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Résumé

L’amortissement des vibrations mécaniques de structure joue un rôle important dans
de nombreuses applications industrielles. Les méthodes classiques de réduction de vibra-
tion par ajout de revêtement viscoélastique donnent généralement lieu à une augmentation
de masse importante, ce qui peut être rédhibitoire dans l’industrie des transports pour
des raisons écologiques ou économiques. L’effet "Trou Noir Acoustique" (TN) est une
méthode passive permettant d’obtenir un amortissement de la structure sans augmenter
sa masse: les ondes de flexion se propageant dans une extrémité de plaque profilée avec
une loi de puissance sont efficacement dissipées si l’on place un film amortissant dans la
zone terminale.

Une étude préliminaire de nature expérimentale confirme le potentiel du TN comme
stratégie d’amortissement: une analyse modale montre que le TN augmente significa-
tivement le facteur de recouvrement modal (MOF) de la poutre, et réduit donc son
caractère résonant. Une analyse basée sur une approche ondulatoire montre clairement
que le coefficient de réflexion de l’extrémité TN présente de faibles valeurs. Un modèle
numérique bi-dimensionnel d’une poutre, développé pour analyser le comportement de
la terminaison, montre que l’augmentation du MOF peut-être expliquée d’une part par
une augmentation de la densité modale et d’autre part, par un fort amortissement des
modes de la structure, causé par une localisation de l’énergie dans la région profilée. On
établit que la poutre TN possède des modes locaux bi-dimensionnels, et un modèle de
guide de la terminaison TN incluant des imperfections, qui ne peuvent être évitées en
pratique, montre que l’énergie incidente est diffusée sur de nombreux modes locaux. Les
imperfections du TN améliorent ainsi ses performances.

L’analyse des mécanismes dissipatifs mis en jeu dans le TN permet d’estimer les
performances en terme d’amortissement vibratoire, de tirer le meilleur parti de ces mé-
canismes, d’en déduire des règles de dimensionnement et donc d’envisager son intégration
dans des applications utiles à l’ingénieur.
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Abstract

Vibration damping of mechanical structures is playing an important role in the design
of many industrial systems. Classical methods for reducing vibrations using viscoelastic
layers glued to the structure usually result in added mass on the treated structure, which
may be prohibitive in transportation industry for ecological and economical reasons. The
"Acoustic Black Hole" (ABH) effect is a lightweight passive vibration technique: the
flexural waves propagating in a beam extremity tapered with a power law profile are
efficiently dissipated if an absorbing layer is placed where the thickness is minimum.

A preliminary study experimentally confirms the potential of ABH as an efficient strat-
egy for vibration damping: a modal analysis shows that the ABH significantly increases
the Modal Overlap Factor (MOF) of the beam, thus reducing the resonant behaviour of
the structure. An analysis based on a wave approach clearly shows that the reflection
coefficient of an ABH termination has small values. Further investigations, including a
two dimensional numerical model of the structure developed in order to understand its
behaviour, show that the increase of MOF can be explained partly by an increase of the
modal density and mostly by a high damping of a number of modes of the structure due
to energy localisation in the tapered region. It is shown that the ABH beam possesses
two-dimensional local modes. A waveguide model of an ABH termination with tip im-
perfection, which cannot be avoided in practice, shows that incident energy is scattered
on local modes and that imperfections enhance the damping effect.

The analysis of the dissipative mechanisms involved pin the ABH effect permits to
estimate its performances in vibration damping, helps make the most of these mech-
anisms, allows to deduce dimensioning rules and thus to consider its integration into
useful engineering applications.
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Chapter 1

Introduction

1.1 Generalities on passive vibration damping
methods5

1.1.1 Classical damping techniques for vibration control

The control of unwanted vibrations is important for reliability, stability and comfort
in many industrial applications [115]. Indeed, vibrations can generate radiated noise [28]
but are also a source of structural damage [70]: stresses coming from vibration amplitude
and high number of load cycles induce fatigue effect and reduce the lifetime of the system.10

Furthermore, structure lightening is an important concern in many engineering do-
mains. In the transport industry, increasing the mass of the vehicle impacts the fuel
consumption because it generates a supplementary energy need: at a constant speed to
counteract rolling resistance, and in acceleration phases. Therefore, the increase in mass
impacts the CO2 emissions in a negative way: for a standard public transportation ve-15

hicle (maximum 18 t in most European countries) a weight gain of 500 kg can generate
1 or 2 % gain in CO2 emissions [1]. It is also a concern for aeronautic and aerospace
vehicles where the power-to-weight ratio (or thrust-to-weight ratio) is important for fuel
consumption and manoeuvrability concerns [50]. Structure lightening usually increases
problems due to vibrations: structures can then have a larger vibration amplitude, radi-20

ate more efficiently and be more fragile. The development of vibration control methods
adapted to light structures becomes of a great interest.

There are two classes of vibration control: active and passive. This study focuses only
on passive techniques. The passive control of vibratory levels usually consists in either
moving the natural frequencies of vibration of the structure out of the range of operating25

1



2 1 Introduction

frequencies or if it is not achievable, to reduce the amplitude of the resonances without
modifying their frequencies, by damping the motion.

A first cause of damping in a structure originates in the constitutive material, as part
of the energy absorbed by a material under a cyclic load is dissipated as heat to the
surroundings [40]. When a purely elastic material is submitted to oscillatory stress σ30

(during a Dynamic Mechanical Analysis [91] for example), the measured strain ε occurs
in phase. In a viscoelastic material however, strain lags behind stress so that

σ = σ0e
jωt and ε = ε0e

j(ωt−δ). (1.1)

This phase lag is due to motion in the material at microscopic scale [40]. An usual way
to characterize the material is then to define a complex Young’s modulus E as

E = σ

ε
= σ0

ε0
cos δ(1 + j tan δ) = E0(1 + jη), (1.2)

where35

E0 = σ0

ε0
cos δ, (1.3)

is the storage modulus and
η = tan δ, (1.4)

is called the loss factor of the material, that models the dissipation of energy. Indepen-
dently from the damping properties of material, energy in a vibrating structure can also
be dissipated at boundary conditions, in structural joints through friction, that consti-
tute localised sources of damping, or through acoustic radiation [11]. From a structural40

point of view, damping a structure corresponds to increasing the modal loss factors of the
resonance peaks. With the exception of very academic structures, the relation between
modal loss factors, intrinsic loss factor of the constitutive material and localised sources
of damping in the structure is usually complex [59].

Classical vibration damping methods are thoroughly described in the literature [100,45

68]. Several strategies are mentioned here:

• A damped structure can be realised by choosing materials having a high loss factor.
Most of metal alloys are not suitable from this perspective. Viscoelastic materials
such as polymers are however more interesting. Their properties vary a lot with
temperature and frequency, according to the Williams-Landel-Ferry (WLF) model50

[48, 47]: at high temperature or low frequency, viscoelastic materials are soft and
elastic. As the temperature decreases or the frequency increases, they become
harder and dissipate more energy. At low temperature or high frequency, they
become hard and non dissipative. The region of maximum damping, known as
the glass-rubber transition, is fairly dependent on the material. Note that metal55

alloys with interesting damping characteristics have been developed, for example
the Sonoston Cu-Mn alloy [70].



1.1 Generalities on passive vibration damping methods 3

• Damping can also be obtained using tuned damping device (or tuned mass damper),
which often consists in an added mass-spring system with viscous damping, or a
mass on viscoelastic spring, or a viscoelastically damped resonant beam [69, 67, 122,60

123] (see Fig. 1.1). Note that it differs from a dynamic absorber in that the true
dynamic absorber does not require damping but requires precise tuning knowledge
of the excitation frequency [33]. Since the tuned damping device actually dissipates
energy, it is effective on several structural modes [114]. Ref. [100] shows the case
of a beam covered with a distribution of tuned dampers (with η=0.5), where the65

effective modal loss factor obtained reaches 30 % at the price of a doubling in
mass, but other works show that it is not economic to use a mass ratio higher than
15% for the dampers [23]. Albeit based on a simple and old principle, tuned mass
dampers are the object of many recent works and are frequently applied in various
engineering domains: automotive, rails, building, aircraft [110, 132].70

k(1 + jη)

m

Figure 1.1: Simple configuration of tuned mass damper placed on a cantilever beam, as
described in [122]. The device is defined by its mass m, stiffness k and loss factor η.

• Another classical way of damping vibrations consists in covering the structure to
be treated with a surface damping layer (see Fig. 1.2(a)). The resulting damping
properties of the treated structure come mainly from the extensional strains of
the added layer. This mechanism is first described by Oberst [102] and is often
used as a technique to estimate characteristics of soft materials. The Oberst model75

gives an expression of the modal parameters of the first flexural mode of a simply
supported beam covered by a damping layer, thus allows to find equivalent material
and geometrical characteristics of the beam. As long as extensional strains of the
damping layer are concerned, the complex Young’s modulus E of the damping layer
is the parameter of interest. The complex stiffness of the covered beam writes [102]:80

EI = EI1 ×
(

1 + e2h
3
2(1 + jη2) + 3(1 + h2)2e2h2

(1 + jη2)
(1 + e2h2(1 + jη2))

)
, (1.5)

where e2 = E1
E2

and h2 = H1
H2

with Ei, Ii, Hi, ηi the Young’s modulus, inertia of the
cross-section, thickness and loss factor of the i-th layer, respectively, with i=1, 2
(see Fig. 1.2(a)).

• An improvement of the efficiency of a damping layer is obtained if the damping layer85

is no more free but is constrained by a third layer generally made of a stiff material
(see Fig. 1.2(b)); in this case, the dissipation is mainly due to shear strains [126]
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Holding structure

Damping layer

H1

H2

(a)

Holding structure

Damping layer

Constraining layer

H1

H2
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Figure 1.2: Scheme of surface damping techniques: (a) free layer (extensional damping),
(b) constrained layer (shear damping).

and the parameter of interest is the complex shear modulus G of the damping layer.
The Ross-Ungar-Kerwin (RKU) model [116] estimates equivalent modal parameters
for a three layers beam and generalise the result of [102] for two layers beams; more90

generally, several methods allows to estimate the behaviour of layered structures
[62, 82, 26, 25]. Surface damping methods make use of viscoelastic materials and
their efficiency are strongly related to the material characteristics. The choice of
material and geometry allows an optimal configuration to be found for each specific
case [116].95

• Other passive damping methods include friction damping, where vibrational energy
is converted to heat through friction of a moving part [32], or particle damping,
where small sized granular particles move freely inside a cavity and dissipate en-
ergy through a combination of friction and loss mechanisms. Notably, there is a
increasing interest for particle dampers inside the cells of honeycomb panels for100

spatial applications [92] (see Fig. 1.3).

Figure 1.3: Box filled with particles in honeycomb cells (from [92]).

• For a given structure and for a given material, attenuating bending wave reflections
at the edges is a way to reduce the resonant behaviour. An example of such bound-
ary damping is given in the pioneer work of Vemula et al. [130] who propose to use
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a graded impedance interface at the edges of a beam, consisting in the association105

of several pieces of beams made with different materials (see Fig. 1.4). The results
show that lower reflectivity is caused by energy dissipation within the composite
material at the free end coupled with relatively large amplitude vibrations caused
by the impedance gradation. This approach is similar to the Acoustic Black Hole
approach developed in this document.110

Figure 1.4: Graded impedance interface at the edge of a steel bar (from [130]).

1.1.2 Choice of the damping strategy: Ashby diagrams

Figure 1.5: Ashby diagram for loss coefficient / Young’s modulus (from [8]).

The choice of the damping strategy is made regarding the modal loss factors obtained
on the treated structure, and it has been pointed out that the increase of mass is also
an important criteria. Furthermore, an industrial part has to have a certain mechanical
resistance, hence its static rigidity should not be too low. A way to compare the efficiency115

of damping strategies applied on a beam is to represent the specific Young’s modulus
E/ρ as a function of the loss factor of the structure. E/ρ is the ratio of the Young’s
modulus over the mass density of the treated beam. Such a representation, so-called
Ashby diagram [8] (see Fig. 1.5 for example), is presented in Fig. 1.6. In this diagram,
a treatment resulting in a stiff and light structure locates on the top while a treatment120
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resulting in a damped structure is on the right side. Several materials and surface damping
treatments are applied to a resonant free beam and can be compared on this diagram. For
surface damping treatments (represented as lines), note that the performance depends
on the beam thickness; several damping layer thicknesses are considered. Each points
of each lines correspond to a different thickness H2. For the sake of brevity, Appendix125

A.1 contains the material and thickness parameters (according to tabulated parameters
in [100] or [21], summarised in Tab. A.1). Formulas used for the calculation in the case
of constrained layer displayed in Appendix A.2.

Fig. 1.6 reminds that steel (O) and aluminium (◦) are weakly damped. It is also the
case of the carbon composite that is shown (4) which has a remarkably high specific130

modulus. Polymer (�) and Sonoston (/) illustrates that unfortunately, most of the
materials having a high intrinsic loss factor have weak specific Young’s modulus because
of either high mass density or low Young’s modulus. Fig. 1.6 also shows that covering
the structure with a non-constrained layer (extensional damping, dashed lines) is not
very attractive: a thin layer has little effect on the overall damping, while a thick layer135

increases the damping but with a decrease of the specific modulus. Finally, covering the
structure with a constrained layer (full lines) has a very interesting effect on the damping
but decreases the specific modulus due to an added mass.

The framework of this study can be summarised as filling the empty space of the top
right hand corner of Fig. 1.6 where should be found the materials or damping techniques140

providing a high loss factor while keeping a high specific Young’s modulus. The Acous-
tic Black Hole (ABH) effect as described in [93](works developed at Andreev Institute,
Moscow, Russia), in [75](works developed at Loughborough University, United Kingdom)
and in [57](works developed at Le Mans University, France) is particularly interesting in
fulfilling this role.145
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Figure 1.6: (a) Comparison of intrinsic loss factor η versus specific Young’s modulus
E/ρ for materials: aluminium (◦), steel (O), carbon composite (4), polymer FullCure
(�), Sonoston (/) and surface damping treatments: free layer on aluminium beam with
damping layer made of Viton B (dashed line, +, dark green), Paracril BJ 50 (dashed
line, +, light green), constrained layer on aluminium beam with damping layer made of
Soundcoat DYAD (full line, x, medium blue), 3M ISD 110 (full line, x, dark blue), 3M
ISD 112 (full line, x, light blue). Detailed material properties are given in Appendix A.1.
(b) Zoom on the bottom left hand corner.
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1.2 Literature review on the Acoustic Black Hole
effect

The Acoustic Black Hole effect takes benefit of the wave properties in a plate or beam
of decreasing stiffness in order to create an anechoic extremity. This section presents three
description and main models of the phenomenon: the first one is proposed by Mironov150

[93] and yields a reflection coefficient for propagating bending waves in a tapered plate
or beam extremity whose material properties are homogeneous. The second one is by
Krylov et al. [77] and considers inhomogeneous material properties induced by a thin
covering damping layer. Whereas these two models consider only propagating waves, a
third approach by Georgiev et al. [57] considers propagating and attenuating waves in155

the inhomogeneous beam extremity.

1.2.1 ABH wave model based on geometrical acoustics
assumptions - homogeneous material properties

Mironov shows, in the framework of geometrical acoustics, that flexural waves can
propagate without being reflected in the extremity of a thin structure i.e. beam or160

plate whose thickness decreases with a power-law profile [93, 94]. Indeed, as the wave
speed is proportional to the square root of the local thickness, if the thickness is slowly
decreasing, the wave slows down without being reflected. The condition for slow variation
of thickness, which is about small variations of the wave number over a distance of
wavelength order,165

dk
dx

1
k
� k, (1.6)

is satisfied in particular by a power-law thickness (see Fig. 1.7(a))

h(x) = εxm m ≥ 2. (1.7)

Eq. (1.6) allows to apply the Wentzel-Kramers-Brillouin (WKB) approximation and write
a solution for the displacement in the structure. The phase and group velocities cφ and
cγ for bending waves are in this case obtained substituting Eq. (1.7) in their general
expression for bending waves:

cφ(x) =
(
Eω2

12ρ

)1/4√
h(x) =

(
Eω2

12ρ

)1/4√
εxm/2, (1.8)

cγ(x) = 2
(
Eω2

12ρ

)1/4√
h(x) = 2

(
Eω2

12ρ

)1/4√
εxm/2. (1.9)

Eq. (1.9) shows that the velocities tend to zero when x tends to zero. Moreover, the
transit time τ of a wave packet between the abscissas xi and xt is

τ =
∫ xt

xi

1
cγ(x) dx = 1

2
√
ε

( 12ρ
Eω2

)1/4 ∫ xt

xi

1
xm/2

dx, (1.10)
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yielding for m = 2

τm=2 = 1
2
√
ε

( 12ρ
Eω2

)1/4
ln
∣∣∣∣xtxi

∣∣∣∣ . (1.11)

Note that in Eq. (1.10), the integral diverges when xt=0 for any m ≥ 2 which translates170

into an infinite transit time between the xi and xt; it means in this case that the bending
waves slow down, eventually stop and do not reach the extremity of the profile. Retro-
spectively, Mironov et al. [94] mention the term "Vibrational Black Hole" for such an
extremity.

0
0 xt xi

ht

hi

x(m)

h(m) h(x) = εxm

(a)
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Figure 1.7: (a) Power-law thickness profile of an ABH (after Mironov [93]). (b) Reflec-
tion coefficient computed with Eq. (1.13) with ε=0.35, xi=0.00653 m, xt=0.0053 m, and
(η=0.2 %, m=2) (full line), (η=2 %, m=2) (dashed line) or (η=0.2 %, m=4) (dashdotted
line).

In a structure made of dissipative material, the Young’s modulus is complex and so175

is the wavenumber kf = 4
√
ω212ρ(1− ν2)/Eh2, therefore the travelling waves are attenu-

ated. The integrated space rate of attenuation between xi and xt is
∫ xt
xi

Im(k(x)) dx. For
a extremity truncated at xt (see Fig. 1.7), Mironov [93] proposes an expression for the
the reflection coefficient:

R = exp
(
−2

∫ xt

xi

Im(kf (x)) dx)
)
. (1.12)
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In the case where m = 2, the reflection coefficient writes180

R = exp
(
−2

(
ω2 12ρ

E0

)1/4 η

1 + η2
1√
ε

ln
∣∣∣∣xtxi

∣∣∣∣
)
, (1.13)

which tends to zero with xt, showing that any non-zero damping is sufficient to totally
absorb the wave. However, Mironov shows that even if the plate thickness varies by three
orders of magnitude, the loss factor of common materials does not allow to obtain an
attractive reflection coefficient. This is illustrated on Fig. 1.7(b) for an extremity made
of aluminium with m=2, η=0.1%, ε=0.35, xi=0.0653 m and xt=0.0053 m (ht=10 µm185

and hi=1.5 mm)(full line). The reflection coefficient tends to zero with the frequency
but the reflection coefficient is still high. Two variations from this configuration are also
plotted: the configuration (η=0.1%, m=4) (dashdotted line) seems very interesting at
first sight but necessitates a terminal thickness of ht=0.2 nm. The configuration (η=2%,
m=2) (dashed line) yields a reflection coefficient that can be as low as 0.5.190

In such a configuration of ABH, a low reflection coefficient can be obtained by either
an atomical terminal thickness or a high material loss factor.

Note that in order to make the effect described in [93] more interesting practically,
Pislyakov et al. [111] study the case of beams and disc plates with tapered edges whose
very tip is coated, so that the reflection coefficient at the boundary condition is not unity.195

1.2.2 ABH wave model based on geometrical acoustics
assumptions - non-homogeneous material properties

Using the expression (1.12) for the reflection coefficient, Krylov et al. [77, 75, 78]
propose to decrease the reflection coefficient by increasing the imaginary part of the
wavenumber. This is realised by covering the truncated tapered extremity with a thin vis-200

coelastic layer (see Fig. 1.8(a)) and allows to compensate the finite thickness of power-law
profile. The added layer is taken into account using the model from Ross-Ungar-Kerwin
[116] which gives equivalent and inhomogeneous characteristics for the bi-laminated struc-
ture. In this model, the only attenuation mechanism is the one associated with extensional
deformations.205

Assuming that the added layer thickness is weak regarding the plate thickness, the
Ross-Ungar-Kerwin model [116] can be simplified writing an equivalent material loss
factor due to the viscoelastic layer

η(x) = ηp + 3hlEl
h(x)E0

ηl, (1.14)

where hl, El and ηl are the thickness, Young’s modulus and loss factor of the layer,
respectively. Under these conditions, the reflection coefficient writes, with m = 2210

R = exp (−2(κb + κl)) , (1.15)
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Figure 1.8: (a) Side view of a beam with acoustic black hole extremity covered with a
damping layer. (b) Reflection coefficient computed using Eq. (1.18) for aluminium ABH
with ε=0.35, xi=0.0653 m, xt=0.0053 m, m=2, El=7 GPa, ρl=1000 kg.m−3, ηl=0.4,
hl=0.1 mm.
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where the non dimensional parameters κb and κl are [77]:

κb =
(12ρ
E0

)1/4 ω1/2ηp
4ε1/2 ln

(
xt
xi

)
, (1.16)

and
κl =

(12ρ
E0

)1/4 3ω1/2ηlhl
8ε2/3

El
E0

(
1
x2
t

− 1
x2
i

)
. (1.17)

The main interest of this approach consisting in adding a viscoelastic layer is that the
reflection coefficient can now be very weak even if the profile is truncated.

Eqs. (1.14) and (1.15) are valid only if the layer is much thinner than the plate, which215

cannot always be verified in practice, particularly near the edge of the profile where the
plate thickness is very weak. Krylov et al. [75] propose to take into account an arbitrary
layer thickness in the model. Assuming El/E0 � 1, the imaginary part of the flexural
wavenumber is

Im (kf (x)) =
(12ρ
E0

)1/4ω1/2(1 + ρlhl

ρh(x))
1/4(ηp + ηl

El

E0
(3 hl

h(x) + 6( hl

h(x))
2 + 4( hl

h(x))
3))

4h(x)1/2(1 + El

E0
(3 hl

h(x) + 6( hl

h(x))2 + 4( hl

h(x))3))5/4 . (1.18)

The corresponding reflection coefficient is obtained by numerical integration of Eq. (1.15).220

Fig. 1.8(b) shows the result of a computation of R using Eq. (1.18) on an aluminium beam
with m=2, a minimum thickness ht=10 µm (ε=0.35, xi=0.0653 m, xt=0.0053 m) and a
damping layer with characteristics: El=7 GPa, ρl=1000 kg.m−3, ηl=0.4, hl=0.1 mm. The
reflection coefficient in this case reaches 0.5 at 4 kHz.

1.2.3 ABH wave model based on plane wave assumption -225

inhomogeneous material properties

The ABH extremity can be seen as an heterogeneity in a structural waveguide con-
stituted by the beam. Several techniques exist in the literature to describe the vibratory
field and compute a reflection coefficient: transfer matrix, scattering matrix, impedance
matrix, etc. [85, 101, 46]. If one considers the attenuating waves, impedance matrix230

method is the more efficient. Georgiev et al. [57] propose a model that takes into account
the attenuating part of the wave field to compute the reflection coefficient of an ABH
beam extremity using an impedance matrix technique. Following the Euler-Bernoulli as-
sumptions, the cross-section remains undeformed during the vibration. All points of the
cross-section are thus in phase, which is the main characteristic of a plane wave. This235

model is numerically solved and allows to observe the effect of arbitrary spatially varying
parameters. By considering the attenuating waves, a reflection matrix is obtained instead
of a reflection coefficient.

The equation of flexural motion for a beam in harmonic regime (with a ejωt time
dependence), under the Euler-Bernoulli assumptions, can be written under the matrix240

formulation [133, 97, 54]
d

dxW = HW, (1.19)
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where

W(x) =


w(x)
θ(x)
V (x)
M(x)

 , (1.20)

is the state vector, with the flexural displacement w, the slope θ, the total shear force V
and the bending moment M . Matrix H is in this case given by

H =
[

H1 H2
H3 H4

]
, (1.21)

where245

H1 =
[

0 1
0 0

]
, H2 =

[
0 0
0 1/EI(x)

]
,

H3 =
[
−ρbh(x)ω2 0

0 0

]
, H4 =

[
0 0
−1 0

]
,

(1.22)

and where ω is the angular frequency, b and h(x) are the width and the thickness of
the beam, respectively, ρ is the mass density, EI(x) is the local bending stiffness. The
relation between kinematic and force variables at any point x is given by[

V (x)
M(x)

]
= jωZ(x)

[
w(x)
θ(x)

]
, (1.23)

where Z(x) is the local impedance matrix of the beam. Substituting Eq. (1.23) in
Eq. (1.19) permits to obtain the Riccati equation in Z(x):250

dZ
dx = −ZH1 − jωZH2Z + H3

jω + H4Z. (1.24)

The reflection matrix R(x) of the extremity between 0 and x is then defined by

V− = R(x)V+. (1.25)

where V− and V+ can be interpreted as the backward and forward wave vectors at x.
The wave vector V

V =
[

V−
V+

]
, (1.26)

is linked to the state vector W by the relation

W = EV, (1.27)

with E the matrix containing columnwise the eigenvectors of −jH:255

E =
[

E1 E2
E3 E4

]
, (1.28)

where E1 to E4 are 4×4 matrices.
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It can be shown that the relation between R(x) and Z(x) is

R(x) = (jωZ(x)E2 − E4)−1(E3 − jωZ(x)E1). (1.29)

Specifying characteristics of the beam and the viscoelastic layer, using the same model
for the bending stiffness of the bi-laminated structure as in the model of [75], and Z = O
as the initial condition for the impedance, the model is solved numerically using a fourth-260

order Runge-Kutta algorithm. The first term R of the reflection matrix concerns forward
and backward propagating waves and its evolution with x is plotted in modulus on Fig. 1.9
for several values of ηl, showing the decrease of |R| with ηl.

Figure 1.9: Evolution with x of the first term of the reflection matrix function for
several values of ηl (from [57]).

1.2.4 Comparison of existing ABH models

Using the parameters given in Tab. 1.1, Fig. 1.10 compiles the results of the three265

models or [93, 75, 57] for the reflection coefficient. It is emphasized that for the same
geometrical parameters, Mironov’s ABH is completely inefficient while the two others
provide low reflection. Models of Krylov and Georgiev yield a similar order of magnitude
but the model including attenuating waves provides a reflection coefficient which oscil-
lates with frequency, while the geometrical model of [77] gives a monotonous behaviour.270

Moreover, the reflection coefficient is also lower in modulus for the model of Georgiev.
Note that this model [57] provides a complex value for R, yielding a modulus and a phase,
while in the literature, the two geometrical models only mention the modulus.

1.2.5 Two-dimensional ABH

An implementation of a circular ABH, as a development of the one-dimensional profile275

is proposed by Refs. [53]. It shows good experimental results when the ABH works in
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Geometrical parameters Material parameters

ε=0.35, m=2 E=70 GPa, ρ=2700 kg.m−3

xi=0.0653 m, xt=0.0053 m El=7 GPa, ρl=1000 kg.m−3

hl=0.1 mm ηp=2 %, ηl=40 %

Table 1.1: ABH parameters used in the comparisons of the three ABH models.
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Figure 1.10: Comparison of the modulus of reflection coefficient R of ABH termination,
predicted by three models described in [93] (full line), in [77] (dashed dotted line) and in
[57] (dashed line), with parameters of Tab. 1.1.
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conjunction with a stiffener or a parabolic edge to concentrate the waves towards the
ABH. Fig. 1.11 (from [57]) shows the displacement field in an elliptic plate containing an
circular ABH profile in one of its foci and the mobility transfer function of this plate.

136 7 Acoustic black hole e↵ect in thin plates

(a) (b) (c)

Figure 7.18: Di↵erent steps of the black hole plates machining process. (a) Plate in the
cutting machine with additional clamping plate, (b) prepared drill bit and high-speed
machining with lubricating oil, (c) final black hole pit presenting a small truncation
radius at its centre.

7.5.3 Experimental results

In the following, measurements of driving-point mobility and overall velocity field are

carried on three di↵erent plates with and without a black hole pit. The first plate, shown

in Fig. 7.19 is of elliptical shape and is tested in order to verify the reduction of vibration

level using aluminium and larger dimensions than the previous tests presented in sec. 7.4.

Figs. 7.20 and 7.21 show a rectangular plate and a convex polygonal plate of arbitrary

proportions. Both plates include a black hole pit and a parabolic edge for focusing.

Similar plates without black hole pit and also without the parabolic edge were built for

comparison.

y

x

r0

Figure 7.19: Elliptical plate with acoustic black hole thickness profile. r0 =
(�0.2236m, 0m), source; · · · · · · , acoustic black hole pit. Semi-major and semi-minor
axes are 30 cm and 20 cm, respectively. The radius of the black hole pit is 6 cm.

(a) (b)

(c)

Figure 1.11: (a) Black hole pit presenting a small truncation radius at its centre. (b)
Displacement field of an elliptic plate containing an circular ABH in one of the foci. (c)
Mobility transfer function of the same plate (from [57]).

O’boy et al. [104, 103] provide numerical wave-based models for computing the dis-280

placement field and frequency response in a rectangular plate simply supported along
two-opposite edges with ABH free edge and a circular plate with circular ABH at the
centre. The effect of the ABH addition is quantified by looking at the resonance peaks
amplitude in the frequency responses. Ref. [103] provides as well a study on the use of a
constrained layer and make use of an equivalent loss factor for the whole ABH region in285

the model.

Note that 2D circular ABH are just now extensively studied at Le Mans University
in the the framework of the VIBROLEG project, supported by the IRT Jules Vernes
(Institut de Recherche Technologique). In this project, 2D ABH are investigated for plate
vibration damping (PhD work of O. Aklouche, 2012-2015). The flexural vibration field290

resulting from the interaction between an incident plane wave propagating in an infinite
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plate and a 2D ABH is studied. The capability of the ABH to scatter the incident wave is
described by the scattering cross section σ whose a detailed model is currently developed
[4, 5]. In the high frequency range, low value of σ (see Fig. 1.12) show the efficiency of
the 2D ABH.295

Figure 1.12: Scattering cross section σ of a circular ABH (from [5]).

1.2.6 Experimental works and ABH applications and state of
the art in 2014

Efficiency of ABH effect in vibration damping is shown in several papers:

• An interesting application is proposed by Kralovic and Krylov [73], who implement
a shaft tapered according to a quadratic law and covered with an adhesive film300

of absorbing material on a Badminton racket. The reflection of flexural waves
coming from the net and racquet head thus leading to reductions of 10-15 dB on
the resonance peaks at mid and high frequencies.

• Bowyer et al. [19] study experimentally the effect of deviation of a manufactured
edge from a ideal profile (i.e. imperfections), but compare a imperfect termination305

with a shorter thus thicker perfect termination. They conclude that even imperfect,
the thinner the better. They also study experimentally the implementation of
several circular tapered profiles on plate [18] (see Fig. 1.13).

• Another application is developed in the work of Bowyer et al. [17] who implement
an ABH termination on the trailing edge of a turbine fan blade (see Fig. 1.14).310

The application is interesting as fan blade vibrations generate broadband resonant
noise. Results are conclusive and the system can be conceived such that it does not
modify the air flux on the fan blade, by integrating the quadratic profile and the
viscoelastic material in the blade profile.

• Foucaud et al. [52, 51] build an artificial cochlea and use an ABH extremity as an315

anechoic termination in his experimental setup (see Fig. 1.15). The experimental
work is in agreement with theoretical models for cochlea, suggesting that the ABH
termination fulfil its role in this case.
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(a) (b)

Figure 1.13: (a) Plate containing six tapered indentations and (b) accelerance for
uniform plate and plate with six indentations (from [18]).

Figure 1.14: Turbine fan blade integrating an ABH extremity on the trailing edge (from
[17])

Figure 1.15: Experimental setup showing an artificial cochlea implementing an ABH
(indicated as Trou Noir Acoustique, from [52]).
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• Recently, Zhao et al. [138] use a power-law profile coupled with surface-mounted
piezo-transducer to build an energy-harvesting system (see Fig. 1.16). They note320

that the ABH profile is a high energy density zone which can increase the efficiency
of absorption mechanisms.

wavenumber is given by:
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where kl is the longitudinal wavenumber in a thin plate of
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where ω is the angular frequency of the propagating wave.
The propagation time T of a wave packet propagating

from an initial cross section =x x0 to =x x1 is:

∫ ρ
εω

= =
−

− −− −( ) ( )T
dx
c

v

E m
x x

12 1

( )
1

2
(5)

x

x

g

m m

2

2 1
1 2

0
1 2

0

1
4

If m⩾ 2 and x1 tends to zero, both the phase and the
group velocity tend to zero and the time of flight of the wave
tends to infinity; therefore the wave will never reach the tip of
the wedge. Also, if m⩾ 2 the phase θ x( ) goes to infinity [18],
meaning that the edge of the plate becomes a point of sin-
gularity where the particle displacement goes to infinity. It
should be noted that, in practice, the thickness cannot be
made zero due to fabrication limitations (nor would this be a
desired condition for practical structures). For the sake of
completeness, we also observe that the taper exponent m must
also satisfy the smoothness condition [18]. This residual
thickness has important implications for the performance of
the ABH. In the case of a thin plate terminated by a tapered
wedge (figure 1(b)), the residual thickness at the truncation
point gives rise to reflected waves that can drastically reduce
the black hole effect. Assuming a non-zero loss factor for the
host structure, the coefficient of reflection can be related to the

cutoff thickness h1 by the following relation [19]:

∫= −
⎛
⎝⎜

⎞
⎠⎟R k x dxexp 2 Im ( ) (6)

x

x

0

1

In metallic materials, such as aluminum, even in the case
of small residual thickness h1 the coefficient of reflection R
can be about 50–70%. We observe that in the limit case of
zero damping, Im(k)→ 0 and R→ 1. Similarly, in case of an
embedded ABH (figure 1(c)) the same considerations would
hold for the energy transmitted through the taper.

Using a one-dimensional analysis and assuming plane
harmonic waves, the time-averaged energy density is given
by:
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where P is the total energy density, U is the strain energy
density and T is the kinetic energy density, < > is the time
average over a period, ρ is the material density, ω is the
frequency of the harmonic wave and B is the displacement
amplitude of the wave. Note that the total energy depends on
the spatial coordinate via the wave amplitude and tends to
infinity as the wave approaches the point of zero thickness.
Therefore, theoretically the center of the ABH is also a sin-
gularity point with respect to the energy density.

From equation (3) it can be seen that as the wave travels
through the tapered area approaching the theoretical zero
thickness (that is, as x tends to zero) the wavenumber pro-
gressively approaches infinity or, equivalently, the wave-
length approaches zero. Note that this progressive variation of
the wavelength with the propagation distance, referred to as a
‘wavelength sweep’, is purely passive and occurs regardless
of the initial wavlength of the incident wave. This aspect is of
crucial importance in determining the broadband character-
istics of the ABH tapered structure. In fact, in piezoelectric-
based vibration energy harvesting maximum performance
(that is, maximum converted energy) is obtained when the
wavelength of the excitation matches the optimal wavelength
corresponding to the resonance frequency of the piezo-
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Figure 1. Schematic of the tapered edge according to a power-law profile. (a) 2D profile of a smooth tapered wedge, (b) 3D schematic of a
thin plate terminated by a tapered edge, (c) 3D schematic of a thin plate with a tapered embedded section. The schematic also shows the
possible application of a surface mounted piezo-transducer on the tapered area.

Figure 1.16: Plate embedding an ABH and a surface-mounted transducer (from [138]).

ABH in LAUM

Work on the acoustic black hole effect is ongoing in LAUM. Contributions to the
field are found in the PhD thesis of Cuenca [29, 31, 30] and the post-docs of Georgiev325

[57, 55, 58, 56]. The scattering of a circular ABH profile is one of the main objectives of
the ongoing PhD thesis of Aklouche [5, 4]. The subject also participates to education in
Université du Maine: M2 research interships of Moleron [96], Barguet [10] focus on the
implementation and characterisation of two-dimensional ABH in plates. M2 research in-
ternships of Poittevin [112] and Faure [45], and engineer internship of Dufort [41] concern330

the measurement of the reflection coefficient of a beam having an ABH termination.

1.3 Astrophysical Black Holes and analogues

In astrophysics, the concept of black hole is first described by Schwarzschild [121],
based on Einstein relativity. Wheeler [135] is usually credited for naming the object black
hole. It is a celestial object whose gravity is such that its escape speed is higher than the335

speed of light, so that even light cannot escape it. Black holes can indirectly be observed
as an important source of X rays. It is a very popular research field in physics. Recently,
Hawking has emitted the controversial hypothesis that all absorbed information would
eventually come out of the black hole in a mangled form [64].

Analogue black holes have been described and eventually practically realised in lab-340

oratory experiments. They are used to confirm theories on quantum black holes, which
have not been actually observed. Unruh [127] shows that a sound wave in a convergent
fluid flow behaves like a quantum field in a classical gravitational field, and proposes
a way to experiment black hole evaporation and observe Hawking radiation [63]. This
sonic or acoustic analogue to black hole is then called "Dumb hole" to perfect the anal-345

ogy [128] and have since been studied extensively [131]. Optical black hole have been
described [129] as a region where the light is slowed down until its speed is inferior to the
rotating speed of a spinning medium; it induces an event horizon but does not allows the
observation of Hawking radiation.
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Figure 1.17: Artist’s view of an astrophysical black hole, from [99].

The original work of Mironov [93] do no mention the term black hole, but the term350

can be found in later papers [111, 95]. Ref. [111] mentions that a tapered beam whose
thickness reaches zero can be called "vibrational black hole" as the absorption is not due
to the transition of energy of vibration to heat but to its accumulation in the vicinity of
the border of the plate. Ref. [95] refers to "Acoustic Black Hole" as a retarding structure
allowing the sound speed decreases progressively to zero in an tube, based on a decrease355

of the acoustic admittance of the walls of the tube; a practical case where the zero speed
is not reached is also mentioned. Although the "Acoustic Black Hole" term is also used
here, it does not involve the same phenomena than the dumb hole described by [128] and
may not be an analogue to the quantum black hole.

It appears that [77] forgot the term vibrational black hole and use instead acoustic360

black hole effect in the case of flexural waves in beam or plate structures, maybe because
of the use of the geometrical acoustics and WKB solutions that are similar in principle in
both descriptions. Later works [19] prefer the term of tapered edges or wedges. The term
acoustic black hole effect, although erroneous, is chosen in this document mainly to stay
coherent with the previous literature. It does not reflect an actual analogy since it is clear365

that the vibration energy is mostly dissipated in heat due to viscoelastic phenomena in
a practical realisation. The author recognises that it participates (unfortunately or not)
to give an esoteric side to a very practical, nevertheless interesting phenomenon.

1.4 Conclusions and objectives

The interest of the ABH effect for damping lightweight structures has been presented370

in this chapter through a literature review. It is possible to establish a graduation in the
models. In the existing litterature, it is remarkable that there is few direct comparison
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between theoretical and experimental works. Moreover, a claim of the previous studies
is that the ABH effect allows to obtain a quasi-anechoic termination; yet, most of the
experimental studies observe frequency responses and not an actual reflection coefficient,375

which is a more direct indicator. Finally, it appears that the origins of the spectacular
effects of adding an ABH should be analysed in depth: to the best of the author’s
knowledge, only the reductions in peaks amplitudes or their average has been used to
quantify the effect of the ABH effect as a damping treatment.

The aim of this thesis is then twofold: to provide and use speaking indicator of380

the efficient of experimental implementations of ABH, and to give a more advanced
explanation to the phenomenon, taking into considerations inhomogeneities of thickness
and damping, and deviations from the theoretical profile.

Structure of the document

The document is organized in 5 chapters. Chap. 1 gives a brief state of the art of385

classical vibration damping methods, comparing their performance and their mass. The
ABH effect is proposed as being as much or more efficient and lighter, and its interest is
emphasised. Existing models from the literature, state of the art and related works are
thoroughly described.

In Chap. 2, the ABH effect is investigated experimentally on beams, by observing it390

with different methods under the two paradigms of vibrations, the wave and the modal
approaches. An experimental modal analysis with a high resolution technique is done
showing an increase of the modal loss factors of the treated structure hence an increase
of the modal overlap factor. In the wave paradigm, the ABH effect appears as a clear
decrease of the reflection coefficient of the beam extremity.395

In Chap. 3, the effect of the heterogeneity of the structure, brought by the ABH treat-
ment, is studied analytically and numerically; two properties are playing a fundamental
role: the stiffness heterogeneity and the damping heterogeneity. The ABH effect is the
combination of the two. This is shown by an observation of a numerical model of ABH
plate. Local eigenmodes are pointed out. Analytical development allows a better under-400

standing of these effects: effect of the tapered profile on the modal density and effective
length of the tapered profile are also discussed.

In Chap. 4, we propose to take into account imperfections at the tip of the tapered
profile and show that they can be used to enhance the damping effect, by scattering an
incident wave on heavily damped trapped transverse modes.405

A general conclusion of the document in Chap. 5 sums up the different works and
proposes several outlooks for future works.

Several journal papers written during the PhD are included as parts of this document.
Refs. [38] covers Sec. 2.2 and the majority of Chap. 3 and is already published (it also
appears in [35, 36]). Ref. [37] is under review and the core of its content represents410
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Sec. 2.3.2. Finally, the content of Chap. 4 will be submitted soon as a full length paper
[34].



Chapter 2

Experimental evidence of the
Acoustic Black Hole effect415

This chapter aims to experimentally demonstrate the ABH effect on beams. In struc-
tural dynamics, two main approaches can be used to study a structure: wave propagation
approach and modal approach. In the wave approach, the motion in the structure is the
superposition of waves that can be attenuated in the structure media while they prop-420

agate, be multiply reflected on the boundary conditions or propagate to a surrounding
media [2]. In the modal approach, a structure is represented by its eigenfrequencies and
eigenmodes, which are complex in the general case. These approaches may be comple-
mentary, and it is interesting here to use them both to identify the effect of the ABH
termination on a beam structure. In the modal approach, it is shown that the ABH effect425

is seen as an added modal damping while in the wave approach the ABH is seen as an
anechoic termination which diminishes the reflection at the extremity. For each approach
a rapid observation and a finer analysis are done considering an indicator adapted to the
wave and modal approaches: the modal overlap factor or the reflection coefficient. The
experimental works and analyses draw the lines of the subsequent chapters.430

2.1 Description and manufacturing of ABH beams

Two kinds of processes can be proposed for manufacturing the tapered beams: classical
machining process and prototyping process. These two processes orient the choice of
the two constitutive materials which are used for the studied beams: aluminium and
polymer (Vero White Plus FullCure 835). For each material, two beams are tested: a435

uniform beam (i.e. constant cross section) used as a reference, and a beam with an ABH
termination, whose geometry is described on Fig. 2.1. A layer of damping material is

23
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Figure 2.1: Scheme of the ABH profile at beam extremity for (a) aluminium and (b)
polymer cases.

stuck on the flat side of the tapered profile. Several types of layer can be used: thick
or thin tape made with viscoelastic materials. The dimensions and material (Young’s
modulus, mass density, loss factor and Poisson’s ratio) characteristics of the samples are440

given in Tab. 2.1. Characteristics of the damping layer are order of magnitude given by
the manufacturer.

Geometrical characteristics Characteristics of material
Aluminium beam

L=0.8 m, b=0.02 m, E1=70 GPa, η1=0.2 %,
lABH=0.06 m, lt=0.07 m, ρ1=2700 kg.m−3, ν=0.3.
h0=1.5 mm, m=2.

Polymer beam
L=0.6 m, b=0.02 m, E1=3.5 GPa, η1=2.8 %,
lABH=0.06 m, ht=0.16 mm ρ1=1175 kg.m−3, ν=0.3.
h0=1.5 mm, m=2.

Damping layer
hl=0.1 mm, E2=7 GPa, η2=40 %,
ll=0.05 m. ρ2=1000 kg.m−3.

Table 2.1: Geometrical and material characteristics of the sample beams and damping
layer.

The ABH termination for the aluminium beam is manufactured using a conventional
high speed machining process, allowing to obtain a minimum thickness at the extremity
between 10 and 20 20 µm (see Fig. 2.2(a)). The process requires high precision work and445

often generates irregularities and tearing at the tip of the profile. The polymer beam
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is manufactured using UV polymerisation, which is a rapid prototyping process. This
manufacturing process allows a thinner minimum thickness of about 16 µm and gives a
better control on the profile but restricts the choice of the material (see Figs. 2.2(b) and
(c)). A standard measurement of the complex Young’s modulus versus frequency (based450

on a Dynamical Mechanical Analysis [91]) provides the mean value given in Tab. 2.1.
Such measurement have been provided by the Centre de Transfert de Technologie du
Mans (CTTM).

(a)

(b)

(c)

Figure 2.2: Pictures of ABH extremities (a) made of aluminium and covered, (b) made
of polymer and non covered and (c) made of polymer and covered.

2.2 Increase of modal damping by ABH effect

Previous works [57] show the potential of ABH treatment for the reduction of the455

resonant behaviour of a structure. In this section, we propose to show how the addition
of a ABH termination to a beam extremity leads to an increase of the modal overlap
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and the modal damping of this beam. For this purpose, the measurements of the modal
characteristics of an uniform and an ABH beam are performed.

2.2.1 Experimental setup460

Fig. 2.3(b) represents the experimental setup in which the sample to be tested is
vertically suspended. To avoid unwanted additional damping caused by the suspensions,
thin wires are glued to the side ridges of the beam. An miniature impact hammer (PCB
Piezotronics 086E80) mounted on a flexible support excites the beam at one arbitrary
point of its centerline in order to mainly excite flexural modes and to avoid torsional465

modes. A force sensor is embedded in the hammer and measures the impact force. At
the same point, but on the back side of the beam, the measurement of acceleration of
the beam is made by a miniature accelerometer (PCB Piezotronics 352C23, 0.3 g). The
time signals are recorded by using a National Instrument NI USB-4431 acquisition card.
The experimental set up is driven by a Matlab R© application which also performs classical470

signal post-processing operations.

PC
Post-processing

Acquisition card

AccelerometerHammer

Beam

ABH extremity

Suspension

Figure 2.3: Scheme of the experimental setup representing the ABH beam, the ac-
celerometer, the impact hammer and the acquisition system.

2.2.2 Frequency response

The mobility of the beam is defined by

Yij = Vi
Fj
, (2.1)
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where Vi and Fj are the velocity at point i and the force applied at point j, respectively,
and where Vi is computed from Vi = ai

−jω , with ai the acceleration at point i. Fig. 2.4475

presents these frequency response functions for the reference and the ABH beams. Clear
reduction of the resonance peaks is observed.
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Figure 2.4: Comparison of the measured mobilities of the reference beam (thin full
line, excitation and measurement point at 0.4 m of the free extremity) and the ABH
beam (thick full line, excitation and measurement point at 0.5 m of the tip of the ABH).

2.2.3 Modal analysis

2.2.3.1 Choice of modal identification method

Many classical methods have been developed to identify eigenfrequencies, modal coef-480

ficients and mode shapes of a structure from a set of mobility transfer functions. In refer-
ence textbooks such as [44], different single degree-of-freedom techniques (-3dB method,
circle fitting) or multiple degrees-of-freedom techniques (curve fit in the frequency do-
main, least square complex exponential method in the time domain) are presented. Since
the modal overlap is expected to be large in the present case, those classic modal iden-485

tification techniques may be no longer robust [89, 12]. Subspace methods like MUSIC
(MUltiple SIgnal Classification) [119], Matrix Pencil [65], or ESPRIT (Estimation of
Signal Parameters via Rotational Invariance Techniques) [117] are then interesting to
consider and have already been successfully applied to vibration signals [81, 43]. Indeed,
these methods overcome the Fourier resolution limit and are then useful when modes are490

overlapping, hence the designation high-resolution [42]. In this work, ESPRIT is used
since it is known to be one of the more robust.
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2.2.3.2 ESPRIT method

The velocity response s(A, t) in any point A to an impulse force is modelled as the
real part of a sum of complex damped sinusoids, each one being the time response of a495

mode:

s(A, t) = Re
[
K∑
k=1

bk(A)ztk
]
, (2.2)

where bk(A) is the complex amplitude of the k-th mode and zk = e−ak+jωdk denotes the
corresponding pole with modal damped pulsation ωdk and modal damping factor ak. K
is the number of complex poles in the frequency band [−Fs/2 Fs/2], where Fs is the
sampling frequency.500

The ESPRIT [117] algorithm estimates the signal parameters corresponding to the
modal parameters of the K sinusoidal components embedded in the signal. Like other
subspace high resolution methods (such as Matrix Pencil or MUSIC), it is based on
the decomposition of the data vector space onto two orthogonal subspaces, the so-called
signal and noise subspaces. Then, using the so-called rotational invariance property of the505

signal subspace (it remains invariant from a sample to the next), the poles zk spanning
the signal subspace can be estimated accurately. The reader can refer to Ref. [43] for
a detailed description of the ESPRIT algorithm. The subspace decomposition and the
use of the rotational invariance property make the ESPRIT method more robust and
accurate than classic Prony-based method, such as LSCE [44] for instance.510

The estimation of the model order K, related to the number of modes in the frequency
band of analysis, is performed thanks to the signal enumeration technique ESTER (ES-
Timation of ERror), designed by Badeau et al. [9] and used by Ege et al. [42] and Elie et
al. [43] in the context of musical acoustics. The ESTER criterion has been chosen among
other signal enumeration techniques [134, 13, 3, 120, 24, 106] for its reliability and also515

for its straightforward implementation with the ESPRIT algorithm. This criterion con-
sists in appraising the rotational invariance property of the signal subspace with an error
function. This latter being minimal when the rotational invariance property is verified,
namely when the modelling order is equal to the right number of sinusoidal components.
Note that for impulse responses signal, which is real, the number of components K is520

twice the number of physical eigenmodes.

2.2.3.3 Results on modal parameters

2.2.3.3.1 Eigenfrequencies and modal loss factors
Modal parameters are estimated by applying the ESPRIT technique described in section
2.2.3.2 on the driving point mobility shown in Fig. 2.4. The method yields the complex525

poles of the signal, i.e. the eigenfrequencies and the damping coefficients of the tested
beams. They are presented in Tab. 2.2 between 1000 and 2000 Hz for the aluminium
reference and ABH beams. Fig. 2.5 presents a comparison of the experimental modal
parameters between the aluminium reference beam (�) and the ABH beam (◦).
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An important increase of the modal loss factors is seen on Fig. 2.5(b) for the ABH530

case. Those of the reference beam, of uniform thickness and material properties, are
almost constant against the frequency (i.e. independent of the mode) and are equal
to approximately 0.2%. This expected weak constant value corresponds to the intrinsic
material loss factor of the beam (aluminium) and to coupling with the air. The modal
loss factors for the ABH beam are at least ten times higher than those of the reference535

beam and can reach about 4%

fRef
k (Hz) 1028.6 1167.0 1314.2 1468.4 1632.7 1806.7 1986.6
ηRef

k (%) 0.17 0.31 0.21 0.29 0.30 0.15 0.25
fABH

k (Hz) 1006.8 1133.4 1272.9 1416.6 1574.9 1728.9 1887.9
ηABH

k (%) 2.53 2.34 1.97 2.44 2.46 3.24 3.36

Table 2.2: Eigenfrequencies and modal loss factors for aluminium reference and ABH
beams between 1000 and 2000 Hz.

2.2.3.3.2 Modal density
Since direct comparison between these eigenfrequencies fk do not give comprehensive
informations, we are more interesting by the study of the modal density d(fk). This
modal density is related to the frequency spacing by the relation540

d(fk) = 1
fk+1 − fk

. (2.3)

From a practical point of view, d is obtained as a function of frequency by averaging
the discrete values d(fk) over a sliding window containing a predefined number of modes
(typically 5 modes). The theoretical prediction for the modal density of the reference
uniform beam is given by the Euler-Bernoulli beam theory [137]:

d(f) = L

πcγ(f) = L

2π
√

2πf
√
h0

(12ρ
E

)1/4
. (2.4)

On Fig. 2.5(a), the modal density of the reference beam fits very well with the theo-545

retical prediction. These two results are in good agreement since particular attention has
been paid to excite and measure the beam on its centreline: the vibrational field is almost
entirely carried by the flexural modes, while the torsional modes only provide a very weak
contribution. Fig. 2.5(a) also shows that the ABH termination used in this experiment
does not lead to a substantial increase of the modal density. The modal density of the550

ABH beam is very similar to the one of the reference beam: in fact, it is very slightly
higher as it will be explained in Sec. 3.2.3.

2.2.3.3.3 Modal Overlap Factor
The Modal Overlap Factor (MOF) is the ratio between the modal bandwidth at the half
amplitude and the average modal spacing [89]:555

MOF = ∆f−3dB

f
. (2.5)
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Figure 2.5: Comparison of experimental results between the aluminium reference beam
(�) and the aluminium ABH beam (◦): (a) Modal densities n and theoretical prediction
for flexural waves in a uniform beam according to Eq. (2.4) (dashed line), (b) modal loss
factors η, (c) Modal Overlap Factor MOF (published in [38]).
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Figure 2.6: Comparison of experimental results between the polymer reference beam
(�) and the polymer ABH beam (◦): (a) Modal densities n and theoretical prediction
for flexural waves in a uniform beam according to Eq. (2.4) (dashed line), (b) modal loss
factors η, (c) Modal Overlap Factor MOF.
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The MOF can also be calculated as the product [42, 12]

MOF = dηf, (2.6)

where d is the modal density, η is the modal loss factor and f is the frequency. In
structural dynamics, the MOF can be used to establish three frequency ranges: the low
frequency range (MOF<30%) in which the structure admits a resonant behaviour, the
mid frequency range (30%<MOF<100%) in which the modal overlap and/or loss factor560

are higher, and the high frequency range (MOF>100%) in which diffuse field assumptions
are reached. Diffuse field may easily be obtained in thin-walled structures; this is not the
case for the beams presented in this study.

Fig. 2.5(c) shows that the ABH termination results in an increase of the MOF: while it
barely reaches 5% for the reference beam, it is more than ten times higher and can reach565

50% for the ABH beam above a starting frequency of efficiency (about 400 Hz). This
strong increase of the MOF is directly related to the increase of the modal loss factors.

Finally, Fig. 2.5 shows that the result on the mobility seen in Fig. 2.4 corresponds
to an important increase of the MOF which is essentially due to the ABH action on the
modal loss factor. This result means that the ABH makes the structure vibrate in a570

frequency range intrinsically more damped. The reasons for this important increase are
studied in Sec. 3.1.3, thanks to the numerical model developed in Sec. 3.1.1 and Sec. 3.1.2.

Modal parameters for the polymer beams are plotted on Fig. 2.6. The same tendencies
than for the aluminium beams are observed in this case but somehow weakened: the
modal loss factor of the reference beam are 3.5 %, corresponding the intrinsic loss factor575

of the material, but they reach 6.5 % in the ABH case. The same observation can be
made on the MOF which is also approximately doubled.

2.3 Anechoic termination and progressive wave field

There exist few ways to passively reduce the vibration of a structure: one is to modify
the material damping of the whole structure; one another is to reduce the reflection of580

the waves at its boundaries, so that an incident wave does not reflect back and can-
not contribute to the vibration field in the structure. This section proposes to observe
propagation of waves towards the ABH extremity and the reflection it induces.

2.3.1 Displacement field of the structure

To the author’s knowledge, measured maps of the displacement field inside an ABH585

structure only appear in [57] on elliptic plates including ABH. This section proposes
to observe how the ABH placed at the extremity modifies the displacement field. The
displacement field is observed on the beam made of polymer, with or without a damping
layer. A reference uniform beam of the same material is also observed for the sake of
comparison (the geometries are indicated on Fig. 2.1 and in Tab. 2.1).590
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2.3.1.1 Experimental setup

In this experiment, the beam to be observed is hanged vertically as it is shown on
Fig. 2.7. An impedance head (B&K type 8001) and a mini-shaker (B&K model 4810)
are glued onto the beam. The shaker is suspended by three elastic wires, and excites the
beams with a swept signal on the 0-10 kHz range. A multipoint laser vibrometer (Polytec595

PSV-400) scans the entire extremity (surface 0.1 × 0.02 m, mesh grid 9 × 33 points) in
order to acquire signals of displacement.

(a) (b)

Figure 2.7: Picture of the experimental setup: (a) front view and (b) side view.

2.3.1.2 Observations in the time domain

Displacement fields are plotted on Figs. 2.8, 2.9 and 2.10 for different beams and
at different chosen frequencies. Each plot covers one period T of oscillation, divided in600

eight. For example, Fig. 2.8 shows the displacement of an extremity of uniform thickness.
Nodes and anti-nodes of displacement can clearly be observed. The modes of such a very
weakly damped structure are real and present nodes in their modal shapes, hence the
nodes in their operational deflection shape.

The displacement field inside an ABH beam (see Fig. 2.9) do not present any nodes:605

a wave that propagates towards the extremity of the structure can be seen instead. This
phenomenon is an indication of the complexity of the modes of the structure, that can be
related to wave propagation phenomena as it is mentioned in [2]: when the reflection at
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Figure 2.8: Displacement field of the free extremity of an uniform beam à 2330 Hz [45].

a boundary is partial, the superposition of incoming and outcoming waves does not lead
to nodes of vibrations. Ref. [2] links wave propagation phenomena to energy propagation610

to a surrounding media or to a localised dissipation in the structure. The ABH effect
consists indeed in a localised dissipation, but can also be viewed as a absorbing media in
which energy propagates, therefore as an anechoic termination. This can be seen clearly
on Figs. 2.9(a), (b) and (c) for three different frequencies.
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Figure 2.9: Displacement field of the covered ABH extremity at (a) 852 Hz (b) 2022 Hz
and (c) 4001 Hz [45]. ABH profile extends from x=0 to x=0.06 m.

Depending on the frequency, the tip of the ABH profile can present a two-dimensional615

behaviour. It seems easier to observe this phenomenon of the uncovered tapered extremity
(see Figs. 2.10(a) and (b)) but it can also be seen on the covered extremity. While the
incident wave is plane when the thickness is important, this is not the case when the
thickness is small (i.e. in this case, all the points of a cross section are in phase). In fact,
it is immediate to see that the local wavelength is smaller that the thickness of the beam,620
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so that the beam behaviour is not valid anymore. The plate hypothesis that is suggested
by this observation is developed in subsequent chapters.
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Figure 2.10: Displacement field of the non covered ABH extremity at (a) 1297 Hz and
(b) 3850 Hz [45]. ABH profile extends from x=0 to x=0.06 m.

2.3.2 Measurement of the reflection coefficient of an ABH
termination

The reflection coefficient is a simple but meaningful indicator to characterise the ABH625

effect. The aim of this section presents an estimation method of the reflection coefficient
of a beam extremity. The method is based on velocity measurements and shows that the
added modal damping seen in Sec. 2.2 translates into a reduced reflection for the waves
travelling towards the extremity.

2.3.2.1 Measurement method630

Wave reflection and transmission in beams has been thoroughly studied [85, 90]. Sev-
eral methods allow the estimation of reflection properties of beam extremities. Linjama
et al. [86, 87] propose to measure the reflection of bending waves using a structural in-
tensity technique. Vemula et al. [130] estimate the reflected energy of bending waves in a
graded impedance interface using the half power bandwidth of the resonance peaks of the635

transfer function. Carniel et al. [22] and Piaud et al. [109] both propose expressions for
the far field reflection coefficient in a beam. Moulet et al. [54, 98] use a Kundt tube-like
technique in order to estimate the scattering properties of a junction between two beams
from the measurements of velocities along the beam. This method is used in the current
study.640

2.3.2.1.1 Experimental setup
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Figure 2.11: (a) Scheme of the experiment. (b) Scheme of the beam showing the
excitation point at x = xf , the N + 1 measurement points x0 to xN , the attenuating and
propagating waves and the point x=0 at which the reflection coefficient is evaluated.
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Setup
The estimation of the reflection coefficient is based on mobility transfer functions mea-
surements. In order to avoid static deformation due to gravity, the beam to be tested
is hanged vertically (see Fig. 2.11(a)); this point is found to be quite important. The645

extremity whose reflection coefficient is estimated is directed toward the bottom. An
impedance head (B&K type 8001) and a shaker (B&K type 4810) are glued onto the
beam. The shaker is suspended with three elastic wires. Velocities are measured using
a laser vibrometer (Polytec OFV 303). The impedance head, shaker and vibrometer
are linked to a LMS acquisition system (Scadas Mobile, 4 channels, Test.Lab Rev 13)650

which acquires force and acceleration signals at the excitation point and velocity signal
at measurement points.

Measurement conditions
Transfer mobility measurements are performed at 21 abscissas 5 mm apart from each
other. In the case of the aluminium ABH beam, the closest abscissa is distant of 0.1 m655

from the tapered region. Let A0 be the point on the neutral axis of the beam at abscissa
xi (see Fig. 2.12(a)). Let Al and Ar be two points at the right and left hand side of the
neutral axis, with distances al = AlA0 and ar = ArA0, respectively. Let E and F (E) be
the excitation point at abscissa xf and the force applied in E, respectively. The measured
velocity Ẇi at point A at a given abscissa xi (A being A0, Ar or Al) can be written as660

ẇi(A) = ẇif (A) + ẇit(A), (2.7)

where ẇif (A) and ẇit(A) correspond to pure beam flexural motion and beam torsional
motion, respectively. Only the flexural contribution should be estimated since the inves-
tigations on ABH only concern flexural motions.

Identification of the flexural contribution
The mobility on the neutral axis, where there is no torsional contribution, is defined as665

Y (A0, E) = ẇif (A0)
F (E) . (2.8)

Because of the symmetry and the antisymmetry of wif and wit with respect to the neutral
axis, it can be shown that

Y (A0, E) = alY (Al, E) + arY (Ar, E)
al + ar

= γY (Al, E) + Y (Ar, E)
1 + γ

, (2.9)

where γ = al/ar. In practice, Y (A0, E) is not measured directly since it is not possible
to guarantee that A0 is on the neutral axis. The quantity Y (A0, E) is obtained in an
indirect manner from measurements at points Ar and Al. The γ coefficient is adjusted670

in order to minimize the amplitude of the first torsional resonance peak. This peak is
identified in a preliminary step. In the present study, the frequency of this first torsional
mode is 196.5 Hz. The torsional contribution ẇit on the wave field is therefore efficiently
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separated from ẇif on a wide frequency range, for each abscissa. Fig. 2.12(b) shows
the mobility transfer function ẇif/F (E) between excitation and a random measurement675

abscissa for the uniform aluminium beam at left and right hand sides of the centreline
(full and dashed grey lines). The transfer function on the neutral axis (thick black line)
is also plotted and shows that the first torsional peak vanishes. Mobilities of the uniform
and ABH beams made of aluminium are plotted on Fig. 2.12(c); the torsional peaks are
minimized and the smoothing effect of the ABH treatment is clearly observed.680
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Figure 2.12: (a) Left, neutral axis and right measurement points Al, A0 and Ar at ab-
scissa xi. (b) Transfer mobility measurement Y (Al, E) (full grey line) , Y (Ar, E) (dashed
grey line) and Y (A0, E) (thick full black line) on the uniform aluminium beam (dB,
ref. 1 m.s−1.N−1). Force is applied at xf = 0.58 m, velocity is measured at xi = 0.3 m
(see Fig. 2.11) (c) Transfer mobility measurement Y (A0, E) for uniform (grey line) and
ABH (black line) beams made of aluminium (dB, ref. 1 m.s−1.N−1). Force is applied at
xf = 0.58 m, velocity is measured at xi = 0.3 m.



2.3 Anechoic termination and progressive wave field 39

Coherence function of the mobility measurements
The quality of the transfer function measurements is estimated using classical coherence
function C between the excitation force F and the acquired velocity ẇ. It is defined as

C = |RẇF |2

RẇRF

, (2.10)

where RẇF is the cross spectral density between signals ẇ(A0) and F (E), and Rẇ and
RF are the autospectral density of ẇ(A0) and F (E), respectively. It is easily shown that685

excitation level has to be high enough to get coherence function close to 1. In practice,
to ensure this issue on a wide frequency range, the whole useful band 0–12 kHz is split in
two bands: 0–2 kHz and 2–12 kHz for which two different levels are applied for the swept
sine excitation. Hence, for each couple (E,A0), two sets of measurements are performed
in order to get the complete mobility signal. Coherence functions for measurement made690

in these two ranges are shown on Fig. 2.13(a). Moreover, it is shown on Fig. 2.13(b) that
in the ABH case, a particular attention has to be paid to the excitation level, and that an
insufficient excitation level results in a coherence far from unity and leads to unreliable
results on the reflection coefficient.
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Figure 2.13: Coherence functions (displacement/force) for aluminium ABH (a) on the
0–2 kHz (black) and 0–12 kHz (grey) ranges and (b) on the 0–12 kHz range with different
excitation RMS levels corresponding to increased electrical tension applied to the shaker:
0.25 V, 0.5 V, 0.75 V and 1 V (from light grey to black, respectively). Force is applied at
xf=0.58 m and velocity is measured at xi=0.3 m.

2.3.2.1.2 Methodology for the estimation of the reflection coefficient695

Wave field solution for beams
Let us consider a beam of constant cross-section whose extremity x=0 bears an ABH
profile seen as an unknown boundary condition (see Fig. 2.11(b)). Under the Euler-
Bernoulli assumptions, the equation of harmonic flexural motion w(x, ω) of such a beam
in the absence of excitation, assuming a harmonic motion with time dependence e−jωt is700

[90]

EI
∂4w(x, ω)

∂x4 − ρSω2w(x, ω) = 0 ∀x ∈ [0, L], (2.11)
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where ω is the angular frequency, E is the Young’s modulus, I is the moment of inertia
of the cross-section, ρ is the mass density, S is the area of the cross-section and L is the
length of the uniform part of the beam.

The general solution for the displacement can be written as the sum of four waves705

[90]:

w(x, ω) = A(ω)e−jkfx +B(ω)e+jkfx + C(ω)e−kfx +D(ω)e+kfx ∀x ∈ [0, L], (2.12)

where the flexural wavenumber kf is such that

k4
f = ρS

EI
ω2. (2.13)

The scalar coefficients A, B, C and D represent the magnitude of backward and forward
propagative and attenuating waves, respectively (see Fig. 2.11(b)).

At the ABH extremity (x=0), the boundary conditions associated to the equation of710

motion (2.11) can be written as a reflection matrix R such that[
A

C

]
= R

[
B

D

]
, (2.14)

where
R =

[
Rpp Rap

Rpa Raa

]
, (2.15)

with Rij the reflection coefficient between incident wave i and reflected wave j; i and j
symbolize p and a standing for propagating and attenuating respectively. Note that the
origin x = 0 is not placed at the end of the ABH beam but at its beginning. Point x = 0715

is the point where the reflection matrix or coefficient is estimated.

We are interested in measuring terms of R. The boundary condition at x=L has to be
fixed for the experiment but do not play any role in the measurements of R. In practice,
free boundary conditions are supposed at x=L.

Far field assumption720

Far from the excitation point and from the boundaries, attenuating waves vanish and the
wave field can be well approximated as the sum of two propagating waves only

w(x, ω) = A(ω)e−jkfx +B(ω)e+jkfx. (2.16)

The boundary condition can then be described as far field reflection coefficient R that
corresponds to Rpp in Eq. (2.15). It is arbitrarily assumed that the far field assumption
is valid at a given frequency when the attenuating waves coming from an excitation point725

or a boundary condition lose 90 % of their amplitude. Then, there should bexN > l

xf − x0 > l,
(2.17)
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where the distance l satisfies [54]

exp (−kf l) = 0.1. (2.18)

In the experiment described in Sec. 2.3.2.1.1, the closest measurement point is at l=0.1 m
of the tapered zone of the aluminium ABH beam, so that the far field assumption is
theoretically valid above 200 Hz (with parameters of Tab. 2.1).730

Estimation of the wave and reflection coefficients
Let us consider N + 1 points along the beam satisfying the far field assumption (see
Fig. 2.11(b)). The displacement measured for all abscissas xi (i ∈ [0, N ]) can be related
to the coefficients A and B through the matrix equation

w(x0, ω)
w(x1, ω)
w(x2, ω)

...

w(xN , ω)

 =


e−jkfx0 ejkfx0

e−jkfx1 ejkfx1

e−jkfx2 ejkfx2

... ...

e−jkfxN ejkfxN


︸ ︷︷ ︸

M

[
A(ω)
B(ω)

]
, (2.19)

with M a (N × 2) matrix. A least-squares estimation of the [A,B]T vector can be735

effectively obtained with

[
A(ω)
B(ω)

]
= M†


w(x0, ω)
w(x1, ω)
w(x2, ω)

...

w(xN , ω)

 , (2.20)

where M† = (M∗M)−1M∗ is the Moore-Penrose generalized inverse [108] of M and M∗

is the conjugate transpose of M.

From this estimation of the wave coefficients, the far field reflection coefficient of the
extremity can be derived:740

R(ω) = A(ω)
B(ω) . (2.21)

Consistency of the estimation method
The estimation method of R uses measurements at 21 abscissas in order eliminate noise.
It is verified that the results do not depend on the abscissas or the number of measurement
points. Fig. 2.14 shows the same estimation done with measurements 1 to 21, 1 to 10
and 11 to 21, in the case of the covered ABH beam made of aluminium. The results745

superimpose and are a good illustration of the consistency of the estimation method: it
can be considered that complex variations of |R| are not due to noise but to physical
deterministic phenomena.
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Figure 2.14: Reflection coefficient in (a) modulus and (b) phase estimated with mea-
sures 1 to 21 (black), 1 to 10 (dark grey) and 11 to 21 (light grey).
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2.3.2.2 Measurement of the reflection coefficient

2.3.2.2.1 Validation on the uniform beam750

It can be shown that the reflection coefficient for a free end is given by (see [90] for a
demonstration of this result)

R = A

B
= −j. (2.22)

This result is used to validate the proposed measurement method. Fig. 2.15 presents the
reflection coefficient of the free end measured on aluminium (full black line), estimated
with the method described in Sec. 2.3.2.1. It is checked that the theoretical result is755

experimentally obtained: modulus and phase are constant with respect to frequency and
equal to 1 and −π

2 , respectively. It is remarkable to see that the experimental result of
Fig. 2.15 is conform to the theoretical result of Eq. (2.22) on a wide frequency range.
Coherences of the measurements are close to 1 until 12 kHz and make this estimation
reliable. This verification of the theoretical result assesses the measurement method.760

Fig. 2.15 also shows the reflection of the free end in the polymer case with the assumed
material characteristics of Tab. 2.1 (full light grey line). The unexpected phase increase
suggests an incorrect knowledge of the wavenumber. Indeed, modulus and phase of the
reflection coefficient are related to the imaginary and real parts of the wavenumber,
respectively. The wavenumber has then to be carefully corrected in order to fit the765

measured reflection coefficient with the free end theoretical result, in modulus and phase.
The fit made on the characteristics of the polymer material consists in increasing by 2 %
the real part of the wavenumber calculated with characteristics of Tab. 2.1, in order to
obtain the theoretical reflection coefficient of a free end (E1=3.8 GPa). Modulus and
phase of R with fitted wavenumber (see Fig. 2.15, dashed dark grey line) are constant770

and show that the estimation method relies on a precise knowledge of the wavenumber.

However, it can be noticed that the reflection coefficient for the polymer beam behaves
poorly after 7 kHz. This can be expected since the structure cannot be considered
anymore as a beam above this frequency and is likely to display a two-dimensional plate
behaviour, because the wavelength neighbours the width of the cross-section, that is:775

λPolymer
f=7kHz ' 1.3b. (2.23)

Consequently, the estimation based on one-dimensional wave decomposition does not
make sense above 7 kHz for the polymer beams. This issue does not appear with the
aluminium structures in which the assumption of undeformed cross-section remains valid
until 16 kHz.

Small singularities appear on the curves, especially for the aluminium beam. This780

is due to a drop of coherence at anti-resonances. A more damped structure such as the
polymer beam shows less coherence drops and thus, a smoother curve for the reflection
coefficient.

2.3.2.2.2 Results on ABH beams
Fig. 2.16 shows the estimated reflection coefficient for the ABH extremity in modulus785
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Figure 2.15: Estimated reflection coefficient R for the free end of uniform beams made
of aluminium (full black line), polymer with fitted wavenumber (dashed dark grey line)
and polymer with non-fitter wavenumber (full light grey line), in (a) modulus and (b)
phase.
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and phase, in aluminium (full black line) and polymer (dashed dark grey line) beams.
Compared to the free end, it is very clear that the modulus of R diminishes with increased
frequency. Values in modulus can be as low as 0.1. Moreover, oscillations can be observed
on the modulus. The phase of the reflection coefficient displays a significant additional
roll down with frequency.790

Qualitative variations of |R| are similar for the aluminium and polymer cases. The
modulus of the reflection coefficient is lower for the polymer beam, showing that the ABH
is more efficient. The phase also rolls down quicker in the polymer case below 7 kHz.

To the authors’s knowledge, such reflection coefficient measurements are the first ones
performed on ABH beams.795
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Figure 2.16: Estimated reflection coefficient R for the termination of the aluminium
(full black line) and polymer (dashed grey line) ABH beams and reflection coefficient for
the reference beam at lABH of the free end (full light grey line), in (a) modulus and (b)
phase. Frequency limit for beam behaviour of polymer beam is indicated (vertical gray
dotted line).
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2.4 Linearity of the ABH beam

The decrease of thickness has a consequence on the vibration amplitude. From
Sec. 2.3.1, it is clear that the amplitude of displacement is larger in the tapered region
on the non covered ABH beam; it is less clear on the covered ABH. Large amplitudes
generate geometrical non-linearities that influence the damping properties.800

Using the experimental setup described in Sec. 2.3.2.1.1, measurements of transfer
function are made on an ABH beam with a thin damping layer (desk tape), using the same
swept-sine excitation with different RMS level: 0.25 V, 0.5 V, 0.75 V and 1 V. Fig. 2.17
displays no differences between the transfer functions at different excitation levels. The
only actual difference is the noisiness of the curves as the lower is the excitation, the805

noisier is the curve; this translates in a poor coherence function. Resonances and damping
properties are identical. This observation shows that the structure responds linearly and
suggests that non linear phenomena are unlikely to participate in the damping that is
observed, despite the high displacement amplitudes of the tapered extremity.
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Figure 2.17: Mobility transfer function of an ABH beam at a random point for different
with different excitation RMS levels corresponding to increased electrical tension applied
to the shaker: 0.25 V (full), 0.5 V (dashed), 0.75 V (dotted) and 1 V (dashdotted).

2.5 Conclusions810

This chapter presents experimental observations and analyses of beams with an ABH
termination. The following conclusions can be drawn:
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• Two manufacturing techniques can be used to obtain the required thin and precise
beam profiles (conventional high speed machining and prototyping). These tech-
niques are used for getting aluminium and polymer ABH beams. Thicknesses at the815

end are 16 µm for the polymer beams and between 10 and 20 µm for the aluminium
ones.

• Using a high resolution technique, a modal analysis is performed and permit to
quantify the change in the modal loss factor and in the modal overlap of the beam.
For the aluminium beam, the modal loss factors are multiplied by 10 to 20 when820

introducing the ABH . For the polymer, they are multiplied by 2.
the change in the modal damping induced by the ABH termination is measured.
It provides an increase of the modal overlap factor of the beam. Note that the
loss factors of the reference polymer beam are indeed higher than those of the
aluminium one, so that the relative change in damping between is lower compared825

to the uniform structure.

• Velocity measurement inside the ABH using a laser vibrometer confirm that the
wavelength decreases in the tapered extremity and allow to see wave propagation
phenomena: progressive waves near the ABH termination are observed instead of
stationary waves near usual terminations.830

• A Kundt-like method for estimating the reflection coefficient of a beam extremity
is presented and applied to the ABH beams. The measurement method is validated
by comparisons with the known analytical result for a free end, for the two different
materials. It is clearly seen that the reflection coefficient of the ABH termination
decreases with frequency, with oscillations. The phase of the reflection coefficient835

rolls down, indicating a relatively important travel time of the waves in the tapered
extremity.

• Finally, measurements at different excitation levels reveal that the structure re-
sponds linearly, suggesting that no non-linear effects participate in the damping
provided by the ABH effect.840





Chapter 3

Role of the spatial variations of
the complex bending stiffness of

the ABH beam
845

The modal parameters of the ABH beams have been studied experimentally in Sec. 2.2.
It has been shown that the ABH termination corresponds to an increase in modal loss
factor and modal overlap factor. It is proposed here to give better understanding of the
experimental results and to explain how the heterogeneity of both rigidity and damping
is responsible for this increase. For this matter, a model of flexural vibrations in a non850

uniform thin plate is proposed in Sec. 3.1. A plate model is considered instead of a
beam one because the expected flexural wavelength at the end of the ABH extremity
reaches down the width of the cross-section in the frequency band studied. In Sec. 3.2,
an observation of two-dimensional modes in the tapered region of the beam justifies this
assumption. Additionally, the effect of the geometrical and material heterogeneity on the855

modal density of the structure is studied.

3.1 Observation using a numerical model

3.1.1 Governing equations

The equation of the free transverse vibration w(x, y) of the structure in the case of
an harmonic motion is given by Ref. [84]:860

∇2(D(x)∇2w(x, y))− (1− ν)
(∂2D(x)

∂x2
∂2w(x, y)
∂y2

)
− ρ(x)h(x)ω2w(x, y) = 0, (3.1)

49
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where ρ(x) is the mass density, h(x) is the thickness, ω is the angular frequency, D(x) is
the local complex bending stiffness and ν the Poisson’s ratio. Coordinates x and y are
defined in Fig. 3.1. In Eq. (3.1), the bending stiffness, thickness and mass density are
characteristics of the sandwich structure composed by the association of the aluminium
beam and the damping layer.865
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Figure 3.1: Scheme of an ABH profile at a beam extremity. Note the change in notation
compared to Fig. 2.1(a): xABH = lABH, xABH + x0 = lt and xl=ll.

The model uses structural damping, represented with a loss factor included in the
imaginary part of the complex bending stiffness D(x) in Eq. (3.1). The effect of the layer
is represented with equivalent mechanical properties that modify the bending stiffness,
the mass density and the thickness, following the model of Ross-Ungar-Kerwin [116] as
used in the current context by Georgiev [57]. The complex bending stiffness is thus given870

by

D(x) =



Dp(x) = Ephp(x)3

12(1− ν2)(1 + jηp), ∀x > xl

Dp(x)
[
(1 + jηp) + El

Ep

(
hl

hp(x)

)3

(1 + jηl)

+
3
(
1 + hl

hp(x)

)2
+ Elhl

Ephp(x)(1− ηpηl + j(ηp + ηl))
1 + Elhl

Ephp(x)(1 + jηl)

]
, ∀x ≤ xl,

(3.2)

where Dp(x), Ep, ηp and hp(x) are the bending stiffness, the Young’s modulus, the loss
factor and the thickness of the plate alone, respectively , El, ηl and hl are the Young’s
modulus, the loss factor and the thickness of the damping layer, respectively. One must
also take into account the effect of the mass of the layer and its thickness using an875

equivalent mass density ρ(x):

ρ(x) =


ρp, ∀x > xl
ρphp(x) + ρlhl
hp(x) + hl

, ∀x ≤ xl,
(3.3)

where ρp and ρl are the mass densities of the structure and the layer, respectively, and a
total thickness h(x) of the sandwich plate:

h(x) =

hp(x), ∀x > xl

hp(x) + hl, ∀x ≤ xl,
(3.4)
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where the thickness of the plate is, in the ABH case,

hp(x) =


h0, ∀x > xABH

h0
(x+ x0)m

(x0 + xABH)m , ∀x ≤ xABH.
(3.5)

The truncation thickness ht (see Fig. 3.1) is the thickness at the very tip of the ABH880

profile (x = 0).

Free boundary conditions are considered at the ABH extremity (x = 0), the other
beam extremity (x = L) and on lateral edges (y = 0 and y = b). The so-called Kelvin-
Kirchhoff edge reaction and the bending moment are zero at the edges and can be derived
to obtain, respectively,885

Vx = − ∂

∂x
(D(∂

2w

∂x2 + ν
∂2w

∂y2 ))− 2D(1− ν) ∂3w

∂x∂y2 = 0 for x = 0, L ∀y, (3.6)

Mx = −D
(∂2w

∂x2 + ν
∂2w

∂y2

)
= 0 for x = 0, L ∀y, (3.7)

along the y-direction, and

Vy = −D ∂

∂y
(∂

2w

∂y2 + ν
∂2w

∂x2 ))− 2(1− ν) ∂
∂x

(D ∂2w

∂x∂y
) = 0 for y = 0, b ∀x, (3.8)

My = −D
(∂2w

∂y2 + ν
∂2w

∂x2

)
= 0 for y = 0, b ∀x, (3.9)

along the x-direction. Free boundary conditions also require [84] that

Mxy = −D(1− ν) ∂
2w

∂x∂y
= 0 at points (0, 0), (0, b), (L, 0) and (L, b). (3.10)

The equation of motion and the boundary conditions lead to an eigenvalue prob-890

lem, that will be presented and solved according to the numerical method described in
Sec. 3.1.2.

A discussion on the validity of the model is relevant at this point. It is emphasized
that the dispersion relation is such that at a given frequency, if the wavelength is greater
than the thickness in the uniform part of the plate, it is also the case in the tapered895

zone. Indeed, it is straightforward that at a given frequency, the ratio of wavelength over
thickness

λ

h
=

2π 4
√
Eh2/12ρ(1− ν2)ω2

h
, (3.11)

diminishes with the thickness. Therefore, since the classical theory of plate based on the
Kirchhoff model is valid in the region of uniform thickness (i.e. the wavelength is much
larger than the thickness), it also applies in the tapered zone and shear and rotary inertia900

are expected to be negligible. One is also reminded that the model does not take into
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account some characteristics of the practical realisation of the ABH effect: the lack of
symmetry and added damping may move the neutral plane of the structure and generate
plane extension behaviour that is coupled with flexural behaviour. According to the
literature [75, 57, 93], flexural behaviour seems sufficient to produce the ABH effect and905

may therefore be the dominant mechanism. Other effects are thus neglected in this paper
but may be investigated in a further study. Note that the curvature of the neutral plane
could nevertheless be addressed using a shell theory, such as the one presented in [125].
The formulation allows to see a shallow shell as a deformed or imperfect configuration
of a thin plate and uses an Airy stress function and a Monge-Ampère bilinear operator910

that easily allows to consider also geometrical non linearities due to large displacements,
using the Von Karman model [20, 6].

Note that the coupling between the beam and the air (acoustic radiation) can be an
additional source of damping [80], that is not taken into account in this model. Using
the tools presented in Chap. 2, it is possible to evaluate the importance of this coupling915

by estimating the reflection coefficient and modal parameters of the experimental ABH
beams in the absence of air. This would be feasible using a vacuum chamber. Such a
chamber is now available in the laboratory but has not been used during this PhD.

3.1.2 Numerical scheme

The problem described in Sec. 3.1.1 is numerically solved by using a second-order finite920

difference scheme [27, 14, 7]. The spatial derivative operators in Eq. (3.1) and Eqs. (3.6)–
(3.10) can be approximated from Taylor series. To introduce the needed notations, a
discrete approximation by backward finite difference of the first derivative of the function
w(x) is given as an example:

dw(x)
dx ≈ 1

∆x

(wn − wn−1) = δx−wn, (3.12)

where wn = w(x), x = n∆x with ∆x the spatial step and n the spatial index, and925

δx− is the backward differential operator. The double derivative is approximated by the
operator δxx defined as

d2w(x)
dx2 ≈ δxxwn = wn+1 − 2wn + wn−1

∆2
x

. (3.13)

A backward spatial averaging operator µx− defined such that µx−wn = (wn +wn−1)/2, is
also applied for the numerical scheme suitability.

In classical cases for which the thickness of the plate is constant, such a second-order930

finite difference scheme is straightforward. The present case is more difficult since the
thickness is locally reduced, leading to an important numerical dispersion or an important
computation cost. Indeed, the wavelength in the ABH structure dramatically decreases
along the ABH profile, since it depends on the local thickness for a given frequency.
To correctly represent very small wavelengths and to avoid numerical dispersion, a non935
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uniform mesh grid is proposed. A practical implementation consists in using a coordinate
change that switches a non-uniform "physical" mesh grid into a transformed uniform mesh
grid where a transformed equation of motion is solved [14]. The interest is to avoid a
tedious resolution on a non-uniform grid. Variable x defines the physical coordinate
and variable x̃ defines the transformed coordinate. Variable λ = 2π 4

√
Eh2/12ρ(1− ν2)ω2940

represents the wavelength in the physical space whereas variable λ̃ is the wavelength in
the transformed space. The coordinate change may be chosen in order to match the
change in wavelength so that

λ(x)
dx = λ̃

dx̃ , (3.14)

remains constant. Since λ varies with the square root of the thickness according to
classical plate theory [84], the coordinate change is chosen as follows:945

dx̃ = dx
x̃av

√
h(x)

with x̃av =
∫ L

0

1√
h(x)

dx, (3.15)

where L is the dimension of the plate along the x-direction. x̃av permits the coordinate
x̃ to be adimensional. It is verified that the wavelength λ̃ is constant in this case:

λ̃ = dx̃
dxλ(x) =

2π 4
√
E/12ρ(1− ν2)ω2

x̃av

√
h(x)√
h(x)

. (3.16)

Figs. 3.2(a) and (b) illustrate this transformation: the spatial step on the physical grid
decreases with x according to the thickness profile, while the spatial step on the resolution
grid is constant. Note that no coordinate change is applied to the y coordinate.950
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Figure 3.2: (a) Physical grid, non-uniform in x and (b) resolution grid, uniform in x̃.
The thick line indicates xABH.

The equation to solve on the transformed grid, derived from Eq. (3.1), is finally the
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following:

h−1/2
n

x̃2
av

δx̃+

[
(µx̃−h−1/2

n )δx̃−
[
Dn

(h−1/2
n

x̃2
av

δx̃+((µx̃−h−1/2
n )δx̃−wn,q) + δyywn,q

)]]

+Dnδyy

[
h−1/2
n

x̃2
av

δx̃+((µx̃−h−1/2
n )δx̃−wn,q) + δyywn,q

]

− (1− ν)
(
h−1/2
n

x̃2
av

δx̃+((µx̃−h−1/2
n )δx̃−Dn)δyywn,q

)
− ρhnω2wn,q = 0. (3.17)

where n and q are the spatial indexes of the grid related to x̃ and y respectively, δx̃− and
δx̃+ are respectively the backward and forward finite difference operators, µx̃− and µx̃+ are
respectively the backward and forward averaging operators and δyy is the approximation
to the second derivative in y [14]. The transformed boundary conditions are also derived
from finite difference operators [14] but they are shown in Appendix A.3 for the sake of955

conciseness.

The eigenproblem formulated by Eq. (3.17) can be written under matrix formulation:

(K− α2M)φ = 0, (3.18)

where K and M are respectively the complex stiffness matrix and the mass matrix of
the structure, α is an eigenvalue and φ is an eigenvector. A validation of the approach960

against FEM solution (commercial Comsol software) can be found in Appendix A.3.

3.1.3 Results

Results obtained on simulated beams made of aluminium, whose dimensions are those
appearing in Tab. 3.1, are presented in this section. The finite difference model uses a
640×240 grid (∆x̃ = 1.6× 10−3, ∆y = 4.2× 10−4 m).

Parameters of the beam
Ep [GPa] ρp [kg m−3] ν ηp [%] h0 [mm] L [m] b [mm]

69.8 2700 0.3 0.2 1.5 0.895 20
Parameters of the ABH
x0 [mm] xABH [mm] ht [µm] m

5.3 6 10 2
Parameters of the damping layer
El [GPa] ρl [kg m−3] ηl [%] ll [m] hl [µm]

7 1000 40 0.05 100

Table 3.1: Values of the parameters for used the numerical model.

965
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3.1.3.1 Typical results

According to the literature (see [59] for example), the eigenvalues αk of the problem
defined in Eq. (3.18) can be written:

αk = −ωk
(
ξk − j

√
1− ξ2

k

)
, (3.19)

which allows us to define ωk, the natural frequencies and ξk, the modal damping ratios
(with ηk = 2ξk the modal loss factors).970

Fig. 3.3(a) displays the thickness profile of the reference beam (M) and the ABH beam
(O). The eigenvalues for these two cases are plotted in the complex plane on Fig. 3.3(b).
For any mode k with eigenvalue αk of coordinates (−Re(αk), Im(αk)) on Fig. 3.3(b), the
modal loss factor of this mode is related to the angle between the imaginary axis and
the direction

(
(0, 0), (−Re(αk), Im(αk))

)
so that an increase of this angle is simply an975

increase of the modal loss factor.

It is shown that most of the eigenvalues of the ABH are located along a straight line
in the complex plane. The associated modes have then a loss factor that is roughly close
to a constant value and that is higher than that of the reference: ABH effect leads to
an increase of the modal loss factor for the majority of the modes. This is the case of980

modes 14 and 42 indicated on Fig. 3.3(b), as examples. This phenomenon can be more
clearly viewed on Fig. 3.4 where are plotted the modal loss factors for the two cases in the
frequency range 0–4000 Hz. On this figure, small variations around 2 % can be observed
in the ABH case.

Some eigenvalues of ABH do not belong to the same line and have a higher real part.985

The associated modes have then a greater loss factor. Examples of modes 23 and 41 are
indicated on Fig. 3.3(b). They can conveniently be called "hyper-damped" modes.

3.1.3.2 Consequence of the non-uniformity of the damping loss factor

The inhomogeneity of the mechanical properties all over the domain has some conse-
quences on the eigenfrequencies and the eigenmodes of the structure. In a conservative990

case, Dp(x) is real. The problem has purely imaginary eigenvalues αk and purely real
eigenmodes φk. In a dissipative case where the dissipation is homogeneous, the bending
stiffness can be written Dp(x) = Eph

3
p(x)/12(1− ν2)× (1 + jηp) where ηp is constant, and

(1 + jηp) can get out of the spatial operator in Eq. (3.1); the eigenmodes are real and are
the same than in the conservative case; the eigenvalues however are multiplied by a com-995

plex number depending on the material loss factor only [59]. This implies that the loss
factor of a uniform structure and a non-uniform structure are the same if they are equally
and homogeneously damped, even if their natural frequencies are different. In a dissipa-
tive case where the dissipation is non homogeneous over the space, both eigenvalues and
modes are complex and different from the conservative or dissipative with homogeneous1000

dissipation cases. This means that the increase of loss factor seen on Fig. 3.3(b) and
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Figure 3.3: (a) Thickness profile and (b) spectrum of the complex eigenvalues of Refer-
ence (M) and ABH (ht=10 µm) (O) beams (published in [38]).
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Fig. 3.4 comes from the spatial repartition of the losses. It puts the light on the role
of the damping layer: without it, the damping properties are homogeneous and the loss
factors are the same than in the reference case.

3.1.3.3 Frequency limit for ABH efficiency1005

Fig. 3.4 shows the modal loss factors on the frequency range 0–4000 Hz and allows
to see an efficiency threshold in frequency for the ABH: in the simulated case, below
200 Hz modal loss factors of the ABH beam and the reference beam have the same order
of magnitude. From 250 Hz, the loss factors of the ABH beam suddenly increase to
reach a value of about 2% in the rest of the frequency range, with local peak values for1010

the hyper-damped modes (see dashed line on Fig. 3.4). In this case, the length xABH of
the tapered profile correspond to one quarter of the wavelength in the uniform region at
250 Hz. This observation can give a rule of thumb to size the ABH profile:

lABH ' λ/4. (3.20)

Previous works [75, 57] do not explicitly mention this limit, although the point was
made that the covered tapered profile was not playing any role at low frequency. The1015

observation of Fig. 3.4 confirms what is observed in Sec. 2.2 about the attenuation being
noticeable above a starting frequency.
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Figure 3.4: Modal loss factor for Reference (M) and ABH (O) beams made of aluminium,
and frequency limit for ABH efficiency (dashed line).

3.1.3.4 Modal Overlap Factor

The modal overlap factor is a convenient quantity to observe if one wishes to compare
the experiment and the model in the framework of a mid or high frequency study. It1020

embeds fine phenomena such as the change in modal density or the damping mechanisms,
but allows to globally quantify and qualify the adequateness of the model. Fig. 3.5
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represents the estimated MOF for the experimental reference and ABH cases and their
simulated counterparts. One can remark that the hyper-damped and transverse modes
are not represented since experiments did not allow to identify them: they are localised1025

thus non observable using the experiment described in Sec. 2.2 and they induce a MOF
far superior to 100%, according to the model. The plotted MOF is then an apparent
MOF [15]. With carefully chosen parameters, one can see very similar tendencies on
these plots in the ABH case. Especially interesting are the local maxima around 400,
900 and 2000 Hz which are present in both the experiment and the simulation; these1030

are likely to come from the variations of the modal loss factor, observed on Fig. 3.4.
Although some of these peaks are localised at the same frequencies than hyper-damped
modes according to Fig. 3.4, the two phenomena are not related: a numerical analysis
using different structural parameters does not yield matching frequencies; moreover there
is no transverse behaviour in the shapes of the modes constituting these small peaks.1035

Over 3000 Hz, the model fails to reproduce experimental observations. One may think
of an imperfect estimation of the experimental parameters. One can also remind that the
model uses a very simple structural damping: combined with frequency-independent ma-
terial loss factors, the Ross-Ungar-Kerwin model is a convenient way to express the effect
of the damping layer but does not reflect the complexity of the vibrating layered struc-1040

ture, mainly due to its imperfections, the spatial variability of glueing and the relative
importance of the layer versus the structure.

This figure shows the general effect of the ABH on the structure, which is the increase
of its MOF. This way to characterize the frequency response is common for mid and high
frequency problems. It appears here as a convenient approach to study the ABH effect1045

on plate-like structure, on which the same fine phenomena take place.

3.2 Physical interpretation

3.2.1 Combined effects of thickness and loss factor

In order to understand how eigenvalues evolve from the reference case to the ABH
case, intermediate structures are simulated by changing only the truncation thickness.1050

Some examples of thickness profiles are plotted on Fig. 3.6(a) and results are given on
Fig. 3.6(b) (• in grey levels), completing the results of Fig. 3.3(b).

From Fig. 3.6(b), it is clear that the imaginary part of a given eigenvalue decreases
with the thickness of the tapered profile. This suggests a small increase in modal density :
since the natural frequencies are shifted towards the bottom of the frequency range, there1055

is more modes in a given range.

Another phenomenon is the increase of the real part of the eigenvalues with the
decrease of the thickness of the profile, as seen in Sec. 3.1.3.1. This leads to a progressive
augmentation of the modal loss factors in most of the cases. An explanation is a greater
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Figure 3.5: Simulated MOF for Reference (M) and ABH (O) beams made of aluminium.
For comparison, experimental MOF for Reference (�) and ABH (◦) beams (published in
[38]).

action of the damping layer at small thicknesses. However, as shown in the work of1060

Georgiev et al. [57], for very small thicknesses, the bending stiffness and the added mass
of the layer counterbalance their effects on the equivalent material loss factor.

Hyper-damped modes (such as modes 23 and 41 on Fig. 3.3(b)) appear at lower
frequencies with the decrease of the truncation thickness. This lowering effect is much
more pronounced for them than for the majority of modes. They add to the rest of1065

the modes in a given frequency band and so have an effect on modal density. As with
other modes, the real parts of the associated eigenvalues are moved towards the right
of the spectrum, resulting in an increase of their loss factor as the truncation thickness
decreases.

3.2.2 Trapped modes1070

Fig. 3.7 shows the modal shapes of modes 14, 23, 41 and 42 that are indicated on
Fig. 3.3(b). The modal shapes are here represented on the transformed grid, on which
the problem was solved (see Sec. 3.1.2). This means that the tapered region is magnified
in an adapted manner which is convenient to observe the local behaviour of the ABH.
Note that in this case the wavelength appears to be the same everywhere, which is not1075

the case in reality.

For a given mode φn(x, y), the localisation of the kinetic energy is described by the
localisation index Ik:

Ik =
∫ b

0
∫ xABH
0 ρ(x)φk(x, y)2dxdy∫ b

0
∫ L

0 ρ(x)φk(x, y)2dxdy
. (3.21)
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Figure 3.6: (a) Thickness profile and (b) spectrum of the complex eigenvalues of Refer-
ence (M), ABH (ht = 10 µm) (O) and intermediate structures, gradually thinned, between
Reference and ABH (• in grey levels) (published in [38]).
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Figure 3.7: Moduli of the mode shapes (modulus) and localisation indicator for modes
(a) 14, (b) 23, (c) 41 and (d) 42 in the ABH case. The ABH region is x ∈ [0, x̃ABH]. The
axial coordinate is the transformed coordinate x̃ defined by Eq. 3.15 (published in [38]).
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This indicator is simply the ratio between the kinetic energy in the varying thickness
region (0 ≤ x ≤ xABH) and the total kinetic energy in the structure. The same indicator1080

can be defined for the modes of the reference beam; in this case, it is still the kinetic
energy in the region 0 ≤ x ≤ xABH that is used. In the reference case, the structure is
uniform and the energy of a given mode tends to be uniformly distributed. It implies
that the localisation index is low and tends to a constant value for each mode k. Results
show values around 7%.1085

Modes 14 and 42 of ABH (Fig. 3.7(a) and (d)) are typical beam flexural modes. Their
localisation index is between 20 and 30 %. The localisation of the energy originates from
the higher amplitude and the smaller wavelength. This beam behaviour and this moderate
localisation are common to the majority of modes among which modes 14 and 42 lie. Note
also that the localisation in this case is higher than that of the uniform beam. The kinetic1090

energy is localised in a region that has a high equivalent material loss factor, according
to the Ross-Ungar-Kerwin model; it implies an important energy dissipation and it can
be related to an augmentation of the global modal loss factor.

Modes 23 and 41 (Fig. 3.7(b) and (c)) are some of the hyper-damped modes (see
Sec. 3.1.3.1). They have a strong localisation index (higher than 60 %) meaning they are1095

in fact quasi-local modes. These modes have a locally two dimensional behaviour. One
can infer that part of the very high damping of these comes from the extreme localisation,
as for modes 14 and 42. It also comes from the transverse behaviour, since physically it
implies more motion of the damping layer and, thus, a higher energy dissipation. The
explanation of this transverse behaviour lies in the wavelengths being smaller than the1100

width of the plate in this region. As the beam can be seen as a waveguide, such modes
correspond to transverse modes of the guide. For curiosity sake, modes of similar shape
are seen on clarinet reeds which also have a tapered, though empiric profile [124].

3.2.3 Modal density and correction length for the ABH beam

The purpose of this paragraph is to show that the specific tapered profile placed at1105

one end of a otherwise uniform beam can lead to an increase of its modal density, as the
experimental result (Fig. 2.5(a)) and the study of the eigenvalues (Fig. 3.6) suggest. Two
parametric studies are made: the first one makes the truncation thickness ht vary while
the second one makes the exponent m of the profile vary. Results concern conservative
structures without damping layer, in order to evaluate only the influence of the profile on1110

the modal density. One has to remind that the damping layer modifies the real part of the
flexural rigidity and the mass; it has indeed an influence on the eigenfrequencies, especially
at low thicknesses, and thus modifies the obtained modal densities. The modification of
modal density is then explained as a correction length induced by the tapered termination;
this theory is supported by experimental results.1115
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3.2.3.1 Effect of the truncation thickness

Fig. 3.8 shows the estimated modal densities for the flexural modes of the reference
beam and three cases of ABH profile with different truncation thicknesses. Undoubtedly,
there is an increase of modal density for the beams with tapered profiles compared to the
reference beam. This increase can be related to the local change in wave speed. While1120

for the reference beam, the modal density is proportional to 1/
√
ω (see Eq. (2.4)), the

repartition of modes is less predictable for the ABH beam. Moreover, the decrease of the
truncation thickness is related to an increase in the modal density, and ultimately, the
shape of the result does not have anything to do with the modal density of the uniform
beam.1125
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Figure 3.8: Numerical simulation of the modal density for the reference beam (thick full
line) and ABH beams with different truncation thicknesses: 10 µm (thin full line), 5 µm
(dashed line) and 1 µm (dotted line), and an exponent of m = 2.

3.2.3.2 Effect of the exponent of the power-law defining the thickness
profile

Fig. 3.9 shows the modal densities for beams with tapered profiles having a different
exponent, ranging from 2 to 3, and the same truncation thickness. A higher exponent
gives a profile that is thin over a greater length. From these estimations, it can be1130

concluded that a higher exponent leads to a higher modal density, but it is not as obvious
as the case of a lower truncation thickness. This means that the thickness of the extremity
influences more the modal density than the value of the exponent of the power-law defining
the thickness profile. Practically, a structure will not have its modal density significantly
increased if the lower limit in thickness is not overcome.1135

These results allow to conclude that a significant increase in modal density is unlikely
to happen with the real damped structures, as it was seen in Fig. 2.5(c).
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Figure 3.9: Numerical simulation of the modal density for the reference beam (thick full
line) and ABH beams with different exponents: m = 2 (thin full line), 2.5 (dashed line)
and 3 (dotted line), and a truncation thickness of ht = 10 µm.

3.2.3.3 Correction length induced by ABH

3.2.3.3.1 Definition
An explanation of the small modification of the modal density is proposed here. For1140

this matter, a special attention is paid to the phase of the reflection coefficient that is
estimated in Sec. 2.3.2 in the experimental case. The phase of the reflection coefficient
of the free end of the uniform aluminium beam (named RRef) is estimated at distance
lABH (see Fig. 2.1) from the edge and plotted on Fig. 2.16 (full light grey line). It is
compared with the phase the reflection coefficient of the aluminium ABH termination1145

(named RABH). The phase discrepancies between RRef and RABH are studied in order
to investigate the role of the ABH profile. The phase of RABH decreases more than the
phase of RRef , for the same actual length. It means that an incident wave spends more
time in the tapered profile because it is slowed down. An alternative point of view is
to consider a uniform profile longer than the tapered profile, in which the bending wave1150

speed remains constant (see Fig. 3.10). This leads to define a correction length as it can
be done in acoustic pipes to take into account acoustic radiation at the open end of the
pipe [72]. Hence, the correction length ∆l provided by the ABH profile corresponds to
the length of uniform cross-section that should be added to lABH in order obtain the same
phase. The reflection coefficient of ABH termination estimated at x = 0 (referring to1155

Fig. 2.1) can be written as

RABH = |RABH|e2jkf (lABH+∆l), (3.22)
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where kf is the wavenumber in the beam of uniform cross-section. The argument of
Eq. (3.22) yields

Arg(RABH) = 2Re (kf ) lABH

(
1 + ∆l

lABH

)
, (3.23)

where ∆l/lABH is the dimensionless correction length.

∆l lABH

Figure 3.10: Scheme of the correction length induced by ABH.

3.2.3.3.2 Experimental results1160

From the experimental results, the calculated correction length is plotted on Fig. 3.11
for aluminium and polymer ABH beams. The correction length for the aluminium case
is remarkably constant on the 0-9 kHz range. The value close to 0.8 m means that a
tapered and covered profile of 0.06 m is equivalent to a uniform profile of 0.11 m (i.e. the
length is approximately doubled) from the phase viewpoint. This observation even less1165

conclusive in the polymer case still yields an quasi-constant correction length close to 1
on the 0-4 kHz range. This correction length phenomenon has been theoretically showed
by Mironov [95] for the case of a retarding tube termination, constituting the acoustical
analogy of the ABH termination for flexural waves studied in this paper.
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Figure 3.11: Measured dimensionless correction length ∆l/lABH due to ABH termination
for aluminium (full black line) and polymer (dashed grey line) ABH beams.
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3.2.3.3.3 Expression of the correction length1170

An analytical estimation of the correction length induced by a quadratic profile can be
made. Using the geometrical acoustics model of [93] for the ABH termination (while
keeping the notations of Fig. 2.1(a)), it is possible to derive

Arg(RABH) = 2Re (Φ) , with Φ =
∫ 0

−lABH
k(s) ds. (3.24)

Therefore
∆l
lABH

=
(

Re (Φ(lABH))
lABHRe (kf )

− 1
)
. (3.25)

Noting that1175

k(x) = 4

√√√√12ρ(1− ν2)ω2

Eh(x)2 , and kf = 4

√√√√12ρ(1− ν2)ω2

Eh2
0

, (3.26)

(assuming a conservative case), the relative correction length is finally

∆l
lABH

=
(

lt
lABH

ln
(

lt
lt − lABH

)
− 1

)
. (3.27)

This expression only depends on the length ratio (or thickness ratio) but not on the
frequency. The result with the numerical values of Tab. 2.1 (aluminium) is plotted on
Fig. 3.11 (dashed black line). It is much higher than the experimental result.

3.2.3.3.4 Remark on the modal density1180

The modal density d of a uniform beam depends on the length L of the structure according
to the following relation [137]:

d(ω) = L

πcγ(ω) , (3.28)

for basic boundary conditions, where cγ(ω) is the group velocity of flexural waves. Hence
the variation of modal density ∆d(ω) due to the correction length ∆l on the homogeneous
beam of length L is given by1185

∆d(ω) = ∆l
πcγ(ω) . (3.29)

The numerical values of Tab. 2.1 (aluminium) give a variation ∆d=4.3×10−5 Hz−1 at
2000 Hz, which has the same order of magnitude than the results plotted on Fig. 3.8
(black full thin line).

These observations can be put in parallel with the coordinate change that is made
in Sec. 3.1.2 for the numerical resolution. Indeed, the numerical scheme uses a distorted1190

space that magnifies the length of the ABH region, compared to the length of the uniform
region but keep a constant wavelength and speed along the whole transformed structure.
It thus corresponds well to a structure that is homogeneous but longer, just as it is shown
here.
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3.2.4 Effect of the stiffness of the layer1195

In order to complete the parametric study of the damping layer characteristics done
by Georgiev et al [29, 57], Fig. 3.12(a) shows eigenvalues of the structure (parameters of
Tab. 3.1) with a damping layer having El=1 GPa instead. Compared to Fig. 3.6, it is no-
ticeable that the angle between the imaginary axis and the direction

(
(0, 0), (−Re(αk), Im(αk))

)
is similar or slightly lower for beam modes, with however a decrease of eigenfrequencies.1200

Moreover, an increased number of hyper-damped modes is found; this is related to the
decrease of stiffness at the extremity. Two ’families’ of hyper-damped modes appear that
possess either a lower or higher modal loss factor. Fig. 3.12(b) shows that the drop of
parameter El influences positively only the peak value of equivalent loss factor η(x); it is
lower otherwise. The softer damping layer seems then of practical interest only for the1205

trapped hyper damped modes.
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Figure 3.12: (a) Spectrum of the complex eigenvalues and (b) Equivalent loss factor
for ABH with El=7 GPa (O, black) and El=1 GPa (�, grey).
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3.3 Validation of the model using R measurements

3.3.1 Simulation of R

The inhomogeneous plate model developed in Sec. 3.1.1 can be modified and used
to compute the reflection coefficient of the ABH extremity. The following equation of
motion is solved:

∇2(D(x)∇2w(x, y))− (1− ν)
(∂2D(x)

∂x2
∂2w(x, y)
∂y2

)
− ρ(x)h(x)ω2w(x, y) = Fδ(x− xf )δ(y − yf ), (3.30)

where the right member is an harmonic excitation at (xf , yf ) of amplitude F and angular
frequency ω. It allows to compute displacement field and mobility transfer functions. The1210

discretized problem leads to the matrix problem

(K− ω2M)W = F, (3.31)

where K and M are respectively the complex stiffness matrix and the mass matrix of
the structure, F is the force vector and W is the displacement field. Using the numerical
model, frequency responses are simulated and can be post-processed using the estimation
method described in Sec. 2.3.2.1, with parameters of Tab. 3.1. The result for the reflection1215

coefficient is plotted on Fig. 3.13 (full line) along with the reflection coefficient given by
the beam waveguide model [57].

On Fig. 3.13, plane wave and plate models yield the same results when fed with the
same parameters of Tab. 2.1. Actually, the phase of the reflection coefficient is slightly
different; it can be attributed to a small numerical dispersion [14] in the finite difference1220

scheme of the plate model, leading to a difference between theoretical and actual wave
speed in the structure.

3.3.2 Comparison between simulated and experimental
reflection coefficients

A comparison between experimental beam and simulated counterpart has been shown1225

on Fig. 3.5 by looking at the MOF of the structure. It is interesting to do the same
comparison on the reflection coefficient. Using the model of Sec. 3.3.1 (parameters of
Tab. 3.1), the reflection coefficient is shown on Fig. 3.14. It is compared with the mea-
surements of R done in Sec. 2.3.2. As expected the comparison hold quite well on this
indicator: the modulus of the experimental reflection coefficient presents oscillations the1230

same way the model does, and the parameters give the same order of magnitude. The
phase of the reflection coefficient unwraps in a remarkably similar manner for the two
cases. The modulus and phase can be linked to the similarity of both modal loss factors
and eigenfrequencies (see Sec. 3.1.3.4).
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Figure 3.13: Reflection coefficient calculated with beam waveguide model (dashed line)
and plate model (full line) in (a) modulus and (b) phase.
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Figure 3.14: Reflection coefficients: from measurements of Sec. 2.3.2 (full line) and
plate model of Sec. 3.3.1 with parameters of Tab. 3.1 (dashed line) in (a) modulus and
(b) phase.
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3.4 Conclusions1235

A numerical model based on the finite difference method has been developed for ABH
beams and plates in order to explain the experimental observations made in Chap. 2.
The main conclusions of this chapter are the followings:

• The modal loss factors of an ABH beam are much higher than those of the cor-
responding uniform beam. Numerical computation of the complex mode shapes1240

and complex eigenfrequencies are obtained. It permits to relate the increase of the
loss factor with a higher localisation of the energy in the ABH region, since the
local material loss factor in this region is higher due to the viscoelastic damping
layer. The heterogeneity of both the bending stiffness and the equivalent material
damping is emphasised as the cause of these phenomena.1245

• Transverse and local modes of vibration for the ABH are also found by numerical
simulation. As their energy is very localised in the tapered and damped region,
they are hyper-damped.

• The modal density of an ABH beam is slightly higher tan the corresponding refer-
ence beam.1250

• Both the modal density and the modal loss factors contribute to a higher modal
overlap factor in the ABH case. Such an indicator is a convenient way to quantify
the damping effect of ABH on the frequency response curve. With values as high as
40% for the MOF in the numerical case, the ABH effect applied to the conventional
beam studied in this document still classifies it as a low frequency phenomenon.1255

• On the other hand, it is shown that the increase in modal density essentially comes
from the truncation thickness but that this increase is not significant in the practical
cases.

• The phase of the reflection coefficient measured in Chap. 2 allows to define a cor-
rection length for the tapered termination that appears to be quasi-constant with1260

respect to frequency; This correction length can be related to the variation of modal
density.

• A good agreement is found between the simulated and measured reflection coeffi-
cient: the order of magnitude and the main variations of R with the frequency are
approached.1265





Chapter 4

Scattering and damping induced by
an imperfect ABH termination

Manufacturing imperfections cannot be avoided in practice. We propose in this chap-1270

ter to investigate the role of these defaults in the behaviour of ABH terminations. It
will be seen that an irregular edge creates couplings between the incident plane wave to
excite the local modes of the extremity. These couplings have a positive and significant
effect on the damping induced by the ABH termination, all things being equal. Sec. 4.2
presents an experimental observation of the effect of imperfections. A model is developed1275

in Sec. 4.3 in order to compute the modal coupling in the inhomogeneous plate seen as
a multimodal structural waveguide, using a Levy-type solution [60]. From a numerical
resolution of the model, typical results for the reflection coefficent of an ABH termination
are presented in Sec. 4.4 and interpretations for the phenomena are proposed. Effects of
variations of the imperfection characteristics are also investigated in a parametric study1280

on the reflection coefficient.

4.1 Imperfections on ABH profiles

Most of the published literature [75, 57] and the work done in Chap. 3 consider a per-
fect tapered extremity: the free edge is considered as straight and normal to the direction
x of propagation. The consequence is that an incident plane wave propagating along the1285

x-axis is staying plane and that the reflected wave is also stricly plane. Thus there should
be no excitation of the trapped eigenmodes mentioned in Chap. 3. However the practical
realisation fails the assumption of perfect edge because the manufacture of such small
thicknesses is difficult and leads to irregular and teared extremities (see Figs. 4.1(a) and
(b)). Moreover, it is observed in Sec. 2.3.1 that the wave is not plane anymore for certain1290

73
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frequencies. Bowyer et al. [19] study experimentally imperfections of ABH by compar-
ing an imperfect termination and a shorter thus thicker perfect termination; From this
experimental comparison, they conclude that even imperfect, a thinner extremity has a
better damping performance. It is proposed here to observe what effects are induced by
imperfections for a given thickness at the end. A theoretical framework for analysing1295

these experimental results is also proposed.

(a) (b)

Figure 4.1: (a) Machine damage to a wedge tip (after [19]) and (b) teared edge of a
circular ABH profile at the truncation radius (after [10]).

4.2 Experimental investigations on an imperfect
ABH termination

4.2.1 Experimental setup

This experiment uses the setup described in Sec. 2.3.2. An unique sample is used and1300

consists in an aluminium beam with an ABH extremity, whose parameters are described in
Tab. 2.1 (see Fig. 4.2(a)). The tip is as clean and undamaged as possible. A thin damping
layer (desk tape) is stuck on the flat side of the tapered profile (see Fig. 4.2(b)). The layer
is deliberately chosen as thin and relatively inefficient: it does not add stiffness to the
tapered profile and provides a damping low enough to observe small perturbations. This1305

configuration is referred as "non-damaged". After a first measurement of the reflection
coefficient of the beam, artificial damages (small cuts) are made at the tip of the tapered
profile, using a blade (see Fig. 4.2(c)). This second configuration is referred as "damaged".
A second measurement of the reflection coefficient is then made on the damaged beam.

4.2.2 Results1310

The reflection coefficients for the ABH extremity before and after making the imper-
fections are shown on Fig. 4.3. The reflection coefficient for the non-damaged extremity
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(a)

(b)

(c)

Figure 4.2: (a) Machined side of the tapered profile, (b) flat and covered side of the
tapered profile and (c) extremity after making cuts.
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is rather high and displays important variations with several localised minima. Note that
R is slightly noisy at low frequency because the close-to-unity coherence needed for a
smooth estimation is difficult to obtain when the tapered extremity is poorly damped. It1315

is reminded that the measurement method for such a beam remains valid until 16 kHz,
as discussed in Sec. 2.3.2.

After making several random cuts in the tapered extremity, the reflection coefficient is
definitely modified: it presents more minima close to zero. In some frequency ranges, the
reflection coefficient is lower than for the non-damaged extremity (2.8–3.3, 4.4–5.2 and1320

8.6–12 kHz) while the frequency range 7.4–8.3 kHz actually displays a higher reflection
coefficient for the damaged extremity.

These results show that the experimental reflection coefficient is very sensible to the
quality of the extremity when the ABH is covered with an relatively inefficient damping
layer. Sec. 4.3 provides a model and a theoretical background allowing to explain these1325

experimental results.
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Figure 4.3: Experimental comparison of |R| for non damaged (gray line) and damaged
(black line) ABH termination

4.3 Model of an imperfect ABH termination

4.3.1 Multimodal waveguide formulation

The ABH extremity (see Fig. 4.4)is considered as an inhomogeneous structural waveg-
uide. In order to describe coupling phenomena between guided modes at the extremity1330

from imperfect edge conditions and to extend the study of the reflection coefficient made
in Chap. 2, the aim is to obtain the reflection matrix of the extremity or of a region of
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the waveguide. This reflection matrix can be obtained by either the knowledge of the
impedance matrix of the waveguide when it is closed, or as part of the scattering matrix
of a region of the waveguide. We propose in this section to derive a Riccati equation for1335

the impedance matrix. This equation is solved numerically. Using the same formalism,
a method for computing the scattering of a waveguide region is also developed.

4.3.1.1 Governing equations

The governing equations for the flexural motion of plate with inhomogeneities along
the longitudinal x-direction (plate parameters remains invariant along transverse y-direction),1340

and in harmonic regime (with the e−jωt time convention) are [84]:

w = w(x, y) (4.1)

θx(x, y) = ∂w

∂x
, (4.2)

Mx(x, y) = −D
(
∂2w

∂x2 + ν
∂2w

∂y2

)
, (4.3)

My(x, y) = −D
(
∂2w

∂y2 + ν
∂2w

∂x2

)
, (4.4)

1345

Mxy(x, y) = −D(1− ν) ∂
2w

∂x∂y
, (4.5)

Qx(x, y) = ∂Mx

∂x
+ ∂Mxy

∂y
, (4.6)

Qy(x, y) = ∂Mxy

∂x
+ ∂My

∂y
, (4.7)

∂Qx

∂x
+ ∂Qy

∂y
= −ρhω2w, (4.8)

where w(x, y) is the displacement, θx(x, y) and θy(x, y) are the slopes along x and y-
direction, Mx(x, y) and My(x, y) are the bending moments around x and y, Mxy(x, y)1350

is the twisting moment, Qx(x, y) and Qy(x, y) are the shear forces, D(x) is the bending
stiffness, ν is the Poisson’s ratio, ρ(x) is the mass density, h(x) is the thickness and ω is
the angular frequency. Moreover, the total shear forces Vx and Vy including the effects of
the twisting moments are defined:

Vx(x, y) = Qx + ∂Mxy

∂y
= ∂Mx

∂x
+ 2∂Mxy

∂y
, (4.9)

1355

Vy(x, y) = Qy + ∂Mxy

∂x
= ∂My

∂y
+ 2∂Mxy

∂x
. (4.10)
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Figure 4.4: Model of plate with ABH extremity: edges along x are simply supported,
edges along y are free. (a) Side view, (b) front view and (c) perspective.

Bending stiffness D(x) and thickness h(x) describe the waveguide and their expres-
sions are given by (see Fig. 4.4)

D(x) = Eh(x)3

12ρ(1− ν2)(1− jη(x)), (4.11)

where E is the Young’s modulus of the plate material and η(x) is the loss factor, and the
thickness is

h(x) =

h0
(x+x0)m

(x0+xABH)m if x ≤ xABH,

h0 if x > xABH.
(4.12)

To take into account the effect of the viscoelastic layer can be modelled by an equiv-1360

alent loss factor [116] which depends on x via [75]

η(x) =

ηp, if x ≤ xl,

ηp + ηl
3Elhl

Eh(x) , if x > xl,
(4.13)

where ηp is the loss factor of the plate, and El, ηl hl the Young’s modulus, the loss factor
and the thickness of the viscoelastic layer, respectively.

Consider now the relations between variables w, θx, Mx and Vx and their first-order
partial derivatives with respect to x. After several derivations detailed in Appendix A.4,1365

the following relations are obtained:

∂w

∂x
= θx, (4.14)

∂θx
∂x

= − 1
D
Mx − ν

∂2w

∂y2 , (4.15)
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∂Mx

∂x
= Vx − 2(1− ν)D∂

2θx
∂y2 , (4.16)

∂Vx
∂x

= −ρhω2w +D(1− ν2)∂
4w

∂y4 − ν
∂2w

∂y2 . (4.17)

4.3.1.2 Definition of the waveguide1370

For simplicity, the two edges along x (y=0 and y=b) are simply supported, allowing
to write a Levy-type analytical solution [60, 83, 136] for Eqs. (4.14)–(4.17) as a product
of beam functions. Such lateral boundary conditions define the waveguide which will be
studied. This waveguide is represented on Fig. 4.4(c) and is called a Levy-waveguide.
Note that this choice automatically rules out a direct comparison with the experiment1375

made with beams. The two edges along y (x=0 and x=L) are free. The boundary
condition of the edge x = 0 is modified in Sec. 4.3.2 for taking into account the imperfect
extremity.

4.3.1.3 Multimodal expansion

Each variable g(x, y) (w, θx, Mx and Vx) is then written as the multimodal expansion1380

g(x, y) =
∞∑
q=1

gq(x)Ψq(y), (4.18)

where
Ψq(y) =

√
2 sin

(qπ
b
y
)

(4.19)

are the modes of a simply supported beam [61] also called the transverse modes of the
waveguide. The modes are orthogonal and verify

1
b

∫ b

0
Ψq(y)Ψj(y) dy = δqj, (4.20)

where δqj is the Kronecker symbol and b is the width of the plate (i.e. the length of the1385

transverse "beam").

The projection of Eqs. (4.14)-(4.17) on the transverse modes yields

∂wq
∂x

= θxq, (4.21)

∂θxq
∂x

= −νwq
1
b

∫ b

0

∂2Ψq

∂y2 Ψq dy − 1
D
Mxq, (4.22)

∂Mxq

∂x
= −2(ν − 1)Dθxq

1
b

∫ b

0

∂2Ψq

∂y2 Ψq dy + Vxq, (4.23)
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and1390

∂Vxq
∂x

= −ρhω2wq +D(1− ν2)wq
1
b

∫ b

0

∂4Ψk

∂y4 Ψq dy − νMxk
1
b

∫ b

0

∂2Ψq

∂y2 Ψq dy. (4.24)

In practice, the infinite sums are truncated to K modes. The K ×K matrices I2 and
I4 are defined as

I2qj = 1
b

∫ b

0

∂2Ψq

∂y2 Ψj dy,

I4qj = 1
b

∫ b

0

∂4Ψq

∂y4 Ψj dy.
(4.25)

Furthermore, considering the expression of Ψq (see Eq. (4.19)), Eq. (4.25) leads to ana-
lytical expressions:

I2qj = −
(
qπ

b

)2
δqj,

I4qj =
(
qπ

b

)4
δqj.

(4.26)

4.3.1.4 State vector formulation1395

Eqs. (4.14)-(4.17) can finally be rewritten as the following state equation

d
dxW(x) = H(x)W(x), (4.27)

where the state vector W(x)

W(x) =


w(x)
θx(x)
Mx(x)
Vx(x)

 , (4.28)

is the concatenation of displacement, slope, bending moment and force modal vectors.
For example:

w(x) = [w1(x), w2(x), ..., wK(x)]T . (4.29)
Matrix H embeds the plate equations and writes1400

H(x) =
[

H1(x) H2(x)
H3(x) H4(x)

]
, (4.30)

with

H1(x) =
[

O I
−νI2 O

]
, H2(x) =

[
O O
−I/D O

]
,

H3(x) =
[

O −2(ν − 1)DI2
−ρhω2I + (1− ν2)DI4 O

]
, H4(x) =

[
O I
−νI2 O

]
, (4.31)

where I is the K ×K identity matrix and O is the K ×K zero matrix.
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4.3.1.5 Impedance matrix method

An impedance matrix Z(x) can be defined as[
Mx(x)
Vx(x)

]
= −jωZ(x)

[
w(x)
θx(x)

]
. (4.32)

Substituting Eq. (4.32) in Eq. (4.27), a Riccati non-linear equation is obtained for the
impedance matrix [46, 57]:1405

∂Z(x)
∂x

= −Z(x)H1(x) + jωZ(x)H2(x)Z(x)− H3(x)
jω + H4(x)Z(x). (4.33)

The boundary value problem is transformed in an initial value problem. The free bound-
ary condition translates into the initial condition Z(x = 0) = O. The numerical resolution
of Eq. (4.33) is presented in Sec. 4.3.3.

4.3.1.6 Wave expansion of the state vector

Eigenspace of matrix H(x) is described by 4K eigenvalues and their associated eigen-1410

vectors. The relation between them is

E(x)H(x) = Λ(x)E(x), (4.34)

where Λ(x) is the diagonal matrix containing the eigenvalues of H(x) on its diagonal and

E(x) =
[

E1 E2
E3 E4

]
, (4.35)

with E1 to E4 being 2K × 2K matrices, is a matrix whose columns are the associated
eigenvectors; E is also the transition matrix between eigenspace and state space. The1415

change of basis is applied using the relation

W(x) = E(x)V(x), (4.36)

where V(x) is the wave vector, describing for each mode k the propagating and attenu-
ating waves travelling towards x > 0 and x < 0.

For the sake of simplicity, let us first assume a single transverse mode q verifying the
dispersion equation1420

k4
q(x) = −k4

f (x) +
(
qπ

b

)4
. (4.37)

Then the eigenvalue matrix Λ of H writes:

Λ = diag (−jk1q, k2q, jk1q,−k2q) , (4.38)

where

k1q =
√
k2
f − (qπ/b)2, (4.39)

k2q =
√
k2
f + (qπ/b)2, (4.40)
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and where kf = 4
√
ω2ρh/D is the flexural wave number. It can easily be shown that the

eigenvalues verify the dispersion equation (4.37). In the absence of dissipation, second
and fourth eigenvalues are real and are related to attenuating waves. Depending on the
sign of k2

f − (qπ/b)2, first and third eigenvalues are real or imaginary and are related to1425

effectively propagating waves (k2
f − (qπ/b)2 > 0) or evanescent waves (k2

f − (qπ/b)2 < 0).
The sign of the eigenvalue indicates the travelling direction of the associated wave: from
the chosen convention first and second eigenvalues are related to travelling waves towards
x < 0 and third and fourth eigenvalues are related to travelling waves towards x > 0.
When several transverse modes are considered, a similar classification is chosen, thus:1430

Λ = diag(p−, a−,p+, a+), (4.41)

where p and a indicate a vector of eigenvalues related to propagating or attenuating waves,
respectively, and the sign indicates the direction of travel of the associated waves. The
wave vector is thus noted

V =


V−p
V−a
V+
p

V+
a

 . (4.42)

4.3.1.7 Reflection and scattering matrices

Let Ω be a region of a waveguide delimited by two abscissas t− and t+ (see Fig. 4.5).1435

Vout and Vin are the outcoming wave vector from Ω and incoming wave vector to Ω,
respectively. They write

Vout =
[

V−(t−)
V+(t+)

]
and Vin =

[
V−(t+)
V+(t−)

]
. (4.43)

The scattering matrix S (size 4K × 4K) of Ω is defined by

Vout = SVin, (4.44)

and writes
S =

[
T+− R−
R+ T−+

]
, (4.45)

where matrix R+ (size 2K×2K) represents the reflection of the incident waves at side t+1440

(denoted V−(t+)) on the reflected waves at side t+ (denoted V+(t+)). Matrix T+− (size
2K×2K) represents the transmission of the incident waves at side t+ on the transmitted
waves at side t−. Matrix R+ writes:

R+ =
[

R+
pp R+

ap

R+
pa R+

aa

]
, (4.46)

where R+
ir is the matrix of the coupling coefficient of incident i on reflected r propagating

p or attenuating a waves. A diagonal term (R+
ir)qq represents the reflection of a mode q on1445
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itself while an out-of-diagonal term (R+
ir)kj with q 6= j represents the coupling between a

mode q on a mode j. These notations are also applied to the other matrices embedded in S
(Eq. (4.45)). For example, (T+−

pa )13 describes the transmission of the incident propagating
wave of mode 1 at side t+ on the transmitted attenuating wave of the mode 3 at side t−.

x

y

t−

t+

V−(t+) V+(t+)

V+(t−)
V−(t−)

Ω

Figure 4.5: Region Ω of the waveguide delimited by x = [t−, t+]. Incoming and outgoing
waves are represented.

4.3.1.8 Boundary condition at x=01450

For any region of the waveguide defined by the abscissa x including the end of the
waveguide at x=0, the scattering matrix S[0,x] representing the waveguide free extremity
is defined in agreement with the definition of Ref. [130]: transmission towards the sur-
rounding medium T+−, transmission towards the inside T−+ and reflection of the outside
R− are zero. Only R+ is non-zero. Hence:1455

S[0,x] =
[

O O
R+(x) O

]
. (4.47)

Matrix R+(x) is then called the reflection matrix of the guide extremity (i.e. the region
[0 x]). Using Eqs. (4.34) and (4.32) yields the relation between R+(x) and Z(x):

R+(x) = (jωZ(x)E2 + E4)−1(−E3 − jωZ(x)E1). (4.48)

Sfree
x=0 S]0,xABH]

Figure 4.6: Boundary condition at x = 0 and region ]0, xABH]. The assembly of the two
region defines region [0, xABH] (see Eq. (4.49)).

When x=0, S[0,x] is the scattering matrix of the boundary condition Sx=0. The relation
between scattering matrix S[0,x] of region including the boundary condition and scattering
matrix S]0,x] of region excluding the boundary condition is (see Fig. 4.6)1460

S[0,xABH] = Sx=0 ∗ S]0,xABH], (4.49)
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where the ? assembly operator is defined in Appendix A.4.2. It is therefore important to
distinguish R+(x) and R+

]0,x].

4.3.2 Model of an ABH imperfection

Identifying and modelling imperfections or defaults in a structure is closely related
to structural health monitoring [39] where the main interest is usually cracks. Those are1465

usually modelled by local stiffness changes [71]. A simpler model is used in this study:
the imperfection is described as a material extension of small variable length a(y) along
direction x. It is constituted of infinitesimal rigid bars of width dy, that are not coupled
between each other (see Fig. 4.7). These bars are supposed to follow the kinematics
of the last cross section of the waveguide: this leads to the fact that the displacement1470

w(0, y) and slope θx(0, y) of the last cross section are the ones of the bars. These bars
have a mass density ρ identical to that of the waveguide and their thickness h is assumed
constant and equal to that of the extremity of the waveguide. The only actual parameter
is then the length a(y) which control for each infinitesimal element the force Vx(0, y) and
bending moment Mx(0, y) exerted on the guide extremity. Finally, this simple model is1475

well adapted to represent any arbitrary imperfection by a distribution of mechanical load
at the extremity.

a)

0 x

z

ht

b)

0 x

y

dy

a(y)

Figure 4.7: Model of imperfection as an extension constituted of infinitesimal rigid bars:
(a) side view and (b) top view.
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Newton’s Second Law is applied to each element and leads to

ρha(y)dyz̈(y) = −Vx(0, y), (4.50)
I0θ̈x(0, y)x = −Mx(0, y), (4.51)

with ρha(y) the mass of the element, assumed concentrated in its centre of mass, whose
vertical displacement is z(y) = w(0, y) + a(y)

2 θx(0, y). The moment of inertia I0 writes:

I0 =
∫ a(y)

0
s2ρhdy ds = ρha(y)3dy

3 . (4.52)

Eqs. (4.50) and (4.51) then write

Vx(0, y) = ρha(y)dyω2(w + aθx
2 ), (4.53)

Mx(0, y) = ρha(y)3dy
3 ω2θx. (4.54)

From the multimodal development of w(y) =
K∑
q=1

wqΨq(y) and θx(y) =
K∑
q=1

θqΨq(y),1480

the projection of Eqs. (4.50) and (4.51) on the transverse modes Ψj(y) yields:

Vxq =
K∑
j=1

wj
ρhω2

b

∫ b

0
a(y)Ψq(y)Ψj(y) dy +

K∑
j=1

θj
ρhω2

2b

∫ b

0
a(y)2Ψq(y)Ψj(y) dy, (4.55)

and
Mxq =

K∑
j=1

θj
ρhω2

3b

∫ b

0
a(y)3Ψq(y)Ψj(y) dy. (4.56)

From the impedance matrix definition of Eq. (4.32), the boundary condition at x=0
is expressed as an initial impedance condition:

Z0 = 1
−jω

[
O ρhω2

3b
∫ b

0 a(y)3ΨqΨj dy
ρhω2

b

∫ b
0 a(y)ΨqΨj dy ρhω2

2b
∫ b

0 a(y)2ΨqΨj dy

]
. (4.57)

In the general case, matrix Z0 does not have a purely analytical expression. The1485

reality of imperfections is complex but this model gives a simple way to represent it with
a single parameter a(y). This parameter has to be small in regards of the wavelength at
x=0 for the model to be valid and the bars to respect the assumption of inflexibility. The
couplings due to elementary imperfections can then be studied.

Because of a(y) is supposed to be small, terms ρhω2

2b
∫ b

0 a(y)2ΨqΨj dy and ρhω2

3b
∫ b
0 a(y)3ΨqΨj dy1490

can actually be neglected in regards of ρhω2

b

∫ b
0 a(y)ΨqΨj dy. The model of Eq. (4.57) is

then simplified in the followings: the effects of rigid bars are restricted to their localised
masses, therefore

Z0 = 1
−jω

[
O O

ω2

b

∫ b
0 m(y)ΨqΨj dy O

]
, (4.58)

with m(y) = ρha(y).
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4.3.3 Numerical resolution1495

4.3.3.1 Magnus method

The Riccati equation (4.33) can be solved numerically for example using a Runge-
Kutta scheme or a Magnus scheme [105, 118, 88]. A Magnus scheme is chosen here,
because it allows to "jump" the singularities in the impedance matrix [105] and because it
is shown to be more efficient than the Runge-Kutta scheme used in [57]. This numerical1500

scheme can also be used for computing the scattering matrix of a section. A fourth-
order Magnus scheme is used. The waveguide is discretized along the x-direction with a
constant step. The Magnus scheme is applied to Eq. (4.27) and yields:

W(x̄n+1) = eΩnW(x̄n), (4.59)

where x̄n is the longitudinal discrete coordinate and Ωn is the fourth-order Magnus matrix
[66]:1505

Ωn = ∆
2 (H1 + H2) +

√
3

12 ∆2[H2,H1], (4.60)

where ∆ = x̄n+1 − x̄n is the constant spatial step,

H1 = H(x̄n +
(

1
2 −
√

3
6

)
∆), (4.61)

H2 = H(x̄n +
(

1
2 +
√

3
6

)
∆), (4.62)

and [H2,H1] is the commutator between H2 and H1. Besides, the following notation is
used for the exponential propagator:

eΩn =
[

O1 O2
O3 O4

]
, (4.63)

where O1 to O4 are 2N × 2N matrices.

From Eq. (4.59), an iterative scheme for the impedance matrix Z can be built:

Z(x̄n+1) = 1
−jω [O3 −O4jωZ(x̄n)][O1 −O2jωZ(x̄n)]−1. (4.64)

Such an iterative scheme allows us to compute Z(x̄n) for all values of xn since Z is imposed1510

at x = 0.

4.3.3.2 Computation of the elementary scattering matrix from Magnus
scheme

The scattering matrix Selem of an elementary section of length ∆ is obtained from
Magnus scheme. Combining Eq. (4.59) and Eq. (4.36) gives1515

Vx̄n+1 = E−1
x̄n+1e

ΩnEx̄nVx̄n . (4.65)
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The local transfer matrix T is identified in Eq. (4.65):

T = E−1
x̄n+1e

ΩnEx̄n =
[

T1 T2
T3 T4

]
. (4.66)

Rewriting Vx̄n+1 and Vx̄n in Vout and Vin (referring to the elementary section) allows
to reorganize matrix T in order to obtain the scattering matrix Selem of the elementary
section:

Selem =
[

T1
−1 −T1

−1T2
T3T1

−1 T4 −T3T1
−1T2

]
. (4.67)

It can be noticed that, by construction, if transition matrices Ex̄n are Ex̄n+1 are1520

identical (in the case of an homogeneous waveguide), matrix Selem is assimilated to the
wave propagator between these two abscissas: matrix Selem is then diagonal. The ?
operator defined in Appendix A.4.2 allows the combination of the numerically computed
elementary scattering matrices in order to compute S]0x] (Sec. 4.4.4) or S[0x] (Sec. 4.4.2).

4.3.3.3 Convergence of the numerical solution1525

The convergence of the proposed numerical solution is verified by computing the coef-
ficient (R+

pp)11, first diagonal term of matrix R+ of Eq. (4.45). This coefficient represents
the reflection of the propagating transverse mode 1 on itself: on the 400–2000 Hz range,
only transverse mode 1 is propagating in the uniform region of the waveguide, therefore
(R+

pp)11 is a practical indicator of the ABH effect in this range. The mean error ε on the1530

[fmin, fmax] range

ε = 1
fmax − fmin

∫ fmax

fmin

|RK(f)−RK=60(f)|2
|RK=60(f)|2 df, (4.68)

is considered, where RK = (R+
pp)11 evaluated at x = lABH with K transverse modes and

RK=60 = (R+
pp)11 evaluated at x = lABH with a high number of modes (K=60) for which

the numerical solution has converged. For the imperfect non covered ABH case defined in
Sec. 4.4.1, Fig. 4.8(a) shows the evolution of (R+

pp)11 with frequency, computed with the1535

spatial step ∆ = 10−4 m, and Fig. 4.8(b) shows the evolution of error ε with the number
of transverse modes taken into account in the calculation, on the 400–2000 Hz range.
The convergence is slow (slope is -0.41) and the error is high but this is explained by the
high number of propagating modes at the tip of the profile (Npropa=29 at 2000 Hz) and
the evolution of (R+

pp)11 with frequency presenting several deep minima. Nevertheless,1540

the result is satisfying and results of Sec. 4.4 are obtained using K=30 modes. Other
aspects of the validation of the numerical solution, including comparison to FEM solution
for homogeneous and inhomogeneous waveguides and effect of the spatial step ∆ can be
found in Appendix A.4.
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Figure 4.8: (a) Evolution of coefficient (R+
pp)11 with frequency for K=19 (dashdotted),

K=29 (dashed) and K=60 (full), and (b) evolution of the error ε on coefficient (R+
pp)11

with the number of mode K.

4.4 Scattering induced by imperfections1545

4.4.1 Characteristics of the simulated waveguide

The case of an ABH waveguide made of aluminium is considered. Parameters used in
the numerical applications of the model are summarized in Tab. 4.1; parameters for the
damping layer are realistic but do not result from characterization tests. Moreover, as a
first step the imperfection is modelled by a single mass localised at (x = 0, y0 = b/2). This1550

mass localisation induces that only waveguide modes with odd numbers are concerned
with possible coupling. The initial condition (4.57) then simplifies:

Z0 = jm0ω

b

[
O O

Ψj(y0)Ψk(y0) O

]
. (4.69)

In this configuration, mode 1 is propagating above 360 Hz in the homogeneous re-
gion (this is assessed further in Sec. 4.4.3) and the next odd mode is mode 3 which is
propagating above 2000 Hz. Therefore, numerical results are shown in the 400–2000 Hz1555

frequency range.

4.4.2 Typical results for the reflection coefficient

Fig. 4.9 presents variations of reflection coefficient (R+
pp)11 (of incident mode 1 on

reflected mode 1) with frequency, for terminations described in Tab. 4.1 with or without
imperfection. The reflection on the ABH extremity without imperfection and without1560

damping layer (full gray line) is close to unity. This is not surprising since the non covered
ABH is known to be inefficient. Covered ABH without imperfection (dashed gray line)
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Geometrical characteristics Characteristics of material
Aluminium plate

L=0.8 m, b=0.1 m, E1=70 GPa, η1=0.2 %,
lABH=0.06 m, lt=0.07 m, ρ1=2700 kg.m−3, ν=0.3.
h0=1.5 mm, m=2.

Damping layer
hl=0.1 mm, E2=7 GPa, η2=20 %,
d=0.05 m. ρ2=1000 kg.m−3.

Imperfection
y0=0.05 m m0=1.5× 10−3 kg

Table 4.1: Geometrical and material characteristics of the simulated ABH waveguide.

gives an interesting result as its reflection coefficient can be as low as 0.5 with oscillations;
this results can be compared to earlier results [57].

The case of the non covered but imperfect ABH termination (single mass at the centre1565

of the cross-section, full black line) is mostly identical to the perfect termination except
that it displays several very deep minima localised in frequency. By adding a damping
layer on the imperfect termination (dashed black line), |(R+

pp)11| is clearly lower than the
perfect covered case; the difference can be as much as 0.1. Notice than local minima seen
on the non-covered imperfect extremity can still be observed in the covered case but are1570

much less localised in frequency.
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Figure 4.9: Modulus of the reflection coefficient (R+
pp)11 for perfect non covered (full

gray line), perfect covered (dashed gray line), imperfect non covered (full black line) and
imperfect covered (full dashed line) ABH terminations (parameters of Tab. 4.1).
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4.4.3 Cut-off frequency

In an homogeneous structure of a given thickness, whether a mode q is propagating
or not only depends on the frequency according to the dispersion relation for mode q (see
Eq. (4.37)). In an inhomogeneous structure such as the tapered profile studied here (see1575

Fig. 4.10(a)), the propagating behaviour depends on both the frequency and the abscissa.

At a given frequency, it is shown on Fig. 4.10(b) that the eigenvalues (i.e. constants of
propagation) associated with propagating waves of modes q=1, 3, 5, 7 (for example) are
functions of abscissa (see Eq.(4.37)). The abscissa at which the real part of the eigenvalue
becomes zero and the imaginary part takes a non-zero value indicates the cut-off abscissa,1580

where the mode becomes propagating. These cut-off abscissas allow for each mode q to
define coloured region on Fig. 4.10(a). Fig. 4.10(c) shows that the cut-off frequency of
mode q depends on the abscissa, i.e. on the local thickness of the waveguide. In this case,
in the uniform region of the waveguide mode 1 is propagating above 360 Hz while modes
3, 5 and 7 are not. They are thus confined in the tapered extremity.1585

Note that the number of propagating modes at a given abscissa depends on the flex-
ural wavenumber therefore on the bending stiffness. The simplified RKU model used in
Eq. (4.13) does not modify the real part of the bending stiffness, which is a reasonable
approximation when the thickness of the damping layer is much smaller than the struc-
ture thickness. When the thicknesses are in the same range, both real and imaginary1590

parts of the bending stiffness are modified and the damping layer can actually stiffens
the structure. A consequence is that there are less propagating modes at a given abscissa.

4.4.4 Reflection induced by the tapered profile itself

The geometrical acoustics analysis [93], which is based on the WKB approximation
and only considers propagating waves, suggests that an incident wave reflects only at1595

the boundary and that there is no reflection inside the tapered profile. The model given
in Sec. 4.3 allows to observe the reflection, or more generally the scattering, in a region
]0, xABH] of the waveguide that does not include the free boundary condition. Zero reflec-
tion implies that the scattering matrix is diagonal: it contains only transmission terms
and reflection terms are zero. Scattering matrices S]0,x] and S[0,x] are computed with1600

respect to frequency and allow to observe the reflection of the ABH profile only or the
reflection of the ABH profile with the free condition, respectively.

Fig. 4.11 shows indeed that for mode 1, there is a non zero reflection along the tapered
profile that does not depend on the free boundary condition: the tapered section reflects
a low part of incident waves and transmits the rest (full gray line). Note that covering1605

the profile with a damping layer does not affect much this behaviour (full black line).
The observed reflection coefficient displays oscillations that can directly be compared to
oscillations in the full ABH termination (i.e. including the boundary condition, dashed
black line). Oscillations of the reflection coefficient have been observed first in [57], where
the authors emit the hypothesis that oscillations are due to sharpness and length of the1610
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Figure 4.10: (a) Thickness profile of the extremity with zone of propagation of modes
k<3 (orange), k<5 (pink), k<7 (blue) and k>7 (green) at 1000 Hz. (b) Real (grey) and
imaginary (black) parts of λ1 (thick full), λ3 (thin full), λ5 (dashed) and λ7 (dashdotted)
at 1000 Hz. (c) Cut-off frequency for mode 1 (thick full), 3 (thin full), 5 (dashed), 7
(dashdotted).
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profile. Note that the geometrical acoustics approach and the associated WKB solution
[93, 77] does not yield oscillations; therefore, it may indicate that the approximations
made in this approach are not valid, especially the approximation of sufficient smoothness.
This is also recently suggested in a study of Feurtado et al. [49] who study the parameters
yielding a smooth profile, but was also briefly discussed in Ref. [77].1615
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Figure 4.11: Modulus of the term (1, 1) of the reflection matrix R+
]0,xABH] with damping

layer (full black), without damping layer (full grey) and of the reflection matrix R+(x)
with damping layer (dashed black).

4.4.5 Coupling mechanisms and mode trapping

Let us consider a propagating incident wave q arriving at the extremity. The reflection
matrix R+

pp at x=0 (submatrix of Sx=0) is displayed on Fig. 4.12(a). It shows the mode
coupling at the imperfect free end: on the one hand, diagonal terms of |R+

pp| are less than
unity. On the other hand, some out-of-diagonal terms are non-zero. The incident energy1620

is thus redistributed on modes that are propagating at the extremity. This phenomenon
is present at any frequency. The case of a single mass located in the centre of the
extremity induces that only odd modes are concerned with couplings, as expected. Note
that |(R+

pp)qj| (q 6= j) is close but not equal to |(R+
pp)jq|. It means that an incident mode

q is partially reflected on mode j, but also that incident mode j is partially reflected on1625

mode q.

Let us now consider a reflected wave j resulting from the redistribution (or scatter-
ing) described above. The wave is coming from the edge and its interaction with the
propagating medium is described by the reflection matrix R−pp associated to scattering
matrix S]0,x]. The reflection matrix R−pp is diagonal. Fig. 4.12(b) shows diagonal terms1630

of matrix R−pp, corresponding to reflection of modes q on themselves. The energy coming
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Figure 4.12: (a) Reflection matrix |R+
pp| at point x=0 and for f=1000 Hz and (b)

Third (full), fifth (dashed) and seventh (dashdotted) diagonal terms of the reflection
matrix |R−pp| of the region ]0, x] at f=1000 Hz.
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from the extremity toward the uniform part of the waveguide is fully reflected at some
point in the tapered zone. The full reflection is indicated by a coefficient equal to 1 in
modulus. The point at which there is full reflection corresponds to the cut-off abscissa
shown on Fig. 4.10(b). A mode j excited by the imperfection at x=0 can then be reflected1635

toward the extremity x=0 at some point in the tapered profile. A scheme for the proposed
excitation and reflection mechanisms is displayed on Fig. 4.13.

x = 0 xjc

q
q

j
j

q
j

Figure 4.13: Scheme of the excitation and reflection mechanisms in the imperfect ABH
termination. xjc indicates the cut-off abscissa for mode j.

Waves of a given mode then travel between the extremity and the cut abscissa of this
mode, indicating the possibility of local resonances (on this topic, Krylov [76] mentions
the ray turning point of a mode). Minima appearing at precise frequencies are shown1640

on Fig. 4.9 for the imperfect case if it is not covered with a damping layer. It suggests
that only at these frequencies the energy is trapped and that there exist local resonances
responsible for the drop in the reflection coefficient.

4.4.6 Effect of the imperfection parameters

4.4.6.1 Effect of the position of the imperfection1645

Let us consider the same mass figuring the imperfection at two more positions: y0=b/3
and y0=4b/5. Reflection matrices for these cases are plotted on Fig. 4.14 and show the
couplings between modes; note the slight differences compared to Fig. 4.12(a). Fig. 4.15
shows the results for |(R+

pp)11| in these configurations. In the case of the non covered
tapered profile, reflection coefficients for b/2 and b/3 are fairly different as they do not1650

display the same minima: this can be expected since they do not couple the same modes.
When the termination is covered, the three cases are rather similar (see Fig. 4.16). It
is however noticeable, that the best performance is reached when y0=b/2, which is the
position of maximum displacement for mode 1. Otherwise, the position does not have a
significant impact.1655
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Figure 4.14: Reflection matrices R+
pp at x=0, 1000 Hz for masses located in (a) y=b/2

and (b) y=4b/5.

400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|(R
+ p
p
) 1

1
|

 

 

Figure 4.15: Modulus of the reflection coefficient (R+
pp)11 for imperfect cases of ABH

termination with mass at y=b/2 (black), y=b/3 (thin grey) and y=4b/5 (thick grey), non
covered (full lines) and covered (dashed lines).
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4.4.6.2 Effect of the number of imperfections

Fig. 4.16 presents results on |(R+
pp)11| for combined imperfections. Combination

b/2 + b/3 and b/2 + b/3 + 4b/5 are studied. Note that theses configurations combines
the minima of cases studied in Sec. 4.4.6.1. Cancellation of mutual effect may appear at
some frequencies when the termination is not covered. Broad drops of |(R+

pp)11| appears1660

(at 1600 Hz) that are the consequence of two close consecutive minima. In the covered
case, combining imperfections seems beneficial for the reflection coefficient which is re-
duced in the 500–700, 900–1100 and 1400–2000 Hz ranges when masses are added to the
model. The gain reaches 0.2 at some frequencies. Compared to Sec. 4.4.6.1, it appears
that multiplying the imperfections helps obtaining a significant reduction of |(R+

pp)11|,1665

assuming that there is not cancellation effects. This fact suggests the use of controlled
irregularities of the ABH extremity in order to enhance its damping performance.
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Figure 4.16: Modulus of the reflection coefficient (R+
pp)11 for imperfect cases of ABH

termination with mass at y=b/2 (black), y=[b/2;b/3] (thin grey) and y=[b/2;b/3;4b/5]
(thick grey), non covered (full lines) and covered (dashed lines).

4.5 Interests of an imperfect termination on ABH
beams

4.5.1 Effects of imperfection on loss factors of ABH plate1670

In Sec. 4.4, the effect of an elementary imperfection at the tip of the tapered profile
has been investigated. Numerical computation of the reflection coefficient of the first
transverse mode of an ABH waveguide shows a positive effect of the imperfection since
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Table 4.2: Frequencies and modal loss factors for non-damaged and damaged case.

f (Hz) 566 850 1220 1696
ηnon damaged (%) 2.3 2.9 2.3 2.9
ηdamaged (%) 3.1 3.5 3.4 3.1
Gain (%) 34 20 47 7

|R| is decreased. The waveguide model developed in this analysis also allows to compute
the response to a given excitation force, thus a mobility transfer function of the plate; it1675

is then possible to estimate the modal loss factors in a given frequency band. Mobility
transfer functions are given in Fig. 4.17. Computations are made with the parameters
of Tab. 4.1). The loss factor of four resonance peaks are calculated by the half-power
method for the perfect ABH plate and for the imperfect ABH plate, both covered with
a damping layer. The results are shown in Tab. 4.2. The additional gain due to the1680

imperfection appears to be irregular, ranging from 6 to 47 %. This increase of modal loss
factor is actually quite small compared to the original ABH effect; nevertheless it is not
negligible.

It is interesting to observe the imperfect non covered structure on Fig. 4.17 and see
that the localised mass modifies the modal characteristics of the structure: It doubles1685

most of the resonances peaks. This is due to eigenmodes splitting because the localised
mass creates an asymmetry in the structure [79].
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Figure 4.17: Mobility transfer function of homogeneous plate (dotted), ABH plate
(dashed grey), ABH plate with damping layer (full grey), imperfect ABH plate (dashed
black) and imperfect ABH plate with damping layer (full black).
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4.5.2 Combined effect of imperfection and damping layer
stiffness

Sec. 4.4 studied an imperfect termination taking into account a simplified model of
extensional damping due to the damping layer. As reminded in Sec. 3.2.4, the damping
layer can have a considerable effect on the local stiffness, therefore, a thick damping layer
modifies the stiffness and reduce the number of propagating transverse modes. Fig. 4.18
shows the reflection coefficient calculated for a single imperfection located in y=b/2 for
the extensional damping model of Eq. (3.2):

D(x) =



Dp(x) = Ephp(x)3

12(1− ν2)(1 + jηp), ∀x > xl

Dp(x)
[
(1 + jηp) + El

Ep

(
hl

hp(x)

)3

(1 + jηl)

+
3
(
1 + hl

hp(x)

)2
+ Elhl

Ephp(x)(1− ηpηl + j(ηp + ηl))
1 + Elhl

Ephp(x)(1 + jηl)

]
, ∀x ≤ xl,

(3.2 revisited)

which also modifies the mass density (see Eq. (3.3)):

ρ(x) =


ρp, ∀x > xl
ρphp(x) + ρlhl
hp(x) + hl

, ∀x ≤ xl,
(3.3 revisited)

The model of Eqs. (3.2) and (3.3) has fewer propagating modes than the model of1690

Eq. (4.13), all things being equal. Nevertheless, the imperfection has a more important
effect, compared to Fig. 4.9, indicating that the loss factor compensates the fewer local
modes excited by the imperfection. Therefore, in a practical case where the damping
layer stiffens the structure, even if there are few local modes, tip imperfections should
still have a positive effect.1695

4.5.3 Imperfections on ABH beam

Clearly, the drop in |R| or the increase of the modal loss factors is linked to the number
of guide modes that are excited by the tip irregularities. It makes little sense to use the
waveguide model with a beam width in order to estimate the potential gain for a beam
because it sends the first resonance at high frequencies. However the numerical model of1700

Chap. 3 can be modified in order to compute transfer mobility functions or eigenvalues
for a beam with a tip imperfection similar to the one used in the waveguide model: the
mass matrix of Eq. (3.18) is modified in order to embed a point mass:

M′ = M + m0 (4.70)

where M′ is the modified mass matrix and m0 is the mass matrix of the point mass
defined by1705

(m0)n,q =

0 ∀n 6= n0 and ∀q 6= q0
m0

∆x̃∆y
if (n, q) = (n0, q0)

. (4.71)
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Figure 4.18: Reflection coefficient for a ABH extremity without imperfection (full) and
with a imperfection at y=b/2 using the extensional damping model of Eq. (3.2) (dashed).

Fig. 4.19(a) shows the results in terms of eigenvalues of the modified finite-difference
model for a mass m0=1.5×10−5 kg and the parameters of Tab. 3.1. Fig. 4.19(b) displays
the loss factors for the two cases. The effect is small but noticeable: the eigenvalue
spectrum displays a slight increase of the loss angle, leading to the small increase of modal
loss factors. Globally, the relative gains in the case of a covered ABH beam are rather1710

poor but also irregular (as it is shown in Sec. 4.5.1 for the ABH plate). Nevertheless, the
results suggest that a locally wider and thinner beam with irregularities could be more
efficient.

4.6 Conclusions

This chapter investigates the role of imperfections that are usually found at the tip of1715

the tapered profile when it is made very thin, due to the limitations of the manufacturing
techniques. The raised points are the followings:

• Ameasurement of the reflection coefficient of an artificially damaged ABH extremity
is realised and shows that it differs from the reflection coefficient of a non damaged
extremity.1720

• In order to explain the experimental result, a multimodal model of inhomogeneous
waveguide with an ABH termination with a simple imperfection is developed. The
model allows to obtain the impedance matrix at any point, the scattering matrix
of a region of the waveguide and the reflection matrix of the ABH extremity. It is
numerically solved using a Magnus scheme.1725
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Figure 4.19: (a) Eigenvalue spectrum and (b) modal loss factors for ABH beam made
of aluminium without (black, O) and with imperfection (grey, .).
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• A elementary imperfection on the free extremity of the tapered profile affects the
reflection coefficient and reduce it. Effects are localised in frequency when the
damping is weak, but are broadly extended when the damping is increased due to
the viscoelastic layer.

• At a given frequency, waveguide modes can be propagating in the tapered region1730

while they are not in the thicker uniform region of the waveguide. They are thus
confined.

• Due to couplings at the extremity, an incident waveguide mode is partially reflected
on multiple modes. The imperfection then allows the excitation of guide modes that
are confined in the ABH, leaving the possibility of local resonances that can explain1735

the drop of the reflection coefficient for the incident mode.

• Furthermore, the results suggests the use of controlled imperfection of the tip of
the ABH profile in order to enhance its damping performance.

• Finally, it is also shown that waves may be reflected inside the tapered profile itself
and not only by the extremity.1740





Chapter 5

Conclusion

5.1 Performances of the ABH treatment for
vibration damping1745

5.1.1 Summary of ABH characteristics

We can summarise the main features of the ABH termination on Fig. 5.1. Results ob-
tained by modal and the wave approaches, including experimental and simulated results,
are presented and provide a sort of identity card of the ABH effect. Fig. 5.1(a) reminds
that the main effect of ABH on a beam the reduction of its resonant behaviour. It is1750

interpreted on Fig. 5.1(b) as an increase of the loss angle of the complex eigenvalues of
the structure, because of the repartition of eigenmodes energy in a highly damped region.
Moreover, adding irregularity to the tapered extremity allows a slight additional increase
of this loss angle, hence a enhancement of the performance. The inhomogeneous damping
properties translate into wave propagation phenomena that are observed on Fig. 5.1(c):1755

a propagating wave pattern is noticeable. It is interpreted as a huge drop in the reflection
coefficient, as illustrated on Fig. 5.1(d) by the numerical model proposed in Chap. 4. As
in the case of Fig. 5.1(b), the effect of irregularities is seen as an additional drop in |R|.
This is due to energy scattering on local waveguide modes.

5.1.2 Comparison with classical damping treatments1760

Let us use the Ashby diagram presented in the introduction (see Fig. 1.6) from com-
paring different damping strategies. In order to locate the ABH treatment on such a
diagram, equivalent characteristics need to be calculated. The mean equivalent ratio of

103
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Figure 5.1: (a) Mobility transfer function of Ref and ABH (see Fig. 2.12(c)). (b)
Eigenvalues spectrum of Ref, ABH and ABH with imperfection (see Fig. 4.19(d)). (c)
Displacement field of the aluminium ABH beam (see Fig. 2.9(b)). (d) Reflection coefficient
of uniform, ABH and imperfect ABH plate (see Fig. 4.18.)
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Young’s modulus over mass density for the beam treated with ABH is computed using
Eqs. (3.2) and (3.3). The mean modal loss factor is calculated above the ABH frequency1765

limit (see Sec. 3.1.3.3) from the simulated modal loss factors (model without imperfec-
tions, Chap. 3). These results are obtained using the finite difference model of Sec. 3.1.1
with parameters of Tab. 5.1. The damping performance is linked to localisation of the
energy in the tapered region, hence it is also link to the relative length of the ABH profile.
In this case, it represents 10 % of the total length of the simulated beam.1770

Fig. 5.2 shows where the ABH treatment lays for the studied case. It illustrates the
performance of the treatment as it is both more efficient and comparatively lighter than
most classical treatments. Note that the configurations proposed in Tab. 5.1 do not
compete with heavier classical solutions because loss factors are inferior to 10 %.

Characteristics of material Geometrical characteristics

Aluminium ABH beam
E=70 GPa, ρ=2700 kg.m−3 L=2 m, b=0.1 m, m=2

η=0.2 %, x0=[0.007, 0.01] m, xABH=[0.2, 0.3] m, ht=20 µm
Damping layer

El=20 MPa, ρl=950 kg.m−3, xl=0.05 m
ηl=80 % hl=[500, 1000, 2000] µm

Table 5.1: Geometrical and material characteristics of the simulated ABH beam.

5.2 General conclusions1775

5.2.1 Summary of the results

This document is organized in three main parts. In Chap. 2, experimental observations
and analyses were made on beam with an ABH extremity. The two modal and wave
approaches are used in conjunction. On the one hand, the reduction of the resonant
behaviour of the ABH is due to the increase in modal loss factors that produces an increase1780

of the modal overlap of the structure. On the other hand, the ABH termination is a region
where the wavelength decreases; it generates wave propagation phenomena and can be
thus seen as an anechoic termination or a pseudo-infinite structure. A measurement of
the reflection coefficient with a Kundt-like technique indeed confirms this fact and shows
that the ABH termination is characterized by a low reflection coefficient and an important1785

phase unwrapping.

In Chap. 3, a two-dimensional numerical model of the beam based on the finite dif-
ference method confirms the increase of modal loss factor as an increase of the imaginary
part of the eigenvalues, and reveals that this is due to a higher localisation of the energy
in the tapered region, that has a higher structural loss factor. Moreover, the fact that1790

the structure is inherently two-dimensional at the ABH extremity is confirmed as the
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Figure 5.2: Comparison of intrinsic loss factor η versus specific Young’s modulus E/ρ
for materials: aluminium (◦), steel (O), polymer FullCure (�), Sonoston (/), surface
damping treatments: free layer on aluminium beam with damping layer made of Viton B
(dashed line, +, dark green), Paracril BJ 50 (dashed line, +, light green), constrained layer
on aluminium beam with damping layer made of Soundcoat DYAD (full line, x, medium
blue), 3M ISD 110 (full line, x, dark blue), 3M ISD 112 (full line, x, light blue) and
aluminium beam including ABH (dashdotted line, /, red). Detailed material properties
are given in Appendix A.1.
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model contains local modes that are identified as plate modes, and called hyper-damped
modes. The ABH can also be seen as a correction length of the beam structure that may
generate a small increase of the modal density; this last point do not seem significant in
a practical case. The analytical correction length and its measured value have the same1795

order of magnitude. Comparisons between theoretical and measured values of the MOF
and the reflection coefficient show a good agreement.

Chap. 4 investigates effects of the tip imperfections due to the manufacturing tech-
niques. This effect is suggested by experimental tests. Thanks to a multimodal waveguide
model linked to a simple model of an elementary imperfection, it is shown that couplings1800

between a plane incident wave and local modes happen and translate into a drop of the
reflection coefficient of the extremity. The magnitude and the frequency range of this
drop are affected by the damping properties of the tapered region. It is due to excitation
and local resonance of confined modes. It is also revealed that the tapered profile itself
produces reflection. An enhancement of the ABH effect is suggested by a control of the1805

irregularity at the extremity.

Finally, Sec. 5.1.2 emphasizes the performance of the ABH method versus classical
damping treatments as a damping method without added mass.

5.2.2 Ideas for further directions

The measurement technique for the reflection coefficient presented in Chap. 2 is in-1810

teresting for its own sake and is able to successfully provide measurements on the ABH
termination. In practice, it is however limited by the number and the duration of mea-
surements made with a laser vibrometer. The full field digital optic holography [74] is a
promising contactless measurement technique, competing with laser vibrometry. As the
name suggests, it allows to acquire signals of displacement of a structure in one single1815

shot embedding a large number of measurement points (1024×1024). The measurement
technique of R could then apply with a higher number of measurements and without the
hassle of doing them all. Moreover, high speed digital holography [113] would allow the
observation of a wave packet entering the ABH region in the time domain. This is an
objective of the PhD work of J. Poittevin at LAUM (2012-2015, PhD work supported by1820

the VIBROLEG project, IRT Jules Verne).

As it is suggested in Chap. 3, damping due to air could play a minor role in the total
damping seen in the experiment and may be embedded in an equivalent structural loss
factor in the model. An experiment in vacuum is in preparation allowing the measure-
ments of transfer functions of the beams and estimation of the reflection coefficient of the1825

ABH termination.

Controlled irregularities of the ABH termination is suggested by Chap. 4 as a way to
enhance the damping effect by smartly coupling local modes. As this phenomena seems
to be linked with the number of propagating modes in the tapered region, an increase of
this number can also be considered by enlarging the extremity in the case of a beam; of1830

course, this is not necessary in the case of a circular ABH on a plate.





Appendix A

Annexes

A.1 Characteristics of damping solutions1835

The material and geometrical characteristics of the damping solutions mentioned in
Chap. 1 for the resonant beam are presented in Tab. A.1.

109
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Characteristics of material Geometrical characteristics

Steel beam
E1=210 GPa ρ1=7800 kg.m−3 η1=0.05 %

Aluminium beam
E1=70 GPa ρ1=2700 kg.m−3 η1=0.2 %

Polymer VeroWhitePlus FullCure 835 beam
E1=2.7 GPa ρ1=1180 kg.m−3 η1=3.5 %

Sonoston beam
E1=76 GPa ρ1=7700 kg.m−3 η1=2 %

Carbon composite beam
E1=85 GPa ρ1=1600 kg.m−3 η1=0.6 %

Free layer: Aluminium beam covered with Eriks Viton B
E2=103 MPa ρ2=1900 kg.m−3 η2=120 % H1=0.02 m H2=1–100 mm

Free layer: Aluminium beam covered with Paracril BJ 50 PHRC
E2=55 MPa ρ2=920 kg.m−3 η2=65% H1=0.02 m H2=1–100 mm
Constrained layer: Aluminium beam covered with Soundcoat DYAD
G2=55 MPa ρ2=920 kg.m−3 η2=65% H1=0.02 m H2=1–100 mm
E1=70 GPa ρ1=2700 kg.m−3 η1=0.2 % H3=1 mm

Constrained layer: Aluminium beam covered with 3M ISD 110
G2=41 MPa ρ2=950 kg.m−3 η2=50% H1=0.02 m H2=1–100 mm
E1=70 GPa ρ1=2700 kg.m−3 η1=0.2 % H3=1 mm

Constrained layer: Aluminium beam covered with 3M ISD 112
G2=69 MPa ρ2=950 kg.m−3 η2=80% H1=0.02 m H2=1–100 mm
E1=70 GPa ρ1=2700 kg.m−3 η1=0.2 % H3=1 mm

Table A.1: Geometrical and material parameters used in Fig. 5.2 (surface damping
material data at 20◦C from [100], carbon composite data from [16] and polymer data
from CTTM, Le Mans).
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A.2 RKU model for shear damping

In this appendix, formulas for equivalent properties of three layers structure are re-
minded according to the Ross-Ungar-Kerwin model of Ref. [116]. For a layered structure,1840

Ei, Ii, Hi, ηi are the Young’s modulus, inertia of the cross-section, thickness and loss
factor of the i-th layer, respectively, with i=1, 2 or 3. Layer 1 is the holding structure,
layer 2 is the damping layer, often made of viscoelastic material and layer 3 is a constrain-
ing layer, often made of the same material than layer 1. The geometry of the layered
structure is illustrated on Fig. A.1.1845

Holding structure

Damping layer

Constraining layer

H1

H2

H3

Figure A.1: Scheme of a three layers structure showing the thicknesses of the layers.

The following notations are used:

H31 = H1 +H3

2 +H2, (A.1)

H21 = H1 +H2

2 , (A.2)

g = G2

E3H3H2p2 , (A.3)

where p is the wavenumber in substructure 1,

D = (E2H2(H21 −H31/2) + g(E2H2H21 + E3H3H31))
(E1H1 + E2H2/2 + g(E1H1 + E2H2 + E3H3)) . (A.4)

Finally the complex stiffness of the compound structure is

EI = E1H
3
1

12 + E2H
3
2

12 + E3H
3
3

12 − E2H
2
2

12
(H31 −D)

1 + g
+ E1H1D

2 + E2H2(H21 −D)2

+ E3H3(H31 −D)2 − (E2H2/2(H21 −D) + E3H3(H31 −D))(H31 −D)
(1 + g) . (A.5)
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A.3 Finite difference model1850

A.3.1 Discrete form of the equation of motion

The discrete equation of motion (3.17):

h−1/2
n

x̃2
av

δx̃+

[
(µx̃−h−1/2

n )δx̃−
[
Dn

(h−1/2
n

x̃2
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n )δx̃−wn,q) + δyywn,q
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x̃2
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)
− ρhnω2wn,q = 0. (A.6)

can be put in explicit form by using points neighbouring wl,m:

∑
i

∑
j
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2wn,q = 0, (A.7)

where the coefficients βi,j are:
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βn,q+2 = βn,q−2 = Dn

∆4
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, (A.9)
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1855

βn+2,q = φ−1/2
n φ
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n )

2x̃2
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y
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A.3.2 Numerical boundary conditions1860

In the general case, the discrete spatial operator uses 13 points. At the edges, depend-
ing on the boundary condition, N points outside the grid should be used. The discrete
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spatial operator then uses "fictive" points [14]. By respecting the discrete boundary condi-
tions, the displacements of the fictive points can be expressed as functions of real points
on the edges. Practically, it means modifying the expression of the coefficients of the1865

spatial operator at the edges.
The boundary conditions can be discretized as follows, reminding that the choice of

the forward or backward finite difference operators depends on the orientation of the edge
or corner. The resulting equations are tedious to write and solve. It is proposed to solve
them numerically. The example of the free corner condition at n=0, q=0 is given:

φ−1/2
n

x̃2
av

δx̃+
(
µx̃−φ

−1/2
n .δx̃−wn,q

)
+ νδyywn,q = 0, (A.20)

δyywn,q + νφ−1/2
n

x̃2
av

δx̃+
(
µx̃−φ

−1/2
n .δx̃−wn,q

)
= 0, (A.21)

δx̃−δywn,q = 0, (A.22)
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n
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δx̃−(Dn(φ

−1/2
n

x̃2
av

δx̃+(µx̃−φ−1/2
n .δx̃−wn,q) + νδyywn,q))

+ 2Dn(1− ν)φ
−1/2
n

x̃av
δx̃−δyywn,q = 0, (A.23)

Dnδy−(ν φ
−1/2
n

x̃2
av

δx̃+(µx̃−φ−1/2
n .δx̃−wn,q + δyywn,q)

+ 2φ
−1/2
n

x̃2
av

(1− ν)δx̃+(µx̃−(Dnφ
−1/2
n )δx̃−δy−wn,q) = 0. (A.24)

This formulation of the boundary conditions can be made explicit in order to obtain a
set of equations relating the displacements of real points and fictive points neighbouring
x̃n,q. Let us define the vector Wfict containing the N fictive displacements (size N×1)
and the vector Wreal containing the 13 − N real displacement. At a given point the N1870

equations of the boundary conditions (for example Eqs. (A.20)-(A.24)) can be written in
a matrix formulation: [

A B
]
.

 Wfict

Wreal

 = ON×1, (A.25)

where A and B are N ×N and N × (13−N) matrices, respectively. The displacements
of the fictive points can be deduced by

Wfict = (−A)−1.B.Wreal, (A.26)

or1875

W fict
j = γjiW

real
i . (A.27)

where γji are coefficients of matrix (−A)−1.B. Then, the discrete spatial operator can
be expressed using only real displacement Wi:∑

i

(βi + γjiβj)Wi. (A.28)
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A.3.3 Validation of the numerical method

The finite difference method is validated against a FEM model (COMSOL, grid set
on ’finer’) for a uniform plate and an ABH plate without damping layer (see Fig. 2.1(a)1880

and Tab. 2.1 for the geometry). The relative error ε

ε = fFDM − fFEM

fFEM
. (A.29)

on eigenfrequencies fFDM given by the finite difference scheme is plotted on Fig. A.2 for
the reference beam and the ABH beam with parameters of Tab. 3.1 using a 640×240
grid (∆x̃ = 1.6 × 10−3, ∆y = 4.2 × 10−4 m). Interestingly, the results are globally more
accurate for the variable thickness case. In the worst case, the maximum error is less1885

than 2 %. The sudden drop at 2000 Hz in the ABH result concern a local mode.
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Figure A.2: Error on eigenfrequencies estimation of FDM method compared FEM on
Reference (◦) and ABH (×) plates.



116 A Annexes

A.4 Multimodal waveguide model

A.4.1 Details on the plate equations

The governing equations for the flexural motion of plate with inhomogeneities along
the longitudinal x-direction (plate parameters remains invariant along transverse y-direction),1890

and in harmonic regime (with the e−jωt time convention) are [84]:

w = w(x, y) (A.30)

θx(x, y) = ∂w

∂x
, (A.31)

Mx(x, y) = −D
(
∂2w

∂x2 + ν
∂2w

∂y2

)
, (A.32)

My(x, y) = −D
(
∂2w

∂y2 + ν
∂2w

∂x2

)
, (A.33)

1895

Mxy(x, y) = −D(1− ν) ∂
2w

∂x∂y
, (A.34)

Qx(x, y) = ∂Mx

∂x
+ ∂Mxy

∂y
, (A.35)

Qy(x, y) = ∂Mxy

∂x
+ ∂My

∂y
, (A.36)

∂Qx

∂x
+ ∂Qy

∂y
= −ρhω2w, (A.37)

where w(x, y) is the displacement, θx(x, y) and θy(x, y) are the slopes along x and y-
direction, Mx(x, y) and My(x, y) are the bending moments around x and y, Mxy(x, y)1900

is the twisting moment, Qx(x, y) and Qy(x, y) are the shear forces, D(x) is the bending
stiffness, ν is the Poisson’s ratio, ρ(x) is the mass density, h(x) is the thickness and ω is
the angular frequency. Moreover, the total shear forces Vx and Vy including the effects of
the twisting moments are defined:

Vx(x, y) = Qx + ∂Mxy

∂y
= ∂Mx

∂x
+ 2∂Mxy

∂y
, (A.38)

1905

Vy(x, y) = Qy + ∂Mxy

∂x
= ∂My

∂y
+ 2∂Mxy

∂x
. (A.39)

The aim is to establish the relations between variables w, θx, Mx and Vx and their
first-order partial derivatives with respect to x. First, Eq. (A.31) gives

∂w

∂x
= θx. (A.40)
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Using Eq. (A.32) and the derivative with respect to x of Eq. (A.31) yields

∂θx
∂x

= − 1
D
Mx − ν

∂2w

∂y2 . (A.41)

From Eq. (A.34), the twisting moment is

Mxy = −D(1− ν)∂θx
∂y

, (A.42)

then Eq. (A.42) is inserted in Eq. (A.38) to obtain1910

∂Mx

∂x
= Vx − 2(1− ν)D∂

2θx
∂y2 . (A.43)

The derivation of Eq. (A.38) with respect to x yields

∂Vx
∂x

= ∂Qx

∂x
+ ∂2Mxy

∂x∂y
. (A.44)

Moreover, Eq. (A.37) directly gives

∂Qx

∂x
= −ρhω2w − ∂Qy

∂y
, (A.45)

where appears the derivation of Eq. (4.7) with respect to y:

∂Qy

∂y
= ∂2Mxy

∂x∂y
+ ∂2My

∂y2 , (A.46)

which writes, using Eq. (A.33):

∂Qy

∂y
= ∂2Mxy

∂x∂y
−D∂

4w

∂y4 − νD
∂2

∂y2
∂2w

∂x2 . (A.47)

Combining Eqs. (A.47),(A.45) and (A.44) gives1915

∂Vx
∂x

= −ρhω2w +D
∂4w

∂y4 + νD
∂2

∂y2
∂2w

∂x2 . (A.48)

Finally, the moment Mx appears using Eq. (A.32):

D
∂2w

∂x2 = −Mx − νD
∂2w

∂y2 , (A.49)

and Eq. (A.48) becomes:

∂Vx
∂x

= −ρhω2w +D(1− ν2)∂
4w

∂y4 − ν
∂2w

∂y2 . (A.50)

Eqs. (A.40), (A.41), (A.43) and (A.50) are the researched relations.
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A.4.2 Assembly rule for scattering matrices

In order to compute the scattering matrix of a whole inhomogeneous guide thanks to1920

scattering matrices of elementary regions, it is useful to define an operator that combine
the scattering matrices of two consecutive regions A and B. If SAB is the scattering matrix
of the concatenation of the two regions, it can be shown that SAB can be computed from
SA and SB by using a ? operator [107]:

SAB = SA ? SB. (A.51)

with1925

SAB =
 T+−

AB R−AB
R+
AB T−+

AB

 , SA =
 T+−

A R−A
R+
A T−+

A

 , SB =
 T+−

B R−B
R+
B T−+

B

 . (A.52)

Eq. (A.51) is also called assembly rule for scattering matrices. The four submatrices T+−
AB,

R−AB, R+
AB and T−+

AB of SAB write

T+−
AB = T+−

A (I−R−BR+
A)−1T+−

B , (A.53)
R−AB = R−A + T+−

A (I−R−BR+
A)−1R−BT−+

A , (A.54)
R+
AB = R+

B + T−+
B (I−R+

AR−B)−1R+
AT+−

B , (A.55)
T−+
AB = T−+

B (I−R+
AR−B)−1T−+

A . (A.56)

A.4.3 Convergence and errors

A.4.3.1 Convergence: effect of the spatial step

In the case of the imperfect ABH plate described in Sec. 4.4.1, the mean error ε on
the [fmin fmax] range

ε = 1
fmax − fmin

∫ fmax

fmin

|R∆(f)−RRef(f)|2
|RRef(f)|2 df, (A.57)

is considered, where RK = (R+
pp)11 evaluated at x = lABH with spatial step ∆ and1930

RRef = (R+
pp)11 evaluated at x = lABH with a small spatial step ∆ = 5 × 10−5 m for

which the numerical solution has converged. Computations are done with 30 modes on
the 400-2000 Hz frequency range. It is clear that for ∆ = 10−4 m, the error is less than
0.01 %. This discretization approximately corresponds to six points per wavelength.

A.4.3.2 Comparison to FEM solution1935

The numerical resolution presented in Sec. 4.3.3 is compared with a FEM solution
(COMSOL) for uniform and ABH cases (for geometry and parameters, see Fig. 4.4 and
Tab. 4.1). The computation of Z(x) and w(x, y) is done with K=30 modes and ∆ = 10−4
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Figure A.3: Error ε on the mean (R+
pp)11 estimation for different spatial steps ∆.

m with respect to frequency. Mobility transfer functions are plotted on Fig. A.4 with
excitation and observation points located at (0.15,0.05). The results for the uniform plate1940

fit perfectly while only minor differences are seen between the two compared solutions
for the ABH plate.
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Figure A.4: Mobility transfer functions for multimodal model (grey) and FEM (black)
for (a) Uniform plate and (b) ABH plate.
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