companion robot who has enough information about the

human in its own system can infer the human’s likely goals and beliefs. In this case, the robot’s

system uses its resources not only to generate its own behavior, but also to predict and infer the

same in the human in order to behave with respect to the human’s beliefs and goals.

The decision model is proposed for scenarios where the human’s intention is not always

known to the companion robot, however, human actions are observable and can be detected

by the robot. Therefore, it is necessary that the robot system is able to detect/perceive all

human actions that are related to the human-robot mission. A lot of research is concerned

with the subject of perception of the human actions based on vision [Poppe, 2010] or wearable

sensors [Zhu et Sheng, 2011], though it is not a subject of this thesis. Our concern is for the

robot to be able to link an observed human action to a possible human intention. Indeed, with

inspiration from the simulation theory of empathy, we suggest a way to evaluate human actions

towards all human intentions by integrating human action Q-values generated from Markovian

decision models (Human-MDPs) into the robot decision model.

Tracking human intentions is very important to the robot’s duty as a companion to the

human. Consequently, the non observable human intention must be part of the robot’s decision

variables. It is rare that the robot knows for sure the human intention, however, it can keep

a probability distribution over all possible intentions. To be used effectively, this probability

distribution must be updated each time new information about the human and the environment

is available. This will allow the robot to detect important changes in the human intention,
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whether they are due to change in human’s mind or previous bad interpretation. For those

reasons, the companion robot decision environment is considered partially observable which

motivated us to use POMDPs to model the companion robot decision problem.

5.2 Evaluating Human Actions

This section will explain how the robot system simulates rational human policies and creates

from them a library of human action values (Q-values) that are later integrated in the robot’s

own decision model (as explained in Section 5.3). By simulating rational human behavior in its

own system, the robot can evaluate human actions toward all intentions.

The robot system creates a set of Human Markovian Decision Processes (Human-MDPs).

Each Human-MDP (denoted MDPh) is modeled to simulate by empathy a rational human acting

towards one of the possible intentions. Solving a Human-MDP, associated to a certain intention,

will yield the associated Q-values which hold the value of each human action in each human state

given this intention. Therefore, for a certain human state and action, the Q-values from different

Human-MDPs give an idea of the importance of this action towards the different intentions.

Fig. 5.1 shows the high level process of the companion robot decision making. The robot

starts by creating the Human-MDPs and solving them to get a library of Q-Values which are

then integrated in the robot’s decision model.

A Set of

Human-MDPs

Simulated

Human A
tion Values

(Q-values)

Library of

Environment

Companion Robot

De
ision Pro
ess

POMDP

Robot A
tion

A
tion
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Figure 5.1: The high level process of the companion robot System.

5.2.1 Modeling a Rational Human (The Human MDPs)

It is impossible for the robot to simulate the exact human behavior, even if the robot has ac-

cess to all information about the human and his mental state. This may be due to different

reasons like human emotions or situations that are not predictable nor perceivable by the robot.

However, the human behavior simulation can be initialized using a model of a rational human

acting in a similar environment toward a certain goal, where it is possible later on to update the

model by learning certain variables about the human’s personality whom the robot is accom-
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panying (Section 4.1.3). The described model include only the rational human model without

enhancement by learning.

To be able to model the rational human, the robot uses information concerning the human,

the environment, the human possible actions, the changes produced by the human actions,

the human goal and the main must/must-not do to achieve this goal. Those information are

represented in the Human-MDP set of states, set of actions, transition and reward functions.

Let TK be a set of all tasks concerning the human-robot mission and let HI ⊆ TK a set of

tasks that the human might intend to do at any time during the mission. In other words, HI

includes all possible tasks that the robot should consider as a possible human intention.

A Human-MDP model (MDPh
hi) is created for each possible human intention hi ∈ HI. This

results in a set of Human-MDP models:

MDPh
hi =

〈

Sh
hi, A

h
hi, T

h
hi, R

h
hi

〉

∀hi ∈ HI , where:

Sh
hi represents the set of all possible states, each state includes human and environment

variables that are usually common for all tasks in addition to possible variables that concern the

human intended task hi. Ah
hi represents the set of human possible actions related to achieving his

intended task hi. T h
hi is the transition function that gives the probability of transiting between

two states by doing an action: T h
hi(s

h, ah, s′h), ∀sh, s′h ∈ Sh and ah ∈ Ah. Rh
hi is the reward

function that gives the assigned cost or gain for doing a certain action from a certain state,

Rh
hi(s

h, ah), ∀sh ∈ Sh and ah ∈ Ah.

However, the idea of creating the Human-MDPs is to evaluate all possible human actions in

all possible situations and for all possible tasks. For this reason, a union of all states and actions

is created and used in all Human-MDPs, as the following:

Sh =
⋃

hi∈HI

Sh
hi, Ah =

⋃

hi∈HI

Ah
hi

When creating the Human-MDP (MDPh
hi1

), variables that are related to Shi2 but not to Shi1 are

set to a default value and the MDPh
hi1

model causes no change in their values. Moreover, actions

in Ahi2 but not in Ahi1 cause no change in the MDPh
hi1

model. The reward function should be

defined in accordance between all Human-MDPs; actions with the same level of importance to

achieve a task should have close reward values.

As a result of creating the union of states and actions, the Human-MDPs are finally repre-

sented as the following:

MDPh
hi =

〈

Sh, Ah, T h
hi, R

h
hi

〉

∀hi ∈ HI.

5.2.2 The library of Human Action Values (Q-values)

The Q-values are calculated by solving the described Human-MDP models. MDPs can be

solved using classic Value Iteration [Puterman, 1994](Section 3.4.3) or using factored or other
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approximate MDP algorithms [Boutilier et al., 1999, Koller et Parr, 2000, Guestrin et al., 2003,

Guestrin et al., 2011] for large scale models.

Algorithm 4 illustrates the calculation of the Q-values by solving the Human-MDPs using

classic Value Iteration. During convergence (lines 4:13), the library of Q-values Qhi(s
h, ah) is

filled with the updated value function of the corresponding Human-MDP (Vhi).

Algorithm 4: Calculation of Human Action Values (Q-values)

Input : MDPh
hi =

〈

Sh, Ah, T h
hi, R

h
hi

〉

∀hi ∈ HI, , a discount factor γ, a precision
criterion ǫ.

Output: A Library of Human Action Values (Q-values): Qhi(s
h, ah).

// Running value iteration for all Human-MDPs

forall hi ∈ HI do1

forall sh ∈ Sh do2

Initialize Vhi(s
h) = V ′

hi(s
h) = 0;3

repeat4

forall sh ∈ Sh do5

Initialize max action value = 0;6

Vhi(s
h) = V ′

hi(s
h);7

forall ah ∈ Ah do8

Qhi(s
h, ah) = Rh

hi(s
h, ah) + γ

∑

s′h∈Sh

T (sh, ah, s′h)Vhi(s
′h);

9

if Qhi(s
h, ah) > max action value then10

Update max action value = Qhi(s
h, ah);11

V ′
hi(s

h) = max action value;12

until max
∀sh∈Sh

|V ′
hi(s

h)− Vhi(s
h)| ≤ ǫ ;

13

To illustrate the utility of the Q-values, Figure 5.2 shows an example of a library of Q-values.

We can read from the figure (left side) that applying action ah1 from state sh1 has a value of 0.5

and 0.2 for tasks hi1 and tk2 respectively. Those values, if well used by the robot system decision

model, can lead to an estimation (when the human is observed doing action ah1 from state sh1)

that he is more probably intending to do task hi1 than task hi2.

Library of Human Action Values (Q−values)

Qhi3(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.1 . . .

ah2 0.4 0.1 . . .

...
...

...
. . .

Qhi2(s
h, ah) sh1 sh2 . . .

ah1 0.2 0.3 . . .

ah2 0.1 0.1 . . .

...
...

...
. . .

. . .

Qhi1(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.2 . . .

ah2 0.3 0.2 . . .

...
...

...
. . .

. . .

. . .
MDP

h
hi2

Qhi2(s
h, ah) sh1 sh2 . . .

ah1 0.2 0.3 . . .

ah2 0.1 0.1 . . .

...
...

...
. . .

Qhi1(s
h, ah) sh1 sh2 . . .

ah1 0.5 0.2 . . .

ah2 0.3 0.2 . . .

...
...

...
. . .

MDP
h
hi1

Figure 5.2: The library of Q-values calculated from the Human-MDPs.
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5.3 The Robot Decision Model

The use of POMDPs, to model the companion robot decisional problem, is convenient regard-

ing the uncertainty and partial observability concerning the environment, the human and his

unknown intentions. In addition, systems with off-line planners (like a POMDP planned policy)

are more dynamical than those with on-line planners, which is a sensitive point in companion

robots.

In the following, the robot decision model is presented as an augmented POMDP, defined

by a tuple 〈S,A,Z, T,O,R, b0〉:

5.3.1 States, Actions and Observations

It is expected that the robot system represents all needed variables related to its decision process.

An augmented POMDP state s ∈ S should include essential information about the robot Scr,

the human Sh, the human intention (Shi = HI) and the environment (including information

about the tasks) Se. Therefore, each state s ∈ S includes four groups of variables.

S = Scr × Sh × Shi × Se.

The companion robot system does not know at all times the exact state of the world. There-

fore, it keeps a probability distribution over the set of states. b(s) represents this belief and b0

is given to be the initial belief state of the system.

The set of actions A represents all robot actions that can be applied during the mission.

The set of observations Z represents all possible observed human actions that are related to the

mission Zh where Zh ⊂ Ah, in addition to possible observations related to the environment Ze.

Therefore, Z = Zh ∪ Ze.

5.3.2 Rewards

The reward function is the key for controlling the behavior of the companion robot. It must be

defined in a way that motivates the companion robot to do actions that respect the human’s

intention and the assigned mission and avoid actions that cause a conflict with the human or

the mission’s success.

5.3.3 Transition and Observation Functions

The changes in the state of the environment are caused by the human and the robot who

is sharing the environment with the human. The transition function T gives a probability

distribution over the next state of the environment s′ ∈ S knowing the current state s ∈ S and

the robot latest action a ∈ A. It represents the uncertainty of the output of the robot’s action,

in addition to the uncertainty of the output of all possible human actions knowing that the

transition function has no knowledge of the latest human action.
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However, when the robot observes information about the human Zh or the changes in the

environment Ze, the observation function O will help in recovering part of the uncertainty

regarding the transition function. This will help refining the belief over the current state of

the environment in addition to better analyzing the behavior of the human toward his possible

intentions.

Integration of the Q-values into the companion robot decision model

This section presents how the library of Q-values is used to infer the human intention from

the observed human action. Indeed, when the human is rational, he performs the actions

that maximize the value of the achievement of his intended task. Given a human intention

s′hi ∈ Shi, the performed human action (z = ah) ∈ Zh from a state sh ∈ Sh has the value

of Qs′
hi
(sh, z). Therefore, It is possible to consider the library of Q-values as a source for a

probability distribution over possible observed human actions z towards possible intentions.

This idea has motivated us to integrate the Q-values into the robot decision model through the

observation function.

The part of the observation function concerned about this integration is the perceived human

actions Zh. The observation function gives the probability of observing z knowing the couple

(s, s′). In other words, it gives the probability of observing the human doing action z knowing

his current state and his intended task that justifies his action. As explained previously, if the

human is rational, this probability can be given by the human action value from the Q-values.

However, the corresponding Human-MDP state sh should be derived from the POMDP state s

in order to extract the exact Q-value. This derivation can be done easily by choosing the subset

of variables from s corresponding to the variables of sh. The observation probability is defined

in Equation 5.1 where λ is a normalizing factor and s′hi ∈ HI is the human intention. We notice

that the observation function in this decision model does not depend on the action of the robot

a ∈ A.

pr(z|s, s′) = λQs′
hi
(sh, z) (5.1)

λ =
1

∑

z∈Z

Qs′
hi
(sh, z)

The transition function (Equation 5.2) is calculated for all state variables following the resolved

cooperation problem. However, the estimated human intention shi can transition with equal

probabilities 1
|possible s′

hi
|
to any possible intention including the same.

pr(s′|s, a) = pr(s′cr, s
′
h, s

′
e|s, a) ∗

1

|possible s′hi|
(5.2)

Memorizing the estimated human intention for longer terms

It is possible to enrich the companion robot decision model with a property that will help it

memorizing for more time steps the estimated human intention. This property has negative and
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positive aspects. The negative aspect consists in the fact that the robot needs several time-steps

to “forget” a badly estimated intention which might lead to a behavior far from optimal during

those time steps. The positive aspect consists in the ability of avoiding estimations caused by a

brief human hesitation in case of irrational human behavior.

To add the memory property to the robot model, the variable maintain ∈ [0, 1] is introduced

in the transition function. When the value of maintain is high, the transition function represents

a higher probability that the human will keep his intention (s′hi = shi) and smaller probabilities
1−maintain
|possible s′

hi
|
that the human will change his intention to s′hi 6= shi. Equation 5.3 represents the

transition function enriched with memory.

pr(s′|s, a) =

{

pr(s′cr, s
′
h, s

′
e|s, a) ∗maintain if s′hi = shi

pr(s′cr, s
′
h, s

′
e|s, a) ∗

1−maintain
|possible s′

hi
6=shi|

if s′hi 6= shi
(5.3)

5.4 Illustration: Human-Robot Cooperation for Cleaning an

Area

This section presents a domain example for a companion robot that cooperates with a human

to achieve a shared mission. Figure 5.3 shows the shared environment which consists of a robot,

a human and some soil-spots that need to be cleaned. Each soil-spot can be cleaned by the

human or by the robot. The mission is considered done when all soil-spots are cleaned.

We remind that the robot decision process has no control over the human actions. The

human, however, is considered as an important subject of the environment who makes changes

in it and adds constraints over the decision making.

Figure 5.3: The environment of the cleaning an area domain.

This example is presented to illustrate the use of augmented POMDPs for cooperative

human-robot missions. In addition, the modeled example is used in the next section to present

experiment results regarding the human intention estimations and the robot behavior resulted

from the calculated POMDP policy. Therefore, the presented example is simplified to focus on

the previously mentioned points and avoid details of the particular problem to solve.
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It is important that the system is able to well estimate the human intention and that the

robot decisions from the POMDP policy respect those estimations. For instance, if the robot

estimates that the human has interest in cleaning the up-right soil-spot, it should respect the

human’s will and choose another soil-spot to complete the mission.

The robot’s belief over the human’s intended soil-spot is subject to the observations that it

receives. This belief might not be exactly true because of a bad observation analysis or possible

sudden change of the human’s real intention. One of the important goals of this approach is

to compute a policy that would adapt fast enough to any possible change in the environment’s

variables including human’s intention with respect to the mission’s success.

The reward function can play a great role in the decision making process. For example,

giving less importance to the human’s intention and more importance to completing the mission

can cause a totally different robot behavior.

The following is the formalization of the cooperative domain example including the Human-

MDPs and augmented POMDP model.

The environment space is discretized and represented by a number of possible positions.

POS = {p0, . . . , pmax}.

The tasks are defined by the soil-spots positions, where N is the total number of soil-spots.

TK = {tkpi |i ∈ {0, . . . , N − 1}, p ∈ POS}.

The human and the robot can both move at each time step one position east, south, west, north

or stay in the same position. The spot is cleaned when the robot or the human has the same

position as the soil-spot for 2 successive time-steps.

There is no preference upon the soil-spots, therefore, they may be handled in any order.

However, generalizing to any priority or manipulation restrictions (for example, it is preferable

that the human cleans the greasy soil-spots) is just a matter of adjusting the reward function.

5.4.1 Modeling the Human-MDPs for the Cooperative Mission

Each task consists of cleaning a soil-spot. Therefore, the number of tasks |TK| is equal to

the number of soil-spots. We consider that a human intention can be any of the tasks HI =

{hipi |hi
p
i = tkpi , i ∈ {0, . . . , N − 1}, p ∈ POS}. Therefore, for each task of cleaning one soil-spot

a Human-MDP is created. MDPh
hi

p
i
=

〈

Sh, Ah, T h
hi

p
i

, Rh
hi

p
i

〉

∀hipi ∈ HI, where:

• Sh represents all possible human states at any time-step which includes the human position

in the environment (sh = posh). All Human-MDPs share exactly the same set of states.

Sh = {posh|posh ∈ POS}.
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• Ah represents the set of human possible movement actions in the environment. In this

example, the human actions are exactly the same for all tasks.

Ah = {easth, southh, westh, northh, waith}

• T h
hi

p
i

represents, for simplicity, deterministic transitions of the human position. It is also

similar for all tasks.

T h
hi

p
i
(posh, ah, pos′h) =

{

1 if pos′h is the correspondant next position.

0 elsewise.

• The reward function Rh
hi

p
i

, however, is different for each Human-MDP model. For instance,

in the Human-MDP of the task tkpi , the reward is assigned when the human position posh

is equal to the associated soil-spot position p and he chooses action waith.

Rh
hi

p
i
(posh, ah) =

{

r > 0 if posh = p and a = waith

0 elsewise

5.4.2 Modeling the POMDP Decision Model for the Cooperative Mission

All variables in the POMDP decision model are considered as completely observable except for

the human intention. At each time-step, the robot’s system observes the human’s latest action

and calculates a new probability over his intention.

States, Actions and Observations

The state space represents the robot, the human and the environment variables,

S = Scr × Sh × Shi × Se.

- The robot variables contain the robot position, Scr = {posr|posr ∈ POS}.

- The human variables contain the human position, Sh = {posh|posh ∈ POS}.

- The human intention can be one of the defined tasks or Other. The intention Other is

added to represent the fact that the human is not interested in participating in the mission.

Shi = HI ∪ {Other}.

- The environment variables contain the status of the tasks where each task is represented

with the fact that it is not-done or done,

Se = {stattk
p
i |tkpi ∈ TK, stattk ∈ {not-done, done}}.
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The set of robot actions includes its movement actions: moving south, moving west, moving

north, moving east or wait.

A = {south, west, north, east, wait} .

At each time step, the robot perceives one of the 5 possible human actions.

Z = {oSouth, oWest, oNorth, oEast, oWait} .

Transition Function

As described in Equation 5.2, the transition function is computed as the following:

pr(s′|s, a) = pr(s′cr, s
′
h, s

′
e|s, a) ∗

1

|possible s′hi|

For simplicity, the transitions of the robot variables are considered deterministic in the POMDP

model. The new robot position depends on its old position and its action.

pr(s′cr|scr, a) = pr(posr, a, pos′r)

Similarly, the transitions of the status of the tasks are deterministic from not-done to done when

the human or the robot cleans the corresponding soil-spot. The new status of each task depends

on its old status and the human’s and robot’s old and new positions.

pr(stat′tk
p
i = done|s, a, pos′h) =











1 if (stattk
p
i = done) or (posr = pos′r = p) or

(posh = pos′h = p)

0 elsewise

However, the transitions of the human variables are not deterministic as the human action ah

is not known to the transition function. Therefore, the new human position might change with

equal probabilities to any possible position knowing the 5 human possible actions.

pr(s′h|sh, a) =

{

1
|possible pos′h|

if ∃ah ∈ Ah|pr(posh, ah, pos′h) > 0

0 elsewise

Similarly, the transition of the human intention variable is not known. Therefore, the human

intention stays the same or changes to any other possible intention with equal probabilities (no

memory):

pr(s′hi|s, a) =
1

|possible s′hi|
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or with a maintain probability that enriches the robot with a memorizing capability as shown

in Equation 5.3:

pr(s′hi = shi|s, a) = maintain, pr(s′hi 6= shi|s, a) =
1−maintain

|possible s′hi 6= shi|

Observation Function

The observation function as described in Equation 5.1 gives the probability of observing z

knowing the current and the next state of the system pr(z|s, s′). Unfortunately, the tool we

use to solve POMDPs in this thesis [Smith, 2005] does not accept such observation functions,

though it accepts the classical observation function pr(z|a, s′) which lacks the current state of

the system s. The current state s is only needed to extract the human variables sh that is

used to get the appropriate Q-value. We can bypass the need of the current state s under the

assumption that the transition function in the Human-MDP is deterministic. This assumption

makes it possible to conclude sh from s′h and z, where s′h is derived from s′ and z is known. If

the assumption is not satisfied, other POMDP solvers must be used.

Therefore, we re-formalized the observation function (Equation 5.4) to avoid the need of

the current state (s). The appropriate Q-value is extracted by concluding the current human

position posh from his next position pos′h and the action that made him reach this next position

z.

pr(z|s′) = λQs′
hi
(posh, z) where, T h(pos′h|sh, z) > 0 (5.4)

Reward function

The robot is awarded when it cleans a soil-spot and when the mission is totally completed. On

the other hand, a penalty is assigned to the robot when it cleans a soil-spot that is estimated

to be intended by the human. However, this penalty is assigned based on the estimation of the

robot over human intentions, not on the real human intention. The reward function is defined

as follows:

R(s, a, s′) =











r1 > 0 if ∃tkpi ∈ TK|stattk
p
i = not-done and posr = p and a = wait

r2 > r1 if stat′tk
p
i = done ∀tkpi ∈ TK

r3 < 0 if ∃tkpi ∈ TK|stattk
p
i = done and posr = p and shi = tkpi

(5.5)

5.5 Experimental Results

The POMDP model, detailed in the previous section, was implemented and solved with the

publicly released ZMDP solver [Smith, 2005] using the default FRTDP algorithm. The library

of Q-values was created using Algorithm 4 with a discount factor γ = 0.95 and a precision

criterion ǫ = 0.
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5.5.1 State Space and Resolution Time

Figure 5.4 presents the scalability analysis for different models with different position POS and

tasks TK dimensions and the corresponding needed time to solve the model. For all models,

the solver was stopped when the regret (upperBound(b0) − lowerBound(b0)) stays unchanged

for more than 80 seconds. The solver used a 6 cores Intel(R) Xeon(TM) 2.13 GHz machine with

16 GB of memory.
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Figure 5.4: Policy calculation-time and state space size for different problem sizes.

Figure 5.4(a) shows policy calculation times and state space sizes for a problem with different

numbers of possible positions |POS| = {20, 25, 30, 35, 40, 45, 50} and a fixed number of tasks

|TK| = 4. Figure 5.4(b) shows policy calculation times and state space sizes for a problem

with different task space sizes |TK| = {2, 3, 4, 5, 6} and a fixed number of possible positions

|POS| = 25. We notice that policies calculation times grows exponentially with the number

of tasks than with the number of possible positions. However, the states space sizes grows

linearly with the number of positions and exponentially with the number of tasks. The number

of possible states in the POMDP model is calculated as following:

|S| = |Scr| ∗ |Sh| ∗ |Shi| ∗ |Se|

= |POS| ∗ |POS| ∗ |TK + 1| ∗ 2|TK|

We notice that a problem with 25 possible positions and 6 tasks needs hours to reach an

accepted policy. Problems with 7 tasks might take days and with more than that are impossible

to solve.

5.5.2 Simulation Parameters

To analyze the produced policies, we ran various simulations with different human behaviors.

All simulations started with the initial state of the environment (as shown in Figure 5.5) and

ended with the end of the mission (all 4 soil-spots are cleaned).

There were 3 calculated POMDP policies for three different models. The first model has

a transition function with no maintained memory, the second has a transition function with
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Figure 5.5: Cleaning area domain environment used for simulations.

maintain= 0.5 and the last has transition function withmaintain= 0.99. The higher the memory

level is, the more the robot model is confident that the human will keep the same intention in the

next time step. This means that in the model with no maintained memory, the robot’s model

of the human will be updated only with the knowledge of the latest human action. Therefore,

the robot decision will depend only on the latest human action.

During simulations we used three simulated human behaviors. The first is random, where

the human’s actions were chosen randomly. The second is rational, where the human randomly

choses one of the possible tasks to do, then behaves rationally (following the Human-MDPs

policies) to achieve the chosen task. The third is semi-rational, where the human behaves as

in rational behavior but with a 30% chance that he would change his intention of at each time

step.

For each of the three robot policies (with different memory models) and for each type of

simulated human behavior, we ran 100 complete missions simulations.

5.5.3 Analyzing Simulations Results

Needed time-steps to complete the missions

Figure 5.6(a) shows the average number of needed time-steps to complete the missions for all

9 simulation combinations. The number of needed time-steps average between 9 and 12 except

for simulations with random human behavior. Figure 5.6(b) shows a histogram of the mission

lengths for simulations with random human behavior. We notice that contrary to simulations

with rational and semi-rational human behaviors, some missions reaches 600 time-steps before

they end. This is a natural result when the human moves randomly and the robot’s belief over

the human intention is changing accordingly. The robot in this case waits a longer time-steps

before being able to choose a task that is undesired by the human.

Did the robot do his share of work?

Figure 5.7 shows the number of missions where the robot achieved (0, 1, 2, 3, or 4) tasks. The

rest of the tasks were achieved by the human, obviously. We notice that for simulations with

a random human, the robot achieved two or more tasks in more than 80% of the missions.

However, with low memory levels for semi-rational and random human behavior, higher number
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Figure 5.6: The average of missions length and a histogram for those related to random human
behavior simulations.

of missions end with 0 tasks done by the robot. This is due to the higher rapidity and reactivity

in the change of the belief state over the human intention at each observation of the human

action. The robot in this case prefers to observe the human actions to better understand his

intention than acting with a high probability of getting a penalty.
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Figure 5.7: A histogram of the number of tasks achieved by the robot in 100 missions simulation.

Did the robot act as modeled?

Figure 5.8 shows the average reward gained by the robot. The reward is calculated at each time

step using the reward function (Equation 5.5) for the dominant state of the current belief state

and the robot action (chosen by the POMDP policy). The rewards here are calculated following

the robot’s estimations over the human intention. This means that the robot is not penalized
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Figure 5.8: Average of rewards per mission.

if it cleans a soil-spot that it believes falsely estimated as not intended by the human. The

resulted policies did not at any time choose an action that was in conflict with the estimated

human intention. A conflict is declared when the robot cleans a soil-spot that is intended by

the human. So the question that we should answer is: Did the robot make any conflict action

with the real human intention during the simulations?
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Figure 5.9: Frequency of robot actions with conflict with the real human intention over 100
missions simulations.

To answer this question, we calculated the number of times the robot did a conflict action

with the real human (semi-rational and rational) intention. At first, Figure 5.9(a) shows for the

rational human behavior simulations, the number of missions (out of 100) that the robot did

not even one conflict action, and the number of missions it did only one conflict action with

the human’s real intention. We notice in Figure 5.9(b) the existence of few missions with 2 or

3 conflict actions with the semi-rational human’s real intention. The total number of missions

with more than 1 conflict action is less than 10% knowing that the semi-rational human have

a 30% probability of changing intention at each time-step. We also notice that the existence of

missions with one conflict action gets remarkably higher with the increase of memory level which

prevents the robot from quickly update the new human intention. We should also note that the
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simulated rational and semi-rational human behaviors are not implemented to be particularly

cooperative with the robot.

Why were there conflict action? Was the model able to integrate the real human

intention?

To answer to those questions, we focused on the robot’s estimations over the human’s intention

at each time step of each mission and compared them to the rational and semi-rational human’s

real intention. Figures 5.10 5.11 5.12 (left side) presents for a representative sample of 30

missions, the total number of time-steps for each mission and the number of time-steps where

the dominant estimated human intention was equal to the real human intention at this time-

step. We notice that the number of good estimations are very low and should produce a number

of conflict actions greater than found in Figure 5.9.
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(b) Semi-rational human, maintain level = 0, the real
human intention is highly estimated intentions.
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(c) Rational human, maintain level = 0, the real hu-
man intention is the highest estimated intention.
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man intention is highly estimated intentions.

Figure 5.10: Comparing good robot estimations of human intentions using two methods for
memory level of 0.

However, Figures 5.10 5.11 5.12 (right side) presents for the same samples, the total number

of time-steps for each mission and the number of time-steps where the real human intention at

this time-step was highly estimated to be the human’s intention (its probability is higher than

the average of all possible intentions). This probability is high enough to prevent the robot

from doing a conflict action. We notice that here we have better estimations of the human’s

real intention. Still, there are small number of time-steps where the robot’s estimations do not

match with the human’s intention. These might be a result of many cases, like the time-steps just

after the human changes his intention or the time-steps just after the human finishes cleaning a

soil-spot.
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(a) Semi-rational human, maintain level = 50, the
real human intention is the highest estimated inten-
tion.
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(b) Semi-rational human, maintain level = 50, the
real human intention is highly estimated intentions.
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(c) Rational human, maintain level = 50, the real
human intention is the highest estimated intention.
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(d) Rational human, maintain level = 50, the real
human intention is highly estimated intentions.

Figure 5.11: Comparing good robot estimations of human intentions using two methods for
memory level of 50.
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(a) Semi-rational human, maintain level = 99, the
real human intention is the highest estimated inten-
tion.
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(b) Semi-rational human, maintain level = 99, the
real human intention is highly estimated intentions.
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(c) Rational human, maintain level = 99, the real
human intention is the highest estimated intention.
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(d) Rational human, maintain level = 99, the real
human intention is highly estimated intentions.

Figure 5.12: Comparing good robot estimations of human intentions using two methods for
memory level of 99.
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5.6 Discussion

We proposed in the chapter a decisional POMDP model for a companion cooperative robot

that is enriched with the capability of estimating the human intention. The suggested model

integrated human action values (Q-values), calculated by simulating a rational human, into the

observation function. This model is able to estimate the human intention at each time step (after

observing the human action) and make appropriate decisions regarding the estimated intentions.

Moreover, the model is adaptive to any change in the human intention once the latter starts

to be reflected in the human actions. In the experiments, we showed that the robot was able

to highly estimate the real human intention except during few time-steps when estimations are

adjusting to a new intention.

The Q-values in this contribution are calculated using simulations of a rational human.

Human intention estimations can be more accurate if the Q-values represent accurately the

behavior of the accompanied human while achieving the tasks. Therefore, those values can

be reinforced (learned) online [Fern et al., 2007] while observing the real human during the

mission. This will allow the model to be more adopted to the human’s nature of doing things.

It is possible also to learn the human’s lack of interest in the mission, for example, recognizing

randomness in actions might be a sign of disinterest for some humans.

We proposed also in this model to add a property that allows the robot to memorize the

latest estimated intention. We discussed the negative and positive effects of such a memory. It

is also preferable to adapt the memory level to the size of the environment. As we noticed in

Figure 5.9(b), the number of missions with one conflict action increases proportionally with the

increase of the memory level. This is because the environment space is too small and the memory

level is too high according to the environment space. This does not give the robot enough time-

steps to adjust (forget) the previously estimated intention before the human actually achieves

the new intention.

We notice that the suggested model can not deal with the following problems:

- Multi-type of interactions between the human and the robot.

- Large size problems.

- Adapted behavior in collaborative tasks (coactivity).

In the following chapters (6 and 7) we will address those problems.
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A Coactive Decision Model for

Human-Robot Collaboration
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This chapter proposes a robot decision model for a collaborative task with a human (handing

object to the human, moving a table with the human, filling human’s glass with water . . . ).

For such tasks, robots are expected to understand their human partners and collaborate as

peers to better achieve the shared task. We propose a Coactive Decision Model to formalize

such a problem using an augmented POMDP. The coactivity allows the robot to collaborate

in harmony with the human to achieve the shared task, it also gives the robot the possibility

of revealing the human intention in case of ambiguity. The augmented POMDP estimates

the human intention by evaluating the observed human actions towards possible intentions

(Chapter 5). The experiments in this chapter use an example of a robot task to hand over an

object to the human. We consider different scenarios of human behavior and show the ability

of the robot to adapt and coact for better collaboration.
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6.1 Motivation

With the advancement of robotic research, robots are becoming increasingly familiar in situations

where they will collaborate with a human as partners or teammates to achieve a shared task (as

for a robonaut that helps humans work and explore in space [NASA, 2011] or a nursebot that

helps elderly people live their daily life in nursing homes [Pineau et al., 2003]). One important

challenge in agents collaboration is acting together to reach the best conditions to achieve the

shared task. A collaborative agent should coact in a way that incites the others to collaborate

and reach the conditions of success. Similarly, a companion robot should coact with the human

notably when the latter shows confusion about the how-to collaborate.

Such research domains requires a shift of focus from robot autonomy to a higher capacity to

achieve a task in synergy with a human especially in collaborative situations with accompanied

persons. On this subject, [Johnson et al., 2010] introduced the concept of “coactivity”. As

mentioned in Section 2.2.3, a coactive behavior permits the robot not only to perform its part

of the work but also encourage the joint activity of its human partner.

This chapter is motivated by the idea of implementing the concept of coactivity in an HRI

framework. It is important that the robot consider the human’s reactions and retortions. More-

over, when the robot is certain about the human intention but the human is not collaborating

as he should, the robot should coactivly guide him to act so as to achieve the collaborative task.

The human’s response to such coactive behavior can be used by the robot as a key to better

understand the human intention.

As example, the robot can offer simple guidance to allow a successful and flexible collab-

oration with the human. However, all of this should be combined with a careful inspection

about the human’s interest in such a collaboration. The robot should respect its main purpose

as a companion which is the comfortability and well-being of the human. Therefore, once the

human show his disinterest in collaborating, the robot should not annoy the human by offering

guidance.

Managing the inherent uncertainty induced by working with humans in dynamic environ-

ments is also important. We suggest in this chapter to use the augmented POMDP model that

we proved in Chapter 5 a solution for handling uncertainty about the human and adapt it to

create a coactive decision framework for Human-Robot Collaboration for a shared task.

6.2 Coactive Human-Robot Collaboration

The proposed Coactive Decision Model (CDM) is based on an augmented POMDP model (Chap-

ter 5). However, the augmented POMDP is adjusted to incorporate the coactive behavior of the

robot.

6.2.1 The Robot’s CDM

The CDM is represented by a POMDP tuple 〈S,A,Z, T,O,R, b0〉.
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The Set of States S

A state s ∈ S represents variables about the companion robot, the human and the task itself,

S = Scr × Sh × St.

The companion robot states Scr include physical robot’s states regarding the collaborative task.

The human’s states Sh include physical human’s states regarding the collaborative task, the

human’s existence in the interaction area (e.g. in the same room as the robot) in addition to all

information about the human that can help the robot differentiate the case where the human is

ready to co-achieve the shared task from the case where he needs to be impelled into co-acting

towards the success of the shared task. The human’s non observable variable engagement

represents the fact that the human is engaged in the collaboration or occupied with something

different than the shared task. Finally the state of the task St include variables related to the

advancement of the task achievement.

The initial belief state b0 holds uncertainty about the engagement of the human. The

belief state b(s) is then updated at each time-step knowing the robot’s latest action and the

corresponding observed human action.

The Set of Actions A

The CDM distinguishes two categories of actions in its set of actions A. The first category is

related to the coactive behavior when needed Ac and the second category is related to the actual

collaborative achievement of the shared task At. Therefore, the set of actions A in a CDM is

defined as following:

A = Ac ∪At

The first group of actions are verbal coactive actions to attract the attention of the human

and to guide/incite him to perform an action that favors the task’s success. Robot’s coactive

actions help in revealing the human intention towards the task. A negative human reaction to a

coactive robot action is a sign of disinterest in the shared task unless a failure in interpreting the

human’s actions or a very brief human distraction. For this reason we use two levels of coactive

actions: soft level and strong level. A negative human reaction to a strong level coactive action

is a strong sign of his unwillingness (occupied or not interested) to collaborate.

The Set of Observations Z

Observations include the human actions that are relevant to the shared task, in addition to

information about the advancement of the task.
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The Transition Function T

The transition function T (s, a, s′) = pr(s′|s, a) (Equation 6.1) memorizes the latest step value

of the hidden variable of the state (engagement) with a maintain probability of 70%. Where

s, s′ ∈ S and a ∈ A.

pr(s′|s, a) =

{

pr(s′cr, s
′
h, s

′
t|s, a) ∗maintain if engagement = engagement′

pr(s′cr, s
′
h, s

′
e|s, a) ∗ (1−maintain) if engagement 6= engagement′

(6.1)

The Observation Function O

The observation function gives the probability of observing the human action z ∈ Z knowing

the robot did action a ∈ A and the system ended in state s′ ∈ S.

The effect of the observed human action on the non observable hidden state engagement is

given in (Equation 6.2) using an evaluation of human actions Q-Values (Section 6.2.2) toward

possible engagement values. λ is a normalizing factor, sh and s′h are Human MDP states

(Section 6.2.2) derived from s and s′ respectively.

pr(z|a, s′) = λQengagement′(s
h, z), where pr(s

′h|sh, z) > 0 (6.2)

The Reward Function R

The CDM reward function balances between the negativity of persistent coactive behavior and

the main goal of successfully achieve the collaborative shared task. To avoid disturbing the

human, the model penalizes all soft and strong coactive actions when the human is found willing

and engaged to collaborate. This indicates the fact that it is not necessary to guide a human who

does not need guidance and is acting correctly (engaged) by himself toward the collaboration’s

success. However, if the human is showing willingness but not acting correctly, a guidance from

the robot is necessary. Therefore, a small reward is given for soft and strong coactive actions

when the human is not showing engagement to the task.

R(s, a) =























penalty1 < 0 if (engagement = engaged and a is a soft level incite)

penalty2 < penalty1 if (engagement = engaged and a ∈ is a strong level incite)

reward1 > 0 if (engagement <> engaged and a ∈ is a soft level incite)

reward2 > reward1 if (engagement <> engaged and a ∈ is a strong level incite)

(6.3)

To assure the balance between the penalties and rewards of coactive actions (soft and

strong) in different situations of engaged or occupied human, trials showed that the values

of penalty1, penalty2, reward1 and reward2 can be found by solving the following equations:

v1 ∗ reward1 + (1− v1) ∗ penalty1 ≤ v1 ∗ reward2 + (1− v1) ∗ penalty2 ∀v1 ∈ [0.6, 1]
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v1 ∗ reward1 + (1− v1) ∗ penalty1 > v1 ∗ reward2 + (1− v1) ∗ penalty2 ∀v1 ∈ [0, 0.6[

where the value of v1 represents the probability that the human is occupied and (1−v1) represents

the probability that the human is engaged.

6.2.2 The Rational Human-MDPs for the Library of Q-values

Based on the latest robot action, whether it is coactive or not, the augmented POMDP is respon-

sible for analyzing the human’s action (z ∈ Z) as a key to better understand the collaborative

situation. As shown in the augmented POMDP model (Chapter 5), the Q-value of a human

action is a key to know if the human is interested or not in the shared task. This will help the

robot to decide, in the next time-step, whether to start/keep acting coactively in order to incite

the human or start/keep co-achieving the task with the human. Moreover, if the robot’s latest

action was coactive, the Q-value of the human action will clarify the success or failure of the

coactive/guiding behavior.

Sociology studies can be applied in this work to create a library of human action values.

This can be done by observing the human while achieving the task of handing object and later

evaluate his chosen actions toward his real interest. The created library will be similar to the

Q-Values library and will help in calculating the observation function of the CDM.

Since we were not able to do the sociology studies, this chapter describes how we used

instead two Human-MDPs to generate the library of human action values (Q-values). Each of

the Human-MDPs calculates an optimal policy of a simulated human with a different intention,

one for a human who is interested in the collaboration and who is engaged in the shared task

and another for a human who is occupied. The resulted library can be accessed to know the

value of the human action toward one possible intention (Qengaged(s
h, ah), Qoccupied(s

h, ah)). The

library of Q-values is used in Equation 6.2 to calculate the observation function of the Coactive

Augmented POMDP model.

The two Human-MDP models are exactly similar except for the reward function.

MDP h
engaged =

〈

Sh, Ah, T h, Rh
engaged

〉

, MDP h
occupied =

〈

Sh, Ah, T h, Rh
occupied

〉

.

To simulate a rational human behavior to achieve a task, the Human MDP state should

represent all information related to the human, the task (receive an object) and the environment.

Therefore, the state sh ∈ Sh holds human variables, task variables and a variable that represents

the fact that the human is being incited/guided by the robot to successfully achieve the task.

Therefore,

Sh = Sh × St × incited,

where incited ⊂ Ac represents the fact that the robot tried to incite the human in its last action.

A Human MDP state sh ∈ Sh is created from the POMDP state s ∈ S and the latest robot

action if it was a coactive action.
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The set of actions Ah includes all possible human actions that are related to the task achieve-

ment and can be received by the POMDP model as observations.

The transition function T h transitions the human and task variables depending the problem

to solve.

For the Human MDP of a simulated human that is engaged and collaborating to take the

object, the reward functionRengaged rewards actions in favor of the collaboration and penalizes all

actions that show disinterest of the human in collaborating. For the Human MDP of a simulated

busy human, the reward function Roccupied rewards actions in favor of not collaborating and

penalizes actions that shows the human interest in collaborating especially responding properly

to the robot guidance.

In the next section, we present an example of human robot collaboration and use it to

illustrate how a CDM can be instantiated. We note that the chosen variables and calculated

functions are example related, however, the general CDM model presented in this section which

is based on an augmented POMDP can be used for similar human robot collaboration tasks

where coactive robot actions are needed.

6.3 Illustrative Scenario: Handing Over an Object

A collaborative task was chosen as example where the robot is supposed to hand over an object

to a person with the assumption that this person has previously asked for the object and will

be handed the object while sitting on the chair. In this example, the robot should lead the

human to sit on the chair and insure that the human is engaged in taking the object by making

sure that the human is looking at the robot and is aware that the robot is willing to hand him

the object. Meanwhile, the robot advances his arm towards the human to reach a position that

facilitate the task but respect the secure and personal space of the human. Finally, when the

human holds the object and is ready to receive it, the robot releases the object to him.

This section describes the corresponding CDM model as an augmented POMDP in addition

to the Human MDPs that are defined by empathy and used to calculate the observation function

of the augmented POMDP.

6.3.1 The CDM for Handing Over an Object Scenario

The Sets of States, Actions and Observations

For the handing object task, the robot’s physical state regarding the interaction includes two

variables. The first is the robot’s hand position which can be in initial position (close to the

robot), wait position (middle) or extended position (close to the human). The waiting position

permits the robot to wait for new information about the human to better decide whether to

extend its arm to hand the object or to go back to its rest position. The second variable is the

robot’s hand situation which represents the fact that the robot’s hand is ready to release the
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object or not. Therefore,

Scr = hand position× hand situation where,

hand position ∈ {initial, wait, extended} and hand situation ∈ {not ready, ready}.

The state of the human includes three variables. The first is about the human presence which

can be sitting on the chair, standing close to the robot or far away from the interaction area.

The second variable concerns the human’s sight direction which can be looking at the robot or

looking elsewhere. Finally, the hidden (non-observable) variable of the state called engagement

which concerns the fact that the human is engaged to achieve the collaborative task or occupied

with something else. Therefore,

Sh = presence× looking × engagement where,

presence ∈ {sitting, nearby, far away}, looking ∈ {at robot, otherway} and,

engagement ∈ {engaged, occupied}.

The state of the task consists of one variable that represents the agent that is currently

holding the object,

St = object holder where,

object holder ∈ {robot, human}.

Following the assumption that the human has asked for the object prior to the beginning of

the task, the initial belief state is chosen with a high probability that the human is interested and

engaged in achieving the task. During the mission, however, the POMDP policy investigates

the engagement variable value and, from there, directs the robot to the final state. In case

(engagement = engaged), the final state includes (hand position = initial, object holder =

human), however, if the (engagement = occupied), the final state includes (hand position =

initial, object holder = robot).

Physical actions concerning the robot’s hand movements which include: move hand to wait

position, move hand back to initial position, move hand to extend position, move hand back to

wait position, release object from hand or do nothing. Therefore, At = {go wait, back to initial,

extend, back to wait, stop, release, nothing}. The soft level coactive actions includes ping sit

(ps), ping look (pl) and ping take (pt). The strong level includes strong ping sit (sps), strong

ping look (spl) and strong ping take (spt). The ping sit and strong ping sit actions are to

incite the human to sit on the chair. Ping look and strong ping look are to incite the human to

look at the robot which is a sign of awareness and acceptance of the task advancement. Ping

take and strong ping take are to incite the human to reach the hand of the robot to catch the

object. The robot would try to incite the human to take the object (pt, spt) once the human is

sitting on the chair and showing willingness to take the object and the robot extends its hand to
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an accepted and comfortable position which allows the human to reach the object. Therefore,

Ac = {ps, sps, pl, spl, pt, spt}.

Accordingly, the set of robot’s actions is defined as:

A = {go wait, back to initial, extend, back to wait, stop, release, nothing, ps, sps, pl, spl, pt, spt}.

The first group of observations is related to the human existence: human entered the visibility

space and is nearby the robot (ob nearby), human left the visibility space and is far from the

robot (ob far Away) or human entered the task space which means he is sitting on the chair

(ob sitting). The second group of observations is related to the human awareness about the task

advancement: human shares task context by looking at the robot (ob looking at robot), human

ignores task context by looking away from the robot (ob looking away) or human is ready to

catch the object (ob hand ready). Finally, an observation related to the task progress which

consists of observing the object in the human’s hand (ob object with human).

All observations are detected by different modules (localization, object detection, . . . ) and

are sent as signals to the robot’s system in a way that at each time-step the CDM receives one

of the following possible observations:

Z = {ob nearby, ob far Away, ob sitting, ob looking at robot, ob looking away,

ob hand ready, ob object with human, ob nothing}.

It is possible that more than one observation is generated in the same time-step. A solution

for such situations is presented in Section 6.4.2.

The Transition Function T

The transition function is represented in Equation 6.1 where actions (go to wait, back to initial,

extend, back to wait) deterministically and accordingly transition the value of hand position.

For example:

pr(hand position′ = extended|hand position = wait, a = extend) = 1,

pr(hand position′ = wait|hand position = extended, a = back to wait) = 1.

One of the following variables can change value at each transition: looking, presence and

handSituation. This represents the change in the current state caused by the possible received

observation.

The robot’s action release can transition the value of the variable object holder from robot

to human or transition the system to a fail state. This depends on whether or not the system

observes ob object with human after applying the action release.
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The Observation Function O

For simplicity and without loss of generality, the function is defined deterministically over the

non hidden human related variables of the state, those are (presence, looking, hand situation

and object with). For example:

pr(z = ob sitting|a, presence′ = sitting) = 1,

pr(z = hand ready|a, hand situation′ = ready) = 1,

pr(z = ob object with human|a, object holder′ = human) = 1.

The effect of the observed the human action on the non observable hidden state engagement

is represented in Equation 6.2.

The Reward Function R

In addition to the rewards described in Equation 6.3, the handing object model assigns a penalty

when the robot’s hand is extended and the human is occupied. This encourages the robot to go

back to wait position when the human is occupied. For final states, a small reward is assigned

for back to initial action when the human leaves the visibility space and a higher reward for the

same action when the object is released to the human.

R(s, a) =



















































penalty1 < 0 if (engagement = engaged and a ∈ {ps, pl, pt})

penalty2 < penalty1 if (engagement = engaged and a ∈ {sps, spl, spt})

reward1 > 0 if (engagement <> engaged and a ∈ {ps, pl, pt})

reward2 > reward1 if (engagement <> engaged and a ∈ {sps, spl, spt})

penalty3 < penalty2 if (hand position = extended and engagement <> engaged)

reward1 > 0 if (presence = far away and a = back to initial)

reward3 ≫ reward2 if (object holder = human and a = back to initial)

6.3.2 Human MDPs for Handing Over an Object Scenario

The Set of States Sh

As described in Section 6.2.2 the Human MDP state include human’s states, task’s state and a

state that represent the fact that the human was incited by the latest robot action. Therefore,

Sh = presence× looking × pinged× object holder,

where (looking, presence, objectOwner) have the same values as previous and pinged represents

the type of ping the human received if the last robot action was a ping,

pinged ∈ {ps, pl, pt, sps, spl, spt, no ping}.
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The Set of Actions Ah

The possible human actions, that are related to the task achievement and can be received by

the POMDP model as observations, are:

Ah = {sit, stand, go away, look at robot, look otherway, take object, do nothing}.

The Transition Function T h

The Human MDP state variables presence, looking and object holder transition deterministi-

cally according to the associated human actions {sit, stand, go away}, {look at robot, look away}

and {take object}. However, the variable pinged has the possibility to change to any possible

pinged value uniformly. Non possible next ping values include situations like ping sit when the

human is already sitting.

The Reward Function Rh

Equation 6.4 describes the reward function for an engaged human in the collaboration. It

rewards actions in favor of collaborating and well receiving the object from the robot. Such

actions present the intention of the human of taking the object as in sitting on the chair and

looking at the robot, whether by himself or incited by the robot’s guidance. However, the

Rengaged function penalizes all actions that show disinterest of the human in taking the object

as looking away from the robot or standing or leaving the interaction area. The following

summarizes all situations:

Rengaged(s
h, ah) =



























































































r1 > 0 if (pinged = nothing and ah ∈ {sit, look at robot, take object})

r2 > r1 if (pinged = pt and ah = take object)

r3 > r2 if (pinged = spt and ah = take object)

r4 >= r3 if (pinged = pl and ah = look at robot)

r5 > r4 if (pinged = spl and ah = look at robot)

r6 >= r5 if (pinged = ps and ah = sit)

r7 > r6 if (pinged = sps and ah = sit)

p1 < 0 if (ah = look otherway)

p2 < p1 if (ah ∈ {stand, do nothing})

p3 < p2 if ((ah = go away) or

(pinged <> nothing and ah = do nothing))

(6.4)

Equation 6.5 describes the reward function for a Human MDP simulating an occupied human.

The function rewards actions in favor of not collaborating. Such actions presents the occupation

of the human and his unwillingness to take the object as in not looking at the robot or leaving
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the interaction area. The function also penalizes actions that shows the human interest in

collaborating especially responding properly to the robot guidance/pings.

Roccupied(s
h, ah) =



























































































r1 > 0 if (ah = look otherway)

r2 > r1 if (ah ∈ {stand, do nothing})

r3 > r2 if ((ah = go away) or

(pinged <> nothing and ah = do nothing))

p1 < 0 if (pinged = nothing and ah ∈ {sit, look at robot, take object})

p2 < p1 if (pinged = pt and ah = take object))

p3 < p2 if (pinged = spt and ah = take object)

p4 <= p3 if (pinged = pl and ah = look at robot)

p5 < p4 if (pinged = spl and ah = look at robot)

p6 <= p5 if (pinged = ps and ah = sit)

p7 < p6 if (pinged = sps and ah = sit)

(6.5)

6.4 Experimental Results

The experiments of this chapter show results of the CDM model for handing object to the

human. The Human MDPs were solved with classic Value Iteration algorithm for MDPs and

the Coactive Augmented POMDP policy was calculated with the ZMDP solver in less than 30

minutes.

The initial belief state is described as:

b0 = {(initial × not ready × nearby × otherway × engaged× robot) = 95%,

(initial × not ready × nearby × otherway × occupied, human) = 0.05%}

6.4.1 Simulations

Tables 6.1 and 6.2 present results of simulations for two scenarios where a human user chooses

a possible action at each time-step. The first shows results of the shared task with a human

that was interested in taking the object, while the second shows results with a human that was

occupied and not interested in taking the object at this time. The tables show at each step

of the scenarios the current state of the robot, the human and the task, the belief over the

human intention of taking the object, the chosen action from the POMDP policy and finally the

observation received after the action was applied.

We detail, for example, steps 4,5 and 6 of Table 6.1. Before those steps the human showed

clear interest in taking the object by sitting down and looking at the robot. The belief state

in step 4 represents this fact with pr(engaged) = 0.997. The chosen action of the policy was
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1 nearby otherway not ready initial robot 0.95 0.05 - sitting

2 sitting otherway not ready initial robot 0.93 0.07 go wait at robot

3 sitting at robot not ready wait robot 0.996 0.004 extend nothing

4 sitting at robot not ready extended robot 0.997 0.003 pt otherway

5 sitting otherway not ready extended robot 0.5 0.5 spl nothing

6 sitting otherway not ready extended robot 0.05 0.95 back wait nothing

7 sitting otherway not ready wait robot 0.52 0.48 spl at robot

8 sitting at robot not ready wait robot 0.98 0.02 extend nothing

9 sitting at robot not ready extended robot 0.99 0.01 pt ready

10 sitting at robot ready extended human 0.99 0.01 release with human

11 sitting at robot ready extended human 0.99 0.01 back wait -

12 sitting at robot ready wait human 0.99 0.01 back initial -

Table 6.1: Results of the handing object simulation with an engaged human.

to incite the human to take the object with a soft ping take (a4 = pt), which presents that the

robot hand is extended and it is safe for the human to reach for the object. Meanwhile the

system observes that the human interest was interrupted by something else (z4 = otherway).

At time-step 5, the updated belief state shows ambiguity after the observed interruption. The

chosen action was to strong ping the human to look at the robot (a5 = spl) which is an attempt

to incite the human to continue the task. However, the human did not respond positively to

this attempt where he kept looking other way (z5 = nothing). At time-step 6, the updated

belief state shows a lack of engagement from the human’s side with pr(engaged) = 0.05 and

the following action was for the robot to back up the hand position to the wait position. This

decision does not mean that the robot ended the task, but it is a way to give the human the

space to leave the chair without disturbing him. Moreover, the following steps in this scenario

shows a second attempt of the robot to attract the human attention, which will end with success

in steps 7 and 8 and successfully end the task with the object delivered to the human in step 10

and the final robot decision is to return the hand to the initial position.

Table 6.2 presents another case, where the human shows a strong lack of interest in the

shared task, and after few robot attempts the human leaves the interaction area entirely (z7 =

far away) which leads the robot to move its hand back to the initial position (a8 = back to initial)

and the system reaches an end state where the task is ended without being able to deliver the

object.

We noticed during simulations situations in which the human stays close to the robot but is

occupied doing something. The robot in such case keeps trying to incite the human to collaborate

until the situation ends in one of the final states (object handed or human leaving the interaction

area). To handle the negative insistence of the robot, the decision back to initial is taken and

the mission is forced to end when the belief state reaches more than 96% occupied.
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1 nearby otherway not ready initial robot 0.95 0.05 - nothing

2 nearby otherway not ready initial robot 0.58 0.42 ps nothing

3 nearby otherway not ready initial robot 0.12 0.88 sps sitting

4 sitting otherway not ready initial robot 0.57 0.43 go wait at robot

5 sitting at robot not ready wait robot 0.98 0.02 extend otherway

6 sitting otherway not ready extended robot 0.9 0.1 pl stand

7 nearby otherway not ready extended robot 0.29 0.7 sps far away

8 far away otherway not ready extended robot 0.0 1.0 back wait nothing

9 far away otherway not ready wait robot 0.0 1.0 back initial nothing

Table 6.2: Results of the handing object simulation with an occupied human.

6.4.2 Integration on Real Robots

The work presented in this chapter was realized in collaboration with LAAS CNRS laboratory

(Laboratoire d’Analyse et d’Architecture des Systèmes). The described decision model was an

outcome of this collaboration and it was applied and tested on LAAS robots (Jido, PR2) for

the scenario of handing over an object to the human. The used architecture on the robots is an

instance of the LAAS general architecture [Alami et al., 1998].

HATPHATP

World State
(Human, Robot, Objects)

Human Monitoring
(Detect, Follow, Safety)

Execution
(Speech, move arm,
Hand actions.. )

Movement and
Navigation

in human presenceResources

Decisional Level

Functional Level

Requests World state

Movement
in human presence

(MHP, LWR)
SPARK

(Human Info from:
Kinect and Mocap)

Moving Head/Platine
Speech synthesis

Handing object
policy

Additional Modules for localization, object detection , perception and display

SHARYSHARY
Coactive

Decisional Models

Figure 6.1: System Architecture: an Instance of LAAS Original Control Architecture.

Figure 6.1 shows the adapted architecture that include a set of Coactive Decision Models

(CDM) for different collaboration tasks. The decisional layer consists of two main components:

SHARY (Supervision for Human Aware Robot Ynteraction), that is in charge of cooperative

task achievement and HATP (Human Aware Task Planner), a high level task planner.
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SHARY [Clodic et al., 2008] is a task supervision and execution controller. It has been

adapted here to invoke its associated decisional scheme from the set of “Coactive Decisional

Models” whenever it has to achieve a collaborative human-robot shared task.

HATP [Montreuil et al., 2007] [Alili et al., 2009] has the capacity to synthesize plans for

human-robot teamwork that respect social conventions and that favor acceptable collaborative

behaviors based on a representation of the human abilities, preferences and desires.

The original LAAS control architecture has addressed several aspects of Human-Robot Col-

laboration, a high level task planner [Clodic et al., 2008] which generates partially ordered

plans involving coordinated and collaborative human and robot tasks, the HRI-enabled task

supervision and execution framework (SHARY) [Clodic, 2007], inspired from joint intention the-

ory [Cohen et Levesque, 1991] and more particularly the work of Clark [Clark, 1996] on teamwork

and communication acts that support collaborative task achievement [Clodic et al., 2007]. The

supervision system is not only responsible for the refinement and the correct execution of the

robot task, but also for the appropriate set of communication and monitoring activities within

and around task realization. It is also in charge of monitoring human commitment and activi-

ties in order to provide appropriate response based on the current context. The robot control

architecture includes also a motion synthesis layer that takes into account the safety and the

preferences of humans [Koay et al., 2007] when they share space with a robot [Sisbot et al.,

2010].

The work presented in this chapter builds on these capabilities for collaborative task achieve-

ment and consists of formalizing collaborative tasks achievement as a “Coactive Decision Models”

using augmented POMDPs.

The handing over an object task was applied with PR2 (Figure 6.2) and Jido (Figure 6.3).

The high level robot decisions related to the collaboration with the human were fed by the CDM

policy. However, the functional level was responsible for physically applying those actions with

respect with the human’s existence. The arm movements were controlled by a motion planner

that produces human-friendly motion [Sisbot et al., 2010] validated through user studies [Dehais

et al., 2011].

Figure 6.2: Scenario handing object to human with PR2.

During each time-step of the task (3 seconds), all received information about the human and

the task are stacked to be treated at the end of the time-step in the order they were received.

Each information that is different than the current state is sent as observations to the CDM
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Figure 6.3: Scenario handing object to human with Jido.

model. Then the belief update function updates the belief state using the received observation

and the last decided robot action. In case of several observations at the same time-step, the

belief update function is called as many times as needed with a robot action do nothing unless

for the last observation where it uses the latest chosen robot action by the policy.

Screen shots were taken while performing similar scenarios to ones described in Tables 6.1

and 6.2 with PR2 Robot (Figure 6.2) and Jido Robot (Figure 6.3).
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6.5 Discussion

This contribution is an initial step in using Coactive Decision Models to create a library of

coactive companion robot policies for daily collaborative tasks. Such library of N POMDP

policies will have the complexity of solving one CDM collaborative model.

This chapter also focused on the robot’s decisions and behavior when collaborating with a

human. The approach uses an Augmented POMDP to better understand the human intentions.

The proposed Coactive Decision Model permits the robot not only to adapt to human’s inferred

intentions but also to try to coactively incite him to collaborate toward the success of the shared

task and facilitate his joint activity.

In the described model, as long as the human is in the interaction area (did not leave the

room) the robot will keep trying to incite him to get involve in the collaborative task. This

behavior is unacceptable if the human is busy doing something else. Therefore, to better control

the coactive actions, we will be working in the future on adding another hidden state to the

CDM which represent the level on which the human is annoyed. This level increases when the

robot tries to incite the human to collaborate and decreases when the human reacts positively

to the incitement.

The model is far from perfect as it is not evident to parameter the reward functions for

the Human MDPs and the CDM model. The illustrative scenario in this chapter was modeled

manually, it will be more interesting to learn them automatically. The experimental results lack

detailed evaluations as they were tested and simulated by the developers. Further work includes

user studies to show the validity of the interaction with strangers.
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This chapter addresses two problematics. First, establishing a system for a companion robot

that is capable of switching between different types of interaction according to the human’s needs.

Second, modeling the system using a framework that outperforms Partially Observable Markov

Decision Processes (POMDPs) for large-scale problems. For this end, the chapter describes

a unified model of Human-Robot Multi-type Interaction (HRMI). The objective is to observe

the human’s behavior and try to predict/estimate the human’s intention/need and therefore

react appropriately (assist, cooperate, collaborate, . . . ). As discussed in Section 4.2, POMDPs

are largely used by the community of collaborative and assistive Human-Robot Interaction

(HRI). However, results presented in Chapter 6 shows that employing augmented-POMDPs to

solve an HRMI problem of large-scale applications is intractable. We present an approach to

overcome this limitation by dividing the problem of HRMI into three levels: first, estimate

the human intention; second, select the appropriate type of interaction; last, choose one of the

Part of the work presented in this chapter will appear in the proceedings of the 5th European Conference on
Mobile Robots [Karami et Mouaddib, 2011]
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pre-calculated policies with respect to the human intention and the needed type of interaction.

Therefore, the HRMI model includes: a belief update model concerning the intention of the

human using multiple human MDP models defined by empathy for each specific human task; an

MDP model that supports the robot’s decision making towards the human needs by selecting the

appropriate interaction type; finally, an algorithm that first defines the task to accomplish by the

robot, then chooses the pre-calculated policy to achieve it with respect to the type of interaction.

The chapter, afterward, presents some interesting performance and scalability analysis and an

implementation on a real robot showing the feasibility of the approach using a representative

scenario inspired from [RoboCup@home, 2011].

7.1 Motivation

Nowadays, a vast research interest is progressing towards companion robots that share their

environment with people like elders in their home or in assisted living facilities. During daily

and long-term interactions, a companion robot can be of help to a human in different ways.

This depends on the human possible incapabilities or preferences. More information about the

human’s desires and constraints would more probably lead the companion robot to offer the

good help when needed.

We consider a Human-Robot Multi-type Interaction (HRMI) model where the companion

robot observes a human and acts appropriately for the best help. Indeed, to best address this

problem, the robot must be able to: estimate the human’s intention (what task is he trying to

achieve?), then infer the kind of help (interaction) that he might need, then reason the best

action to help the human. In addition to being able to accurately and quickly infer the human’s

intentions, the companion robot should be able to adapt to the human’s possible change in desire

over time.

Though POMDPs offer an appealing theoretical framework, finding a tractable approxi-

mate solution for real size applications is highly complicated. We noticed in Chapter 6 that

the proposed augmented POMDP model was able to solve Human-Robot Cooperation prob-

lems of very small sizes that are not sufficient to describe real life applications. An HRMI

environment can similar to the Human-Robot Cooperation environment, however, tasks related

to collaboration and assistance are added to the problem which cause an augmentation in the

representation of the environment, human intentions, possible actions to do. This shows the

inability of augmented-POMDPs to solve HRMI problems of real life applications.

Therefore, instead of using POMDPs, we propose an outperforming model that solves the

problem on three levels without loosing the adaptability and the performance of handling un-

certainty of POMDPs. First, the system observes the human action and estimates his intention

using multiple Human MDPs defined by empathy and a Hidden Markov Model (HMM) where

the hidden state corresponds to the human intention. Second, an MDP model helps in inferring

the kind of help the human needs using the belief state updated by the HMM. Third, knowing

the kind of interaction needed to help the human and his intention, the robot applies an action
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from previously computed policies (a database containing a policy for each task achieved under

each type of interaction if possible).

7.2 Definitions

This section includes various definitions related to the proposed HRMI model. First, the chosen

types of interaction are presented, followed by the definition of a task and how it can be related

to one or more types of interaction. Finally, the description of the human intention and what it

represents.

We define I as a set of interaction classes I = {IC1, IC2, IC3, . . . }. Each class of inter-

action differs in the way the companion robot helps the human. As described in Section 2.2.2,

the HRI literature distinguishes three types of interaction (which will be subjects of this chap-

ter): Cooperation CP , Assistance As and Collaboration CL. For reasons explained in the next

section, we add Confirmation CO to the types of interaction.

I = {CP,AS,CL,CO}

The robot holds a list of all possible tasks that can be done by the human and/or the robot.

A task tk ∈ TK can be defined, for example, as tk = 〈context, agent, policy, time, type . . . 〉.

context holds information about the task regarding the context of the problem; it might include

relations and dependencies between tasks, conditions to achieve, related databases to access or

update information. agent ⊂ {CR,H,H ∨CR,H ∧CR}, is the possible agent that can achieve

the task; a task can be achieved uniquely by the companion robot, uniquely by the human, by

any of them or by both of them. policy ∈ {possess, lack} is the fact that the robot possesses or

lacks a policy or a manual of how to assist the human if he needs assistance to do the defined

task. time is the expected needed time-steps to achieve the task. Finally, a task is considered

of one or more types of interaction following the rules mentioned in Table 7.1, type ⊂ I include

all possible types of interaction that can be used to achieve this task.

Type of interaction Condition

Cooperation tk = 〈∗, {CR,CR ∨H}, ∗, ∗, {CP}〉

Assistance tk = 〈∗, {H,CR ∨H}, possess, ∗, {AS}〉

Collaboration tk = 〈∗, {CR ∧H}, ∗, ∗, {CL}〉

Confirmation tk = 〈∗, {H,CR ∨H}, possess, ∗, {CO}〉

Confirmation tk = 〈∗, {CR ∧H}, ∗, ∗, {CO}〉

Table 7.1: Relevance between tasks and different interaction classes. “ * ” represents any possible
value.

The set of tasks can be represented as TK = TKh ∪TKcr, where the domain of the variable

“agent” for TKh is {H ∨ CR,H,H ∧ CR}, and for TKcr is {H ∨ CR,CR,H ∧ CR}.
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The human’s intention can be one of the human’s tasks or nothing at all, intention ∈

TKh ∪ {do nothing}.

7.3 Model

This section presents the HRMI decision control model that allows a robot to observe a human

and detects his possible intention (intended task) and infer any possible need of assistance or

collaboration that might require the robot’s involvement. The companion robot system considers

the human needs as priority (assistance, collaboration), otherwise helping a human by doing a

cooperative task comes in second.
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Figure 7.1: The HRMI Decision Model.

Figure 7.1 presents the three levels of the system. In the first level, at each time-step, the

human Intention Estimator (IE) observes the human action (zie) and updates the estimation

over the possible human intentions (updateie(b
′ie|bie, zie)). The IE uses a library of human action

value functions (Q-Values) calculated off-line. In the second level, the Interaction-class Selector

(IS) receives the updated estimations and uses them to efficiently switch the type of interaction

in a way that matches the human desires. The third level uses all information from the first and

second levels to choose a task for the robot based on the estimated intention and the chosen

class of interaction. By selecting the policy of the robot’s task from the policies database, the

robot applies the appropriate action from this policy. Afterwards, the system hands the control

back to the IE and along with the new observed human action, a new time-step begins. We note
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that levels 2 and 3 are responsible for adapting the robot’s behavior according to any change in

the human intention estimations.

The high level algorithm of the system is as the following:

1. The system observes the human action zie.

2. Level 1: The belief update function updates the belief over the human intention,

updateie(b
′ie|bie, zie).

3. Level 2(a): The Interaction-class Selector creates the state sis from the current belief bie.

4. Level 2(b): The Interaction-class Selector calls the policy πis to choose an interaction class.

5. Level 3(a): The Task Selector algorithm chooses a task to achieve by the robot tk ∈ TKcr.

6. Level 3(b): The appropriate policy from the database is used to decide the robot’s action.

7. The robot applies its action and a new time-step begins.

The following contains few details related to the model and the decision control (confirmation

and the control flag) and the rest of the section will present a detailed description of the three

levels of the decision model.

Confirming with the human

The fact that the human intention is of type AS does not necessarily prove that the human

needs assistance to achieve his task (he is possibly capable of achieving it by himself). In order

to avoid unneeded gestures of assistance or collaboration which might confuse the interaction

with the human, a confirmation policy is added to the possible robot tasks (TKcr ∪ confirm).

This allows the robot to ask the human for a confirmation once the system detects a possible

need of assistance (will be explained later in this section) or once the estimated human intention

is of type CL. The confirmation policy is simply a query question as: (Do you need my help

in doing task ’x’?) and the human answer can simply be a yes or no. There is no need of any

kind of confirmation if the human intention is of type CP , in such a case, the robot will choose

to cooperate by doing another task of type CP .

The Flag

The Flag can be considered as a messenger between the system levels. It represents the current

class of interaction or other information that can affects the decided type of interaction between

the robot and the human. The Flag can be assigned with a new value in Levels 2 and 3. If

the observed human action, which is received from Level 1, contains a human answer to a query

(yes,no), Level 2 updates the Flag value with the human answer. Also, when a possible need of

assistance is detected in Level 2, the Flag value is updated to point this fact. Level 3 updates
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the Flag value depending on the class of interaction of the chosen robot task. Possible Flag

values can be:

• NeedAssistance : a possible need of assistance is detected.

• DoingX : the robot follows a policy to achieve a task of type X where: X ∈ I.

• Confirm : the robot is confirming with the human his need of help.

• Y es : the human confirmed with (yes).

• No : the human confirmed with (no).

7.3.1 Level 1: The Human Intention Estimator (IE)

The IE is the part of the system that observes the human actions and tries to translate those

actions into intentions using the library of human action values (Q-Values). In a similar way to

the augmented POMDP described in Chapter 5, the IE uses a number of Human MDPs (equal

to the number of tasks involving the human TKh) which are defined by empathy and calculated

off-line to produce the library of Q-Values.

The IE belief update function is used to calculate the belief over the human intentions at each

time-step after observing his latest action (zie). This function is defined using a Hidden Markov

Model (HMM) where the human intention is represented as the hidden part of the model.

The IE is represented by a tuple
〈

Sie, Zie, T ie, Oie, bie0
〉

. The set of states Sie =
〈

Sie
hc × Sie

hi

〉

represents the human context variables including information about the human regarding the

context of the problem (Sie
hc) and the human intention (Sie

hi ⊂ TKh). The possible observations

are the possible related human actions: Zie ⊂ Ah. The transition function T ie = Pr(s
′ie|sie)

gives the probability of ending in state s
′ie knowing the current state sie where sie, s′ie ∈ Sie,

siehi, s
′ie
hi ∈ Sie

hi and siehc, s
′ie
hc ∈ Sie

hc.

pr(s
′ie|sie) =

{

pr(s
′ie
hc |s

ie)× p if siehi = s
′ie
hi

pr(s
′ie
hc |s

ie)× 1−p

|s
′ie
hi

|
if siehi 6= s

′ie
hi

The property of memorizing the human’s intention through the transition function (T ie) is

introduced by adding a probability of p ∈ [0, 1] that the human will keep his intention in the

next time-step and a probability of 1 − p that he will change his intention. However, the

transition probabilities concerning the human’s context variables siehc depends on the context

of the problem. Oie = pr(zie|sie, s
′ie) is the observation function which is computed using the

library of Q-Values. Equation 7.1 describes the probability of each observation knowing the

current state (sie) and the next state (s
′ie). λ in Equation 7.1 is a normalizing factor and sh

represent the human MDP state derived from the current IE state (sie) which can transition via

the observed human action to the human MDP state (s
′h) derived from the next IE state (s

′ie).
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T h

s
′ie
hi

is the transition function of the human MDP corresponding to the intended human task

s
′ie
hi (see Section 5.3.3 for details).

pr(zie|sie, s
′ie) = λQ

s
′ie
hi

(sh, zie), where: T h

s
′ie
hi

(sh, zie, s
′h) > 0, (7.1)

The Human Intention Estimator receives at each time-step the human action zie and uses

the belief update function (Equation. 7.2), where δ is a normalizing factor, to calculate the

new belief state (b
′ie) and gives it to the Interaction-class Selector. Any possible change in the

human intention is usually reflected on his actions and therefore reflected on the new belief over

the human intentions (b
′ie).

b
′ie(s

′ie) = δ
∑

sie∈Sie

pr
(

zie|sie, s
′ie
)

pr
(

s
′ie|sie

)

bie(sie) (7.2)

7.3.2 Level 2: The Interaction-Class Selector (IS)

The IS is responsible for choosing the appropriate type of interaction with respect to the esti-

mated human intention. It starts by analyzing the received belief state (bie) for better estimation

of the human needs. Then it uses a pre-calculated policy MDPis to choose one of the different

interaction classes: Cooperation CP ; Assistance AS; Collaboration CL.

The IS model

The IS model is represented with a Markov Decision Process such asMDP is =
〈

Sis, Ais, T is, Ris
〉

.

The set of states Sis =
〈

Sis
hc × Sis

hi × Sis
F lag

〉

includes the variables: Sis
hc that represents human

context related information, Sis
hi ⊂ TKh that is the human intended task and Sis

F lag ⊂ Flag that

holds the Flag value. The set of actions Ais = {doCP, doAS, doCL, doConfirm} includes the

decided interaction class or a confirmation. The IS transition function T is = pr(s
′is|sis, ais) is

calculated in two parts as in Equation 7.3.

T is = pr(s
′is
F lag|s

is, ais) ∗ pr({s
′is
hc , s

′is
hi }|s

is) (7.3)

The first part is responsible for the probability of changing the Flag variable knowing the

action ais ∈ Ais. The second part is responsible for the transition of the human context variables

(sishc) and human intention (sishi) (Equation 7.4), where sis, s
′is ∈ Sis, sishi, s

′is
hi ∈ Sis

hi and sishc, s
′is
hc ∈

Sis
hc. The property of memorizing the human’s intention is introduced by adding the probabilities

p/1− p that the human will keep/change his intention in the next time-step.

pr({s
′is
hc , s

′is
hi }|s

is) =

{

pr(s
′is
hc |s

is)× p if sishi = s
′is
hi

pr(s
′is
hc |s

is)× 1−p

|s
′is
hi

|
if sishi 6= s

′is
hi

(7.4)
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The reward function Ris(sis, ais) is defined in a way where a confirmation of collaboration is

rewarded if the human intention is of type CL. However, a confirmation for assistance is only

rewarded if Flag = PossibeNeed. DoCL,DoAS are rewarded when human intention is of type

CL,AS respectively and Flag = Y es. DoCP is rewarded else-wise.

Employing the IS policy for selecting the type of interaction

The IS MDP policy πis is calculated off-line. Once the system is on-line the policy is called to

choose the best interaction class. As the state of the human is not totally observable, the IS

state is created on-line as described in Algorithm 5.

Algorithm 5: The creation of the ICS state

Input : Flag, bie(s), zie, previous state intention
Output: sis

st∗ = argmax
s∈Sie

(bie(s)) ;
1

st∗2 = argmax
s∈Sie−{st∗}

(bie(s)) ;
2

// Check for human answers

if Flag = Confirm and zie = yes then3

Flag = yes;4

else if Flag = Confirm and zie = no then5

Flag = no;6

else if Flag = Confirm and zie 6= yes and zie 6= no then7

Flag = no;8

set-timer;9

// initialize sis with argmax Sie

Initialize sis =< st∗hc, st
∗
hi, F lag) >10

if Flag = yes then11

sis =< st∗hc, previous state intention, F lag) >;12

else if Flag = no then13

set previous state intention to done14

else if (variance
β∈Sie

(bie(β)) > variance
α∈{st∗,st∗

2
}
(bie(α))) then // ambiguity in bie

15

forall (tk ∈ TKh)do// check for need of assistance16

if ({AS} ⊂ tktype and tk is-not-done) then17

if (st∗hc relates with tkcontext) then18

sis =< st∗hc, tk,NeedAssistance > ;19

Using the belief state that the IS receives from level 1 (bie(s)) at each time-step, the algorithm

creates the corresponding IS state sis that will be used by the IS MDP policy πis to decide the

interaction type (πis : sis → ais).
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Lines 1 and 2 of the algorithm define the first and second dominant states of the belief state.

Line 15 tests if the dominant state st∗ has a distinct belief probability from the other states.

This is done by comparing the variance between the first two dominant states and the variance

between all states. If the variance between the probabilities of the two dominant states is higher

than the variance between all states probabilities then the dominant state is considered highly

distinct and the algorithm can recognize a distinct intention. When observing a human’s answer

to a doConfirm action (from the previous time-step) the algorithm will change the Flag value

to match the human’s answer yes or no (Lines 3:6). In case of a confirmation action by the

robot without an answer from the human, the algorithm in lines (7:9) sets the task to done and

a timer to reset the task to not done after a certain time, this choice was made to avoid annoying

the human with an endless series of confirmations.

If the latest robot action was a confirmation for assistance or collaboration, the algorithms

verifies the human answer (Flag) in lines (10:14). If the human answer was a yes then the

intended task is set to be the human intention in the previous time-step (the task that the robot

was confirming about). However, if the human answer was a no, then the system supposes that

the human is not needing help in doing the task, the task is set to done. This choice was made

to prevent an endless series of confirm actions when the human’s answer is no. It is possible to

set a timer in order to switch such tasks after a while as not done to be able to detect future

need of help (collaboration, assistance) for any of them.

Considering a possible situation where the human intention is of type AS and the human

actions are indistinct and not actually of advantage to achieving the intended task. A conse-

quence of such situation is a certain ambiguity in the belief state over the human intentions.

This ambiguity will be detected in line 15 of Algorithm 5. The ambiguity in the belief state,

however, might be a sign of one of different circumstances like a lack of interest in all intentions,

or a need of assistance. Therefore, lines (16:19) test the possibility that the human needs help in

doing one of the AS tasks. The test checks for a relation between the human context variables

st∗hc and the context variables of any possible intended task of type AS. This relation might

be a similar location or any fact that reveals a human interest in this task. In case the test

passes, a state is created with the related assistance task and the Flag is assigned the value

NeedAssistance. This will normally lead the IS policy πis to choose doConfirm.

After the Algorithm creates the IS state (sis) and the IS policy πis is called to choose an

interaction type, both the decision and the IS state are passed to Level 3 in order to choose a

targeted task for the robot and the corresponding robot action to achieve this task.

7.3.3 Level 3: Choosing a Task and Applying a Type of Interaction

Algorithm 6 describes the selection of the task that the robot should achieve knowing the IS

state (sis) and the decided type of interaction (ais) received from Level 2. The algorithm also

describes how the value of the Flag is changed to inform the other levels of the system, in the

following time-step, of the applied type of interaction.
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Algorithm 6: Task Selection

Input : sis, ais.
Output: tk ∈ TK, Flag.

if (ais = doConfirm) then1

tk = confirm sishi;2

Flag = confirm;3

else if (ais = doAS and {AS} ⊂ (sishi)type and sisF lag = yes) then4

tk = sishi;5

Flag = DoingAS;6

else if (ais = doCl and {CL} ⊂ (sishi)type and sisF lag = yes) then7

tk = sishi;8

Flag = DoingCL;9

else10

forall (t ∈ TKr) do11

if (tagent = CR) then // priority robot only12

tk = t ;13

Flag = DoingCP ;14

S∗ = φ;15

while tk is not defined do16

st0 = argmin
s∈Sie−S∗

(bie(s)) ; // Get next argmin
17

if st0hi ∈ TKr and ({CL} ⊂ (st0hi)type or {AS} ⊂ (st0hi)type) then18

tk = st0hi;19

Flag = DoingCP ;20

S∗ = S∗ ∪ {st0};21

Lines 1:3 of the algorithm relates to the situation where the IS decided action is to confirm

a task (ais = doConfirm). In this case, the chosen task to achieve is to confirm the need of

help for the intended human task (sishi). Otherwise, lines 4:9 shows the chosen task to achieve

if the human intention sishi is of type AS or CL and he confirmed positively his need of help

(sisF lag = yes). In Line 11, the algorithm searches for tasks of type CP that only the robot can

do (tkagent = CR) which has the priority at this point. Finally, in Lines 15:21, if non of the

prior cases are true, the algorithm looks for a task of type CP that is doable by the robot and is

least intended by the human. According to the chosen task, the algorithm sets the Flag value

to hold the exact type of interaction that the robot is/will-be applying.

After running Algorithm 6, Level 3 accesses the database of pre-calculated policies (Fig-

ure 7.1) and calls the optimal action from the appropriate policy knowing the decided robot

task (tk ∈ TKCR) and decided type of interaction Flag ∈ I. A task might have several pre-

calculated policies in the database, one for each type of interaction that can achieve this task.

Level 3 ends the system’s time-step by sending the Flag value to level 1.
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7.4 A Companion Robot at Home Scenario

This section describes a small representative HRMI scenario inspired from [RoboCup@home,

2011]. The scenario was applied on a koala robot to show the ability of the decision model to

switch between the different types of interaction according to the inferred human needs.

The representative scenario includes three tasks. The first is a task of type assistance (AS),

it consists of finding a book in the bookcase that is a task that can be done by the human alone

(with or without assistance). Therefore, agent = {H} and policy = possess. If the human is

not able to find the book, the robot offers his assistance by asking the human about the name of

the book then accessing a database to get the book’s emplacement in the bookcases and inform

the human of the exact shelve number to find the book.

The second task is of type collaboration (CL), it consists of filling the printer with paper

and agent = {H∧CR}. In this scenario we suppose that the robot can observe the fact that the

printer has no more paper inside. However, lacking the ability to fill the printer by itself, the

robot waits for a situation where the human is near the printer (looking for his printed papers)

to collaborate with him to fill the printer. The collaboration for this task is done in such a way

that the robot brings the paper to a position near the printer and the human takes them and

fills the printer.

The third task is of type cooperation (CP ) and it consists of cleaning the windows of the

building. This task can be done only by the robot, agent = {CR}.

Figure 7.2 includes screen-shots of a video demonstrating the described scenario with three

types of interactions. With the absence of the human, the robot starts by achieving a cooperative

task (cleaning the window) as shown in Figure 7.2(a). Later, the human enters the room and

after he hesitates in front of the bookcase, the robot detects a possible need of assistance and

switches types of interaction to confirming. Figure 7.2(b) shows the robot offering assistance in

finding a book. Figure 7.2(c) shows the human answering the confirmation with a “no” which

leads the robot to switch back to cooperation as shown in Figure 7.2(d). Meanwhile, the human

grabs a book from the bookcase and moves towards the printer. The robot switches to confirm

collaboration with the human to fill the printer with paper as shown in 7.2(e). Figure 7.2(f)

shows the human confirming positively the collaboration which leads the robot to switch to

collaboration as shown in Figure 7.2(g). The robot in Figure 7.2(h), bringing paper near the

printer, the human takes them and fill the paper with them. After ending the collaborative task,

the robot switches back to cooperation and moves to continue cleaning the windows as shown

in Figures 7.2(i) 7.2(j).

The implementation of the human intention estimation for this scenario was based on the

human position as human context variables. The printer position was the context variable for

the filling printer task and the bookcase position was the context variable for looking for a book

task.

http://users.info.unicaen.fr/~akarami/demohri/demo_multi_interaction.avi
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(a) Cooperation (b) Confirm Assistance (c) Confirming Assistance

(d) Cooperation (e) Confirm Collaboration (f) Confirm Collaboration

(g) Collaboration (h) Collaboration (i) Cooperation

(j) Cooperation

Figure 7.2: Screen-shots of a video demonstrating three types of interactions.

7.5 Experimental Results

The results we show in this section concern problems with three classes of interaction. We present

some performance results including off-line calculation times measured for different sizes of the

problem. For scalability analysis we show in Table 7.2 results for 6 experiments. Experiments

were done on Linux Intel 6 cores, with 20Go Memory. We considered the tasks context variables
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are their positions in the human-robot shared area and the human context variable is his position

as well. The HMDPs are calculated to plan the human path to each possible task. Tasks types

are divided equally and randomly to CP,CL and AS. In those experiments we presented the

areas with 10 to 100 rooms each with 10 to 20 accessible positions. This is considered large

enough to cover scenarios of a house, an apartment or a hotel. Table 7.2 presents the number

of positions |POS|, the number of tasks |TK|, number of ICS states and the offline calculation

time. As we notice, the HRMI calculation times allow us to solve real-life robot companion

scenarios contrary to a POMDP model (Figure 5.4). The approach we present in this chapter

solves problems more than 100 times the size of problems solved using the POMDP model

(Chapter 5) and with acceptable calculation time.

Exp. |POS| |TK| |Sis| total time (minutes)

1 200 25 4.5× 104 < 1

2 200 50 9× 104 < 1

3 400 50 1.8× 105 2

4 400 100 3.6× 105 5

5 1200 100 1.08× 106 21

6 1200 400 4.32× 106 480 (8 hours)

Table 7.2: Experiments from HRMI model.

We recall that the parts that are calculated offline are: the HMDPs policies, the HIE tran-

sition and observation functions, the MDP is policy. The more the scenario is complicated, the

more time is needed in creating the MDP models and in solving them. In our results, the ma-

jority of calculation time served for the creation of the transition function of the MDP is model

described in Equation 7.3. We also recall that once the system is online, the robot decisions are

taken instantly.

It is hard to evaluate the HRMI model and its algorithms. We have created a problem with

10 tasks of different types (mostly collaboration and assistance) and we simulated a rational

human behavior to randomly chose tasks and randomly need help (random yes and no answers).

Algorithm 5 of the HRMI model guarantees the switch to the appropriate type of interaction

under the condition that the context variables (tkcontext, s
ie
hc, s

is
hc), which are responsible for

relating the human actions to his intended task, are well defined and lead to no confusion. In

the following we describe some analysis over simulations using the decision model:

• To detect the need of assistance, Algorithm 5 checks for ambiguity in the belief state.

During simulation, the human action that triggers this ambiguity is doing nothing (e.g.

no displacement). However, it is possible to adjust the needed number of time-steps in

which the human does nothing in order to reach ambiguity. This is related to the Q-Value

of the human action (do nothing) when his context variables are related to his intended

task context variables (e.g. his position is equal to the position of his intended task).
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• When confirming a task of type assistance and the human answer is negative: the model

assumes that such a reaction from the human means that he is capable of doing the task

by himself. This is why the Algorithm 5 sets the task as done in such situations.

• When confirming a task of type collaboration and the human answer is negative: knowing

that a collaborative task cannot be done by the human alone, the model assumes a

confusion in the human intention estimation (during simulations, this confusion happened

when two tasks are very close to each other). To avoid multiple confirmation while the

confusion is not solved, the model propose to set the task as done for certain time and

then add it back after a small period of time. The period of time must be relative to the

type of activity in the solved problem.

7.6 Discussion

We presented a framework for a companion robot that is able to interact with a human using

different types of interaction (assisting, collaborating, cooperating) depending on the recognized

intention and needs of the human. To our knowledge, there is no prior work on adaptive multi-

interaction systems in HRI. However, assistive and collaborative individual models have a large

interest in the literature.

The model can solve cooperative missions as in Chapter 5 if only the set of tasks include

only cooperative tasks. It can also integrate coactive policies for collaborative tasks in the policy

database.

Our results show that by dividing the decision model into different components, we are

able to solve real life problem sizes with acceptable calculation time, and compute policies that

act reasonably as expected. Those policies handle the problem of uncertainty over the human

intention and also overcomes the limitation of POMDPs.

An important amount of time is dedicated for manually creating the sub models (Human

MDPs, IS, IE and a database of policies for each couple (task, interaction)). Nevertheless, this

is a normal difficulty when solving HRI problems with a large task space whether models are

created manually or learned from observation.
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We discussed in Chapter 5 a decision model that concerns a robot cooperating with a human

partner to achieve a common mission. The mission consists of several tasks and the objective

of the robot is to infer the human’s intention and act accordingly with respect to the mission’s

success. The human intentions were inferred by observing the human’s actions. In this chapter,

we present a mixed model that combines a verbal human-robot interaction with the previous

model (non-verbal). Using verbal interaction, the robot can ask (query) the human about his

preferences over the possible tasks. We propose two different frameworks to model the mixed

The work presented in this chapter was published in AAAI 2010 Fall Symposium (Dialog with
Robots) [Matignon et al., 2010]
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verbal and non-verbal interaction problem. The first consists of a unified POMDP model

that handles both interactions by switching between two types of actions. The second separates

the verbal interaction model from the non-verbal interaction model and will be referred to

as disjoined model. Both frameworks allow the robot to switch accurately between verbal

and non-verbal interactions. The verbal interaction (will be referred to as epistemic) aims at

disambiguating the human’s preferences. The non-verbal interaction (will be referred to as

intuitive) consists in achieving the cooperative mission while inferring human’s intention based

on the observed human actions. The beliefs over human’s preferences computed during the

epistemic interaction are then reinforced in the course of the mission execution by the intuitive

interaction. However, a detected ambiguity in the belief over preferences might lead to a potential

switch to the epistemic interaction. Using such a decision model allows the robot to detect the

changes in the human’s preferences, consequently adjust its plan and switch between both kinds

of interactions. Experimental results on a scenario inspired from robocup@home outline various

specific behaviors of the robot during the cooperative mission.

8.1 Motivation

Cooperating with a human requires the robot to be aware of its partner’s preferences upon the

tasks so as to effectively satisfy the human’s desires during the mission. Given that the human’s

preferences are a state of mind, a robot should be able to infer its partner’s preferences, or at

least the probable ones. Using those information, the robot should make better decisions for

the cooperative mission, e.g. performing the human’s non-favorite tasks. The robot should also

adjust its plan rapidly in case of a sudden change in the human’s intentions during the mission.

Several successful approaches are interested in inferring the human’s intentions to enhance

the cooperation between the robot and the human (see Section 4.1). They vary between appli-

cations with implicit (intuitive) or explicit (epistemic) communication for the cooperation.

Explicit communication as for spoken dialog seems to be the obvious solution to access the

human’s state of mind and infer his preferences. However, spoken dialog systems are complex for

several reasons. First, the system observes the human answers during the dialog via automated

speech recognition and language parsing which are imperfect technologies. Second, each human

answer (even if it could be observed accurately) provides incomplete information about the hu-

man’s intention, so the system must assemble evidence over time. Third, because the human

might change his intention at any point during the dialog, inconsistent evidence could either be

due to speech recognition error or due to a modified intention. Thus the challenge for the dialog

agent would be to interpret conflicting evidence in the human answers to estimate his intention.

Finally, the agent must make trade-offs between the cost of gathering additional information

(increasing its certainty upon the human’s intention, but prolonging the conversation) and the

cost of making a final decision that might not match the human’s intention. For all of these

reasons, the spoken dialog problem can be regarded as planning under uncertainty. Many re-

searchers have found POMDP frameworks suitable for designing a robust dialog agent in spoken
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dialog systems. These researches range from robot system that interacts with the elderly in a

nursing home [Pineau et al., 2003], automated system that assists people with dementia [Hoey

et al., 2010], flight agent assisting the caller to book a flight ticket [Williams, 2006, Young et al.,

2010] or a wheelchair directed by her patient [Doshi et Roy, 2008].

A drawback concerning explicit communication for human-robot cooperative missions is

related to the fact of detecting a change in the human’s preferences. This can be solved by

querying the human continuously and assembling conflicting evidence in the human answers.

However, the robot should avoid to constantly ask queries since too much questions could annoy

the human. For this reason, we propose to combine the epistemic explicit model with an implicit

intuitive model. The latter will be responsible for achieving the cooperative mission while

observing the human’s actions and inferring his preferences using the Q-values of those actions.

When an ambiguity between the inferred preferences from both models is detected, a switch to

the explicit communication is probably useful.

This chapter describes a unified model that allows the robot to switch between epistemic

explicit interaction and intuitive implicit interaction for a cooperative mission with a human

partner.

8.2 The Mixed Model for Human-Robot Cooperation

The general architecture of the mixed model is shown in Figure 8.1. One of its components is

a human-robot spoken dialog interaction called epistemic interaction. Robot’s actions during

this interaction are queries asked to the human with potentially noisy or ambiguous answers.

The robot must choose queries that disambiguate the human’s preferences and build a belief

over them despite uncertainty in the observed responses. Once sufficiently certain and based on

this belief, the robot switches to task execution to perform the tasks that satisfy the human’s

preferences.

ENVIRONMENT

HUMAN

ROBOT

Human-robot 
spoken dialog system

Task execution system+
Intuitive human-robot 

interaction 

Responses
(noisy, ambiguous,
partial information)

Queries

Preferences upon 
tasks (hidden)

Beliefs over preferences

HUMAN

ROBOT

Ambiguity 
detected

 action
Does task

Observes human 
actions

Human's 
preferences 

disambiguated

Intuitive Interaction Intuitive Interaction Epistemic InteractionEpistemic Interaction
Reinforce 
prefereces

Figure 8.1: The general architecture of the mixed model for the Human-Robot Cooperation.
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The second component is the task execution system also called intuitive interaction. During

this interaction, the robot chooses tasks to achieve while respecting the human’s preferences

and the mission’s success. However, while achieving the tasks, the human’s preferences may

change and one challenging issue is to detect this change. For this reason, an intuitive human-

robot cooperation is introduced during the task execution to detect the change in preferences.

The beliefs over human’s preferences (inferred during the dialog) are reinforced by comparing

them with the inferred intentions from observing non-verbal human actions (see Chapter 5). In

case of ambiguity, the robot returns to the epistemic interaction to disambiguate the human’s

preferences; otherwise, it continues to execute tasks according to its belief over the human’s

preferences. Therefore the mixed model provides an accurate switch between both kinds of

verbal (epistemic) and non-verbal (intuitive) interactions.

8.3 The Unified Framework

The unified framework consists of a unified POMDP model [Matignon et al., 2010]. The POMDP

model is responsible for both verbal interaction and tasks execution. However, detecting a change

in the human intention is not detailed in this framework, only an observation in the list of the

POMDP observations expressed the fact that another part of the system detected a change in

the human intention.

The human and the robot share a mission of N tasks TK = {tk1, tk2, ..., tkN}. The human

has preferences upon the tasks modeled as his internal state sh which may change over the

course of the mission. Preferences are, for each task ti of the mission:

• sh(tk) = to do by human if the human would rather do the task tk;

• sh(tk) = to do by robot if the human would rather the robot did the task tk;

• sh(tk) = undecided if the human has not yet decided his preference upon the task tk.

The Unified POMDP Model:

States

The state space brings together the set of human’s preferences upon the tasks of the mission

(non-observable) and the status of each tasks (done or not done) that is observable. The human’s

preferences can be to do by human, to do by robot, undecided, for any tasks of the mission that

has the status not done. The state s is then characterized by a function that associates, at each

task tk ∈ TK of the mission, either the human’s preference or the status of the task if done.

Initially, the belief state is uniform among all states where all the tasks are not done. While

the robot is executing tasks, it can detect a change in the human’s preferences thanks to the

observation of the human actions. Indeed, an intuitive method that builds a belief over all

possible human’s intentions given the observed human actions is used. If the beliefs over human’s
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intentions computed with the intuitive method do not match the beliefs calculated during the

dialog, then the robot has detected a change in the human’s intentions and should restart a

spoken dialog.

Actions

Possible actions for the robot include queries to the human asked during the dialog. The

robot can choose from three kinds of queries: it can choose to ask a general question such as

“Which task should I do ?”, to confirm a preference upon a specific task tk such as “Should

I do the task tk ?” and to greet the human and ask “How can I help you?”. The robot

can also choose to achieve a task of the mission. We assume the robot has a list of prede-

fined policies to accomplish correctly each task of the mission. The action do(tk) then leads

the robot to follow the corresponding policy. The robot may also choose to wait, for in-

stance because remaining tasks are preferred by the human. The robot action set is: A =

{wait, do(tk1), ... do(tkN ), confirm(tk1), ... confirm(tkN ), ask, greet}.

Observations

The observation set includes different ways of partially or fully communicating the human’s

preferences. In reply to a general question or a greeting, observations consist of N observations

{prefdo(tf1), ..., prefdo(tfN )} associated with each of the N tasks plus the prefdo(ø) obser-

vation. Observations yes and no stand for positive and negative confirmations in response to

confirm queries. Observations not yet stands for a not yet decided response. The robot may also

observe nothing. Finally, the robot may observe hdid(tk) when the human has just achieved

the task tk. The robot observation set is: Z = {hdid(t1), ... hdid(tN ), nothing, prefdo(t1), ...

prefdo(tN ), prefdo(ø), yes, no, not yet}.

Transition Function

The effects of the robot action a on a state s are relatively clear: when the robot does a task, the

task status changes to done. Other actions like queries or wait action do not modify the state.

However, the transition from state s to s′ is not only defined by the robot action, but also by the

human actions and intentions. Indeed, we assume the human has a small probability to change

his preferences during the dialog. This change in preference might be dependent on the robot

action. However, we assume in the presented model, without loss of generality, that changes

in human preferences are independent from the robot action. As well, the task status that can

change to done when the human did a task. We suppose that: the human does only tasks he

would rather do, i.e. tasks whose preferences are to do by human or undecided; the human will

keep same preferences with a probability pKI; the human might do a task he is intended with

a probability pHDo; otherwise the human changes his preferences upon tasks that are not done

to another preferences chosen uniformly. Once the human has decided his preference upon tk
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(s(th) ∈ {to do by human,to do by robot}), he cannot return to a not yet decided preference,

yet s(tk) can switch between to do by human and to do by robot. Thus:

• T (s, a, s′ = s) = pKI

• T (s, a, s′ ∈ hDo(s)) = pHDo
size(hDo(s))

• T (s, a, s′ ∈ hI(s)) = 1−pKI−pHDo
size(hI(s)) if size(hDo(s)) 6= 0

• T (s, a, s′ ∈ hI(s)) = 1−pKI
size(hI(s)) if size(hDo(s)) = 0

where hDo(s) is the set of all reachable states from s when the human does one task that he

prefers; and hI(s) is the set of all possible permutations of preferences upon not yet done tasks

in s. We obtain the same probabilities when a = do(tk) except that the status of the task tk in

s′ is done.

Observation Function

Based on the most recent action a and the future state (s′) of the system, the robot has a

model of the observation z it may receive. First the observation function O(a, s′, z) gives in a

deterministic way the observation z = hdid(tk) when the human just did a task tk. The robot

also observes nothing when it waits or does a task: O(a ∈ {wait, do(tk)}, s′, z = nothing) = 1.

The observation function also encodes both the words the human is likely to use to reply

to the queries and the speech recognition errors that are likely to occur. We suppose speech

recognition errors are different according to the kind of queries. If the robot made a general

query or a greeting, then it observes the right answer with a probability pAsk. Thus, when

a ∈ {ask, greet}:

• O(a, s′, z = prefdo(ø)) = pAsk if nbRDo(s′) = 0 and nbNYet(s′) = 0

• O(a, s′, z = not yet) = pAsk if nbRDo(s′) = 0 and nbNYet(s′) 6= 0

• O(a, s′(ti) = 1, z = prefdo(ti)) =
pAsk

nbRDo(s′)

where nbRDo(s′) is the number of tasks in s′ that the robot can do according to human’s prefer-

ences and nbNYet(s′) the number of tasks in s′ upon which the human is not decided yet. If the

robot made a confirm query, then it observes the right answer with a probability pConf . Thus,

when a = confirm(tk):

• O(a, s′(tk) = to do by robot, z = yes) = pConf

• O(a, s′(tk) = to do by human, z = no) = pConf

• O(a, s′(tk) = undecided, z = not yet) = pConf

In both queries ask and confirm, the robot observes in addition to the right answer an arbitrary

response uniformly from the remaining possible replies prefdo(tk), prefdo(ø), yes, no, not yet, nothing.
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Reward Function

The robot is rewarded for greeting the human in the beginning of the mission. The reward

function also specifies how much the human is willing to tolerate ask versus confirm queries

thanks to the choice of the reward for a general query ask. The robot is penalized for doing a task

preferred by the human. It is also penalized if it does a task although there remains undecided

tasks or if it waits although it would better do a task or query the human. Finally, the robot

gets a high reward when it does a human’s non-favorite task and all the human preferences upon

the tasks have been given. It also gets a high reward when it waits while all remaining tasks are

human’s favorite tasks.

8.4 The Disjoined Framework

This section describes a disjoined verbal and non-verbal model for human-robot cooperative mis-

sions. Contrary to the unified model, this framework describes the verbal interaction and the non

verbal intuitive interaction while achieving tasks using tow separate components (sub-models).

In addition, the disjoined model switches between the two components using an ambiguity de-

tector which is described in detail.

A cooperative mission is composed of a set of N tasks TK = {tk1, tk2, ..., tkN}, each of these

tasks can be done by the human or by the robot. However, the robot should choose his tasks

with respect to the human’s preferences. Therefore, the robot queries the human about his

preference toward each of the N tasks. Figure 8.2 shows a detailed schema of the intuitive and

epistemic components and the flow control in the disjoined model. The following will describe

the epistemic interaction, the intuitive interaction and how/when the system switches between

the two components.

8.4.1 The Epistemic Dialog sub-Model

The system starts in the epistemic interaction which is a POMDP dialog policy. This policy

chooses queries as robot’s actions (Aep) and receives the human’s answers as observations (Zep).

The POMDP also receives an observation when a task is done (if the human achieved a task

while answering the queries of the robot). Once the human’s preferences are disambiguated the

control goes to the intuitive interaction.

The epistemic dialog sub-model is represented by a tuple:

POMDPep =< Sep, Aep, Zep, Tep, Oep, Rep, bep > .

States Sep

The state space brings together the set of human’s preferences upon the tasks and the status of

each task. If a task tk is done, the task state is s(tk) = done, otherwise the task state holds the
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Figure 8.2: The flow control in/between the components of the disjoined model.

human’s preference over it. For each task tk ∈ TK, an example of possible tasks’ states can be

s(tk) ∈ {to do by robot, to do by human, to do by any, undecided, unknown, done} such as:

• s(tk) = to do by robot: the human prefers that the robot does the task tk,

• s(tk) = to do by human: the human prefers to do the task tk himself,

• s(tk) = to do by any: the human has no preferences upon who should do the task tk (the

human or the robot),

• s(tk) = undecided: the human has not yet decided his preference about the task tk,

• s(tk) = unknown: the robot has no knowledge of the human’s preference about the task

tk,

• s(tk) = done: the task tk is done.

The state space is then the set of all tasks’ states: Sep =< s(tk1), s(tk2), ..., s(tkN ) >. The

initial belief state bep(s) in the beginning of the mission holds the task state unknown for all the

mission’s tasks, such as b0 = (pr(s =< unknown, unknown, ..., unknown >) = 1). A possible
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intermediate state can be as in:

bt = (pr(sep =< unknown, to do by any, ..., unknown >) = 0.8,

(pr(sep =< unknown, undecided, ..., unknown >) = 0.1,

(pr(sep =< unknown, to do by human, ..., unknown >) = 0.1)

A final state is reached when none of the tasks has the state unknown which means that all

preferences are disambiguated, as in:

bt+k = (pr(sep =< to do by robot, to do by any, ..., to do by robot >) = 0.7,

pr(sep =< to do by robot, undecided, ..., to do by human >) = 0.05,

pr(sep =< to do by human, to do by robot, ..., to do by robot >) = 0.05,

pr(sep =< to do by robot, to do by human, ..., to do by any >) = 0.05, . . .)

Actions Aep

The epistemic actions include queries where the robot asks the human to confirm his preference

upon a specific task tk such as “Should I do the task ‘clean the table’ ?”.

Aep = {conf(tk1), conf(tk2), ..., conf(tkN )}.

Observations Zep

The set of observations holds the possible human answers to the queries and the possible obser-

vation that one of the tasks is done.

The verbal observations related to human’s answers are processed using a speech recognition

system. When querying about task tk, possible answers can be:

• ob yes: the human’s preference over the task tk is to do by robot.

• ob no: the human’s preference over the task tk is to do by human.

• ob any: the human’s preference over the task tk is to do by any.

• ob maybe: the human’s preference over the task tk is undecided.

• ob nothing: observed when no audio observations have been made (the human did not

answer the query or the speech recognition system failed).

The robot can also receive the observation ob done(tk) when the task tk is done.

Therefore, the set of observations is:

Zep = {ob yes, ob no, ob any, ob maybe, ob nothing, ob done(tk1), ..., ob done(tkN )}.
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Transition function Tep

Figure 8.3 shows an example of transition function values for one task state.
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Figure 8.3: Transition function values for one task (tk) preferences. An arrow connects a task
state s and its next state s′ and is labeled with the action a and the probability T (s, a, s′).

The tasks’ values transitions are as the following:

• a task that is done stays done,

• a task that is not done can transfer to done during the dialog,

• asking a query conf(tk) about the task tk on which the robot has no knowledge (s(tk) =

unknown) brings knowledge about this task except if the speech recognition system fails,

• no change in the human’s preferences is taken into account during the epistemic interaction.

Observation function Oep

The observation function gives the probability of observing zep ∈ Zep from state s′ep ∈ Sep

after doing action aep ∈ Aep. Observations that represent the fact that a task is done are not

dependent on the action aep, this can be described as:

pr(done(tk)|a, s′(tk) = done) = 1, pr(done(tk)|a, s′(tk) 6= done) = 0. (8.1)

The observation function reflects the uncertainty of the speech recognition system. This

means that the probability of observing ob yes assigns a small probability that the human’s

answer was something else and the speech recognition system analyzed it as yes. For example,

pr(zep|conf(tk), s
′(tk) = to do by robot) =

{

β if zep = ob yes

1− β otherwise
(8.2)
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where β ∈ [0, 1] is the probability of the success of the recognition system. Equations 8.1, 8.2

are then normalized to respect the condition:
∑

zep∈Zep

pr(zep|aep, s
′
ep) = 1 ∀(aep, s

′
ep).

Reward function Rep

The reward function R(s, a, s′) assigns a positive reward when the system reaches a state with

no task preference as unknown.

R(s, a, s′|∀tk ∈ TK, s′(tk) 6= unknown) = reward > 0 (8.3)

8.4.2 Intuitive HRI sub-Model

Once the human’s preferences are disambiguated the control switches to the intuitive interaction.

As shown in Figure 8.2, the task selector in the intuitive sub-model chooses a task with respect

to the human’s preferences and a robot action is executed from the corresponding task policy

(policy database). While executing tasks, the intuitive sub-model monitors the human’s non-

verbal actions to determine if his actions match the preferences that were inferred during the

epistemic interaction. This is done by matching the human’s actions to possible preferences

using a Hidden Markovian Model (HMMin) and then comparing the belief state bin(s) from the

HMMin with the belief state bep(s) from the epistemic interaction (Section 8.4.3).

The HMMin state space includes the tasks’ states in addition to the human variables that

are related to the tasks achievement. The observations set of the HMMin includes the possible

human actions related to the tasks and observations to inform that a task is done. The HMMin

belief state bin(s) is initialized at the beginning of the intuitive interaction with the initial human

context variables and the beliefs over preferences from the epistemic interaction. The observation

function of the HMMin uses the Q-values of the observed human actions to reinforce/update the

human’s preferences (see Section 5.2, 5.3 and Section 7.3.1). The HMMin transition function

covers all possible transitions related to the human context variables. Moreover, the transitions

of the tasks states values are described as the following:

• a task that is done stays done,

• any task state can transition to done,

• a task state to do by human can stay the same or transition to unknown (if the observed

human action is not in favor of the task),

• any task state value (including unknown) can stay the same or transition to to do by human

(if the observed human action is in favor of the task).

After each robot executive action, an observed human action is received by the Hidden

Markovian Model HMMin. A new belief state b′in(s) is updated and the Ambiguity Detector
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tests for ambiguity between b′in(s) and bep(s) (see Section 8.4.3). In case the test fails and no

ambiguity was found, the intuitive sub-model continues by executing another robot action and

receiving another human non-verbal action. However, if an ambiguity is detected the disjoined

model switches back to the epistemic interaction to disambiguate the belief over the human’s

preferences.

8.4.3 Switching between Epistemic and Intuitive Interactions

Switching from epistemic interaction to intuitive interaction occurs when all human’s preferences

are sufficiently disambiguated, i.e. probability of preference unknown for all tasks is less than a

small value ǫ.

∀sep ∈ Sep, ∀tk ∈ TK, bep(sep(tk) = unknown) < ǫ.

Switching from intuitive to epistemic interactions occurs when ambiguity is detected. To

describe how ambiguity is detected, different situations must be studied:

1. If the human expressed his preferences to do tasks tki, tkj himself during the epistemic

interaction: while achieving task tki, the human actions might not be of advantage toward

task tkj . This might lead the belief state bin(s) to be updated for task tkj from the value

to do by human to the value unknown which is not necessarily the true fact about the

human’s preferences.

2. If the human expressed his preferences to do task tkk himself and for the robot to do

task tkl. While achieving task tkk, it is probable that some of the human actions be of

advantage toward task tkl as well. This might lead the belief state bin(s) to be updated for

task tkl from the value to do by robot to the value to do by human which is not necessarily

the true fact about the human’s preferences.

Taking the previous two points into account, ambiguity is detected if one of the following

conditions is true where s∗in = argmax
sin∈Sin

(bin(sin)) and s∗ep = argmax
sep∈Sep

(bep(sep)):

condition 1: If ∀tk ∈ TK, s∗in(tk) = unknown.

condition 2: If ∃tki ∈ TK : (s∗ep(tki) = to do by robot, s∗in(tki) = to do by human) and

∄tkj 6= tki ∈ TK : s∗in(tkj) = to do by human.

The first condition consists in all tasks preferences are unknown. The second condition

consists in having a task that the human expressed his preference to to do by robot (during

epistemic interaction), however, the intuitive interaction updated the preferences in a way that

only this task has the preference to do by human. This means that there is no confusion with

another task and it is very possible that the human actually changed his preferences.

When ambiguity is detected the disjoined framework switches to the epistemic sub-model.

In the first condition the epistemic belief state is initiated with a belief state bep that has all
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tasks preferences as unknown. However, in the second condition, the epistemic belief state is

initiated with the intuitive belief state values after changing all tasks values with ambiguous

preference to unknown.

8.5 Experiments

8.5.1 Scenario of Cooperation using the Unified Framework

The purpose of this scenario is to test the behavior resulting from the computed unified POMDP

policy and especially the accurate choice of actions. Table 8.2 shows a scenario with a mission

composed of 5 tasks between the human and the robot. This scenario outlines various specific

behaviors of the robot during the cooperation. We note in step 4 the reinforcement of the

preference upon the task 0 that is due to the increased probability of the change of the human’s

intention over time since the last confirmation (step 1). In steps 10 and 13, we notice that the

robot has switched to the dialog actions for two different reasons. At step 10, after finishing all its

assigned tasks, the robot checks the possible change in the human’s preferences that might have

occurred during the execution period. At step 13, the robot receives an observation from the

intuitive system that declares an observed human’s intent change. For this, it reinitializes all the

remaining tasks to an equal probability and starts to re-inferring the new human’s preferences

using queries.

We also performed experiments with a human and a mobile koala robot. In order to be

able to realize the verbal communication between the robot and the human, we integrated a

speech recognition module for the robot to interpret the human speech answers; and a speech

synthesizer for the robot to convert its queries into speech. Audio observations are processed

using the Sphinx-4 open-source speech recognition system [Walker et al., 2004] and the FreeTTS

open-source speech synthesizer was used for the text-to-speech conversion [Walker et al., 2002].

We chose a mission composed of 4 tasks. The video shows the execution of a complete mission

composed of 4 tasks that are labeled task pink, task green, task blue and task yellow.

8.5.2 Scenario of Cooperation using the Disjoined Framework

The purpose of this scenario is to test the behavior resulting from the computed policies and

especially the accurate switch between verbal and non-verbal interactions. We chose a scenario

that resembles to the cleaning soil-spots scenario from Section 5.4. The mission is composed of

cleaning 5 soil-spots that have different positions in the environment as described in Figure 8.4.

The figure shows a number for each position in the environment and a number for each task,

the position of each task and the initial human position.

Table 8.2 shows a part of the interaction between the human and the robot during the

mission and following the computed policy. We remind that s∗in = argmax
sin∈Sin

(bin(sin)) and s∗ep =

Available at http://lmatigno.perso.info.unicaen.fr/research
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Greeting at the beginning of the dialog:
1 < to do by robot, undecided, to do by human, undecided, to do by human >

ROBOT: Hello, how can I help you ? HUMAN: I’d rather you do the task 0.
2 < to do by robot, undecided, to do by human, undecided, to do by human >

ROBOT: Should I do the task 2? Human does task 2.
The robot confirms all remaining (not done) and ambiguous tasks:

3 < to do by robot, to do by human, done, to do by robot, to do by human >
ROBOT: Should I do the task 4? HUMAN: No.

4 < to do by robot, to do by human, done, to do by robot, to do by human >
ROBOT: Should I do the task 0? HUMAN: Yes.

5 < to do by robot, to do by human, done, To do by robot, to do by human >
ROBOT: Should I do the task 3? HUMAN: Yes.

6 < to do by robot, to do by human, done, to do by robot, to do by human >
ROBOT: Should I do the task 1? HUMAN: No.
Executing the human’s non-preferred tasks:

7 < to do by robot, to do by human, done, to do by robot, to do by human >
Robot does task 0.

8 < done, to do by human, done, to do by robot, to do by human >
Robot does task 3.

9 < done, to do by human, done, done, to do by human >
Robot waits.
Checking if the human has changed his preferences:

10 < done, to do by human, done, done, to do by human >
ROBOT: Which tasks should I do? HUMAN: I’d rather you do nothing.
Executing nothing:

11 < done, to do by human, done, done, to do by human >
Robot waits.

12 < done, to do by robot, done, done, to do by robot >
Robot waits. INTUITIVE SYSTEM: Change in human’s intentions.
Detect a change of intention, checking the human’s preferences:

13 < done, to do by robot, done, done, to do by robot >
ROBOT: Should I do the task 4? HUMAN: Yes.

14 < done, to do by robot, done, done, to do by robot >
ROBOT: Should I do the task 1? HUMAN: Yes.
Executing the human’s non-preferred tasks:

15 < done, to do by robot, done, done, to do by robot >
Robot does task 1.

16 < done, done, done, done, to do by robot >
Robot does task 4.

17 < done, done, done, done, done >

Table 8.1: A dialog example between the human and the robot during the achievement of the
mission (Unified Model).
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Figure 8.4: Cleaning area domain environment.

Epistemic interaction:
1 s∗ep =< unknown, unkown, unkown, unkown, unkown >

Robot: “Should I do task tk3?” Human: “yes!”
2 s∗ep =< unkown, unkown, unkown, to do by robot, unkown >

Robot: “Should I do task tk1?” Human: “no!”
3 s∗ep =< unkown, to do by human, unkown, to do by robot, unkown >

Robot: “Should I do task tk2?” Human: “yes!”
4 s∗ep =< unkown, to do by human, to do by robot, to do by robot, unkown >

Robot: “Should I do task tk0?” Human: “any!”
5 s∗ep =< to do by any, to do by human, to do by robot, to do by robot, unkown >

Robot: “Should I do task tk4?” Human: “yes!”
s∗ep =< to do by any, to do by human, to do by robot, to do by robot, to do by robot >

Intuitive interaction:
6 s∗in =< 0, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
7 s∗in =< 6, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
8 s∗in =< 12, to do by any, to do by human, to do by robot, to do by robot, to do by robot >

human: south
s∗in =< 18, to do by any, unkown, to do by robot, to do by human, to do by robot >
Epistemic interaction:

9 s∗ep =< to do by any, unkown, to do by robot, unkown, to do by robot >
Robot: “Should I do task tk3?” Human: “no!”

10 s∗ep =< to do by any, unkown, to do by robot, to do by human, to do by robot >
Robot: “Should I do task tk1?” Human: “yes!”
s∗ep =< to do by any, to do by robot, to do by robot, to do by human, to do by robot >

Intuitive interaction:
11 s∗in =< 18, to do by any, to do by robot, to do by robot, to do by human, to do by robot >

human: south
12 s∗in =< 24, to do by any, to do by robot, to do by robot, to do by human, to do by robot >

human: do(tk3)
13 s∗in =< 24, to do by any, to do by robot, to do by robot, done, to do by robot >

human: north
s∗in =< 16, to do by any, to do by human, to do by robot, done, to do by robot >
Epistemic interaction:

14 s∗ep =< to do by any, unkown, to do by robot, done, to do by robot >

Table 8.2: Part of a cooperative verbal and non-verbal scenario between the human and the
robot during the achievement of the mission (Disjoined Model).
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argmax
sep∈Sep

(bep(sep)). The scenario described in table 8.2 does not show the robot execution actions,

however, it shows the epistemic interaction actions and how the intuitive sub-model is able to

detect a change in the human’s preferences by observing his actions. The HMM state includes

the human position as a human variable. The HMM Q-values are based on a displacement

MDP’s and the value of a human displacement action toward reaching the position of each of

the soil-spots. The described part of the interaction outlines various specific behaviors of the

robot during the cooperation. The scenario starts at the beginning of the interaction, where the

epistemic state is initialized with unknown preference for all tasks. The epistemic interaction

verifies the human’s preferences over all tasks in steps (1:5). Once all preferences are specified,

the disjoined model switches to the intuitive sub-model. We note in step 8, the human action

value (Q-value) was not in favor of any of his preferences; on the contrary, it was in favor

of one of the robot’s tasks (tk3 in position 24). After applying the human action in step 8,

the human position is set to position 18 and the belief state changes the belief over human’s

preference for tk1 to value unknown and for tk3 to value to do by human. These changes will

lead the ambiguity detector to detect ambiguity in the human’s preferences (condition 2) and

the disjoined model switches back to the epistemic interaction. The belief state for the epistemic

interaction is initiated with unknown for tasks tk1 and tk3 where ambiguity is detected, all the

other tasks hold the same unambiguous preferences. After querying the human in steps (9:10),

which reveals his change in preference, the disjoined model switches to the intuitive sub-model,

where the human moves towards tk3 and achieves it. However, his actions lead to another

ambiguity detection (condition 2) because his action to move north was not in favor of his

preference to to task tk4. The disjoined model switches back to the epistemic sub-model, etc.

The scenario shows that with a well defined library of Q-values, the intuitive sub-model is

able to detect ambiguity (if it exists) between the queried preferences of the human and his

preferences during the execution. Such a library will ensure switching between epistemic and

intuitive sub-models when needed.

8.5.3 Comparison Between Unified and Disjoined Frameworks

Table 8.3 presents model size analysis and policy calculation time for missions with different

numbers of tasks. For the unified and disjoined frameworks, the table shows the size of state,

action, observation sets, and the needed time for calculating the unified POMDP policy and the

epistemic POMDP policy. Experiments were done on Linux Intel 6 cores, with 20 Go Memory.

The epistemic state set size |Sep| = |state values||TK| = 6|TK|. The action set includes a

confirmation action for each task, therefore |Aep| = |TK|. The observation set includes possible

human answers and observations related to done tasks, therefore |Zep| = 5+ |TK|. The unified

POMDP state set size |S| = |state values||TK| = 4|TK|. The action set includes a confirmation

action for each task, an achieving action for each task in addition to wait, ask and greet;

therefore |Aep| = (|TK| ∗ 2) + 3. The observation set includes possible human answers (to ask

and conf queries) and observations related to done tasks, therefore |Zep| = |TK| + 5 + |TK|.
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8.6. Discussion

An important amount of calculation time in the table is used in creating the POMDP model,

namely the transition function. However, our implementation did not focus on optimizing the

time for creating the model that is the reason why the transition function had to calculate the

transition value for each triple (s, a, s′) which means |Sep| ∗ |Aep| ∗ |Sep| calculations (5 ∗ 1011

times for mission with 7 tasks).

Disjoined (epistemic) Unified

|TK| |Sep| |Zep| |Aep| time (min) |S| |Z| |A| time (min)

4 1296 9 4 3 256 13 11 159

5 7776 10 5 7 1024 15 13 1200

6 46656 11 6 65 4096 17 15 -

7 279936 12 7 - 16384 19 17 -

Table 8.3: Mixed verbal and non-verbal frameworks: model complexity and policy calculation-
time. “ - ”.

The unified framework was solved with an approximative topological solver [Dibangoye et al.,

2009]. This choice was motivated by the topological structure of the unified POMDP model.

The epistemic POMDP was solved using the ZMDP solver. However, we notice that certain

groups of actions affects only certain variables of the state (e.g. confirm(t1), do(t1) are related

to task status of task t1) which is a motivation to use factored approaches to solve compact

representations of structured POMDPs [Boutilier et Poole, 1996, Guestrin et al., 2001, Bui

et al., 2010, Williams et al., 2005].

We notice the unified framework did not detail the intuitive detection of the human’s pref-

erences. In order to do that using a unified POMDP, the number of observations will increase

to include all possible human observed actions. This will lead to a leap in the complexity of

solving the POMDP.

8.6 Discussion

In this chapter, we have presented the unified and disjoined frameworks. They allow an au-

tonomous companion robot that cooperates with a human partner to infer his preferences and

to switch accurately between verbal (epistemic system) and non-verbal (intuitive system) inter-

actions.

We presented an example of a mission that shows how the robot switches between the

epistemic and the intuitive systems when an ambiguity is detected. We aim to improve the

epistemic model as discussed earlier, using factored approaches, to be able to solve missions

with higher number of tasks; indeed, the epistemic model holds back the capability of the unified

model to solve missions with higher task space. We also plan in future work on structuring the

tasks with specific variables where preferences of the human can be generalized on several tasks
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depending on the human’s preferences over the tasks’ variables. This will also help in overcoming

the complexity of the epistemic POMDP model.
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Chapter 9

Conclusion and Perspectives

9.1 Conclusion

In this thesis, we investigated the question of what do we exactly expect from a companion

robot. We proposed, consequently, different decision models that allows a companion robot to

share the daily living activities of a human while being useful and regardful. Human needs

during the day might be different and a companion robot should be able to detect these needs

and act accordingly (cooperate, collaborate, assist). However, a human intention is part of his

mental state and it cannot be directly observed by a robot. One theoretic model that would fit

such problem is POMDPs.

Motivated by an intelligent companion robot that is able to understand the human intention

and act accordingly, we contributed with the following decisional models:

- We proposed to estimate human intentions by observing his actions. This estimation is

based on simulating human models for achieving different tasks and create a library of

human action values (Q-values). Those values are integrated in the observation function

of an augmented POMDP model that will allow the robot to evaluate the observed human

actions toward each of the possible human intentions. We showed that the model was able

to highly estimate the real human intention. We also showed the inability of this model

to solve large size problems with large environment spaces.

- A coactive decision model that allows a robot to incite his partner’s action for a collabora-

tive task. This contribution shows that robots can be able to reason about their behavior

according to the progress of the mission.

- A model for human-robot multi-type interaction. This model uses an HMM, that in-

tegrates the Q-values in its observation function, to estimate the human need and act

accordingly. The robot is able to switch between different kinds of interactions: coopera-

tion, collaboration or assistance. This model is able to solve large size problems and can

integrate a set of coactive policies for collaborative tasks in its precalculated database of

policies.
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- A Mixed verbal and non-verbal interactions model. This contribution shows that a robot

can infer a change in the human’s preferences without questioning him continuously. We

proposed a mixed model of verbal and non-verbal interaction that allows a robot to ques-

tion the human and, while executing tasks, it observes the human actions to infer a change

in his preferences.

9.2 Perspectives

- Social studies to prove the effectiveness of the coactive decision model in addition to

different coactive models for other tasks are our perspective for the near future. We will

also improve the principal model by adding another hidden state representing the level on

which the human is annoyed. This level increases when the robot tries to incite the human

to collaborate and decreases when the human reacts positively to the incitement.

- Currently we are motivated by learning human models in order to create the Q-values in-

stead of simulating rational human. This will generate Q-values that are more personalized

to the accompanied human.

- In this thesis, we did not concentrate on the scalability in solving some POMDP models,

such as the epistemic model in the mixed verbal and non-verbal interaction and the aug-

mented POMDP. We mentioned earlier that the epistemic model has certain properties

that make it interesting to use factored POMDP solvers.

- We would like to relate the epistemic POMDP to the approaches dedicated to preference

elicitation to take advantage of some theoretic properties as for minimizing the needed

number of queries to infer the human’s preferences. Moreover, epistemic POMDP solving

can be improved if we assume some preference structure between the tasks.

- We would like to relate this work to other domains in robotics such as: image processing,

speech processing to design an architecture with the proposed decision models and multi-

modal interaction (speech, gesture, . . . ) in order to carry the contributions of this thesis

to a higher applicable level and to test its feasibility in actual scenarios.
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sion Processes. Thèse de doctorat. 53

[Sondik, 1978] Sondik, E. (1978). The Optimal Control of Partially observable Markov Deci-

sion process over Finite Horizon. In Operational Research, pages 24:282–304. 7, 54

[Sutton et Barto, 1998] Sutton, R. et Barto, A. (1998). Reinforcement Learning: An Intro-

duction. MIT Press/Bradford Books. 52

[Szepesvari, 2010] Szepesvari, C. (2010). Algorithms for Reinforcement Learning, Morgan

and Claypool. Morgan and Claypool, Cambridge, MA, USA. 52
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Modèles Décisionnels d’Interaction Homme-Robot

Résumé : Nous étudions des Modèles Décisionnels pour l’Interaction Homme-Robot basés sur des Processus

Décisionnels Markoviens. Premièrement, nous proposons un modèle de décision augmenté du robot compagnon

afin d’agir en tenant compte de l’intention estimée de l’être humain. Ce modèle traite le problème d’estimation

de l’intention de l’être humain en observant ses actions. Nous avons proposé de simuler le comportement de

l’être humain afin de construire une bibliothèque de valeurs de ses actions par rapport à ses intentions possibles.

Ces valeurs sont intégrées dans un Processus Décisionnel Markovien Partiellement Observable (POMDP). Nous

parlerons alors de POMDP augmenté. Deuxièmement, nous avons présenté un modèle de décision qui permet au

robot en collaboration avec un être humain de choisir son comportement selon l’avancement de la réalisation de

la tâche partagée. Ce modèle est basé sur un POMDP augmenté et permet au robot d’être coactif afin d’inciter

l’action de l’humain pour réaliser la tâche en harmonie avec lui. Troisièmement, nous avons aussi défini un

modèle unifié pour diffèrent types d’interaction homme-robot où le robot analyse les besoins de l’humain et agit

en conséquence. Afin de contourner la complexité des POMDPs, le modèle unifié sépare le problème en deux partie,

une première responsable d’estimer les intention de l’humain avec une châıne de Markov Cachée (HMM) et une

deuxième responsable de choisir le type d’interaction correspondant (collaboration, assistance, coopération) avec

un Processus Décisionnel Markovien (MDP). Finalement, nous proposons un modèle qui alterne entre interaction

verbale afin d’inférer les préférence de l’humain et interaction non-verbale où les préférences sont estimés en

observant les actions de l’humain. Ce modèle permet de revenir à l’interaction verbale quand une ambigüıté dans

les préférences est détectée.

Mots-clés : Processus de Décision Markovien Partiellement Observable, Modèles

formels d’Interaction Homme-Robot, Intelligence Artificiel, Robots compagnons.

Decisional Models for Human-Robot Interaction

Abstract: This thesis is focused on decision models for human-robot interaction based on Markovian Decision

Processes. First, we propose an augmented decision model that allows a companion robot to act considering

estimated human intentions. This model addresses the problem of estimating the intention of the human by

observing his actions. We proposed to simulate the behavior of a human to build a library of human action values

toward his possible intentions. These values are integrated into the augmented Partially Observable Markov

Decision Process (POMDP). Second, we present a coactive decision model that allows a robot in collaboration

with a human to choose his behavior according to the progress of the shared task. This model is based on an

augmented POMDP and allows the robot to act coactively to encourage the human actions and to perform the

task in harmony with him. Third, we also propose a unified model for different types of human-robot interactions

where the robot analyzes the needs of the human and acts accordingly. To overcome the complexity of POMDPs,

the unified model divides the problem into several parts, the first estimates the human intention with a hidden

Markov model (HMM) and another is responsible for choosing the corresponding type of interaction (collaboration,

assistance, cooperation) using a Markov Decision Process (MDP). Finally, we propose a model that alternates

between verbal interaction to infer the preference of the human using queries and non-verbal interaction in which

preferences are estimated by observing the human actions. This model switches back to the verbal interaction

when an ambiguity about the preferences is detected.

Keywords: Partially Observable Markov Decision Processes, Formal models for

Human-Robot Interaction, Artificial Intelligence, Companion robots.

Discipline : Informatique et applications
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