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This HDR manuscript presents research work at the interface between
Computational Neuroscience and Cognitive Robotics. The main scien-

tific issue at stake is to understand how animals and robots can display
behavioral adaptation capabilities in their partially unknown and chan-
ging environment. The objective is two-fold : on the one hand, contribu-
ting to better understanding behavioral and neural correlates of learning
processes ; on the other hand, taking inspiration from biology to design
autonomous robots able to learn from their own observations and errors.
This work is built on previous evidence that the mammalian brain com-
bines different memory systems which enable parallel learning processes
for efficient behavioral adaptation. Within the instrumental conditioning
paradigm, this is reflected by initial goal-directed learning observed in
animals which seem to build and use an internal model of their envi-
ronment, followed by the progressive expression of habits that have been
slowly learned in parallel. In computational terms, this can be formalized
as a progressive shift from model-based (MB) to model-free (MF) reinfor-
cement learning (RL). In the navigation paradigm, this is reflected through
the alternation between different navigation strategies, which can also be
categorized into MB and MF RL processes. The manuscript presents work
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2 Chapitre 1. Introduction

performed with collaborators – among whom supervised PhD students
– to contribute to : 1) Proposing computational solutions for the coordi-
nation of parallel learning processes to explain animal behavior during
conditioning and navigation paradigms ; 2) Using learning models to ana-
lyze behavioral dynamics and neural activities recorded in animals during
behavioral adaptation ; 3) Implementing neuro-inspired learning models
in robots to make them work in the real world. An emphasis is put on the
add-ons and gains produced by these exchanges between disciplines and
approaches. In particular, the manuscript highlights (i) how computational
models can help better formalize and quantify information processes that
may underlie animal behavior and brain activity ; (ii) how neuro-inspired
models can constitute a complementary and fruitful approach to classical
Robotics work ; (iii) in return how Robotics implementations can help im-
prove neurocomputational models by testing their robustness in the real
world, by discovering new properties of these models in such conditions,
and by raising new questions and hypotheses concerning the necessary
coordination between learning processes to properly work in a physical
body. Finally, a discussion of possible future directions of investigations is
proposed in order to plan a research program for the forthcoming years.

1.1 Scientific context

1.1.1 Different machine learning algorithms

In the field of Machine Learning, learning algorithms can be roughly
categorized into three main groups, depending on the feedback that the
learner receives :

– Supervised Learning, where the feedback tells exactly which target
output the learner should have generated in response to the input.
This type of learning is typically used when a neural network model
learns to recognize handwritten characters and is corrected when its
guess is different from the known true character at a given trial.

– Reinforcement Learning, where the feedback does not tell what the
target output was but just says whether the output generated by
the learner is good, bad or neutral. This is typically concerned with
situations where an agent has to learn how to act in an environment
in order to maximise some notion of reward.

– Unsupervised Learning, where no feedback is received by the lear-
ner. In this case, the learner typically has to learn the data structure,
e.g. learning that some elements are always associated together, or
learning the regular temporal contiguity between a couple of events.

In an influential Computational Neuroscience paper in 2000, Kenji
Doya made the proposition that different brain regions, namely the Ce-
rebellum, the Basal Ganglia, and the Cortex, are each mainly involved
in one among these three different types of learning processes (Fig. 1.1).
Although quite schematic, this view is still highly relevant today. Recent
computational models of cerebellar function still emphasize the predo-
minant role of supervised learning in this structure (Kawato et al. 2011).
Reinforcement learning continues to play a central role in basal ganglia
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(BG) models (Dayan and Niv 2008, Maia and Frank 2011, Keramati and
Gutkin 2013). And the associative nature of cortical networks makes un-
supervised learning a key process in many models of the cortex’s role in
decision-making (Hasselmo 2005, Martinet et al. 2011) or in other cognitive
functions (Fix et al. 2007).

Figure 1.1 – Proposition of a decomposition of neural structures involved in different
types of learning processes (Doya (2000a) with permissions)

The work presented in this manuscript mostly focuses on reinforce-
ment learning (RL) and unsupervised learning (UL) processes, and on
their corresponding neural substrates in the basal ganglia and cortex. The
motor control part is not addressed, which means that the computational
models presented are most of the time simplified by manipulating abs-
tract actions without wondering how sequences of muscle activations are
learned and organized for the execution of these actions. Incorporating the
motor control part in the models would also require a proper coordination
of learning processes by itself (i.e. between supervised learning and other
learning processes). This has been left aside for the moment. Nevertheless
a first step in this direction is sketched in the long-term research project
presented at the end of this manuscript (Section 5.2).

The present work addresses the question of how to coordinate dif-
ferent RL processes together and how to coordinate RL and UL processes
together in order to produce efficient and biologically realistic behavioral
adaptation abilities. In the case of animal and robot learning, UL processes
are important to learn an internal model which incorporates information
about the structure of the environment or of the task. For instance a cog-
nitive map containing topological links between diferent locations within
the environment and enabling to plan the shortest path towards a goal po-
sition. Or a graph of transitions between states of an instrumental condi-
tioning task, enabling to plan a sequence of decisions until a desired state,
and permitting to avoid sequences of actions that lead to a long-term un-
desired state (e.g. a devalued outcome). Throughout the manuscript, a dis-
tinction will often be mentioned between model-based reinforcement learning
(MBRL) – when the learning process includes the build-up and the use
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of such an internal model – and model-free reinforcement learning (MFRL) –
when the learning process occurs without access to such a model. These
two subclasses of RL processes will be more precisely and formally de-
fined in the forthcoming sections (e.g. see equations and schemes in the
paper Khamassi and Humphries (2012) presented in Section 2.1.1). The
important thing to remember at this stage is that this distinction will be
determinant to characterize different types of learning behaviors and their
underlying neural substrates.

1.1.2 Reinforcement learning and animal behavioral adaptation

Animals’ ability to learn from their own experience and errors, in par-
ticular in the context of sparse reward and punishment signals, crucially
relies on reinforcement learning processes. The most central theory cur-
rently considers that such learning relies on : 1) the competition between
actions, resulting in action selection as a function of the actions’ relative
probabilities ; 2) the anticipation of the value of rewards and punishments
that could follow the execution of the action ; 3) the computation of a re-
ward prediction error comparing what was expected with what is actually
obtained ; 4) the use of such a reward prediction error as a feedback (i.e.
positive, negative or null reinforcement signal) to update either the pro-
bability of the performed action or the predictive value associated to the
action and to the stimuli present in this context (Sutton and Barto 1998).

This formalism can be seen as an extension of the Rescorla-Wagner
model (Rescorla and Wagner 1972) in which learning requires prediction
errors to explain various properties of associative learning during animals
classical conditioning. Prediction errors can indeed explain the blocking
phenomenon – when a stimulus B cannot be associated with a reward if it
is presented together with a stimulus A which is already fully predictive
of the reward –, and cases of overexpectation – when the concomittant pre-
sentation of two reward predictive stimuli influences behavior as if they
were adding up, to form a stronger prediction.

A particular subgroup of RL algorithms implementing what is cal-
led Temporal-Difference (TD) learning extend the Rescorla-Wagner model
in that prediction error signals contain three terms rather than two. The
Rescorla-Wagner indeed compares past expectation with present outcome
(e.g. reward). The TD learning rule adds to this comparison a term re-
presenting future expectations of reward (see equations in the paper Kha-
massi and Humphries (2012) presented in Section 2.1.1). As a consequence,
a reinforcement signal can be computed even before the reward is attai-
ned by comparing temporally consecutive expectations of reward – hence
the term Temporal-Difference : e.g. when an action leads to a situation or
state where reward expectations are higher than previous ones, this action
should be reinforced.

1.1.3 Applications to Neuroscience

Since nearly twenty years, this theory has provided Neuroscientists
with formal tools which contributed to important breakthroughs in the
understanding of neural correlates of learning. Reinforcement Learning
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models turned out to be able to explain a wide range of adaptive beha-
viors experimentally observed both in humans (Rushworth and Behrens
2008, Frank et al. 2009, Balleine and O’Doherty 2010, Collins and Koechlin
2012) and in non-human animals (e.g. Yin and Knowlton (2006)). This for-
malism also enabled to explain a variety of neural correlates of learning
(Schultz et al. 1997, Yin et al. 2008). The most striking example and pro-
bably the most central in the field is the observation that phasic responses
of dopaminergic neurons follow the profile of reward prediction errors as
they are formalized by the RL theory : an increase in activity when the
outcome of action is better than expected ; a decrease in activity when it
is worse than expected ; an absence of response when it meets the expec-
tations (Schultz et al. 1997, Bayer and Glimcher 2005, Morris et al. 2006,
Roesch et al. 2007, Matsumoto and Hikosaka 2009).

The accumulation of neurophysiological results corroborated by this
computational theory has also enabled to establish that the learning of re-
ward values and action values depends on plasticity in projections from
the cortex to the basal ganglia (BG ; in particular to the striatum), and that
these adjusments depend on dopaminergic signals sent from the substan-
tia nigra pars compacta (SNc) and the ventral tegmental area (VTA) (Houk
et al. 1995, Schultz et al. 1997, Doya 2000a, Reynolds et al. 2001, O’Doherty
et al. 2004, Samejima et al. 2005, Faure et al. 2005, Pessiglione et al. 2006,
Shen et al. 2008, Humphries and Prescott 2010, van der Meer and Redish
2011). Numerous computational models of the basal ganglia (BG) were
derived from these experimental results (Houk et al. 1995, Schultz et al.
1997, Doya 2000a, Joel et al. 2002, Baldassarre 2002, Frank 2005), and were
built on the central assumption that the BG play a critical role in action
selection (Redgrave et al. 1999, Gurney et al. 2001).

My PhD work (Khamassi 2007) contributed in showing that ventral
striatal single-unit activity in behaving rats is coherent with the RL theory
(Khamassi et al. 2008) and in constraining BG RL models to make them
physiologically and anatomically plausible as well as efficient in realistic
continuous simulations of laboratory tasks (Khamassi et al. 2005; 2006). I
have also been recently collaborating with Mark D. Humphries and Kevin
Gurney to propose a more recent RL model of the BG which incorporates
a role for tonic dopamine in the regulation the exploration-exploitation
trade-off for action selection (Humphries et al. 2012).

The application of the RL theory to Neuroscience also favored the de-
velopment of a method for model-based analysis of experimental data (Daw
et al. 2006, Corrado and Doya 2007, Brovelli et al. 2008, Ito and Doya 2009,
Palminteri et al. 2009, Daw 2011, Collins and Koechlin 2012). In this ap-
proach, a computational model is parametrized in order to fit subjects’
observed behavior during the task with a Bayesian maximum likelihood
criterion. Then hidden model variables are used as regressors of the recor-
ded neural activity to test the assumption that this activity reflects com-
putations similar to those performed by the model to solve the task.

Chapter 3 in this HDR manuscript presents two studies using such a
method for model-based analyses of neurophysiological data : one star-
ted during my postdoctoral training with Emmanuel Procyk and Peter
F. Dominey (Khamassi et al. 2014) ; the other done by Jean Bellot, a PhD
student that I co-supervise with Benoît Girard, in collaboration with Oli-
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vier Sigaud, Geoffrey Schoenbaum and Matthew R. Roesch (Bellot et al. in
preparation).

Nevertheless, the results obtained through the application of the RL
theory to Neuroscience remain fragmentary and incomplete for several
reasons. First, the laboratory tasks employed are most of the time very
simple, involving only a few different stimuli and actions. Second, these
tasks most of the time involve single-step decisions performed at each
trial, while the RL theory has been designed to deal with multiple steps of
decision-making and reward predictions. Finally, these studies – including
some of ours – most of the time use a single computational model to
explain behavior (but see Gläscher et al. (2010), Daw et al. (2011)), while
there is more and more evidence that subjects’ behavior during decision-
making tasks involve the coordination of multiple learning systems (Daw
et al. 2005).

1.1.4 Coordination of multiple learning modules

Rodents put in an instrumental conditioning paradigm – where they
have to learn to press a lever in response to a cue in order to get reward
– initially display flexible learning behavior and progressively develop
habits that are long and difficult to break (Dickinson 1985). After moderate
training, changes in contingencies of the task or devaluation of the reward
– for instance by pairing it with illness – result in relatively fast behavioral
adaptation : the animal quickly stops pressing the lever. In contrast, after
extensing training animals persist in pressing the lever in this context no
manner if the task contingencies have changed or if the reward has been
devalued.

Such behavioral flexibility and automaticity are associated with two
separate learning systems : the goal-directed and habit learning systems
(Balleine and O’Doherty 2010). These systems are mediated by separate
cortico-striatal networks, namely the associative and sensorimotor fronto-
striatal loops, respectively. The associative loop includes the lateral and
medial prefrontal cortices and the dorsomedial striatum of the basal gan-
glia, whereas the sensorimotor circuit includes sensorimotor and premo-
tor areas that project to the dorsolateral striatum (Yin and Knowlton 2006,
Graybiel 2008, Ashby et al. 2010). Such dual-system hypothesis conforms
the notion that frontal cortex activity is organised according to a rostro-
caudal gradient based on the abstractness of action representations (Koe-
chlin et al. 2003, Badre and D’Esposito 2009), assigning goal-directed ac-
tions to anterior portions of the frontal lobe and stimulus-response habits
to sensorimotor areas.

At the theoretical level, the reinforcement learning theory (Sutton and
Barto 1998) is providing a coherent mathematical framework to forma-
lize goal-directed and habit learning computations (Dayan and Balleine
2002, Daw et al. 2005, Ito and Doya 2011). In particular, Daw and col-
leagues (Daw et al. 2005) proposed that a dual learning system invol-
ving model-based and model-free reinforcement learning algorithms, the
former employing "effortful" computations in a model of the world (i.e.,
goal-directed learning), the latter producing reactive behaviors based on
stimulus-response associations (i.e., habit learning). Model-based RL me-
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chanisms are good models of goal-directed behavior because they involve
a model of long-term consequences of actions which enable to plan ahead
and to avoid sequences of actions that lead to non-desired goals (e.g. deva-
lued goals). They thus produce flexible behavior in response to changes in
the environment because a single exposure to changes in the goal permits
a change in subsequent decision-making. However, such planning with
the model-based system before acting produces slow reaction times and is
computational costly. In contrast, model-free RL mechanisms explain ha-
bit learning in that Temporal-Difference learning algorithms slowly propa-
gate value information from the end of the action sequence (i.e. where the
agent gets reward) to the beginning of the sequence. Hence the slowness
to acquire a habit and the even longer time required to break a habit – be-
cause the negative value associated to a devalued reward will first need to
decrease the positive values associated to each elements within the action
sequence before properly being able to propagate negative values to the
whole sequence. However, making a decision with the model-free system
is much quicker and thus produces slow reaction times because one "just"
needs to compare a small set of cached values associated to the actions in
competition 1.

Interestingly, a recent paper suggests that habit learning may be bet-
ter modeled by a chunking mechanism – automatizing the selection of
frequently repeated sequences of actions – rather than by a classical TD-
learning algorithm (Dezfouli and Balleine 2012). Although this is some-
thing we started to investigate in Robotics by comparing the behavioral
properties produced by both systems in realistic continuous situations,
this work is preliminary and will not be presented in this manuscript.
Nevertheless, this shows that the debate concerning the precise nature
and computational mechanisms underlying habit learning is still vivid.
There is also an important debate concerning the possible mechanisms
underlying the coordination of reinforcement learning systems. Daw et al.
(2005) proposed an uncertainty-based mechanism for this coordination :
the system that computes reward values with the lowest uncertainty takes
over behavior. However, this method requires costly calculations of the
uncertainty in the two systems – while the capacity to learn habits may
have emerged through evolution to enable computation saving by avoi-
ding to systematically use the goal-directed system (Killcross and Coutu-
reau 2003). Moreover the complexity of uncertainty computation within
the model-based system makes it exponentially explode with the number
of states. In the simple task with six states simulated by Daw et al. (2005),
this is not a problem. But in more realistic situations with a large num-
ber of states, this computation becomes problematic. To cope with this
issue, the model of Keramati et al. (2011) proposes to only compute the
less expensive uncertainty of the model-free system, and to avoid using
the model-based system when this uncertainty is low. On the one hand
this model enables to save computation time and to explain a substan-
tial set of experimental data. On the other hand, this model relies on the
simplied assumption that the model-based system is always more reliable

1. It is worthy of note that Robotic experiments with continuous action spaces show
that in such a case the comparison between action values is much more difficult and slower
(Peters and Schaal 2006, van Hasselt and Wiering 2007).
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and less uncertain than the model-free system, which is not always the
case in more realistic and embodied situations such as the robotic expe-
riments presented in Chapter 4 of this manuscript. Depending on noise,
uncertainty and characteristics of the environment and of the robot’s per-
ceptual equipment, it turns out that most of the time the model-based
system is more efficient than the model-free one in some parts of the envi-
ronement and vice-versa in other parts. It appears thus promising to use
system coordination criteria without too many priors and with rather the
ability to automously detect which system is the most appropriate in each
circumstance.

Several contributions on the modelling of the coordination of learning
systems are presented in this HDR manuscript. In Chapter 2, two papers
are presented showing that the model-based / model-free dichotomy is
also relevant (i) to categorize different navigation strategies observed in ro-
dents and the activity of their underlying neural substrates (work done in
collaboration with Mark D. Humphries, Khamassi and Humphries (2012)),
(ii) and to explain inter-individual differences in rats’ behavior during
Pavlovian conditioning – differences in behaviors called goal-tracking ver-
sus sign-tracking – as well as differences in dopamine activity observed in
these rats (work done by Florian Lesaint, a PhD student that I co-supervise
with Olivier Sigaud, in collaboration with Shelly B. Flagel and Terry E.
Robinson, Lesaint et al. (2014)). Besides, Chapter 4 shows robotic imple-
mentations of a model-based / model-free computational model (Dollé
et al. 2008; 2010; submitted) for robot navigation (work done by Ken Ca-
luwaerts, a Master student that I co-supervised with Agnès Guillot and
Christophe Grand, Caluwaerts et al. (2012b)). This model has the advan-
tage of having a memory of which learning system was the most efficient
in each subpart of the environment, which can produce faster recovery of
the most reliable system at each moment, and which property was absent
from previous computational models of the coordination of model-based
/ model-free systems.

1.1.5 Meta-learning and cognitive control

Interestingly, the question of how to efficiently coordinate multiple
learning systems is the subject of investigations within the Machine Lear-
ning literature, within a subfield called meta-learning (Schmidhuber et al.
1997, Doya 2002, Giraud-Carrier et al. 2004). It is a concept originally deve-
loped within the domain of Cognitive Psychology which means learning
to learn. In Machine Learning the term refers to applications of learning
algorithms to meta-data in order to find out what mechanisms and prin-
ciples can reveal flexible and general enough to solve different kinds of
problems.

A major issue in Machine Learning is indeed concerned with algorithm
parametrization, often performed specifically for the task to solve, thus
enabling little generalization to different tasks (Lavesson and Davidsson
2006). Within the context of Markov Decision Problems (MDP) – where an
agent has to learn a behavioral policy in order to maximize a given reward
function –, the parameters tuned enable the tested reinforcement learning
algorithms to solve a particular condition do not permit rapid behavioral
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adaptation once the task conditions are changed (Sutton and Barto 1998).
There is thus a need for meta-heuristics enabling to dynamically optimise
the parameters of the algorithms, and to permit simulated agents to take
appropriate decisions and learn in unprepared, changing environments.
Some existing methods such as evolutionary algorithms enable off-line
optimization in the sense that the latter does not occur during the lifetime
of the agent (Doncieux et al. 2011). However, if the goal is to enable on-line
incremental adaptation, meta-learning solutions can be appropriate.

From a mechanistic point of view, the interesting thing is that meta-
learning methods not only have been proposed (i) to select the appro-
priate model for action selection in the case of the coordination of mul-
tiple learning systems (Brazdil 1998), but also (ii) to dynamically regulate
parameters of learning (e.g. update rate, temporal scale and exploration
parameters, Auer et al. (2002), Ishii et al. (2002)). So the computational me-
chanisms underlying animals’ behavioral flexibility and adaptivity could
be both investigated in terms of learning module coordination and dyna-
mic regulation of learning parameters.

During my post-doctoral work in collaboration with Emmanuel Procyk
and Peter F. Dominey, we have drawn a parallel between meta-learning
principles proposed in Machine Learning and cognitive control processes
described in Neuroscience – i.e. how to regulate the appropriate level of
control to solve a given task – (Khamassi et al. 2011b; 2013). Recent reviews
of neurobiological data have indeed highlighted cognitive control mecha-
nisms for the high-level coordination of executive systems in the primate
prefrontal cortex (Miller and Cohen 2001, Koechlin and Summerfield 2007,
Samejima and Doya 2007). The cognitive control loop theory describes the
modulation of the control level enabling shifting from routine behaviors
in a known context requiring little attention and concentration, to more
flexible behaviors involving rapid and active control. The level of control
is based on a monitoring process of variations of the environment and
of the agent’s own performance. It also implies learning the association
between particular tasksets and the contexts in which they are relevant.

During my PhD work in collaboration with Sidney I. Wiener, Fran-
cesco P. Battaglia, Adrien Peyrache, Karim Benchenane, Yves Gioanni and
Patrick L. Tierney, I contributed to electrophysiological recordings in the
Hippocampus-Prefrontal Cortex network in rats performing a decision-
making task in a Y-maze, with regularly changing task rules. We found
that the activity of cell assemblies within this network reflected a learning
process of which task-rule (i.e. taskset) is currently appropriate to solve the
task, these activities being related to an increase in the coherence between
Hippocampus and Prefrontal Cortex activities at decision time when the
current task-rule has been discovered by the animal, and being replayed
during sleep, putatively enabling a consolidation of this knowledge (Bat-
taglia et al. 2008, Peyrache et al. 2009; 2010a;b, Benchenane et al. 2010).
These data provide us with some clues about the possible mechanisms
underlying the prefrontal cortex’s involvment in cognitive control.

Thus a fruitful approach can consist in both (i) investigating whether
some meta-learning principles can be useful to model animal adaptive
behavior and underlying brain activity, (ii) in turn, when the machine



10 Chapitre 1. Introduction

learning algorithms reach their limits, taking inspiration from known cog-
nitive control mechanisms to improve these algorithms.

A simple heuristic proposed by Schweighofer and Doya (2003) consists
in dynamically regulating RL parameters as a function of the agent’s per-
formance – i.e. as a function of the agent’s current averaged obtained re-
ward : at the beginning of the simulation, performance starts at a low level
(the average reward is low), and thus the model starts with a high level of
exploration ; while the agent progressively improves its performance, the
exploration parameter is tuned so that there is less and less exploration ;
as soon as a task change occurs, the average reward obtained by the agent
drops, and thus the exploration parameter is reset to a high level. During
my post-doctoral work in collaboration with Emmanuel Procyk and Peter
F. Dominey, we have proposed a computational model for adaptive explo-
ration regulation in the monkey prefrontal cortex (Khamassi et al. 2011a).
We have shown that the model implemented on a humanoid robot can
both (i) reproduce monkey performance in a problem-solving task with
frequent task changes, (ii) enable the robot to display adaptive explora-
tion regulation in an extended human-robot interaction game. The model
was further used to draw a set of experimental predictions on prefrontal
cortex activity that we later tested. The results are presented in a paper in
press (Khamassi et al. 2014), included in Chapter 3.

However, this first stage of application of meta-learning principles to
computational models of executive functions in primate relied on several
simplifications, such as assumptions of reduced and stable environmental
uncertainty. Further improvements could be done by taking inspiration
from the way the brain uses volatility information to dynamically tune the
learning rate parameter (Behrens et al. 2007) and performance at multiple-
time scales to tune the discount factor (Tanaka et al. 2004).

Nevertheless, in addition to helping better understand brain functions,
formalizing heuristics for the dynamical regulation of learning parameters
and choice of the learning mode could be useful for Robotics, enabling
robots to better cope with unexpected environmental changes and thus to
display higher adaptivity and flexibility.

1.1.6 State of the art of decision-making and learning in Robotics

Major progress has been accomplished in several aspects of robotics :
perception, navigation, localization, motion and action planning, manipu-
lation, human-robot interaction (Siciliano and Khatib 2008). However most
of the current results apply to restricted, pre-defined and well-known si-
tuations where robots’ decisions only apply to quite simple problems. Mo-
reover, robots learning abilities are still very limited, which requires the
injection of prior knowledge by the human in the robot’s decision-making
system.

There have been applications of RL algorithms to robotics (e.g. Mori-
moto and Doya (2001), Smart and Kaelbling (2002), Alexander and Sporns
(2002), Krichmar and Edelman (2002), Arleo et al. (2004)), some of which
being neuro-inspired. But many of these studies – including ours (Kha-
massi et al. 2005; 2006) – produced limited progresses, due to applications
to quite simple problems, with a small number of states and actions, to
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slowness in learning and to systematic instability observed throughout
the learning process. More recent applications of RL to robotics have per-
mitted to deal with more complex and continuous action spaces, enabling
to learn efficient sensori-motor primitives (Peters and Schaal 2008, Sigaud
and Peters 2010, Kober and Peters 2011, Stulp and Sigaud 2013). But none
of these approaches have attempted to equip robots with an ability to auto-
nomously coordinate different learning systems through self-supervision
and to decide which system should have the control over behavior at any
given moment, as the mammalian brain does.

Besides, most of robotic decision-making algorithms are based on plan-
ning processes which take into account a great number of information,
states, locations and actions (e.g. Chatila et al. (1992), Alami et al. (2006),
Minguez et al. (2008), Kanoun et al. (2011)). Such approach to decision-
making could be seen as similar to what we called the model-based sys-
tem, except that there is most of the time no learning in the system : the in-
ternal model is given to the robot and only the planning, decision-making
and execution parts have been addressed. Moreover, such an approach
raises the issue of having to deal with high-dimensional state spaces, due
to the combinatory explosion in large-scale applications. Another issue
which is worthy of note is the long computation time imposed by the
planning system, especially since there are systematic replanning of se-
quences of actions each time the robot is in the same situation and has to
decide how to act. In contrast, mammals are able to use routines in fami-
liar environments, controlled by their habit system which is in competition
with their planning (model-based) system. The coordination of the plan-
ning system and low-level reactive routines is one the goals of cognitive
architectures developed in Robotics (Alami et al. 1998, Volpe et al. 2001).
Such architectures thus appear as a good direction of research for the
coordination of decision-making systems in robots and to autonomously
decide which system should take over the robot’s behavior at each mo-
ment (Likhachev et al. 2002). Most of these architectures are built on the
subsumption principle (Brooks 1986) in which different decisional layers
are superposed in increasing order of complexity, each trying to control
the robot’s behavior, and superior layers being able to transiently take over
(hence the term subsumption) inferior layers when it is appropriate. Howe-
ver, these architectures still lack efficient learning abilities and can thus not
produce efficient behavioral adaptation in non-stationary environments.

Another field of robotics which is relevant for this HDR work and
which in some cases include reinforcement learning algorithms is the
study of robot navigation. In this paradigm, the objective of the agent is to
reach a particular goal localized within the environment where the agent
can receive a reward. The agent has to build a representation of space (i.e.
a map enabling it to localize itself) and to learn how to reach the goal in
the most efficient (quickest and safe) manner. In Robotics, map-based na-
vigation in an a priori unknown environment is subject to several issues.
First, in order to move along an appropriate trajectory, the system needs
to autonomously build a relevant representation/map of the environment
(which is the mapping step), to be able to know what is the robot’s current
location (localization step), and to be able to determine a path from point A
to point B (planning step). While the planning step requires the other parts
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to have been completed, the localization and mapping steps are mutually
dependent : in order to localize oneself, it is necessary to recognize cues
and features which characterize a particular place and which have pre-
viously been perceived and stored. Moreover, to build a reliable map and
correctly situate features within it, the robot needs to be able to localize it-
self relative to these features (Angeli et al. 2008). These two steps thus have
to be realized simultaneously, which gave the name to the central robotic
problem of Simultaneous Localization and Mapping (SLAM) (Moutarlier
and Chatila 1985).

The SLAM problem has been widely studied and numerous "engi-
neering" solutions have been developed, in particular through three main
paradigms : methods based on extended kalman filters (EKF, Smith et al.
(1990)), graphical SLAM (Folkesson and Christensen 2004), and particule
filters (Montemerlo et al. 2002). While numerous SLAM algorithms use the
robot’s laser to measure distances, there also exist SLAM algorithms ba-
sed on camera vision. However, a major difficulty that SLAM algorithms
face is the loop closure problem : recognizing places that the robot has
already visited in order to obtain information which enables to correct es-
timation errors that have been accumulated with odometry. While some
SLAM algorithms can work correctly without loop closure detection, the
work of Angeli et al. (2008) shows that taking into account this aspect
of navigation dramatically increases SLAM’s results. Besides SLAM algo-
rithms have difficulties to remain efficient when they are simulated for a
long time. This is because the longer the robot navigates, the lesser true
is becoming the hypothesis of a static world on which SLAM is anchored.
Some promising solutions exist, for instance by using dynamical maps (Bi-
ber and Duckett 2005). But the issue is not solved yet. Finally, while SLAM
algorithms focus on the localization and mapping aspects, they do not tell
anything about how to make correct decisions using this information, nor
how to adapt the robot’s decisions through learning.

1.1.7 Neurorobotics approaches

Interestingly, several research groups have adopted a biomimetic ap-
proach to tackle some of these issues, with a two-fold objective : on the
one hand, taking inspiration from the computational principles under-
lying mammals’ behavioral flexibility to contribute to the improvement of
current robots’ autonomy and adaptivity (Frezza-Buet et al. 2001, Pfeifer
et al. 2007, Meyer and Guillot 2008). On the other hand, using the robot
as a platform to test the robustness of current biological hypotheses about
cognitive functions, beyond perfectly controlled simulations, and try to
learn more about the computational mechanisms at stake by analyzing
which solutions enabled the model to work on a physical robot (Arbib
et al. 2008).

In the particular case of robot navigation, several bio-inspired models
of navigation have been tested in recent years, mostly inspired by rodent
navigation. However, to our knowledge, none of these previous studies
have addressed the issue of coordinating multiple decision and learning
systems for navigation.

Arleo and Gerstner (2000) developed a computational model of place
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cells - neurons located in the hippocampus whose activity encode an esti-
mation of the animal’s current position - and head-direction cells - neurons
selective for the estimated orientation of the animal’s head. With this mo-
del, they enabled a Khepera robot to navigate in a small arena, using a
navigation strategy where learned associations between places and direc-
tions of movement – what is called a place-recognition triggerred response
(PRTR) strategy and which can be learned with model-free RL. Fleischer,
Krichmar and colleagues showed how prospective and retrospective co-
ding at the level of place cells’ activity can enable a robot to efficiently
solve a spatial memory task (Krichmar et al. 2005, Fleischer et al. 2007) ;
here also, navigation was performed by a PRTR strategy. Barrera and Weit-
zenfeld proposed a hybrid PRTR strategy using a graph, where the choice
of the next action took into account the next three actions in a prospective
manner (Barrera et al. 2011). Their robot could solve discretized imple-
mentations of various rodent laboratory mazes (T and radial mazes). Gio-
vanangeli and Gaussier developed a model of another navigation strategy
consisting in planning routes toward the goal in a topological graph ("cog-
nitive map") of the environment – hence a "model-based" approach. Their
model produced efficient navigation in both indoor and outdoor environ-
ments (Giovannangeli and Gaussier 2008). More recently, the RatSLAM
algorithm has been implemented as a neural network inspired by the rat’s
hippocampus in order to perform efficient, continuous and long duration
simultaneous localization and mapping (SLAM) on a robotic platform put
in a large non-stationary environment (Milford and Wyeth 2010). Planning
is also used here to perform navigation.

These different studies show efficient simulations of single navigation
strategies, relying on a single learning system. The work presented in
Chapter 4 shows how taking inspiration from mammals’ ability to coordi-
nate different navigation strategies, each equipped with specific learning
mechanisms - namely model-based and model-free navigation strategies - can
enable a robot to exploit the advantages of each strategy (work done by
Ken Caluwaerts, a Master student that I co-supervised and whose work
has already been mentioned above, Caluwaerts et al. (2012b;a)).

Other research groups have adopted similar bio-inspired approaches
to study robotic cognitive functions or to more generally improve robots’
adaptivity and autonomy. In particular, the Developmental Robotics ap-
proach attempts to mimick children’s ability to learn sensori-motor af-
fordances based on their intrinsic motivation to explore the environment
(Lungarella et al. 2004, Oudeyer and Kaplan 2007). The Biomimetics ap-
proach concerns novel technologies developed through the transfer of
function from biological systems (Lepora et al. 2013). In particular, this
approach has made great advances in taking inspiration from animals’
body properties and sensors which are not common in robotics, such as
the rat’s whiskers (Mitchinson et al. 2011, N’Guyen et al. 2011).

Based on this state of the art in neuro-inspired robotics, we fur-
ther argue that incorporating bio-inspired meta-learning principles could
enable robots to coordinate different learning systems through self-
supervision in order to decide which system is the most efficient at a given
time and in a given situation. This could help improve robots’ flexibility
and autonomy in decision-making.
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1.2 Objectives and general approach

The main scientific issue addressed in this work is to understand how
animals and robots can display behavioral adaptation capabilities in their
partially unknown and changing environment. The objective is two-fold :
on the one hand, contributing to better understanding behavioral and neu-
ral correlates of learning processes ; on the other hand, taking inspiration
from biology to design autonomous robots able to learn from their own
observations and errors.

As sketched in the introduction of the scientific context above, the work
is built on previous evidence that the mammalian brain combines different
memory systems which enable parallel learning processes for efficient be-
havioral adaptation – in particular processes called model-based and model-
free Reinforcement Learning. Thus the goal of the work presented in this
manuscript is to propose accurate computational models for the coordi-
nation of learning and decision-making systems observed in animals, and
see whether these models can help better understand underlying brain
activities as well as improving robots’ adaptivity and autonomy.

1.2.1 Methodology and implementation

Figure 1.2 – Illustration of the cross-disciplinary approach adopted in this research work
(designed by Jean-Baptiste Mouret for the AMAC team at ISIR, UPMC-CNRS)

The methodology implemented in this research work studying cog-
nitive processes and their underlying neural structures is principally ba-
sed on the conception of computational models. These models are then
evaluated within the disembodied framework of Computational Neuros-
cience – i.e. comparison with electrophysiological, anatomical, behavioral
data – and within the embodied framework of Cognitive Robotics – i.e.
assessment of the efficiency of resulting controllers in the real world, com-
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parison with engineering methods to evaluate the add-on of using neuro-
inspired methods, new comparison with behavioral data and evaluation
of the add-on compared to model simulations.

Such a research approach requires a strong interaction between Engi-
neering Science and Computational Neuroscience (Fig. 1.2). The former
brings machine learning algorithms, optimization tools, principles for ro-
botic control systems. The latter brings the formalism and methodology of
computational modelling, as well as methods for model comparison and
model-based analyses on behavioral and neural data.

Although I have been trained to perform animal behavioral experi-
ments and electrophysiological recordings – alongside computational mo-
delling and robotic experiments – during my PhD work co-supervised by
Sidney I. Wiener and Agnès Guillot (Khamassi 2007), the methodology
adopted for this HDR research project does not include the realization
of biological experiments myself anymore. It mostly relies on collabora-
tions with experimentalists outside ISIR to design experiments enabling
to address precise model predictions, to perform model-based analyses
of biological data, and to extract principles from the results that can help
improve computational models and robotic implementations.

1.2.2 Organization of the research work

Cross-disciplinarity interactions required for this research work are
enabled within the Architectures and Models for Adaptation and Cognition
(AMAC) team, coordinated by Stéphane Doncieux at the Institute of In-
telligent Systems and Robotics (ISIR, CNRS-UPMC) and through external
collaborations with experimentalists, theoreticians and roboticists.

The AMAC team gathers thirteen permanent researchers, with Compu-
tational Neuroscience, Computer Science and Robotics backgrounds, and
is organized into five different research groups. I contribute to two of these
groups : (i) the Computational Neuroscience of Executive Functions group in
which Bruno Delord and Benoît Girard also participate ; (ii) the Learning for
Robotic Command and Decision-making group in which Raja Chatila, Vincent
Padois and Olivier Sigaud also participate. The local research environment
of this work also includes a LABEX – a regrouping of research laboratories
and institutes related to UPMC – called SMART and supported by French
State funds managed by the ANR within the Investissements d’Avenir
programme under reference ANR-11-IDEX-0004-02. Within this LABEX, I
participate to one of the research programs aiming at modelling human
learning abilities and I collaborate with the machine learning group of
the Laboratory of Computer Science of UPMC (LIP6) with whom I co-
supervise a PhD student (see Table 1.1).

Within this research environment, I currently co-supervise five PhD
students (Table 1.1) – and have in addition and in total participated to
the supervision of eight Master students, five Engineering students, and
one external PhD student having performed a six-months research inter-
nship at ISIR. The firstly recruted PhD student, Florian Lesaint, has the
goal of proposing a new multiple learning systems computational model
accounting for behavioral phenomena involving the interaction between
Pavlovian and Instrumental Conditioning, as well as dopamine activity
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Name Period Main discipline Co-supervision with
Florian Lesaint 2011–2014 Comp. Neuro. Olivier Sigaud (ISIR)

Jean Bellot 2011–2014 Comp. Neuro. Benoît Girard (ISIR)
Erwan Renaudo 2012–2015 Cog. Robot. Raja Chatila (ISIR)

Nassim Aklil 2013–2016 Cog. Robot. Ludovic Denoyer (LIP6)
Guillaume Viejo 2013–2016 Comp. Neuro. Benoît Girard (ISIR)

Table 1.1 – Co-supervised PhD students

recorded by our collaborators during these experimental paradigms. The
second PhD student, Jean Bellot, has the goal of proposing a new com-
putational model of dopamine signalling in the basal ganglia and analy-
zing whether this model accounts for the information carried by dopamine
neurons’ activities recorded by our collaborators. The third PhD student,
Erwan Renaudo, has the goal of implementing and testing a robotic ar-
chitecture coordinating MB and MF reinforcement learning to enable ro-
bots to autonomously acquire behavioral habits, and see if the robot can
constitute a good model of human habit learning in real-world continuous
situations. The fourth PhD student, Nassim Aklil, has the goal of impro-
ving the coordination of learning systems within our current robotic mul-
tiple navigation strategy architecture with recent online budgeted learning
techniques from the Machine Learning literature. The fifth PhD student,
Guillaume Viejo, has the goal of proposing a new computational model
for the coordination of learning systems to explain human behavior in
tasks involving the interaction between reinforcement learning and wor-
king memory processes.

My research project is also made possible through external collabora-
tions with experimentalists, theoreticians and roboticists, mostly in France,
but also in other European Countries (United Kingdom, Italy, Switzerland,
The Netherlands), in the United States of America, in Japan and in Tuni-
sia. In particular, collaborators participating to the projects involving the
PhD students I co-supervise or having contributed to the papers included
in this manuscript comprise :

– The group of Mark D. Humphries, at Manchester University, UK,
who designs computational models of action selection and performs
model-based analyses of neurophysiological data (see Chapter 2).

– The groups of Terry E. Robinson and Shelly B. Flagel, at Michigan
University, USA, who perform animal learning experiments, phar-
macological manipulations and electrophysiological recordings du-
ring Pavlovian conditioning experiments (see Chapter 2).

– The group of Kenji Doya, at Okinawa Institute of Science and Tech-
nology, Japan, who performs animal learning experiments, compu-
tational models and robotics implementations of learning models
(see perspectives in Chapter 2).

– The group of Andrea Brovelli, at CNRS in Marseille, who performs
brain imaging in human experiments involving reinforcement lear-
ning, working memory and motor control processes (see perspec-
tives in Chapter 2).

– The groups of Emmanuel Procyk and Peter F. Dominey, at INSERM
in Lyon, who do electrophysiological recordings of monkey prefron-
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tal cortex single-unit activity and local field potential during be-
havioral adaptation, and robotic implementations of neuromimetic
models of cognitive functions (see Chapter 3).

– The groups of Geoffrey Schoenbaum and Matthew R. Roesch, at
Maryland University, USA, who perform animal learning experi-
ments, pharmacological manipulations and electrophysiological re-
cordings during decision-making tasks (see Chapter 3).

– The group of Etienne Coutureau and Alain Marchand, at CNRS
in Bordeaux, who do animal learning experiments and pharmaco-
logical manipulations during instrumental conditioning tasks (see
perspectives in Chapter 3).

– The group of Rachid Alami, at CNRS in Toulouse, who works on
shared action plans during human-robot interaction tasks (see pers-
pectives in Chapter 4).

– The group of Philippe Gaussier, at Cergy-Pontoise University, who
works on neuromimetic models of perception, navigation and social
interaction (see perspectives in Chapter 4).

– The group of Patrick Gallinari and Ludovic Denoyer, at UPMC
in Paris, who designs machine learning algorithms for large and
structured dataset analyses with budget – i.e. computation time and
cost – constraints (see perspectives in Chapter 4).

Outline of the presented work

Presentation of the research work is organized as follows :
– Chapter 2 presents computational modelling work done to contri-

bute in the formalization of principles underlying animals behavio-
ral adaptation abilities. The work is presented under the form of
two published journal papers (Khamassi and Humphries 2012, Le-
saint et al. 2014). The first one has been performed with Mark D.
Humphries and shows the relevance of using the model-based /
model-free reinforcement learning computational framework to ca-
tegorize navigation strategies in rodents and their underlying neural
substrates. The second one presents the work of PhD student Florian
Lesaint and shows that a computational model for the coordination
of MB and MF RL enables to reproduce inter-individual behavio-
ral and neurophysiological differences observed in rats called sign-
trackers and goal-trackers in a Pavlovian conditioning paradigm.

– Chapter 3 presents work employing the model-based analysis of
neurophysiological data approach. The work is presented under the
form of two journal papers, one in press (Khamassi et al. 2014), the
other about to be submitted (Bellot et al. in preparation), aiming at
testing model predictions about hypothesized neural activities un-
derlying behavioral adaptation, and using the computational models
to more precisely measure information related to particular compu-
tational mechanisms in neural activity. The first one has been perfor-
med with Emmanuel Procyk, Peter F. Dominey, René Quilodran and
Pierre Enel and shows neural substrates of adaptive regulation of
reinforcement learning parameters in the prefrontal cortical network
during monkey behavioral adaptation. The second one presents the
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work of PhD student Jean Bellot and shows model-based analyses of
dopamine neurons’ single-unit recordings during a decision-making
task in rats.

– Chapter 4 presents robotic implementations of neuro-inspired mo-
dels of the coordination of MB and MF RL. The work is presented
under the form of two papers, one published in a journal (Calu-
waerts et al. 2012b), the other in the proceedings of an international
conference (Renaudo et al. 2014), aiming at testing the ability of such
neurocomputational models to improve robots’ flexibility and adap-
tivity in real-world applications, and in return getting new insights
into the properties of these computational models when tested in
these more realistic conditions. The first one has been mainly per-
formed by a previously supervised Master student, Ken Caluwaerts,
and shows that the coordination of MB and MF learning systems
for multiple-strategy-based navigation enables the robot to autono-
mously learn to exploit the advantages of each strategy in each sub-
part of the environment. The second one presents the work of PhD
student Erwan Renaudo and shows that the coordination of MB and
MF RL also enables to exploit the advantages of each system du-
ring a habit learning task in a humanoid robot. Both robotic studies
shows that MB and MF systems do not behave exactly as expected
by previous computational model simulations when they are inter-
acting during embodied real-world applications.

Other published papers with supervised PhD students are not inclu-
ded in this manuscript, but will be discussed in relation to the presented
work. These include (i) a paper presented at the Simulation of Adaptive
Behavior Conference comparing the ability of different RL algorithms in
reproducing dopamine activity (Bellot et al. 2012) ; (ii) a paper presented
at the Living Machines Conference showing how extensions of the model-
free learning system to take into account multiple landmarks within the
environment can enable efficient coordination of MF and MB navigation
strategies in a rat robot (Caluwaerts et al. 2012a) ; (iii) a paper submitted
to a journal showing extensions of a MB / MF RL computational model
to account for new Pavlovian conditioning data and draw a precise list of
experimentally testable model predictions (Lesaint et al. submitted).
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This chapter presents computational modelling work done to contri-
bute in the formalization of principles underlying animals behavioral

adaptation abilities. The work is presented under the form of two publi-
shed journal papers (Khamassi and Humphries 2012, Lesaint et al. 2014).

The first one has been performed with Mark D. Humphries and shows
the relevance of using the model-based / model-free reinforcement lear-
ning computational framework to categorize navigation strategies in ro-
dents and their underlying neural substrates. The proposed computatio-
nal framework suggests that navigation strategies can be categorized as
model-based or model-free, depending on the usage of information ra-
ther than on the type of information (e.g. cue versus place) as previous
taxonomies propose. It moreover proposes that the Ventral Striatum (VS)
participates to the model-building part of the involved computational pro-
cesses.

The second one presents the work of PhD student Florian Lesaint and
shows that a computational model for the coordination of MB and MF RL
enables to reproduce inter-individual behavioral and neurophysiological
differences observed in rats called sign-trackers and goal-trackers in a Pav-
lovian conditioning paradigm. The simulations suggest that the behavior
of both types of animals is the result of a weighted sum of MB and MF
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learning systems, with sign-trackers’ behavior relying on a stronger weigh-
ting of the MF system while goal-trackers’ behavior can be reproduced by
a stronger weighting of the MB system. The model also explains why
learning in goal-trackers has been experimentally shown to be dopamine-
independent while this is not the case in sign-trackers.

2.1 Parallel navigation strategies

2.1.1 Khamassi and Humphries (2012) Frontiers in Behavioral Neuros-
cience
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Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free
(cue-driven) strategies; behavior in operant conditioning research is often organized into
goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one
powerful theory for distinct forms of learning during instrumental conditioning, namely
model-based (maintaining a representation of the world) and model-free (reacting to
immediate stimuli) learning algorithms. We extend these lines of argument to propose
an alternative taxonomy for spatial navigation, showing how various previously identified
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identifying “model-free” learning with dorsolateral striatum and “model-based” learning
with dorsomedial striatum could reconcile numerous conflicting results in the spatial
navigation literature. From this perspective, we further propose that the ventral striatum
plays key roles in the model-building process. We propose that the core of the ventral
striatum is positioned to learn the probability of action selection for every transition
between states of the world. We further review suggestions that the ventral striatal core
and shell are positioned to act as “critics” contributing to the computation of a reward
prediction error for model-free and model-based systems, respectively.
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1. INTRODUCTION
A vast morass of neuroscience data addresses the problem of
how voluntary behavior is underpinned by the anatomical and
physiological substrates of the forebrain. Principles or frame-
works to organize this data are essential. A consensus is growing
around the potentially useful organizing principle that we can
make a division of the forebrain striatum into three domains
on both anatomical (Joel and Weiner, 1994, 2000; Voorn et al.,
2004) and functional (Yin and Knowlton, 2006; Yin et al., 2008;
Bornstein and Daw, 2011; Ito and Doya, 2011; van der Meer et al.,
2012) grounds. From this “striatal eye-view” we can make sense
of the wider cortical, hippocampal, amygdala, and basal gan-
glia networks in which they sit, and the role of these networks
in different forms of voluntary behavior. Both the spatial nav-
igation and instrumental conditioning literatures have adopted
this perspective, recognizing the functional division of striatum
into dorso-lateral (DLS), dorso-medial (DMS), and ventral stria-
tum (VS) 1, belonging to different parallel cortico-basal ganglia
loops (Alexander et al., 1990; Middleton and Strick, 2000), with
each striatal domain having established functional roles within
those broader behavioral distinctions. How do these functional

1We use VS throughout, rather than nucleus accumbens, to emphasize the con-
tiguous nature of the striatum through its dorsolateral to ventro-medial extent
(Voorn et al., 2004; Humphries and Prescott, 2010).

distinctions map between the two literatures? And what might we
learn by comparing the two?

While some links have been drawn between the approaches
of the two literatures (Redish, 1999; Yin et al., 2004, 2008;
Khamassi, 2007), their primary theories for the strategies under-
pinning behavior are, we suggest, orthogonal: the conditioning
literature distinguishes goal-directed and habitual behavior in a
task, whereas the navigation literature distinguishes place and
response strategies for solving a task. However, there is mount-
ing evidence that the place/response distinction is unable to
account for the effects of lesions on navigation behavior. Our
main hypothesis is that strategies for navigation, similar to strate-
gies for instrumental conditioning (Daw et al., 2005), can be
reconciled as either model-free or model-based—we define these
terms below. At root, the key distinction is that it is the use
of information in building a representation of the world, rather
than the type of information about the world, that defines the
different computational processes and their substrates in the
striatum. We argue that explicitly identifying the DLS as a cen-
tral substrate for model-free learning and expression, and the
DMS as a central substrate for model-based learning and expres-
sion (Yin and Knowlton, 2006; Thorn et al., 2010; Bornstein
and Daw, 2011; van der Meer et al., 2012) can help rec-
oncile numerous conflicting results in the spatial navigation
literature.
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With this hypothesis in hand, we can see how work on spatial
navigation gives us a second hypothesis, useful to understanding
instrumental conditioning. We propose that the VS is a central
substrate—in collaboration with the hippocampus—for a collec-
tion of functions that we informally term the “model-builder”. On
the one hand, the core of the VS acting as the locus of actions
necessary to build a model; and on the other hand the shell of
the VS acting to evaluate predicted and achieved outcomes in the
model. These are clearly not the only roles of the multi-faceted
VS (Humphries and Prescott, 2010); nonetheless, they may prove
a further useful organizing principle.

With this sketch in mind, we address first the different forms
of behavioral strategies that have separately been identified in the
spatial navigation and instrumental conditioning literatures. We
take a striatal-centric view here as an organizing principle, not
as a claim that striatal domains are exclusive substrates for dif-
ferent forms of learning and navigation. Each striatal domain is
one locus in a broader basal ganglia network that computes its
output using information gathered by the striatum (Houk and
Wise, 1995; Mink, 1996; Redgrave et al., 1999; Humphries et al.,
2006; Leblois et al., 2006; Girard et al., 2008); and each network
is in turn one locus in a broader basal ganglia-thalamo-cortical
loop. Nonetheless, the striatum’s consistent intrinsic microcir-
cuit across the dorsolateral to ventro-medial axis (Bolam et al.,
2006), its integration of cortical, thalamic, hippocampal, and
amygdala input, and its position as the primary target of the mid-
brain dopaminergic system, makes it a natural vantage point from
which to attempt to unify the disparate strands of navigation and
conditioning.

2. STRATEGY DISTINCTIONS IN SPATIAL NAVIGATION
2.1. TAXONOMY OF SPATIAL NAVIGATION FORMS
Evidence for different navigation strategies in the rat comes from
behavioral studies showing that they are able to rely on differ-
ent information to localize themselves in the environment and
to reach a certain location in space (Krech, 1932; Reynolds et al.,
1957; O’Keefe and Nadel, 1978). Existing classifications of naviga-
tion strategies (O’Keefe and Nadel, 1978; Gallistel, 1990; Trullier
et al., 1997; Redish, 1999; Franz and Mallot, 2000; Arleo and
Rondi-Reig, 2007) point out a series of criteria, some of them
overlapping, to differentiate navigation strategies: the type of
information required (sensory, proprioceptive, internal), the ref-
erence frame (egocentric vs. allocentric), the type of memory at
stake (procedural vs. declarative memory) and the time necessary
to acquire each strategy (place-based strategies generally being
more rapidly acquired than cue-guided strategies; Honzik, 1936;
O’Keefe and Nadel, 1978; Packard and McGaugh, 1992, 1996;
Redish, 1999). Moreover, it has been observed that in normal ani-
mals, a shift from a place strategy to a response strategy occurs
in the course of training (Packard, 1999). This has led to the
proposition of a strong distinction between two main categories
of strategies:

• Response strategies, where a reactive behavior results from
learning direct sensory-motor associations (like heading
toward a visual cue or making an egocentric turn at the cross-
roads of a maze). This category includes target-approaching,

guidance, cue-guided, and praxic 2 navigation, and can be
further elaborated in the form of a sequence or chaining of
Stimulus-Response (S-R) associations when new cues result
from the previous displacement (O’Keefe and Nadel, 1978;
Trullier et al., 1997; Arleo and Rondi-Reig, 2007).

• Place strategies, which rely on a spatial localization process,
and can imply a topological or metric map of the environ-
ment (Tolman, 1948)—the term map being defined by Gallistel
(1990) as “a record in the central nervous system of macro-
scopic geometric relations among surfaces in the environment
used to plan movements through the environment”.

2.2. SUBSTRATES IN THE STRIATUM
This strong strategy distinction has been mapped onto a strong
distinction in underlying neural systems. It has been found
that lesions of the hippocampal system impair place strate-
gies while sparing response strategies (Morris, 1981; Packard
et al., 1989; Devan and White, 1999). In contrast, lesions
of the DLS produce the opposite effect: impairing or reduc-
ing the expression of response strategies while sparing place
strategies (Potegal, 1972; Devan and White, 1999; Adams
et al., 2001; Packard and Knowlton, 2002; Martel et al.,
2007). Thus, it is common to speak of place and response
strategies as being, respectively, “hippocampus-dependent” and
“hippocampus-independent” (White and McDonald, 2002).
Some theories propose that the “hippocampus-dependent” sys-
tem expresses its output via the VS (Redish and Touretzky,
1997; Albertin et al., 2000; Arleo and Gerstner, 2000; Johnson
and Redish, 2007; Penner and Mizumori, 2012). Other studies
have also highlighted a role for the DMS in the “hippocampus-
dependent” system (Whishaw et al., 1987; Devan and White,
1999; Yin and Knowlton, 2004), by finding that lesions of the
DMS promote response strategies, implying the loss of place
strategies. The behavioral strategies are often equated directly
with learning systems: that is, separate systems that learn a partic-
ular cue-guided and/or place-guided set of strategies for a given
environment. However, the simple mapping between VS-DMS
vs. DLS onto place vs. response strategies is not consistent with
mounting evidence from lesion studies.

2.3. KNOWN PROBLEMS WITH TAXONOMY AND SUBSTRATES
Response strategies are not solely dependent on the DLS. Chang
and Gold (2004) reported that DLS-lesioned rats were only
unable to express a response strategy on a T-maze in the absence
of extra-maze cues; in cue-rich conditions the DLS-lesioned rats
did not differ from controls in their ratio of using response
or place strategies. Both Yin and Knowlton (2004) and De
Leonibus et al. (2011) also found no significant decrease in the
use of response strategies by DLS-lesioned rats running a T-maze.
Moreover, Botreau and Gisquet-Verrier (2010) not only replicated
this result but also ran a second separate cohort of DLS-lesioned
rats to confirm it; further, they showed that the DLS-lesioned
rats using a response strategy were really doing so: they con-
tinued to use that strategy to solve a new task on the T-maze.

2praxic normally refers to internally-generated sequences of movement
independent of position information.
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We conclude that the response learning system—including cue-
guided and praxic strategies—cannot be simply associated with
the DLS.

Place strategies are not solely dependent on the DMS. When
learning to navigate to a hidden platform in the Morris water
maze, rats with DMS lesions were able to learn the platform’s
location just as well as controls or DLS-lesioned rats, as indicated
by their similar escape latencies (Whishaw et al., 1987; Devan
and White, 1999); consistent impairment—shown by a lack of
improvement over trials—only occurred if the fornix-fimbria 3

was cut (Devan and White, 1999). Botreau and Gisquet-Verrier
(2010) reported that DMS-lesioned rats did not differ from con-
trols or DLS-lesioned rats in their ratio of using response and
place strategies in a probe test in the water-maze. We conclude
that the place learning system cannot be simply associated with
the DMS.

The precise role of VS in particular navigation strategies is
even less clear (see Humphries and Prescott, 2010; Penner and
Mizumori, 2012 for recent reviews). VS lesions impair place-
based learning (Sutherland and Rodriguez, 1989; Ploeger et al.,
1994; Setlow and McGaugh, 1998; Albertin et al., 2000). For
instance, lesions of the medial shell of the VS impair the rat in
learning and recalling the location of sites associated with larger
rewards (Albertin et al., 2000). However, more recent studies
reveal that VS function may not be restricted to place strategies.
For instance, De Leonibus et al. (2005) report that VS lesions
impair the acquisition of both allocentric and egocentric strate-
gies in a task requiring the detection of a spatial change in the
configuration of four objects placed in an arena.

The clean distinction between rapidly learnt place strate-
gies and slowly learnt response strategies is also problematic.
Several authors have reported rapidly learned response strate-
gies (Pych et al., 2005; see Willingham (1998) and Hartley and
Burgess (2005) for reviews including rodent data). Conversely,
while place strategies have most of the time been found highly
flexible and more rapidly acquired than response strategies
(Packard and McGaugh, 1996), after extensive training place
strategies can also become inflexible and persist in leading
animals toward the previous goal location after a reversal, as
if not relying on a cognitive map (Hannesson and Skelton,
1998; see also rat behavioral data in a Y-maze described in
Khamassi, 2007).

These data suggest that the simple distinction between place
vs. response strategies might be too broad to explain the dif-
ferent roles of VS-DMS vs. DLS in navigation. Several authors
have highlighted that this classification of navigation strategies
lends too much importance to the type of information involved
(i.e., place vs. cue) and thus to the spatial localization process
(Trullier et al., 1997; Sutherland and Hamilton, 2004). We suggest
that considering the type of learning involved—and measurable
in terms of behavioral flexibility—might better account for the
specific involvement of VS, DMS, or DLS in navigation. To see

3This fiber pathway brings hippocampal information to the VS, but is also
the source of brainstem inputs to the hippocampus, so may disrupt either
transmission of place information by hippocampus or the encoding of place
in hippocampus.

this, let us first consider the taxonomy of learning in instrumental
conditioning.

3. STRATEGY DISTINCTIONS IN INSTRUMENTAL
CONDITIONING

3.1. GOAL-DIRECTED BEHAVIORS vs. HABITS
A long line of conditioning research has elaborated two oper-
ationally defined forms of instrumental behavior in the rat:
goal-directed in which the animal is able to modify its behavior
in response to changes in outcome and habitual in which the
animal does not respond to changes in outcome (it perseveres
with its previous action— hence “habit”) (Dickinson, 1985; Yin
et al., 2008). This definition is “operational” because it can only be
safely defined in retrospect— i.e., after extinction. Experimenters
typically use a test in extinction to discriminate between these
two behavioral modes after a reward devaluation or change in
contingency between behavior and reward. If during this extinc-
tion test the animal quickly stops producing the now irrelevant
conditioned response (e.g., pressing a lever) it is said to be goal-
directed; if the animal persists it is said to be habitual (Balleine and
Dickinson, 1998). The inference is then drawn that goal-directed
animals have access to action-outcome contingencies to guide
behavioral choice, and that changes in outcome consequently
change action choice, whereas habitual animals make behavioral
choices based on S-R pairings (Dickinson, 1985).

3.2. SUBSTRATE EVIDENCE FOR DMS’ GOAL-DIRECTED AND DLS’
HABITUAL ROLES IN LEARNING

During the course of a conditioning task animals’ behavior pro-
gressively shifts from expressing awareness of action-outcome
contingencies to expressing habits. In particular, after extensive
training or overtraining animals’ behavior is most often habitual
(Yin et al., 2004). It turns out that this natural progressive shift can
be perturbed by lesions of different parts of the striatum, point-
ing to a possible double-dissociation between DLS and DMS: the
former being required for acquisition and maintenance of habits,
and the latter being required for learning and expression of goal-
directed behaviors (Balleine, 2005; Yin and Knowlton, 2006; Yin
et al., 2008).

There is a strong consensus that the dorsolateral striatum is
necessary for habitual behavior: lesions of either the DLS (Yin
et al., 2004), or disruption of dopamine signaling within it (Faure
et al., 2005), prevent habit formation in extinction. Animals
with such lesions thus appear to maintain goal-directed behav-
ior throughout a task. Correspondingly, there is a re-organization
of the DLS’ single neuron activity during habit formation (Barnes
et al., 2005; Tang et al., 2007; Kimchi et al., 2009). Consequently,
the dorsolateral striatum has been proposed as central to the
learning of habits (Yin and Knowlton, 2006; Yin et al., 2008).

There is a strong consensus that the dorsomedial striatum is
necessary for goal-directed behavior: lesions of the DMS (Yin
et al., 2005b), or blockade of NMDA receptors within it (Yin
et al., 2005a), putatively preventing synaptic plasticity, prevent
sensitivity to devaluation or contingency changes in extinction.
Animals with such lesions thus appear to obtain habitual behav-
ior from the outset. Correspondingly, there is a re-organization of
the DMS’ single neuron activity after changes in action-outcome
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contingencies (Kimchi and Laubach, 2009; Kimchi et al., 2009).
Consequently, the dorsomedial striatum has been proposed as
central to goal-directed learning (Yin and Knowlton, 2006; Yin
et al., 2008).

A caveat is that the anterior part of DMS (aDMS) may escape
from this functional scheme. To our knowledge, only the pos-
terior DMS (pDMS) has been clearly shown as involved in the
acquisition of goal-directed behaviors (Yin et al., 2005b) and
in place-based navigation (Yin and Knowlton, 2004). Lesions of
aDMS do not affect either of these processes. They even increase
the number of rats classified as place-responders both during
initial and late phases of learning (Yin and Knowlton, 2004),
and seem to increase the sensitivity to contingency degradation
(compared to sham-lesioned rats) (Yin et al., 2005b). Ragozzino
and Choi (2004) showed that inactivating aDMS does not affect
learning of a T-maze task or acquisition of a place strategy; but
inactivation during reversal learning did affect performance, thus
suggesting that aDMS is involved in switching between strate-
gies, not in learning per se. Contrary to these data, Moussa et al.
(2011) showed that a rat’s impairment in learning an alternating-
arm T-maze task correlated with volume of DMS damage, not
with the location of the lesion. Nonetheless, it remains possi-
ble that the aDMS is not part of the goal-directed or habitual
systems.

3.3. THE VENTRAL STRIATUM IN CONDITIONING
While dorsal parts of the striatum are important for the expres-
sion of learned S-R contingencies, their acquisition may require
intact VS (Atallah et al., 2007). The VS is indeed located at a
crossroads between limbic and motor structures which places
it in a privileged position to integrate reward, motivation, and
action (Mogenson et al., 1980; Groenewegen et al., 1996). In the
instrumental conditioning literature, the VS is also considered
particularly important for Pavlovian influences over voluntary
behavior (Balleine and Killcross, 1994; Dayan and Balleine, 2002;
Yin et al., 2008; van der Meer and Redish, 2011). It has been
attributed roles as both a locus of Pavlovian conditioning—
learning to associate outcomes to different stimuli or states—and
the locus of Pavlovian-instrumental transfer—the use of those
learnt stimulus-outcome associations to motivate the learning
and expression of instrumental actions in the presence of those
stimuli (Yin et al., 2008). Further, while the functional subdivi-
sion of VS into core and shell might be oversimplified (Heimer
et al., 1997; Ikemoto, 2002; Voorn et al., 2004; Humphries and
Prescott, 2010), it may account for distinct influences of reward
values on habitual performance and goal-directed behavior,
respectively. For instance, Corbit and Balleine (2011) found that
shell lesions impair outcome-specific [putatively goal-directed
as noted by Bornstein and Daw (2011)] Pavlovian-instrumental
transfer while core lesions impair general (putatively habitual)
Pavlovian-instrumental transfer.

These data suggest that the differences in the learning pro-
cess controlling the progressive influence of rewards on actions
may determine the functional roles of striatal domains in var-
ious behavioral strategies: DLS being involved in learning and
expression of habitual behaviors; DMS being involved in learn-
ing and expression of goal-directed behaviors; VS controlling the

influence of reward values on these two processes during learning.
Computational work has brought great advances in formalizing
the differences between these learning processes.

3.4. MODEL-BASED vs. MODEL-FREE LEARNING PROCESSES
Machine-learning research into formal algorithms for reinforce-
ment learning has developed a basic distinction between two
forms of such algorithms. Common to both is the idea that we
can represent the world as a set of states S, that the agent could
take one of a set of actions A in each state (including no action
at all), and that the outcome of taking action a in state s is the
next state s′ and a possible reward r (Sutton and Barto, 1998).
Distinguishing the two is whether or not the dependencies in the
world representation are explicitly modeled (Figure 1).

In the model-free forms of algorithm, each state has associ-
ated with it a distribution of the values of each possible action,
learnt iteratively using a prediction error to minimize the dif-
ference between the values of actions in consecutive states. This
set includes most well-known forms of reinforcement learn-
ing algorithms—including Temporal Difference (TD) learning,
Actor-Critic, and Q-Learning. Each state thus has an associated
distribution of cached action-values Q(s, a) over all available
actions. The action to execute is then simply chosen based on this
cached value distribution. Such behavior is called reactive in that
it is state-driven—e.g., stimulus-driven—and does not rely on the
inference of possible outcomes of the action.

In the model-based forms of algorithm, direct use is made
of the state information about the world. With each state s is
still associated a reward r, each action is still assigned a value
Q(s, a), and action selection is based on those values. However,
model-based algorithms explicitly store the state transitions after
each action: they can then simulate off-line the consequence
of action choices on transitions between states before choosing
the next action appropriately (Sutton and Barto, 1998; Johnson
and Redish, 2005). Thus in this case the agent will infer pos-
sible future outcomes of its decisions before acting. In simple
decision-making tasks in which each action leads to a different
state, such a process is naturally captured by a branching decision
tree (Figure 1); in more natural situations states may be re-visited
during ongoing behavior, and thus the transitions between states
may have periodic structure. Sophisticated model-based algo-
rithms explicitly compute a separate transition matrix T(s′, a, s)
for the probability of ending up in each next state s′, given the
current state s and each possible action choice a in A (Daw et al.,
2005, 2011; Glascher et al., 2010).

Daw et al. (2005) proposed the formal mapping that goal-
directed behavior results from model-based learning and that
habitual behavior results from model-free learning 4. They fur-
ther proposed that both learning systems operate in parallel, with

4They used a model-based algorithm that explicitly computed the transi-
tion matrix. It seems feasible that simpler model-based algorithms, without
explicit computation of the transition matrix, could also equally account for
the sensitivity to devaluation and contingency changes in goal-directed learn-
ing, as their repeated internal simulation after such outcome manipulations
would result in more rapid changes in overt behavior. To our knowledge, no
one has examined the possibility. Intriguingly, Johnson and Redish (2005)
showed that such an internal-simulation model, emulating hippocampal
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FIGURE 1 | Model-based and model-free learning and controllers.

Model-based and model-free controllers represent the world as a set of
states S1 . . . Sm and actions A1 . . . AN within those states. They learn the
values of each action in a given state, here indicated by the thickness of each
circle, based on available rewards R. What distinguishes them is their
representation of the links between those states. A model-based controller
(centre) also represents the transitions between states and the action(s) that
cause the transition (indicated by the multiple arrows). For a known current
state, specified by current sensory information, the model can be traversed
to find the likely outcome of simulated actions in each state—one such
trajectory is given by the orange arrows. Each trajectory can then be used to
update the predicted value of each action. Finally, after a number of
trajectories through the model, an overt action is selected based on their

updated values in the current state. A model-free controller (right) vastly
reduces the representational and computational demands by essentially
externalizing the world-model. Sensory information specifies the state at
time t1; an action is chosen based on its current value. Updated sensory
information resulting from that action then specifies the state at time t2.
Learning is then based on the prediction error between expected and
resulting values of the action taken at t1. A model-free controller can also be
trained by a model-based controller, and thus represent an abstraction of that
model. Irrespective of whether model-free or model-based, a common set of
information needs to be learnt to construct and use the controller (left) to
specify the set of current relevant states in the world; to learn actions
available within them and the transitions those actions cause; and to learn
the reward function—which state(s) contain reward(s).

the system chosen for current behavioral control based on hav-
ing the least uncertainty in its prediction of the outcome. Using
stylized examples of simple conditioning tasks, they showed how
this mapping can explain the sensitivity to devaluation and con-
tingency degradation in extinction early in training when the
model-based controller is dominant, and how that sensitivity is
lost when the model-free controller becomes dominant with over-
training. The underlying explanation is that the model-based
controller directly represents action-outcome contingencies, and
is thus able to quickly propagate changes in reward through the
world-model; by contrast, the model-free controller, while able
to reduce the uncertainty in its predictions with over-training,
requires further extensive training for the change in reward to
propagate through the independent state-action representations.
This formal mapping onto computational substrates has proven
a very useful and fruitful guide to the understanding of these
operationally-defined forms of behavior and their inferred learn-
ing systems (Ito and Doya, 2011; Bornstein and Daw, 2011;
van der Meer et al., 2012).

This computational mapping is also assumed to follow the
same substrate mapping (Daw et al., 2005; Bornstein and Daw,

replay of previous trajectories through a maze, could indeed reduce the onset
of habit-like stereotypy in the paths taken through the maze.

2011; Ito and Doya, 2011). Thus, as DLS is central to the
habit-learning system, so, by extension, it is considered central
to the model-free learning system in instrumental conditioning
(Daw et al., 2005). Similarly, as DMS is central to the goal-
directed system, it is thus natural to propose that DMS is central
to the model-based learning system in instrumental conditioning
(Bornstein and Daw, 2011).

4. UNIFICATION: NAVIGATION STRATEGIES ARE
MODEL-FREE OR MODEL-BASED

Superficially, the model-free/model-based dichotomy strongly
resembles the dichotomous taxonomy defined in the spatial
navigation literature between flexible map-based place strate-
gies and automatic map-free response strategies. However, the
two approaches are orthogonal: one is defined by information
use in a world representation (model-free/based), the other by
information type (place/cue).

Our hypothesis is that we may similarly distinguish model-
free and model-based navigation strategies by their use of
information (Figure 2), no matter if the state is represented
by a spatial location or a visual stimulus. Within these two
top-level strategies, we may further differentiate strategies
defined by their reference frame and modality of processed
stimuli:
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Ac�on selec�on process

Inflexible, slow to acquire
(S-R associa�ons)

Flexible, rapidly learned
(cogni�ve graph)

Strategy
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Place Place strategies

Cue Response strategies

A

Ac�on selec�on process

Inflexible, slow to acquire
(model-free)
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Strategy
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Place Place strategies
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Response strategies
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FIGURE 2 | New taxonomy of navigation strategies based on

model-based/model-free reinforcement learning. (A) Previous
taxonomies highlight the distinction between flexible rapidly acquired
map-based strategies and inflexible slowly acquired S-R strategies.
(B) New taxonomy highlighting model-free and model-based place
strategies as well as model-free and model-based response strategies.
PRTR, place-recognition triggered response strategies as classified by
Trullier et al. (1997).

• egocentric reference frame, relying on idiothetic (praxic), or
allothetic (cue-guided) stimuli;

• allocentric reference frame, relying on idiothetic and/or allo-
thetic stimuli (places).

Our hypothesis thus naturally extends to proposals for the striatal
substrates of model-free and model-based strategies in naviga-
tion: that the DLS is central to the model-free navigation system
and DMS is central to the model-based navigation system.

This combined conceptual (model-free vs. model-based) and
substrate (DLS vs DMS) hypothesis raises four implications that
each explain some troubling or inconsistent data for the place vs.
response dichotomy in navigation. First, that we can conceive of a
model-free strategy based on place information alone supported
by the DLS. Second, that, correspondingly, we can conceive of a
model-based “response” strategy based on cues alone supported
by the DMS. Third, that, following the model-based/model-free
mapping in conditioning (Daw et al., 2005), model-based and
model-free control of navigation could be distinguished behav-
iorally by whether or not the animal reacts to changes in the
value or contingencies of rewards, and by lesions to the DLS and
DMS. Fourth, that both place and cue information should be
available to both the model-based and model-free navigation sys-
tems, and thus should be detectable within both the DMS and
DLS. We consider each of these in turn, then discuss the key
role of the hippocampal formation as the likely source of state
information.

4.1. DLS AND (MODEL-FREE) PLACE STRATEGIES
Model-free navigation strategies based on place information
alone have been called “Place-Recognition Triggered Response
(PRTR)” strategies by Trullier et al. (1997) who emphasized that

such a strategy produces inflexible behavior because it needs to re-
learn sequences of place-response associations in case of a change
in goal location. This type of learning was prominent in early
models of hippocampus-dependent navigation (Burgess et al.,
1994; Brown and Sharp, 1995; Arleo and Gerstner, 2000; Foster
et al., 2000).

Following the same DLS vs. DMS double-dissociation logic as
was used for goal-directed and habitual learning then, if DMS
is the substrate for place strategies, lesions of the DMS should
impair place strategies and lesions of the DLS should not affect
them. However, there is evidence against this dissociation and
indirect evidence in favor of a place strategy supported by DLS.
Lesions of the DMS slow but do not prevent the learning of a
hidden platform in a water maze, which putatively requires a
place-based strategy (Devan and White, 1999). More compelling,
Botreau and Gisquet-Verrier (2010) tested control, DLS-lesioned,
and DMS-lesioned rats learning a hidden platform water maze
task; after learning, a probe trial was used where the rats were
started in a different location for the first time: they found that
rats were divided into the same ratio of “place” and “response”
groups on the probe trial irrespective of whether they were con-
trol, DLS-lesioned, or DMS-lesioned rats. Recently, Jacobson et al.
(2012) tested rats on an alternating strategy plus-maze, which
required the use of either a response-based or place-based strat-
egy on each trial as signaled by an extra-maze cue: they found
that post-training DLS lesions impaired use of both the response
and place strategies. Thus, there is evidence that intact DLS is
important for using place strategies.

4.2. DMS AND (MODEL-BASED) RESPONSE STRATEGIES
The proposal of a model-based response strategy is just the claim
that we can conceive of states in a spatial navigation task as
being defined by the position of intra- or extra-maze cues rel-
ative to the animal. In such a model, different states would not
necessarily correspond to different spatial position. Rather, we
can conceive of an example task where distinct states s1 and s2

correspond to the same spatial location and differ on whether
a light is turned on or off. Then a model-based system can
learn the transitions between these states and search the model
to proceed with action selection—e.g., reward may be delivered
only when the light is on. Thus, whereas others have explic-
itly identified a response strategy—e.g., a strategy guided by the
light—with habitual behavior (e.g., Yin and Knowlton, 2004), we
are proposing that the two are orthogonal.

Again we may follow the same double-dissociation logic: if
DLS is the sole substrate for response strategies, then lesions of
the DLS should impair response strategies and lesions of the DMS
should not affect them. There is evidence against this dissoci-
ation, and in favor of DMS involvement in response-strategies.
As noted in section 2.3, lesions of the DLS do not impair the
use of response strategies on probe trials, suggesting that intact
DMS is sufficient to support the use of response strategies (Chang
and Gold, 2004; Yin and Knowlton, 2004; Botreau and Gisquet-
Verrier, 2010; De Leonibus et al., 2011). Chang and Gold (2004)
further reported that the DLS lesions only effectively impaired the
use of response strategies when there were no extra-maze cues.
This suggests that model-based (and putatively DMS-based) use
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of cues was sufficient to maintain a response strategy in the cue-
rich conditions; but that a model-free (and putatively DLS-based)
praxic response strategy was necessary in the cue-deficient condi-
tions (that is, in the absence of sufficient cues, learning a sequence
of turns was required).

Moussa et al. (2011) tested the effects of DLS and DMS lesions
on the ability of rats to learn a return-arm T-maze in which the
rats were required to alternate their choice of visited arm (left or
right) to obtain reward, but were free to run at their own pace.
The task is a seemingly simple response strategy but requires a
minimal model to achieve rewards above chance level. At the
choice point of the T-maze, a model-free learning system would
assign equal value to turning left or turning right as both would
be rewarded on (approximately) half the visits. To achieve better,
a minimal model would be needed to at least link the previ-
ous choice of arm to the current choice, chaining at least two
(state, action) pairs in a loop—which corresponds to a model-
based process. Moussa et al. (2011) found that DMS lesions, and
not DLS lesions, impaired learning of this task irrespective of
the amount of training. Their data thus suggest a model-based
response strategy role for DMS.

4.3. VALUE-SENSITIVITY IN NAVIGATION AND ITS ALTERATION BY
DMS BUT NOT DLS LESIONS

If the prediction of Daw et al. (2005) is correct, then model-based
and model-free control of action can be distinguished behav-
iorally by whether or not the animal reacts to changes in the value
or contingencies of rewards. Thus, under our hypothesis, such
sensitivity to value or contingency changes in spatial navigation
should be reflected in both place and response strategies if using
a model-based controller and in neither place nor response strat-
egy if using a model-free controller. Similar to the goal-directed to
habitual transfer observed in instrumental conditioning (Yin and
Knowlton, 2006), we might expect that this outcome sensitivity
would disappear with over-training on a sufficiently determinis-
tic task, reflecting the transfer from a model-based to a model-free
controller for navigation. Also similarly, our hypothesis is that this
transfer is from the DMS to the DLS-based systems; so lesions
to those systems should differentially affect how changes in value
subsequently change behavior.

Whereas above we reviewed evidence in favor of their breaking
the place vs response dichotomy, here we consider evidence more
directly in favor of the association of DMS with a model-based
system and DLS with a model-free system. De Leonibus et al.
(2011) recently provided intriguing evidence from devaluation in
favor of both (1) the existence of model-based and model-free
response strategies and (2) their dissociable modulation by DMS
and DLS lesions. Further, Moussa et al. (2011) provided evidence
from extinction during navigation for both. We consider these
studies in turn.

Figures 3A,B outlines De Leonibus et al. (2011) dual-solution
plus-maze task and experimental design. Key to the design was
separately training “early” and “late” groups of rats for, respec-
tively, 26 and 61 days before the first probe trial, which established
the strategy they were using to locate the reward (Figure 3B).
Both “early” and “late” groups preferentially used the response
strategy on the first probe trial (Figures 3C,F), replicating earlier

results (Devan and White, 1999; Yin and Knowlton, 2004).
However, the response strategy sub-group for both “early” and
“late” were then split, with approximately half receiving a devalu-
ation regime for the food reward in the maze. On the subsequent
second probe trial, only the “early” group showed awareness of
the devaluation, through a significant drop in their use of a
response strategy (Figure 3D). There was no change in the use
of response strategy by the devalued “late” group (Figure 3G).
Thus, while both “early” and “late” groups of rats preferentially
used a response strategy, only the early group modified use of
that strategy after change in the value of reward, evidence of a dis-
tinction between a model-based and model-free form of response
strategy.

De Leonibus et al. (2011) then separately tested the effects
of pre-training sham and DMS lesions on a new “early” group,
and of pre-training sham and DLS lesions on a new “late” group.
They found that the DMS lesion prevented the devaluation from
changing the proportion of “early” group rats using a response
strategy (Figure 3E). This is consistent with the loss of DMS pre-
venting value updates from propagating through the model-based
system. Conversely, they found that the DLS lesion now permit-
ted the devaluation to change the proportion of “late” group rats
using a response strategy (Figure 3H). This is consistent with the
loss of DLS preventing transfer to the model-free system, and
subsequently value updates continued to propagate through the
model-based system. Together, these results support the double
dissociation of DMS as part of a model-based and DLS as part of
a model-free system for navigation.

Moussa et al. (2011) found results consistent with this pic-
ture from rats tested in extinction on a navigation task. As noted
above, they tested rats on an alternating arm T-maze task, thus
requiring rats to maintain a memory of the previously visited
arm. As the rats ran at their own pace, Moussa et al. (2011) were
unusually also able to test the effects of extinction on navigation
tasks by leaving the arms unbaited in the final 10-min session.
They found that control rats did decrease their laps of the maze
over the 10-min period, so that extinction effects were detectable.
Moreover, though DLS lesions had no effect on learning the task,
they did lead to significantly faster extinction of maze running.
These data are thus consistent with lesions of DLS removing the
putative model-free navigation substrate, thus leaving intact the
putative model-based substrate in DMS that was subsequently
faster to respond to the outcome devaluation.

4.4. PLACE AND CUE INFORMATION IS AVAILABLE TO BOTH
MODEL-BASED AND MODEL-FREE SYSTEMS

If the DLS and DMS are indeed, respectively, substrates for
model-free and model-based navigation systems, and not the
response and place systems, then cue- and place-based correlates
of movement should appear in the activity of both.

DLS activity is consistent with the development of cue-based
correlates of movement. Jog et al. (1999) showed that develop-
ing DLS activity over the course of a T-maze task stabilized to
just the start and end positions in the maze once the rats had
reached operationally “habitual” behavior. van der Meer et al.
(2010) showed that decoding of position information from dorsal
striatal activity consistently improved over experience, and that its

Frontiers in Behavioral Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 79 | 7



Khamassi and Humphries Model-free/model-based navigation strategies

FIGURE 3 | Evidence for model-based and model-free navigation in data

reported by De Leonibus et al. (2011). (A) Dual-solution plus-maze task
used by De Leonibus et al. (2011). On training trials, rats always start from
the same arm (south) and have to learn the location of the reward in a
consistently baited arm (e.g., east). After training, a probe trial starting in the
opposite arm is used to ascertain the rat’s strategy for locating the reward
(a food pellet): a “response” strategy based on direction of turn, or a “place”
strategy based on location of reward with respect to extra-maze cues.
(B) The experimental design of De Leonibus et al. (2011). Rats were in two
broad categories, designated “early” and “late” with respect to the first
probe trial (day 27 or day 62). All “response” rats from that trial were taken
forward to the second stage, and split approximately evenly into devaluation
and control (value) groups. Both groups had free access to food pellet reward
for 15 min immediately after training for each of five days; the devaluation
group received an injection of LiCl immediately afterwards, the control group

received a saline injection. The devaluation group developed a taste aversion
to the pellets, but no reduction in completed trials (De Leonibus et al., 2011).
(C–E): data from “early” group; (F–H) data from the “late” group.
(C) Proportion of “early” group rats using each strategy on first probe trial.
(D) From the second probe trial, the proportion of rats continuing to use a
“response” strategy after devaluation compared to controls. (E) From the
second probe trial, the proportion of rats continuing to use a response
strategy after devaluation and pre-training DMS lesion, compared to controls
for both. (F) Proportion of “late” group rats using each strategy on first probe
trial. (G) From the second probe trial, the proportion of “late” group rats
continuing to use a “response” strategy after devaluation, compared to
controls. (H) From the second probe trial, the proportion of rats continuing to
use a response strategy after devaluation and pre-training DLS lesion,
compared to controls for both. An ∗ indicates a significant difference of at
least p < 0.05—see De Leonibus et al. (2011) for details.

activity peaked only at choice points in the maze, consistent with
a slow learning model-free system that learnt to associate differ-
entiable intra-maze states with actions (Graybiel, 1998; Yin and
Knowlton, 2006). DLS activity is also selectively correlated with
position: Schmitzer-Torbert and Redish (2008) found that dorso-
lateral striatal electrophysiological activity correlated with place
when the task required knowledge of spatial relationships, but no
correlation when the task was non-spatial.

DMS is clearly in receipt of place information in that activity
is correlated with actions or rewards in particular locations, but
not correlated with the location alone (Wiener, 1993; Berke et al.,
2009). Furthermore, lesions of posterior DMS prevent execution

of place-based strategies (Yin and Knowlton, 2004) as does loss of
dopamine from that region (Lex et al., 2011). Its input from the
prefrontal cortex (PFC), particularly medial PFC which receives
considerable direct input from the CA1 place cells, is one of the
most likely sources of place information; there is clear evidence
that medial PFC supports place representation [e.g., Hok et al.
(2005)]. Nonetheless, there is also evidence for DMS’ receipt of
cue-information. Devan and White (1999) reported that asym-
metric lesions (unilateral hippocampus and contralateral DMS)
produced mild retardation of acquisition of both cue-based and
place-based learning. Correspondingly, recording studies report
that the largest changes in DMS neural activity occur in the
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middle stages of learning during cue-guided (both with auditory
and tactile cues) navigation (Thorn et al., 2010).

4.5. HIPPOCAMPAL INPUT TO MODEL-BASED AND MODEL-FREE
SYSTEMS

For spatial navigation the primary candidate for generating the
states and the relationship between them is the hippocampal for-
mation. Although hippocampus has been largely associated with
spatial encoding (O’Keefe and Nadel, 1978), it could be more
broadly involved in learning (and planning in) a model or graph
of possible transitions between states, no matter if these states
are spatial or not (van der Meer et al., 2012). Consistent with
this, hippocampal place cells are also sensitive to non-spatial
information (e.g., the presence of a certain object or the color
of the walls), this non-spatial information modulating or re-
mapping the place representation (Wiener et al., 1989; Redish,
1999). Similarly, hippocampal place cells re-map on maze tasks
following a change of context, such as the change of rewarded
arm in a plus-maze (Smith and Mizumori, 2006). Thus, within
our proposal, the role of the hippocampus would be both to sup-
ply spatial information to a model-free system and to contribute
to a model-based system by building the model—in interaction
with the VS as argued later—and planning actions within this
model. This view is similar to ideas that the hippocampus pro-
vides contextual information to some aspects of learning such as
contextual fear conditioning (Rudy, 2009) and spatial planning
information to other aspects of learning (Banquet et al., 2005;

Hasselmo, 2005; Dollé et al., 2010; Martinet et al., 2011). It is also
similar to points made by Redish and Touretzky (1998) that one
can both store sequences and do location-recall in hippocampal
attractor networks without interfering with each other (see also
Redish, 1999).

Consequently, lesions of the hippocampus should affect both
model-free and model-based systems through loss of spatial
information, but transient interference with its activity should
affect only the model-based system through loss of the use of the
model. Figure 4 illustrates how our proposition may account for
the recent results obtained by Jadhav et al. (2012). In this study,
rats experienced a W-track spatial alternation task: they alternated
between “inbound” trials where they had to go to the center start-
ing from either the left or the right arm and “outbound” trials
where they had to go from the central arm to the arm (left or
right) that they did not visit on the previous trial (Figure 4A).
Outbound trials present a higher degree of difficulty in that they
require linking past experience—the previously experienced side
of the maze—with current location in order to make an appropri-
ate decision. Strikingly, lesion of the hippocampus impaired both
inbound and outbound learning (Kim and Frank, 2009) while
disruption of awake hippocampal replay only impaired outbound
learning (Jadhav et al., 2012).

We show on Figure 4B (resp. C) how a model-free (resp.
model-based) system dependent on hippocampal input could
explain the results. A model-free system learning the association
between a spatial state (i.e., left arm, right arm, or central arm)

A

B

C

FIGURE 4 | Model-based/model-free framework applied to a spatial

alternation task requiring both inbound and outbound learning.

(A) W-shaped maze experienced by rats, adapted from Kim and Frank (2009).
Hippocampal lesions impair both inbound and outbound learning (Kim and
Frank, 2009) while disruption of awake hippocampal replay only impairs

outbound learning (Jadhav et al., 2012). (B) A model-free system associating
places with actions can learn inbound trials but would face high uncertainty
during outbound trials. (C) A model-based system associating previous
transitions with actions can associate past experience with current location
and is thus able to learn both inbound and outbound trials.
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and an action would be able to learn inbound trials but not
outbound trials. This is because the “center” state is half of the
time followed by rewarded trials on the left and half of the
time followed by rewarded trials on the right, thus producing a
situation with high uncertainty. In contrast, a model-based sys-
tem learning to associate previous state transitions with actions
can solve both inbound and outbound trials (Figure 4C). Thus,
within our proposal, hippocampal lesions impair both inbound
and outbound learning because they suppress spatial information
required by both place-based model-free and model-based sys-
tems. By contrast, disruption of hippocampal awake replay would
impair only the model-based system, potentially by blocking the
storage of transitions in the model (Gupta et al., 2010), sparing
the model-free system to still learn inbound trials.

5. VENTRAL STRIATUM—MODEL BUILDER?
What, then, might be the role of the VS in model-free and model-
based navigation? Ventral striatal recordings and lesion studies
have provided strong evidence for an evaluative role, either as
part of the “critic” contributing to the calculation of the reward
prediction error (O’Doherty et al., 2004; Khamassi et al., 2008),
or as the locus for general Pavlovian-instrumental transfer where
rewarded stimuli act to motivate future action (Corbit et al., 2001;
Yin et al., 2008; Corbit and Balleine, 2011). The actor/critic archi-
tecture is a variant of the model-free reinforcement algorithms,
which conceptually splits the value learning and action selection
components (Sutton and Barto, 1998): the critic learns the value
of every state, and uses those values to compute the reward pre-
diction error after each state transition s to s′, given any reward
obtained; the prediction error is used by the actor to change
the probability of selecting each action in state s, thus reflecting
the outcome. The existing evidence that dorsal striatum supports
action selection while the VS supports stimulus-outcome asso-
ciation has led to proposals that they respectively subserve the
actor and critic roles (Joel et al., 2002; O’Doherty et al., 2004;
Khamassi et al., 2005, 2008; Daw et al., 2011; van der Meer and
Redish, 2011). The primary candidate for transmitting the reward
prediction error is the phasic activity of the midbrain dopamine
neurons (Schultz et al., 1997; Bayer and Glimcher, 2005; Cohen
et al., 2012); further strengthening the proposed identification of
the VS with the critic is that it is the major source of inputs to
the dopamine neurons (Watabe-Uchida et al., 2012) that in turn
project to the dorsal striatum (Maurin et al., 1999; Haber et al.,
2000) (see Figure 6).

We sketch an account here that finesses this view, extending
previous proposals (Yin et al., 2008; Bornstein and Daw, 2011)
for separately considering the core and shell. We first argue that
in addition to being useful for the “critic” in model-free pro-
cesses, reward information encoded by the VS also contributes
to model-based processes such as the building of a reward func-
tion. Second, from the perspective of navigation tasks, we find
evidence that the core of the VS is a key locus for learning the
correct sequences of actions in a task. A useful consequence of
considering this proposed model-based/model-free dichotomy in
both conditioning and navigation is that, whereas the core of
the VS is often ascribed a purely evaluative role in the con-
ditioning literature (Yin and Knowlton, 2006; Yin et al., 2008;

Bornstein and Daw, 2011), the literature on core involvement
in navigation clearly points to a major role in the direct con-
trol of locomotion. For the shell of the VS, we discuss further
the suggestion that it is a key locus of the critic that signals the
reward prediction error for the model-based system (Bornstein
and Daw, 2011) 5; we also discuss the possibility that it acts
as a critic that signals a state prediction error in the predicted
and actual state transitions. As these functions of the core and
shell are essential for correct assemblage of the “model” of
the world, we informally label the VS as part of the “model-
builder”.

5.1. VENTRAL STRIATUM AS SUBSTRATE FOR BUILDING THE REWARD
FUNCTION

In the machine learning literature, one of the requirements for
model-based algorithms is to build the so-called “reward func-
tion” which relates states to rewards [see Figure 1; (Sutton and
Barto, 1998)]. In spatial tasks, this consists of memorizing the
places in which reward is found. This is crucial information
for deliberative decision-making where inference of future out-
comes within the estimated world model—e.g., the tree-search
process—requires reaching a terminal state where a reward can
be found. The reward function is also important for off-line
simulations within the world model to consolidate trajectories
leading to reward—see for instance the DynaQ algorithm (Sutton
and Barto, 1998). Indeed, such mental simulations should be
informed when the agent has virtually reached a state contain-
ing a reward, although the agent is not necessarily physically
experiencing such reward.

Interestingly, sequences of hippocampal place cell activations
that occur while an animal is running a track in search for reward
are known to be replayed during subsequent sleep (Euston et al.,
2007) or during awake resting periods (Foster and Wilson, 2006;
Gupta et al., 2010). These replay events have been hypothesized to
participate in the consolidation of relevant behavioral sequences
that lead to reward. Of particular interest for this review are recent
reports of off-line synchronous replay between ventral striatal and
hippocampal activity (Lansink et al., 2009). Lansink et al. (2009)
found pairs of hippocampus—VS neurons that were reactivated
during awake fast forward replay preferentially if: the hippocam-
pal cell coded for space, the ventral striatal cell coded for reward,
and the hippocampal cell was activated slightly before the ventral
striatal cell during the task. The reactivation occurred 10 times
faster than the sequence of activity during the task execution, pos-
sibly complying with physiologically plausible eligibility timing.
The ventral striatal cells were predominantly in the core—but
also included the shell. By illustrating possible neural mecha-
nisms for the off-line consolidation of place-reward associations,
these results provide striking examples of activity that could
underly the building of the “reward function”, which relates states
to rewards.

5This relates to the notion, in the machine learning literature, that some
model-based algorithms such as Dyna-Q can update their state-action values
through a reward prediction error (RPE), although other model-based algo-
rithms based on so-called value iteration processes do not rely on a RPE: they
instead propagate value information from each state to other proximal states
(Sutton and Barto, 1998).
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Of course, it is plausible that such replay events could at the
same time be used to update value estimations and action proba-
bilities in the model-free system, consistent with the hypothesized
critic role of part of the VS (O’Doherty et al., 2004; Khamassi
et al., 2008; Bornstein and Daw, 2011). But if the ventral stri-
atal part engaged during these replay events was only dedicated to
model-free reinforcement learning, all ventral striatal cells encod-
ing reward predictions in any location—not only in the reward
location—should be reactivated in correspondence with the hip-
pocampal cells coding for their associated states, which is not
the case here. These results thus emphasize that the VS’s eval-
uative role and its involvement in encoding reward information
may also contribute to model-based processes. In support of this
view, McDannald et al. (2011) recently showed in rats experi-
encing an unblocking procedure that VS not only incorporates
information about reward value but also about specific features
of the expected outcomes. Along with the orbitofrontal cortex, VS
was indeed found to be required for learning driven by changes in
reward identity, information only relevant for model-based pro-
cesses but not for model-free ones which only work with value
information.

Now where does the information which is replayed off-line
between VS and hippocampus come from? One possibility is
that relevant place-reward associations experienced during task
performance are tagged in order to be preferentially replayed
during subsequent sleep or awake resting periods. In support of
this proposition, van der Meer and Redish (2010)’s synchronous
recordings of VS and hippocampus in a T-maze disentangled pos-
sible mechanisms underlying the binding of hippocampal place
representations and ventral striatal reward information during
task performance. They found a ventral striatal phase precession
relative to the hippocampal theta rhythm. This phase precession
was found in ventral striatal ramp neurons preferentially receiving
input from those hippocampal neurons that were active lead-
ing up to reward sites. This phenomenon was accompanied by
increased theta coherence between VS and the hippocampus, pos-
sibly underlying the storage of relevant place-reward associations
that should be tagged for subsequent consolidation.

5.2. VENTRAL STRIATAL CORE AS SUBSTRATE FOR BUILDING THE
ACTION MODEL

Yin et al. (2008) proposed that one of the core’s primary functions
is to learn stimulus-outcome associations that drive preparatory
behavior such as approach. Bornstein and Daw (2011) proposed
in turn that, as preparatory behavior is value-agnostic, this is con-
sistent with the core playing the role of the critic in a model-free
controller: that it either computes directly or conveys the values
of current and reached state to midbrain dopamine neurons (Joel
et al., 2002), which in turn signal the reward prediction error to
targets in the striatum and PFC (Schultz et al., 1997; Dayan and
Niv, 2008). This proposal naturally extends to the core playing the
role of model-free critic in navigation as well as conditioning.

However, it is equally clear that the core has a role in direct
control of motor behavior, and may even serve as an action selec-
tion substrate separate from the dorsal striatum (see Pennartz
et al., 1994; Nicola, 2007; Humphries and Prescott, 2010 for
reviews). These dual roles for the core are not in conflict: the

separate populations of core neurons that either project to the
dopaminergic neurons of the midbrain or project to the other
structures of the basal ganglia could, respectively, fulfill the eval-
uative and motor control roles (Humphries and Prescott, 2010).
Here we focus on how the latter role may fit into a putative model-
based/model-free separation of navigation based on the dorsal
striatum.

It has long been known that core application of NMDA,
AMPA, or dopamine agonists, or of drugs of abuse
(amphetamine, cocaine), induces hyperlocomotion in rats,
and that intact output of the core through the basal ganglia is
necessary for this hyperlocomotion to occur (Pennartz et al.,
1994; Humphries and Prescott, 2010). The phasic activity of indi-
vidual core neurons also correlates with the onset of locomotion
during self-administration of cocaine (Peoples et al., 1998).
During behavioral tasks, the activity of individual neurons in
the core correlates with the direction of upcoming movement,
irrespective of the properties of the cue used to prompt that
movement (Setlow et al., 2003; Taha et al., 2007). Moreover,
when rats navigate a maze, the activity of core neurons correlates
with the direction of movement in specific locations (Shibata
et al., 2001; Mulder et al., 2004). Together, these data suggest that
the core not only directly controls movement, but also receives
spatial information on which to base that control.

In addition, the core is necessary for correctly learning
sequences of motor behaviors. Blocking NMDA receptors in
the core, which putatively prevents synaptic plasticity, degrades
performance on many spatial tasks: rats cannot learn paths to
rewards (Kelley, 1999), learn spatial sequences (in this case, of
lever presses) to achieve reward (Bauter et al., 2003), or locate a
hidden platform in a Morris water maze when encoded by dis-
tal cues alone (Sargolini et al., 2003). Lesioning hippocampal
afferents to VS by cutting the fornix/fimbra pathway results in
numerous spatial navigation problems. Whishaw and colleagues
have shown that rats with such lesions have intact place responses,
but great difficulty in constructing paths to them (Whishaw et al.,
1995; Gorny et al., 2002). In a Morris water maze, lesioned rats
can swim to a pre-lesion submerged platform location, but not
to a new one (Whishaw et al., 1995); in open-field exploration,
lesioned rats do not show path integration trips to their homebase
(Gorny et al., 2002). Data from these studies has to be interpreted
with care, but are consistent with the NMDA blockade studies.
Together these data point to a key role for ventral striatal core in
linking together sequential episodes of behavior.

So what is the motor control part of the core doing within
the model-based/model-free framework? A general proposition
is that the core is the route via which hippocampal sequencing of
states reaches the motor system, a finessing of the long-recognized
position of the core at the limbic-motor interface (Mogenson
et al., 1980). We sketch a proposal here that its specific compu-
tational role is to learn and represent the probability of action
selection within the transition model of the model-based system.

5.2.1. Actions in the transition model
Consider the transition model T(s′, a, s), giving the probabil-
ity of arriving in state s′ given action a and current state s;
which we can also write p(s′|a, s). The model has two uses: for
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off-line learning, it is used to sample trajectories through the
world model, and update the values of each state accordingly
(Sutton and Barto, 1998; Johnson and Redish, 2005); for on-line
action selection, it can be queried for the probability that each
action will lead to the desired transition from state s to s′. To
achieve this dual use it might be advantageous to decompose
the transition model p(s′|a, s) using Bayes theorem into repre-
sentations of the state transitions and of the probability of action
selection:

p(s′|a, s) = p(s′|s)p(a|s′, s)

p(a|s) ,

where we assume that current state s is known. The first-term
p(s′|s) is then just the probability model for state transitions, the
second term is just the probability p(a|s′, s) that each action will
cause that transition, normalized by the probability p(a|s) of ever
taking that action in state s. Consequently, off-line learning is a
product of the two terms, whereas on-line action selection can be
based on the second term only.

Such a decomposition in turn suggests a decomposition into
neural substrates. The hippocampal formation has long been
proposed to represent potential state transitions (Poucet et al.,
2004), and so is a natural candidate for representing p(s′|s) in the
simultaneous activity of current (s) and adjacent (s′) place cells.
Alternatively, neural network modeling of hippocampal forma-
tion functions in spatial navigation has even suggested that the
directional-specificity of many place fields could be interpreted
not as place cells but rather as “transition” cells, representing the
possible transitions between the current and next “states” in the
environment (Gaussier et al., 2002). In this account, each cell is a
candidate for directly encoding p(s′|s).

The ventral striatal core is then a potential substrate for repre-
senting the transition-conditioned probability of action selection
p(a|s′, s). A plausible network implementation is that hippocam-
pal outputs representing s and s′ converge on neuron groups
in the core, whose consequent activity is then proportional to
p(a|s′, s). Learning this action component p(a|s′, s) of the tran-
sition model is then equivalent to changes in the synaptic weights
linking the two state representations in hippocampus to the neu-
ron group in the core. Over all known state transitions from the
current state s, the activity in the core then encodes a probability
distribution over potential actions; the selection of action based
on this distribution is then done by the core’s corresponding basal
ganglia circuit (see Redgrave et al., 1999; Nicola, 2007; Humphries
and Prescott, 2010; Humphries et al., 2012 for detailed models of
this process).

This decomposition into substrates suggests that core neurons
should thus show activity correlated with both off-line model
search and on-line action selection. The latter we have already
discussed: core activity is correlated with specific actions; in par-
ticular, the studies of Shibata et al. (2001) and Mulder et al.
(2004) showing a set of core neurons with motor-related activ-
ity only in specific places within a maze (such as an arm),
and then only when the rats move in a particular direction
in that place (e.g., toward the arm end), are consistent with
the encoding of action probability conditioned on a transition

between states. This substrate decomposition also suggests that
hippocampal formation and the core should be synchronized
throughout free exploration, as continually changing states repre-
sented in hippocampus should have a corresponding recruitment
of changing action selection probabilities in the core—just such
an exploration-specific synchronization in local-field potentials
between hippocampus and the core has been reported by Gruber
et al. (2009). More electrophysiological studies will be required
to confirm this hypothesis and precisely identify the underlying
mechanisms.

Recent neurophysiological studies also support the existence
of neural activity consistent with off-line model use for decision-
making in the core. In a multiple T-maze, van der Meer and
Redish (2009) found that neurons in the core which fired at
either reward site also fired at the maze’s decision point, just
where hippocampal activity correlates of forward planning have
been previously found (Johnson and Redish, 2007). Such activity
at decision points occurred before reward was actually experi-
enced, and thus before error correction. This activity appeared
only during initial stages and disappeared after additional train-
ing producing behavioral automation. Such activity could thus
reflect a search process related to the early use of model-based
processes for decision-making by providing signals for the evalua-
tion of internally generated possible transitions considered during
navigation (van der Meer and Redish, 2009).

5.3. VENTRAL STRIATAL SHELL AS CRITIC(S) IN THE MODEL-BUILDER:
ONE SYSTEM AMONGST MANY

More than any other region of the striatum, the ventral stri-
atal shell is a complex intermingling of multiple separate systems
(Humphries and Prescott, 2010), which may include control of
approach and aversive behaviors (Reynolds and Berridge, 2003),
hedonic information, outcome evaluation, memory consolida-
tion, and appetitive control (Kelley, 1999). Consequently, we can-
not meaningfully speak of a role for the shell; not least because,
as we noted in Humphries and Prescott (2010), the lateral and
medial shell are themselves easily distinguished entities in terms
of their afferent and efferent structures—we will return to this
distinction below.

Yin et al. (2008) proposed that the shell’s primary function
is to learn stimulus-outcome associations that drive consumma-
tory behavior. Bornstein and Daw (2011) argued that this role
in consummatory behavior requires a sensitivity to the values
of the outcome, and thus makes the shell a natural candidate
for subserving a role equivalent to the “critic” for the model-
based system. While strictly speaking the actor/critic algorithm
is a model-free system, the model-based system still may rely on
the computation of a prediction error to update the values of
each state (van der Meer and Redish, 2011), whether during off-
line model search or on-line update after each performed action.
Recently, Daw et al. (2011) tested human subjects on a multi-stage
decision task that separated model-based and model-free pre-
diction errors, and found that the model-based prediction error
correlated with the fMRI BOLD signal in VS.

Against this idea, earlier work has shown that the shell appears
not to be required for knowledge of the contingency between
instrumental actions and their outcomes: lesioning the shell does
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not stop devaluation or contingency changes from changing
behavioral choice (Balleine and Killcross, 1994; Corbit et al.,
2001). Consequently, the shell could appear not to be neces-
sary for establishing goal-directed learning—or, by extension,
model-based learning.

However, a closer reading of the lesion studies allows us
to refine that conclusion. In “shell” lesion studies, only the
medial shell is targeted (see, for example, Figure 1 of Corbit
et al., 2001)—not a flaw in experimental design but a limitation
imposed by anatomy, as attempts to lesion the lateral shell would
undoubtedly also damage the overlying lateral core (Ikemoto,
2002). Consequently, the lateral shell remains intact, and is thus
a prime candidate for a model-based critic that leaves the animal
sensitive to outcome devaluation and contingency changes.

Moreover, as we detailed in Humphries and Prescott (2010),
lateral and medial shell are separable entities: medial shell receives
extensive input from hippocampal field CA1 and subiculum,
while lateral shell receives scant hippocampal input; and both
have separate “direct” and “indirect” pathways through the basal
ganglia to separate populations of midbrain dopaminergic neu-
rons (Figure 5A). As we show in Figures 5B,C, the dual pathways
are a plausible candidate for computing a prediction error based
on comparing the forebrain inputs to the two pathways; con-
sequently both medial and lateral shell could support different
“critic” roles (Humphries and Prescott, 2010).

Which leaves the question of the role of the medial shell, if it is
indeed in a position to compute a prediction error. In Humphries
and Prescott (2010) we proposed the idea that the projections
from hippocampal formation and PFC to the “direct” and “indi-
rect” pathways could, respectively, represent the expected and

achieved state after a transition. Consequently, the medial shell
would be in a position to compute a state prediction error, that
adjusts the transition probability p(s′|s) based on model predic-
tions, rather than on simply counting the occurrences of each
transition.

Lesioning the medial shell would then be predicted to show
subtle deficits in tasks that require building a world model: in suf-
ficiently simple tasks, the mere construction of the links between
a limited number of states, whose values are correctly learnt,
may be sufficient to solve the task and respond to subsequent
changes in the value of those states. Consequently, the intact
sensitivity to devaluation by medial shell-lesioned rats (Balleine
and Killcross, 1994; Corbit et al., 2001) suggests that these were
sufficiently simple tasks. That task complexity is a factor is sug-
gested by the data of Albertin et al. (2000). They trained rats on
a plus-maze on which a currently lit arm-end contained reward
in the form of water drops; each day the rats experienced a new
sequence of lit arms, and each day one of the arms was chosen
to contain six drops and the others contained one drop. A probe
trial was then run in which every arm was lit, allowing the rat
to choose which arm to visit. Albertin et al. (2000) found that
lesioning the medial shell prevented rats from correctly remem-
bering which maze arm contained the high value reward on a
probe trial, but did not impair their ability to learn to visit the
lit arm in the sequence during training. Such a task plausibly
requires each day building anew a world model and querying it on
the probe trial to recall which available state-transition contained
the high reward on that day. If damage to the medial shell pre-
vented correct learning of the transition model, then this would
selectively impair querying of the model, while leaving intact the

FIGURE 5 | Dual pathways from shell to ventral tegmental area (VTA)

potentially support prediction error computation. (A) The medial and
lateral shell both support a dual pathway circuit that converges on
dopaminergic neurons in the VTA: a direct pathway originating from a
population of D1 receptor expressing striatal projection neurons, and an
indirect pathway originating from a mixed population of D1 and D2 receptor
expressing striatal projection neurons [see (Humphries and Prescott, 2010)
for review]. This arrangement is consistent with the shell’s role as a “critic”:
the pathways support the computation of a prediction error between the

prediction transmitted by the direct pathway and the actual outcome
transmitted by the indirect pathway (PPn, pedunculopontine nucleus; VP,
ventral pallidum). (B) Simulation of neural population activity showing how a
greater outcome (indirect pathway) than predicted (direct pathway) drives a
phasic increase in VTA activity, signaling a positive prediction error.
(C) Simulation of neural population activity showing how a lower outcome
(indirect pathway) than predicted (direct pathway) drives a phasic dip in VTA
activity, signaling a negative prediction error. Simulation details given in
Humphries and Prescott (2010).
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ability to do simple light-reward association in the model-free
system.

Glascher et al. (2010) searched for correlates of a state pre-
diction error in the fMRI BOLD signal recorded from humans
learning a decision-tree of stimulus choices in the absence of
reward, which was subsequently used as the basis for a rewarded
task. Encouragingly, subjects’ behavior during the learning stage
was well-fit by a reinforcement learning model incorporating a
state prediction error; moreover, the BOLD signal in lateral PFC
and intra-parietal sulcus correlated with the state prediction error
in the model. The equivalent regions in rat are known afferents
of the shell (Uylings et al., 2003; Humphries and Prescott, 2010).
However, they reported that the ventral striatal BOLD signal cor-
related only with the fitted model-free reward prediction error
during the rewarded task stage, and not the state prediction error.
It is not clear, though, whether something computed by a set of
neurons as small as the proposed sub-set in medial shell could be
resolved by the voxel-size used, a problem compounded by the
conservative multiple-comparison corrections used in searching
for BOLD signal correlates.

6. CONCLUSIONS
In this paper, we have proposed a functional distinction between
parts of the striatum by bridging data about their respective
involvement in behavioral adaptation taken from both the spatial
navigation literature and the instrumental conditioning litera-
ture. To do so, we have first formally mapped taxonomies of
behavioral strategies from the two literatures to highlight that
navigation strategies could be relevantly categorized as either
model-based or model-free. At root, the key distinction is that it is
the use of information in building a world representation, rather
than the type of information (i.e., place vs. cue), that defines the
different computational processes at stake and their substrates
in the striatum. Within this framework, we explicitly identified
the role for dorsolateral striatum in learning and expression of
model-free strategies, the role of dorsomedial striatum in learn-
ing and expression of model-based strategies, and the role of
“model-builder” for the VS—most probably in conjunction with
the hippocampus (Lansink et al., 2009; van der Meer et al.,
2010; Bornstein and Daw, 2012). Our scheme is summarized in
Figure 6.

FIGURE 6 | Striatal-domain substrates of model-free and model-based

controllers. The proposed organization of navigation strategies and
potential control of learning across the three striatal domains. The
identification of the shell and core as “critics” for the model-based and
model-free controllers in dorsal striatum partly rests on the “spiral” of
striatal-dopamine-striatal projections (Maurin et al., 1999; Haber et al.,
2000; Haber, 2003), originating in the shell of the VS (the spiral is
indicated by the thicker lines) and on the permissive role dopamine plays
in plasticity at cortico-striatal synapses (Reynolds et al., 2001; Shen et al.,

2008). There are also closed loop links between dopamine cell populations
and each striatal region. Abbreviations: Mb, model-based; Mf, model-free;
PPn, pedunculopontine nucleus; SNc, substantia nigra pars compacta; VP,
ventral pallidum; VTA, ventral tegmental area. Note that the “inhibitory”
and “excitatory” labels refer to the dominant neurotransmitter of the
connection, not the effect that connection may have on the target nucleus
as a whole (e.g., basolateral amygdala input to VS neurons can suppress
other excitatory inputs despite using glutamate, which is an “excitatory”
neurotransmitter).
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The hypothesis that two decision-making systems (i.e., model-
based and model-free) are processed in parallel in DMS and
DLS while VS is important for the acquisition of the model
seems to well explain the results of Atallah et al. (2007). In a
forced-choice task in a Y-maze requiring rats to learn the asso-
ciation between two odors and two actions (go left or right),
they found that transient inactivation of DLS 6 did not prevent
a covert learning process which became visible as soon as the
DLS was released. Although this task is typically interpreted as
a habit learning task (van der Meer et al., 2012), the absence
of over-training in the animals—60 trials performed in total—
suggests that model-based learning in the DMS was still playing
an important role at this stage and was unaffected by DLS inac-
tivation. Moreover, Atallah et al. (2007) found that inactivation
of VS mostly impaired acquisition and only partially affected per-
formance, consistent with the proposed role of VS in building the
model used by the model-based system.

6.1. COMPUTATIONS BY THE STRIATUM
Our proposed division of function between different parts of
the striatum preserves the classical hypothesis that striatal ter-
ritories all contribute to behavioral regulation but mainly differ
in function because of their different afferents (Alexander et al.,
1990; Joel and Weiner, 1994; Middleton and Strick, 2000)—a
common division of cortical afferents among the striatal terri-
tories is illustrated in Figure 6. Throughout its dorso-lateral to
ventro-medial extent, the striatum has a consistent micro-circuit
dominated by GABAergic projection neurons controlled by at
least three classes of interneurons (Tepper et al., 2004; Bolam
et al., 2006; Humphries and Prescott, 2010). Such a consistent
micro-architecture points to common operational principles for
how striatum computes with its afferent inputs. Moreover, the
cortex-basal ganglia-thalamus-cortex anatomical loop involving
the ventral striatal core respects the same organization princi-
ples as loops involving the dorsal striatum: thus DLS, DMS, and
VS core are all involved in complete basal ganglia circuits com-
posed of direct and indirect pathways (Humphries and Prescott,
2010). Since numerous computational studies have shown that
this basal ganglia circuitry is efficient for performing a selec-
tion process (Houk and Wise, 1995; Mink, 1996; Redgrave et al.,
1999; Humphries et al., 2006; Leblois et al., 2006; Girard et al.,
2008), it has been proposed that loops involving different striatal
territories could perform different levels of selection influencing
behavior. One such scheme envisions a hierarchy running from
course-grained selection of overall goal or strategy to achieve a
goal, through actions toward a goal, to fine-grained movement
parameters of each action (Redgrave et al., 1999; Ito and Doya,
2011).

6Although the injection site was referred to as the central part of the dorsal
striatum by the authors (see Supplementary Figures 3 and 4 of their original
paper), the great majority of injections were located outside the dorsal stri-
atal region receiving projections from the prelimbic cortex [see Figure 3 in
Voorn et al. (2004)], and thus outside the zone called dorsomedial striatum
and related to goal-directed behaviors and model-based learning [see Figure 1
in Yin et al. (2008) and Figure 1 in Bornstein and Daw (2011)]. Thus, the
injections seem to have mostly reached the dorsolateral striatum related to
model-free habit learning.

The model-based/model-free dichotomy would respect such
a general principle of common selection operation: that striatal
territories receiving state transition information (i.e., p(s′|s) cor-
responding to the probability of transition from state s to state
s′, no matter if these states are spatial or determined by a percep-
tual cue) would be involved in model-based action selection while
striatal territories receiving simple state information (i.e., p(s), no
matter if state s represents a spatial position or the perception of a
stimulus) would be involved in model-free action selection. As we
discussed throughout the text, in contrast to DLS, VS and DMS
receive direct projections from the hippocampal system as well
as medial PFC which place them in a good situation to process
hippocampal state transition information (Gaussier et al., 2002;
Poucet et al., 2004) and hence to participate in the model-based
action selection. Correspondingly, the dominant projections of
sensorimotor cortices to DLS may thus convey current state infor-
mation, whether originating from the periphery or from higher
cortical areas (Haber, 2003), and hence the DLS participates in
model-free action selection.

6.2. OPEN QUESTIONS
The account here provides concrete proposals for the dorsolat-
eral and dorsomedial striatum’s role in spatial navigation, while
introducing new but comparatively speculative ideas about the
VS’s roles in the model-free and model-based systems. As such,
our account is of course incomplete; so let us conclude with the
primary open questions:

• We have drawn a distinction between place/response strategies
and model-based/model-free use of those strategies. To the best
of our knowledge, we lack good evidence for the existence of a
model-free place strategy.

• The observations of a place-to-response strategy shift with
over-training (Dickinson, 1980; Packard and McGaugh, 1996;
Pearce et al., 1998; Chang and Gold, 2003) underpinned the
existing idea that a response strategy is by nature habitual. Our
hypothesis postulates that the central mechanism underlying
all these observed behavioral shifts is a shift from model-
based to model-free rather than from place-based to either
cue-guided or praxic behaviors; but why then is the shift
often (but not always Yin and Knowlton, 2004; Botreau and
Gisquet-Verrier, 2010) from model-based place to model-free
response?

• What is anterior DMS doing? Ragozzino and Choi (2004) pro-
posed a role for it in strategy selection, as lesions caused a
selective deficit in reversal learning, but not in initial acquisi-
tion. Alternatively, perhaps DMS is divided into sub-territories
differentially involved in place, cue, and praxic model-based
systems.

• Lesion data on the core provide conflicting accounts of its
roles. For example, the results of Corbit et al. (2001) dis-
agree with evaluation: for why, if the core forms part of the
transition model, does lesioning it not then prevent outcome
devaluation from affecting behavior? By contrast, McDannald
et al. (2011) found that lesions of core affected responding
to both changes in outcome value and changes in outcome
identity, emphasizing its involvement in model-based learning.
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From our account, it is not surprising that conflicting data arise
if core lesions interfere with both evaluative and action selec-
tion systems; however, it is not clear what task designs would
be sufficient to tease apart the selective effects of core lesions
on its evaluative and action selection roles.

• Do the striatal domains underpin a common computation?
Our focus has been on the algorithmic-level distinctions
between behavioral strategies, and the striatal substrates within
the neural systems implementing those algorithms. As noted
throughout, this computation may be action selection: the
resolution of competing inputs at the striatal level into one
(or a few) selected signals at the output of the basal gan-
glia. Based on our proposals here, we may speculate that

these selections are based on different representations of the
world.
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Abstract

Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired
behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the
form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis
that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free
system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned
stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more
and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation.
Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers
does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor
the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for
such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can
account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to
individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be
observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other
behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model
makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We
suggest that further investigation of factored representations in computational neuroscience studies may be useful.
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Introduction

Standard Reinforcement Learning (RL) [1] is a widely used

normative framework for modelling conditioning experiments

[2,3]. Different RL systems, mainly Model-Based and Model-Free

systems, have often been combined to better account for a variety

of observations suggesting that multiple valuation processes coexist

in the brain [4–6]. Model-Based systems employ an explicit model

of consequences of actions, making it possible to evaluate

situations by forward inference. Such systems best explain goal-

directed behaviours and rapid adaptation to novel or changing

environments [7–9]. In contrast, Model-Free systems do not rely

on internal models and directly associate values to actions or states

by experience such that higher valued situations are favoured.

Such systems best explain habits and persistent behaviours [9–11].

Of significant interest, learning in Model-Free systems relies on a

computed reinforcement signal, the reward prediction error

(RPE). This signal parallels the observed shift of dopamine

neurons’ response from the time of an initially unexpected reward

– an outcome that is better or worse than expected – to the time of

the conditioned stimulus that precedes it, which, in Pavlovian

conditioning experiments, is fully predictive of the reward [12,13].

However recent work by Flagel et al. [14], raises questions

about the exclusive use of classical RL Model-Free methods to

account for data in Pavlovian conditioning experiments. Using an

autoshaping procedure, a lever-CS was presented for 8 seconds,

followed immediately by delivery of a food pellet into an adjacent

food magazine. With training, some rats (sign-trackers; STs)

learned to rapidly approach and engage the lever-CS. However,

others (goal-trackers; GTs) learned to approach the food magazine
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upon CS presentation, and made anticipatory head entries into it.

Furthermore, in STs, phasic dopamine release in the nucleus

accumbens, measured with fast scan cyclic voltammetry, matched

RPE signalling, and dopamine was necessary for the acquisition of

a sign-tracking CR. In contrast, despite the fact that GTs acquired

a Pavlovian conditioned approach response, this was not

accompanied with the expected RPE-like dopamine signal, nor

was the acquisition of a goal-tracking CR blocked by administra-

tion of a dopamine antagonist (see also [15]).

Classical dual systems models [16–19] should be able to account

for these behavioural and pharmacological data, but the physio-

logical data are not consistent with the classical view of RPE-like

dopamine bursts. Based on the observation that STs and GTs

focus on different stimuli in the environment, we suggest that the

differences observed in dopamine recordings may be due to an

independent valuation of each stimulus. In classical RL, valuation

is usually done at the state level. Stimuli, embedded into states –

snapshots of specific configurations in time –, are therefore hidden

to systems. In this case, it would prevent dealing separately with

the lever and the magazine at the same time. However, such data

may still be explained by a dual systems theory, when extended to

support and benefit from factored representations; that is, learning

the specific value of stimuli independently from the states in which

they are presented.

In this paper, we present and test a model using a large set of

behavioural, physiological and pharmacological data obtained

from studies on individual variation in Pavlovian conditioned

approach behaviour [14,20–25]. It combines Model-Free and

Model-Based systems that provide the specific components of the

observed behaviours [26]. It explains why inactivating dopamine

in the core of the nucleus accumbens or in the entire brain results

in blocking specific components and not others [14,25]. By

weighting the contribution of each system, it also accounts for the

full spectrum of observed behaviours ranging from one extreme –

sign-tracking – to the other [26] – goal-tracking. Above all, by

extending classical Model-Free methods with factored representa-

tions, it potentially explains why the lever-CS and the food

magazine might acquire different motivational values in different

individuals, even when they are trained in the same task [22]. It

may also account for why the RPE-like dopaminergic responses

are observed in STs but not GTs, and also the differential

dependence on dopamine [14].

Results

We model the task as a simple Markov Decision Process (MDP)

with different paths that parallel the diverse observed behaviours

ranging from sign-tracking – engaging with the lever as soon as it

appears – to goal-tracking – engaging with the magazine as soon

as the lever-CS appears – (see Figure 1).

The computational model (see Figure 2) consists of two learning

systems, employing distinct mechanisms to learn the same task: (1)

Figure 1. Computational representation of the autoshaping procedure. (A) MDP accounting for the experiments described in [14,21,22,26].
States are described by a set of variables: L/F - Lever/Food is available, cM/cL - close to the Magazine/Lever, La - Lever appearance. The initial state is
double circled, the dashed state is terminal and ends the current episode. Actions are engage with the proximal stimuli, explore, or go to the
Magazine/Lever and eat. For each action, the feature that is being focused on is displayed within brackets. The path that STs should favour is in red.
The path that GTs should favour is in dashed blue. (B) Time line corresponding to the unfolding of the MDP.
doi:10.1371/journal.pcbi.1003466.g001

Author Summary

Acquisition of responses towards full predictors of rewards,
namely Pavlovian conditioning, has long been explained
using the reinforcement learning theory. This theory
formalizes learning processes that, by attributing values
to situations and actions, makes it possible to direct
behaviours towards rewarding objectives. Interestingly,
the implied mechanisms rely on a reinforcement signal
that parallels the activity of dopamine neurons in such
experiments. However, recent studies challenged the
classical view of explaining Pavlovian conditioning with a
single process. When presented with a lever whose
retraction preceded the delivery of food, some rats started
to chew and bite the food magazine whereas others chew
and bite the lever, even if no interactions were necessary
to get the food. These differences were also visible in brain
activity and when tested with drugs, suggesting the
coexistence of multiple systems. We present a computa-
tional model that extends the classical theory to account
for these data. Interestingly, we can draw predictions from
this model that may be experimentally verified. Inspired by
mechanisms used to model instrumental behaviours,
where actions are required to get rewards, and advanced
Pavlovian behaviours (such as overexpectation, negative
patterning), it offers an entry point to start modelling the
strong interactions observed between them.

Modelling Individual Differences in Pavlovian CRs
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a Model-Based system which learns the structure of the task from

which it infers its values; (2) a Feature-Model-Free system where values

for the relevant stimuli (lever-CS and the food magazine) are directly

learned by trial and error using RPEs. The respective values of each

system are then weighted by an v parameter before being used in a

classical softmax action-selection mechanism (see Methods).

An important feature of the model is that varying the systems

weighting parameter v (while sharing the other parameter values

of the model across subgroups) is sufficient to qualitatively

reproduce the characteristics of the different subgroups of rats

observed experimentally during these studies.

To improve the matching of the following results with the main

experimental data, a different set of parameter values was used for

each subgroup (ST, GT and IG). The values were retrieved after

fitting autoshaping data only (see Methods, Table S1). Simulated

results on other behavioural, physiological and pharmacological

data are generated with the same parameter values. While it might

result in a weaker fitting of the other experimental data, this

permits a straightforward comparison of results at different levels

for the same simulation. Moreover, it confirms that the model can

reproduce behavioural, physiological and pharmacological results

with a single simulation per subgroup.

On each set of experimental data, we compare different variants

of the computational model in order to highlight the key

mechanisms that are required for their reproduction. Simulation

results on each data subset are summarized in Figure 3. The role

of each specific mechanism of the model in reproducing each

experimental data is detailed in Figure 4.

Behavioural data
Autoshaping. The central phenomenon that the model is

meant to account for is the existence of individual behavioural

differences in the acquisition of conditioned approach responses in

rats undergoing an autoshaping procedure; that is, the develop-

ment of a sign-tracking CR, a goal-tracking CR, or an

intermediate response.

Based on their engagement towards the lever, Flagel et al. [21]

divided rats into three groups (see [26] for a more recently defined

criterion). At lever appearance, rats that significantly increased

their engagement towards it (top 30%) were classified as STs,

whereas rats that almost never engaged with the lever (bottom

30%) were classified as GTs (these latter animals engaged the food

magazine upon CS presentation). The remaining rats, engaging in

both lever and magazine approach behaviours were defined as the

Intermediate Group (IGs) (see Figure 5 A, B). STs and GTs

acquired their respective CRs at a similar rate over days of training

[22].

The current model is able to reproduce such results (see Figure 5

C, D). By running a simulation for each group of rats, using

different parameters (mainly varying the v parameter) the model

reproduces the different tendencies to engage with the lever

(v~0:499), with the magazine (v~0:048) or to fluctuate between

the two (v~0:276). A high v strengthens the influence of the

Feature-Model-Free system, which learns to associate a high

motivational value to the lever CS, and a sign-tracking CR

dominates. A low v increases the influence of the Model-Based

system, which infers the optimal behaviour to maximize reward,

Figure 2. General architecture of the model and variants. The model is composed of a Model-Based system (MB, in blue) and a Feature-Model-
Free system (FMF, in red) which provide respectively an Advantage function A and a value function V values for actions ai given a state s. These
values are integrated in P, prior to be used into an action selection mechanism. The various elements may rely on parameters (in purple). The impact
of flupentixol on dopamine is represented by a parameter f that influences the action selection mechanism and/or any reward prediction error that
might be computed in the model.
doi:10.1371/journal.pcbi.1003466.g002

Modelling Individual Differences in Pavlovian CRs
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and goal-tracking is favoured. When both systems are mixed, i.e.

with an intermediate v, the behaviour is more likely to oscillate

between sign- and goal-tracking, representative of the intermediate

group.

These results rely on the combination of two systems that would

independently lead to ‘pure’ sign-tracking or goal-tracking CRs.

Three tested variants of the model could reproduce these

behavioural results as well (see Figure S1): a combination of

Feature-Model-Free systems and simple Model-Free system

(Variant 1); a multi-step extension of Dayan 2006’s model [16]

giving a Pavlovian impetus for the lever (Variant 2); and a

symmetrical version of this last model with two impetuses, one for

the lever, and one for the magazine (Variant 3) (see Methods).

Interestingly, a combination of Model-Based and classical Model-

Free (not feature-based : Variant 4) fails in reproducing these

results (see Figure S8). This is because both systems are proven to

converge to the same values and both would favour pure goal-

tracking, such that varying their contribution has no impact on the

produced behaviours.

Thus, at this stage, we can conclude that several computational

models based on dual learning systems can reproduce these

behavioural results, given that the systems favour different

Figure 3. Summary of simulations and results. Each line represents a different model composed of a pair of Reinforcement Learning systems.
Each column represents a simulated experiment. Experiments are grouped by the kind of data accounted for: behavioural (autoshaping [14,21], CRE
[22], Incentive salience [23,24]), physiological [21] and pharmacological (Flu post-NAcC [25], Flu pre-systemic [21]). Variant 4 (i.e. Model-based/Model-
Free without features) is not included as it failed to even reproduce the autoshaping behavioural results and was not investigated further.
doi:10.1371/journal.pcbi.1003466.g003

Figure 4. Summary of the key mechanisms required by the model to reproduce experimental results. Each line represents a different
mechanism of the model. Each column represents a simulated experiment. For each mechanism, it states in which experiment and for which
behaviour – sign-tracking (red), goal-tracking (blue) or both (+) – it is required. Note however that all mechanisms and associated parameters have, to
a certain extent, an impact on any presented results.
doi:10.1371/journal.pcbi.1003466.g004

Modelling Individual Differences in Pavlovian CRs
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behaviours (see Figure S1). However, Variants 1, 2 and 3 fail to

reproduce other behavioural, pharmacological and physiological

data characteristic of STs and GTs (see following sections).

Incentive salience. The results in Figure 5 only represent the

probability of approach to either the lever-CS or the food

magazine. Thus, they do not account for the specific ways rats

engage and interact with the respective stimuli. In fact, if food is

used as the US, rats are known to chew and bite the stimuli on

which they are focusing [23,24] (see Figure 6 A). Importantly, both

STs and GTs express this consumption-like behaviour during the

CS period, directed towards the lever or the food magazine,

respectively. It has been argued that this behaviour may reflect the

degree to which incentive salience is attributed to these stimuli,

and thus the extent to which they become ‘‘wanted’’ [23,24,27].

In an RL-like framework, incentive salience attribution can be

represented as a bonus mechanism for interacting with stimuli.

The Feature-Model-Free system in the model realizes such a

function, providing a specific bonus for each stimulus in any

simulated rat. Such bonus was inspired by the Pavlovian impetus

mechanism of Dayan 2006’s model [16]. Figure 6 C shows the

percentage of Feature-Model-Free value that contributed to the

computation of the probability to engage with the respective

favoured cues of STs and GTs at the end of the simulation.

The presence of the magazine in the inter-trial interval (ITI),

and the necessary revision of the associated bonus at a lower value

Figure 5. Reproduction of sign- versus goal-tracking tenden-
cies in a population of rats undergoing an autoshaping
experiment. Mean probabilities to engage at least once with the
lever (A,C) or the magazine (B,D) during trials. Data are expressed as
mean + S.E.M. and illustrated in 50-trial (2-session) blocks. (A,B)
Reproduction of Flagel et al. [21] experimental results (Figure 2 A,B).
Sign-trackers (ST) made the most lever presses (black), goal-trackers
(GT) made the least lever presses (white), Intermediate group (IG) is in
between (grey). (C,D) Simulation of the same procedure (squares) with
the model. Simulated groups of rats are defined as STs (v~0:499;
b~0:239; a~0:031; c~0:996; uITI~0:027; Qi(s1,goL)~0:844;
Qi(s1,exp)~0:999; Qi(s1,goM)~0:538; n = 14) in red, GTs (v~0:048 ;
b~0:084; a~0:895; c~0:727; uITI~0:140; Qi(s1,goL)~1:0;
Qi(s1,exp)~0:316; Qi(s1,goM)~0:023; n = 14) in blue and IGs
(v~0:276; b~0:142; a~0:217; c~0:999; uITI~0:228;
Qi(s1,goL)~0:526; Qi(s1,exp)~0:888; Qi(s1,goM)~0:587; n = 14) in
white. The model reproduces the same behavioural tendencies. With
training, STs tend to engage more and more with the lever and less
with the magazine, while GTs neglect the lever to increasingly engage
with the magazine. IGs are in between.
doi:10.1371/journal.pcbi.1003466.g005

Figure 6. Possible explanation of incentive salience and
Conditioned Reinforcement Effect by values learned during
autoshaping procedure. Data are expressed as mean + S.E.M.
Simulated groups of rats are defined as in Figure 5. (A) Number of
nibbles and sniffs of preferred cue by STs and GTs as a measure for
incentive salience. Data extracted from Mahler et al. [23] from Figure 3
(bottom-left). (B) Reproduction of Robinson et al. [22] experimental
results (Figure 2 B). Lever contacts by STs and GTs during a conditioned
reinforcer experiment. (C) Probability to engage with the respective
favoured stimuli of STs and GTs at the end of the simulation (white,
similar to the last session of Figure 5 C for STs and D for GTs)
superimposed with the contribution in percentage of the values
attributed by the Feature-Model-Free system in such engagement for
STs (red) and GTs (blue). We hypothesize that such value is the source of
incentive salience and explains why STs and GTs have a consumption-
like behaviour towards their favoured stimulus. (D) Probability to
engage with the lever versus exploring when presented with the lever
and no magazine for STs (red), GTs (blue) and a random-policy group
UN (white), simulating the unpaired group (UN) of the experimental
data. Probabilities were computed by applying the softmax function
after removing the values for the magazine interactions (see Methods).
STs would hence actively seek to engage with the lever relatively to GTs
in a Conditioned Reinforcement Effect procedure.
doi:10.1371/journal.pcbi.1003466.g006

Modelling Individual Differences in Pavlovian CRs
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when exploring, makes the associated bonus smaller than that of

the lever (see Methods). This results in a even smaller contribution

of this bonus in GTs behaviour (blue bar in Figure 6 C) compared

to STs (red bar in Figure 6 C). Although it is not straightforward to

interpret how the probability of engagement (white bars in Figure 6

C) in the model might be translated into a consumption-like

behaviour from a computational point of view, we propose that

the different contributions of bonuses could explain the slightly

smaller number of nibbles and sniffs of preferred cue observed

experimentally in GTs compared to STs (Figure 6 A, adapted

from [23]). This may also explain why other studies have observed

a smaller proportion of nibbles on the magazine in GTs [24] and

less impulsiveness [28] in GTs compared to STs. We come back to

this issue in the discussion.

Variants 1 and 3 also realize such function by providing bonuses

for actions leading to both stimuli (see Figure S2). Only providing

bonus for sign-tracking behaviour – as in Dayan’s model (Variant

2) – does not fit well with the attribution of incentive salience to

both stimuli. It would suggest that we should not observe incentive

salience towards the magazine in any rats, which is in discrepancy

with the experimental data. Thus, the important mechanism here

is that stimuli are not processed differently. Any stimulus is

attributed with its respective bonus, which is pertinent in regard to

the attribution of incentive salience.

Conditioned Reinforcement Effect (CRE). An important

question about the difference in observed behaviours is about the

properties acquired by the lever that makes it more attractive to

STs than to GTs. To answer this question, Robinson and Flagel

studied the dissociation of the predictive and motivational

properties of the lever [22]. Part of their results involves asking

whether the Pavlovian lever-CS would serve as a conditioned

reinforcer, capable of reinforcing the learning of a new instru-

mental response [29,30]. In a new context, rats were presented

with an active and an inactive nose port. Nose poking into the

active port resulted in presentation of the lever for 2 seconds

without subsequent reward delivery, whereas poking into the

inactive one had no consequence. The authors observed that while

both STs and GTs preferred the active nose port to an inactive

one, STs made significantly more active nose pokes than GTs (see

Figure 6 B, see also [31]). This suggests that the lever acquired

greater motivational value in STs than in GTs.

Without requiring additional simulations, the model can explain

these results by the value that has been incrementally learned and

associated with approaching the lever in the prior autoshaping

procedure for STs and GTs. In the model, STs attribute a higher

value to interacting with the lever than GTs and should actively

work for its appearance enabling further engagement. Figure 6 D

shows the probabilities of engagement that would be computed at

lever appearance after removing the magazine (and related

actions) at the end of the experiment. Indeed, even though the

lever is presented only very briefly, upon its presentation in the

conditioned reinforcement test, STs actively engage and interact

with it [22]. Any value associated to a state-action pair makes this

action in the given state rewarding in itself, favouring actions (e.g.

nosepokes) that would lead to such state. Repeatedly taking this

action without receiving rewards should eventually lead to a

decrease of this value and reduce the original engagement.

Physiological data
Not only have Flagel et al. [14] provided behavioural data but

they also provide physiological and pharmacological data. This

raises the opportunity to challenge the model at different levels, as

developed in the current and next sections.

Using Fast Scan Cyclic Voltammetry (FSCV) in the core of the

nucleus accumbens they recorded the mean of phasic dopamine

(DA) signals upon CS (lever) and US (food) presentation. It was

observed that depending on the subgroup of rats, distinct

dopamine release patterns emerge (see Figure 7 A,B) during

Pavlovian training. STs display the classical propagation of a

phasic dopamine burst from the US to the CS over days of

training and the acquisition of conditioned responding (see

Figure 7 A). This pattern of dopamine activity is similar to that

seen in the firing of presumed dopamine cells in monkeys reported

by Schultz and colleagues [12] and interpreted as an RPE

corresponding to the reinforcement signal d of Model-Free RL

systems [1]. In GTs, however, a different pattern was observed.

Initially there were small responses to both the CS and US, of

which the amplitudes seemed to follow a similar trend over

training (see Figure 7 B).

By recording the mean of the RPEs d computed in the Feature-

Model-Free system during the autoshaping simulation (i.e. only

fitted to behavioural data), the model can still qualitatively

Figure 7. Reproduction of patterns of dopaminergic activity of
sign- versus goal-trackers undergoing an autoshaping exper-
iment. Data are expressed as mean + S.E.M. (A,B) Reproduction of
Flagel et al. [14] experimental results (Figure 3 d,f). Phasic dopamine
release recorded in the core of the nucleus accumbens in STs (light
grey) and GTs (grey) using Fast Scan Cyclic Voltammetry. Change in
peak amplitude of the dopamine signal observed in response to CS and
US presentation for each session of conditioning (C,D) Average RPE
computed by the Feature-Model-Free system in response to CS and US
presentation for each session of conditioning. Simulated groups of rats
are defined as in Figure 5. The model is able to qualitatively reproduce
the physiological data. STs (blue) show a shift of activity from US to CS
time over training, while GTs develop a second activity at CS time while
maintaining the initial activity at US time.
doi:10.1371/journal.pcbi.1003466.g007

Modelling Individual Differences in Pavlovian CRs
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reproduce the different patterns observed in dopamine recordings

for STs and GTs (see Figure 7 C,D). For STs, the model

reproduces the progressive propagation of d from the US to the

CS (see Figure 7 C). For GTs, it reproduces the absence of such

propagation. The RPE at the time of the US remains over

training, while a d also appears at the time of the CS (see Figure 7

D). In the model, such discrepancy is explained by the difference

in the values that STs and GTs use for the computation of RPEs at

the time of the CS and the US. STs, by repeatedly focusing on the

lever, propagate the total value of food to the lever and end up

having a unique d at the unexpected lever appearance only. By

contrast, by repeatedly focusing on the magazine during the lever

appearance but, as all rats, also from time to time during ITI, GTs

revise the magazine value multiple times, positively just after food

delivery and negatively during ITI. Such revisions lead to a

permanent discrepancy between the expected and observed value,

i.e. a permanent d, at lever appearance and food delivery, when

engaging with the magazine.

The key mechanism to reproduce these results resides in the

generalization capacities of the Feature-Model-Free system. Based

on features rather than states, feature-values are to be used, and

therefore revised, at different times and states of the experiment,

favouring the appearance of RPEs. Variants 2, 3 and 4 relying on

classical Model-Free systems are unable to reproduce such results

(see Figure S3). By using values over abstract states rather than

stimuli, it makes it impossible to only revise the value of the

magazine during ITI. Therefore, given the deterministic nature of

the MDP, we observe a classical propagation of RPEs in all

pathways up to the appearance of the lever.

Pharmacological data
Effects of systemic flupentixol administration on the

learning of sign- and goal-tracking behaviours. Flagel et

al. [14] also studied the impact of systemic injections of the non

specific dopamine antagonist, flupentixol, on the acquisition of

sign-tracking and goal-tracking CRs. The authors injected

flupentixol in rats prior to each of 7 sessions and observed the

resulting behaviours. Behaviour during the 8th session was

observed without flupentixol.

Systemic injections of flupentixol in STs and GTs (Flu groups,

black curves in Figure 8 A,B) blocked expression of their respective

behaviours during training. Saline injections (white curves in

Figure 8 A,B) left their performances intact. The crucial test for

learning took place on the 8th day, when all rats were tested

without flupentixol. STs failed to approach the lever, and

performed as the saline-injected controls did on the first day of

training.

Thus, in STs flupentixol blocked the acquisition of a sign-

tracking CR (see Figure 8 A). Interestingly, on the flupentixol-free

test day GTs did not differ from the saline-injected control group,

indicating that flupentixol did not block the acquisition of a goal-

tracking CR (see Figure 8 B). Thus, acquisition of a sign-tracking

CR, but not a goal-tracking CR, is dependent on dopamine (see

also [15]).

The model reproduces these pharmacological results (see

Figure 8 C,D). As in the experimental data, simulated GTs and

STs do not show a specific conditioned response during the first 7

sessions under flupentixol. On the 8th session, without flupentixol,

we observe that STs still do not show a specific conditioned

response while GTs perform at a level close to that of the saline-

injected control group (see Figure 8 C,D).

The absence of specific conditioned response in the whole

population for the first 7 sessions is first due to the hypothesized

[32] impact of flupentixol on action selection (see Methods). With

enough flupentixol, the elevation of the selection temperature

leads to a decrease of the influence of learned values in the

expressed behaviour, masking any possibly acquired behaviour.

The absence of a specific conditioned response in STs is due to

the blockade of learning in the second system by flupentixol, since

it is RPE-dependent. Therefore almost no learning occurs in the

system (see Figure 8).

In contrast, with the first system being RPE-independent,

flupentixol has no effect on learning, because it is Model-Based

rather than Model-Free [33]. The expression of behaviour is

blocked at the action selection level, which does not make use of

values learned by the Model-Based system. Thus, GTs, relying

mainly on the first system, learn their CR under flupentixol but are

just not able to express it until flupentixol is removed. The lower

level of goal-tracking in the Flu group relative to the saline-injected

control group on the 8th session is due to the lack of exploitation

induced by flupentixol injection during the previous 7 sessions. By

engaging less with the magazine, the Flu group ends up associating

a lower value to the magazine (i.e. the value did not fully converge

in 7 sessions) to guide its behaviour.

Interestingly, if the model had been constituted of Model-Free

systems only – as in Variants 1, 2 and 3 – it would not have been

able to reproduce these results, because both systems would have

been RPE-dependent and thus sensitive to the effect of flupentixol

(see Figure S4).

Effects of local flupentixol administration on the

expression of sign- and goal-tracking behaviours. In a

related experiment, Saunders et al. [25] studied the role of

dopamine in the nucleus accumbens core in the expression of

Pavlovian-conditioned responses that had already been acquired.

After the same autoshaping procedure as in [20], they injected

different doses of flupentixol in the core of the nucleus accumbens

of rats and quantified its impact on the expression of sign-tracking

and goal-tracking CRs in an overall population (without distin-

guishing between STs and GTs).

They found that flupentixol dose dependently attenuated the

expression of sign-tracking, while having essentially no effect on goal-

tracking (see Figure 9 A, B). Along with the Flagel et al. [14] study,

these results suggest that both the acquisition and expression of a sign-

tracking CR is dopamine-dependent (at least in the core) whereas the

acquisition and expression of a goal-tracking CR is not.

Given the assumption that the Feature-Model-Free system

would take place in or rely on the core of the nucleus accumbens,

this model reproduces the main experimental result: the decreased

tendency to sign-track in the population (see Figure 9 C). Note that

in the previous experiment, the injection of flupentixol was

systemic, and assumed to affect any region of the brain relying on

dopamine, whereas in the present experiment it was local to the

core of the nucleus accumbens. Therefore, we modelled the

impact of flupentixol differently between the current and previous

simulations (see Methods). In the model, the tendency to sign-track

is directly correlated with a second operational system. Any

dysfunction in the learning process (here by a distortion of RPEs)

reduces this trend.

The model successfully reproduced the absence of reduction of

goal-tracking, in contrast to the reduction of sign-tracking.

However, it was unable to reproduce the invariance in goal-

tracking (see Figure 9 D) and rather produced an increase in goal-

tracking. This is due to the use of a softmax operator for action

selection, as this is the case in the vast majority of computational

neuroscience RL models [16–19,32,34–36], which automatically

favours goal-tracking when sign-tracking is blocked (see Limita-

tions). We did not attempt to cope with this limitation because our

focus here was the absence of reduction of goal-tracking.

Modelling Individual Differences in Pavlovian CRs
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Besides, the model could, after re-learning, reproduce the

selective impact of intra-accumbal flupentixol injections observed

in sign-tracking but not in goal-tracking, because such injections

affected the learning process in the Feature-Model-Free system

only.

Discussion

We tested several mechanisms from the current literature on

modelling individual variation in the form of Pavlovian condi-

tioned responses (ST vs GT) that emerge using a classical

autoshaping procedure, and the role of dopamine in both the

acquisition and expression of these CRs. Benefiting from a rich set

of data, we identified key mechanisms that are sufficient to account

for specific properties of the observed behaviours. The resulting

model relies on two major concepts: Dual learning systems and

factored representations. Figure 4 summarizes the role of each

mechanism in the model.

Dual learning systems
Combining Model-Based and Model-Free systems has previ-

ously been successful in explaining the shift from goal-directed to

habitual behaviours observed in instrumental conditioning [17–

19,33,34]. However, few models based on the same concept have

been developed to account for Pavlovian conditioning [16]. While

the need for two systems is relevant in instrumental conditioning

given the distinct temporal engagement of each system, such a

distinction has not been applied to Pavlovian phenomena (but see

recent studies on orbitofrontal cortex [37–39]). The variability of

behaviours and the need for multiple systems have been masked

by focusing on whole populations and, for the most part, ignoring

individual differences in studies of Pavlovian conditioning. The

nature of the CS is especially important, as many studies of

Pavlovian conditioned approach behaviour have used an auditory

stimulus as the CS, and in such cases only a goal-tracking CR

emerges in rats [40,41].

As expected from the behavioural data, combining two learning

systems was successful in reproducing sign- and goal-tracking

behaviours. The Model-Based system, learning the structure of the

task, favours systematic approach towards the food magazine, and

waiting for food to be delivered, and hence the development of a

goal-tracking CR. The Feature-Model-Free system, directly

evaluating features by trials and errors, favours systematic

approach towards the lever, a full predictor of food delivery, and

hence the development of a sign-tracking CR. Moreover, utilizing

the Feature-Model-Free system to represent sign-tracking behav-

iour yields results consistent with the pharmacological data.

Disrupting RPEs, which reflects the effects of flupentixol on

Figure 8. Reproduction of the effect of systemic injections of flupentixol on sign-tracking and goal-tracking behaviours. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Flagel et al. [14] experimental results (Figure 4 a,d). Effects of flupentixol on the probability to
approach the lever for STs (A) and the magazine for GTs (B) during lever presentation. (C,D) Simulation of the same procedure (squares) with the
model. Simulated groups of rats are defined as in Figure 5. (C) By flattening the softmax temperature and reducing the RPEs of the Feature-Model-
Free system, to mimic the possible effect of flupentixol, the model can reproduce the blocked acquisition of sign-tracking in STs (red), engaging less
the lever relatively to a saline-injected control group (white). (D) Similarly, the model reproduces that goal-tracking was learned but its expression

was blocked. Under flupentixol (first 7 sessions), GTs (blue) did not express goal-tracking, but on a flupentixol-free control test (8th session) their
engagement with the magazine was almost identical to the engagement of a saline-injected control group (white).
doi:10.1371/journal.pcbi.1003466.g008
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dopamine, blocks the acquisition of a sign-tracking CR, but not a

goal-tracking CR. The model does not make a distinction between

simple approach behaviour versus consumption-like engagement,

as reported for both STs and GTs [23,24]. However given that

such engagement results from the development of incentive

salience [23,24], the values learned by the Feature-Model-Free

system to bias behaviour towards stimuli attributed with motiva-

tional value are well-suited to explain such observations. The

higher motivational value attributed to the lever by STs relative to

GTs can also explain why the lever-CS is a more effective

conditioned reinforcer for STs than for GTs [22].

Importantly, none of the systems are dedicated to a specific

behaviour, nor rely on a priori information to guide their processes.

The underlying mechanisms increasingly make one behaviour

more pronounced than the other through learning. Each system

contributes to a certain extent to sign- and goal-tracking

behaviour. This property is emphasized by the weighted sum

integration of the values computed by each system before applying

the softmax action-selection mechanism. The variability of

behaviours in the population can then be accounted for by

adjusting the weighting parameter v from 1 (i.e. favouring sign-

tracking) to 0 (i.e. favouring goal-tracking). This suggests that the

rats’ actions result from some combination of rational and

impulsive processes, with individual variation contributing to the

weight of each component.

The integration mechanism is directly inspired by the work of

Dayan et al. [16] and as the authors suggest, the parameter v may

fluctuate over time, making the contribution of the two systems

vary with experience. In contrast to their model, however, the

model presented here does not assign different goals to each

system. Thus, the current model is more similar to their previous

model [17], which uses another method for integration.

A common alternative to integration when using multiple

systems [17,18,35] is to select at each step, based on a given

criterion (certainty, speed/accuracy trade-off, energy cost), a single

system to pick the next action. Such switch mechanism does not fit

well with the present model, given that it would be interpreted as if

actions relied sometimes only on motivational values (i.e. Feature-

Model-Free system) and sometimes only on a rational analysis of

the situation (i.e. Model-Based system). It also does not fit well with

pharmacological observation that STs do not express goal-tracking

tendencies in the drug-free test session following systemic-

injections of flupentixol [14], as Flagel et al. stated, ‘‘[sign-

tracking] rats treated with flupentixol did not develop a goal-

tracking CR’’.

Factored representations
Classical RL algorithms used in neuroscience [16–18,35],

designed mainly to account for instrumental conditioning, work

at the state level. Tasks are defined as graphs of states, and

corresponding models are unaware of any similarity within states.

Therefore, any subsequent valuation process cannot use any

underlying structure to generalize updates to states that share

stimuli. Revising the valuation process to handle features rather

than states per se, makes it possible to attribute motivational values

to stimuli independently of the states in which they are presented.

Recent models dedicated to Pavlovian conditioning [36,42–46]

usually represent and process stimuli independently and can be

said to use factored representations, a useful property to account

for phenomena such as blocking [47] or overexpectation [48]. In

contrast to the present model, while taking inspiration from RL

theory (e.g. using incremental updates), these models are usually

far from the classical RL framework. Of significant difference with

the present study, most of these models tend to describe the

varying intensity of a unique conditioned response and do not

account for variations in the actual form of the response, as we do

here. In such models, the magazine would not be taken into

account and/or taken as part of the context, making it unable to

acquire a value for itself nor be the focus of a particular response.

In RL theory, factorization is mainly evoked when trying to

overcome the curse of dimensionality [49] (i.e. standard algorithms

do not scale well to high dimensional spaces and require too much

physical space or computation time). Amongst methods that

intend to overcome this problem are value function approxima-

tions and Factored Reinforcement Learning. Value function

approximations [35,50,51] attempt to split problems into orthog-

onal subproblems making computations easier and providing

valuations that can then be aggregated to estimate the value of

states. Factored Reinforcement Learning [52–54] attempts to find

similarities between states so that they can share values, reducing

the physical space needed and relies on factored Markov Decision

Processes. We also use factored Markov Decision processes, hence

the ‘‘factored’’ terminology. However, our use of factored

representations serves a different purpose. We do not intend to

build a compact value-function nor infer the value of states from

Figure 9. Reproduction of the effect of post injections of
flupentixol in the core of the nucleus accumbens. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Saunders et al. [25]
experimental results (Figure 2 A,D). Effects of different doses of
flupentixol on the general tendency to sign-track (A) and goal-track (B)
in a population of rats, without discriminating between sign- and goal-
trackers. (C,D) Simulation of the same procedure with the model. The
simulated population is composed of groups of rats defined as in
Figure 5. By simulating the effect of flupentixol as in Figure 8, the model
is able to reproduce the decreasing tendency to sign-track in the overall
population by increasing the dose of flupentixol.
doi:10.1371/journal.pcbi.1003466.g009
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values of features but rather make these values compete in the

choice for the next action.

Taking advantage of factored representations into classical RL

algorithms is at the very heart of the present results. By

individually processing stimuli within states (i.e. in the same

context, at the same time and same location) and making them

compete, the Feature-Model-Free system favours a different policy

– oriented towards engaging with the most valued stimuli – (sign-

tracking) than would have been favoured by classical algorithms

such as Model-Based or Model-Free systems (goal-tracking).

Hence, combining a classical RL algorithm with the Feature-

Model-Free system enables the model to reproduce the difference

in behaviours observed between STs and GTs during an

autoshaping procedure. Moreover, by biasing expected optimal

behaviours towards cues with motivational values (incentive

salience), it is well suited to explain the observed commitment to

unnecessary and possibly counter-productive actions (see also

[16,55,56]). Most of all, it enables the model to replicate the

different patterns of dopamine activity recorded with FSCV in the

core of the nucleus accumbens of STs and GTs. The independent

processing of stimuli leads to patterns of RPE that match those of

dopamine activity for STs – a shift of bursts from the US to the

CS; and in GTs – a persistence of bursts at both the time of the US

and the CS.

A promising combination
By combining the two concepts of dual learning systems and

factored representations in a single model, we are able to

reproduce individual variation in behavioural, physiological and

pharmacological effects in rats trained using an autoshaping

procedure. Interestingly, our approach does not require a deep

revision of mechanisms that are extensively used in our current

field of research.

While Pavlovian and instrumental conditioning seem entangled

in the brain [57], the two major concepts on which rely their

respective models, dual learning systems and factored representa-

tions, have to our knowledge never been combined into a single

model in this field of research.

This approach could contribute to the understanding of

interactions between these two classes of learning, such as CRE

or Pavlovian-Instrumental Transfer (PIT), where motivation for

stimuli acquired via Pavlovian learning modulates the expression

of instrumental responses. Interestingly, the Feature-Model-Free

system nicely fits with what would be expected from a mechanism

contributing to general PIT [58]. It is focused on values over

stimuli without regard to their nature [58], it biases and interferes

with some more instrumental processes [55,56,58] and it is

hypothesized to be located in the core of the nucleus accumbens

[58]. It would thus be interesting to study whether future

simulations of the model could explain and help better formalize

these aspects of PIT.

We do not necessarily imply that instrumental and Pavlovian

conditioning might rely on a unique model. Rather, we propose

that if they were the results of separated systems, they should

somehow rely on similar representations and valuation mecha-

nisms, given the strength of the observed interactions.

Theoretical and practical implications
The proposed model explains the persistent dopamine response

to the US in GTs over days of training as a permanent RPE due to

the revision of the magazine value during each ITI. Therefore, a

prediction of the model is that shortening the ITI should reduce

the amplitude of this burst (i.e. there should be less time to revise

the value and reduce the size of the RPE); whereas increasing the

ITI should increase the amplitude of this burst. Removing the food

dispenser during ITI, similar to theoretically suppressing the ITI,

should make this same burst disappear. Studying physiological

data by grouping them given the duration of the preceding ITI

might be sufficient, relatively to noise, to confirm that its duration

impacts the amplitude of dopamine bursts. In the current

experimental procedure, the ITI is indeed randomly picked in a

list of values with an average of 90 sec. Moreover, reducing ITI

duration should lead to an increase of the tendency to goal-track in

the overall population. Indeed, with a higher value of the food

magazine, the Feature-Model-Free system would be less likely to

favour sign-tracking over goal-tracking CR. The resulting decrease

in sign-tracking in the overall population would be consistent with

findings of previous works [59–62], where a shorter ITI reduces

the observed performance in the acquisition of sign-tracking CRs.

Alternatively, it would also be interesting to examine the

amplitude of dopamine bursts during the ITI (especially when

exploring the food magazine), to determine whether or not

physiological responses during this period affect the outcome of

the conditioned response.

It would be interesting to split physiological data not only

between STs and GTs but also between the stimuli on which the

rats started and/or ended focusing on during CS presentation at

each trial. This would help to confirm that the pattern of

dopamine activity is indeed due to a separate valuation of each

stimuli. We would predict that at the time of the US, dopamine

bursts during engagement with the lever should be small relatively

to dopamine bursts during engagement with the magazine.

Moreover, comparing dopamine activity at the time of the CS

when engaging with the lever versus the magazine could help

elucidate which update mechanism is being used. If activity differs,

this would suggest that the model should be revised to use SARSA-

like updates, i.e. taking into account the next action in RPE

computation. Such a question has already been the focus of some

studies on dopamine activity [63–65].

There is no available experimental data for the phasic

dopaminergic activity of the intermediate group. The model

predicts that such a group would have a permanent phasic

dopamine burst, i.e. RPE, at US and a progressively appearing

burst at CS (see Figure S6). Over training, the amplitude of the

phasic dopamine burst at US should decrease until a point of

convergence, while at the mean time the response at CS should

increase until reaching a level higher than the one observed at US.

However, one must note, that the fitting of the intermediate group

is not as good as for STs or GTs, as it regroups behaviours that

range from sign-tracking to goal-tracking, such that this is a weak

prediction.

There is the possibility that regularly presenting the magazine or

the lever could, without pairing with food, lead to responses that

are indistinguishable from CRs. However, ample evidence

suggests that the development of a sign-tracking or goal-tracking

CR is not due to this pseudoconditioning phenomenon, but rather

a result of learned CS-US associations. That is, experience with

lever-CS presentations or with food US does not account for the

acquisition of lever-CS induced directed responding [22,66].

Nonetheless, it should be noted that the current model cannot

distinguish between pseudoconditioning CR-like responses and

sign-tracking or goal-tracking behaviours. This would require us to

introduce more complex MDPs that embed the ITI and can more

clearly distinguish between approach and engagement.

Limitations
The Feature-Model-Free system presented in this article was

designed as a proof of concept for the use of factored
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representations in computational neuroscience. In its present form

it updates the value of one feature (the focused one) at a time, and

this is sufficient to account for much of the experimental data. It

does not address whether multiple features could be processed in

parallel, such that multiple synchronized, but independently

computed, signals would update distinct values relative to the

attention paid to the associated features. Further experiments

should be performed to confirm this hypothesis. Subsequently,

using factored representations in the Model-Based system was not

necessary to account for the experimental data and the question

remains whether explaining some phenomena would require it.

While using factored representations, our approach still relies on

the discrete-time state paradigm of classical RL, where updates are

made at regular intervals. Although such simplification can explain

the set of data considered here, one would need to extend this to

continuous time if one would like to also model experimental data

where rats take more or less time to initiate actions that can vary in

duration [14]. The present model, which does not take timing into

consideration, cannot account for the fact that STs and GTs both

come to approach their preferred stimuli faster and faster as a

function of training nor does it make use of the variations of ITI

duration. Our attempt to overcome this limitation using the MDP

framework was unsuccessful. Focusing on features, it becomes

more tempting to deal with the timing of their presence, a property

that is known to be learned and to have some impact on

behaviours [61,67–69].

Moreover, in the current model, we did not attempt to account

for the conditioned orienting responses (i.e. orientation towards

the CS) that both STs and GTs exhibit upon CS presentation [25].

However, we hypothesize that such learned orienting responses

could be due to state discrimination mechanisms that are not

included in the model, and would be better explained with partial

observability and actions dedicated to collect information. This is

beyond the scope of the current article, but is of interest for future

studies.

As evident by the only partial reproduction of the flupentixol

effects on the expression of sign- and goal-tracking behaviours, the

model is limited by the use of the softmax action-selection

mechanism, which is widely used in computational neuroscience

[16–19,32,34–36]. In the model, all actions are equal – there is no

action with a specific treatment – and the action-selection

mechanism necessarily selects an action at each time step. Any

reduction in the value of one action favours the selection of all

other actions in proportion to their current associated values. In

reality, however, blocking the expression of an action would

certainly lead mainly to inactivity rather than necessarily picking

the alternative and almost never expressed action. One way of

improving the model in this direction could be to replace the

classical softmax function by a more realistic model of action

selection in the basal ganglia (e.g. [70]). In such a model, no action

is performed when no output activity gets above a certain

threshold. Humphries et al. [32] have shown that changing the

exploration level in a softmax function can be equivalent to

changing the level of tonic dopamine in the basal ganglia model of

Gurney et al. [70]. Interestingly, in the latter model, reducing the

level of tonic dopamine results in difficulty in initiating actions and

thus produces lower motor behaviour, as is seen in Parkinsonian

patients and as can be seen in rats treated with higher doses of

flupentixol [14]. Thus a natural sequel to the current model would

be to combine it with a more realistic basal ganglia model for

action selection.

We simulated the effect of flupentixol as a reduction of the RPE

in the learning processes of Model-Free systems to parallel its

blockade of the dopamine receptors. While this is sufficient to

account for the pharmacological results previously reported [14], it

fails to account for some specific aspects that have more recently

emerged. Mainly, it is unable to reproduce the instant decreased

engagement observed at the very first trial after post-training local

injections of flupentixol [25]. Our current approach requires re-

learning to see any impact of flupentixol. A better understanding

of the mechanisms that enable instant shifts in motivational values,

by shifts in the motivational state [71] or the use of drugs [14,25],

might be useful to extend the model on such aspects.

We also tried to model the effect of flupentixol on RPEs with a

multiplicative effect, as it would have accounted for an instant

impact on behaviour. However, it failed to account for the effects

of flupentixol on learning of the sign-tracking CRs, as a

multiplicative effect only slowed down learning but did not disrupt

it. How to model the impact of flupentixol, and dopamine

antagonists or drugs such as cocaine remains an open question

(e.g. see [72,73]).

Finally, our work does not currently address the anatomical

counterpart of v at the heart of the model, nor the regions of the

brain that would match the current Model-Based system and the

Feature-Model-Free system. Numerous studies have already

discussed the potential substrates of Model-Based/Model-Free

systems in the prefrontal cortex/dorsolateral striatum [74], or the

dorsomedial and dorsolateral striatum [33,75–78]. The weighted

sum integration may suggest a crossed projection of brains regions

favouring sign- and goal-tracking behaviours (Model-Based and

Feature-Model-Free systems) into a third one. We postulate there

is a difference in strength of ‘‘connectivity’’ between such regions

in STs vs GTs [79]. Further, one might hypothesize that the core

of the nucleus accumbens contributes to the Feature-Model-Free

system. The integration and action selection mechanisms would

naturally fit within the basal ganglia, stated to contribute to such

functions [32,80–82].

Conclusion
Here we have presented a model that accounts for variations in

the form of Pavlovian conditioned approach behaviour seen

during autoshaping in rats; that is, the development of a sign-

tracking vs goal-tracking CR. This works adds to an emerging set

of studies suggesting the presence and collaboration of multiple RL

systems in the brain. It questions the classical paradigm of state

representation and suggests that further investigation of factored

representations in RL models of Pavlovian and instrumental

conditioning experiments may be useful.

Methods

Modelling the autoshaping experiment
In the classical reinforcement learning theory [1], tasks are

usually described as Markov Decision Processes (MDPs). As the

proposed model is based on RL algorithms, we use the MDP

formalism to computationally describe the Pavlovian autoshaping

procedure used in all simulations.

An MDP describes the interactions of an agent with its

environment and the rewards it might receive. An agent being

in a state s can execute an action a which results in a new state s’
and the possible retrieval of some reward r. More precisely, an

agent can be in a finite set of states S, in which it can perform a

finite set of discrete actions A, the consequences of which are

defined by a transition function T : S|A?P(S), where P(S) is

the probability distribution P(s’Ds,a) of reaching state s’ doing

action a in state s. Additionally, the reward functionR : S|A?R

is the reward R(s,a) for doing action a in state s. Importantly,

MDPs should theoretically comply with the Markov property: the
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probability of reaching state s’ should only depend on the last state

s and the last action a. An MDP is defined as episodic if it includes

at least one state which terminates the current episode.

Figure 1 shows the deterministic MDP used to simulate the

autoshaping procedure. Given the variable time schedule (30–

150s) and the net difference observed in behaviours in inter-trial

intervals, we can reasonably assume that each experimental trial

can be simulated with a finite horizon episode.

The agent starts from an empty state (s0) where there is nothing

to do but explore. At some point the lever appears (s1) and the

agent must make a critical choice: It can either go to the lever (s2)

and engage with it (s5), go to the magazine (s4) and engage with it

(s7) or just keep exploring (s3,s6). At some point, the lever is

retracted and food is delivered. If the agent is far from the

magazine (s5,s7), it first needs to get closer. Once close (s7), it

consumes the food. It ends in an empty state (s0) which symbolizes

the start of the inter-trial interval (ITI): no food, no lever and an

empty but still present magazine.

The MDP in Figure 1 is common to all of the simulations and

independent of the reinforcement learning systems we use. STs

should favour the red path, while GTs should favour the shorter

blue path. All of the results rely mainly on the action taken at the

lever appearance (s1), when choosing to go to either the lever, the

magazine, or to explore. Exploring can be understood as not going

to the lever nor to the magazine.

To fit with the requirements of the MDP framework, we

introduce two limitations in our description, which also simplify

our analyses. We assume that engagement is necessarily exclusive

to one or no stimulus, and we make no use of the precise timing of

the procedure – the ITI duration nor the CS duration – in our

simulations.

Inter-trial interval (ITI). While the MDP does not model

the ITI, the results regarding physiological data rely partially on its

presence. Extending the MDP with a set of states to represent this

interval would increase the complexity of the MDP and the time

required for simulations. The behaviour that could have resulted

from such an extension is easily replaced by applying the following

formula at the beginning of each episode:

V(M)/(1{uITI )|V(M) ð1Þ

where the parameter 0ƒuITIƒ1 reflects the interaction with the

magazine that occurred during the ITI. A low uITI?0 symbolizes

a low interaction and therefore a low revision of the value

associated to the magazine. A high uITI?1 symbolizes a strong

exploration of the magazine during the inter-trial interval and

therefore a strong decrease in the associated value due to

unrewarded exploration.

Model
The model relies on the architecture shown in Figure 2. The

main idea is to combine the computations of two distinct

reinforcement learning systems to define what behavioural

response is chosen at each step.

Model-Based system (MB). The first system is Model-Based

[1], and classically relies on a transition function T and a reward

function R which are learned by experience given the following

rules:

T (s,a,s’)/
(1{a)|T (s,a,s’’)za if s’~s’’

(1{a)|T (s,a,s’’) otherwise

(
ð2Þ

R(s,a)/R(s,a)za(r{R(s,a)) ð3Þ

where the learning rate 0ƒaƒ1 classically represents the speed at

which new experiences replace old ones. Using a learning rate

rather than counting occurrences is a requirement for accordance

with the incremental expression of the observed behaviours. This

can account for some resistance or uncertainty in learning from

new experiences.

Given this model, an action-value function Q can then be

computed with the following classical formula:

Q(s,a)/R(s,a)zc
X

s’

T (s’Ds,a) max
a’
Q(s’,a’) ð4Þ

where the discount rate 0ƒcƒ1 classically represents the

preference for immediate versus distant rewards. The resulting

Advantage function A [83,84], the output of the first system, is

computed as follows:

A(s,a)/Q(s,a){ max
a’
Q(s,a’) ð5Þ

It defines the (negative) advantage of taking action a in state s
relatively to the optimal action known. The optimal action

therefore has an advantage value of 0.

In terms of computation, the advantage function could be

replaced by the action-value function without changing the

simulation results (we only compare A{values over the same

state and therefore maxa’Q(s,a’) is constant whatever the action).

It has been used in preceding works dealing with interactions

between instrumental and Pavlovian conditioning [16,84] and we

kept it for a better and more straightforward comparison with

variants of the model that were directly inspired by these

preceding works.

Feature-Model-Free system (FMF). A state is generally

described by multiple features. Animals, especially engaged in a

repetitive task, might not pay attention to all of them at once. For

example, when the lever appears and a rat decides to engage with

the magazine, it focuses primarily on the magazine while ignoring

the lever, such that it could update a value associated to the

magazine but leave intact any value related to the lever (see

Figure 10 A). Although this could be related to an attentional

process that bias learning, we do not pretend to model attention

with such a mechanism.

Relying on this idea, the second system is a revision of classical

Model-Free systems which is based on features rather than states.

It relies on a value function V : C?R based on a set of features C,
which is updated with an RPE:

V(c(s,a))/V(c(s,a))zad ð6Þ

d/rzcmax
a’
V(c(s’,a’)){V(c(s,a))

where c : S|A?C is a feature-function that returns the feature

c(s,a) the action a was focusing on in state s (see Table S2; Figure 1

also embeds the features returned by c for each action and state).

One could argue that this feature-function, defined a priori,

introduces an additional requirement relative to classical Model-

Free systems. This is a weak requirement since this function is

straightforward when actions, instead of being abstractly defined,
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are described as interactions towards objects in the environment.

This function simply states that, for example, when pressing a

lever, the animal is focusing on the lever rather than on the

magazine. Similar to Q{learning, we assume that the future

action to be chosen is the most rewarding one. Therefore, the

value chosen for the reached state s’, in the computation of the

RPE, is the highest value reachable by any possible future action

maxa’V(c(s’,a’)).
Classical Model-Free systems do not permit generalization in

their standard form: even when two states share most of their

features, updating the value of one state leaves the value of the

other untouched. This new system overcomes such limitation (see

Figure 10 B). In Feature-Model-Free Reinforcement Learning,

multiple states in time and space can share features and their

associated values. For example, while in ITI, rats tend from time

to time to explore the magazine [22,26], which might lead them to

revise any associated value, which can also be used when the lever

appears. Therefore, actions in ITIs might impact the rest of the

experiment.

In the simulated experiment (see Figure 1), this generalization

phenomenon happens as follows: Assuming that the simulated rat

was engaging the magazine (eng) before food delivery (from s4 to

s7), then the value V of c(s4,eng)~M is updated with the

following d~0zcmaxa’V(c(s7,a’)){V(M). As the best subse-

quent action (and, for simplification, the only possible one) is to

consume the food (in s7), it results in a positive d~cV(F ){V(M).
During ITI (which in the MDP is simulated by the uITI

parameter), if the simulated rat checks the magazine (goM) and

finds no food, then V(M) is revised with a negative

d~cV(1){V(M) (Figure 10 B). The value V(M) is therefore

revised at multiple times in the experiment and, for example, a

decrease of value during ITI has an impact on the choice of

engaging with the magazine (goM) at lever appearance.

Processing features rather than states and the generalization that

results from it is a key mechanism of the presented model. It makes

the system favour a different path than the one favoured by

classical reinforcement learning systems.

Contrary to what the system suggests, it is almost certain that

rats might handle multiple features at once and could simulta-

neously update multiple values. We present here a version without

such capacity since it is not required in the simulated experiments

and simplifies its understanding.

Integration. The Feature-Model-Free system accounts for

motivational bonuses V that impact values A computed by the

Model-Based system. The integration of these values is made

through a weighted sum:

P(s,a)~(1{v)A(s,a)zvV(c(s,a)) ð7Þ

where 0ƒvƒ1 is a combination parameter which defines the

importance of each system in the overall model. v is equivalent to

the responsibility signal in Mixture of Experts [35,85]. We want to

emphasize that the two systems are not in simple competition, and

it is not the case that there is a unique system acting at a time.

Rather, they are both active and take part in the decision

proportionally to the fixed parameter v. A simple switch between

systems would not account for the full spectrum of observed

behaviours ranging from STs to GTs [26].

Action selection. We use a softmax rule on the integrated

values P to compute the probability to select an action A in state s:

p(a~A)~
eP(s,A)=bP
a0 e
P(s,a0)=b

ð8Þ

where bw0 is the selection temperature that defines how

probabilities are distributed. A high temperature (b??) makes

all actions equiprobable, a low one makes the most rewarding

action almost exclusive.

Impact of flupentixol. When simulating the pharmacological

experiments, namely the impact of flupentixol, a parameter 0ƒf v1 is

used to represent the impact of flupentixol on parts of the model.

As a dopamine receptor antagonist, we model the impact of

flupentixol on phasic dopamine by revising any RPE d used in the

model given the following formula:

df /
d{f if

d{f

d
§0

0 otherwise

8<
: ð9Þ

where df is the new RPE after flupentixol injection. The impact is

filtered (
d{f

d
§0) such that flupentixol injection could not lead to

negative learning when the RPE was positive, but at most block it

Figure 10. Characteristics of the Feature-Model-Free system. (A) Focusing on a particular feature. The Feature-Model-Free system relies on a
value function V based on features. Choosing an action (e.g. goL, goM or exp), defines the feature it is focusing on (e.g. Lever, Magazine or nothing
1). Once the action is chosen (e.g. goM in blue), only the value of the focused feature (e.g. V(M)) is updated by a standard reward prediction error,
while leaving the values of the other features unchanged. (B) Feature-values permit generalization. At a different place and time in the episode, the
agent can choose an action (e.g. goM in blue) focusing on a feature (e.g. M) that might have already been focused on. This leads to the revision of the
same value (e.g. V(M)) for two different states (e.g. s1 and s0). Values of features are shared amongst multiple states.
doi:10.1371/journal.pcbi.1003466.g010
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(i.e. the sign of df cannot be different from the one of d). With a

low f?0, the RPE is not affected (df ?d). A high f?1 reduces the

RPE, imitating a blockade of dopamine receptors.

Various studies (e.g. [32]) also suggest that tonic dopamine has

an impact on action selection such that any decrease in dopamine

level results in favouring exploration over exploitation. We

therefore simulated the effect of flupentixol on action selection

by revising the selection temperature given the following formula:

bf /
b

1{f
ð10Þ

where bf is the new selection temperature, and 0ƒf v1

represents the strength of the flupentixol impact. A strong f?1,

which represents an effective dose of flupentixol, favours a high

temperature bf ?? and therefore exploration. A low f?0, i.e. a

low dose or an absence of flupentixol, leaves the temperature

unaffected: bf ?b.

For the first pharmacological experiment (Effects of systemic

flupentixol administration on the learning of sign- and goal-

tracking behaviours) both the impact on the softmax and on the

RPE were activated, as the flupentixol was injected systemically

and assumed to diffuse in the whole brain. For the second

experiment (Effects of local flupentixol administration on the

expression of sign- and goal-tracking behaviours) only the impact

on the RPE was activated, as the flupentixol was injected locally in

the core of the nucleus accumbens. We hypothesize that the

Feature-Model-Free system relies in the core of the nucleus

accumbens whereas the selection process (softmax) does not.

Initialization. In the original experiments [14,20], prior to

the autoshaping procedure, rats are familiarized with the Skinner

box and the delivery of food into the magazine. While the MDP

does not account for such pretraining, we can initialize the model

with values (Qi(s1,goL), Qi(s1,goM) and Qi(s1,exp)) that reflect it

(see the estimation of the model parameters). These initial values

can be seen as extra parameters common to the model and its

variants.

Variants
Given the modular architecture of the model, we were able to

test different combinations of RL systems. Their analysis

underlined the key mechanisms required for reproducing each

result (see Figures S1, S2, S4 and S5). Figure 11 (B, C and D)

schematically represents the analysed variants.

Most of the results rely on the action taken by the agent at the

lever appearance. The action taken results from the values

P(s1,goL), P(s1,goM) and P(s1,exp), the computation of which

differs in each of the variants described below.

Variant 1 : Model-Free/Feature-Model-Free. Variant 1

was tested to assert the necessity of the Model-Based system as part

of the model to reproduce the results. Thus in Variant 1, the

Model-Based system is replaced by a classical Model-Free system,

Advantage learning [83,84], while the Feature-Model-Free system

remains unchanged (see Figure 11 B).

In such a Model-Free system, the action-value function QMF is

updated online according to the transition just experienced. At

each time step the function is updated given an RPE d that

computes the difference between the observed and the expected

value, as follows:

QMF(s,a)/QMF(s,a)zad ð11Þ

d/rzcmax
a’
QMF(s’,a’){QMF(s,a)

Computation of the associated Advantage function AMF follows

Equation (5). This model computes integrated values as follows:

P(s,a)~(1{v)AMF(s,a)zvV(c(s,a)) ð12Þ

It is important to note that while Equation (12) looks similar to

Equation (7), the Advantage function is computed by a Model-

Based system in the model (A) and a Model-Free system in this

variant (AMF), leading to very different results on pharmacological

experiments.
Variant 2 : Asymmetrical. Inspired by a work from Dayan

et al. [16], Variant 2 combines a classical Advantage learning

system [83,84] with some Bias system taking its values directly

from the other system (see Figure 11 C). This system computes the

integrated values as follows:

P(s,a)~(1{v)|AMF(s,a)zv
V(s) if a~goL

0 otherwise

�
ð13Þ

It asymmetrically gives a bonus to the path that should be taken

by STs. In slight discrepancy with the original model, it uses the

maximum value over action-value function QMF as the value

function VMF used to compute the advantage function. Hence,

there is a single RPE computed at each step.
Variant 3 : Symmetrical. In the same line as Variant 2,

Variant 3 symmetrically gives a bonus to both paths using a

classical Advantage learning system in combination with a

Pavlovian system. This system computes the integrated values as

follows:

P(s,a)~AMF(s,a)z

vV(s) if a~goL

(1{v)V(s) if a~goM

0 otherwise

8><
>: ð14Þ

This model does not exactly fit Equation (7) of the general

architecture. It is based on 3 systems, where the real competition is

between the two bias systems, whereas the Model-Free system is

mainly used to compute the values used by the two others (see

Figure 11 D). The rest of the architecture is not impacted.
Variant 4 : Model-Based/Model-Free. Variant 4 was

developed to confirm the necessity of a feature-based system. It

combines two advantage functions computed from a Model-Based

(A) and a Model-Free (AMF) system.

P(s,a)~(1{v)A(s,a)zvAMF(s,a) ð15Þ

While computed differently, both advantage functions will

eventually converge to the same optimal values [1] making both

systems favouring the same optimal policy. Note that uITI cannot

be used in this variant as there exists no value over the magazine

itself. While varying the parameters might slow down learning or

make the process more exploratory, this could never lead to sign-

tracking as both systems, whatever the weighting, would favour
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goal-tracking. As such, Variant 4 is unable to even account for the

main behavioural results in the autoshaping procedure (see Figure S8).

Given that all the subsequent simulated results relies on a

correct reproduction of the default behaviours, this variant was not

investigated further and is not compared to the other variants in

supplementary results figures.

Estimating the model parameters
The model relies on model-specific parameters (v, b, a and c)

and experience-specific parameters (uITI , Qi(s1,goL), Qi(s1,goM)
and Qi(s1,1)). If the model were used to simulate a different

experiment, the model-specific parameters would be the same

while different experience-specific parameters might be required.

For an easier analysis and a simpler comparison between the

model and its variants, we reduce the number of parameters by

sharing parameters with identical meanings amongst systems (i.e.

both systems within the model share values for their learning rates

a and discount rates c, rather than having independent parameter

values).

Due to the number of parameters, finding the best values to

qualitatively fit the experimental data cannot be done by hand.

Using a genetic algorithm makes it possible to optimize the search

of suitable values for the parameters.

Parameter values were retrieved by fitting the simulation of the

probabilities to engage either the lever or the magazine with the

experimental data of one of the previous studies [21]. No direct

fitting was intended on other experimental data. Hence, a single

set of values was used to simulate behavioural, physiological and

pharmacological data.

If for a variant, the optimization algorithm fails to fit the

experimental data, it suggests that whatever the values, the

mechanisms involved cannot explain the behavioural data

(Variant 4).

Probabilities to engage the lever or the magazine were taken

as independent objectives of the algorithm, since fitting sign-

tracking probabilities is easier than fitting goal-tracking

probabilities. For each objective, the fitness function is

computed as the least square errors between the experimental

and simulated data. Parameter optimization is done with the

multi-objective genetic algorithm NSGA-II [86]. We used the

implementation provided by the Sferes 2 framework [87]. All

parameters required for reproducing the behavioural data were

fitted at once.

For NSGA-II, we arbitrarily use a population of 200 individuals

and run it over 1000 generations. We use a polynomial mutation

with a rate of 0.1, and simulate binary cross-overs with a rate of

0.5. We select the representative individual, to be displayed in

figures, from the resulting Pareto front by hand, such that it best

visually fits the observed data.

To confirm that v is the key parameter of the model, we

additionally tried to fit the whole population at once (i.e. sharing

all parameter values in agents but v) and we were still able to

reproduce the observed tendencies of sign- and goal-tracking in

the population (see Figure S7 A,B) and the resulting different

phasic dopaminergic patterns (see Figure S7 C,D).

It is however almost certain that each subgroup does not express

the exact same values for the other parameters. Removing such

constraint by fitting each subgroup separately, indeed provides

better results. Results presented in this article are based on such

separate fitting.

Supporting Information

Figure S1 Comparison of variants of the model on
simulations of autoshaping experiment. Legend is as in

Figure 5 (C,D). Simulation parameters for STs (red), GTs (blue)

Figure 11. Systems combined in the model and the variants. Variants of the model rely on the same architecture (described in Figure 2) and
only differ in the combined systems. Colours are shared for similar systems. (A) The model combines a Model-Based system (MB, in blue) and a
Feature-Model-Free (FMF, in red) system. (B) Variant 1 combines a Model-Free system (MF, in green) and a Feature-Model-Free system. (C) Variant 2
combines a Model-Free system and a Bias system (BS, in grey), that relies on values from the Model-Free system. (D) Variant 3 combines a Model-Free
system and two Bias systems, that rely on values from the Model-Free system. Variant 4 is not included as it failed to even reproduce the autoshaping
behavioural results.
doi:10.1371/journal.pcbi.1003466.g011
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and IGs (white) in the model (A), Variant 1 (B), Variant 2 (C) and

Variant 3 (D) are summarized in Table S1. All variants reproduce

the spectrum of behaviours ranging from sign-tracking to goal-

tracking.

(TIFF)

Figure S2 Comparison of variants of the model on
incentive salience and Conditioned Reinforcement Ef-
fect intuitions. Legend is as in Figure 6. Simulation parameters

for STs (red), GTs (blue) and IGs (white) are summarized in Table

S1. Variant 2 (C) relying on asymmetrical bonuses given only to

sign-tracking cannot reproduce the attribution of a motivational

value by the second system to both the lever and the magazine.

Others (A,B,D) attribute values to both stimuli and parallels the

supposed acquisition of motivational values by stimuli, i.e.

incentive salience. All variants are able to account for a

Conditioned Reinforcement Effect more pronounced in STs than

in GTs.

(TIFF)

Figure S3 Comparison of variants of the model on
simulations of patterns of dopaminergic activity. Legend

is as in Figure 7 (C,D). Simulation parameters for STs (left) and

GTs (right) are summarized in Table S1. The model (A) and

Variant 1 (B) can reproduce the difference observed in

dopaminergic patterns of activity in STs versus GTs. Other

variants (C,D) fail to do so, given that the classical Model-Free

system propagates the RPE from food delivery to lever appearance

on all pathways of the MDP.

(TIFF)

Figure S4 Comparison of variants on simulations of the
effect of systemic injections of flupentixol. Legend is as in

Figure 8 (C,D). Simulation parameters for STs (left) and GTs

(right) are summarized in Table S1. Only the Model (A) can

reproduce the difference in response to injections of flupentixol

observed in STs versus GTs. All variants (B,C,D) fail to do so,

given that they only rely on Model-Free, i.e. RPE-dependent,

mechanisms that are blocked by flupentixol.

(TIFF)

Figure S5 Comparison of variants on simulations of the
effect of post injections of flupentixol. Legend is as in

Figure 9 (C,D). Simulation parameters for groups of rats

composing the population are summarized in Table S1. Variants

2 (C) and 3 (D), accounting for sign- and goal-tracking using a

single set of values, have a similar impact of flupentixol on both

behaviours, leaving relative probabilities to engage with lever and

magazine unaffected. Variant 1 (B) uses different systems, thus

flupentixol impacts sign-tracking in the model in the same way as it

does in experimental data. However, given that both systems rely

on RPE-dependent mechanisms, the impact is not as visible as in

the model (A).

(TIFF)

Figure S6 Prediction of the model about expected
patterns of dopaminergic activity in intermediate

groups. Data are expressed as mean + S.E.M. Average RPE

computed by the Feature-Model-Free system in response to CS

and US presentation for each session of conditioning in the

intermediate group. Simulated group is defined as in Figure 5.

(TIFF)

Figure S7 Behavioural and physiological simulations of
autoshaping with shared parameter values across STs,
GTs and IGs. (A,B) Legend is as in Figure 5 (C,D).

Reproduction of the respective tendencies to sign- and goal-track

of STs (v~0:5), IGs (v~0:375) and GTs (v~0:05)) using a

single set of parameters (a~0:2, c~0:8, b~0:09, uITI~0:2,

Qi(s1,goL)~0:0, Qi(s1,exp)~0:5 and Qi(s1,goM)~0:5). (C,D)

Legend is as in Figure 7 (C,D). Reproduction of the different

patterns of phasic dopaminergic activity in STs and GTs using the

same single set of parameters. By simply varying the v parameter,

the model can still qualitatively reproduce the observations in

experimental data.

(TIFF)

Figure S8 Simulation of autoshaping experiment for
Variant 4. Legend is as in Figure 5 (C,D). Simulation for

parameters STs (red), GTs (blue) and IGs (white) in the Variant 4

are summarized in Table S1. Variant 4 is not even able to

reproduce the main behavioural data.

(TIFF)

Table S1 Summary of parameters used in simulations.
Parameters retrieved by optimisation with NSGA-II and used to

produce the results presented in this article for the model and its

variants. Parameters for STs, GTs and IGs were optimized

separately (A,B,C,D,E). To confirm that v is the key parameter of

the model, we also optimized parameters for STs, GTs and IGs by

sharing all but the v parameter (F) to produce Figure S7.

(TIFF)

Table S2 Definition of feature-function c. Stimuli (Lever,

Magazine, Food or 1) returned by the feature-function c for each

possible state-action pair Ss,aT in the MDP described in Figure 1.

The feature-function simply defines the stimulus that is the focus of

an action in a particular state.

(TIFF)
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Supporting Information Legends

Figure S1. Comparison of variants of the model on simulations of autoshaping
experiment. Legend is as in Figure 5 (C,D). Simulation parameters for STs (red), GTs (blue) and IGs
(white) in the Model (A), Variant 1 (B), Variant 2 (C) and Variant 3 (D) are summarized in Table
S1. All variants reproduce the spectrum of behaviours ranging from sign-tracking to goal-tracking.
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Figure S2. Comparison of variants of the model on incentive salience and Conditioned
Reinforcement Effect intuitions. Legend is as in Figure 6. Simulation parameters for STs (red),
GTs (blue) and IGs (white) are summarized in Table S1. Variant 2 (C) relying on asymmetrical
bonuses given only to sign-tracking cannot reproduce the attribution of a motivational value by the
second system to both the lever and the magazine. Others (A,B,D) attribute values to both stimuli and
parallels the supposed acquisition of motivational values by stimuli, i.e. incentive salience. All variants
are able to account for a Conditioned Reinforcement Effect more pronounced in STs than in GTs.
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Figure S3. Comparison of variants of the model on simulations of patterns of
dopaminergic activity. Legend is as in Figure 7 (C,D). Simulation parameters for STs (left) and GTs
(right) are summarized in Table S1. The Model (A) and Variant 1 (B) can reproduce the difference
observed in dopaminergic patterns of activity in STs versus GTs. Other variants (C,D) fail to do so,
given that the classical Model-Free system propagates the RPE from food delivery to lever appearance
on all pathways of the MDP.
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Figure S4. Comparison of variants on simulations of the effect of systemic injections of
flupentixol. Legend is as in Figure 8 (C,D). Simulation parameters for STs (left) and GTs (right) are
summarized in Table S1. Only the Model (A) can reproduce the difference in response to injections of
flupentixol observed in STs versus GTs. All variants (B,C,D) fail to do so, given that they only rely on
Model-Free, i.e. RPE-dependent, mechanisms that are blocked by flupentixol.
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Figure S5. Comparison of variants on simulations of the effect of post injections of
flupentixol. Legend is as in Figure 9 (C,D). Simulation parameters for groups of rats composing the
population are summarized in Table S1. Variants 2 (C) and 3 (D) accounting for sign- and
goal-tracking using a single set of values have a similar impact of flupentixol on both behaviours leaving
relative probabilities to engage with lever and magazine unaffected. Variant 1 (B) uses different
systems, thus flupentixol impacts sign-tracking in the model in the same way as it does in experimental
data. However, given that both systems rely on RPE-dependent mechanisms, the impact is not as
visible as in Model 1 (A).
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Figure S6. Prediction of the Model about expected patterns of dopaminergic activity in
intermediate groups. Data are expressed as mean ± S.E.M. Average RPE computed by the
Feature-Model-Free system in response to CS and US presentation for each session of conditioning in
the intermediate group. Simulated group is defined as in Figure 5.
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Figure S7. Behavioural and Physiological simulations of autoshaping with shared
parameter values across STs, GTs and IGs. (A,B) Legend is as in Figure 5 (C,D). Reproduction
of the respective tendencies to sign- and goal-track of STs (ω = 0.5), IGs (ω = 0.375) and GTs
(ω = 0.05)) using a single set of parameters (α = 0.2, γ = 0.8, β = 0.09, uITI = 0.2, Qi(s1, goL) = 0.0,
Qi(s1, exp) = 0.5 and Qi(s1, goM) = 0.5). (C,D) Legend is as in Figure 7 (C,D). Reproduction of the
different patterns of phasic dopaminergic activity in STs and GTs using the same single set of
parameters. By simply varying the ω parameters, the model can still qualitatively reproduce the
observations in experimental data.
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Figure S8. Simulation of autoshaping experiment for Variant 4. Legend is as in Figure 5
(C,D). Simulation for parameters STs (red), GTs (blue) and IGs (white) in the variant 4 are
summarized in Table S1. Variant 4 is not even able to reproduce the main behavioural data.

Table S1. Summary of parameters used in simulations

Parameters retrieved by optimisation with NSGA-II and used to produce the results presented in this
article for the model and its variants. Parameters for STs, GTs and IGs were optimized separately
(A,B,C,D,E). To confirm that ω is the key parameter of the model, we also optimized parameters for
STs, GTs and IGs by sharing all but the ω parameter (F) to produce Figure S7.
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Table S2. Definition of feature-function c

Stimuli (Lever, M agazine, Food or ∅) returned by the feature-function c for each possible state-action
pair 〈s, a〉 in the MDP described in Figure 1. The feature-function simply defines the stimulus that is
the focus of an action in a particular state.
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This chapter presents work employing the model-based analysis of neu-
rophysiological data approach. The work is presented under the form

of two journal papers, one in press (Khamassi et al. 2014), the other about
to be submitted (Bellot et al. in preparation), aiming at testing model pre-
dictions about hypothesized neural activities underlying behavioral adap-
tation, and using the computational models to more precisely measure
information related to particular computational mechanisms in neural ac-
tivity.

The first one has been performed with Emmanuel Procyk, Peter F. Do-
miney, René Quilodran and Pierre Enel and shows neural substrates of
adaptive regulation of reinforcement learning parameters in the prefrontal
cortical network during monkey behavioral adaptation. The results show
differences in activity response patterns between the Anterior Cingulate
Cortex (ACC) and Lateral Prefrontal Cortex (LPFC) suggesting a role of
ACC in integrating reinforcement-based information to regulate decision
functions in LPFC under varying control levels, which could be interpre-
ted in terms of varying levels of the exploration parameter in the reinfor-
cement learning model.

The second one presents the work of PhD student Jean Bellot and
shows model-based analyses of dopamine neurons’ single-unit recordings

69
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during a decision-making task in rats. The work shows that in contrast
to previous reports, dopamine activity in this task only partially reflects
the computation of a reward prediction error and also incorporates infor-
mation about the value function. Moreover, the dynamics of this signal
appears to be partly disconnected from the dynamics of observed beha-
vioral adaptation, suggesting that behavior in this task is not influenced
by a single learning system.

3.1 Monkey prefrontal cortex activity during behavio-
ral adaptation

3.1.1 Khamassi, Quilodran, Enel, Dominey, Procyk (2014) Cerebral Cor-
tex
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Behavioral regulation and the modulation of information 
coding in the lateral prefrontal and cingulate cortex 

 
M. Khamassi, R. Quilodran, P. Enel, P.F. Dominey, E. Procyk 

 
  
 

 
To explain the high level of flexibility in primate decision-making, theoretical models often invoke 

reinforcement-based mechanisms, performance monitoring functions, and core neural features 

within frontal cortical regions. However, the underlying biological mechanisms remain unknown. 

In recent models, part of the regulation of behavioral control is based on meta-learning principles, 

e.g. driving exploratory actions by varying a meta-parameter, the inverse temperature, which 

regulates the contrast between competing action probabilities. Here we investigate how 

complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate 

cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. 

Model-based analyses of unit activity recorded in these two areas in monkeys first revealed that 

adaptation of the decision function is reflected in a covariation between LPFC neural activity and 

the control level estimated from the animal's behavior. Second, dACC more prominently encoded a 

reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-

based analyses also revealed higher information integration before feedback in LPFC, and after 

feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based 

information to regulate decision functions in LPFC. Our results thus provide biological evidence on 

how prefrontal cortical subregions may cooperate to regulate decision-making.  

 

INTRODUCTION 

When searching for resources, animals can adapt their choices by reference to the recent history 

of successes and failures. This progressive process leads to improved predictions of future outcomes 

and to the adjustment of action values. However, to be efficient, adaptation requires dynamic 

modulations of behavioral control, including a balance between choices known to be rewarding 

(exploitation), and choices with unsure, but potentially better, outcome (exploration). 

The prefrontal cortex is required for the organization of goal-directed behavior (Miller and Cohen 

2001; Wilson et al. 2010) and appears to play a key role in regulating exploratory behaviors (Daw N. 

D. et al. 2006; Cohen J. D. et al. 2007; Frank et al. 2009). The lateral prefrontal cortex (LPFC) and the 
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dorsal anterior cingulate cortex (dACC, or strictly speaking the midcingulate cortex, (Amiez et al. 

2013)) play central roles, but it is unclear which mechanisms underlie the decision to explore and how 

these prefrontal subdivisions participate.  

Computational solutions often rely on the meta-learning framework, where shifting between 

different control levels (e.g. shifting between exploration and exploitation) is achieved by dynamically 

tuning meta-parameters based on measures of the agent’s performance (Doya 2002; Ishii et al. 2002; 

Schweighofer and Doya 2003). When applied to models of prefrontal cortex’s role in exploration 

(McClure et al. 2006; Cohen J. D. et al. 2007; Krichmar 2008; Khamassi et al. 2011), this principle 

predicts that the expression of exploration is associated with decreased choice-selectivity in the LPFC 

(flat action probability distribution producing stochastic decisions) while exploitation is associated 

with increased selectivity (peaked probability distribution resulting in a winner-take-all effect). 

However, such online variations during decision-making have yet to be shown experimentally. 

Moreover, current models often restrict the role of dACC to conflict monitoring (Botvinick et al. 2001) 

neglecting its involvement in action valuation (MacDonald et al. 2000; Kennerley et al. 2006; 

Rushworth and Behrens 2008; Seo and Lee 2008; Alexander W.H. and Brown 2010; Kaping et al. 

2011). dACC activity shows correlates of adjustment of action values based on measures of 

performance such as reward prediction errors (Holroyd and Coles 2002; Amiez et al. 2005; 

Matsumoto et al. 2007; Quilodran et al. 2008), outcome history (Seo and Lee 2007), and error-

likelihood (Brown and Braver 2005). Variations of activities in dACC and LPFC between exploration 

and exploitation suggest that both structures contribute to the regulation of exploration (Procyk et al. 

2000; Procyk and Goldman-Rakic 2006; Landmann et al. 2007; Rothe et al. 2011).  

The present work assessed the complementarity of dACC and LPFC in behavioral regulation. We 

previously developed a neurocomputational model of the dACC-LPFC system to synthesize the data 

reviewed above (Khamassi et al. 2011; Khamassi et al. 2013). One important feature of the model was 

to include a regulatory mechanism by which the control level is modulated as a function of changes in 

the monitored performance. As reviewed above such a regulatory mechanism should lead to changes 

in prefrontal neural selectivity. This work thus generated experimental predictions that are tested 

here on actual neurophysiological data.  

We recorded LPFC single-unit activities and made comparative model-based analyses with these 

data and dACC recordings that had previously been analyzed only at the time of feedback (Quilodran 

et al. 2008). We show that information related to different model variables (reward prediction errors, 

action values, and outcome uncertainty) are multiplexed in different trial epochs both in dACC and 

LPFC, with higher integration of information before the feedback in LPFC, and after the feedback in 

dACC. Moreover LPFC activity displays higher mutual information with the animal’s choice than dACC, 
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supporting its role in action selection. Importantly, as predicted by prefrontal cortical models, we 

observe that LPFC choice selectivity co-varies with the control level measured from behavior. Taken 

together with recent data (Behrens et al. 2007; Rushworth and Behrens 2008), our results suggest 

that the dACC-LPFC diad is implicated in the online regulation of learning mechanisms during 

behavioral adaptation, with dACC integrating reinforcement-based information to regulate decision 

functions in LPFC. 

 

MATERIAL & METHODS 

Monkey housing, surgical, electrophysiological and histological procedures were carried out 

according to the European Community Council Directive (1986) (Ministère de l’Agriculture et de la 

Forêt, Commission nationale de l’expérimentation animale) and Direction Départementale des 

Services Vétérinaires (Lyon, France).  

Experimental set up. Two male rhesus monkeys (monkeys M and P) were included in this 

experiment. During recordings animals were seated in a primate chair (Crist Instrument Company 

Inc., USA) within arm’s reach of a tangent touch-screen (Microtouch System) coupled to a TV 

monitor. In the front panel of the chair, an opening allowed the monkey to touch the screen with one 

hand. A computer recorded the position and accuracy of each touch. It also controlled the 

presentation via the monitor of visual stimuli (colored shapes), which served as visual targets 

(CORTEX software, NIMH Laboratory of Neuropsychology, Bethesda, Maryland). Eye movements 

were monitored using an Iscan infrared system (Iscan Inc., USA).  

Problem Solving task. We employed a Problem Solving task (PS task; Fig. 1A) where the subject 

has to find by trial and error which of four targets is rewarded. A typical problem started with a 

Search period where the animal performed a series of incorrect search trials (INC) until the discovery 

of the correct target (first correct trial, CO1). Then a Repetition period was imposed where the animal 

could repeat the same choice during a varying number of trials (between 3 and 11 trials) to reduce 

anticipation of the end of problems. At the end of repetition, a Signal to Change (SC; a red flashing 

circle of 8 cm in diameter at the center of screen) indicated the beginning of a new problem, i.e. that 

the correct target location would change with a 90% probability. 

Each trial was organized as follows: a central target (lever) is presented which is referred to as trial 

start (ST); the animal then touches the lever to trigger the onset of a central white square which 

served as fixation point (FP). After an ensuing delay period of about 1.8 s (during which the monkey is 

required to maintain fixation on the FP), four visual target items (disks of 5mm in diameter) are 

presented and the FP is extinguished. The monkey then has to make a saccade towards the selected 

target. After the monkey has fixated on the selected target for 390 ms, all the targets turn white (go 



Khamassi et al.                                                      Adaptive control in prefrontal cortex 

5 
 

signal), indicating that the monkey can touch the chosen target. Targets turn grey at touch for 600ms 

and then switch off. At offset, a juice reward is delivered after a correct touch. In the case of an 

incorrect choice, no reward is given, and in the next trial the animal can continue his search for the 

correct target. A trial is aborted in case of a premature touch or a break in eye fixation. 

Behavioral data. Performance in search and repetition periods was measured using the average 

number of trials performed until discovery of the correct target (including first correct trial) and the 

number of trials performed to repeat the correct response three times, respectively. Different types 

of trials are defined in a problem. During search the successive trials were labeled by their order of 

occurrence (indices: 1, 2, 3, …, until the first correct trial). Correct trials were labeled CO1, CO2, … and 

COn. Arm reaction times and movement times were measured on each trial. Starting and ending 

event codes defined each trial. 

Series of problems are grouped in sessions. A session corresponds to one recording file that 

contain data acquired for several hours (during behavioral sessions) to several tens of minutes (during 

neurophysiological recordings corresponding to one site and depth). 

Electrophysiological recordings. Monkeys were implanted with a head-restraining device, and a 

magnetic resonance imaging-guided craniotomy was performed to access the prefrontal cortex. A 

recording chamber was implanted with its center placed at stereotaxic anterior level A+31. Neuronal 

activity was recorded using epoxy-coated tungsten electrodes. Recording sites labeled dACC covered 

an area extending over about 6 mm (anterior to posterior), in the dorsal bank and fundus of the 

anterior part of the cingulate sulcus, at stereotaxic levels superior to A+30 (Fig. 1B). This region is at 

the rostral level of the mid-cingulate cortex as defined by Vogt and colleagues (Vogt et al. 2005). 

Recording sites in LPFC were located mostly on the posterior third of the principal sulcus.  

Data analyses 

All analyses were performed using Matlab (The Mathworks, Natick, MA). 

Theoretical model for model-based analysis. We compared the ability of several different 

computational models to fit trial-by-trial choices made by the animals. The aim was to select the best 

model to analyze neural data. The models tested (see list below) were designed to evaluate which 

among several computational mechanisms were crucial to reproduce monkey behavior in this task. 

The mechanisms are: 

a) Elimination of non-rewarded targets tested by the animal during the search period. This 

mechanism could be modeled in many different ways, e.g. using Bayesian models or 

reinforcement learning models. In order to keep our results comparable and includable within 

the framework used by previous similar studies (e.g. Matsumoto et al., 2007; Seo and Lee, 2009; 

Kennerley and Walton, 2011), we used reinforcement learning models (which would work with 



Khamassi et al.                                                      Adaptive control in prefrontal cortex 

6 
 

high learning rates – i.e. close to 1 – in this task) while noting that this would be equivalent to 

models performing logical elimination of non-rewarded targets or models using a Bayesian 

framework for elimination. This mechanism is included in Models 1-10 in the list below. 

b) Progressive forgetting that a target has already been tested. This mechanism is included in 

Models 2-7 and 9-10. 

c) Reset after the Signal to Change. This would represent information about the task structure and 

is included in Models 3-12. Among these models, some (i.e. Models 4,6-10) also tend not to 

choose the previously rewarded target (called ‘shift’ mechanism), and some (i.e. Models 5-10) 

also include spatial biases for the first target choice within a problem (called ‘bias’ mechanism). 

d) Change in the level of control from search to repetition period (after the first correct trial). This 

would represent other information about the task structure and is included in Models 9 and 10 

(i.e. GQLSB2β and SBnoA2β). 

 

List of tested models: 

1. Model QL (Q-learning) 

We first tested a classical Q-learning (QL) algorithm which implements action valuation based on 

standard reinforcement learning mechanisms (Sutton and Barto 1998). The task involving 4 possible 

targets on the touch screen (upper-left: 1, upper-right: 2, lower-right: 3, lower-left: 4, Fig. 1C), the 

model had 4 possible action values (i.e. Q1, Q2, Q3 and Q4 corresponding to the respective values 

associated with choosing target 1, 2, 3 and 4 respectively). 

At each trial, the probability of choosing target a was computed by a Boltzmann softmax rule for 

action selection:  

    
  tβQ

tβQ
=tP

b
b

a
a exp

exp  (1) 

where the inverse temperature meta-parameter β (0 < β) regulates the exploration level. A small β 

leads to very similar probabilities for all targets (flat probability distribution) and thus to an 

exploratory behavior. A large β increases the contrast between the highest value and the others 

(peaked probability distribution), and thus produces an exploitative behavior. 

At the end of the trial, after choosing target ai, the corresponding value is compared with the 

presence/absence of reward so as to compute a Reward Prediction Error (RPE) (Schultz et al. 1997): 

 tQtrt a )1()1(  (2) 

where r(t) is the reward function modeled as being equal to 1 at the end of the trial in the case of 

success, and -1 in the case of failure. The reward prediction error signal δ(t) is then used to update 

the value associated to the chosen target: 
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    )1(1  tα+tQtQ aa   (3) 

where α is the learning rate.  Thus the QL model employs 2 free meta-parameters: α and β. 

2. Model GQL (Generalized Q-learning) 

We also tested a generalized version of Q-learning (GQL) (Barraclough et al. 2004; Ito and Doya 

2009) which includes a forgetting mechanism by also updating values associated to each non chosen 

target b according to the following equation: 

  )(1)()1( 0 tQQtQtQ bbb    (4) 

where κ is a third meta-parameter called the forgetting rate  10  , and Q0 is the initial Q-value. 

3. Model GQLnoSnoB (GQL with reset of Q values at each new problem; no shift, no bias) 

Since animals are over-trained on the PS task, they tend to learn the task structure: the 

presentation of the Signal to Change (SC) on the screen is sufficient to let them anticipate that a new 

problem will start and that most probably the correct target will change. In contrast, the two above-

mentioned reinforcement learning models tend to repeat previously rewarded choices. We thus 

tested an extension of these models where the values associated to each target are reset to [0 0 0 0] 

at the beginning of each new problem (Model GQLnoSnoB). 

4. Model GQLSnoB (GQL with reset including shift in previously rewarded target; no bias) 

We also tested a version of the latter model where, in addition, the value associated to the 

previously rewarded target has a probability PS of being reset to 0 at the beginning of the problem, PS 

being the animal’s average probability of shifting from the previously rewarded target as measured 

from the previous session  95.0P85.0 S  (Fig. 2A- middle). This model including the shifting 

mechanism is called GQLSnoB and has 3 free meta-parameters. 

5. Model GQLBnoS (GQL with reset based on spatial biases; no shift) 

In the fifth tested model (Model GQLBnoS), instead of using such a shifting mechanism, target Q-

values are reset to values determined by the animal’s spatial biases measured during search periods 

of the previous session; for instance, if during the previous session, the animal started 50% of search 

periods by choosing target 1, 25% by choosing 2, 15% by choosing target 3 and the rest of the time 

by choosing target 4, target values were reset to [θ1 ; θ2 ; θ3 ; (1-θ1-θ2-θ3)] where θ1=0.5, θ2=0.25 and 

θ3=0.15 at each new search of the next session. In this manner, Q-values are reset using a rough 

estimate of choice variance during the previous session. These 3 spatial bias parameters are not 

considered as free meta-parameters since they were always determined based on the previous 

behavioral session because they were found to be stable across sessions for each monkey (Fig. 2A- 

right). 

6. Model GQLSB  (GQL with reset including shift in previously rewarded target and spatial biases) 
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We also tested a model which combines both shifting mechanism and spatial biases (Model 

GQLSB ) and thus has 3 free meta-parameters. 

7. Model SBnoA (Shift and Bias but the learning rate α is fixed to 1) 

Since the reward schedule is deterministic (i.e. choice of the correct target provides reward with 

probability 1), a single correct trial is sufficient for the monkey to memorize which target is rewarded 

in a given problem. We thus tested a version of the previous model where elimination of non-

rewarded target is done with a learning rate α fixed to 1 – i.e. no degree of freedom in the learning 

rate in contrast with Model GQLSB. This meta-parameter is usually set to a low value (i.e. close to 0) 

in the Reinforcement Learning framework to enable progressive learning of reward contingencies 

(Sutton and Barto 1998). With α set to 1, the model SBnoA systematically performs sharp changes of 

Q-values after each outcome, a process which could be closer to working memory mechanisms in the 

prefrontal cortex (Collins and Frank 2012). All other meta-parameters are similar as in GQLSB, 

including the forgetting mechanism (Equation 4) which is considered to be not specific to 

Reinforcement Learning but also valid for Working Memory (Collins and Frank, 2012). Model SBnoA 

has 2 free meta-parameters. 

8. Model SBnoF (Shift and Bias but no α and no Forgetting) 

To verify that the forgetting mechanism was necessary, we tested a model where both α and κ are 

set to 1. This model has thus only 1 meta-parameter: β. 

9. Model GQLSB2β (with distinct exploration meta-parameters during search and repetition 

trials: resp. βS and βR) 

To test the hypothesis that monkey behavior in the PS Task can be best explained by two distinct 

control levels during search and repetition periods, instead of using a single meta-parameter β for all 

trials, we used two distinct meta-parameters βS and βR so that the model used βS in Equation 1 

during search trials and βR in Equation 1 during repetition trials. We tested these distinct search and 

repetition βS and βR meta-parameters in Model GQLSB2β which thus has 4 free meta-parameters 

compared to 3 in Model GQLSB. 

10. Model SBnoA2β (with distinct exploration meta-parameters during search and repetition 

trials: resp. βS and βR) 

Similarly to the previous model, we tested a version of Model SBnoA which includes two distinct 

βS and βR meta-parameters for search and repetition periods. Model SBnoA2β thus has 3 free 

meta-parameters.  

11. and 12. Control models: ClockS (Clockwise search + repetition of correct target); RandS 

(Random search + repetition of correct target) 
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We finally tested 2 control models to test the contribution of the value updating mechanisms 

used in the previous models for the elimination of non-rewarded target (i.e. Equation 3 with α used 

as a free meta-parameter in model GQLSB or set to 1 in Model SBnoA). Model ClockS replaces such 

mechanism by performing systematic clockwise searches, starting from the animal’s favorite target – 

as measured in the spatial bias –, instead of choosing targets based on their values, and repeats the 

choice of the rewarded target once it finds it. Model RandS performs random searches and repeats 

choices of the rewarded target once it finds it. 

 

Theoretical model optimization. To compare the ability of models in fitting monkeys’ behavior 

during the task, (1) we first separated the behavioral data into 2 datasets so as to optimize the 

models on the Optimization dataset (Opt) and then perform an out-of-sample test of these models 

on the Test dataset (Test), (2) for each model, we then estimated the meta-parameter set which 

maximized the log-likelihood of monkeys’ trial-by-trial choices in the Optimization dataset given the 

model, (3) we finally compared the scores obtained by the models with different criteria: maximum 

log-likelihood (LL) and percentage of monkeys’ choice predicted (%) on Opt and Test datasets, BIC, 

AIC, Log of posterior probability of models given the data and given priors over meta-parameters 

(LPP). 

 

1. Separation of optimization (Opt) and test (Test) datasets 

We used a cross-validation method by optimizing models’ meta-parameters on 4 behavioral 

sessions (2 per monkey concatenated into a single block of trials per monkey in order to optimize a 

single meta-parameter set per animal; 4031 trials) of the PS task, and then out of sample testing 

these models with the same meta-parameters on 49 other sessions (57336 trials). The out of sample 

test was performed to test models’ generalization ability and to validate which model is best without 

complexity issues. 

 

2. Meta-parameter estimation 

The aim here was to find for each model M the set of meta-parameters θ which maximized the 

log-likelihood LL of the sequence of monkey choices in the Optimization dataset D given M and θ: 

   


,maxarg MDPLogopt   (5) 

   


,max MDPLogLLopt   (6) 

We searched for each model’s LLopt and θopt on the Optimization dataset with two different 

methods: 
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We first sampled a million different meta-parameters sets (drawn from prior distributions over 

meta-parameters such that α,κ are in [0;1], β,βS,βR are in -10log([0;1])). We stored the LLopt score 

obtained for each model and the corresponding meta-parameter set θopt. 

We then performed another meta-parameter search through a gradient-descent method using 

the fminsearch function in Matlab launched at multiple starting points: we started the function from 

all possible combinations of meta-parameters in α,κ in {0.1;0.5;0.9}, β,βS,βR in {1;5;35}. If this method 

gave a better LL score for a given model, we stored it as well as the corresponding meta-parameter 

set. Otherwise, we kept the best LL score and the corresponding meta-parameter set obtained with 

the sampling method for this model. 

 

3. Model comparison 

In order to compare the ability of the different models to accurately fit monkeys’ behavior in the 

task, we used different criteria. As typically done in the literature, we first used the maximized log-

likelihood obtained for each model on the Optimization dataset (LLopt) to compute the Bayesian 

Information Criterion (BICopt) and Akaike Information Criterion (AICopt). We also looked at the 

percentage of trials of the Optimization dataset where each model accurately predicts monkeys’ 

choice (%opt). We performed likelihood ratio tests to compare nested models (e.g. Model SBnoF and 

Model SBnoA). 

To test models’ generalization ability and to validate which model is best without complexity 

issues, we additionally compared models’ log-likelihood on the Test dataset given the meta-

parameters estimated on the Optimization dataset (LLtest), as well as models’ percentage of trials of 

the Test dataset where the model accurately predicts monkeys’ choice given the meta-parameters 

estimated on the Optimization dataset (%test). 

 

 Finally, because comparing the maximal likelihood each model assigns to data can result in 

overfitting, we also computed an estimation of the log of the posterior probability over models on 

the Optimization dataset (LPPopt) estimated with the meta-parameter sampling method previously 

performed (Daw N.D. 2011). To do so, we hypothesized a uniform prior distribution over models 

P(M); we also considered a prior distribution for the meta-parameters given the models P(θ|M), 

which was the distributions from which the meta-parameters were drawn during sampling. With this 

choice of priors and meta-parameter sampling, LPPopt can be written as: 

      


















 



N

i
iopt MDP

N
LogdMDPLogDMPLogLPP

1

,1, 


 
(7) 
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where N is the number of samples drawn for each model. To avoid numerical issues in Matlab 

when computing the exponential of large numbers, LPPopt was computed in practice as: 

      optoptopt LLNLogLLMDPLogLPP 







 



,logexp  
(8) 

Estimating models’ posterior probability given the data can be seen as equivalent as computing a 

“mean likelihood”. And it has the advantage of penalizing both models that have a peaked posterior 

probability distribution (i.e. models with a likelihood which is good at its maximum but which 

decreases sharply as soon as meta-parameters slightly change) and models that have a large number 

of free meta-parameters (Daw N.D. 2011). 

 

Neural data  analyses 

Activity variation between search and repetition. To analyze activity variations of individual 

neurons between the search period and the repetition period, we computed an index of activity 

variation for each cell:  

 

 
 BA

AB
Ia 


  (9) 

A is the cell mean firing rate during the early-delay epoch ([start+0.1s; start+1.1s]) over all trials of 

the search period, and B is the cell’s mean firing rate in the same epoch during all trials of the 

repetition period. 

To measure significant increases or decreases of activity in a given group of neurons, we 

considered the distribution of neurons’ activity variation index. An activity variation was considered 

significant when the distribution had a mean significantly different from 0 using a one-sample t-test 

and a median significantly different from zero using a Wilcoxon Mann-Whitney U-test for zero 

median. Then we employed a Kruskal-Wallis test to compare the distributions of activity during 

search and repetition, corrected for multiple comparison between different groups of neurons 

(Bonferroni correction). 

Choice selectivity. To empirically measure variations in choice selectivity of individual neurons, we 

analyzed neural activities using a specific measure of spatial selectivity (Procyk and Goldman-Rakic 

2006). The activity of a neuron was classified as choice selective when this activity was significantly 

modulated by the identity/location of the target chosen by the animal (one-way ANOVA, p < 0.05). 

The target preference of a neuron was determined by ranking the average activity measured in the 

early-delay epoch ([start+0.1s; start+1.1s]) when this activity was significantly modulated by the 

target choice. We used for each unit the average firing rate ranked by values and herein named 

'preference' (a, b, c, d where a is the preferred and d the least preferred target). The ranking was first 
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used for population data and structure comparisons. For each cell, the activity was normalized to the 

maximum and minimum of activity measured in the repetition period (with normalized activity = 

[activity - min]/[max - min]). 

 Second, to study changes in choice selectivity (tuning) throughout trials during the task, we used 

for each unit the average firing rate ranked by values (a, b, c, d). We then calculated the norm of a 

preference vector using the method of (Procyk and Goldman-Rakic 2006) which is equivalent to 

computing the Euclidean distance within a factor of 2 : We used an arbitrary arrangement in a 

square matrix ቂܽ ܾ
ܿ ݀

ቃ  to calculate the vector norm:   

   dbcaH   and    dcbaV    

 22 VHnorm   

(10) 

For each neuron, the norm was divided by the global mean activity of the neuron (to exclude the 

effect of firing rate in this measure: preventing a cell A that has a higher mean firing rate than a cell B 

to have a higher choice selectivity norm when they are both equally choice selective). 

The value of the preference vector norm was taken as reflecting the strength of choice coding of 

the cell. A norm equal to zero would reflect equal activity for the four target locations. This objective 

measure allows the extraction of one single value for each cell, and can be averaged across cells. 

Finally, to study variations in choice selectivity between search and repetition periods, we computed 

an index of choice selectivity variation for each cell:  

 
 DC

CD
Is 


  (11) 

where C is the cell’s choice selectivity norm during search and D is the cell’s choice selectivity norm 

during repetition.  

To assess significant variations of choice selectivity between search and repetition in a given group 

of neurons (e.g. dACC or LPFC), we used: a t-test to verify whether the mean was different from zero; 

a Wilcoxon Mann-Whitney U- test to verify whether the median was different from zero; then we 

used a Kruskal-Wallis test to compare the distributions of choice selectivity during search and 

repetition, corrected for multiple comparison between different groups of neurons (Bonferroni 

correction). 

To assess whether variations of choice selectivity between search and repetition depended on the 

exploration level β measured in the animal’s behavior by means of the model, we cut sessions into 

two groups: those where β was smaller than the median of β values (i.e. 5), and those where β was 

larger than this median. Thus, in these analyses, repetition periods of a session with β < 5 will be 

considered a relative exploration, and repetition periods of a session with β > 5 will be considered a 

relative exploitation. We then performed two-way ANOVAs (β x task phase) and used a Tukey HSD 
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post hoc test to determine the direction of the significant changes in selectivity with changing 

exploration levels, tested at p=0.05. 

Model-based analysis of single-unit data. To test whether single units encoded information 

related to model computations, we used the following model variables as regressors of trial-by-trial 

activity: the reward prediction error [δ], the action value [Q] associated to each target and the 

outcome uncertainty [U]. The latter is a performance monitoring measure which assesses the 

entropy of the probability over the different possible outcomes (i.e. reward r  versus no reward r ) 

at the current trial t given the set T of remaining targets: 

           TrPTrPTrPTrPtU loglog  . At the beginning of a new problem, when there are 4 

possible targets, U starts at a low value since there is 75% chance of making an error. U increases trial 

after trial during the search period. It is maximal when there remain 2 possible targets because there 

is 50% chance of making an error. Then U drops after either the first rewarded trial or the third error 

trial – because the fourth target is necessarily the rewarded one – and remains at zero during the 

repetition period. We decided to use a regressor with this pattern of change because it is somewhat 

comparable to the description of changes in frontal activity previously observed during the PS task 

(Procyk et al., 2000; Procyk and Goldman-Rakic, 2006). 

We used U as the simplest possible parameter-free performance monitoring regressor for neural 

activity. This was done in order to test whether dACC and LPFC single-unit could reflect performance 

monitoring processes in addition to responding to feedback and tracking target values. But we note 

that the profile of U in this task would not be different from other performance monitoring measures 

such as the outcome history that we previously used in our computational model for dynamic control 

regulation in this task (Khamassi et al. 2011), or such as the vigilance level in the model of Dehaene 

and Changeux (Dehaene et al. 1998) which uses error and correct signals to update a regulatory 

variable (increased after errors and decreased after correct trials). We come back to possible 

interpretations of neural correlates of U in the discussion. 

To investigate how neural activity was influenced by action values [Q], reward prediction errors [δ] 

as well as the outcome uncertainty [U], we performed a multiple regression analysis combined with a 

bootstrapping procedure, focusing our analyses on spike rates during a set of trial epochs (Fig. 1C): 

pre-start (0.5 s before trial start); post-start (0.5 s after trial start); pre-target (0.5 s before target 

onset); post-target (0.5 s after target onset); the action epoch defined as pre-touch (0.5 s before 

screen touch); pre-feedback (0.5 s before feedback onset); early-feedback (0.5 s after feedback 

onset); late-feedback (1.0 s after feedback period); inter-trial-interval (ITI; 1.5 s after feedback onset).  

The spike rate y(t) during each of these intervals in trial t was analyzed using the following 

multiple linear regression model:  
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)()()()()()()( 65443322110 tUttQtQtQtQty    (13) 

where   4...1),( ktQk  are the action values associated to the four possible targets at time t, δ(t) 

is the reward prediction error, U(t) is the outcome uncertainty, and   n...1i,i   are the regression 

coefficients.  

δ, Q and U were all updated once in each trial. δ was updated at the time of feedback, so that 

regression analyses during pre-feedback epochs were done using δ from the previous trial, while 

analyses during post-feedback epochs used the updated δ. Q and U were updated at the end of the 

trial so that regression analyses in all trial epochs were done using the Q-values and U value of the 

current trial. 

Note that the action value functions of successive trials are correlated, because they are updated 

iteratively, and this violates the independence assumption in the regression model. Therefore, the 

statistical significance for the regression coefficients in this model was determined by a permutation 

test. For this, we performed a shuffled permutation of the trials and recalculated the regression 

coefficients for the same regression model, using the same meta-parameters of the model obtained 

for the unshuffled trials. This shuffling procedure was repeated 1000 times (bootstrapping method), 

and the p value for a given independent variable was determined by the fraction of the shuffles in 

which the magnitude of the regression coefficient from the shuffled trials exceeded that of the 

original regression coefficient (Seo and Lee 2009), corrected for multiple comparisons with different 

model variables in different trial epochs (Bonferroni correction). 

To assess the quality of encoding of action value information by dACC and LPFC neurons, we also 

performed a multiple regression analysis on the activity of each neuron related to Q-values after 

excluding trials where the preferred target of the neuron was chosen by the monkey. This analysis 

was performed to test whether the activity of such neurons still encodes Q-values outside trials 

where the target is selected. Similarly, to evaluate the quality of reward prediction error encoding, 

we performed separate multiple regression analyses on correct trials only versus error trials only. 

This analysis was performed to test whether the activity of such neurons quantitatively discriminate 

between different amplitudes of positive reward prediction errors and between different amplitudes 

of negative reward prediction errors. In both cases, the significance level of the multiple regression 

analyses was determined with a bootstrap method and a Bonferroni correction for multiple 

comparisons. 

Finally, to measure possible collinearity issues between model variables used as regressors of 

neural activity, we used Brian Lau’s Collinearity Diagnostics Toolbox for Matlab 

(http://www.subcortex.net/research/code/collinearity-diagnostics-matlab-code (Lau 2014)). We 

extracted the variation inflation factors (VIF) computed with the coefficient of determination obtained 
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when each regressor was expressed as a function of the other regressors. We also computed the 

condition indexes (CONDIND) and variance decomposition factors (VDF) obtained in the same 

analysis. A strong collinearity between regressors was diagnosed when CONDIND ≥ 30 and more than 

two VDFs > 0.5. A moderate collinearity was diagnosed when CONDIND ≥ 10 and more than two VDFs 

> 0.5. CONDIND ≤ 10 indicated a weak collinearity. 

 

Principal component analysis. To determine the degree to which single-unit activity segregated 

or integrated information about model variables, we performed a Principal Component Analysis 

(PCA) on the 3 correlation coefficients   6...4, ii  obtained with the multiple regression analysis 

and relating neural activity with the 3 main model variables (reward prediction error δ, outcome 

uncertainty U, and the action value Qk associated to the animal’s preferred target k). For each trial 

epoch, we pooled the coefficients obtained for all neurons in correlation with these model variables. 

Each principal component being expressed as a linear combination of the vector of correlation 

coefficients of neuron activities with these three model variables, the contribution of different model 

variables to each component gives an idea as to which extent cell activity is explained by an 

integrated contribution of multiple model variables. For instance, if a PCA on cell activity in the early-

delay period produces three principal components that are each dependent on a different single 

model variable (e.g. PC1 = 0.95Q + 0.01δ + 0.04U; PC2 = 0.1Q + 0.8δ + 0.1U; PC3 = 0.05Q + 0.05δ + 

0.9U), then activity variations are best explained by separate influences from the information 

conveyed by the model variables. If in contrast, the PCA produces principal components which 

strongly depend on multiple variables (e.g. PC1 = 0.5Q + 0.49δ + 0.01U; PC2 = 0.4Q + 0.1δ + 0.5U; 

PC3 = 0.2Q + 0.4δ + 0.4U), then variations of the activities are best explained by an integrated 

influence of such information (see Supplementary Figure S1 for illustration of different Principal 

Components resulting from artificially generated data showing different levels of integration 

between model variables). 

We compared the normalized absolute values of the coefficients of the three principal 

components so that a coefficient close to 1 denotes a strong correlation while a coefficient close to 0 

denotes no correlation. To quantify the integration of information about different model variables in 

single-unit activities, for each neuron k, we computed an entropy-like index (ELI) of sharpness of 

encoding of different model variables based on the distributions of regression coefficients between 

cell activities and model variables:  

 
i

iik ccELI log  (14) 

Where ci is the absolute value of the z-scored correlation strength ρi with model variable i. A 

neuron with activity correlated with different model variables with similar strengths will have a high 
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ELI; a neuron with activity highly correlated with only one model variable will have a low ELI. We 

compared the distributions of ELIs between dACC and LPFC in each trial epoch using a Kruskal-Wallis 

test. 

Finally, we estimated the contribution of each model variable to neural activity variance in each 

epoch and compared it between dACC and LPFC. To do so, we first normalized the coefficients for 

each principal component in each epoch. These coefficients being associated to three model 

variables Q, δ and U, this provided us with a contribution of each model variable to each principal 

component in each epoch. We then multiplied them by the contribution of each principal 

component to the global variance in neural activity in each epoch. The result constituted a 

normalized contribution of each model variable to neural activity variance in each epoch. We finally 

computed the entropy-like index (ELI) of these contributions. We compared the set of epoch-specific 

ELI between dACC and LPFC with a Kruskal-Wallis test. 

Mutual information. We measured the mutual information between monkey's choice at each 

trial and the firing rate of each individual recorded neuron during the early-delay epoch ([ST+0.1s; 

ST+1.1s]). The mutual information )R;S(I  was estimated by first computing a confusion matrix (Quian 

Quiroga and Panzeri 2009), relating at each trial t, the spike count from the unit activity in the early-

delay epoch (as “predicting response” R) and the target chosen by the monkey (i.e. 4 targets as 

“predicted stimulus” S). Since neuronal activity was recorded during a finite number of trials, not all 

possible response outcomes of each neuron to each stimulus (target) have been sufficiently sampled. 

This is called the “limited sampling bias” which can be overcome by subtracting a correction term 

from the plug-in estimator of the mutual information (Panzeri et al. 2007). Thus we subtracted the 

Panzeri Treves (PT) correction term (Treves and Panzeri 1995) from the estimated mutual information 

)R;S(I : 

      







 

s
s RR

N
RSIBIAS 11

)2ln(2
1;  

(15) 

Where N is the number of trials during which the unit activity was recorded, R is the number of 

relevant bins among the M possible values taken by the vector of spike counts and computed by the 

“bayescount” routine provided by (Panzeri and Treves 1996), and SR  is the number of relevant 

responses to stimulus (target) s. 

Such measurement of information being reliable only if the activity was recorded during a 

sufficient number of trials per stimulus presentation, we restricted this analysis to units that verified 

the following condition (Panzeri et al. 2007): 

4R/NS   (16) 

Where SN  is the minimum number of trials per stimulus (target). 
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Finally, to verify that such a condition was sufficiently restrictive to exclude artifactual effects, for 

each considered neuron we constructed 1000 pseudo response arrays by shuffling the order of trials 

at fixed target stimulus, and we recomputed each time the mutual information in the same manner 

(Panzeri et al. 2007). Then we verified that the average mutual information obtained with such 

shuffling procedure was close to the PT bias correction term computed with Equation 15 (Panzeri 

and Treves 1996). 

 

RESULTS 

Previous studies have emphasized the role of LPFC in cognitive control and dACC in adjustment of 

action values based on measures of performance such as reward prediction errors, error-likelihood 

and outcome history. In addition, variations of activities in the two regions between exploration and 

exploitation suggest that both contribute to the regulation of the control level during exploration. 

Altogether neurophysiological data suggest particular relationships between dACC and LPFC, but 

their respective contribution during adaptation remains unclear and a computational approach to 

this issue appears highly relevant. We recently modeled such relationships using the meta-learning 

framework (Khamassi et al. 2011). The network model was simulated in the Problem Solving (PS) task 

(Quilodran et al., 2008) where monkeys have to search for the rewarded target in a set of four on a 

touch-screen, and have to repeat this rewarded choice for at least 3 trials before starting a new 

search period (Fig. 1A). In these simulations, variations of the model’s control meta-parameter (i.e. 

inverse temperature β) produced variations of choice selectivity in simulated LPFC in the following 

manner: a decrease of choice selectivity (exploration) during search; an increase of choice selectivity 

(exploitation) during repetition. This resulted in a globally higher mean choice selectivity in simulated 

LPFC compared to simulated dACC, and in a co-variation between choice selectivity and the inverse 

temperature in simulated LPFC but not in simulated dACC (Khamassi et al. 2011). This illustrates a 

prediction of computational models on the role of prefrontal cortex in exploration (McClure et al. 

2006; Cohen J. D. et al. 2007; Krichmar 2008) which has not yet been tested experimentally. 

 

Characteristics of behaviors 

To assess the plausibility of such computational principles we first analyzed animals’ behavior in 

the PS task. During recordings, monkeys performed nearly optimal searches, i.e., rarely repeated 

incorrect trials (INC), and on average made errors in less than 5% of repetition trials. Although the 

animals' strategy for determining the correct target during search periods was highly efficient, the 

pattern of successive choices was not systematic. Analyses of series of choices during search periods 

revealed that monkeys used either clockwise (e.g. choosing target 1 then 2), counterclockwise, or 
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crossing (going from one target to the opposite target in the display, e.g. from 1 to 3) strategies, with 

a slightly higher incidence for clockwise and counterclockwise strategies, and a slightly higher 

incidence for clockwise over counterclockwise strategy (Percent clockwise, counterclockwise, 

crossing and repeats were 38%, 36%, 25%, 1% and 39%, 33%, 26%, 2% for each monkey respectively, 

measured for 9716 and 4986 transitions between two targets during search periods of 6986 and 

3227 problems respectively). Rather than being systematic or random, monkeys’ search behavior 

appeared to be governed by more complex factors: shifting from the previously rewarded target in 

response to the Signal to Change (SC) at the beginning of most new problems (Fig. 2A-middle); 

spatial biases i.e. more frequent selection of preferred targets in the first trial of search periods (Fig. 

2A-right); and efficient adaption to each choice error as argued above. This indicates a planned and 

controlled exploratory behavior during search periods. This is also reflected in an incremental change 

in reaction times during the search period, with gradual decreases after each error (Fig. 2B). 

Moreover, reaction times shifted from search to repetition period after the first reward (CO1), 

suggesting a shift between two distinct behavioral modes or two levels of control (Monkey M: 

Wilcoxon Mann-Whitney U-test, p < 0.001; Monkey P: p  < 0.001; Fig. 2B). 

 

Model-based analyses. Behavioral analyses revealed that monkeys used nearly-optimal strategies 

to solve the task, including shift at problem changes, which are unlikely to be solved by simple 

reinforcement learning. In order to identify the different elements that took part in monkey's 

decisions and adaptation during the task we compared the fit scores of several distinct models to 

trial-by-trial choices after estimating each model’s free meta-parameters that maximize the log-

likelihood separately for each monkey (see Methods). We found that models performing either a 

random search or a clockwise search and then simply repeating the correct target could not properly 

reproduce monkeys' behavior during the task, even when the clockwise search was systematically 

started by the monkeys' preferred target according to its spatial biases (Models RandS  and ClockS ;  

Table 1 and Fig. 2D). Moreover, the fact that monkeys most often shifted their choice at the 

beginning of each new problem in response to the Signal to Change (SC) (Fig. 2A-middle) prevented 

a simple reinforcement learning model (Q-learning) or even a generalized reinforcement learning 

model from reproducing monkey's behavior (resp. QL and GQL in Table 1). Indeed, these models 

obviously have a strong tendency to choose the previously rewarded target without taking into 

account the Signal to Change to a new problem. Behavior was better reproduced with a combination 

of generalized reinforcement learning and reset of target values at each new problem (shifting the 

previously rewarded target and taking into account the animal's spatial biases measured during the 

previous session; i.e. Models GQLSB, GQLSB2β, SBnoA, SBnoA2β in Figure 2D and Table 1). We tested 
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control models without spatial biases, without problem shift, and with neither of them, to show that 

they were both required to fit behavior (resp. GQLSnoB, GQLBnoS and GQLnoSnoB in Table 1). We 

also tested a model with spatial biases and shift but without progressive updating of target values 

nor forgetting – i.e. 1,1    (Model SBnoF, which is a restricted and nested version of Model 

SBnoA with 1 less meta-parameter) and found that it was not as good as SBnoA in fitting monkeys’ 

behavior, as found with a likelihood ratio test at p=0.05 with one degree of freedom. 

Although Models GQLSB, GQLSB2β, SBnoA, SBnoA2β were significantly better than other tested 

models along all used criteria (maximum likelihood [Opt-LL], BIC score, AIC score, log of posterior 

probability [LPP], out-of-sample test [Test-LL] in Table 1), these 4 versions gave similar fit 

performance. In addition, the best model was not the same depending on the considered criterion: 

Model GQLSB2β was the best according to LL, BIC and AIC scores, and second best according to LPP 

and Test-LL scores; Model SBnoA2β was the best according to LPP score; Model GQLSB was the best 

according to Test-LL score. 

As a consequence, the present dataset does not allow to decide whether allowing a free meta-

parameter α (i.e. learning rate) in model GQLSB and GQLSB2β is necessary or not in this task, 

compared to versions of these models where α is fixed to 1 (Model SBnoA and SBnoA2β) (Fig. 2D and 

Table 1). This is due to the structure of the task – where a single correct trial is sufficient to know 

which is the correct target – which may be solved by sharp updates of working memory rather than 

by progressive reinforcement learning (although a small subset of the sessions were better fitted 

with  9.0;3.0  in Model GQLSB, thus revealing a continuum in the range of possible αs, 

Supplementary Fig. S2). We come back to this issue in the discussion. 

Similarly, models that use distinct control levels during search and repetition (Models GQLSB2β 

and SBnoA2β) could not be distinguished from models using a single parameter (Models GQLSB and 

SBnoA) in particular because of out-of-sample test scores (Table 1). 

Nevertheless, model-based analyses of behavior in the PS task suggest complex adaptations 

possibly combining rapid updating mechanisms (i.e. α close to 1), forgetting mechanisms and the use 

of information about the task structure (Signal to Change; first correct feedback signaling the 

beginning of repetition periods). Model GQLSB2β here combines these different mechanisms in the 

more complete manner and moreover won the competition against the other models according to 

three criteria out of five. Consequently, in the following we will use Model GQLSB2β for model-based 

analyses of neurophysiological data and will systematically compare the results with analyses 

performed with Models GQLSB, SBnoA, SBnoA2β to verify that they yield similar results. 

In summary, the best fit was obtained with Models SBnoA, SBnoA2β, GQLSB, GQLSB2β which 

could predict over 80% of the choices made by the animal (Table 1).  Figure 2A shows a sample of 
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trials where Model SBnoA can reproduce most monkey choices, and illustrating the sharper update 

of action values in Model SBnoA (with α = 1) compared to Model GQLSB (where the optimized α = 

0.7). When freely simulated on 1000 problems of the PS task – i.e., the models learned from their 

own decisions rather than trying to fit monkeys’ decisions –, the models made 38.23% clockwise 

search trials, 32.41% counter-clockwise, 29.22% crossing and 0.15% repeat. Simulations of the same 

models without spatial biases produced less difference between percentages of clockwise, counter-

clockwise and crossing trials, unlike monkeys: 33.98% clockwise, 32.42% counter-clockwise, 33.53% 

crossing and 0.07% repeat. 

 

Distinct control levels between search and repetition. To test whether behavioral adaptation 

could be described by a dynamical regulation of the β meta-parameter (i.e. inverse temperature) 

between search and repetition, we analyzed the value of the optimized two distinct free meta-

parameters (βS and βR) in Models GQLSB2β and SBnoA2β (Fig. 2E, 2C and Suppl. Fig. S2). The value of 

the optimized βS and βR meta-parameters obtained for a given monkey in a given session constituted 

a quantitative measure of the control level during that session. Such level was non-linearly linked to 

the number of errors the animal made. For instance, a βR of 3, 5, or 10 corresponded to 

approximately 20%, 5%, and 0% errors respectively made by the animal during repetition periods 

(Fig. 2C). 

Interestingly, the distributions of βS and βR obtained for each recording session showed 

dissociations between search and repetition periods in a large number of sessions. We found a 

unimodal distribution for the β meta-parameter during the search period (βS), reflecting a consistent 

level of control in the animal behavior from session to session. In contrast, we observed a bimodal 

distribution for the β meta-parameter during the repetition period (βR; Fig. 2E). In Figure 2E, the 

peak on the right of the distribution (large βR) corresponds to a subgroup of sessions where behavior 

shifted between different control levels from search to repetition periods. This shift in the level of 

control could be interpreted as a shift from exploratory to exploitative behavior, an attentional shift 

or a change in the working memory load, as we discuss further in the Discussion. Nevertheless this is 

consistent with the hypothesis of a dynamical regulation of the inverse temperature β between 

search and repetition periods in this task (Khamassi et al. 2011; Khamassi et al. 2013). The bimodal 

distribution for βR illustrates the fact that during another subgroup of sessions (small βR), the animal’s 

behavior did not shift to a different control level during repetition and thus made more errors. Such 

bimodal distribution of the β meta-parameter enables to separate sessions in two groups and to 

compare dACC and LPFC activities (see below) during sessions where decisions displayed a shift and 

during sessions where no such clear shift occurred. Interestingly, the bimodal distribution of βR is not 
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crucially dependent of the optimized learning rate α since a similar bimodal distribution was 

obtained with Model SBnoA2β and since the optimized βS and βR values in the two models were 

highly correlated (N = 277; βS: r = 0.9, p < 0.001; βR: r = 0.96, p < 0.001; Supplementary Fig. S2). 

 

Modulation of information coding 

To evaluate whether a behavioral change between search and repetition was accompanied by 

changes in LPFC activity and choice selectivity, we analyzed a pool of 232 LPFC single-units (see Fig. 

1B for the anatomy) in animals performing the PS task, and compared the results with 579 dACC 

single-unit recordings which have been only partially used for investigating feedback-related activity 

(Quilodran et al. 2008). We report here a new study relying on comparative analyses of dACC and 

LPFC responses, the analysis of activities before the feedback – especially during the delay period –, 

and the model-based analysis of these neurophysiological data. The results are summarized in 

Supplementary Table 1.  

Average activity variations between search and repetition. Previous studies revealed differential 

prefrontal fMRI activations between exploitation (where subjects chose the option with maximal 

value) and exploration trials (where subjects chose a non-optimal option) (Daw N. D. et al. 2006). 

Here a global decrease in average activity level was also observed in the monkey LPFC from search to 

repetition. For early-delay activity, the average index of variation between search and repetition in 

LPFC was negative (mean: -0.05) and significantly different from zero (mean: t-test p < 0.001, 

median: Wilcoxon Mann-Whitney U- test p < 0.001). The average index of activity variation in dACC 

was not different from zero (mean: -0.008; t-test p > 0.35; median: Wilcoxon Mann-Whitney U- test p 

> 0.25). However, close observation revealed that the non-significant average activity variation in 

dACC was due to the existence of equivalent proportions of dACC cells showing activity increase or 

activity decrease from search to repetition, leading to a null average index of variation (Fig. 3A-B; 

17% versus 20% cells respectively). In contrast, more LPFC single units showed a decreased activity 

from search to repetition (18%) than an increase (8%), thus explaining the apparent global decrease 

of average LPFC activity during repetition. The difference in proportion between dACC and LPFC is 

significant (Pearson χ2 test, 2 df, t = 13.0, p < 0.01) and was also found when separating data for the 

two monkeys (Supplementary Fig. S3). These changes in neural populations thus suggest that global 

non-linear dynamical changes occur in dACC and LPFC between search and repetition instead of a 

simple reduction or complete cessation of involvement during repetition.  

 

Modulations of choice selectivity between search and repetition. As shown in Figure 3A, a higher 

proportion of neurons showed a significant choice selectivity in LPFC (155/230, 67%) than in dACC 
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(286/575, 50%; Pearson χ2 test, 1 df, t = 20.7, p < 0.001) – as measured by the vector norm in 

Equation 10. Interestingly, the population average choice selectivity was higher in LPFC (0.80) than in 

dACC (0.70; Kruskal-Wallis test, p < 0.001; see Fig. 3C). When pooling all sessions together, this 

resulted in a significant increase in average choice selectivity in LPFC from search to repetition (mean 

variation: 0.04; Wilcoxon Mann-Whitney U-test p < 0.01; t-test p < 0.01; Fig. 3C). 

Strikingly, the significant increase in LPFC early-delay choice selectivity from search to repetition 

was found only during sessions where the model fit dissociated control levels in search and repetition 

(i.e. sessions with large βR [βR > 5]; Kruskal-Wallis test, 1df, χ2 = 6.45, p = 0.01; posthoc test with 

Bonferroni correction indicated that repetition > search). Such an effect was not found during sessions 

where the model reproducing the behavior remained at the same control level during repetition (i.e. 

sessions with small βR [βR < 5]; Kruskal-Wallis test, p > 0.98) (Fig. 4-bottom). 

Interestingly, choice selectivity in LPFC was significantly higher during repetition for sessions 

where βR was large (mean choice selectivity = 0.91) than for sessions where βR was small (mean 

choice selectivity = 0.73; Kruskal-Wallis test, 1df, χ2 = 12.5, p < 0.001; posthoc test with Bonferroni 

correction; Fig. 4-bottom). Thus, LPFC early-delay choice selectivity clearly covaried with the level of 

control measured in the animal’s behavior by means of the model. 

There was also an increase in dACC early-delay choice selectivity between search and repetition 

consistent with variations of β, but only during sessions where the model capturing the animal’s 

behavior made a strong shift in the control level (βR > 5; mean variation = 0.035, Kruskal-Wallis test, 

1df, χ2 = 5.22, p < 0.05; posthoc test with Bonferroni correction indicated that repetition > search; Fig. 

4-top). However, overall, dACC choice selectivity did not follow variations of the control level. Two-

way ANOVAs either for (βS x task phase) or for (βR x task phase) revealed no main effect of β (p > 0.2), 

an effect of task period (p < 0.01), but no interaction (p > 0.5). And there was no significant difference 

in ACC choice selectivity during repetition between sessions with a large βR (mean choice selectivity = 

0.69) and sessions with a low one (mean choice selectivity = 0.75; Kruskal-Wallis test, 1 df, χ2 = 3.11, p 

> 0.05). 

At the population level, increases in early-delay mean choice selectivity from search to repetition 

were due both to an increase of single unit selectivity, and to the emergence in repetition of selective 

units that were not significantly so in search (Fig. 3A). Importantly, the proportion of LPFC early-delay 

choice selective neurons during repetition periods of sessions where βR was small (55%) was 

significantly smaller than the proportion of such LPFC neurons during sessions where βR was large 

(72%; Pearson χ2 test, 1 df, t = 7.19, p < 0.01). In contrast, there was no difference in proportion of 

dACC early-delay choice selective neurons during repetition between sessions where βR was small 

(38%) and sessions where βR was large (35%; Pearson χ2 test, 1 df, t = 0.39, p > 0.5; Fig. 4B). These 
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analyses thus show a significant difference between dACC and LPFC neural activity properties. LPFC 

mean choice selectivity as well as LPFC proportion of choice selective cells varied between search and 

repetition in accordance with the control level measured in the behavior by means of the 

computational model, while such effect was much weaker in dACC. These results are robust since they 

could also be obtained with Model SBnoA2β (Supplementary Fig. S4A). Data separated for the two 

monkeys also reflected the contrast between the two structures (Supplementary Fig. S4B). 

 

Mutual information between neural activity and target choice. Generally, computational models 

of the dACC-LPFC system make the assumption that LPFC is central for the decision output. LPFC 

activity should thus be more tightly related to the animal’s choice than dACC activity. Here, in 63 

LPFC neurons recorded during a sufficient number of presentations of each target choice (see 

Methods), the average mutual information – corrected for sampling bias – was more than twice as 

high (ILPFC = 0.10 bit) as in 85 dACC cells (IACC = 0.04 bit; Kruskal-Wallis test, p < 0.001) (Fig. 3D). This 

effect appeared to be the result of the activity of a small subset of LPFC activity – in both monkeys 

(Supplementary Fig. S3D) – with a high mutual information with choice. To verify that the applied 

restriction on the number of sampling trials was accurate, we constructed 1000 shuffled pseudo 

response arrays for each single unit and measured the average mutual information obtained with 

this shuffling procedure. For the 63 LPFC and 85 dACC selected neurons, the difference between the 

averaged shuffled information and the bias correction term was very small (mean=0.01 bit), while it 

was high in non-selected neurons (mean=0.08 bit). Thus the difference in estimated information 

between dACC and LPFC was not due to a limited sampling bias in the restricted number of analyzed 

neurons. We can conclude that, in agreement with computational models of the dACC-LPFC system, 

neural recordings show a stronger link between LPFC activity and choice than between dACC activity 

and choice. 

 

Neural activity correlated with model variables.  

Following model-based analyses of behavior we tested whether single unit activity in LPFC and 

dACC differentially reflect information similar to variables in Model GQLSB2β by using the time series 

of these variables as regressors in a general linear model of single-unit activity (multiple regression 

analysis with a bootstrapping control – see Methods) (Fig. 6). In dACC and LPFC, respectively 397/579 

(68.6%) cells and 145/232 (62.5%) cells showed a correlation with at least one of the model's 

variables in at least one of the behavioral epochs: pre-start, delay, pre-target, post-target, pre-touch, 

pre-feedback, early-feedback, late-feedback, and inter-trial interval (ITI). More precisely, we found a 

larger proportion of cells in LPFC than in dACC correlated with at least one model variable in the 



Khamassi et al.                                                      Adaptive control in prefrontal cortex 

24 
 

post-target epoch (Fig. 6E; Pearson χ2 tests, T = 3.89, p < 0.05), and a larger proportion of cells in 

dACC than in LPFC correlated with at least one model variable in the early-feedback epoch (Pearson 

χ2 test, T = 7.90, p < 0.01). Differences in proportions of LPFC and dACC neurons correlated with 

different model variables during pre- or post-feedback epochs were also observed for the two 

monkeys separately (Supplementary Figure S6), and when the model-based analysis was done with 

Models GQLSB, SBnoA or SBnoA2β (Supplementary Figures S5). Collinearity diagnostics between 

model variables revealed a weak collinearity in 306/308 recording sessions, a moderate collinearity 

in 1 session and a strong collinearity in 1 session (Supplementary Figure S9), thus excluding the 

possibility that these results could be an artifact of collinearity between model variables. 

 

Figure 5A shows an example dACC post-target activity negatively correlated with the action 

value associated to choosing target #4 (Fig. 5A-top). The raster plot and peristimulus histogram for 

this activity show lower firing rate in trials where the animal chose target #4 than in trials where he 

chose one of the other targets (Fig. 5A-middle). Plotting the trial-by-trial evolution of the post-target 

firing rate of the neuron reveals sharp variations following action value update and distinct from the 

time series of the other model variables δ and U (Fig. 5A-bottom). The firing rate dropped below 

baseline during trials where target #4 was chosen. Strikingly, the firing rate sharply increased above 

baseline in trials following non-rewarded choices of target #4. Thus this single unit not only 

responded when the animal selected the associated target but also kept track of the stored value 

associated with that target. Figure 5B shows a LPFC unit whose activity in the post-target epoch is 

positively correlated with the action value associated to choosing target #2. The raster plot illustrates 

a higher firing rate for trials where target #2 was chosen (grey histogram and raster, fig. 5B-middle). 

Similarly to the previous example, the trial-by-trial evolution of the post-target firing rate reveals 

sharp variations from trial to trial (Fig. 5B-bottom), consistent with sharp changes of action values in 

the model that best described behavior adaptation in this task (Fig. 2A).  

We found 126/145 (87%) LPFC and 227/397 (57%) dACC Q-value encoding cells. The proportion 

was significantly greater in LPFC (Pearson χ2 test, 1 df, T = 41.30, p < 0.001; Fig. 6A). We next verified 

whether the activity of these cells carried Q value information only during trials where the neuron's 

preferred target was selected by the monkey, or also during other trials. To do so, we performed a 

new multiple regression analysis on the activity of each cell after excluding trials where the cell's 

preferred target was chosen. The activity of respectively 18% (23/126) and 13% (29/227) of LPFC and 

dACC Q value encoding cells were still significantly correlated with a Q value in the same epoch after 

excluding trials where the cell's preferred target was selected by the animal (multiple regression 

analysis with Bonferroni correction). Importantly, the difference in proportion of Q cells between LPFC 
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and dACC was still significant after restricting to Q cells showing a significant correlation while 

excluding trials with their preferred target (LPFC: 23/145, 16%; dACC: 29/397, 7%; Pearson χ2 test, 1 

df, T = 8.97, p < 0.01).  

Given the deterministic nature of the task, and thus the limited sampling of options, a question 

remains of whether these neurons really encode Q values or whether they participate to action 

selection. The control analysis above excluding trials with each cells' preferred target showed that at 

least a certain proportion of these cells carried information about action values outside trials where 

the corresponding action is selected. But how much information about choice do these neurons carry 

and is there a quantitative difference between LPFC and dACC? Interestingly, 43% (54/126) of LPFC Q 

cells had high mutual information with monkey choice (I > 0.1) whereas only 33% (75/227) of dACC Q 

cells verified such condition. The difference in proportion was marginally significant (Pearson χ2 

proportion test, 1df, T = 3.37, p = 0.07). Moreover, LPFC Q cells activity contained more information 

about monkey choice (mean I = 0.12) than dACC Q cells (mean I = 0.09; Kruskal-Wallis test, 1df, χ2 = 

3.88, p < 0.05; Posthoc test with Bonferroni correction found that LPFC-Q > dACC-Q) and more than 

LPFC non-Q cells (average = 0.09; Kruskal-Wallis test, χ2 = 6.65, 1df, p < 0.01; Posthoc test with 

Bonferroni correction found that LPFC-Q > LPFC-nonQ). dACC Q cells activity did not contain more 

information about monkey choice than LPFC non-Q cells (Kruskal, 1df, χ2 = 1.57, p > 0.05). Although 

the observed difference in Q-encoding between dACC and LPFC are weak, these results are in line 

with the hypothesized dACC role in action value encoding and with the transfer of such information to 

LPFC for action selection – the LPFC would encode a probability distribution over possible actions. 

 

Feedback-related activities in dACC and LPFC. A large proportion of neurons had activity 

correlated with  during post-feedback epochs (Fig. 6, referred to as -cells, see examples of such cells 

during late-feedback and inter-trial interval in Fig. 7A and 7B; raster plots and correlation with 

variable can be found in Supplementary Fig. S7 for the first cell and in Fig. 9A for the second cell). 

Significantly more cells correlated with  in the dACC than in the LPFC: 252/397 (63%) versus 69/145 

(48%; Pearson χ2 test, 1 df, T = 11.10, p < 0.001; Fig. 6B and 6C), which confirmed previous 

comparisons (Kennerley and Wallis 2009). Consistent with the high learning rate suitable for the task 

(due to the deterministic reward schedule of the task), the information about the reward prediction 

error  from previous trials vanished quickly both in LPFC and dACC compared to other protocols (Seo 

and Lee 2007). Few dACC cells (31/285, 10.9%) and LPFC cells (9/116, 7.8%) retained a trace of  from 

the previous trial in any of the pre-feedback epochs (Fig. 6B-C). No significant difference was found 

between dACC and LPFC proportions (Pearson χ2 test, T = 0.89, p > 0.3). Interestingly, only few LPFC  

cells (13/69, 18.8%) revealed a positive correlation ( cells, i.e. neurons responding to unexpected 
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correct feedback; Fig. 6B). The great majority of  cells in LPFC had negative correlations (56/69, 

81.2%), that is, displayed increased activity after errors ( cells; Fig. 6C). In comparison, dACC had a 

higher proportion of cells (101/252 cells, 40.1%, and 151/202 cells, 74.8%; see example of 

such cell in Fig. 7E; raster and correlation plots are shown in Supplementary Fig. S8). The difference in 

proportion of cells between LPFC and dACC was significant (Pearson χ2 test, 1 df, T = 10.67, p < 

0.01). Thus LPFC activity is much more reactive to negative feedback compared to dACC which 

responds equally to positive and negative feedback. 

Previous studies have reported quantitative discrimination of positive reward prediction errors in 

dACC unit activity (Matsumoto et al. 2007; Kennerley and Walton 2011). dACC feedback-related 

activity might also represent categorical information (i.e. correct, choice error, execution error) 

rather than quantitative reward prediction errors (Quilodran et al., 2008; see discussion). The 

present model-based analysis confirms this and also extends it to LPFC feedback-related activity by 

finding that only very few cells were still correlated with  when analyzing correct and incorrect trials 

separately. 10/159 (6.3%) dACC and 2/57 (3.5%) LPFC  cells where still significantly correlated with 

 when considering incorrect trials only (multiple regression analysis with bootstrap). These 

proportions were not significantly different (Pearson χ2 test, T = 0.62, p > 0.4). Figures 7A and 7B 

illustrate examples of dACC and LPFC neurons which respond to errors without significantly 

distinguishing between different amplitudes of modeled negative reward prediction errors. 23/101 

(22.8%) dACC and 2/13 (15.4%) LPFC  cells where still significantly correlated with on COR trials 

only. These proportions were not significantly different (Pearson χ2 test, T = 0.37, p > 0.5). Figure 7E 

illustrates the activity of such a cell. In summary, the most striking result regarding feedback-related 

activity was the differential properties of dACC and LPFC in coding both positive and negative 

outcomes, LPFC activity being clearly biased toward responding after negative outcomes. 

 

Correlates of outcome uncertainty. Hypotheses on the neural bases of cognitive regulation have 

been largely inspired by the dynamics of activity variations in dACC and LPFC during behavioral 

adaptations (Kerns et al. 2004; Brown and Braver 2005). Functions of the dACC are considered to 

enable monitoring of variations in the history of reinforcements (Seo and Lee 2007, 2008), of the 

error-likelihood (Brown and Braver 2005), to accordingly adjust behavior. Thus we looked for 

correlations between single unit activities and the outcome uncertainty U (which progressively 

increases after elimination of possible targets during search and drops to zero after the first correct 

trial; see Methods). We observed both positive and negative correlations between dACC neural 

activity and U (U-cells): 71.8% were positive correlations – higher firing rate during search periods – 

and 28.2% were negative correlations – higher firing rate during repetition. These proportions are 
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different from an expected 50%-50% proportion (χ2 goodness of fit - one sample test, 1 df, χ2 = 39.32, 

p < 0.001). The population activity of these units correlated with U showed gradual trial-by-trial 

changes during search, and sharp variations from search to repetition, after the first correct feedback 

of the problem (see examples of such cells during the post-start epoch in Fig. 7C, D; see raster and 

correlation plots in Supplementary Fig. S7B, C). These patterns of activity were in opposite direction 

from changes in reaction times (Fig. 2B). They belonged to a larger group of cells that globally 

discriminated between search and repetition (see a different profile of such type of neurons in the 

post-target epoch in Fig. 7F; see raster and correlation plots in Supplementary Fig. S8B). Neural data 

revealed that U cells were more frequent in dACC (206/397, 52%) than in LPFC (48/145, 33%; 

Pearson χ2 test, T = 15.05, p < 0.001; Fig. 6D). Importantly, Figure 6 shows that, during trials, U was 

decoded from dACC activity mostly just before and after feedback occurrence. By contrast, U was 

better decoded during delay (i.e., pre-target epoch) in LPFC. These different dynamics reinforce the 

idea of an intimate link between U updating and the information provided by feedback for 

performance monitoring in dACC and, in contrast, of an implication of LPFC in incorporation of U into 

the decision function in LPFC.  

 

Multiplexed reinforcement-related information. We found that both dACC and LPFC single units 

multiplexed information about different model variables, with LPFC activity reflecting more 

integration of information than dACC activity. First, in LPFC the great majority of U-cells (81%, 39/48) 

were also correlated with one of the model action values while this was true for only 52% (107/206) 

of dACC U-cells (Pearson χ2 test, 1 df, T = 13.68, p < 0.001). Stronger integration was also reflected 

through higher correlation strengths with multiple variables of the model, as found by a Principal 

Component Analysis (PCA) on regression coefficients for all dACC and LPFC neurons (Fig. 8). The first 

principal component (PC1) obtained with dACC neurons corresponds in all trial epochs to activity 

variations mainly related to the outcome uncertainty U and reveals weak links with Q and (Fig. 8A). 

In contrast, the two first components (PC1 and PC2) obtained with LPFC neurons both were 

expressed as a combination of Q and U during pre-feedback epochs (Fig. 8A). The PCA also revealed 

a strong change in the principal components between pre- and post-feedback epochs both in dACC 

and LPFC and reliably in the two monkeys (Fig. 8A), consistent with the post-feedback activity 

changes and correlations between model variables reported in the previous analyses. 

To quantify differences in multiplexing at the single-unit level, we computed an entropy-like index 

(ELI) of sharpness of encoding of different model variables based on the distributions of correlation 

strengths between individual cell activities and model variables (see Methods): e.g. a neuron with 

activity correlated with different model variables with similar strengths will have a high ELI; a neuron 



Khamassi et al.                                                      Adaptive control in prefrontal cortex 

28 
 

with activity highly correlated with only one model variable will have a low ELI (see illustration of 

different ELI obtained with artificial data illustrating these cases in Supplementary Fig. S1). We found 

a higher ELI in LPFC neurons than in dACC neurons in the pre-touch and pre-feedback epochs 

(Kruskal-Wallis test, p < 0.05) and the opposite effect (i.e. dACC > LPFC) in the early-feedback epoch 

(Kruskal-Wallis test, p < 0.05; Fig. 8B). These pre- and post-feedback variations in ELI may reflect 

different processes: action selection and value updating respectively. Overall, these results reveal 

higher information integration in LPFC before the feedback, and higher integration in dACC after the 

feedback. 

We then measured the contribution of each model variable to each principal component in each 

epoch, and combined it with the contribution of each principal component to the global variance in 

neural activity in each epoch. We deduced a normalized contribution of each model variable to 

neural activity variance in each epoch (see Methods). Strikingly, in dACC the model variable U 

dominated (contribution > 50%) in all pre-feedback epochs, while the contribution of started 

increasing in the early-feedback epoch (Fig. 8C). In contrast, in LPFC the model variables Q and U had 

nearly equal contributions to variance during pre-feedback epochs, while the contribution of 

started increasing in the late-feedback epoch, thus later than in dACC. The global entropy in the 

normalized contributions of model variables to neural activity variance revealed marginally higher in 

LPFC than in dACC (Kruskal-Wallis test, p < 0.06) when analyzed with Model GQLSB2β’s variables. 

These properties of PCA analyses were also true with Model SBnoA2β (Suppl. Fig. S10), and the 

latter effect was found to be even stronger with the latter model (Kruskal-Wallis test, p < 0.01; Suppl. 

Fig. S10C), thus confirming the higher information integration in LPFC than in dACC. 

Finally, single unit activity could encode different information at different moments in time, 

corresponding to dynamic coding. More than half LPFC -cells (55%, 38/69) – that is, neurons 

responding to feedback – showed an increase in choice selectivity at the beginning of each new trial 

in repetition, thus reflecting information about the subsequent choice (see a single cell example in 

Fig. 9A, and a population activity in Fig. 9C). In contrast, only 33% (84/252) of dACC -cells showed 

such effect. The difference in proportion between LPFC and dACC was statistically different (Pearson 

χ2 test, 1 df, T = 10.86, p < 0.001; Fig. 9B). Thus, while dACC post-feedback activity may mostly be 

dedicated to feedback monitoring, LPFC activity in response to feedback might reflect the onset of 

the decision-making process triggered by the outcome.  

 

 

DISCUSSION  
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Interaction between performance monitoring and cognitive control hypothetically relies on 

interactions between dACC and LPFC (e.g. Cohen J.D. et al. 2004). Here we described how the 

functional link between the two areas might contribute to the regulation of decisions.  

In summary, we found that LPFC early-delay activity was more tightly related to monkeys’ 

behavior than dACC activity, displaying higher mutual information with animals’ choices than dACC, 

supporting LPFC's role in action selection. Also, the high choice selectivity in LPFC co-varied with the 

control level measured from behavior: decreased choice selectivity during the search period, 

putatively promoting exploration; increased choice selectivity during the repetition period, putatively 

promoting exploitation. In contrast, this effect was not consistent in dACC. dACC activity correlated 

with various model variables, keeping track of pertinent information concerning the animal’s 

performance. A calculation of outcome uncertainty (U) correlated with activity changes between 

exploration and exploitation mostly in dACC, and dominated the contribution to neural activity 

variance in pre-feedback epochs. Moreover, dACC post-feedback activity appeared earlier than in 

LPFC and represented positive and negative outcomes with similar proportions while LPFC post-

feedback activity mostly tracked negative outcomes. 

Reinforcement-related (Q and  and task monitoring-related (U) information was multiplexed 

both in dACC and LPFC, but with higher integration of information before the feedback in LPFC and 

after the feedback in dACC. LPFC unit activity responding to feedback was also choice selective 

during early-delay, possibly contributing to decision making, while dACC feedback-related activity – 

possibly categorizing feedback per se – showed less significant choice selectivity variations. Taken 

together, these elements suggest that reinforcement-based information and performance 

monitoring in dACC might participate in regulating decision functions in LPFC. 

 

Mixed information and coordination between areas 

Correlations with variables related to reinforcement and actions were found in both structures in 

accordance with previous studies showing redundancy in information content, although with some 

quantitative biases (Seo and Lee 2008; Luk and Wallis 2009). However, compared to LPFC, dACC 

neuronal activity was more selective for outcome uncertainty that could be used to regulate 

exploration (Fig. 8). The PCA analysis showed that multiplexing of reinforcement-related information 

is stronger in LPFC activity suggesting that this structure receives and integrates these information. In 

this hypothesis dACC would influence LPFC computations by modulating an action selection process. 

Such interaction have been interpreted as a motivational or energizing function (from dACC) onto 

selection mechanisms (in LPFC) (Kouneiher et al. 2009). More specifically, our results support a 

recently proposed model in which dACC monitors task-relevant signals to compute action values and 
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keep track of the agent’s performance necessary for adjusting behavioral meta-parameters 

(Khamassi et al. 2011; Khamassi et al. 2013). In this model, values are transmitted to the LPFC which 

selects the action to perform. But the selection process (stochastic) is regulated online based on 

dACC's computations to enable dynamic variations of the control level. 

This view preserves the schematic regulatory loop by which performance monitoring acts on 

cognitive control as proposed by others (Botvinick et al. 2001; Cohen J.D. et al. 2004). We further 

suggest a functional structure that reconciles data related to regulatory mechanisms, reinforcement 

learning, and cognitive control. In particular we point to the potential role of dACC in using 

reinforcement-related information (such as reward prediction error), relayed through the reward 

system (Satoh et al. 2003; Enomoto et al. 2011), to regulate global tendencies (formalized by meta-

parameters) of adaptation. Interestingly, human dACC (i.e., mid-cingulate cortex) activation co-varies 

with volatility or variance in rewards and could thereby also participate in regulating learning rates for 

social or reward-guided behaviors (Behrens et al. 2007; Behrens et al. 2009). Kolling and colleagues 

(Kolling et al. 2012) have recently found that dACC encodes the average value of the foraging 

environment. This suggests a general involvement of dACC in translating results of performance 

monitoring and task monitoring into a regulatory level. 

The fact that dACC activity correlated with changes in modeled meta-parameters would suggest a 

general function in the global setting of behavioral strategies. It has been proposed that dACC can be 

regarded as a filter involved in orienting motor or behavioral commands (Holroyd and Coles 2002), in 

regulating action decision (Domenech and Dreher 2010), and that it is part of a core network 

instantiating task-sets (Dosenbach et al. 2006). Interestingly, dACC neural activity encodes specific 

events that are behaviorally relevant in the context of a task, events that – like the Signal to Change 

in our task – can contribute to trigger selected adaptive mechanisms (Amiez et al. 2005; Quilodran et 

al. 2008). In line with this, Alexander and Brown recently proposed that dACC signals unexpected 

non-occurrences of predicted outcomes, i.e. negative surprise signals, which in their model consist of 

context-specific predictions and evaluations (Alexander W. H. and Brown 2011). Their model 

elegantly explains a large amount of reported dACC post-feedback activity. But dACC signals related 

to positive surprise (Matsumoto et al. 2007; Quilodran et al. 2008), and to other behaviorally salient 

events (Amiez et al. 2005), suggest an even more general role in processing information useful to 

guide selected behavioral adaptations. 

 

 

 

Exploration 
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Following a standard reinforcement learning framework, exploratory behavior was here 

associated to low β values, which flatten the probability distribution of competing actions in models 

and simulations (Khamassi et al. 2011). Although the precise molecular and cellular mechanisms 

underlying shifts between exploration and exploitation are not yet known, accumulating evidence 

suggest that differential levels of activation of D1 and D2 dopamine receptors in the prefrontal cortex 

may produce distinct states of activity: a first state allowing multiple network representations nearly 

simultaneously and thus permitting “an exploration of the input space”; a second state where the 

influence of weak inputs on PFC networks is shut off so as to stabilize one or a limited set of 

representations, which would then have complete control on PFC output and thus promote 

exploitation (Durstewitz and Seamans 2008). The consistent variations of LPFC choice selectivity 

between search and repetition periods suggest that such mechanism could also underlie exploration 

during behavioral adaptation. 

However, this should not be interpreted as an assumption that monkeys’ behavior is purely 

random during search periods of the task (see model-based analysis of behavior). In fact, animals 

often display structured and organized exploratory behaviors as also revealed by our behavioral 

analyses. For instance, when facing a new open arena, rodents display sequential stages of 

exploration, first remaining around the nest position, second moving along walls and third visiting 

the center of the arena (Fonio et al. 2009). Non-human primates also use exploration strategies, such 

as optimized search trajectories adapted to the search space configuration (De Lillo et al. 1997), 

trajectories that can evolve based on reinforcement history along repeated exposure to the same 

environment (Desrochers et al. 2010). In ecological large scale environments search strategies are 

best described by correlated random or Levy walks and are modulated by various environmental 

parameters (Bartumeus et al. 2005). 

One possible interpretation of our results is that decreases of choice selectivity in LPFC during 

search could reduce the amount of information about choice and ergo release biases in the influence 

on downstream structures such as the basal ganglia. In this way, efferent structures could express 

their own exploratory decisions. Consistent with this, it has been recently suggested that variations 

of tonic dopamine in the basal ganglia could also affect the exploration-exploitation trade off in 

decision-making (Humphries et al. 2012). 

The prefrontal cortex might also contribute to the regulation of exploration based on current 

uncertainty (Daw N. D. et al. 2006; Frank et al. 2009). Uncertainty-based control could bias decision 

towards actions that provide very variable quantities of reward so as to gain novel information and 

reduce uncertainty. In our task, outcome uncertainty variations – progressive increase during search 

and drop to zero during repetition – can be confounded with other similar performance monitoring 
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measures such as the feedback history (Khamassi et al. 2011) or variations of attentional level. 

Nevertheless, they co-varied with the animal’s reaction times and were mostly encoded by dACC 

neurons, thus revealing a possible relevance of this information for behavioral control in our task. It 

should be noted that outcome uncertainty is distinct from action uncertainty which would be 

confounded in our task with other task monitoring variables such as conflict (Botvinick et al. 2001) 

and error-likelihood (Brown and Braver 2005). All of them gradually and monotonically decrease 

along a typical problem of the PS task and remain low during repetition. We found neurons with such 

activity profile (e.g. Fig. 7F), however in about half the proportion of U-cells. More work is required 

to understand whether these different task monitoring measures are distributed and coordinated 

within the dACC-LPFC system. 

 

Reinforcement learning or working memory? 

It has been recently suggested that model-based investigations of adaptive mechanisms often mix 

and confound reinforcement learning mechanisms and working memory updating (Collins and Frank, 

2012). In particular, rapid improvements in behavioral performance during decision-making tasks can 

be best explained by gating mechanisms in computational models of the prefrontal cortex rather 

than by slow adaptation usually associated with dopamine-dependent plasticity in the basal ganglia. 

In the present study, the fact that Models SBnoA and SBnoA2β (with a high learning rate α fixed to 1) 

and Models GQLSB and GQLSB2β (where α is a free-metaparameter between 0 and 1) produce a 

non-different fitting score on monkey behavior suggests that behavior in this task might fall into such 

a case. Under this interpretation, rapid behavioral adaptations would rely on gating appropriate 

flows of information between dACC and LPFC. In fact, the increase of LPFC activity mostly after 

negative and not positive outcomes, and the interaction with spatial selectivity, might reflect gating 

working memory or planning processes at the time of adaptation, rather than direct outcome-related 

responses. An alternative hypothesis that cannot be excluded is that in this type of deterministic task 

animals still partly rely on reinforcement learning mechanisms, but would progressively learn to 

employ a high learning rate during the long pretraining phase. The fact that a group of behavioral 

sessions were better fitted with α between 0.3 and 0.9 when α was not fixed to 1 (i.e. in Model 

GQLSB; Supplementary Fig. S2C) reveals a continuum in the range of optimized α values which could 

be the result of a progressive but incomplete increase of the learning rate during pretraining. Such 

adaptation in rate might have also contributed to the weak quantitative coding of reward prediction 

errors. Further investigations will be required to answer this question, in particular by precisely 

characterizing monkey behavioral performance during the pretraining phase and the associated 

changes in information coding in prefrontal cortical regions. 
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Network regulation and decisions in LPFC 

We reported new data on the possible functional link between LPFC and dACC. However, we have 

no evaluation of putative dynamical and direct interactions between neurons of the two regions. 

Functional coordination of local field potentials between LPFC and dACC has been described but 

evidence for direct interactions is scarce (Rothe et al. 2011). The schematized modulatory function 

from dACC performance monitoring into LPFC decision process could in fact be indirect. For instance, 

it has been proposed that norepinephrine instantiates gain (excitability) variations in LPFC, and that 

this mechanism would be regulated by dACC afferences to the locus coeruleus (Aston-Jones and 

Cohen 2005; Cohen J. D. et al. 2007). Average activity variations in dACC and LPFC observed in our 

recordings could be a consequence of such activity gain changes. Gain modulation and biased 

competition are two mechanisms by which attentional signals can operate (Wang 2010). Increased 

working memory load, higher cognitive control, or attentional selection are concepts widely used to 

interpret prefrontal activity modulations dependent on task requirements (Miller and Cohen 2001; 

Leung et al. 2002; Kerns et al. 2004). Note that these concepts are closely related and have similar 

operational definitions (Barkley 2001; Miller and Cohen 2001; Cohen J.D. et al. 2004).  

Recently, Kaping and colleagues have shown that spatial attentional and reward valuation signals 

are observed in different subdivisions of the fronto-cingulate region (Kaping et al. 2011). Correlates 

of spatial attention selectivity were found in both dACC and LPFC, together with correlates of 

valuation, and independently of action plans. These signals would contribute to top-down 

attentional control of information (Kaping et al. 2011). Here we also verified that values were coded 

independently of choices by showing significant correlation with Q-values even after exclusion of 

trials selecting the neuron's preferred target.  

The present study revealed two effects of task periods on frontal activity that would reflect 

variations in control and decision: an increased average firing rate and changes in recruited neural 

populations during exploration in both dACC and LPFC, and an increased spatial selectivity in LPFC 

during repetition. The latter would argue against a reduction of control implemented by LPFC during 

repetition. This however suggests that transitions between exploration and repetition involve a 

complex interplay between global unselective regulations and refined selection functions, and that 

qualitative changes in control occurred between search and repetition. 

Finally, studies in rodents suggest that adaptive changes in behavioral strategies are also 

accompanied by global dynamical state transitions of prefrontal activity (Durstewitz et al. 2010). Our 

analyses showed that for both LPFC and dACC the neural populations participating in exploratory 

versus exploitative periods of the task differ significantly. We have also previously shown that the 
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oscillatory coordination between the two areas changes from one period to the other (Rothe et al. 

2011). Hence, a dynamical system perspective might be imperative to explain cognitive flexibility and 

its neurobiological substrate with more precision. 
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Table 1 
Score obtained by each tested theoretical model, models’ characteristics, and model 
performances to fit monkey choices for Optimization (Opt) and Test sessions. 

 
Models r

1 
RL2 NP

3 
Opt 
-LL4 

Opt 
NL5 

Opt 
%6 

Opt 
-LPP7 

Opt 
BIC/28 

Opt 
AIC/29 

Test 
-LL4 

Test 
NL5 

Test 
%6 

GQLSB2β Y Y 4 3290 .5921 83.47 3459 3360 3298 29732 .5830 74.17 
SBnoA2β Y N 3 3385 .5831 84.13 3422 3438 3391 30901 .5708 73.11 
GQLSB Y Y 3 3355 .5859 83.80 3502 3408 3361 29539 .5850 73.43 
SBnoA Y N 2 3454 .5768 84.29 3480 3489 3458 30613 .5738 72.59 
SBnoF Y N 1 3586 .5648 84.43 3604 3604 3588 32169 .5578 71.61 
GQLBnoS Y Y 3 3721 .5528 78.59 3847 3773 3727 33274 .5467 69.47 
GQLSnoB Y Y 3 3712 .5536 76.66 3843 3764 3718 31501 .5646 70.12 
GQLnoSnoB Y Y 3 4253 .5079 69.14 4292 4305 4259 35376 .5262 66.60 
GQL N Y 3 5590 .4104 65.10 5994 5643 5596 49282 .4089 53.20 
QL N Y 2 5960 .3869 44.92 7755 5995 5964 59734 .3382 48.78 
ClockS Y N 2 5249 .4333 70.92 5841 5284 5253 47504 .4223 58.71 
RandS Y N 1 4607 .4800 69.43 4621 4624 4609 39488 .4884 63.73 
 
 

 
 

  

                                                
1 Resetting action values at the beginning of each new problem (Yes or No) 
2 Reinforcement Learning (RL) mechanisms or not 
3 Number of free meta-parameters 
4 Negative Log Likelihood 
5 Normalized Likelihood over all trials 
6 Percentage of trials where the model correctly predicted monkey choice 
7 Log of Posterior Probability 
8 Bayesian Information Criterion 
9 Akaike Information Criterion 
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FIGURE LEGENDS 

 
Figure 1. Task, recording sites, and trial epochs for analyses. (A) Problem Solving task. Monkeys had 

to find by trial and error which target, presented in a set of four, was rewarded. Trial: description of 

events in a trial (see methods). A juice reward is delivered if the trial was correct while only a blank 

screen is presented for errors. Problem: In each trial the animal could select a target until the solution 

was discovered (search period). Each block of trials (or problem) contained a search period and a 

repetition period during which the correct response was repeated at least three times. A Signal to 

Change (SC) is presented on the screen to indicate the beginning of a new problem. (B) Recording 

sites for LPFC (grey spots) and dACC (black spots) for the two monkeys. dACC recordings covered a 

region in the dorsal bank of the anterior cingulate sulcus, at stereotaxic levels superior to A+30, i.e. 

rostral levels of the mid-cingulate cortex. Recording sites in LPFC were located on the posterior third 

of the principal sulcus. (C) Target identifications and definition of epochs used for single unit analyses. 

 

Figure 2. Model-based behavioral analyses. (A-left) Illustration of the trial by trial evolution of action 

values after meta-parameters optimization so that the model behaves similarly to the monkey. 

Sample data presented for 100 successive trials. The barcode on the top indicates the current correct 

target. Each of the 4 targets is associated to one grey level. Head arrows represent the Signal to 

Change (SC) presented at the beginning of each new problem. The second barcode indicates the 

target selected by the animal in each trial. The third barcode indicates the target selected by the 

model based on the feedback obtained by the animal. Variation of action values for each of the 4 

targets are represented by curves.  The high learning rate (α=0.9) that resulted from the optimization 

produced sharp variations of action values. The data are presented for two models (SBnoA and 

GQLSB). (A-middle) Proportion of shifts after SC for monkeys M and P. (A-right) Proportion of 

selection of each target in the first trial of each problem across sessions of recordings. Each line 

represents one target position. (B) Reaction times (RT) measured in two monkeys averaged for typical 

optimal problems: those where the monkey made 2 errors (INC1 and INC2) during the search period, 

found the correct target (CO1) in the third trial, and repeated the correct choice from 3 to 7 times 

(CO2 to CO8), depending on the problem's length, during repetition trials. **: p<0.005, ***:p<0.001. 

(C) Percentage of errors made by the animal during the repetition periods against the exploration rate 

βR of the repetition periods. One data point per session. (D) Scores obtained by each tested model 

during the model comparison analysis (see methods).  Opt -LL = negative log-likelihood on the 

optimization dataset. -LPP = negative log of posterior probability. BIC = Bayesian Information Criterion. 

AIC = Akaike Information Criterion. Test -LL = negative log-likelihood on the test dataset. (E) 
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Distribution of exploration meta-parameters obtained after optimization of the model on monkey's 

behavior using distinct degrees of freedom during the search period (βS) and the repetition period 

(βR).  

 

Figure 3. Variations of early-delay activity and choice selectivity. (A-top) Proportions of dACC and 

LPFC cells with a higher activity during search or repetition. (A-bottom) Proportions of dACC and LPFC 

cells with a higher choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in 

grey) in average unit activity between search (Sea) and repetition (Rep). The histograms represent the 

distribution of indices of variation of activity from search to repetition computed in the early-delay 

epoch with equation (9) in dACC and LPFC neurons. Grey bars represent neurons with significantly 

different activity between search and repetition trials (Kruskal-Wallis test, p < 0.05).  White bars 

represent neurons with non-significantly different activity in search and repetition. (C) Increase of 

choice selectivity from search to repetition in the two structures. Stars indicate statistically significant 

comparisons *: p<0.05, **: p<0.01.  (D) Compared to dACC neurons (grey bars), a higher proportion of 

LPFC neurons showed significant mutual information between the early-delay average firing rate and 

the animal's choice. Dashed grey and black lines represent the medians for dACC and LPFC 

respectively. 

 

Figure 4.  Early-delay choice selectivity varies with exploration level. (A). The average choice 

selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped 

according to the fitted model's exploration meta-parameters for repetition (βR). The average 

population index is measured for search (grey bars) and repetition (white bars) trials in the early-delay 

epoch, separately for sessions where βR was inferior or superior to 5. Stars indicate statistically 

significant comparisons. *: p<0.05. (B). Proportion of dACC and LPFC early-delay choice selective 

neurons during repetition periods of sessions where βR was small (<5) or large (>5). Only LPFC 

revealed a significant change in proportion. 

 

Figure 5. Two examples of action value neurons. (A)  dACC unit negatively correlated with the value 

of target #4. (Top) plot of single trial activity (black dots) measured in the post-target epoch against 

the Q-value, for trials where the animal chose target 4. Large grey dots represent the average for one 

decile of the value distribution and are just used for illustration. The dashed line represents the linear 

regression computed from single trial data. (Middle) peri-stimulus histograms aligned on target onset 

(Target ON) and the corresponding raster plots for trials in which the animal chose target 4 (in black) 

and for the other trials (in grey). The post-target epoch is represented in grey on the time line. 
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(Bottom) trial by trial evolution of the average activity measured in the post-target epoch during 

successive trials in a session. The upper grey barcode represents the correct target to be chosen (4 

greys for 4 target positions; corresponding target number is indicated above the bar code). The 

second barcode represents the target chosen by the animal in each trial. Below, the graph represents 

the average activity for each trial and, the trial by trial evolution of key model variables.  Grey areas 

represent trials where the animal selected target #4. See main text for details. (B) LPFC neuron with a 

positive correlation with the value of target #2 during the post-target epoch. Conventions as in A. 

 

 

Figure 6. Proportions of dACC and LPFC cells with activity correlated with one of the model 

variables (Q, δ, and U) in one of the 9 trial epochs (bars from left to right: pre-start, delay, pre-

target, post-target, pre-touch, pre-feedback, early-feedback, late-feedback, ITI). The white and black 

arrow heads indicate touch and feedback respectively. There were more LPFC cells correlated with 

one of the action-values (Q, in A). In B and C, δ+ or δ- represent respectively positive and negative 

correlations with δ. A higher proportion of dACC cells were either positively or negatively correlated 

with δ (δ+ or δ-) compared to LPFC. These cells mostly responded during post-feedback epochs, and 

very few cells retained a trace of the previous δ during the beginning of the next trial (pre-feedback 

epochs). There were more U cells in dACC than in LPFC (in D). See text for details. E. Proportion of 

cells, for each epoch, showing a significant correlation with at least one model variable. 

 

Figure 7. Six examples (A-F) of unit activity correlated with some of the model's variables. Line 

graphs represent average activity aligned on feedback (FB), trial start, or target onset. The grey 

intensity of lines corresponds to the different trial types as described in the bar graphs below. The 

grey zone on each time axis represents the epoch used for average measures displayed in the bar 

graph. Bar graphs represent, for each unit, the average activity measured in the time epoch for the 6 

trial types of a typical problem. The trial types in search are: sea1 (first error trial, black), sea2 (second 

error trial, dark grey), sea3 (third trial in search for activity measured before feedback, grey), and CO1 

(first correct trial for activity measured after the feedback, grey in A, B, and E). Trial types in repetition 

are CO2, CO3, and CO4 (light grey). (A) example of dACC activity negatively correlated with RPE (δ-). 

(B) example of LPFC activity negatively correlated with RPE (δ-). (C) example of LPFC activity 

correlated with U. (D) example of dACC activity negatively correlated with U. (E) example of dACC 

activity positively correlated with RPE (δ+). (F) example of activity discriminating search and repetition 

but with a different profile than U. 
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Figure 8. Multiplexing of information and variations during epochs in dACC and LPFC. (A) A principal 

component analysis was performed on the regression coefficients found for each neuron and for each 

model variable (Q: the action value of the animal's preferred target, δ, and U; Model GQLSB2β). The 

absolute value of the eigen values for each principal component computed during the early-feedback 

epoch are shown in each matrix for one trial epoch. Black denotes strong weights. Data are presented 

for each monkey M and P. (B) Evolution of the entropy-like factor on regression coefficients computed 

for 2 variables Q and U, and Q and δ. A * indicates a statistically significant difference between dACC 

(in grey) and LPFC (in black). (C) Proportion of total variance explained by each model variable over 

the 3 PCs for dACC and LPFC data along trial epochs. See main text for details. 

 

Figure 9. Variations of choice selectivity in δ-cells. (A) Example of a LPFC cell responding after errors 

(activity negatively correlated with δ in the late-feedback epoch) and showing an increase in choice 

selectivity at the beginning of trials. Left: error trials are illustrated in grey, correct trials in black. 

Right: trials are grouped by chosen targets. 4 grey curves for 4 target locations. (B) Percentage of 

dACC and LPFC δ-cells showing a significant increase in choice selectivity from search to repetition. (C) 

Averaged population activity (50 ms bins) of all dACC (left) and LPFC (right) units negatively correlated 

with δ. For each cell, the activity was averaged separately for trials in which the animal selected the 

cell's preferred target (black plain line), the second preferred target (black dashed line), the third (gray 

dashed line) or the least preferred target (gray plain line). The activity is represented in 3s windows 

centered on the feedback time (FB, Left) and on the next trial start (ST, Right), for search trials (Top) 

and repetition trials (Bottom). In LPFC, negative δ cells showed an increase in choice selectivity in the 

post-start epoch of repetition trials. 
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Figure 3. Variations of early-delay activity and choice selectivity. (A-top) Proportions of dACC and LPFC cells with a higher activity 

during search or repetition. (A-bottom) Proportions of dACC and LPFC cells with a higher choice selectivity during Sea or Rep. (B) 

Number of cells with significant changes (in grey) in average unit activity between search (Sea) and repetition (Rep). The histograms 

represent the distribution of indices of variation of activity from search to repetition computed in the early-delay epoch with equation 

(9) in dACC and LPFC neurons. Grey bars represent neurons with significantly different activity in between search and repetition trials 

(Kruskal-Wallis test, p < 0.05).  White bars represent neurons with non-significantly different activity in search and repetition. (C) 

Increase of choice selectivity from search to repetition in the two structures. Stars indicate statistically significant comparisons *: 

p<0.05, **: p<0.01.  (D) Compared to dACC neurons (grey bars), a higher proportion of LPFC neurons showed significant mutual 

information between the early-delay average firing rate and the animal's choice. Dashed grey and black lines represent the medians for 

dACC and LPFC respectively.
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dACC LPFC 

  

Q cells 227 (39%) 126 (54%) 

RPE cells 252 (44%) 69 (30%) 

U cells  206 (36%) 48 (21%) 

  

Cells w. multiple correlates 218 (38%) 75 (32%) 

Cells w. single correlates 179 (31%) 70 (20%) 

Cells without correlation 179 (31%) 87 (37.5%) 

Cells w. correlates without other effect 78 (14%) 20 (9 %)  

  

  

Excluded cells (not enough trials) 461 (80%) 159 (69%) 

Included cells with M.I. < 0.1 111 (19%) 56 (24%) 

Included cells with M.I. > 0.1 4 (1%) 17 (7%) 

M.I. cells without other effect 0 (0%) 0 (0%) 
  

   

SEA<REP cells 96 (17%) 20 (9%) 

SEA>REP cells 116 (20%) 39 (17%) 

Non signif. variation cells 364 (63%) 173 (75%) 

SEA<>REP cells without other effect 22 (4%) 4 (2%)

  

SEA-REP choice selectivity analysis  

SEA only selective cells 60 (10%) 12 (5%)

REP only selectivecells 162 (28%) 83 (36%)

Both SEA and REP selective cells 64 (11%) 60 (26%)

Non selective cells 290 (50%) 77 (33%)

Choice selective cells without other effect 27 (5%) 13 (6%)

  

Non task-related cells 61 (11%)  38 (16%) 

  

TOTAL number single units analysed 576 (100%) 232 (100%) 

 

Multiple regression analysis

Mutual Info analysis

REP activity variation analysis-SEA

SUMMARY TABLE

Analysis on all cells

Cells with M.I. < 0.1 409 (71%) 145 (62.5%)

Cells
 
with M.I. > 0.1

 
167 (29%)

 
87 (37.5%)

 

 

 

 

 

 

 

 

 

 

 

Restrictive analysis (requiring a large number of samples)
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Figure S1. Simulations testing the effect of covarying variables.  6 ensembles of virtual data were created with covariations of coefficients of 

regressions  (found with the multiple regression analysis cell x model variables) associated to Q and d, and for which the coefficients associated 
to U are independant and represent a uniform noise (across the entire Z axis). The 6 data sets illustrate (from left to right, and from top to 
bottom) :

- case of strong covariation between coefficients for Q and d, and weak reg coefficients associated to U (between 0 and 1)

- case of strong covariation between coefficients for Q and d, and medium reg coefficients associated to U (between 0 et 100)

- case of strong covariation between coefficients for Q and d, and strong reg coefficients associated to (between 0 et 1000)

- case of weak covariation between coefficients for Q and d, and weak reg coefficients associated to U (between 0 and 1)

- case of weak covariation between coefficients for Q and d, and medium reg coefficients associated to U (between 0 et 100)

- case of weak covariation between coefficients for Q and d, and strong reg coefficients associated to (between 0 et 1000)
 For each of the 6 cases 3 graphs are shown from top to bottom: - distribution of coefficients of regression for each of the 576 simulated 
cell data (one point per cell), - a matrix of the Principal Components (PC) for the three model variables (as in figure 8A), - the ELI (entropy-like 

index) measured on the absolute value of the Z-scores of the coefficients of regression associated to d and Q.

 These analyses show that the strength of correlation with model variables is reflected in the order of the principal components. They 
also show that strong covariation between regression coefficients for two different model variables results in principal components expressed 
as a function of both variables with nearly equal strength. These are the characteristics that are expected from the Principal Component 
Analysis applied to real neural data in dACC and LPFC.
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 Figure S2. Distributions of Beta with model SBNoA and comparisons betwen GQLSB and SBnoA. A. Distribution of exploration 

meta-parameters obtained after optimization of the model on monkey's behavior using distinct degrees of freedom during the 

search period (β ) and the repetition period (β ). B. Comparisons of optimal bs obtained with SBnoA and GQLSB for one b versions, S R

and 2 b versions. C. Distributions of meta-parameters (a,�b,�k) over sesssions as obtained with the two models SBnoA and GQLSB, 

with one or 2 b as indicated on the figures. Green is for SBnoA, orange for GQLSB. Overall the figures shows the high similarity 

between the two models in their capacity to describe behaviour.
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Figure S3. Variations of early-delay activity and choice selectivity - data for each monkey (M and P). (A-top) Proportions of dACC and 

LPFC cells with a higher activity during search (Sea) or repetition (Rep). (A-bottom) Proportions of dACC and LPFC cells with a higher 

choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in grey) in average unit activity between search (Sea) 

and repetition (Rep).  (C) Increase of choice selectivity from search to repetition in the two structures. Stars indicate statistically 

significant comparisons *: p<0.05, **: p<0.01.  (D) Mutual information between the early-delay average firing rate and the animal's 

choice. Dashed grey and black lines represent the medians for dACC and LPFC respectively.



Figure S4. A. Choice selectivity and exploration level. Data computed using the SBNoA2b model (Left), and proportion of dACC and 

LPFC early-delay choice selective neurons during repetition periods of sessions where β  was small (<5) or large (>5) (obtained with R

model SBNoA - Right). B. Choice selectivity depending on exploration level using model GQLSB 2 Beta for each monkey (M and 2b   

P). The average choice selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped 

according to the fitted model's exploration parameters for search (β ) and repetition (β ). The average population index is measured S R

for search (grey bars) and repetition (white bars) trials in the early-delay epoch, separately for sessions where β  was inferior or S

superior to 5, and for sessions where β  was inferior or superior to 5. Stars indicate statistically significant comparisons. *: p<0.05.  R

When separating the data for the two monkeys, no significant effect was found in dACC for neither monkeys (Kruskal-Wallis test with 

Bonferroni correction, p > 0.05), a significant effect of β  was found in Monkey M LPFC (Kruskal-Wallis test with Bonferroni correction, R

p < 0.05), and a tendency, although non-significant, was found in Monkey P LPFC.
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 Figure S5. Proportions of dACC and LPFC cells with activity correlated with one of the model variables (Q, δ, and U) using 4 different 

models. The GQLSB model (A), and the SBNoA model (B) with 1 or 2 b parameter. (top and bottom). The GQLSB 2b is the model used for 

further analyses and presented in main figure 6.
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 Figure S6. Proportions of dACC and LPFC cells with activity correlated with one of the model variables (Q, δ, and U) using the GQLSB 2 b 

model for each monkey (Left).  On the Right, Proportion of cells, for each epoch, showing a significant correlation with at least one model 

variable. See figure 6 for average data and figure S5 for comparisons with other models.
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Figure S7. Three examples of unit activity from figures 7A (A), 7C (B) and 7D (C) correlated with some of the model's variables. (A) example 
of dACC activity negatively correlated with RPE (δ-). (B) example of LPFC activity correlated with U. (C) example of dACC activity negatively 
correlated with U.  (Top) plot of single trial activity (black dots) measured in the late feedback (A) and post-Sart (B, C) epochs against RPE and U
values respectively. Large grey dots represent the average for one decile of the value distribution and are just used for illustration. The red line 
represents the linear regression computed from single trial data. (Middle) peri-stimulus histograms aligned on feedback (A), Target Onset (B), 
and Start (C) and the corresponding raster plots for trial types indicated on the figures. (Bottom) trial by trial evolution of the average activity 
measured in the relevant epoch during successive trials in the session. The upper grey barcode represents the correct target to be chosen (4 
greys for 4 target positions). The second barcode represents the target chosen by the animal in each trial. Below, the graphs represent the 
average activity for each trial and the trial by trial evolution of key model variables. 
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Figure S8. The two exemples from figures 7E (A) and 7F (B) correlated with some of the model's variables. (A) example of 
dACC activity positively correlated with RPE (δ+). (B) example of activity discriminating search and repetition but with a different 
profile than U; profile labelled EL for Error Likelihood. (Top) plot of single trial activity (black dots) measured in the early feedback 
(A) and post-target (B) epochs against RPE and EL values respectively. Large grey dots represent the average for one decile of the 
value distribution and are just used for illustration. The red line represents the linear regression computed from single trial data. 
(Bottom) peri-stimulus histograms aligned on feedback (A) and Target Onset (B) and the corresponding raster plots for trial types 
indicated on the figures. Other conventions as in Fig S7.
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Figure S9. Analyses of colinearity. Evaluation of the degree of collinearity between regressors used in the multiple regression analysis of single-

unit activities as a function of model variables. (Left) Model GQLSB2b with the reward function used throughout the paper (1 in case of 

success, -1 in case of failure); (Middle) Control model with randomly generated regressors; (Right) Model GQLSB2b with a different reward 
function (1 in case of success, 0 in case of failure). For each recording session (308 in total) and for each regressors (7 in total), the figure shows 
the degree of collinearity measured when expressing the regressor as a function of the 6 other regressors for that session. 
The histograms on top show the variation inflation factors (VIF) computed with the coefficient of determination obtained when each regressor 
was expressed as a function of the other regressors. The middle figure shows the condition indexes (CONDIND) obtained in the same analysis. 
The bottom figure shows the number of variance decomposition factors (VDF) superior or equal to 0.5 obtained for each recording session.

The figure shows that the GQLSB2b model used throughout the paper (Left) displayed a strong collinearity between regressors only for 1/308 
session (condind>=30 and more than two VDPs > 0.5) and a moderate collinearity only for 1/308 session (condind>=10 and more than two 
VDPs > 0.5). All other sessions showed a weak collinearity between regressors. In contrast, when the same model is used with a reward 
function equal to 1 for correct trials and 0 for error trials, collinearity is strong fo . As a r 5/308 sessions and moderate for 284/308 sessions
control, a model with randomly generated regressors shows weak collinearity in 100% simulated sessions.
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What do VTA dopamine neurons encode: value, RPE or other behaviour correlates?
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Abstract

Traditionally, dopamine neurons are hypothesized to encode a reward prediction error which is used in temporal difference
learning algorithms. This hypothesis is based on numerous studies that qualitatively analyzed the activity of dopamine neurons
during learning. However, the exact nature of such signal is still unclear, notably when the task involves multiple choice. In order
to further investigate the parallel between these two information, we simulated standard temporal difference algorithms in a multi
choice task, which has been used for electrophysiological recordings of dopamine neurons, in order to investigate their ability
to reproduce the pattern of previously recorded dopamine signal. We used a quantitative method that enables direct comparison
between simulated reward prediction error signal and dopamine activity. Our results indicate that the dopaminergic signal could not
be accurately reproduced by a pure reward prediction error signal and seems to embody value function information. Furthermore
we show that the information carried out by dopamine neurons seems to be at least partly dissociated from behavioral adaptation.

1. Introduction

During the 90’s, the work of Schultz and colleagues [18, 27,
30, 36] has led to major progress in understanding the neu-
ral mechanisms underlying the influence of feedback on learn-
ing. In these studies, the activity of dopaminergic (DA) neu-
rons exhibited four key properties of the reward prediction er-
ror (RPE) signal used in so-called Temporal Difference (TD)
machine learning algorithms [10, 37, 39]: (1) they responded
to unexpected rewards; (2) they responded to reward predict-
ing cues (conditioned stimuli, CS); (3) they did not respond to
expected rewards; (4) they showed a decrease in activity in re-
sponse to omission of an expected reward. This RPE signal acts
as a teaching signal, allowing TD learning algorithms to learn
to predict future rewards based on current state and action. Us-
ing this signal, algorithms update their prediction of reward and
eventually learn to predict the amount of reward they should get
in the future. Considering the strong connectivity between the
DA system and the basal ganglia known for its action selection
properties [30], DA has thus been thought to be the neural sig-
nal that help us to adapt our behavior based on trials and errors.

This hypothesis has been confirmed and extended by numer-
ous studies showing the relevance of TD learning algorithms
to the mechanisms of action selection and behavioral adapta-
tion involving DA neurons and the basal ganglia [2, 13, 33, 40].
However, the precise information encoded by DA signals re-
mains unclear. One reason for this is that DA activity has been
primarily recorded during tasks where the animal is passive,
thus the results cannot reveal the link between this signal and

∗corresponding author, email: mehdi.khamassi@isir.upmc.fr phone:
(+33).1.4427.8853, fax: (+33).1.4427.5145

the choice of an action. This is important because different TD
learning algorithms treat the importance of behavior or actions
differently. More recent electrophysiological studies have ad-
dressed this issue, measuring DA activity during multi-choice
tasks. However, these studies arrived at divergent conclusions
concerning which algorithm best explains the influence of ac-
tion on DA activity. One approach found that DA activity re-
flected future choices [31, 32] consistent with predictions of
Sarsa algorithms, while another approach found that DA ac-
tivity reflected the best available option irrespective of future
choices [6, 8, 34], consistent with predictions of Q-learning.
Addition to the confusion, the known anatomy of the basal gan-
glia suggests an architecture closer to the Actor-Critic [20].

In this study, we aimed to resolve these issues by analyz-
ing more precisely and more quantitatively the information en-
coded by DA neurons, using a dataset from one of these above
studies. In this study by Roesch et al. 2007 [34], DA neurons
were recorded in rats cued to choose between two actions lead-
ing to differently delayed and sized rewards (Fig. 1). During
some trials, termed free-choice, two different rewards were ac-
cessible, and the rats had to learn to choose the action leading
to the most attractive reward. After a few trials, rats were able
to choose the immediate or the big reward more often than the
delayed or small reward. Prior analyses of the main character-
istics of DA neurons’ activity averaged over post-learning trials
[34] suggested that the DA signal pattern looked similar to the
RPE computed by the Q-learning algorithm: the amplitude of
response to the cue in free choice trials was the same no matter
the value of the action actually performed by the animal, and
this amplitude was not different from the maximal amplitude
observed during forced choice trials.

Preprint submitted to Journal to be determined March 14, 2014
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Figure 1: Description of the task of Roesch et al. 2007. A. Each session is
composed of 4 different blocks. Each block has a different contingency and
block changes are unsignalled. The first two blocks are the delay blocks. In
the first one, the short reward is delivered in the left well and the long reward
is delivered in the right well. The second block has the opposite contingency.
Blocks 3 and 4 are the size blocks. In block 3, the big reward is delivered in the
left well and the small reward in the right well. Block 4 has the opposite con-
tingency. B-C. Animal’s behavior recorded during the size and delay reversal
respectively. In grey are represented the trials from which DA activity has been
recorded.

However, a closer examination of the Figures of [34] re-
veals other characteristics that are inconsistent with the RPE
hypothesis: the post-learning DA response to expected reward
is higher than response to the cue (unlike an RPE signal that
would have already converged), and there is no dip in DA re-
sponse to smaller than expected rewards in some trial blocks.
While the main characteristics of DA response seem consis-
tent with an RPE signal, the latter characteristics appear to bet-
ter correspond to a value function. Therefore, in this study,
we performed systematic simulations of the main candidate re-
inforcement learning algorithms and extracted both RPE and
value information in order to test whether DA activity reflects
a pure RPE signal, a pure value signal or a mixture of the two.
Interestingly models with only a pure RPE signal failed to re-
produce the observed DA activity patterns, showing the limit of
the link between DA activity and the RPE signal calculated by
TD learning algorithms.

We also tested the importance of behavior in explaining the
firing of the DA neurons. We found that constraining the al-
gorithms to fit both behavior and DA activity degraded the fit
between the models and the neural activity patterns. In con-
trast, releasing the constraint to fit behavior enabled a mixture
of value and RPE calculated by the Actor-Critic model to fit DA
activity well. Overall these results suggest that a more complex
interaction between learning to predict reward and behavioral
adaptation, such as that proposed in dual learning system mod-
els [7, 22], is required to reproduce the DA activity observed in
Roesch et al. [34] work.

2. Material and methods

2.1. Experimental procedure
In this task, rats perform blocks of trials where they must

learn to choose the best option between two wells delivering
various rewards (see Figure 1). In blocks 1 and 2 called delay
blocks, one well is associated with an immediate reward (short

option), the other one with a delayed reward (long option). In
order to prevent the animal from giving up if it experiences a
sudden high delay, the duration of the long option is progres-
sively increased: 1 sec at the first trial where the animal selects
the long option, 2 sec at the second trial, until 7 sec maximum.
In contrast, if it chooses more than 8 times over the last 10 trials
the path to the short option, then the delay for the long reward
is shortened. In blocks 3 and 4 called size blocks, one well is
associated with a large reward (big option), the other one with a
small reward (small option; see Figure 1). Blocks are organized
so that the best option is alternatively left or right: e.g. left =

short during block 1, left = long during block 2, left = big dur-
ing block 3, left = small during block 4. Block changes are
not signalled, forcing rats to learn to switch their preferred well
from their own errors. Thus, in each block, rats must choose
between the left and the right well, and learn by trial and error
which well conveys the best benefit/cost ratio (i.e. big reward
in the size case and short term reward in the delay case).

One odor among three is presented at each trial to help the
rat making its choice. This odor is the conditioned stimulus
(CS) with which the rewarded well is associated. Odor 1 always
indicates that the left well contains a reward (short, long, big,
small depending on the current block) while the right well is
empty. Odor 2 always indicates that the right well contains a
reward (short, long, big, small depending on the current block)
while the left well is empty. Thus trials where odor 1 or odor 2
are presented are called forced choice trials because the animal
can only get rewarded with a single option. Odor 3 indicates
that reward can be found on both sides, the quality of the reward
depending on the current block. Thus trials where odor 3 is
presented are called free choice trials.

While the rats experienced these various blocks, the experi-
menters recorded the behavior and the activity of putative DA
neurons in the ventral tegmental area (VTA). Two additional
DA neurons were recorded from the substantia nigra pars com-
pacta (SNc). Neurons were identified as dopaminergic using
both the waveform criteria and the impact of an injection of the
DA agonist apomorphine on their activity (more details can be
found in the original experiment [34]).

2.2. Modelling the experimental task
We modeled the experiments of Roesch et al 2007 [34] with

a Markov Decision Process (MDP) (see Figure 2 A). Each state
represents a salient event in the original task that triggers a pha-
sic DA response: the beginning of the trial, the nosepoke, the
perception of the odor and the delivery or omission of the re-
ward (see Figure 2 B). Thus there is a correspondence between
the states of the MDP and the events experienced by rats. The
transition between the nosepoke state and the odor state is not
action-dependent but is generated by the simulation in order to
present each odor the same amount of time, as in the original
experiment.

The reward states labeled "R{L for left or R for right}{n of
odor}{i ∈ [1 : 14] represent the delay}", e.g. RL31 on Figure
2A, represent a succession of states modeling the reward (see
Figure 2 C and D). The model accounts for all the rewarding
schemes, i.e. the delay case and the size case. In order to switch

2



to another block, the simulation manipulates the delay of the
reward (in the delay case; see Figure 2 C) or adds a new reward
(in the size case; see Figure 2 D). The delay is modeled as a
succession of states without reward, and one transition between
two states corresponds to 0.5s in the real task.
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Time from odor onset (s)

... ...

Delayed Reward

R1 R2 R12 R13 R14
0.5s 0.5s 0.5s 0.5s 0.5s

R1 R2... ...

Big Reward with delay:

0.5s

A B

C D

At the beginning of the block
reward is given after a 0.5s delay

The delay is progressively increased 
up to 7s unless the animal starts avoiding
the well with the long delay

A Big reward correspond to two small 
rewards given in R1 and R2 modelling 
the 0.5s delay.

Figure 2: Modeling the state of the tasks used in [34]. A. Markov Decision
Process used to model the task; RL3, Reward Left following odor 3; RR3,
Reward Right following odor 3. The other states represent the delay. B. State
decomposition illustrated on the DA activity reported by Roesch. We extracted
the DA activity from the original recording during the three salient events of a
trial : the time of the ’nosepoke’, the perception of the ’odor’ and the rewards
state RL or Rn of the odor. C. Model of the long reward. D. Model of the big
reward as two small rewards.

Furthermore, the big reward is modeled as two small rewards
delivered in two consecutive states (see 2 D). It simulates the
slight delay of 0.5s between the two small rewards in the origi-
nal experiment.

Since odor 1 and odor 2 are forced choices indicating a re-
ward on the right and left respectively, no reward is given on
RL1 and RR2. Moreover, as in the original study, the reward-
ing scheme is the same in RR1 and RR3 and in RL2 and RL3.

The value of the reward is set to 5 in our simulation to model
the 0.05-ml bolus of 10% sucrose solution given to rats.

2.3. Studied algorithms

The general RL used in the model is shown in Algorithm 1.
We compared three algorithms: Q-learning, Sarsa and Actor-
Critic. Q-learning and Sarsa are based on the same principles.
They update for each state action pair (s, a) a Q-table that stores
the expected utility for performing that action a in state s.

This Q-table is called a critic: it tells you how good it is
to choose a particular action in any state. This information is
sufficient to decide what to do in any situation, so an agent does
not need a further structure to determine its policy.

In contrast, the Actor-Critic architecture also contains a
critic, but additionally it contains a different structure called
the actor which represents the policy of the agent. In the ver-
sion studied here, the critic contains less information than in

Q-learning and Sarsa. Instead of storing in a Q-table the ex-
pected utility for performing all actions in state s, it only stores
in a V vector the expected utility of each state s.

The actor is represented as a table P which associates to any
(s, a) pair a value corresponding to the probability of perform-
ing action a in state s, i.e. P(s, a) ∝ P(a|s). The action actually
chosen is determined through a softMax function.

The critic structures, Q and V , are updated from the TD error
δ using ∀ f ∈ {Q,V} : ft+1 = ft + αδt. But the computation of
the TD error differs depending on the algorithm:

• Q-learning: δt = rt+1 + γmax
a

(Q(st+1, a)) − Q(st, at)

• Sarsa: δt = rt+1 + γ(Q(st+1, at+1)) − Q(st, at)

• Actor-Critic: δt = rt+1 + γV(st+1) − V(st)

In Sarsa, the critic is updated given the value of the action
that will be performed in the next state, whereas in Q-learning
it is updated assuming the agent will take the best action in
the next state, without requiring that this assumption is verified
in practice. This distinction is critical in the analysis of the
dopaminergic signal performed in [31, 32, 34].

In the Actor-Critic architecture, the actor P must also be
updated using Pt+1 = Pt + α′δt, where the learning rate α′ can
be different from the one used to update the critic. For instance,
if α′ is smaller than α, this may induce a slower convergence of
behavior with respect to the TD error, which is assumed to cor-
respond to dopaminergic signal in this paper. More generally,
having a different structure for the actor and for the critic, the
Actor-Critic architecture makes it easier to represent a behav-
ior that is not under strict control of the critic.

In order to choose the performed action, the same softMax
policy π is used whatever the algorithm to choose an action:

π(a|st) =
exp(βQ(st, a) orP(st, a))∑

b
exp(βQ(st, b) orP(st, b))

.

Algorithm 1 Learning
Require: initial state: s0, block: mdp

1: st ← s0
2: at ← so f tMax(st)
3: for i = 0 to max_iter do
4: while stnonterminal do
5: st+1 ← Transition(st, at)
6: at+1 ← so f tMax(st+1)
7: update Q(st, at) or [V(st) and P(st, at)] from

(st, at, st+1, at+1)
8: st ← st+1
9: at ← at+1

10: end while
11: end for

2.4. Global methodology
The learning models used in this paper share three meta-

parameters: the learning rate α, the exploration temperature β
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and the discount factor γ. These parameters have a strong influ-
ence on the dynamics of the learning process, both at the value
function level (hence the RPE signal) and at the behavior level.
To fit the value of these meta-parameters to data from [34], we
can use either behavioral data, dopaminergic data, or both.

If DA activity reflects a learning process that directly con-
trols the behavior of the animal, as assumed in many model-
based studies (refs), it would be desirable to fit both. Thus, we
explored the parameter space of the model until we find a set of
parameters that best described the learned behavior of the ani-
mal. We then extracted the trial-by-trial evolution of variables
(δ, V) in this optimized model and compared the corresponding
time series with DA activity to see whether they shared a com-
mon set of properties and exhibited a good fit. Fit was assessed
by performing a quantitative fit based on regression from the
data shown in Figure 6 in [34] and also by statistically testing
whether the DA signal matches the properties outlined in [34].
These two approaches are described in Sections 2.7 and 2.8.

Of course, other processes, not under the control of the DA
neurons, may also influence the animal’s behavior. In this case,
the behavioral dynamics may be partly disconnected from the
variations of DA activity. To allow for this possibility, we also
fit the parameters of each model only to neural activity, using
a fixed behavioral policy extracted from the learning curves of
the animals. The simulated animals just learn the critic part of
their model, using this fixed policy. Section 2.6 describes the
procedure employed in this case.

2.5. Fitting both DA signal and Behavior

To reproduce the behavioral results of Roesch et al. [34],
50 simulated agents learned the contingency of each block of
a session during 90 trials, using the previously presented algo-
rithms. Each odor was presented once every three trials. Thus,
in one block, 30 trials of each odor were presented to the model,
which is on average the number of trials per blocks that the rats
experienced in the experiment. The behavior of each model
described in the previous section was computed as the number
of left choices during each free choice trial (odor 3) and was
compared to that of real rats. More precisely, the behavior of
each model was recorded during the last 15 trials of the first
block and during 30 trials in the next block (the behavior is
recorded after the block change between blocks 1 and 2 and be-
tween blocks 3 and 4), averaged over 50 agents experiencing a
session. This simulated behavior was then comparable to the
behavior reported in Roesch et al.’s experiment.

Each algorithm has three parameters α, β and γ (see Section
2.3) that influence behavior. For each algorithm, we performed
a grid search testing all the combinations of the following val-
ues for these parameters:

• α: from 0.1 to 0.9 with 0.05 steps (lower values between
1E-4 and 0.1 have also been tested),

• β: from 0.1 to 1 with 0.05 steps; we also tested 1.5 and 2,

• γ: from 0.1 to 0.9 with 0.1 steps; we also tested 0.99.

The obtained results were compared, for each parameter set,
to those of Roesch et al. [34] by minimizing the distance be-
tween simulated and experimental behavior. The points in the
curves of Roesch et al. [34] in the size case and the delay case
are the percentage of left choices during each trial of the neural
recording sessions (see figure 1B-C). We searched for the set of
parameters that would optimize the match between our models’
and these data in both cases (size and delay).

2.6. Fitting DA signal with a fixed behavioral policy

In the second part of this work we investigated the ability
of the previously described learning rule to reproduce the DA
activity without requiring that the algorithms also fit the ani-
mal’s behavior. The action is thus not chosen with a softMax
based on the value learned by the algorithms, as described in
Algorithm 1, but with a dedicated function chooseAction built
to reproduce the behavior of the rats in [34]. For each block, we
associated to each trial of this block the observed probability to
choose the ’left’ action. This probability is extracted from the
behavior of rats during a reversal. Thus the probability of per-
forming the left action in a specific simulated trial is defined by
the frequency with which actual rats chose the left action in the
same trial (see Figure 1B-C for the frequency of left action dur-
ing the reversals). Outside the trials where the behavioral data
is fully accessible (before the last 15 trials in the first block of
the delay and size case), we assumed that the animal chose the
most rewarding action in 70% of trials during free choice on av-
erage [34]. During forced choice trials (odor 1 and odor 2), the
animals learned to perform the best action on nearly all trials,
so the agent chooses the best action 99% of the time in these
trials. All other fitting procedures (quantitative and qualitative)
are the same as for the case with the behavioral constraints.

2.7. Quantitatively fitting DA activity

As DA activity recorded in this experiment shows a large
phasic response to the expected reward despite stabilization of
the learned behavior (i.e. behavioral convergence), we hypoth-
esized that this signal could be better reproduced by a value
function (i.e. the sum of the immediate reward, rt, plus future
expected reward V(st) for Actor-Critic, Q(st, at) for Sarsa and
max

a
(Q(st, a)) for Q-learning), instead of a pure classisal RPE.

Note that we did not modify the internal operations of the al-
gorithms, we only searched for the combination of the internal
variables of these algorithms that would best explain the neuron
activity. To test this hypothesis, for every simulation (e.g. set
of parameters), we tested the ability of 10 different mixtures,
Mw with w ∈ [0, 1] with 0.1 steps, of value function and RPE to
reproduce previously recorded DA activity. We defined:

Mw(t) = wValue(t) + (1 − w)RPE(t − 1)
= w[rt + γV(st)] + (1 − w)[rt + γV(st) − V(st−1)]
= rt + γV(st) + (1 − w)V(st−1)

This equation illustrates the mixture for the Actor-Critic.
The future expected reward V(st) is replaced by max

a
(Q(st, a))

4



for Q-learning and by Q(st, at) for Sarsa. Of course the RPE
signal actually incorporates the value signal since the RPE is the
difference between the current value and the previous prediction
of the value. Thus the mixture that we used as a regressor for
DA activity can be interpreted as a distorted or optimistic RPE
where the negative part – i.e. the previous prediction of value –
is underweighted.

In order to compare the DA activity with a mixture computed
by the different algorithms, we fitted three states of our MDP
with experimental data, corresponding to the three previously
presented salient events (see Figure 2B): the nosepoke, the per-
ception of the odor and the reward delivery or omission.

As DA activity and simulated mixtures do not share a com-
mon scale nor the same baseline, we authorized a linear trans-
formation of the simulated signal to fit DA activity recorded in
vivo. We minimized the difference between both values with
least squares (LS) by minimizing the error e = ||(aMs + b) −
DAs||2 where DAs is the experimental DA activity averaged
over the trials after the performance of the rat went above 50%
in state s and Ms is the average mixture computed in s during
the trials of a block.

Thus we have: Mw(s) = 1
n Σn

e=0Me
w(s), where n is the number

of considered trials and Ms
w(e) is the mixture computed from the

eth trial in s. The (a, b) pair is determined with the LS method.
The error reported in this study, noted LS error, is the error ob-
tained with a mixture averaged over all simulated agents. This
LS error gives us a quantitative evaluation of the ability of our
model to reproduce DA activity.

2.8. Qualitatively fitting DA activity

In the original study, the authors compared DA activity at
reward delivery and omission between early and late trials of
each block. This analysis was performed to show that, as in
previous work [2, 13, 18, 36, 37, 40], DA activity was signifi-
cantly lower during the first omission trials than during the last
omission trials of a block and was significantly higher during
the first delivery trials than during the last delivery trials. In ad-
dition, they performed t-tests on DA activity at the time of the
odor, comparing trials where the animal chooses the best option
with trials where the animal chooses the less attractive one un-
der all conditions. The initial question was to see whether the
DA signal would be influenced by the future action of the ani-
mal or not. They found that there was no statistical difference in
DA activity depending on the chosen action in free choice tri-
als. Moreover, DA activity recorded during free choice was not
statistically different from DA activity recorded during forced
choices that led to the best option in each block, but it was
statistically different from DA activity recorded during forced
choices that led to the worst option.

Hence, to further assess qualitatively the ability of the three
models to reproduce DA activity, we also included a statisti-
cal analysis of the activity predicted by the models at the time
of the odor in the different conditions (free choice long/short
and small/big and forced choice long/short and small/big). This
analysis involved 12 different statistical tests (see Table 1), in
order to reproduce the previously observed pattern of activity

free Big free Small forced Big forced Small
free Big X = = >

free Small = X = >

forced Big = = X >

forced Small < < < X

free Short free Long forced Short forced Long
free Short X = = >

free Long = X = >

forced Short = = X >

forced Long < < < X

Table 1: Description and results of the different t-tests used in the original
study. =: indicates that p > 0.05 and the data are not statistically different. >

or <: indicate that p < 0.05 and the row data is significantly superior or inferior
respectively to the column data.

at the time of the odor. Two additional tests were added to as-
sess the evolution of the simulated activity during omission and
delivery after a reversal as mentioned previously. As in the orig-
inal study, we used t-tests to determine if the activity in these
different cases was the same or not. If the p-value is larger than
0.05 then we did not reject the null hypothesis of identical aver-
age activity, otherwise we considered the activity of both cases
to be statistically different.

To take these results into account in our study, we attributed
to each model a Statistical Tests (ST) score, which was defined
as the number of statistical tests that a given model satisfied out
of the tests performed.

Using this method, we could analyzed both the precise pat-
tern of activity predicted by our models at the time of the choice
and the evolution of this activity during the omission and deliv-
ery trials.

3. Results

3.1. Fitting the rats behavior
In Roesch and colleagues’ work, rats learned to choose more

often the well associated with the best available option (big re-
ward in the size case and short reward in the delay case). In free
choice trials, after the contingency of a block was learned, rats
chose the best option 75-80% of the time. Fifteen to twenty tri-
als were necessary for animals to adapt to the new contingency
after a reversal. In forced choice trials, however, rats quickly
learned to choose the well leading to the better reward [34].

We looked at the ability of previously presented TD learning
algorithms to reproduce the behavioral adaptation of rats during
free choice, which required from them to change their behavior
after each reversal to maximize their reward. We tested differ-
ent combinations of learning rate α, temperature β for a correct
exploration/exploitation trade-off, and the discount factor γ re-
quired to generate with different algorithms (Sarsa, Q-learning
and Actor-Critic) a behavior close to the one produced by the
rats in the Roesch et al. experiment.

Figures 3 A, D and G report the LS error between experimen-
tal and simulated behavior for Q-learning, Sarsa and Actor-
Critic as a function of the different parameters. These results
show that Q-learning and Sarsaminimize the error in a specific
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Figure 3: Reproduction of experimental behavior with Q-learning, Sarsa and
Actor-Critic. A, D and G. LS error in function of the parameters: the learning
rate α; the temperature β and the discount factor γ for respectively Q-learning,
Sarsa and Actor-Critic. B, E and H. Best behavioral fit for the delay for
respectively Q-learning, Sarsa and Actor-Critic. C, F and I. Best behavioral
fit for the size case for respectively Q-learning, Sarsa and Actor-Critic.

region of the parameters space. Indeed, with a learning rate α
and β around 0.3, the behavior seems to be reproduced with a
very low error (see Figures 3 A and D). A large γ also appears to
helps the algorithms to better fit the behavior. Q-learning and
Sarsa minimize the distance between their behavior and rats’
behavior with the same parameters set: α = 0.35, β = 0.25 and
γ = 0.9. With this parameter set, both algorithms reproduced
the behavioral adaptation well, choosing the ’left’ action, be-
fore block change 70-80% of the time and at the end of the
post reversal block, around 20-30%; which match rats’ behav-

ior in this task (see Figures 3 B-C and E-F for the best fit of re-
spectively Q-learning and Sarsa). These results highlight the
strong similarity between these two algorithms. Even if the cal-
culation of the RPE is slightly different, both algorithms build
their policy and calculate the RPE signal based on Q-value (see
Methods for more details), and show no significant behavioral
differences. However, the Actor-Critic model shows a much
different sensitivity to the parameters compared to Q-learning
and Sarsa. Indeed for this model, the error is only minimized
with a much larger learning rate, α (around 0.8) and a much
larger β parameter (see Figures 3 G) compared to what is re-
quired to reproduce rats behavior for Q-learning and Sarsa.
But even when considering the parameters that produce the best
fit (α = 0.85, β = 0.7 and γ = 0.9), the generated behavior still
does not produce a satisfying fit. Indeed, while in the first de-
lay block, the behavior converged to 100% of ’left’ actions, in
the following blocks the averaged behavior seems to be stuck at
50% of ’left’ actions, which does not approach the behavioral
adaptation of rats.

Other studies [3, 28] show that Actor-Critic has a limited
ability to reproduce animal’s behavior during reversals such has
the one described in [34]. Unlike Q-learning or Sarsa, Actor-
Critic needs to learn both a value function that encodes the
future expected reward knowing the current state, V(st) and a
value P(st, at) from which the policy is inferred. It seems that
this architecture needs more time to adapt to a block change and
is less suited to perform multiple reversals. This architecture
tends to create optimal behavior (see Figure 3 H) before any
reversal by creating a larger difference in the P-value than in
the Q-value calculated by Sarsa and Q-learning. As the policy
is inferred from P-values, if there is a large difference between
them, the probability to choose the best action is increased.

Given a policy π, we have:

V(o3) = π(o3,′ le f t′)[rle f t+V(rle f t)]+π(o3,′ right′)[rright+V(rright)]

Here, o3 stands for odor 3 and indicates the state where mod-
els receive the free choice cue. V(o3) is thus inferior to the
value of the best option and superior to the value of the worst
option if the policy π is stochastic (if the policy always chooses
one or the other action then V will converge to the value of this
action, a, which is Q(s, a)). Hence, when the worst action is
chosen, the RPE is negative: δworst = rworst+V(rworst)−V(s) < 0
thus P(s,worst) is decreased according to the updates rule of
Actor-Critic (see method for more details). We have the oppo-
site effect for the best action. Thus the P-value for the best and
worst option does not converge to the actual future expected
reward, but while the policy is stochastic these values diverge
forming an important gap between them. This important differ-
ence makes a reversal more difficult to learn because the models
used here need to unlearn previous values before being able to
learn the new ones.

However, during these simulations we forced the learning
rate of the critic to be the same as the learning rate of the actor,
which is not consistent with theoretical studies that suggest that
the learning rate of the critic should be lower than the learning
rate of the actor [4, 23]. To test further the ability of Actor-
Critic to reproduce rats’ behavior in this task, we conducted
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additional simulations to test whether a different tuning of the
parameters, and especially if two different learning rates for the
actor and the critic, could generate a better fit. However, the
best fit happened with a low learning rate (for the actor and/or
the critic) and/or a low temperature which all result in a very
exploratory policy inconsistent with rats’ behavior.

In summary, our results show that Q-learning and Sarsa ac-
curately reproduce rats’ behavior during the delay and size re-
versal with the same meta-parameter set, whereas the Actor-
Critic is unable to reproduce this behavior due to its different
architecture.

3.2. Fitting DA activity under behavioral constraint
Based on the parameters obtained from the behavioral fit, we

investigated whether simulations using the RPE or a mixture of
value and RPE could match the DA activity observed in rats. If
DA activity reflects the RPE signal of the algorithm by which
rats learn the task, algorithms tuned to fit the behavior should
display the same pattern of activity as observed in the responses
of the DA neurons. To evaluate the ability of a signal to repro-
duce DA activity, we had two criteria: 1) the ST score based on
the ability of the signal to reproduce the pattern of DA activ-
ity recorded at the time of the odor and during reward omission
and delivery through learning (see Methods for more details)
and 2) the fitting LS error obtained by minimizing the distance
between the DA signal and a linear transformation of the simu-
lated signal.

Our results show that the RPE signal simulated with either Q-
learning or Sarsa converged too much and could not explain
the high DA response to the reward in the experimental data
(see Figures 4 A and C). The best fit with a pure RPE calcu-
lated by Sarsa or Q-learning consisted of an almost flat signal
indicating that the algorithms learned to predict the outcome
fully and thus do not make any prediction error at reward. This
very low response at the time of the reward is not consistent
with recorded DA activity under the same conditions. However
for both Q-learning and Sarsa, a pure RPE signal obtains a
better ST score (e.g. the number of statistical tests the model
could satisfy) than any other mixture (see Figure 5 A and B).
Q-learning gets a ST score of 12 for a pure RPE signal and
Sarsa gets a ST score of 10. This indicates that, consistent with
the interpretation of [34], for these algorithms and in the case of
parameters constrained by the behavior, a pure RPE signal can
better reproduce the pattern of activity at the time of choice and
that both RPE signals could reproduce the evolution of DA ac-
tivity during reward omission and delivery. A mixture with too
much weight on the value function could not reproduce such an
evolution (see Figure 5).

The simulated value on the other hand can better reproduce
the global pattern of DA activity (see Figure 4 B and D) for
Sarsa and Q-learning by reproducing the growing activity as
the simulated agent gets closer to the reward. The LS error is
thus smaller for the value function than for an RPE signal or
any other mixture. More globally, the ST score of the value
function is lower than the one of the RPE signal. However the
value function cannot reproduce the evolution of DA activity
observed experimentally during reward omission and delivery.
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Figure 5: Number of valid tests (ST score) in function of the w weight of
the mixture for Q-learning (A) and Sarsa (B) when fitting under behavioral
constraint. If w=1 then the mixture represents the sum of the immediate plus
future expected reward (i.e. a pure value function) and if w=0 then the mixture
represents a pure RPE signal.

More generally, the smallest LS error was observed when
considering a pure value signal while the highest ST score was
observed with a pure RPE signal (see Figure 5). Moreover, Q-
learning seems to be better suited to reproduce the observed
data, since it predicts activity that is not action dependent on
free choice trials (see Figure 4 A and B). By contrast, Sarsa
predicts divergent signals on free (and forced) choice trials, de-
pending on the chosen action (see Figure 4 C and D).

Our results show that the DA signal is neither a pure RPE
signal nor a pure value signal. Although Q-learning obtains
better results than Sarsa, consistent with the interpretation of
Roesch et al. 2007 [34], when fitted on the rat’s behavior, the
RPE signal of both algorithms converge too much to reproduce
the observed pattern of DA activity at the time of reward. Thus
no mixture fully reproduces the pattern of activity at the time
of the odor,the high response to the reward, andthe evolution of
the signal during the omission and delivery trials.

One possible explanation is that the DA signal recorded here
only partly reflects the learning process that underlies the ob-
served behavior. This hypothesis is based on numerous studies
that suggest multiple parallel learning systems involving differ-
ent parts of the basal ganglia [7, 19, 35, 43, 44]. If some learn-
ing were not under the control of the DA signal – at least that
from VTA – then this would allow the signal to diverge from the
prediction of models constrained by behavioral changes. There-
fore, in the next part of our work we released the behavioral
constraint to explore the ability of the the models to only fit DA
activity.

3.3. Fitting DA activity using a fixed policy
To further investigate the nature of the information encoded

by DA neurons, we released the behavioral constraint to focus
on the match between the DA signal recorded in the experiment
by Roesch et. al. and that generated by different simulated
mixtures of value and RPE of different models.

We simulated DA activity using different models defined by:
(1) the algorithms used: Q-learning, Sarsa or Actor-Critic;
(2) the parameters of the chosen algorithm: learning rate α and
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Figure 4: Reproduction of DA activity with parameters that best reproduce experimental behavior. Each subfigure illustrates the best fit of DA activity during the
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discount factor γ (β being no longer needed since the policy is
fixed); (3) the mixture parameter, w, that defines the mixture (if
w = 1 the signal is a pure value signal; if w = 0 it is a pure RPE
signal). As in the previous section, we attributed a score to each
model according to the number of statistical tests it could sat-
isfy (ST score), and an error based on the fitting error it makes
with observed DA (LS error). Figure 6 A, B and C report the
results from models that were able to reproduce the evolution of

the activity during omission and delivery. Unexpectedly, once
the behavioral constraint was relaxed, only the Actor-Critic
model was able to reproduce all 14 statistical tests or achieve
13 correct tests out of 14 with a lower LS error. Q-learning
reproduced 12 tests and Sarsa only 10. The fact that Sarsa was
less suited to reproduce DA activity at the time of the choice,
confirms that at this time in this particular behavioral setting,
VTA DA did not encode any information based on the chosen
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action. Unexpectedly though, the Actor-Critic received a bet-
ter overall score than Q-learning. Hence, based on the analysis
of the pattern of DA activity at the time of choice, the Actor-
Critic was the best candidate to explain DA activity. This sug-
gests that the signal encoded by putative DA neurons represents
information based on the value of the current state rather than
on the action value, as would be predicted by both Q-learning
and Sarsa.

However Actor-Critic models that reproduced every test
show a large LS error when fitting DA activity. A good compro-
mise was the Actor-Criticmodel that best fit DA activity while
reproducing 13 tests out of 14 (see Figure 7). The parameters
used by this model are α = 1, γ = 0.3 and w = 0.55. Thus the
best model of DA activity resulted from a balanced mixture of
both current value and RPE. Consistently with previous results,
we can see that models with a high w, indicating an almost pure
value, seems to get a low LS error but a lower ST score as well
(red dots in Figures 6 A-C). However models with a low or null
w (pure RPE signal), have a tendency to get a large LS error but
can get a good ST score (blue dots in Figures 6 A-C).

A feature of the Actor-Critic model that could help better
reproduce the signal is that it calculates the RPE based on state
values rather than on action values. As a result, even though the
learning rate is large, there is still a remaining RPE signal at the
time of the reward. Indeed, as the policy is based on the behav-
ior of the animal, in free choice trials, the less attractive reward
is chosen about 30% of the time. As V represents the average
future expected reward when the worst (respectively best) op-
tion is chosen, there is a negative (respectively positive) RPE.
As Q-learning and Sarsa calculate the RPE based on action
values, there is no remaining RPE signal after convergence of
the Q-value.

To summarize this study, in the case with no behavioral con-
straint, the best model we can propose to reproduce DA activity
in this task is a mixture of RPE and value (w = 0.55), calculated
by Actor-Critic.
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4. Discussion

In this study, we quantitatively compared the ability of differ-
ent TD learning algorithms to reproduce DA activity recorded
in the multi-choice task in Roesch et al. 2007 [34].

Our starting hypothesis, based on DA recording in passive
monkeys [37], was that DA neurons activity would reflect an
RPE pattern [2, 13, 18, 40], compatible with the reinforcement
signal used in TD learning algorithms [10, 37, 39]. We further
assumed that learning would be dependent upon or constrained
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by this dopaminergic teaching signal. We also specifically as-
sessed the role of future action in determining the signal.

In most previous studies, DA activity has been recorded dur-
ing Pavlovian conditioning before and after extended training
[2, 13, 29, 37]. In such settings, it is difficult to compare the
convergence of the animals’ behavior and DA signaling. More-
over, the experimental context was easily predicted in these
studies by contrast with the experimental set-up used which in-
cluded frequent reversals, which forced rats to constantly mon-
itor and adapt their behavior to new contingencies. In stan-
dard reinforcement learning theory, learning happens exclu-
sively from the RPE signal, suggesting a conjoint evolution be-
tween behavior and RPE. Hence, in the first part of our work,
we tuned the studied algorithms with parameters that reproduce
the observed behavior. If DA activity does reflect an RPE and if
that RPE is the sole arbiter of learning, then the RPE calculated
in the simulation constrained by the animals’ behavior should
be best able to reproduce the observed DA activity. Interest-
ingly the Actor-Critic was unable to reproduce the change in
behavior (see Figure 3 G,H and I). This inability seems to be
due to the multiple reversals used in this task and is consistent
with a study that found that Actor-Critic is less suited to re-
produce animals’ behavior after a reversal [28].

Further, while Sarsa nor Q-learning were able to reproduce
the animals’ behavior, neither produced an RPE signal consis-
tent with recorded DA activity. Instead both exhibited too much
convergence in contrast with the large phasic DA response to
the reward observed experimentally (see Figure 4 A and C). The
value function – defined as the sum of immediate plus future ex-
pected reward – generated a signal that was quantitatively better
suited to fit this activity than a pure RPE signal (see Figure 4 B
and D). However this function was unable to reproduce the pat-
tern of activity observed at the time of the choice of the animal
(a value function cannot explain the evolution of DA activity
during omission and delivery).

These results underline some strong limitations of the stan-
dard TD learning algorithms to reproduce both DA activity, in-
terpreted as a mixture of value and RPE, and rats’ behavioral
adaptation. They suggest that the information carried out by DA
might not be fully related to behavioral changes as assumed by
reinforcement learning algorithms. This raises a question about
the link between both behavioral convergence and the conver-
gence of the information encoded by DA neurons. It would be
interesting to look at the conjoint evolution of both from early
trials to late in training in a stable environment to see whether
the discrepancy observed here is due to the instability intro-
duced by frequent reversals. Our results would predict different
DA activity after full convergence depending on how we inter-
pret the mixture function used here. Indeed, we can interpret
our mixture in two different ways. We can consider that we
strengthened the value part of the RPE signal or we weakened
the prediction signal of the RPE signal. If the value signal is ac-
tually over represented in DA neurons it would imply that even
after extensive training, these neurons should still, to some ex-
tent, respond to expected reward. On the contrary, if the predic-
tion signal is weaker in early trials or in an uncertain environ-
ment, we can imagine that after extensive training the prediction

signal would increase until the global signal sent by DA neurons
would converge to a pure RPE signal, and these neurons would
then stop responding to the reward. This would suggest that
the value and prediction part of the RPE are not learned at the
same speed. These two interpretations would predict different
activity after extensive training but both of them imply that, at
least during early trials, the signal encoded by VTA DA neurons
does not encode an RPE or mixture consistent with behavioral
adaptation.

The apparent dissociation between DA activity and behav-
ioral adaptation that we found is also consistent with the idea
that behavior depends on multiple parallel learning systems,
some operating independent of DA error signaling. This is
perhaps not a surprising notion. While reinforcement learn-
ing models assume that behavior is only driven by one process
guided by RPE, many neurobiological studies have suggested
that behavior is the results of complex interaction between par-
allel neural systems One popular model has proposed that dif-
ferent cortical and subcortical circuits control habitual versus
goal directed behavior [1, 42]. Such a dissociation has been
modeled by multiple studies [7, 9, 22]. Our results suggest that
VTA DA signal might only be a part of one learning system,
with the behavior resulting from an interaction between this
system and other parallel systems. These systems might be de-
pendent on DA signals not assessed here, perhaps from SNc for
example, or they might also be DA independent, as suggested
by the work of Flagel et al. [14, 26] showing that some rats are
more or less dependent from DA to learn a task.

Thus, in the second part of this work, we assumed that DA
activity might be not fully correlated with behavioral adaptation
and we released the behavioral constraint over the parameters
to focus on the decoding of the information encoded by DA
neurons. The question we wanted to answer was whether DA
activity could reflects an RPE with a slow convergence, which
would lead to a maintained RPE at the time of the reward and
would explain the high DA phasic response; or if only a value
function or a mixture of both informations would better fit this
activity. Our results suggest that a mixture of value and RPE
calculated by Actor-Critic is actually the best model to repro-
duce the DA activity observed in this task (see Figure 6 and 7)
and that no pure RPE signal could reproduce such activity. Even
though the task implies lots of reversals, which could to some
extent explain why DA signal could still be strong at the time of
the reward, some rewards are given in many concurrent blocks.
Indeed, when looking at the progress over one session (see Fig-
ure 1 A), in the right well from the block 2 to 4 at least one
reward is given (for the short, small and big rewards). In that
condition, TD learning algorithms have plenty of time to learn
to predict this first reward and it was thus not possible to repro-
duce the high DA response to this reward with an RPE signal
even with a low learning rate. The fact that no pure RPE sig-
nal could reproduce DA activity, even without any behavioral
constraint, is unexpected because it goes against the widely ac-
cepted hypothesis that DA neurons activity reflects an RPE sig-
nal [2, 13, 18, 33, 37, 40]. However a previous study [11], also
challenged this common hypothesis by comparing DA activity
with the long term value of multiple future rewards. Moreover
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in absence of previous information RPE and value are similar
making the difference between both information very small in
some contexts. As a conclusion, the exact nature of the infor-
mation encoded by DA neurons is still unclear.

We can partly answer our initial question which is: which
TD learning algorithms can better reproduce DA activity in this
task? Our results here clearly indicates that only a non action
dependent signal can reproduce this activity as claimed in the
original study. We also found that Actor-Critic, when look-
ing only at the convergence of the mixture signal, slightly bet-
ter reproduce DA activity than Q-learning. We suppose that
this advantage is due to the fact that the calculation of the RPE
in Actor-Critic is only based on the current state without any
action value. However one can note that during the learning
process V(s) often converges to the value of the best option,
making the difference between the two algorithms very small
after convergence.

But if our results validate that the information encoded by
DA neurons is not action dependent, then how can we explain
that Morris et al. [31], found an action dependent activity ?
This question might be answered by the differences in the set-
up of the tasks, or by the fact that Morris et al. [31] used mon-
keys while rats were used in Roesch et al. [34]. But we can
also hypothesized that the apparent contradiction between the
results of these studies lies in the type of DA neurons recorded
in both task. In [34], DA neurons were mostly recorded in VTA
whereas in [31], DA neurons were recorded in substantia nigra
par compacta (SNc). VTA DA neurons project preferentially to
ventral part of the striatum [15–17, 21] which is considered to
be the critic part of the Actor-Critic architecture of the basal
ganglia [20] and our results show that the information encoded
by VTA DA neurons are consistent with a signal built to update
state based value (V(s) in Actor-Critic) which is the critic part
of the Actor-Critic architecture. The policy, on the other hand,
is believed to be computed in more dorsal part of the striatum
[20, 44] and receives mostly input from SNc DA neurons. Thus
SNc DA neurons might encode an action dependent RPE to up-
date the actor part of the basal ganlia (which is the dorsal part
of the striatum).

Our results show that an Actor-Critic architecture was un-
able to adapt to many reversal, which seems in contradiction
with the Actor-Critic view of the basal ganglia. But, in the
standard Actor-Critic algorithm, there is only one RPE to up-
date both the actor and the critic. The difference in DA activ-
ity between VTA and SNc DA neurons suggest that different
information update the actor and critic part of the basal gan-
glia which would explain why rats can adapt to multiple switch
when an Actor-Critic algorithm cannot. It would thus be in-
teresting to look at the difference between VTA and SNc DA
neurons activity to see if they encode different informations and
possibly different types of RPE, depending on their anatomical
location.

Some recent studies also show the relevance of carefully de-
termining the projection field of the DA neurons in order to be
able to interpret the information carried out by these neurons.
Indeed DA projects to a broad range of areas in the brain from
cortical to subcortical areas such as the amygdala and the me-

dial prefrontal cortex. It is very likely that depending on the tar-
geted area, DA neurons would have different role as suggested
in Lammel et al. [25].

The fact that this activity can only be fitted by a mixture of
two informations could imply the presence of two distinct DA
neurons populations. The 17 VTA DA neurons used here were
selected for their RPE coding properties: (1) they are sensitive
to reward and cues that predict reward; (2) their activity tends
to diminish as the reward becomes predicted; (3) their response
is first inhibited by omission and tends to go back to baseline
when the omission becomes predictable. Actually, these neu-
rons can be separated in two different groups of neurons, some
are more sensitive to cues predicting the reward and some to
the reward itself. But both categories show on average a simi-
lar activity and are both better fitted by a mixture of RPE and
value. Thus the presence of two different informations is not
due to two different populations of neurons but are embodied in
the same dopaminergic signal.

While questioning the validity of the RPE hypothesis, our
study does not strongly contradict it. But, we can see in the lit-
erature more and more studies that question the classical RPE
interpretation of the DA signal. There is growing evidence
that DA neurons activity does not encode an unique signal, but
seems to show an heterogeneity of response to aversive stimuli
[5, 29, 38, 41], even if there is still no consensus on the hetero-
geneity of the response of DA neurons to aversive stimuli [12].
These different signals may be part of different circuits depend-
ing on their anatomical localisation as suggested by the work
of Lammel et al. [24, 25] showing the presence of different
pathways linked to reward or punishment, involving different
subpopulations of DA neurons.

In summary, our work shows the limitation of the standard
TD learning algorithms to reproduce both DA activity and be-
havioral adaptation and question the common RPE hypothesis
by showing that the information encoded by DA neurons in a
multi-choice task could not be reproduced by a pure RPE sig-
nal even without any behavioral constraint, it also shows that
the Actor-Critic algorithm may have some explanatory power,
at least for the ventral circuit. This shows the need to carefully
investigate the link between behavioral adaptation and infor-
mation encoded by DA neurons to better understand its role in
learning.
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This chapter presents robotic implementations of neuro-inspired mo-
dels of the coordination of MB and MF RL. The work is presented

under the form of two papers, one published in a journal (Caluwaerts
et al. 2012b), the other in the proceedings of an international conference
(Renaudo et al. 2014), aiming at testing the ability of such neurocompu-
tational models to improve robots’ flexibility and adaptivity in real-world
application, and in return getting new insights into the properties of these
computational models when tested in these more realistic conditions.

The first one has been mainly performed by a previously supervised
Master student, Ken Caluwaerts, and shows that the coordination of MB
and MF learning systems for multiple-strategy-based navigation enables
the robot to autonomously learn to exploit the advantages of each stra-
tegy in each subpart of the environment. The model autonomously learns
that the MB strategy is more efficient to plan movements towards the goal
when the robot is located far from it, but it is inefficient close to the goal
because it allows only coarse movements. In contrast, the MF system was
found to be more efficient to control the robot for fine-grained movements
close to the goal. In locations where neither systems were efficients, the
model autonomously learned to prefer a random exploration strategy. Fi-
nally, the model could learn contexts in which different location-strategies
associations (i.e. tasksets) are learned, and could quickly restore the corres-
ponding associative memory as soon as a previously experienced context
was recognized, a process which is closer to the hypothesized role of the
Hippocampus-Prefrontal Cortex network in Cognitive Control during this
type of set-shifting tasks (Peyrache et al. 2009, Benchenane et al. 2010).
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The second one presents the work of PhD student Erwan Renaudo and
shows that the coordination of MB and MF RL also enables to exploit the
advantages of each system during a habit learning task in a humanoid
robot. The robot has to learn to sequentially push cubes moving on a
treadmill, while minimizing computation cost : each access to the robot’s
camera has a cost ; each arm movement has a cost (so that the robot do
not trivially move its arm all the time until touching a cube by chance) ;
letting a cube fall has also a cost. When the task conditions are stable,
the MB system finds an optimal behavioral strategy quicker than the MF
system. It is thus initially preferred by the system coordination module.
But since the MB system has a higher computational cost than the MF
system, the latter later takes over the behavior once it is able to solve
the task through the execution of learned habits. When a task changed is
imposed, the model autonomously learns to favor again the MB system
which adapts more rapidly and later let new habits be acquired.

Both robotic studies shows that MB and MF systems do not behave
exactly as expected by previous computational model simulations when
they are interacting during embodied real-world applications.

4.1 Parallel navigation strategies in a rat robot

4.1.1 Caluwaerts, Staffa, N’Guyen, Grand, Dollé, Favre-Félix, Girard,
Khamassi (2012) Bioinspiration & Biomimetics



IOP PUBLISHING BIOINSPIRATION & BIOMIMETICS

Bioinspir. Biomim. 7 (2012) 025009 (29pp) doi:10.1088/1748-3182/7/2/025009

A biologically inspired meta-control
navigation system for the Psikharpax
rat robot
K Caluwaerts1,2,3, M Staffa1,2,4, S N’Guyen1,2,5, C Grand1,2, L Dollé1,2,
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Abstract
A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is
presented, allowing for self-localization and autonomous navigation in an initially unknown
environment. The ability of parts of the model (e.g. the strategy selection mechanism) to
reproduce rat behavioral data in various maze tasks has been validated before in simulations.
But the capacity of the model to work on a real robot platform had not been tested. This paper
presents our work on the implementation on the Psikharpax robot of two independent
navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a
strategy selection meta-controller. We show how our robot can memorize which was the
optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover,
a context detector enables the controller to quickly adapt to changes in the
environment—recognized as new contexts—and to restore previously acquired strategy
preferences when a previously experienced context is recognized. This produces adaptivity
closer to rat behavioral performance and constitutes a computational proposition of the role of
the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller
may provide an advancement for learning architectures in robotics.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. The Psikharpax robot

The Psikharpax robot [1] is designed as an artificial rat, a
robotic platform built to integrate computational models of the
rat’s decision, learning, motivational and navigation circuits. It
is used for two purposes: as a tool to contribute to neuroscience
by studying how an embodied agent can adapt in the real world
with noisy perceptions and continuous time and state spaces,

and by testing current neuroscience theories in such context;
and as a means to test the potential application to robotics by
assessing the transferability of neurocomputational models of
learning and decision-making to robots operating in dynamic,
unknown environments.

This paper is the first to report on spatial navigation with
the new version of Psikharpax (v2; figure 1). The robot has
been equipped with a rich sensory set of devices for multimodal
perception (binaural auditory equipment, artificial whiskers,

1748-3182/12/025009+29$33.00 1 © 2012 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. The v2 Psikharpax robot.

binocular vision) and sensory integration. This previously
allowed us to perform tactile texture discrimination and
obstacle avoidance with the whiskers [2], hearing and noise
localization [3], vision and adaptive saccadic eye movements
[4, 5]. Here we present the upgrade of the robot’s cognitive
architecture enabling the robot to coordinate and learn multiple
strategies for spatial navigation, and perform fast adaptation
to environmental changes.

1.2. Multiple navigation strategies in rodents

Mammals are able to use multiple strategies when faced
with a navigation problem [6–9, for reviews], like reaching
a hidden platform in a pool, the so-called Morris water maze
[10]. Among the numerous possible strategies, experimental
neuroscience studies of strategy interactions favored two main
families.

• Response strategies, resulting from the learning of direct
sensory–motor associations (like swimming toward a cue
indicating the platform location, which is called a taxon
strategy).

• Place strategies, where the animal builds an internal
representation (or cognitive map) of the various locations
of the environment, using the configuration of multiple
allocentric cues. It then uses this information to choose the
direction of the next movement either by learning place–
action associations (place recognition triggered response
strategy or PRTR) or, more adaptively, by planning a path
in a graph connecting the places with the actions allowing
the transitions from one place to another (topological
planning strategy).

It has been shown that the multiple navigation strategies of
rodents are operated by parallel independent memory systems
[11, 12], which can result in cooperative or competitive
behaviors, depending on the experimental protocol. The basal
ganglia (BG) and the hippocampal formation (Hpc) appear to
have a central role in this circuitry. The BG can be subdivided
into parallel sub-circuits [13], usually identified by the part of
the striatum—the main BG input nucleus—they incorporate.
The BG operate action selection [14] and use reinforcement

learning signals mediated by dopamine [15] to adapt these
selections to environmental conditions.

Response strategies are considered to rely on the
projections from the sensory and motor cortices to the BG
circuits issued from the dorso-lateral striatum (DLS) to
select directions of movement, using reinforcement learning
capabilities of the BG to learn which cue is to be followed at a
given time [16, 17]. Consistently, lesions of the striatum—or
more specifically of the DLS—impair or reduce the expression
of response strategies while promoting place strategies
[18, 19]. In contrast, lesions of the hippocampal system impair
place strategies while sparing response strategies [20, 11, 18].
This suggests that response strategies are independent of the
Hpc. On the other hand, place strategies would rely on the Hpc,
with its ability to encode places in the so-called place cells [21],
to provide inputs to work with. The neural circuits exploiting
them to either learn place–action associations or to plan
trajectories would be located in the prefrontal cortex (PFC), in
the ventral striatum (VS) and in the dorso-medial BG circuit
(DMS). Indeed, lesions of the DMS reduce the expression of
place strategies while promoting response strategies [18, 22].
Lesions of the VS impair animals’ ability to associate different
places with different amounts of reward [23].

1.3. State of the art of neuro-inspired robotic navigation

Several previous projects have tested biomimetic models of
rodent navigation on robots, based on these experimental data.
Such projects participate in the global approach consisting
in transferring neurocomputational models to robotics with
a twofold objective: on the one hand, taking inspiration
from the computational principles underlying mammals’
behavioral flexibility to contribute to the improvement of
current robots’ autonomy and adaptivity. On the other hand,
using the robot as a platform to test the robustness of
current biological hypotheses about spatial cognition, beyond
perfectly controlled simulations, and try to learn more about
the computational mechanisms at stake by analyzing which
solutions enabled the model to work on a physical robot
[24–26].

Arleo and Gerstner developed a computational model
of place cells—neurons located in the hippocampus whose
activity encode an estimation of the animal’s current
position—and head-direction cells—neurons selective for the
estimated orientation of the animal’s head [27]. With this
model, they enabled a Khepera robot to navigate in a small
arena, using a navigation strategy where learned associations
between places and directions of movement (a PRTR strategy).
Fleischer, Krichmar and colleagues showed how prospective
and retrospective coding at the level of place cells’ activity
can enable a robot to efficiently solve a spatial memory task
[28, 29]; here also, navigation was performed by a PRTR
strategy. Barrera and Weitzenfeld proposed a hybrid PRTR
strategy using a graph, where the choice of the next action took
into account the next three actions in a prospective manner
[30]. Their robot could solve discretized implementations
of various rodent laboratory mazes (T and radial mazes).
Giovanangeli and Gaussier developed a model of another
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Figure 2. Overview of the Dollé et al model [33]. Different
strategies (taxon/topological-map/exploration) are connected to the
gating network. Each strategy has a dedicated expert which proposes
actions (�T for the taxon, �P for the planing, ...). The gating
network decides which of the experts is the winner in the current
situation and then the action �∗ from this strategy is performed.

navigation strategy consisting in planning routes toward
the goal in a topological graph (‘cognitive map’) of the
environment. Their model produced efficient navigation in
both indoor and outdoor environments [31]. More recently,
the RatSLAM algorithm has been implemented as a neural
network inspired by the rat’s hippocampus in order to
perform efficient, continuous and long duration simultaneous
localization and mapping (SLAM) on a robotic platform put in
a large non-stationary environment [32]. Planning is also used
here to perform navigation.

Our contribution relies on transferring to robotics another
aspect of rodent navigation abilities: the combination of
various navigation strategies, in order to benefit from their
respective strengths (accuracy, learning rate, adaptation to
changes, etc), coordinated by a meta-controller for strategy-
shifting which has been previously shown to better reproduce
rodents’ behavioral performance than single navigation
strategies [33]. Thus, we extracted the principles of each
previously studied components of rats’ currently known
cognitive architecture for navigation: place cells, path
integration component, path planner, reinforcement learner.
And we focused on the integration of these components in a
brain-inspired system used for adaptive strategy shifting.

1.4. The computational model previously used in simulation

In this paper, we first apply to the Psikharpax robotic platform
the multiple strategy switching model (see figure 2) proposed
in [33], which was tested in simulation to replicate rat
behavioral experimental results. We then propose an extension
of this model allowing a more flexible adaptation when

switching from one experimental context to another (i.e.
change in goal location).

The model in [33] provides a simple mechanism able
to replicate experimental results obtained in [34] and [18] in
variations of the Morris water maze protocol: it proposes that
a gating network is dedicated to the selection of the strategy
to be used, and that it uses reinforcement learning to learn
which strategy is the most efficient in each situation, based
on all the inputs used by the strategies to take their own
decisions (i.e. sensory and place cells activity). All strategies
learn simultaneously: those which did not have the control
over the last decision use the reward/punishment signals
modulated by the angular difference between their movement
suggestion and the actual one: the smaller the difference, the
more the suggested movement of a non-selected strategy will
be rewarded. This is a key element of the model to explain the
cooperative effects observed in animals, where the learning
process of a slow learning strategy can thus be guided by the
selections made by a fast learning one.

In the experiment from [34], external visual cues, allowing
the generation of an internal map, are provided, and the hidden
platform is indicated by a visual cue standing 20 cm away
from the platform in a fixed direction (making taxon strategies
more difficult to learn and less efficient than when it is directly
above the platform). The platform is moved after every session
of four trials, so that rats using a map-based strategy perform
poorly at the beginning of a new session, while those favoring
a taxon strategy are not much affected. Finally, the experiment
is carried out with a group of control rats and another one
with rats with hippocampus lesions. The model reproduces
the differences in performance and in learning dynamics of
both groups: lesioned rats learn across sessions, while control
ones also learn within sessions, being less efficient than those
lesioned at the beginning and better at the end. The model
shows that this can be explained by a competition between
strategies in the beginning of a session—each strategy leads to
a different place, as the map-based one leads to the previous
location—and cooperation in the end—once the new location
is known, the taxon provides the global direction to reach the
platform in the beginning of the trajectory, but the map-based
strategy is more efficient than the taxon to precisely lead to
the platform location, rather than to the cue, at the end of the
trajectory.

In [18], nine sessions are carried-out with four groups of
rats (control, fornix-, DLS- and DMS-lesioned rats), external
cues are provided and the platform is either hidden (sessions
3, 6 and 9) or visible. The tenth session is a test where the
platform is visible but has been moved. The DMS model was
not simulated as the precise modification to be applied to
the model was unclear (should the map-based strategy or the
gating network be affected? And how?). The fornix- and DLS-
lesioned groups were simulated by respectively removing the
map-based and the taxon strategy. The main characteristics of
the groups’ behavior is well captured: when the goal is visible,
any strategy can lead to the platform; but when it is hidden,
the fornix-lesioned group performs poorly; finally, during the
test, the DLS-lesioned group performs poorly as it goes to the
previous location, while the control group is not as good as

3



Bioinspir. Biomim. 7 (2012) 025009 K Caluwaerts et al

motor 
control

odometrytracking

action 
selection

exploration
planning 

graph
taxon

place cells

vision L2

reward

head 
direction 

estimation

visualization/
logging

vision L3

Tracking

Strategies

Action selection
P

ro
ce

ss
in

g

gating 
network

vision L1

Input (proprioceptive/sensory)

Localization

Motor control

Figure 3. Simplified overview of the software architecture (only the most important nodes and connections are shown).

the DLS-lesioned one, as competition occurs between the two
strategies. We refer to the original paper for more details on
these two simulations [33].

These results were however obtained in simulations
which, although in continuous state space, were perfectly
controlled and thus permitted a set of crucial simplifications.

• The model had perfect access to its position and
orientation.

• Visual perception was also perfect, permitting the robot
to distinguish without errors different landmark cues,
and thus making it possible for the model to have taxon
submodules which learned to select a movement direction
in association with each specific landmark.

• The agent was a virtual point without a body surface,
allowing holonomic motion.

Thus, it is not clear whether the model can be applied
to robotics in the real world, and whether it can still
reproduce rodent behavioral performance and adaptivity in
such circumstances.

Here we present the integration of this neurocomputa-
tional model in the Psikharpax robot, and the solutions adopted
to cope with noisy perception and odometry. While in simula-
tion, each strategy could individually solve the rat goal-seeking
task but a combination of strategies was required to produce the
same behavioral performance as the rat [33], here we find that
each strategy can only partially but complementarily solve the
task, and the combination of strategies permits us to achieve
the problem. In addition, we show that the previous strategy-
shifting mechanism can adapt to environmental changes, but
with slower performance than real rats. We finally add a meta-
controller to the model which detects context-switching, per-
mits faster adaptation to environmental changes, and allows us
to quickly restore previously learned behavior when a known

context is presented again to the robot. Such meta-controller
may constitute a better model of rat prefrontal cortical func-
tions known to be required for adaptive strategy shifting
[35–37]. It may also provide a more robust solution for strategy
shifting in autonomous robots.

The first part of this paper gives a technical overview
of the platform. The theoretical foundation of our work was
verified by Dollé et al [33] in simulation, based on almost
perfect sensory input and simulated grid cells [38]. Therefore,
the second and third parts of this paper present the equivalent
navigation strategies and strategy selection mechanism for the
real robot. The last part presents the results obtained in a series
of robotic tests of the model.

2. Material and methods

2.1. Architecture overview

Our software architecture was built on the ROS6—robot
operating system—middleware. The robot runs the ROS core
and an external quad-core machine is used for the visual system
and the navigation strategies.

An overview of the software architecture of our model
is given in figure 3. The system consists of six distributed
subsystems, each consisting of one or more ROS nodes. As
can be seen from figure 3, the central node of the system is
the action selection node. This node interacts with the gating
network (see section 4) to decide upon the next action the robot
will take.

Two additional mechanisms—guiding and obstacle
avoidance—are not shown in the figure. The obstacle
avoidance strategy is implemented as a reflex strategy to

6 ROS is an open-source system and can be downloaded from http://ros.org.
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Figure 4. Concise overview of the visual system. In this example,
there is a brightly colored star-shaped object at a distance of approx.
3.5 m from the robot’s head. The robot sees this object through its
two cameras directly connected to the BIPS (bio-inspired perception
system) hardware (L1). The BIPS hardware extracts feature
information from the visual object and this information is coded on
a set of feature neurons in the second layer of the visual system
(L2). Based on the angle at which both cameras see the cue, the
disparity neurons are activated to code the distance information (see
also figure 6). The trust neurons are activated based on odometric
information: if the robot’s head is moving fast, the trust drops. There
are disparity, feature and trust neurons for each direction within the
field of view (not shown in the figure). Information in the L2 layer is
sent to layer L3 and integrated over different orientations to produce
a 360 degree view.

prevent the robot from leaving the environment. The guiding
procedure is used to lead the robot toward and from the goal
at the end of failed and successful trials (see section 5.4).

2.2. Visual processing and localization

More details on the visual system are given in appendix A
of this paper. Here we summarize how visual information
concerning landmark cues in the environment is extracted to
build a map of place cells for localization. An overview of the
model is given in figure 4.

The robot is equipped with two small front-facing cameras
with a total field of view of about 60 degrees. While real
rats have side-facing eyes with a large field of view, their
stereoscopic vision is limited to a region of about 76 degrees
[39]. The choice for a small but stereoscopic view originally

stems from experiments with saccadic eye movements on the
Psikharpax platform [5]. We chose to keep this setup as it
allows the robot to estimate the distance of objects and it allows
us to extend the model to include attention. To overcome the
limited field of view, the robot is programmed to turn its head
around at regular intervals.

At the lowest layer of the visual system, the cameras
are directly connected to an onboard electronic device, called
the bio-inspired perception system (BIPS, developed by Brain
Vision Systems, BVS) [4]. This layer implements the retina
and the first layers of the visual cortex using a neural network
with inhibitory connections to detect and track stable and
saturated objects (see figure 5). This layer is shown as L1 in
figure 4. Note that after this layer, the raw image is discarded
and only the detected objects are used.

The second layer of the visual system codes the visual
information onto a set of feature neurons. For each object,
the following features are extracted: size, vertical position,
orientation, color and disparity. For each orientation within
the field of view, such a set of feature neurons exists and
a detected object activates the neurons in the direction in
which it is seen. We use leaky-integrator neurons to low-
pass filter the input. The disparity codes the distance of an
object with respect to the robot. Four neurons are used to
code disparity information. These neurons have a Gaussian
activation function, centered around different disparities. This
results in an activation function that has a large tail as a function
of the distance (figure 6). Hence the robot has more precise
distance information on nearby objects.

Primates seem to use other types of disparity measures
such as relative disparity between objects next to absolute
disparity [40]. We tried to increase the performance of
the visual system by adding disparity neurons with other
activation functions (based on Gabor filters), but the quality
of the resulting place cells (see the following section) did
not increase. This is probably due to the fact that enough
information to distinguish places can already be extracted
by the nonlinear training algorithm from the other feature
neurons.

An important part of the second layer of the visual system
are the so-called trust neurons. These neurons modulate the

Figure 5. The same part of the environment seen from two different angles can result in an object not being detected (object on the right).
The system should cope with this limitation through the higher layers of the visual system.
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Figure 6. Activation functions of the disparity neurons as a function of the distance. They are Gaussian as a function of the disparity,
naturally resulting in a nonlinear distance scale with higher precision for nearby objects.

output of the second layer to the third layer of the visual system.
The idea is to suppress noisy inputs when the visual input is
unreliable. This occurs when the head of the robot moves too
fast, as the neurons in the first (tracking units) and the second
layer need some time to stabilize. This is easily detected by the
odometric system and hence the odometric system is used to
modulate (suppress) the connections between the second and
third layers when necessary. The faster the head movement,
the less reliable the visual information. This prevents the third
layer of the visual system from being influenced by unreliable
information.

The third level of the visual system integrates the
information from the second layer by combining it with
odometric information. This results in egocentric panoramic
information on the environment.

2.3. Visual place cells

The output from the neural network visual layers is high
dimensional (about 800 neurons). Because simple rate-coding
neurons were used, the output can be seen as a vector
representing egocentric visual information integration. To
construct non-directional place cells, such output vectors
were summed over all orientations to activate the same
neuron (i.e. a place cell). The problem was therefore reduced
to a dimensionality reduction or clustering problem. This
subsystem is indicated as PC on figure A1 in appendix A.

In a first version of the simulation model [33], ad
hoc place cells were used, and thus the dimensionality
reduction/clustering problem was not addressed. In [41], a
model of the hippocampus [38] was used to autonomously
create the place cells. It is based on a competitive Hebbian-
like learning rule: a number of random place cells are created;
during the learning phase, the place cells specialize for
particular input patterns using a sparseness-based Hebbian
rule, which only allows for the most active input neurons to
reinforce their connections.

Such an approach works very well when the number of
input neurons and distinct patterns is not too high and the
patterns are well characterized by their most active neurons.
In our case, however, the input can be noisy with typically
large but meaningless values for a few neurons in the input.

When the sparseness function from [41] is applied to such an
input, the noise is reinforced, while useful neurons are ignored.

We therefore needed a technique that learns the input
patterns by evaluating the whole set of input neurons instead of
only the most active ones. We initially tried linear approaches
such as principal component analysis [42] to check if the
inputs were linearly separable. At most four to five regions
could be consistently separated. This is insufficient for good
performance, as the place fields of the place cells would be
too large (only four to five distinct zones). Indeed, the gating
network takes input from the place cells and hence its precision
is limited by the place cells.

2.3.1. Implementing a SOM. A popular nonlinear alternative
for clustering consists in using self-organizing maps (SOM)
[43]. The goal of SOM is to move the neurons in the high-
dimensional input space to approach the topology of the input.
For each input, the Euclidean distance between the input and
each neuron of the SOM is computed. The closest neuron
is called the best-matching unit (BMU). The SOM is then
updated by moving the BMU closer to the input (weighted
sum) as well as its neighbors. In order to avoid using a fixed
number of neurons in the SOM, we used the growing neural
gas (GNG) algorithm [44]. GNGs are created incrementally
by inserting a new neuron after a number of input samples by
splitting the neuron with the largest accumulated error (sum
of distances) into two new neurons. The topology itself is also
learned by keeping the neighborhood of the neurons up to date.

We used the GNG algorithm to learn the weights of
an artificial neural network (see appendix A.2 for a detailed
description of the implementation). While we do not assume
that there is a direct biological equivalent of this training
algorithm, nor the activation function (which is based on the
Euclidean distance), we do not think that our model makes
unrealistic assumptions about the role of the hippocampus
in categorizing different places. As [44] indicates, the GNG
algorithm can be seen as a form of (nonlinear) competitive
Hebbian learning, which is the main reason why we chose
this algorithm. Because the main interest of this work lies
in the strategy selection and context-switching mechanisms,
we did not investigate how exactly one might implement the

6



Bioinspir. Biomim. 7 (2012) 025009 K Caluwaerts et al

Figure 7. Heat map of 12 place cells (GNG with 12 output neurons), with smooth activation (equation (A.4)). Note that there are two place
cells (top left and first row third from left) which only have very weak activations but large receptive fields. These cells will thus not be
important as their activation will be negligible (the topological map will discard them). The axes of each of the images give the position in
meters of the robot’s head as recorded by a ceiling camera. Note that there are more and more precise place cells coding for locations near
the borders of the environment.

GNG algorithm with a biologically plausible neural network.
However, this should not be a problem, as the algorithm
is straightforward and only depends on the computation of
the Euclidean distance (or another distance measure), the
creation/removal of edges and updating a local error measure.
A further argument for using a nonlinear approach is that
nonlinear algorithms can often be cast as a linear technique
working in a larger (possibly infinite dimensional) feature
space by simply replacing inner products with a kernel function
(i.e. the kernel function computes the inner product in a
different space) [45]. For example, the kernel trick is often
applied to PCA (Kernel PCA) [46] for which a Hebbian version
already exists [47].

We found that the GNG technique is very flexible. When
one forces the GNG to use only a small number of neurons,
the GNG creates large continuous place fields (figure 7). When
more neurons are available, the place fields are smaller.

The neurons from the GNG layer project onto the planning
strategy and the gating network. The resulting place cells for
a GNG layer with 12 neurons are shown in figure 7. One
can see that the best (i.e. most restricted to a particular zone)
place cells are found near the borders (similar to figure 9(D)
of [9]). This is due to the fact that there are no intramaze cues,
which causes observations near the center to be more similar
and thus less place cells are created in this region. We used a
higher number of place cells in our experiments to increase the
precision of the planning strategy (section 3.1) and the gating
network (section 4.2). However, this phenomenon still occurs
(e.g. figure 8(b)), causing topological maps to be less dense
near the center.

2.3.2. Experimental testing of the place cell system. To get
a rough estimate of the usefulness of the place cell system,
the robot was put at 40 random places in the environment,
where the activation of its place cells were recorded (for
this experiment, we trained 100 place cells). The Euclidean
distance between the real position of the robot and the center
of activation (computed by averaging over a large training set
using a ceiling camera) of the most active place cell (binary
activation) was computed to estimate the precision of the place
cell coding. The mean distance was found to be 16.5 cm with
a standard deviation of 8.5 cm. When near the border of the
environment, the mean lies around 11 cm, which is very good,
but when approaching the center of the environment the mean
distance becomes considerably larger (between 20 and 30 cm).
In [9], the authors found a mean error of 6 cm but in a smaller
(0.8 m by 0.8 m) environment.

In the ideal case, one would expect the place fields
to be evenly distributed. Hence, to evaluate our place cell
mechanism, we consider 100 points picked randomly from a
uniform distribution on a rectangle of 2.5 m × 2.0 m. The
expected distance from any such point within the rectangle
to the nearest point out of the 100 randomly chosen points is
about 12 cm. The expected distance to the second closest
point is about 18 cm and 22.5 cm for the third closest
point.

This indicates that the presented place cell system
performs reasonably well, compared to the ideal, uniformly
distributed case.

We tested the system with different numbers of place
cells, by splitting the data into a train and test set. We found
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(a) (b)

(c) (d)

Figure 8. Overview of the topological map. The map is the same in (b), (c) and (d). (a) Principle of operation. (b) Constructed topological
map after exploration. (c) and (d) Path planning using the topological map. The qualitative difference between (c) and (d) is caused by the
change of the goal location. In (c), there is a lot of aliasing around the goal location (multiple high diffusion values), resulting in two disjunct
path-planning trees and sub-optimal paths near the goal (e.g. there is an optimum around (0.5, 0.4)). In (d), the topological map works very
well (one tree with almost every edge leading the robot closer to the goal). Note also the difference in map quality between the simulation
model (e.g. figures 8(d) and 12(b) in [33]) and the robotic platform. This is caused by the extensive exploration phase in simulation and the
noise-free simulation environment. (a) Principle of the topological map. The large circles are the nodes in the map. The goal is on the right
and the color of the nodes correspond to the diffusion values. Direction transition neurons (small circular pattern) and distance transition
neurons (four small circles) are shown for two connections. A path planned from the dashed node can be ambiguous for one node due to
equal diffusion values. The robot chooses a next node arbitrarily in this case. (b) Topological map constructed by the robot. Vertices
correspond to nodes in the map, and edges are paths the robot can use. The maximum number of neighbors per node was fixed at 6. (c) Paths
toward the goal shown from each node in the topological map. In this map, there is aliasing around the goal, resulting in very low
performance of the planning expert on the left side of the environment, near the goal (circle). Axes are in meters. (d) Paths toward the goal
shown from each node in the topological map. This map predicts good performance of the planning expert with only a few regions with
ambiguities.

that 100 place cells is about the maximum one can obtain in our
environment without overfitting the training data. Moreover,
for higher numbers of cells, the classification results on the
test set did not increase. Thus, for all the next experiments
with the multiple navigation strategy model, the number of
place cells was fixed at 100. In the next section, we present
the navigation strategy which is based on information from the
place cell layer.

3. Navigation strategies

3.1. Planning expert

The model in [33] best replicated experimental results using
a planning algorithm for the place strategy, rather than a
place recognition triggered response one. It is organized as
follows: a place cell module, simulating the hippocampus, is
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in charge of learning internal representations of places in the
environment using sensory inputs; a graph module (topological
map), simulating the PFC, learns by means of a Hebbian rule
the directions of movement, which are used to go from one
place to another. When the goal has been found at least once,
a diffusion of activity in this graph originating from the goal
node generates a gradient which, when followed, leads to the
goal with the shortest path [48, 49].

The simulation model from [33] uses distinct
representations for place cells and nodes in the graph module,
because they differ in function and precision. More precisely,
a simple single-layer network trained with a competitive
Hebbian-like learning rule is used to activate the topological
map nodes based on the place cells’ activation. Because of
this layer, the number of topological map nodes (around 100)
was typically a factor 10–20 lower than the number of place
cells.

Because of the encouraging results from this simulation
model, we chose to adapt it to the physical platform. Several
modifications needed to be made to make this feasible, which
will be explained in this and the next sections.

The maximum (useful) number of place cells on the
physical robot is limited by the quality of the sensory input
(see the previous section). Because the goal is relatively small
and a high level of detail in both the planning strategy and the
gating network is advisable to get precise results, we mapped
the place cells directly onto the nodes in the topological map
to get the maximum resolution. This means that there is no
additional training to map the place cells onto the topological
map nodes (1-to-1 connections).

We initially also tested (not shown) the system with a
coarser representation of space (using an additional layer
trained with competitive Hebbian learning) for the gating
network, yielding similar, but less detailed results than the
ones presented in this paper. The added benefit of the direct
mapping from place cells to nodes in the topological map is
that analyzing the results is easier as the space representation
is the same throughout the system (gating network, place cells
and topological map). To underline the functional difference
between nodes in the topological map and place cells, we use
the notation nPFC for nodes in the map (referring to the PFC)
and nPC for place cells.

3.1.1. Learning the topological map. During an exploration
phase, the topological map learns connections between nodes
by Hebbian learning. For this, two types of information
need to be stored, the relative angle between two nodes
and their mutual distance (figure 8(a)). To store this
information, we use two sets of transition neurons for
each connection between nodes [50, 51]. There are NANG

transition neurons (per set) for directional information and
NDIST for distance information. Each node initially has
connections (transition neurons) to every other node with
zero weights. The transition neurons are stored in a vector
vk,l = [v1

k,l, . . . , v
NANG
k,l , v

NANG+1
k,l , . . . , v

NDIST+NANG
k,l ]T , i.e. the

subscript k, l indicates the transition from node k to l and
the superscript is the affected transition neuron (orientation or
distance information).

As for the distance information, the angular information
is stored in a set of NANG neurons with Gaussian activation
functions centered around a fixed directions. We define the
vector b = [b1, . . . , bNANG , bNANG+1, . . . , bNDIST+NANG ]T similar
to vk,l . The first NANG elements of b code the angular
information between locations. The last NDIST neurons contain
the distance information between two locations. That is, a
vector b(t0, t1) contains the activation of the transition neurons
to the location where the robot is at time t1 from the location
where the robot was at time t0.

Now, to update the neurons vi
k,l , we iterate over a trajectory

of the robot and update the weights to the transition neurons
using a simple learning rule:

�vi
k,l(t + 1) ={

(1 − δk,l )H
( ¯nL3

conf − β
)
bi(tk, t) if k = last ∧ l = winner

0 else.

Here δk,l is the Kronecker delta, to prohibit connections from
a node to itself. H(x) is the Heaviside step function used to
prevent updating the graph when the confidence of the place
cells

( ¯nL3
conf

)
is below a threshold β. last is an index referring

to the node in the topological map where the robot was when
¯nL3

conf was above the threshold for the last time, i.e. the previous
location.

For planning in this graph, only the shortest transitions
between nodes are kept, based on the distance coding neurons.
For the results presented here, we fixed the maximum number
of transitions per node to 6. A learnt map is shown in
figure 8(b). While we explained this process as a sequential
algorithm (recruitment of nodes, learning of transitions,
competition), it can be done online by simply adding an
additional transition usage intensity neuron v0

k,l increasing in
activation when the robot moves from k to l, combined with a
decay rate or competition factor (i.e. −ψ ¯v0

k,l) to the previous
equation, which also prevents the weights from increasing
without bounds.

3.1.2. Using the planning expert. In order to plan in this
graph, the model maintains a set of neurons gi, one for
each node corresponding to the reward received at each of
the locations. A leak rate is added so that the robot can
navigate in an environment with changing reward locations.
gwinner is the neuron assigned to the node at the robot’s current
position.

g j(t + 1) = g j(t)(1 − τforget) (1)

gwinner(t + 1) = gwinner(t)
(
1 − τlearnnPFC

winner(t)
)

+ τlearnnPFC
winner(t)R(t). (2)

The second value associated with a node is the diffusion
value d j(t) and this value is used to implement a shortest-path
algorithm. The activation from the goal diffuses or spreads
out [48, 49] over the other nodes (figure 8(a)). To compute
the equilibrium state efficiently, we used a modified Floyd–
Warshall algorithm [52], where d j[iter] is used to refer to the
value of d j at iteration iter:
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Algorithm 1 Computing the diffusion values

iter = 0
for i = 0; i < NPFC; i = i + 1 do

di[0] = gi

end for
while iter < NPFC − 1 do

for i = 0; i < NPFC; i = i + 1 do
di[iter + 1] = max(di[iter], max j∈neighbors(i)(d j[iter])ι)

end for
iter = iter + 1

end while
for i = 0; i < NPFC; i = i + 1 do

di = di[NPFC − 1]
end for

This algorithm is only run when ¯nL3
conf > β, i.e. when the

robot has a high trust in its current position.
The algorithm finds the shortest path to a maximum goal

value (g j) in terms of the number of intermediate nodes and
the goal values. However, multiple maxima can exist as more
than one node can code for the goal location due to aliasing.
To find a path to the closest maximum (goal), one starts from
the current node (nPFC

winner) and chooses the neighbor with the
highest value as the next node on the path. The topological
map then proposes the mean of angles �P(t) computed from
the activation of the direction transition neurons associated
with the connection from nPFC

winner to its most active neighbor.
In practice, we add a slight twist by storing a complete

path toward the closest maximum. Next the robot computes
the relative positions of the nodes of the path in the egocentric
frame. It then tries to follow this path by moving sequentially
to the position of the nodes based on the odometry. This
allows this map-based strategy to persist even in the absence
of sensory input and is equivalent to the basic algorithm when
sensory input is reliable.

Figures 8(c) and (d) show the same map with two different
goal locations; the arrows represent the direction toward the
goal from each node in the graph, as computed by the planning
algorithm. In the situation shown in figure 8(c), the robot faces
an aliasing problem: there are multiple optima (high diffusion
values) near the goal, and starting from the east part of the
environment, the robot may plan trajectories toward different
nodes apparently close to the goal. As a consequence and as
we will illustrate in the experiments with the whole model, the
planning expert can adapt quickly but remains approximative.
It can quickly learn trajectories toward the coarse area around
a new goal location. But these trajectories may not be precise
enough to reach the goal and other experts using different
strategies may be more relevant in more precisely attaining
the goal location.

3.2. Taxon strategy

The second strategy is implemented in the so-called taxon
expert. It learns to associate proximal visual cues with
actions using a standard Q-learning algorithm [53]. While in
previous work with noisy continuous state space in complex
mazes we employed a multiple-module reinforcement learning

approach for the taxon system [54], here we used a simplified
taxon in order to test the ability of our meta-controller to
switch between complementary strategies. While rodents’
hippocampus-dependent place strategies rely exclusively on
distal landmarks—which are far and outside the maze and
thus are more stable to constitute the anchoring of a cognitive
map—the taxon strategy consists in learning directions of
movements in association with intra-maze proximal landmarks
[55, 18, 56].

Thus here the taxon expert can only perceive the goal. In
order to prevent the robot from seing the goal when it is far—
thus distal—we make its perception noisy. Thus, the relative
position of the goal is seen by the taxon as a Gaussian which
decreases in height and variance as the distance increases (until
it drops below a threshold). While conceptually simple, it is
important to note that the taxon expert initially does not know
that it should move toward the stimulus it receives. So the
taxon (like any other learning expert) learns at the same time
as the gating network.

The update equations of the taxon expert are based on
[33], with slight modifications to adapt the strategy to the
robot platform.

The possible directions (continuous) the robot can take
are coded on the Ndir action cells ai. wi, j are the Q-values,
which are used to associate input orientations with output
orientations:

ai(t) =
NGP∑
j=1

rGP
j (t)wi, j(t). (3)

By taking the mean of angles �T , we obtain the proposed
action of the taxon:

�T (t) = arctan

( ∑
i ai(t) sin(2π i/Ndir)∑
i ai(t) cos(2π i/Ndir)

)
. (4)

�wi, j is the update rule for the Q-values, based on the reward-
prediction error δtaxon and the eligibility traces etaxon

i, j :

�wi, j(t) = ηδtaxon(t)etaxon
i, j (t). (5)

The eligibility traces are used to speed up learning by storing
previous state-action pairs and by using action generalization.
The action generalization is given by rAC

i and is based on
the executed action, which can be the action proposed by a
different strategy (see section 4.2)7. Thus, the taxon strategy
also learns if another strategy performs well. Note that in
practice one uses a wrapped Gaussian as the difference
between circular values has to be computed:

δtaxon(t) = R(t + 1) + αmaxiai(t + 1) − a(t) (6)

etaxon
i, j (t + 1) = rGP

j (t)rAC
i (t) + κetaxon

i, j (t) (7)

rAC
i (t) = exp

(−(�∗(t) − 2π i/Ndir)
2

2ω2

)
. (8)

7 Note that there is a small error in equation (7) of [33]. It is indeed �∗(t)
instead of �T(t).
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The input of the system is the NGP goal direction neurons
rGP

j , which replace the landmark cells rLC
j from [33]. rGP

j are
again samples from a wrapped Gaussian at equally spaced
angles. The width of the Gaussian increases as the robot
approaches the goal as does its amplitude. The amplitude
of the Gaussian drops below the threshold between 0.5 and
0.75 m.

Because the goal is the only landmark that can be seen
by the taxon expert, the taxon is essentially the same if the
input orientations are egocentric or allocentric. In this work,
we used an allocentric taxon because the robot approaches the
goal with its head pointing in the direction of the goal. Hence
learning the correct action to take when the goal is behind the
robot is slower.

3.3. Exploration strategy

This is a simple strategy that proposes random directions and
which serves two purposes in our model. We do not however
consider this strategy equivalent to the much more complex
exploratory behavior in rodents. It has been shown that rats, in a
new environment, observe recurrent patterns such as spending
the first minutes establishing a home base [57], then moving
out slowly in a zig-zag way, and coming back home in a
straight line. We just use a simple random exploration strategy
in order to make sure the robot would cover most regions of the
environment. Because each action proposed by this strategy
persists for five steps, it allows for some exploration and to
break out of looping behavior. Secondly, this strategy allows
us to evaluate the performance of an expert with respect to the
chance level. Because its behavior is random, we expect every
other strategy to perform at least as well in most regions of the
environment. As we will see, this is not generally valid, as a
random strategy might outperform a more elaborate strategy
in certain situations.

4. Strategy selection

4.1. General framework

The strategy selection model of [33] is based on the premises
that rodents have multiple navigation strategies at their
disposition to reach a goal and that they are capable of
switching between them. These strategies coexist and are
learned in parallel and independently, while a strategy selection
mechanism learns to associate perceptions (or situations) with
a preferred strategy by means of a Q-learning algorithm.

Accumulating evidence support the hypothesis that Q-
learning is a plausible mechanism by which part of mammals
brain learn by reinforcement [58]. Neural correlates of action
values (similar to Q-values) have been found in the BG [59]
and correlates of action-dependent reward prediction errors
(consistent with Q-learning) have been found in dopaminergic
neurons [60] as well as in the medial PFC [61].

A global overview of the system is shown in figure 9. The
basic idea is that we have a number of strategies or experts
providing the next action to take (following the given strategy)
at each time step, while the action selection network selects

Figure 9. Overview of the gating network with taxon, topological
map and exploration experts.

one of these actions, based on the current situation. A Q-
learning algorithm based on the simulation model from Dollé
et al [33] is implemented to allow the robot to associate a
state with an optimal strategy. The so-called landmark cells
of the simulation model (figure 2) necessitate a mechanism
to identify and track distal landmarks in the environment,
while here, due to perceptual aliasing and noise in physical
experiments with the robot, we used the global configuration of
distal cues to build place cells without requiring the recognition
of individual cues (2.2). Thus, the connection of the visual
system to the gating network is left as future work (see
section 7) and in our current model we only use the place
cells as input to the gating network. This has the benefit of
allowing us to visualize the relationship between locations
and preferred strategies as the Q-matrix associates place cells
with experts.

The actions proposed by the strategies are the common
currency in the model as they are the generic information used
to evaluate the performance of each strategy [33]. In our model,
these actions are the next (egocentric) direction to follow.
This way, the robot selects a new orientation provided by
the strategy that was deemed the winner among the strategies,
turns and moves forward for a fixed distance, observes its new
situation (state) and the obtained reward (if any), and finally
updates its strategy selection network.

The neural network used to implement the strategy
selection is a single-layer network, with the neurons coding
for the current situation or perception fully connected to each
of the output neurons, one for each available strategy. The layer
of output neurons with the connections to the input neurons is
called the gating network, as it only lets one action through
at each time step. One can of course consider the winner of a
lower-level gating network as the input of the current network
to create a hierarchical selection mechanism.

11



Bioinspir. Biomim. 7 (2012) 025009 K Caluwaerts et al

4.2. Gating network

The gating network computes the so-called gating values gk(t),
one for each strategy k. The Q-values are stored in a matrix
zk

j(t), associating inputs from the place cells with gating values:

gk(t) =
NPC∑

j

zk
j(t)n

PC
j (t). (9)

Instead of adopting the winner-takes-all policy (�∗(t) =
�argmaxk(gk(t))(t)) from the simulation model to select the
winning strategy for the next action, we generalize such a
principle so that the selection probability of an expert increases
with its relative gating value

P(�∗(t) = �k(t)) = gk(t)ζ∑
i gi(t)ζ

. (10)

Here �k(t) is the action proposed by expert k at time t.
�∗(t) is the final action proposed by the gating network.
Note that this action is not always the executed action, as
higher priority mechanisms can override the gating network
(i.e. obstacle avoidance or guiding). For ζ = ∞, our action
selection mechanism is equivalent to the one from [33]. For
ζ = 1, one obtains the action selection mechanism from [62].
For all experiments in this paper, we set ζ = 1, except for
figures 30(a) and (b) for which ζ = ∞ to show the behavior
of the robot when it follows its learned optimal policy.

The advantage of introducing some randomness in the
action selection is that slower learning strategies can catch up
with fast learning strategies when they start to perform better
only after a long time. With a winner-takes-all strategy, one
might have to wait for convergence before a slower learning
but optimal strategy can increase its weights beyond those of a
faster learning but suboptimal strategy. This is also biologically
relevant since choosing a suboptimal strategy from time to time
allows for exploration of unfamiliar alternatives [63].

Learning is sped up using action generalization and
eligibility traces. The equations for these techniques were
taken from [33]. However, a substantial difference lies in
the equation to update the eligibility traces. Whereas sensory
input is always reliable in the simulation model, it is not true
in general with the real robot. To incorporate this fact in our
system, the eligibility traces are modulated by the trust neurons
introduced in section 3.1:

ek
j(t + 1) = ¯nL3

conf(t)�(�∗(t) − �k(t))rPC
j (t) + λek

j(t). (11)

To update the Q-values, a modified Q-learning algorithm
[64, 53] is applied:

�zk
j(t) = ξδ(t)ek

j(t + 1) (12)

δ(t) = R(t + 1) + γ max
k

(gk(t + 1)) − gk∗
(t) (13)

ek
j(t + 1) = �(�∗(t) − �k(t))rPC

j (t) + λek
j(t), (14)

where ξ is the learning rate of the algorithm and δ the reward
prediction error.

The reward prediction error δ is based on the observed
reward when performing action �∗ and the future expected
reward (gk∗

is the activation of the winning output neuron

and γ the future reward discount factor). The eligibility trace
ek

j reinforces previously selected strategies and the strategies
proposing a direction close to the one proposed by the winning
strategy [53]. Here λ is the decay factor for previous winning
strategies and � a Gaussian function:

�(x) = exp(−x2) − exp
(
−π

2

)
. (15)

The gating network is a simple but effective way to
combine competition and cooperation between strategies.
While the gating network itself only directly provides
competition, the strategies cooperate by sharing rewards and
their actions (e.g. the taxon uses the executed action for
learning, instead of its proposed action (equation (8))). Hence,
the gating network is advantageous for strategies as they can
learn from each other, while at the global level the performance
can also increase because the best performing strategy can be
used in each situation.

4.3. Context-switching meta-controller

The advantage of using a gating network for strategy shifting
is the possibility of memorizing that strategy A is efficient in
a subpart X of the environment while strategy B is relevant
in subpart Y [62, 33]. However, since this is learned through
Q-learning, noisy information perceived by a physical robot
may render this process very slow. In addition, a change in the
environment requires us to unlearn A–X and B–Y associations
(which can also be very slow). As a consequence, these
associations cannot be used again if the environment comes
back to its previous state (i.e. the animat cannot recall what it
has previously learned).

To overcome this limitation, we implemented a simple
context-switching mechanism. The idea is that a change in the
environment (e.g. a change in goal location) will be quickly
reflected in the profile of diffusion of goal information in the
topological map once the robot found the new goal. Such
profile can be identified as a context, and the system can
recognize a previously experienced context when the goal is
set back to its initial position and the model diffuses such
goal location in the topological map. Each time the model
detects a new context, it will create a new memory component
to store values of the gating network in the new context,
without erasing values of the gating network associated with
the previous context. This part of the model may be viewed as
a primitive PFC-based cognitive control mechanism allowing
us to associate different contexts with different task sets [65]
(see section 7 for a detailed discussion).

In practice, before every step, the gating network decides
upon the context it is working in. For this it uses the current
vector of diffusion values d from the planning strategy. The
gating network now stores a set of Q-value matrices zi

i, j, and
associates a diffusion vector ui with each matrix. The current
context is now chosen as follows (d is the current diffusion
vector):

vi = d · ui

‖d‖‖ui‖ (16)

z∗
k, j = zargmaxi v

i

k, j . (17)

When maxi v
i is below a threshold, a new context is

recruited.
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5. Experimental setup

5.1. Introduction

The robot is allowed to move in an open 2 m × 2.5 m
environment (figure 18). There are only extra-maze cues (we
tested with 10, 13 and 18 cues) and the position of the robot
is defined by the position of its neck. The egocentric reference
frame has the neck of the robot as its origin and the orientation
is defined by the direction of the head.

5.2. Action selection

The robot makes discrete movements, moving 10 cm at
each time step. The action selection mechanism is a simple
finite state machine that waits for all strategies to propose
an action (an egocentric direction) and then activates the
gating network to find the winning strategy. The action
proposed by the winning strategy is then executed, except
if a higher than normal priority mechanism proposes an action
(guiding/obstacle avoidance). After an action is performed,
the reward is used by the gating network and all strategies to
update their learning parameters.

5.3. Reward

The reward node is a simple node processing information from
the ceiling camera. When the robot’s head passes through the
zone defined as the goal, the reward is 1, else the reward is
0. In all experiments, the goal diameter was set to 20 cm
(314 cm2 or 1/160th of the environment).

This is a global reward signal, shared by all strategies
and the gating network. Strategies learn by updating their
parameters using the global reward.

5.4. Experiments

All experiments consist of two phases. During the first phase
the robot explores the environment. In this phase, we force the
robot to visit a number of locations in the environment so that
enough information is available to construct place cells and
a topological map (but no diffusion values nor goal values).
The gating network and the navigation strategies are not active
and there is no reward in the environment. This phase can be
common to multiple experiments. During the second phase,
the robot is put at a random location in the environment and
the gating network and navigation strategies are turned on. In
this phase, the strategies and the gating network use the place
cells and topological map to learn to navigate toward a goal.

A goal location is chosen and the robot learns to
appropriately coordinate navigation strategies to reach it.
During an experiment, after each failed trial (i.e. the robot does
not find the goal after 5 m of movement), the guiding procedure
forces the robot toward the goal to show the goal location
and thus speed up learning, similar to the procedure used by
experimenters in rodent laboratory tasks. This is achieved by
using the ceiling camera that tracks the robot’s position and
provides actions leading toward the goal in a straight line. The
robot learns the result of this movement as if it had decided
itself to perform it. Similarly, when the robot has received a

reward (i.e. a successful trial), the guiding procedure guides
the robot away from the goal to a new starting location at least
0.5 m away from the goal, mimicking the beginning of a new
trial in rodent laboratory tasks.

All strategies and the gating network perceive the actions
proposed by the guiding mechanism (there is no difference
between an ordinary action and a forced action), so learning is
performed in the usual way.

In the last experiments presented in this paper, once the
robot has learned to reach the goal directly from its different
starting position, the goal location is changed and the robot
will adapt its behavioral policy to this new condition. Finally,
once the robot has learned the new condition, the goal is moved
back to its initial location in order to test the ability of the robot
to restore previously acquired behavioral policy.

6. Results

In this section, we discuss the results we obtained on the
Psikharpax platform. We will empirically show that our model
can easily learn to associate a state with the best performing
strategy in that state. The experiments were chosen to clearly
show that the system works correctly (i.e. many of the results
are predictable), instead of reproducing a complex protocol for
which the evaluation of the quality of the model is inherently
much harder to evaluate.

However, the experiments with multiple parallel strategies
are in no way simple or unrealistic, given the limited and
very noisy sensory input. Our results prove that with some
small modifications, the Q-learning mechanism for the gating
network from [33] works well on a real robot platform.

We first make a series of experiments to test the capacities
of individual strategies (first planning, and then taxon) to
learn the goal location and lead the robot toward it. In
these experiments, the studied strategy is combined with
the exploration (random) strategy in order to compare its
performance with random movements of the robot, and to test
the ability of the gating network to learn to stop selecting the
exploration strategy when another strategy can lead the robot
to the goal. In the next experiments, the taxon and planning
strategies work in parallel and the gating network successfully
learns which strategy is the most efficient in each subpart of
the environment. In response to an environmental change (i.e.
change of the goal location), the gating network manages to
unlearn previous associations of strategies to subparts of the
environment and to learn new ones, but this process is very
slow. In a final experiment, we add the context-switching meta-
controller to the system and show that it manages to adapt faster
to environmental changes and to restore previously learned
associations when a previously experienced context is again
presented. Finally, we analyze in more detail a set of examples
of cooperation between strategies produced by the system and
allowing the robot to execute successful trajectories toward the
goal.

6.1. Planning expert and exploration strategy

In this experiment, we connected two strategies to the gating
network. The first one is the planning expert as introduced in

13



Bioinspir. Biomim. 7 (2012) 025009 K Caluwaerts et al

(a) (b)

Figure 10. Selection rate of both strategies during learning. The dark line represents the planning expert, and the light line the exploration
strategy. The horizontal axis indicates the current step (time). The transient phase ends for both experiments after about 300–400 actions.
(a) Less precise topological map, resulting in an overall higher selection rate of the exploration strategy. (b) Very precise topological map;
the planning strategy has very good performance.

the previous section. The other one is the random exploration
strategy.

The goal of this experiment was to verify if the gating
network could effectively learn to suppress a suboptimal
strategy (the exploration strategy). Because the goal was
relatively small and does not fall precisely on the center
of activation of a place cell, the planning expert was only
capable of efficiently guiding the robot to a zone around the
goal. In other words, when the planning expert had reached a
node in its map with higher diffusion values than any of its
neighbors (given that the goal values are meaningful), the robot
was not necessarily at a location where the reward is given,
but only in the neighborhood. As a consequence, the robot’s
behavior remained random near the goal location—produced
by a combination of the exploration expert and the planning
expert which proposed random actions when it had attained
the node in the diffusion vector with the highest rate.

Figure 10 shows the selection rate for the two experts as
a function of the number of steps taken for two experiments
(different environments and goal locations).

After an initial transient phase during which most of the
Q-values were still small and meaningless, the system quickly
converged to a regime in which the planning strategy was
selected almost all the time. During this transient phase both
strategies had similar performance because the diffusion values
were not yet meaningful. We see that this happened for both
experiments, but with a different (random) initial transient
phase. However, the experiment from figure 10(a) which was
slightly shorter than figure 10(b) and not yet fully converged
had a higher selection probability for the exploration expert
even after several hundred actions. After 300–400 actions (goal
reached approx. five times), the gating network started to
move toward its steady state. The Q-values would continue
to increase but their relative values stayed stable.

To explain the observed difference in selection rates
between experiments, we analyzed the locations in which each
expert is the preferred strategy. This is illustrated by figures 11

and 12 where the size of the dots corresponds to the difference
between the Q-values of each strategy at the mean position
of each place cell:

∣∣zexplr
j − zplanning

j

∣∣. This corresponds to the
selection probability in the gating network at each location.
Larger differences indicate that the weights have differentiated
more. The color/shape of each dot is determined by the strategy
with the highest Q-values at that location (the winning strategy
when following an optimal policy).

The planning strategy normally only needed one visit to
the goal in a new environment to learn (i.e. to determine)
good diffusion values. Figure 11 shows the evolution of the
Q-values of the gating network for an experiment planning
strategy versus exploration strategy. After 300 steps, the
global structure no longer changed significantly. Close to the
goal, exploration was often the preferred strategy, due to
the coarseness of the planning strategy. Farther away, we see
that the planning strategy was gaining terrain, because there
the planning strategy performed well. The relative weights
were still increasing (they diffused away from the goal due
to the Q-learning algorithm), indicating that learning had not
yet fully converged. In particular, the region at the lower-left
corner still needed to be visited more to learn the Q-values in
this region.

Note that in figure 11, there is a region around (1.5,0.8)
where the exploration strategy remained competitive with the
planning strategy for a long time. This is again a consequence
of the topological map (shown in figure 8(d)). Such regions
differed between experiments (different maps) and often
indicated regions in which the topological map contained a
detour. In such a case, it could indeed be a good strategy
to transiently follow a random direction—as suggested by
the exploration expert—to get onto another path where the
planning strategy would be used again.

Figure 12 shows the result of another experiment with the
same system (i.e. planning and exploration experts) but with
different distal landmarks with less aliasing of the place cells
around the goal and after a longer time of experimentation. In
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Figure 11. Evolution through time of the relative Q-values of the planning expert (dark squares) versus random strategy (light-colored
pentagons) corresponding to figure 10(a). The relative Q-values |zexplr

j − zplanning
j | are shown at the center of activation of each place cell. The

dot takes the shape (square/pentagon) of the strategy with the highest Q-value (highest selection probability). The larger the dot, the more
the weights have differentiated and the more likely the strategy with the highest Q-value is to be selected. The goal location is shown in blue.
Competition between the strategies is still going on after 768 steps, but the structure becomes apparent. Near the goal, the random
exploration strategy often performs equally well as the topological map. Axes in meters.

Figure 12. Planning expert versus random strategy corresponding to
figure 10(b). Colors as in figure 11. The planning expert is almost
always preferred, except very near the goal. Note the lower weight
differences very near the goal.

this case, the gating network had stabilized, and the robot
preferred the topological map strategy almost everywhere,
except very close to the goal where the planning strategy

was still unprecise and the robot’s behavior was random. In
the region near the goal, the weights of the gating network
had less differentiated, indicating that the strategies are still
competitive in this region.

6.2. Taxon expert and exploration

We now verify the taxon strategy by having it compete with
the exploration expert. The setup is the same as in the previous
experiment. However, because the taxon can only sense the
goal within a certain range, the outcome we expected is
different.

Once the taxon expert has learned to move toward the
stimulus, its performance should be better than the exploration
expert within a region around the goal. Farther away from the
goal, the taxon does not receive sensory input and becomes
equivalent to the exploration expert.

Figure 13 shows the evolution of the relative Q-values
through time. It is clear that the taxon expert had significantly
been reinforced around the goal and a large region around it.
However, the taxon was still the dominant strategy relatively
far away from the goal, which is against our expectations. We
expected to see a more or less circular region around the goal
in which the taxon was the dominant strategy, while the rest of
the environment would be randomly assigned to one of both
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Figure 13. Taxon (dark circles) versus exploration expert (light pentagons). The goal is on the left (large dark pentagon). The gating
network learned to select the taxon strategy near the goal, and preferred the random exploration strategy in some areas far away from the
goal. Axes in meters.

strategies, resulting in very small weights on the plot at these
locations (we plot the weight difference). While we indeed
see this phenomenon at many locations (predominantly at the
lower right side of the environment), there are regions far away
from the goal with non-negligible weights for the taxon. This
effect stems from the aliasing in the place cells. If some of the
place cells far away from the goal were activated even slightly
when the robot was close to the goal, then the optimal strategy
around the goal (the taxon) was also slightly reinforced at these
aliased locations. This was only of importance when none of
the strategies performed well at the aliased locations farther
from the goal, because otherwise this effect was dominated
by reinforcements of these strategies. This indicates that the
gating network gave a slight advantage to strategies having
good performance around the goal when there was aliasing
in the sensory input. One way to reduce this effect would
be to only update the Q-values of the most active place cell
in the gating network. This would increase the learning time
significantly and the system would no longer use the similarity
between nearby locations.

Despite such a limitation, the system appropriately learned
to privilege the taxon expert near the goal and to select the
exploration expert mostly on the right side of the maze, far
away from the goal. Figure 14 shows the global selection
rate of both strategies as a function of the number of actions.
Although small changes continued to occur—due to the equal
performance of both strategies farther away from the goal—the
learning had mostly converged.

Figure 14. Selection rate of the taxon (dashed dark line) versus
exploration strategy (light line) computed over the last 200 actions.
The gating network clearly learned to privilege the taxon strategy.

Figure 15 shows the learned output direction of the taxon
�T for each input direction (see equation (4)). Here, we used
a binary input vector rGP

j to code the goal direction (the center
of the Gaussian). The figure shows that the taxon learned to
orientate toward the direction of the stimulus.

6.3. Planning expert and taxon (and exploration)

We then performed an experiment where we combined all
experts and tested the ability of the gating network to select
the right strategy in the right location. Based on the previous
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Figure 15. Output directions (weighted mean of angles) learned by
the taxon in response to the input angle between the robot’s head
orientation and the goal. After learning, the taxon approximated a
diagonal line and thus learned to orientate toward the direction of
the stimulus.

results, we expected the animat to learn to prefer the taxon
strategy when close to the goal, while using the planning expert
farther away. The exploration strategy should normally be used
at the beginning of the experiments, and then progressively
be excluded in most locations, except in places with a high
uncertainty or where there is indeed an advantage in following
an arbitrary direction.

We conducted two sets of experiments. In the first set,
the goal location was left unchanged and the robot started its
exploration until converging to an appropriate coordination of
strategies and adopting a satisfying behavioral policy to reach
the goal. In the second set of the experiments, after a certain
duration the goal was moved to a new location at the opposite
side of the environment. This was done to evaluate the time

required by the gating network to learn new associations of
strategies with maze areas.

We performed two versions of this experiment. In the
former, we connected only the taxon and the topological map
strategy to the gating network. Furthermore, we pre-trained the
taxon in a separate experiment (as in section 6.2) to study the
complementarity of the two strategies once stabilized before
testing the whole system. In the latter, we connected all three
experts to the gating network. Each version used a different
topological map, place cells and goal locations.

Finally, for experiments containing changes in the goal
location, we tested the gating-network with and without the
context switching mechanism enabled so as to illustrate its
benefits on adaptation to environmental changes.

6.3.1. Part 1: fixed goal. We first discuss the results for the
first version of the experiment: taxon and pre-trained taxon.

Figure 17 shows the result of the experiment after 30
trials of learning—the robot had reached the goal 30 times.
The gating network had learned to choose the taxon strategy
around the goal, as indicated by large weight differences in
this area. Farther away from the goal, the weight differences
were smaller and the planning strategy was preferred most of
the time.

Figure 16(a) shows the selection rates of both strategies
through time. We see that in short term, the selection rates
varied (depending on the robot’s trajectories) while the global
selection rate had converged. Convergence was fast because
each strategy performed well in a specific region and there was
not much competition. Furthermore, the transitional phase was
short because the taxon had been pre-trained (the taxon already
had good performance around the goal).

Figure 18 illustrates the result of a session of the same
experiment overlaid on an image of the environment to show
the physical location corresponding to the different areas in
figure 17.

(a) (b)

Figure 16. Evolution of the selection rate of both strategies (version 1) during learning (as a function of the number of actions). The full line
represents the planning expert, the dashed line the (pre-trained) taxon strategy. The horizontal axis indicates the current step (time). The
gating network globally converged to a stable repartition of selection of the two strategies, with the taxon being selected most often.
(a) Selection rate computed over all previous actions. (b) Selection rate computed over the last 200 actions (moving average).
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Figure 17. Planning expert (squares) versus pre-trained taxon
(circles) (version 1). The goal location is shown as a dark pentagon
on the left. The robot has learned to prefer the taxon strategy over
the planning expert when close to the goal.

Figure 18. Result of the first version of the experiment illustrated in
figure 17, this time overlaid on the environment.

For the second version of the experiment, we connected
the taxon (this time not pre-trained), the planning and the
exploration strategies to the gating network. Figure 19 shows
the evolution of the relative Q-values through time and
figure 20 contains the selection rates for the different strategies.
This gives (as in the previous experiments) an indication of
how likely a strategy was to be selected at a certain location
and of how much the weights had differentiated. To show
such differentiation between the three competing strategies,
we plotted

∣∣z1
j − (

z2
j + z3

j

)
1
2

∣∣, where the indices {1, 2, 3}
correspond to the strategies ordered by the Q-value for the
place cell j by descending order. In other words, we plotted
the relative Q-value of the most likely strategy at each location
compared to the average of the other strategies.

The figure shows that between 700 and 900 actions, the
taxon took over the region around the goal, as expected. This
was slightly longer than in the taxon-exploration experiment
because the taxon needed to learn to move toward the stimulus

and the gating network needed to learn the best out of three
strategies. The topological map seemed to have performed
very well in this experiment as even in a small region around
the goal, this strategy was the winning strategy, although we
expected the taxon strategy to win here. This effect is shown
in detail in figure 21 which shows the relative Q-values at
the end of the experiment for each expert separately (at the
location where each expert was the most reinforced one).
Clearly, the same structure as in figure 17 is found (without
the exploration).

The exploration strategy’s selection rate dropped to a
significantly lower level than the other two strategies. The
taxon and topological map strategies’ rates approached their
final state after 1400 actions. They continued to oscillate
(depending on the robot’s trajectory), similar to figure 16(b),
but remained globally stable.

Now we still have to explain why the taxon performed
badly in this small region mainly above the goal. Supposing
that the gating network indeed worked correctly, this could
only be due to the fact that the taxon indeed performed worse
than the two competing strategies in this region. Now if we look
at the learned directions of the taxon (figure 22), we indeed
find that the taxon had not correctly learned the directions
when the goal was located in the south (−π/2) of the robot.

Figure 23 shows the visited locations of the robot. It
is clear that the robot had approached the goal (located at
(2,0.9)) from the north very few times. Hence, the taxon did
not have the possibility of learning to move toward the goal
from above. The gating network learned that it was better to
follow a random strategy (exploration or the planning when
very near the goal) here, which was the best available choice.

Finally, there was a region around (0.5,0.5) where the
topological map was not the preferred strategy in all cases.
Figure 24 shows the topological map at the end of the
experiment (step 1683). At the right of this region there
was a large gap in the map (two disjoint trajectories). There
were multiple nearby locations which pointed toward almost
opposite directions (because the map tried to find a path with
the least number of nodes). So if there was some aliasing in the
place cells in this region, the topological map could oscillate
here and thus have low performance, as we explained for the
experiment with the topological map and exploration expert
connected to the gating network. Figure 21 shows that the
gating network learned to also select the other two strategies
in this region to compensate the limitations of the planning
strategy in this zone.

Globally, we got very similar results for both versions
of the experiments. Once the robot had experienced the goal,
the exploration expert’s selection rate progressively decreased
to a very low level. The main conclusion is that the gating
network indeed worked as proposed and could easily learn to
use the topological map when farther away from the goal and
the taxon when closer. Interestingly, the system also solved the
more complex situations in which aliasing of the map caused
locally bad performance.

6.3.2. Part 2: changing the goal location. In the second
set of experiments, after 1000 steps the goal was moved to
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Figure 19. Evolution of the relative Q-values (see the text) for the second version of the experiment with taxon, topological map and
exploration experts. The taxon strategy is preferred around the goal, while the planning strategy has higher Q-values farther from the goal
(as in the simplified version). The exploration expert only wins in a small area (see the text for explanation). Taxon: dark circles; topological
map: dark squares; exploration: light pentagons; and goal: dark pentagon on the right. Axes are in meters.

Figure 20. Selection rates computed over the past 200 actions
(moving average) for all three experts. The taxon is shown as a
dashed dark line, the topological map as a dark full line and the
exploration expert as a light line. After an initial learning period, the
taxon increases in importance (approx. 700 actions) and finally
settles in a similar regime as in figure 16(b). The exploration expert
has a very low selection rate as expected.

the opposite side of the environment to test the ability of the
system to adapt to a new situation. We first present results with
the context-switching mechanism disabled.

The experiment was relatively difficult as the only visible
change to the gating network was the reward. The result from a

session (first version) is shown in figure 25. The gating network
appropriately learned to stop selecting the taxon expert on the
left side of the maze and to rather select it on the right side of
the maze (near the new goal location). Thus, the robot adapted
to the new situation. However, this process was very slow and
took approximately 8000 steps (approx. 180 trials). Even then,
the taxon remained the preferred strategy in the area around
the old goal. This is because the robot needed to unlearn the
previous associations between strategies and maze areas before
learning the new ones.

Rats typically note drastic changes in the environment and
can adapt their behavior fast when they are not overtrained—
in which case they build unflexible habits [17]. In our
own previous strategy shifting experiments with real rats, in
response to task changes, animals abandoned the previously
performed strategy after an average of ten error trials and
learned to select the new appropriate strategy in about 100
trials [8, 66]. Thus, the gating network alone is not sufficient to
produce behavioral performance and adaptability comparable
to real rats.

6.4. Context switching

To overcome this limitation (inherent to the Q-learning
algorithm), we implemented a simple context-switching
mechanism which associates with each different goal location
a different context and thus a different instance of the gating
network (see section 4.3). The idea was to anchor the detection
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Figure 21. Left: exploration; center: topological map; right: taxon. Relative Q-values for each expert at the end of the experiment at
locations where each strategy has the highest Q-value (highest selection probability). Axes are in meters.

Figure 22. Learned orientations of the taxon. Each time the goal
was located at the south of the robot (−π/2), the taxon did not learn
to move toward the stimulus.

Figure 23. Visited locations of the robot. The goal was located at
(2.0,0.9). The region right above the goal (the goal extends up to
(2.0,1.0)) had been visited much less by the robot, which explains
why the taxon had not learned the correct response when the goal
was situated at the south of the robot. Axes are in meters.

of new contexts in response to a change in goal location on the
diffusion values in the topological map of the planning expert.
While the place cell activation (i.e. the input of the gating
network) does not change when the goal is moved, the goal
values g j in the topological map do. However, the goal values
can fluctuate heavily and it is better to use the diffusion values

Figure 24. Topological map after 1683 steps. The goal is shown as a
circle on the right.

d j. The topological structure was thus used to compute the
diffusion values, which gave them a much smoother activation.

As in the first set of experiments, we first discuss the
results of the first version (no exploration expert).

The previous experiment was repeated with this
mechanism (figure 26). In total, four contexts were recruited
(two transitional). The goal was moved twice to verify that
the robot had stored the initial context and that it could
appropriately restore it. After 900 steps, the goal was moved
from the initial location on the left to the new location on
the right. Once the robot found the new goal location, the
topological map automatically produced different diffusion
values and the system could create a new context (illustrated
by the abrupt vanishing of most circles and squares at step
#1100 in figure 26). After 200 more steps, the gating network
had learned to select the taxon expert near the new goal
location and the planning expert in most of the rest of the
maze. At step #1450, the goal was moved back to the initial
location. Because the contexts had been stored, the robot
recalled the previously learned weights when the goal moved
back to its initial location. This resulted in instantaneously
restoring previously learned weights of associations of the
gating network (illustrated at step #1770 in figure 26).

In total, the robot had constructed four contexts. The first
one corresponded to the initial phase in which the robot had
yet to find the goal for the first time. The second one was the
context used to learn when the goal was on the left and when the
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Figure 25. Planning expert (squares) versus taxon (circles) (first version of the experiment). The goal location is represented by a dark
pentagon. The location of the goal is changed after 1000 steps. The gating network appropriately learned to stop selecting the taxon expert
on the left side of the maze and to rather select it on the right side of the maze (near the new goal location). However, this process was very
slow and took approximately 8000 steps, corresponding to around 180 trials. Axes in meters.

goal was moved back to the left (at the end of the experiment).
The third one was a transitional context used when the goal
had only recently changed sides. This is probably due to the
change in diffusion values of the topological map once the
robot did not get reward at the initial goal location, although
the robot had not experienced the new goal location yet. The
last one was used when the goal was found on the right side
of the maze.

With this simple extension, learning was much faster
and the robot could recall previous contexts which made the
navigation system much more useful in practice. Another small
but useful extension would be to associate a ζ i with each
context. This way the robot could approach the winner-take-all
strategy for contexts that had been learned for a longer period.

We repeated this experiment (moving goal with context
switching) with the second version (all three experts). As the
gating network learns more slowly when three strategies are
present, we moved the goal after 1683 steps (we continued the
experiment from part 1).

Figure 27 shows the selection rate of the three strategies.
Because the context-switching mechanism recruits a new set
of Q-values when the change is detected, learning in the gating
network can restart from scratch, which is faster than when the
same context is used.

In figure 28, the average Q-values for each expert are
shown (averaged over all locations). When the context switch
occurs, the weights become zero (new context). Finally,
figure 29 shows the selected context at each step. In total, again
four contexts were created of which two were transitional. The
context selection mechanism is stable (this depends on the
threshold).

6.5. Cooperation: typical trajectories

To prove that the robot could learn to make strategies
cooperate, we compared a number of trajectories of the robot
equipped with only the planning strategy or with both the
planning strategy and the taxon strategy. The goal was not
moved during the experiment.

To illustrate abrupt switching between strategies when
both strategies were used, the gating network was used with ζ

initially set to 1 and to ∞ after learning (the optimal strategy
always wins).

Figures 30(a) and (b) show two typical paths taken by the
robot to reach the goal. Figure 30(a) is a trajectory obtained
when only the planning strategy was used. Due to the limited
precision of the topological map (place cells), the robot took
pseudorandom actions near the goal. It could not plan a path
leading closer to the goal. Figure 30(b) shows the cooperation
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Figure 26. Planning expert (squares) versus taxon (circles) with the context-switching mechanism. The goal location is represented by a
dark pentagon. Learning is now faster as the robot recalls previously learned contexts and new ones. The number of steps is shown at the
top. With the context-switching meta-controller, the robot could quickly adapt its behavioral policy to a change in goal location, and could
quickly restore its initial policy when the goal was moved back to its first location. Axes in meters.

Figure 27. Selection rates computed over the past 200 actions for all
three experts. The taxon is shown as a dashed dark line, the
topological map as a dark full line and the exploration expert as a
light line. The goal was moved after 1683 steps and shortly
afterward we see a new transient phase in the selection rates because
a new context was created.

between the taxon and the planning strategy. The robot had
learned that when it was near the goal, it should rely upon
the taxon strategy as it could guide the robot when the goal

Figure 28. Average Q-values (over all locations) of the current
context for each of the strategies as a function of the number of
actions. Shortly after the goal is moved, the weights become zero,
because a new context is activated. Learning restarts in this new
context. Colors as in figure 27.

was close enough8. When only the taxon strategy was used
(not shown) and the robot was placed far away from the

8 A video illustrating such coordination of navigation strategies in the
robot in a simple example is shown here: http://chronos.isir.upmc.fr/
∼khamassi/projects/Psikharpax/VideoCaluwaerts2010.mov

22



Bioinspir. Biomim. 7 (2012) 025009 K Caluwaerts et al

Figure 29. Active context through time. When the goal changes
location (indicated by the arrow) a transitional period starts and until
the diffusion values have adapted to the new goal location
(context 3).

goal, the robot did not approach the goal and instead moved
randomly.

7. Discussion

We presented the implementation of a novel strategy selection
meta-controller allowing an autonomous robot to navigate an
initially unknown environment. The model selected among
two parallelly learned navigation strategies: a response strategy
learning directions of movements in response to perceived
cues; a place strategy building a map of place cells and
planning trajectories between different maze areas. The
strategy selection meta-controller was added to a previously
published model of multiple navigation strategies [33] which
was tested in simulation to replicate a series of rat behavioral
experimental results [34, 18].

It was shown that the animat can learn to ignore useless
strategies very quickly (e.g. an exploration expert after the goal
was found). Furthermore, the robot learned to associate states
with optimal strategies even in more complex cases, when for
example a local taxon strategy was combined with a global
but coarse path planning strategy. By introducing a simple
context-switching mechanism, the robot could adapt quickly
to changes in the environment.

The results are encouraging in two ways. First, the
simulation model was adapted and validated on a real robotic
platform, which was the main goal of this work. For the model
to work on a robotic platform, the sensor input and model
parameters had to be adapted. Because of these differences,
the results presented here cannot be compared directly with
the simulation model in the quantitative sense. However, the
general principle of common currency was shown to be flexible
and allows us to investigate the behavior of our robotic rat with
different combinations of strategies in a realistic setting.

Second, the robotic experiments revealed that a simple
context-switching mechanism can drastically increase the
performance. Such a mechanism was absent from the

simulation model as the robot could learn different situations
with a single gating network because more sensory inputs
about perfectly distinguishable landmark cues were available.
Hence, our context switching shows that good performance
can be obtained with less sensory input (only place cells feed
into the gating network) and it has the added benefit of long-
term storage of situations.

In terms of neural substrates, such meta-controller may
constitute a model of rat prefrontal functions during strategy-
shifting. Indeed, although less differentiated than primates’
PFC, the rat PFC is known to have strong functional
homologies with the lateral PFC in primates [67]. It is
important to achieve high-level cognitive processes, usually
referred to as executive functions, that is ‘complex cognitive
processes required to perform flexible and voluntary goal-
directed behaviors based on stored information in accordance
with the context’ [68]. Responses of rat PFC neurons to
working-memory components [69], spatial goals [70] and
action-outcome contingencies [71, 72] initially suggested to
several authors that the rat PFC could be the neural substrate
for a particular behavioral strategy, the planning system or
more generally for model-based learning processes—that is,
decision-making based on the learning of transitions within
the environment by means of action-outcome contingencies
[50, 48, 49]; see [8] for a review. However, lesions of the rat
PFC only impair the acquisition of goal-directed behaviors—
that is, model-based strategies such as planning [73]—but
not their expression [74]. Besides, lesions of the rat PFC
impair working-memory processes only when combined with
other factors such as the difficulty of the task, attentional
mechanisms or the requirement for flexible behaviors [68].
This suggests that the neural substrate for the planning
navigation strategy is located elsewhere in the brain, and that
the rat PFC might be involved in a higher level of decision
making and adaptation [8]. Consistent with our interpretation,
on the one hand, neural correlates of forward planning have
been found in the hippocampal system [75] and projections
from the hippocampal system to the ventral and dorsomedial
striatum appear important for model-based learning such as
the quick adaptation to changes in the association between
places and rewards [23, 76, 8, 77, 78]. On the other hand,
PFC was found to be crucial for switching between behavioral
strategies in response to task-rule changes [35–37, 79, 80].
Neural responses of the rat PFC show abrupt changes when
the animal switches its navigation strategy [81, 82, 66], and
only neurons responding for the correct strategy—i.e. the
rewarded one—are reactivated during sleep in interaction with
the hippocampus, therefore contributing to the consolidation of
the association of the right strategy with the right context [66].
Our present meta-controller—combination of a gating network
that learns to associate strategies with subparts of the task and a
context-switching detector—constitutes a proposition of how
such strategy-shifting functions may be modeled. We found
that during robotic tests in the real world as opposed to previous
simulations of the model, such a system was required on top
of the planning and taxon strategies to produce fast adaptation
to task changes. Such meta-controller may correspond to a
minimal form of cognitive control models, which are used
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(a) (b)

Figure 30. Sample trajectories of the robot: (a) only planning strategy enabled, (b) planning and taxon strategies enabled. (a) Planning
strategy only: the robot approaches the goal quickly, but cannot reach it efficiently due to the limited precision of its topological map.
(b) Planning and taxon strategies: the robot approaches the goal with the planning strategy as before and switches to the taxon strategy at the
end to precisely reach the goal.

to model the role of primates’ PFC in memorizing which
task sets are relevant in which contexts [65]. In future work,
we plan to test the robot for artificial lesions of this meta-
controller, as compared to lesions of the planning system only,
to compare with rodents behavioral data previously obtained
during various maze tasks commonly used in the neuroscience
community.

Finally, this work also has the potential of contributing
to mobile robotics. Indeed, the bio-inspired ability to
rapidly switch between several behavioral strategies and to
memorize which strategy is the most efficient and appropriate
in each subzone of the environment could help improve
current control architectures for robots. Multi-layered control
architectures with different levels of decisions have become
more and more popular in robotics and are now widely used
[83–85]. Such architectures open issues such as managing
the interactions between submodules, coordinating multiple
competing learning processes and providing alternative
solutions to motion planning in situations where such a
strategy is limited [86]. Indeed the planning strategy can be
approximative when coping with uncertainties, e.g. when there
is perceptual aliasing as we have seen here, and can also
require high computational costs and a long time to propagate
possible trajectories through mental maps [84]. In contrast, in
situations where animals have developed habits under the form
of cue-guided taxon or response strategies to solve a particular
task, they can perform quick and accurate decision making.
Moreover, in the case of a sudden change in the environment,
they can adaptively abandon habits in favor of planning new
routes toward their current goal [87]. Taking inspiration from
computational models of how the mammalian brain learns to
select appropriate strategies and to switch between strategies
as a function of a speed-accuracy trade-off may constitute the
basis of great future advances in robotics [73, 88].
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Appendix A. Visual processing and place cells

A.1. Visual system

An overview of the complete visual system is given in
figure A1. At the top, the BIPS hardware—bio-inspired
perception system hardware processors [4]—tracks objects
within the field of view of both cameras. Figure A2 gives
an overview of the BIPS hardware. The visual input (15 fps) is
passed through a set of elementary filters, similar to those in the
primary visual cortex and the prestriate cortex. Next, the so-
called tracking units compete through inhibitory connections
to track objects based on feature coherency, similar to the
extrastriate cortex. A simple matching procedure is used for
stereoscopic vision. Objects tracked by the dominant eye
(camera) are matched with objects seen by the other camera
based on their location.

The elementary features such as shape, orientation and
size are coded using neurons with Gaussian activation
functions for each direction within the field of view in layer
L2 of A1. As explained in section 2.2, the combination of this
information with the odometric system results in panoramic
information of visual cues around the robot. It is important to
note that the robot does not identify landmarks in this system,
and it only uses a constellation of detected objects.
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Figure A1. Overview of the visual system. L1: first layer of the visual system, consisting of the bio-inspired perception system hardware to
detect and track objects. L2: in this layer the features of the objects from L1 are coded on a set of neurons. It only contains information on
the objects within the field of view. L3: this layer contains a memory of all features around the robot (360 degrees). The L2 layer projects
onto this layer to update the part of the memory currently within the field of view. The odometric system is used to modulate the projections
from L2 to L3 to prevent updating L3 when L2 is expected to be unreliable. L3 is egocentric and hence there are lateral connections between
neurons of different directions which are modulated by the odometric system (rotation of the head). PC: finally, the features from L3 are
averaged (weighted) over all directions and project onto the place cells. BIPS: bio-inspired perception system [4]. GNG: Growing Neural
Gas [44]. BMU: best matching unit.

A.2. Visual data clustering for place cell building

Different techniques with biologically inspired equivalents are
available: Hebbian-like learning rules, principal component
analysis [42], independent component analysis [89], SOMs
[43], etc.

We initially tried linear approaches such as principal
component analysis [42] to check if the inputs were linearly
separable, but the number of regions (place fields) that could
be recognized was too low (the precision of the place cells
would be too low to be usable).

A popular nonlinear alternative for clustering are SOMs
[43]. In a SOM, a fixed number of neurons is used with a

predefined topology. Normally a two-dimensional topology is
used, so the SOM performs an N-to-2-dimensional mapping.

The goal of the SOM is to move the neurons in the high-
dimensional input space to approach the topology of the input.
For each input, the Euclidean distance between the input and
each neuron of the SOM is computed. The closest neuron is
called the BMU (best matching unit). The SOM is now updated
by moving the BMU closer to the input (weighted sum) as well
as its neighbors. One can use a fixed neighborhood or a decay
factor for this.

SOMs are conceptually simple and they are a very
powerful tool to discover clusters in a dataset. A first
disadvantage of SOMs is that the number of neurons is fixed.
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Figure A2. Details of the BIPS system [4]. First elementary features
are extracted and then objects are tracked by the tracking units.

This problem can be overcome by trying out different sizes
and visualizing the result. A more important problem is that
the topology is fixed, i.e. the neighbors of a neuron stay the
same. This problem is difficult to overcome when the topology
of the input is highly irregular.

A last problem is that one typically chooses a large number
of neurons to create clearly distinct zones in the output. While
this is not a disadvantage for visualization, one would prefer
a small number of output neurons (i.e. place cells) in which
each neuron codes for a distinct zone in the input space.

To overcome these problems we moved to a different and
closely related type of artificial neural network, the so-called
GNG [44]. GNGs are created incrementally by inserting a new
neuron after a number of input samples by splitting the neuron
with the largest accumulated error (sum of distances) into two
new neurons.

The topology itself is also learned by keeping the
neighborhood of the neurons up to date. GNGs are generally
better at approximating input topologies with high-error zones
than SOMs, because the topology is not kept fixed and neurons
are placed where they are most useful. A SOM can be seen
as a predefined graph of which only the value of each node
is updated (their position). A GNG also learns the graph by
inserting nodes and edges. Both SOMs and GNGs are vaguely
similar to the classical k-means algorithm [90], but the update
rules are local.

We used the modular toolkit for data processing
implementation [91] of the GNG algorithm with the default
parameters. The distance measure used was the Euclidean
distance, as decorrelating the input variables with the
Mahalanobis distance [92] did not improve the quality of the
results.

We now compute the input to the GNG layer as follows,
where d again refers to the orientation of the neuron, j to a
feature and j = Nfeat to a trust neuron:

uPC
j (t) =

∑
d nL3

d,Nfeat
(t)nL3

d, j(t)∑
d nL3

d,Nfeat
(t)nL3

d,0(t) . . .
∑

d nL3
d,Nfeat

(t)nL3
d,Nfeat−1(t)

.

(A.1)

This equation is valid for all features except for the
confidence neurons, which do not project onto the GNG layer
(they only modulate the other inputs).

Because the GNG algorithm inserts a new neuron after a
fixed number of samples, the number of neurons would grow
out of bounds after a while. To solve this problem, we fix the
maximum number of neurons. This way, the animat creates
new neurons at the beginning of the exploration and is forced
to reuse the existing neurons when the maximum number of
neurons is reached.

For a sample to be considered by the GNG layer for
learning, the mean trust level

(∑
j n j

conf(t)/NSC
)

must be
greater than 0.75. This limit was found empirically as the
quality of the place cells stopped improving above this value.
A limit of 0.75 means that the robot needs to be able to see
about 270 degrees of its environment from time to time. This
is mostly due to the fact that we are using an open environment
with resembling cues and a very noisy and unstable input. In a
labyrinth with distinct cues in the corridors, we estimate that
the robot can navigate with much less information.

Another solution to enable navigation with a lower mean
trust level is to use a GNG layer with much more neurons
and to perform a longer exploration. This way the robot will
learn orientation-dependent place cells. The problem is that
the planning strategy needs to learn much more connections,
because multiple representations will exist for the same
place.

A.3. Place cell activation

The activation of the place cell is computed as follows:

uPC
k =

∑O
o=1 nL3

conf,onL3
feat,o,k∥∥nL3

conf
T

nL3
feat

∥∥ (A.2)

� j = ‖v j − uPC‖ (A.3)

rPC
j = �ν

j

maxi�
ν
i ‖�‖ . (A.4)

Here v j are the weights of the jth node in the GNG (the jth
place cell). The index o stands for orientation (each orientation
has a set of feature neurons and a trust neuron). nL3

conf,o is the
oth element of the vector (one element per direction) of the
vector of trust neurons nL3

conf. Similarly, nL3
feat,o,k is the neuron

of the kth feature for direction o. Hence, nL3
feat is an O by F

matrix with O the number of orientations and F the number of
features. We used O = 960 to prevent aliasing in L3 when
the robot turns its head. As we sum over all orientations,
the overhead of a large O only influences L3. ν defines
the smoothness of the place cell activation and is a tuning
parameter.

Throughout the main text, we use ¯nL3
conf to refer to the mean

trust. This is defined naı̈vely as

¯nL3
conf =

∑O
o=1 nL3

conf,o

O
. (A.5)
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Appendix B. List of parameters

Name Value Explanation Remarks

NPC 100 No of place cells Arbitrary, but limits the precision of the gating network/topological map.
NPFC 98 No of nodes in topological map Arbitrary, but here fixed to NPC, minus the place cells that are never the BMU.
NANG 36 No of direction neurons Per connection in the topological map.
NDIST 35 No of distance neurons Per connection in the topological map.
β 0.75 Min. trust for map/path update
ι 0.7 Goal diffusion factor
ζ 1 or ∞ Selection probability exponent Lower values speed up learning, higher values make the robot follow

an optimal policy.
λ 0.76 GN eligibility traces decay factor
ξ 0.05 GN learning rate
γ 0.8 Future reward decay factor
τforget 0.02 Reward location decay rate
τlearn 0.2 Reward location learn rate
ν 2 Place cells smoothness
NGP 36 No of taxon input directions Arbitrary, the precision can be higher than 2π/NGP degrees

because it is a population code.
Ndir 36 No of taxon output directions See NGP

η 0.1 Taxon learning rate
α 0.8 Taxon future reward discount rate
κ 0.5 Taxon eligibility traces decay factor
ω π/8 Taxon action generalization

References

[1] Meyer J-A, Guillot A, Girard B, Khamassi M, Pirim P
and Berthoz A 2005 The Psikharpax project: towards
building an artificial rat Robot. Auton. Syst. 50 211–23

[2] N’Guyen S, Pirim P and Meyer J-A 2010 Tactile texture
discrimination in the robot-rat Psikharpax BIOSIGNALS
2010: 3rd Int. Conf. on Bio-Inspired Systems and Signal
Processing (Valencia, Spain) pp 74–81

[3] Bernard M, N’Guyen S, Pirim P, Gas B and Meyer J-A 2010
Phonotaxis behavior in the artificial rat Psikharpax
IRIS2010: Int. Symp. on Robotics and Intelligent Sensors
(Nagoya, Japan) pp 118–22

[4] N’Guyen S 2010 Mise au point du système vibrissal du
robot-rat Psikharpax et contribution à la fusion de ses
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4.2 Habit learning in a humanoid robot

4.2.1 Renaudo, Girard, Chatila, Khamassi (2014)



Design of a Control Architecture for Habit
Learning in Robots

Erwan Renaudo1,2, Benôıt Girard1,2, Raja Chatila1,2, and Mehdi Khamassi1,2

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, Institut des Systèmes
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Abstract. Researches in psychology and neuroscience have identified
multiple decision systems in mammals, enabling control of behavior to
shift with training and familiarity of the environment from a goal-directed
system to a habitual system. The former relies on the explicit estimation
of future consequences of actions through planning towards a particular
goal, which makes decision time longer but produces rapid adaptation to
changes in the environment. The latter learns to associate values to par-
ticular stimulus-response associations, leading to quick reactive decision-
making but slow relearning in response to environmental changes. Com-
putational neuroscience models have formalized this as a coordination of
model-based and model-free reinforcement learning. From this inspira-
tion we hypothesize that it could enable robots to learn habits, detect
when these habits are appropriate and thus avoid long and costly com-
putations of the planning system. We illustrate this in a simple repetitive
cube-pushing task on a conveyor belt, where a speed-accuracy trade-off is
required. We show that the two systems have complementary advantages
in these tasks, which can be combined for performance improvement.

1 Keywords

Adaptive Behaviour • Habit Learning • Reinforcement Learning • Robotic Ar-
chitecture

2 Introduction

Researches in the field of instrumental conditioning in psychology have shown
that rodents learning to press a lever in order to get food progressively shift
from a goal-directed decision system to a habitual system [7,8]. After moderate
training, devaluation of the outcome (e.g. pairing it with illness) leads the animal
to quickly stop pressing the lever. In contrast, after extensive training the animal
perseveres with pressing the lever even after outcome devaluation - hence “habit”
[1,21]. This has been hypothesized to enable the animal to avoid slow and costly
decision-making through planning by shifting to reactive decision-making when



the stability of the environment makes habits reliable, a capacity which is shared
with humans and other mammals [2].

In contrast, current robots are still rarely equipped with efficient online learn-
ing abilities and mostly rely on a single planning decision-making system, thus
not providing alternative solutions to motion planning in situations where such
strategy is limited [17]. Indeed the planning strategy can be approximative when
coping with uncertainties, e.g. when there is perceptual aliasing [4], and can also
require high computational costs and long time to propagate possible trajecto-
ries through internal representations [10]. We have previously shown that taking
inspiration from the way rodents shift between different navigation strategies
– a capacity which has been shown to be analogous to the shifts between goal-
directed and habitual decision systems [14] – can be applied to a robotic platform
to enable to automatically exploit the advantages of each strategy [4,3]. How-
ever, these experiments only involved navigation behaviors from one location to
another. To our knowledge, no application has yet been made of the coordination
of goal-directed and habitual systems to robotic tasks.

In this work, we illustrate the application of a decision architecture combin-
ing a goal-directed expert with a habitual one to a simple task where a simulated
robot have to learn to repeat the less costly sequence of actions to push a series
of cubes arriving in front of him on a conveyor belt. We build our algorithm on
computational neuroscience models which have shown that combining model-
based and model-free reinforcement learning can accurately reproduce proper-
ties of the competition between goal-directed and habitual systems [5,13,9]. In
these models, the goal-directed system is modelled with model-based reinforce-
ment learning in the sense that the system plans sequences of actions towards
a particular goal by using the transition and reward functions. In parallel, the
model-free reinforcement learning progressively learns by trial-and-error the Q-
values associated to different state-action couples. The criterion for switching
from one system to the other is based on the measure of uncertainty in the
model-free system: the less variance there is in the Q-values, the more reliable
the model-free habitual system is considered and the more likely it will control
the behavior of the simulated agents.

In contrast to these previous computational neuroscience models, we do not
a priori give the transition and reward functions (i.e. the considered model of
the task) to the algorithm but rather make it learn it automatically by observ-
ing experienced transitions and rewards. Moreover, we arbitrate without bias
between systems, as the selection of each one is random and equiprobable. The
task that we simulate requiring a certain balance between speed and accuracy
so as not to skip some cubes coming on the conveyor belt, our simulations show
that the two systems have complementary advantages that can be combined for
a highest performance. In a first series of simulations where the systems are con-
trolling individually the agent, we characterize their performances in a constant
belt velocity and constant distance between cubes setup and when the belt ve-
locity is changed during the simulation. We show that each system is performing
differently to these conditions as the model-free is more efficient than the model-



based to exploit the stability in the environment, but the model-based adapts
quickly to condition changes in the environment. We then show how combining
the two systems and switching control among them, even with a basic rule, can
improve the robot policy and gives it the ability to perform well both in a stable
environment and during transitional phases to another stable setup, with the
same architecture.

3 Materials and Methods

3.1 Global Architecture
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Fig. 1: Robotic organisation of modules and Habitual Expert structure

Our Decision Layer [10] consists of two Experts that learn a policy and a
Meta-Controller that supervises the Experts’ performance (Fig. 1a). The Flexible
Expert is a Model-Based Reinforcement Learning agent and the Habitual Expert
is a Model Free reinforcement learning agent [19].

These modules receive the current State S ∈ S from a Perception Module and
choose their actions in a set A. Each Expert decides, from the current State and
their knowledge, which action to take. In parallel, the Meta-Controller decides
which Expert is the most efficient in the current State and allows it to send its
action choice to be executed.

3.2 Habitual Expert

The Habitual Expert (MF) is implemented as a 1-layer neural network. It learns
directly the relevant state-action policy without an internal representation of
transitions between states of the world (hence the term Model Free). Propagating



the values from input S (and bias b) to action output A is computationally cheap,
but learning the whole policy is long: only the experienced state-action value is
updated. Learning a new policy to adapt to a new environment configuration is
longer than just learning the first policy so this expert is reluctant to changes.

At(i) = Wt · St + bt(i) . (1)

The connection weights Wt that learn the State-Action association are up-
dated according to a Qlearning rule [20]: the connection between input neurons
encoding the previous State St−1 and the output neuron of the action done is
modified with an amount depending on the reward R obtained.

δ = Rt(st−1, at−1) + γMF ·maxa (Wt−1(a) · St)− (Wt−1(at−1) · St−1) . (2)

Wt(at−1) = Wt−1(at−1) + αMF · δ . (3)

αMF : learning rate, γMF : decay factor.
Each action activity is interpreted as the probability P (A(i)) of taking ac-

tion A(i), using a Softmax rule (4). The decision is taken stochastically in the
resulting distribution (τMF : temperature.).

Pt(At(i)) =
exp

(
At(i)
τMF

)

∑
j exp

(
At(j)
τMF

) . (4)

3.3 Flexible Expert

The Flexible Expert (MB) is a Model Based Reinforcement Learning agent. It
learns a model of the Transition and Reward functions of the task. The former is
a cyclic graph of States connected by Actions, the latter a table of (State, Action)
and Reward association. Decisions are taken based on these representations of
the world. As the problem topology is modeled, a change experienced in the
environment (ie. a transition leads to a new state) can quickly be handled by
updating the model, allowing the next decision to be adapted to the changes.

The Reward function is learned from the experienced transition and is di-
rectly the instant reward obtained Rt(S,A) = Rt. The Transition function is
progressively learned according to (5). The probability T of experienced transi-

tion S
A−→ S′ is updated at learning rate αMB .

Tt(S,A, S
′) = Tt−1(S,A, S′) + αMB · (1− Tt−1(S,A, S′)) . (5)

Planning with the models consists in computing the Quality Q(S,A) of per-
forming action A in the given state S. It is done iteratively by propagating the
known rewards and refining the estimated Quality value according to the Tran-
sition function until convergence (γMB : decay factor):



Qt(s, a) = max

(
Rt(s, a), (γMB ·

∑

s′

Tt−1(s, a, s′) ·max
a′

Qt(s
′, a′))

)
. (6)

The Decision is also taken with the softmax rule (cf. Eq. (4)).
The drawback of such a method comes from the increasing size of the transi-

tion model. Planning becomes more and more time consuming and the Expert is
less and less reactive. As the environment evolves, even in a predictable way, the
action decided from the perceived State at St−1 may be irrelevant when acting
in State St. To improve the Flexible Expert performance and keep a manageable
model while dimensionality increases, the following features are implemented :

1. Planning in the graph is bounded in time : if planning is longer than a
certain time chosen in agreement with the task dynamics, the computation
of Quality is stopped and the approximated values are used for decision, as
it is more important to be reactive enough than having accurate values in
this task.

2. As the best policy is learnt, fewer and fewer states are visited, producing a
peaked distribution VS of states visits. The allocated computation time being
limited, planning should only consider the most visited states. These states
are hypothetized to be the most interesting for the Expert, as the policy
focuses on a subset of all experienced states. A subgraph of the N most
visited states is extracted to have their Q-values computed as a priority. To
have a relevant value for N , we compute the entropy of the VS distribution,
getting a measure of the model organisation :

H(VS) = −
∑

i∈S
P (i) · log2 (P (i)) with P (i) =

Card(VSi
)

Card(VS)
. (7)

We compare this measure to the maximal entropy of the model, deducing a
ratio Rc of the compressibility of the State distribution representation :

Rc =
H(VS)

Hmax(VS)
with Hmax(VS) = log2|S| . (8)

This method guides the planification to the most visited states. The draw-
back is that it may erroneously limit the use of the model during early states
of learning where the number of states is small but the distribution already
presents a contrasted shape. In this case, planning in the full graph is still
possible at reasonable cost. To avoid this behaviour, Rc is transformed into
a Ratio Rn - depending on the known number of nodes - given the following
function (9).

Rn = (1− ω) + ω ·Rc with weight ω =
1

1 + e−σ|S|
. (9)

The final number of states to plan on is a proportion of the number of known
states |S| :

N = Rn · |S| . (10)



3.4 Meta-Controller

The Meta-Controller gives the control to one of the Experts given a criterion.
It allows only one of the Experts to send its decision to the Execution Layer. It
also sends back the decision to both Experts, such that they can update their
knowledge about its relevance in the current state according to the feedback,
and cooperate in learning the best policy. The criterion considered in this work
is an equiprobable random selection of each Expert, as a proof of concept of the
interest of combining the two.

4 Results

4.1 Experiment Description

Blocks direction

Conveyor Belt

Robot
arm

Ca

Robot
camera

Cc

Block

Fig. 2: The experimental setup : a discrete conveyor belt is carrying blocks in
front of the robot. The robot’s camera points at space Cc and its arm can reach
the space in Ca. Blocks are going from left to right such that a block can be first
seen and then touched.

We evaluated our Architecture performance in the simulation of a simple task
of block pushing. The system has been implemented using the ROS middleware
[18]. Our simulated robot is facing a conveyor belt on which are placed blocks.
These blocks are characterized by their velocity (BS) and the distance between
two blocks (inter-block distance, or IBD). These simulation parameters may be
constant or evolve during the experiment, leading to four different cases. In this
work, we focused on :

1. Regular case : inter-block distance is constant, speed of blocks is constant.
2. Speed Shift case : IBD is constant, BS changes during experiment.

In our setup, acting is required to update the perception (see Sect. 4.2 for
Perception Module description). The robot has three available actions :

1. Do nothing (DN) : this action doesn’t modify the environment nor bring
perceptual information. It is a waiting action with no cost (Rt = 0) when
executed.

2. Look Cam (LC) : this action doesn’t modify the environment but updates
the view modality about the presence of a block in Cc. It has a cost of
Rt = −0.03.

3. Push Arm (PA) : this action can modify the environment : if a block is
in Ca and PA is done, it is removed from the belt. The contact modality is
updated about the perceived block. The action costs Rt = −0.03 but brings
a positive reward when a block is pushed for a final reward of Rt = 0.97).



4.2 Perception Module

The Perception Module (Fig. 3) transforms Perceptions into States. Our simu-
lated robot is equipped with a visual block detector simulated camera (signal
pbs) and a tactile binary sensor on its arm (signal pbt). When the corresponding
action is selected (LookCam for pbs and PushArm for (pbt), these informations
update memories where each element is one step further in the past. Each modal-
ity has its own memory where older block perceptions are recorded. Memories
(Mbs,Mbt) have a finite length (8 elements) such that the system only considers
closest perceptions. Each configuration of both memories defines a unique State,
used by the Experts.

E
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v
ir
on

m
en
t pbt

pbs

X

XX

M bt

M bs

mbt
t (0)

mbs
t (0)

X

X

X

State S

Fig. 3: Perception module for our task. The X corresponds to a memorized block.
The system visually perceives a block and updates the corresponding memory.

The perceptive input are binary and their perceptions are determined ac-
cording to (11).

pbt = Ca · PushArm, pbs = Cc · LookCam . (11)

Memories can evolve in two ways : if enough time has elapsed (State Max
Duration = 0.1s here) or when a new perception brings information. In both
cases, all elements from the memory are shifted to the next timestep. Information
that exceeds memory length is forgotten. The first memory element is populated
with the relevant perceptive data.




mbs,bt
t (i) = mbs,bt

t−1 (i− 1) ∀i ∈ |M | .

mbs,bt
t (0) = pbs,bt .

(12)

4.3 Parameters search

In the following, we consider : BS = 8 spaces/s (optimal policy : DN-DN-DN-
DN-PA), IBD = 4 spaces/block.

We first searched for the best parametrization for both Experts control-
ling individually the robot, in the Regular case. An Expert is performant if



it maximises the obtained Cumulative Reward (CR) and minimizes the stan-
dard deviation of CR over runs. We tested for each Expert the combination of
3 to 5 values (for MB and MF : αMB,MF ∈ {0.01, 0.05, 0.1, 0.5, 0.9}, γMB,MF ∈
{0.5, 0.98, 0.9999}, τMB,MF ∈ {0.05, 0.1, 0.5, 0.9} plus τMB = 0.01) :

For the best solutions, we favor the most rewarding in mean and then the less
varying. We choose αMB = 0.5, γMB = 0.5, τMB = 0.1 and αMF = 0.1, γMF =
0.9999, τMF = 0.05.

4.4 Individual experts performances
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Fig. 4: Policy evaluations. (4a) histogram of approximated slopes. Solid lines are
means of CR slope for each Expert, dashed lines the standard deviation (4b)
Mean CR slope over time. The slope is approximated every 70 decisions.

Each Expert is tested individually in the Regular and Speed Shift cases
(simulation parameters : see Sect. 4.3 ; in Speed Shift case, we change BS to
13.2 spaces/s at 1250 decisions, which correspond to an optimal DN-DN-PA pol-
icy). The Cumulative Reward is linearly approximated from its 15% last values
to evaluate the discovered policy. For the Speed shift case, we also approximate
CR before the speed shift (on the same duration) and compare it to the first
approximation to evaluate the sensitivity of the policy to speed shift. The slope
of these approximations measures the quality of the policy as it depends on the
obtained rewards. From figure 4a, we observe that the MF discovers and follows
better policies in mean but tends to be more exploring than the MB with a
larger deviation in slopes values. In the Regular case, the MF is more relevant
than the MB to obtain the best performance as possible. This is due to the low



cost and high precision of the Q-values acquired by the MF. In contrast, the MB
learns a model of the task whose number of states rapidly grows, making the
planning process slow, costly and relying on approximations of action values.

In the Speed Shift case, we observe a break in Cumulative reward for the
MF. Figure 4b shows that in mean, the MB performance is less sensitive to the
change than the MF : the environmental change induces a loss that is more than
twice higher in the MF than in the MB. After the shift and until the end of
simulation, both MB and MF are performing similarly. This behavior can be
explained by the long time required by the MF to relearn the Q-values of a new
efficient action sequence, what doesn’t happen in the given time. In contrast, a
single exposure of the MB to the new sequence of events imposed by the speed
shift enables it to change its model of the task and thus to plan a new sequence
of actions, but it still suffer from the approximation of action values to find a
better policy.

Both Experts exhibit a complementary role : while the MF is best suited
to optimize the policy in stable conditions, the MB can better handle transient
phases following environmental changes.

4.5 Combination of Experts
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Fig. 5: Mean Cumulative Reward obtained from individual Experts and their
Combination (solid line).

The whole architecture (MB+MF, supervised by Meta-Controller) is then
tested on both cases, with the same setup. In the Regular case, figure 5a shows
that the strategy of selecting stochastically each Expert improves the mean per-
formance of the robot compared to using only the MB. On the other hand, as the



Experts are chosen randomly, the robot is not relying only on the MF, which is
the most efficient strategy in the Regular case. This explains that the MB+MF
performance is still worse than the MF only. In the Speed Shift case, figure 5b
shows that the change in the environment doesn’t affect significantly the robot’s
performance, as it benefits from the MB ability to quickly replan an adapted
policy. The Combination of Experts robustness to changes compensates for the
advantage gained by the MF before the shift. At the end of the simulation, the
MF hasn’t found a policy that is at least as good as before the shift (though the
task allows a higher rate of reward, as there are more blocks to push on).

5 Discussion

This work presented the decision layer of a robotic control architecture able
to learn habits, taking inspiration from computational neuroscience models [13]
and multiple reinforcement learning systems applied to navigation [9,4]. The
model has two different Experts, or strategies, one habitual – that learns State-
Action association, and make quick decisions, but slowly adapts its policy when
the environment changes – and one flexible – that maintains a representation
of the environment and the task, can adapt quickly but is slow in deciding
as it evaluates action outcomes. These strategies are selected depending on an
arbitration criterion by a Meta-Controller. The criterion used in this work is an
random equiprobable selection of Experts, as a proof-of-concept of the interest
of combining the two.

We first highlighted each Expert properties in a Regular and a Speed Shift
cases. We showed that, as expected, the Habitual Expert learns better policies
than the Flexible Expert when the environment is stable, but a transient phase
like a shift in belt speed, making the policy less appropriate, will result in a long
lower performance period. The learnt Flexible Expert policies are less performant
in mean as the computation time constraint and the focused planning lead to
less precise Q-values when the number of states grows, and a sub-optimal policy.
On the other hand, updating its model allows the Flexible Expert to be less
affected by the speed shift. We then showed that a random selection of each
Experts is able to benefit from the shift robustness of the Flexible Expert while
the rewarding policies from the Habitual Expert improve the global performance
of the robot.

These results show that the multiple reinforcement learning systems approach
is relevant to handle complex environments that can evolve during the robot op-
erating period. The combination at same level of MB and MF can improve the
robot autonomy provided that the MB is designed to be reactive to the environ-
ment dynamics. It has to be able to decide in parallel with the MF in order to
remain useful for control. Indeed, a classical task in neuroscience is usually mod-
elled by a Markov Decision Process with few states and actions (e.g. intrumental
task of pressing a lever and entering a magazine to get food [6,13,16]) but the



dimensionality is much higher when reinforcement learning is applied to robotics
[12,15], as states are discretized from robot’s perceptions. In our task, we end
up with several hundreds of states and we need to bound the computation time
and focus planning on the hypothesized most interesting states. This justifies
the need for a mechanism that manage the known states within the MB system,
a proposition which has recently been applied to Computational Neuroscience
models [11]. In this work, we first tested an exponential forgetting mechanism
on the transition model to remove unvisited paths. As this mechanism doesn’t
strongly affect performance and planning time is still increasing with the growth
of states, we switched to the time constraint and focused planning mechanism
(described in Sect. 3.3). The increase in performance suggests that planning
with a complex model requires a budgeted approach that only considers the rel-
evant sub-model, instead of pruning parts of the model related to irrelevant old
experiences.

This work also generalizes the concepts from [4] for the control of robots. The
multiple reinforcement learning systems approach can be applied not only for
navigation but also on a wider variety of tasks, provided that the robot is able
to perform the relevant actions. As our system can rely on the Habitual Expert,
our architecture can benefit from its properties of being quick to decide the
next action when the task is stationary. On the other hand, our Flexible Expert
can be compared to the robotic decision-making systems, that are based mostly
on planning algorithms that use a representation of the world [17]. The latter
usually rely on a provided representation whereas our Flexible Expert learns
its model and updates it according to changes in the task. This enhances the
behavioral adaptability of the robot in non-stationary environments. We need to
further investigate the arbitration criterion between Experts to get the optimal
alternations and benefit from the whole architecture.
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5.1 Discussion of the results

5.1.1 Discussion of the modelling results

Chapter 2 presented two computational models based on the model-
based / model-free reinforcement learning framework. These models were
both designed to account for behavioral data in rodents, the former during
navigation tasks, the latter during a Pavlovian conditioning paradigm.

The first model has been designed with Mark D. Humphries. The aim
was to show the relevance of using the model-based / model-free reinfor-
cement learning computational framework to categorize navigation stra-
tegies in rodents and their underlying neural substrates (Khamassi and
Humphries 2012). The proposed computational framework suggests that
navigation strategies can be categorized as model-based or model-free,
depending on the usage of information rather than on the type of infor-
mation (e.g. cue versus place) as previous taxonomies propose. It moreover
proposes that the Ventral Striatum (VS) participates to the model-building
part of the involved computational processes.

191
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The second part of the chapter presented the work of PhD student Flo-
rian Lesaint and showed that a computational model for the coordination
of MB and MF RL enables to reproduce inter-individual behavioral and
neurophysiological differences observed in rats called sign-trackers and
goal-trackers in a Pavlovian conditioning paradigm (Lesaint et al. 2014). The
simulations suggest that the behavior of both types of animals is the re-
sult of a weighted sum of MB and MF learning systems, with sign-trackers’
behavior relying on a stronger weighting of the MF system while goal-
trackers’ behavior can be reproduced by a stronger weighting of the MB
system. The model also explains why learning in goal-trackers has been
experimentally shown to be dopamine-independent while this is not the
case in sign-trackers.

Importantly, both models gave birth to a series of experimentally tes-
table predictions, some having been written in a recently submitted paper
(Lesaint et al. submitted). Thus a further validation of these models will
require the experimental observation of these predictions.

However, these work have for the moment addressed separately the
computational mechanisms underlying Pavlovian conditioning and ope-
rant behavior. In contrast, Pavlovian and instrumental conditioning are
known to interact (e.g. see Corbit and Balleine (2011)), and some model-
lers have proposed that the coordination of three learning systems under-
lie such interactions (van der Meer et al. 2012). Thus further investigations
are required to understand how multiple parallel learning processes can
be combined in a single model to account for a variety of rat behavioral
data in various conditions. These issues will be further addressed in the
planned research project presented in section 5.2.

5.1.2 Other currently supervised modelling work

The dual reinforcement learning framework previously proposed
(Daw et al. 2005, Samejima and Doya 2007) and adopted throughout this
manuscript has nevertheless an important explanatory power in that it
can also account for data in humans during similar conditioning para-
digms than those used in rodents (Balleine and O’Doherty 2010), as well
as during other paradigms.

The work of Guillaume Viejo, a first year PhD student that I co-
supervise with Benoît Girard, has the goal of proposing a new compu-
tational model for the coordination of learning systems to explain human
behavior in tasks involving the interaction between reinforcement learning
and working memory processes. The corresponding data were recorded
by Andrea Brovelli, at CNRS in Marseille, during a task where human
subjects learn through trial-and-error the association between visual sti-
muli and finger movements. Once an association is learned, it has to be
exploited during a series of repetition trials in parallel to the acquisition of
other associations. Functional magnetic resonance imaging (fMRI) results
during this task suggest that the dorsal striatum host complementary com-
putations that may differentially support goal-directed and habitual pro-
cesses (Brovelli et al. 2011) in the form of a dynamical interplay rather than
a serial recruitment of systems.

The computational work of Collins and Frank (2012) has shown that
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this type of task involves both working-memory and reinforcement lear-
ning processes, without however explicitly modelling the temporal aspect
of memory manipulation. Here we develop a dual-system computational
model of the two systems that can predict both performance (i.e., partici-
pant choices) and modulations in reaction times during learning. One of
the two systems is a model-free RL algorithm. The other one is a Baye-
sian working-memory algorithm which works similarly to a model-based
system by searching for information in the history of previous trials. This
inference process is stopped as soon as the uncertainty on the action to
perform decreases below a certain threshold. An abstract has been sub-
mitted to the 2014 Computational Neuroscience meeting.

A last supervised computational modelling work addresses the ques-
tion of how dopamine signals differentially impact striatal neurons with
D1 and D2 receptors in a physiologically and anatomically plausible com-
putational model of the primate basal ganglia. This work constitutes the
second part of Jean Bellot’s PhD thesis and is based on a biologically
plausible model of primates basal ganglia, previously developed at ISIR,
and which considers existing connections often neglected in the literature
(Liénard and Girard 2013). Indeed, most of current basal ganglia models
assume the existence of two segregated pathways : the direct pathway
associated with reward and the indirect pathway associated with punish-
ment (Frank 2005). However, if this dissociation seems to exist in mice,
anatomical studies in primates revealed that these two pathways are not
dissociated (Parent and Hazrati 1995a;b). While theoretical RL models are
appropriate to reproduce behavior and global properties of neurophysio-
logicaly activity, such a neurocomputational study can contribute in cap-
turing anatomical and physiological data at a finner scale. In particular,
we are investigating the ability of the model to capture differences in re-
ward and punishment sensitivity, with high and low-levels of dopamine,
and beta oscillations observed in Parkinsonian patients.

5.1.3 Discussion of the model-based analyses’ results

Chapter 3 presented work employing the model-based analysis of neu-
rophysiological data approach. The work is presented under the form of
two journal papers, one in press, the other about to be submitted, aiming
at testing model predictions about hypothesized neural activities under-
lying behavioral adaptation, and using the computational models to more
precisely measure information related to particular computational mecha-
nisms in neural activity.

The first one started during my postdoctoral training period in the
groups of Emmanuel Procyk and Peter F. Dominey at INSERM in Lyon,
and showed neural substrates of adaptive regulation of reinforcement lear-
ning parameters in the prefrontal cortical network during monkey beha-
vioral adaptation (Khamassi et al. 2014). The results show differences in
activity response patterns between the Anterior Cingulate Cortex (ACC)
and Lateral Prefrontal Cortex (LPFC) suggesting a role of ACC in inte-
grating reinforcement-based information to regulate decision functions in
LPFC under varying control levels, which could be interpreted in terms of
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varying levels of the exploration parameter in the reinforcement learning
model.

The second one presented the work of PhD student Jean Bellot and
showed model-based analyses of dopamine neurons’ single-unit recor-
dings during a decision-making task in rats (Bellot et al. in preparation).
The work shows that in contrast to previous reports, dopamine activity
in this task only partially reflects the computation of a reward prediction
error and also incorporates information about the value function, which
is consistent with recent dopamine recordings challenging the classical
theory (Howe et al. 2013). Moreover, the dynamics of this signal appears
to be partly disconnected from the dynamics of observed behavioral adap-
tation, suggesting that behavior in this task is not influenced by a single
learning system.

These two studies show that a computational model parametrized to
fit subjects’ observed behavior during a task can be used efficiently as
regressors of the recorded neural activity in order to make more quanti-
tative and computationally-grounded information measures in biological
data. These two studies also contribute to confirming hypothesized disso-
ciations between learning processes in the prefrontal cortex and the basal
ganglia. However, the picture is of course incomplete. Dopamine neurons
are known to also project to the prefrontal cortex (Haber et al. 2000, Lam-
mel et al. 2008), with a hypothesized different function (Doya 2008), but
whose relation to the model-based / model-free RL computational frame-
work is not yet clear. Neither do these contributions account for different
patterns of dopaminergic neurons’ phasic responses (Matsumoto and Hi-
kosaka 2009, Fiorillo 2013) and which appear to underlie different func-
tions for learning. These issues will be further addressed in the planned
research project presented in section 5.2.

5.1.4 Other currently supervised biological data analyses work

Another supervised work currently pursued and which employs
model-based analyses of biological data is based on the Master research
internship of Nassim Aklil. We are comparing the ability of different RL al-
gorithms to reproduce rat behavioral data in a non-stationary multi-armed
bandit task under different uncertainty levels. These data have been collec-
ted by our collaborators Alain Marchand and Etienne Coutureau at CNRS
in Bordeaux, within the frame of a national ANR Learning Under Uncer-
tainty project under reference ANR-11-BSV4-006, coordinated by Emma-
nuel Procyk at INSERM in Lyon.

One interesting aspect of this work is that classical model-free RL algo-
rithms are compared with other algorithms non-commonly used in Neu-
roscience such as the upper confidence bound (UCB) method (Auer et al.
2002). This method has the advantage of proposing an optimal solution
for the resolution of the exploration-exploitation trade-off. With these ana-
lyses, we are testing the hypotheses that rat behavior in this task requires
a meta-learning process occuring in parallel to RL mechanisms for the dy-
namical regulation of the exploration parameter. We will then investigate
whether the model can help us capture changes in exploration levels but
not in learning performance observed in animals under injections of a do-
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pamine antagonist called flupentixol (Marchand et al. 2014). This could
help us further confirm the hypothesized role of dopamine in the regu-
lation of the exploration-exploitation trade-off which we proposed in a
previous computational modelling work (Humphries et al. 2012).

5.1.5 Discussion of robotic results

The work presented in Chapter 4 shows that transferring principles
from biology for the coordination of model-based and model-free rein-
forcement learning mechanisms to robotic devices can enable flexible and
adaptive behavior in autonomous robots. The models that were imple-
mented in these robots could autonomously learn which learning system
is the most appropriate and efficient to control the robot’s behavior at any
given moment.

Interestingly, these robotic implementations can help us learn more
about properties of the tested models coming from Computational Neu-
roscience. First, whereas the classical hypothesis about the coordination
of learning systems underlying animal behavior is that of a sequential
activation (Daw et al. 2005, Yin and Knowlton 2006) – the model-based
goal-directed system would control behavior during the initial phase of
learning, that is during a first block of learning trials, while the model-
free habitual system would take over after sufficient amount of training,
that is during late blocks of learning trials –, here we found a cooperation
between learning systems within single trials of the navigation task (Ca-
luwaerts et al. 2012b). More precisely, after sufficient amount of training,
the coordination system autonomously learned to trigger the model-based
system to control the first actions of the behavioral sequence performed
by the robot along its trajectory to the goal, while the model-free system
was responsible for the last actions of the sequence, proximally to the
goal. While this could result from specific properties of such a naviga-
tion task and of the used environment, these results suggest that different
alternations between MB and MF control over behavior can be reached
in different situations, which a supervisory system should autonomously
learn based on efficient coordination mechanisms. These results are not
either specific biologically-irrelevant properties of the computational me-
chanisms that were implemented in the robot since the computational mo-
del who inspired this robotic work has been validated on the reproduction
of a set of experimental data about rat navigation behaviors (Dollé et al.
2008; 2010; submitted).

A second interesting property of these robotic results is that the coor-
dination module autonomously learned that in some parts of the environ-
ment, neither the MB system nor the MF one were efficient to control the
robot (Caluwaerts et al. 2012b). In these subparts, the robot continued to
rely on its random exploration strategy even after extensive training. This
was due to imperfect model of the world in the MB system in some parts
of the environment, and to unreliable perception of some of the visual
cues required by the MF system. This contrasts with some of the pre-
vious computational models for the coordination of MB and MF learning
systems which were based on the simplified assumption that the MB sys-
tem is always accurate and always has a low uncertainty (Keramati et al.
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2011). Importantly, these results suggest that an efficient coordination me-
chanism for Robotics should be able to learn to exploit the advantages of
each learning system while avoiding their drawbacks.

Figure 5.1 – Implementations of the multiple learning systems coordination model for
navigation in the PR2 Robot at ISIR

A final interesting robotic result concerns the number of states and
transitions autonomously learned within the MB system. In previous
Computational Neuroscience models for the coordination of MB and MF
RL systems (Daw et al. 2005, Dollé et al. 2010, Keramati et al. 2011), there
is a fixed small number of states and transitions in the graph used by the
MB system, which is appropriate to model the experimental tasks of in-
terest. Here, the autonomy required for robotic implementations imposes
that the MB system autonomously and incrementally builds its own mo-
del of the world. As a consequence, the number of states and transitions
increases rapidly and drastically, making the planning process slower and
more uncertain (Renaudo et al. 2014). This justifies the need for solutions
such as a prunning mechanism within the MB system which have recently
been applied to Computational Neuroscience models (Huys et al. 2012).
Here we found a different solution to this problem by limiting the time
for planning combined with relative weighting of states depending on
the frequency with which they have been visited. It would be interesting
to further investigate whether this solution could be integrated in exis-
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ting computational models and whether this could help better capture
human behavior. Besides, future robotic experiments with these models
could tell us more about which mechanisms can be most appropriate for
the planning process within the MB system to produce robust and efficient
decision-making and behavioral adaptation.

5.1.6 Other currently supervised robotics work

We are currently investigating further such robotic implementations in
three different directions. First, we are further testing the applicability of
these Computational Neuroscience-based models and principles to Robo-
tics by testing them in more difficult navigation tasks, involving visually-
rich and larger environments, and more recent robotic devices such as the
PR2 robot designed by Willow Garage (Fig. 5.1). The aim is to determine
whether these computational models produce more efficient and adaptive
navigation abilities than other engineering approaches to robot navigation.
This work is based on the Master internships of Erwan Renaudo, Omar
Islas-Ramirez and Scarlett Fres, in the frame of the Emergence(s) Ville de
Paris HABOT project coordinated by Benoît Girard, and involving colla-
borations with Raja Chatila at ISIR, Philippe Gaussier, Arnaud Blanchard
and Pierre Delarboulas at the University of Cergy-Pontoise.

Figure 5.2 – Illustration of the experimental setup with the PR2 Robot at the LAAS-
CNRS involving shared action plans during human-robot interaction which will be used
to test dual-RL systems models (Based on the work in Alami et al. (2006; 2013), Lemai-
gnan et al. (2012), with permissions)

Besides, we are also testing the applicability of these models to scena-



198 Chapitre 5. Discussion

rii of human-robot interaction were a shared action plan is required for
the coordination of the agents (Alami et al. (2006; 2013), Lemaignan et al.
(2012) ; Fig. 5.2). Our learning model could be useful to both (i) autono-
mously learn a model of the world and deduce efficient action plans, (ii)
and enable the robot to acquire habits so as to avoid long and costly com-
putations of the planning process when repetitive actions are performed,
for instance in the case of a daily cleaning table task. This work is pursued
by PhD student Erwan Renaudo. It involves the collaboration with Raja
Chatila and Benoît Girard at ISIR, Rachid Alami and Aurélie Clodic at
LAAS-CNRS in Toulouse. Financial support is provided within the ANR
ROBOERGOSUM project under reference ANR-12-CORD-0030.

Finally, the work of PhD student Nassim Aklil aims at improving the
mechanisms used in the model for the coordination of learning systems
with recent online budgeted learning techniques from the Machine Lear-
ning literature. These techniques provide us with more formal and ef-
ficient ways to take into account the computation cost of each learning
system, with the aim of improving robotic behavioral performance and
assessing the ability of such improved computational models to better re-
produce animal behavioral data, making the assumption that the brain
attempts to reduce the energy cost when deciding which learning pro-
cesses to invoke. This work involves the collaboration with Benoît Girard
at ISIR, Ludovic Denoyer and Patrick Gallinari at LIP6, and takes place wi-
thin the framework of the SMART LABEX financially supported by French
State funds managed by the ANR within the Investissements d’Avenir pro-
gramme under reference ANR-11-IDEX-0004-02.

5.2 Perspectives and Research Project

The work presented in this manuscript has been subdivided into three
main fields of research to which I have contributed and plan to continue
contributing throughout the forthcoming years :

1. Computational principles for the coordination of parallel learning
processes in animals.

2. Use of the proposed computational models to help better understand
experimentally recorded behavioral and neurophysiological data.

3. Implementations of the proposed computational models in behaving
robots to help increase their decisional autonomy and learning ca-
pacities.

Nevertheless, as highlighted throughout this manuscript, these contri-
butions are not isolated from each other. They talk to each other, and the
exploration of possible grounds for their interaction constitutes part the
research project sketched in this section. Below are proposed the explora-
tion of four scientific issues related to the coordination of parallel learning
processes. The integrative approach adopted to tackle these issues has the
potential of contributing to progress in knowledge in both Robotics and
Neuroscience. These scientific issues are :

1. On which organization principles should a cognitive architecture be
built to enable proper coordination of different learning systems ?
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2. How can we model competitive and cooperative interactions bet-
ween learning systems during multi-strategy navigation ?

3. Which neural signals underly information processing within these
different systems during learning under uncertainty ?

4. How should reinforcement learning and motor learning processes
interact to enable continuous action / movement acquisition and co-
ordination in the real-world ?

5.2.1 Which cognitive architecture for the coordination of different
learning systems ?

Reaching a particular goal in an unprepared environment, or simply
surviving while ensuring a sufficient access to required resources, both
necessitate the management of several subgoals, potentially antagonistic.
They also require to be able to manage events and actions with different
priorities and different temporal frequencies. In the studies presented so
far, we simplified these issues by assuming a single goal under single
fixed motivation so as to explain behavioral phenomena in a single task
or in a small set of different situations. In contrast, beyond the learning
of particular individual capacities, one has to understand how an agent
should react at a given moment to cope with instantaneous constraints
while ensuring the achievement of a pursued long-term goal. This long-
term goal can either be the survival of an animal or a human, or the
mission imposed to a robot by its user.

Several different learning mechanisms can be recruited (latent lear-
ning, associative learning, reward-based learning, supervised learning).
Different levels of abstractions can be present (perception, analysis of these
perceptions, elementary actions, decision-making mechanisms). Hence the
need to define a cognitive architecture based on the coordination of dif-
ferent sub-systems to reach a fixed goal.

In Neuroscience researches, having a computational model – and so-
metimes a hierarchical model – for the description of the interaction bet-
ween different learning mechanisms can help better capture some experi-
mental data. Of course, the increase in the number of parameters recruited
for this high-level model should be penalized to avoid bias in the statistical
evaluation of the model’s explanatory power (Daw 2011). This approach
can also give birth to new hypotheses concerning the interaction between
brain regions during behavioral adaptation. This could for instance help
us not only say that communication between the prefrontal cortex and the
hippocampus has increased at the decision-point during learning (Benche-
nane et al. 2010), but also which precise changes in information processing
may underlie such a dynamics. This approach could also help understand
which different computational mechanisms underlie the contribution to
learning processes of different anatomical loops linking the prefrontal cor-
tex to the basal ganglia via the thalamus (Alexander et al. 1990, Haber
et al. 2000, Keramati and Gutkin 2013). It could also make a link with
Computational Neuroscience models integrating homeostatic regulation
with reinforcement learning processes (Coninx et al. 2008, Keramati and
Gutkin 2011).
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In Robotics researches, as mentioned in the introduction, robot control
architectures inspired by cognitive architectures proposed in Psychology
such as SOAR or ACT-R (Rosenbloom et al. 1993, Anderson et al. 2004)
have long been the subject of intense developments and applications
(Alami et al. 1998, Volpe et al. 2001). Such architectures are of particular
interest for this project since they include solutions for the management of
goals and subgoals, and for the coordination of the planning system with
low-level reactive routines. However, these architectures still lack efficient
learning abilities and can thus not produce efficient behavioral adaptation
in non-stationary environments. Thus investigating how to integrate pa-
rallel reinforcement learning mechanisms and their coordination to these
architectures could constitute interesting and fruitful lines of research.

This part of my research project will be addressed within the frame of
the ANR ROBOERGOSUM project under reference ANR-12-CORD-0030,
in collaboration with Rachid Alami, Raja Chatila, Aurélie Clodic, Benoît
Girard, and Erwan Renaudo.

From the global scientific issue of this project, a set of particular ques-
tions of particular interest will be declined :

– How do decision-making and action processes interact ?
– How do instrumental conditioning and Pavlovian conditiong pro-

cesses interact ?
– How can one learn new elementary capacities and then properly use

them ?
– How can one extract abstraction of the elementary actions observed

during behavior ? Which level of abstraction ? Which cutting ? Based
on which criteria ?

– Should chunked sequences of elementary actions then be considered
as habits ? As elements manipulable by the model-based system ? Or
both ?

– How can one coordinate goal-oriented learning and latent learning
processes ?

– How should changes in motivation and in sub-goals affect the coor-
dination of learning processes ?

– Do changes in motivation or in sub-goals affect neural reinforcement
signals and associated neuromodulatory processes ?

– Which implication for anatomical loops linking the prefrontal cortex
and the basal ganglia ? How should we model them ?

5.2.2 Cooperation/competition between learning systems for naviga-
tion

The objective of this part of my research project is to model the dy-
namical processes underlying the selection and combination of navigation
strategies in the case of complex and non-stationary tasks.

Goal-oriented navigation is a fundamental function in daily life of
many species, and probably soon of robots. It implies the ability to ac-
quire knowledge about the environment – such as spatio-temporal depen-
dencies between environmental features – and to use it to apply the most
adapted locomotor strategy in a given context (Khamassi and Humphries
2012). Modelling the processes which underlie the dynamical adaptation
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of navigation strategies enables to address the question about the nature
of processes at stake during the resolution of complex problems. How can
animals and robots choose the most adequate strategy or combination of
strategies when there are multiple possibilities ?

As we have argued in the Introduction and in Chapter 2, mammals’
navigation skills include the ability to alternate between different naviga-
tion strategies (e.g. allocentric versus egocentric, cue-guided versus place-
based, etc...). At the learning and action selection level, these strategies
can relevantly be categorized into model-based and model-free reinforce-
ment learning processes (Khamassi 2007). Such a computational frame-
work, and computational models based on this dichotomy (Dollé et al.
2010; submitted), enable to explain a large body of experimental data, as
well as the contribution of different parts of the basal ganglia to navigation
(Khamassi and Humphries 2012). Computational models based on these
principles and implemented on robotic platforms can capture the richness
of the dynamics of interaction with the environment (Caluwaerts et al.
2012b;a).

However, this approach cannot yet account for all navigation strategies
observed in animals. For instance route learning, where the model of the
world could be independent from the notion of place ; pure motor (praxic)
sequence learning, which could be captured by a route over-learning pro-
cess ; finally metric navigation cannot be accounted for by this approach
while it is supposedly frequent in animals and dominating in the field of
Engineering of mobile robots. Thus, extending our computational frame-
work to account for these other navigation strategies will constitute a first
part of our project.

Besides, mechanisms for the coordination of multiple navigation stra-
tegies have been the subject of little modelling work and were often tested
in simple tasks requiring a repertoire limited to two strategies. Among
these models, some use a mechanism for strategy output fusion – i.e. they
merge or sum the probability distribution over actions produced by dif-
ferent strategies – (Guazzelli et al. 1998, Girard et al. 2005). Other mo-
dels use a selection mechanism so that a single strategy controls behavior
at each moment (Foster et al. 2000, Chavarriaga et al. 2005). The latter
cases require the choice of a strategy selection criterion which should be
as much as possible independent from the specificities of the implemen-
ted strategies. The computational model developed at ISIR (Dollé et al.
2008; 2010; submitted) and which we used in the robotic implementations
presented in Chapter 4 proposed a new selection criterion able to coordi-
nate in an adaptive manner strategies of different types – through the use
of a common currency for the evaluation of strategies’ performance. This
computational model has previously provided us with a computational
explanation for the evolution through time of rodent behavior performing
tasks limited to two strategies (Pearce et al. 1998, Devan and White 1999).
Nevertheless, the model needs to be generalized to tasks involving mul-
tiple strategies. Moreover, the hypotheses on possible neural substrates of
the different components of the model remain to be tested. Finally, the ro-
botic implementations that we performed with this model showed that it
needs to be extended to enable a contextual flexibility of strategy selection
(Caluwaerts et al. 2012b).
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This part of the project will be addressed in collaboration with Benoît
Girard at ISIR for the modelling part and will involve the collaboration
with experimentalists : Laure Rondi-Reig (CNRS – UPMC) has concei-
ved a new navigation setup called the star-maze to specifically identify the
strategy performed by the animal or the combination of strategies which
most likely explains its behavior (Rondi-Reig et al. 2006) ; Sidney I. Wie-
ner (CNRS – Collège de France) has developed experimental protocols for
the investigation of neural processes underlying the rapid switch between
navigation strategies (Battaglia et al. 2008, Peyrache et al. 2009, Catanese
et al. 2012). The direct interaction between computational models and ex-
perimental data permitted by these collaborations will enable to address
a set of specific questions :

– How can we model the sequential route strategy observed in animals
in the star-maze ?

– Which principles underlie the transient cooperation or competition
between navigation strategies ?

– How do these interactions evolve through time and can the model-
based / model-free reinforcement learning computational frame-
work account for this evolution ?

– Which mechanism for strategy selection best explains cases of stra-
tegy shifts observed experimentally ?

– Is there a specific substrate underlying the strategy selection me-
chanism or is this subserved through interactions between neural
substrates of each individual strategy ?

– Can manipulations of particular brain areas affect specific learning
or strategy selection processes ?

– Can the resulting computational model enable robots to efficiently
navigate in a set of very different, unprepared, non-stationary and
large environments ?

5.2.3 Neural signals underlying learning under uncertainty

The work presented throughout the manuscript addressed at mul-
tiple times the question about the possible neural substrates and their
respective mechanisms underlying the coordination of parallel learning
processes for behavioral adaptation. Of particular interest were the role
of different parts of the striatum – belonging to different anatomical loops
between the prefrontal cortex and the basal ganglia – in these learning pro-
cesses (Khamassi and Humphries 2012), the role of the prefrontal cortex
network in cognitive control processes enabling the coordination of lear-
ning systems and the regulation of learning parameters (Peyrache et al.
2009, Benchenane et al. 2010, Khamassi et al. 2011b; 2013; 2014), and the
role of dopamine signals in the learning process (Bellot et al. 2012; in
preparation). Although these contributions tell us more about neural me-
chanisms of behavioral adaptation, the synergy between these different
regions, the differential roles of dopamine on each node of the system,
and the fundamental principles that govern these mechanisms are still
unknown. Moreover, most of this work concerns experimental situations
where the uncertainty about the environment is limited.

Solving problems and adapting to new situations requires coping with
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uncertainty about the possible values and consequences of our decisions.
In order to reduce uncertainties and optimize decision making, a subject
must learn by experience and estimate statistical properties of the envi-
ronment and actions, such as probabilities of obtaining a valuable out-
come or of reaching a more promising environment. During this learning
process, uncertainty may arise from two sources that need to be identi-
fied : whereas the intrinsic variability of physical or biological phenomena
(risk) may be irreducible, uncertainty associated with a reduced know-
ledge about specific outcomes or processes (ambiguity) may be controlled
when more information is collected. Thus, deciding under ambiguity is
often opposed to deciding under risk, depending on the information one
possesses about the probabilities of possible outcomes. In ecological situa-
tions, animals and humans are able to adapt their learning performances
according to the changing statistical properties of the environment (Rush-
worth and Behrens 2008).

Understanding how the brain resolves uncertainty during choice beha-
vior is a fundamental issue in theories of economic decision making (Neu-
roeconomics), for instance to account for individual differences in attitude
towards risk and ambiguity, but also in all fields dealing with adaptive sys-
tems (Schultz 2008). Developmental robotics, for instance, are concerned
with how cognitive systems can explore and master uncertainty in order
to develop (Lungarella et al. 2004). Increased understanding of these pro-
cesses in animals can inspire the design and control of architectures for
artificial agents.

Phasic dopaminergic (DA) activity has been hypothesized to represent
a reward prediction error signal and is construed to support learning sti-
muli and action values in the striatum (Schultz et al. 1997, Bayer and Glim-
cher 2005, Morris et al. 2006, Roesch et al. 2007). Part of dopamine signal-
ling has been hypothesized to incorporate information about the uncer-
tainty of the environment (Fiorillo and Tobler 2003). However, the relation
between such an uncertainty and reinforcement learning processes is a
matter of debate (Niv et al. 2005). Moreover, different types of signals have
been recently identified in dopamine activity (Matsumoto and Hikosaka
2009, Fiorillo 2013) and dopaminergic cells are functionally dissociable ac-
cording to their targets (Lammel et al. 2008). This suggests that dopamine
projections to prefrontal cortical areas play a different role (Doya 2008), for
instance by controlling the construction of task-relevant state representa-
tions which would affect the use of model-based decision making and
which conversely may differentially affect distinct DA pathways (Takaha-
shi et al. 2011). Finally, it is not clear whether dopamine signals should
only impact learning or also influence the action selection process, and
different computational propositions have been made to dissociate the ef-
fect of different dopamine signals – namely phasic and tonic signals – on
these two processes (McClure et al. 2003, Humphries et al. 2012).

In collaboration with several experimental groups, this part of the pro-
ject thus aims at contributing to the addressment of a set of scientific ques-
tions :

– What is the impact of different levels and types of uncertainty on
dopamine signalling ?
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– Do different dopamine signals subserve different functions in their
target structure such as the striatum and prefrontal cortex ?

– How do changes in dopamine signals impact cortical state repre-
sentations in the model-based system and coordination between the
model-free and model-based systems ?

– How does in turn such a coordination impact dopamine signalling ?
– What are the respective roles of phasic and tonic dopamine and how

do they modulate parallel learning and decision-making processes
in the brain ?

Some of these questions are currently addressed within the frame of
a national ANR Learning Under Uncertainty project under reference ANR-
11-BSV4-006, coordinated by Emmanuel Procyk at INSERM in Lyon, and
involving experimental partners in Marseille (Paul Apicella at CNRS) and
in Bordeaux (Alain Marchand and Etienne Coutureau at CNRS). Together
with these collaboraters, we are using computational models to design
experimental protocols that can specifically address some of these issues.
In turn, behavioral experiments as well as dopamine electrophysiological
recordings should provide us with new data helping to disentangle the
computational mechanisms underlying these phenomena.

The issue about the different roles of phasic and tonic dopamine si-
gnals are addressed in collaboration with Kevin Gurney at the University
of Sheffield and Mark D. Humphries at the University of Manchester. A
first computational modelling work has been published, with new experi-
mental predictions raised (Humphries et al. 2012). A collaborative project
between the CNRS and the Royal Society has been submitted.

Finally the questions about the mutual influence between dopamine si-
gnals and cortical model-based state representations is addressed through
a collaboration with Geoffrey Schoenbaum and Matthew R. Roesch from
the University of Maryland and the NIDA-NIH, Kenji Doya at Okinawa
Institute of Science and Technology, and Alain Marchand and Etienne
Coutureau at CNRS in Bordeaux. A collaborative project has been sub-
mitted to the Human Frontiers Science Program.

5.2.4 Integration of reinforcement learning and motor control

The work presented in this manuscript mostly focuses on reinforce-
ment learning (RL) and unsupervised learning (UL) processes, and on
their corresponding neural substrates in the basal ganglia and prefron-
tal cortex. The motor control part has not been addressed, which means
that the computational models presented are most of the time simplified
by manipulating abstract actions without wondering how sequences of
muscle activations are learned and organized for the execution of these
actions. This part of my research project aims at overcoming this limitation
by coordinating RL and UL with supervised learning processes in order
to incorporate the motor control part in the computational models. The
strong interactions between Robotics and Neuroscience characterizing our
approach can reveal particularly fruitful in addressing this issue. Robo-
tic experimentations will indeed play an important part here in that they
require the continuous coordination of movements of a physical body in-
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teracting with the environment, imposing time and physical constraints
on behavior.

As mentioned in the introduction, reinforcement learning algorithms
reach their limits when the experimental paradigm takes into account
continuous rather than discrete time, state and action information. To over-
come these difficulties, several RL algorithms working in the continuous
case have been proposed, some dealing with continuous time and space
(Doya 2000b), some with continuous state space (Khamassi et al. 2006),
and some with continuous action space (Peters and Schaal 2008). The lat-
ter study proposed a natural Actor-Critic algorithm – which is model-free
– and is based on gradient descent algorithms used as a continuous opti-
mization method for Reinforcement Learning. The links between optimi-
zation in the continuous case and RL are the subjects of more and more at-
tention from both Neuroscience and Engineering. This question is central
in Engineering work aiming at proposing solutions for the learning of ele-
mentary action and motor skills. It is also important in the Neuroscience
field concerned with human motor control, action selection or navigation.
The addressed processes are for instance fundamental for learning capa-
cities relying on the continuous segmentation of the sensorimotor flow
(chunking).

This part of my research project will be strongly based on the local
research environment within ISIR, where researches in the AMAC team
have contributed to many different aspects of this scientific issue : optimal
control theory (Rigoux and Guigon 2012), stochastic multi-objective opti-
mization (Doncieux et al. 2011), robot motor learning (Sigaud et al. 2011),
reinforcement learning processes in animals (Humphries et al. 2012) and
in robots (Caluwaerts et al. 2012b). This environment will help us better
address the following questions :

– How can an agent learn with multiple and continuous perceptions
and actions ? What can then guide learning ?

– How are reward and cost integrated in the decision function ?
– How do prefrontal cortex and basal ganglia interact, compete or

complete each other for decision-making ?
– Do some fronto-striatal loops also contribute to learning and selec-

tion of elementary movements ? Or do these processes remain at an
abstract and discrete action level in cortico-basal networks, interac-
ting with other brain structures such as the Cerebellum to subserve
the finest grain of movement ?

In collaboration with Benoît Girard and Ignasi Cos at ISIR, we have
made a first step in this direction of research by proposing an RL compu-
tational model accounting for the influence of the biomechanical cost of
movement in the decision-making process observed in humans having to
choose between pairs of targets reachable with the hand (Cos et al. 2013).
Previous psychophysical experiments performed by Ignasi Cos during his
postdoctoral traininig in Paul Cisek’s laboratory at the University of Mon-
treal have shown that biomechanical constraints such as the energetic cost
of movement were implicitely taken into account in the decisions made
by subjects between two possible movements (Cos et al. 2011; 2012). This
biomechanical information is integrated with target distance information
for optimal decision-making. Subjects would choose to move towards the
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closest target, unless the difference in distance is compensated by a higher
energy cost in the required movement. Interestingly, most subjects did not
report having explicitely included the energetical cost of movements in
their decision process.

We have shown that model-based RL mechanisms could account for
these data by assuming the integration of biomechanical costs within the
model of the world during a learning phase prior to the experiment, du-
ring a developmental motor babbling phase (Cos et al. 2013). Interestingly,
additional analyses on human behavioral data confirmed that the integra-
tion of biomechanical costs in decision-making were present from the very
first trials of the experiment. Moreover, the model enabled us to draw a
set of experimental predictions about expected human behavior in cases
where decision time is limited. This computational model will constitute
a basis for future theoretical developments planned for this part of my
research project.

Conclusion

The presented research project aims at understanding and formalizing
fundamental principles and methods that underlie animals’ and robots’
behavioral adaptation capabilities. Fundamental questions are raised such
as how can animals and robots understand their own actions and their
consequences ? How can they learn from their errors in an open-ended
fashion ? How can they exhibit curious and exploratory behaviors ? How
can they monitore their own performance as well as the environment so as
to regulate their learning parameters, and so as to learn to autonomously
shift to the decisional mode which is the most appropriate for the cur-
rent situation and for the current level of uncertainty in order to more
efficiently adapt, and acquire new knowledge and new skills ?

Neuroscience data constitute a source of inspiration for Robotics
concerning the way the brain’s cognitive architecture coordinates different
hierarchical levels of decision-making, and how it selects and integrates
relevant information for efficient adaptive behavior. It also provides ex-
perimental tasks or scenarii that enable to isolate particular behaviors
and learning abilities. The work presented in this manuscript describes
how computational principles for the coordination of parallel learning
processes can account for biological data, and can be implemented on
robotic platforms to reproduce animal laboratory tasks. The multidisci-
plinary nature of the adopted approach makes the questions addressed
be potential contributions to artificial systems with the aim of improving
robots’ autonomy and adaptation capabilities, but also to behavioral and
brain research. The results could be in turn of interest to Neuroscience
and Cognitive Science because they assess the robustness of Computatio-
nal Neuroscience models tested in the real world.
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Title Coordination of parallel learning processes in animals and robots

Abstract This HDR manuscript presents research work at the interface
between Computational Neuroscience and Cognitive Robotics aiming to
better understand how animals and robots can display behavioral adap-
tation capabilities in their partially unknown and changing environment.
Previous studies have shown that the mammalian brain combines paral-
lel learning processes in different memory systems. During instrumental
conditioning as well as navigation, this permits initial learning based on a
model of the environment followed by the progressive expression of lear-
ned habits. In computational terms, this can be formalized as a progressive
shift from model-based to model-free reinforcement learning. The manus-
cript presents : 1) Proposed computational solutions for the coordination
of parallel learning processes to explain animal behavior during condi-
tioning and navigation ; 2) Uses of learning models to analyze behavioral
and neural correlates of learning ; 3) Implementations of neuro-inspired
learning models in robots interacting with the real world. The manuscript
highlights the gain of these exchanges between disciplines to further dis-
cuss the resulting research program.

Keywords Computational modelling, Model-based analyses of biologi-
cal data, Cognitive Robotics, Reinforcement Learning, Prefrontal cortex,
Basal ganglia, Dopamine

Titre Coordination de processus parallèles d’apprentissage chez les ani-
maux et les robots

Résumé Cette thèse de HDR présente des travaux à l’interface entre
Neurosciences Computationnelles et Robotique Cognitive visant à mieux
comprendre comment animaux et robots peuvent faire preuve de capa-
cités d’adaptation comportementale dans des environnements partielle-
ment inconnus et changeants. Ils se basent sur l’observation que le cerveau
coordonne différents processus parallèles d’apprentissage dans différents
systèmes de mémoire. En conditionnement instrumental comme en navi-
gation, cela permet un apprentissage initial basé sur un modèle interne
du monde (model-based reinforcement learning (RL)) basculant sur l’ap-
prentissage d’habitudes comportementales (model-free RL). Le manuscrit
présente donc 1) Des solutions computationnelles proposées pour la coor-
dination de ces processus d’apprentissage ; 2) L’utilisation de ces modèles
pour l’analyses de corrélats comportementaux et neuraux de l’apprentis-
sage ; 3) L’implémentation de ces modèles dans des robots interagissant
avec le monde réel. Enfin, les échanges entre ces disciplines sont discutés
dans la perspective du projet de recherche proposé.

Mots-clés Modélisation omputationelle, Analyses fondées sur un mo-
dèle de donnés biologiques, Robotique Cognitive, Apprentissage par ren-
forcement, Cortex prefrontal, Ganglions de la base, Dopamine
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