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Gravouil et Michel Rochette qui m’ont accordé leur confiance sur ce sujet, leur attention
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Résumé

La mécanique computationnelle est un outil incontournable pour le monde de l’ingénierie
mécanique. Motivé par un désir de réalisme et soumis à un perpétuel gigantisme, les
modèles numériques doivent aujourd’hui inclure des phénomènes physiques de plus en
plus complexes. Par conséquence, d’importantes capacités calculatoires sont requises
afin de traiter des problèmes à la fois non-linéaires mais aussi de grande taille. Pour
atteindre cet objectif, il convient de développer les stations de calculs mais aussi les
méthodes algorithmiques utilisées afin de résoudre efficacement ces types de problèmes.
Récemment, les méthodes de réduction de modèle se révèlent comme d’excellentes options
au développement d’algorithmes de résolution performants.

Le problème du contact frottant entre solides élastiques est particulièrement bien connu
pour sa complexité et dont les temps de calcul peuvent devenir prohibitifs. En effet, les lois
qui le régissent sont très hautement non-linéaires (non différentiables). Dans ce mémoire,
nous nous proposons d’appliquer différentes méthodes de réduction de modèle (a posteriori
et a priori) à ce type de problème afin de développer des méthodes de calculs accélérées
dans le cadre de la méthode des éléments finis.

Tout d’abord, en se plaçant dans le cadre des petites perturbations en évolution quasi-
statique, la réductibilité de diverses solutions impliquant du contact frottant est mise
en évidence via leur décomposition en valeur singulière. De plus, leur contenu à échelle
séparée est exhibé. La méthode non-incrémentale et non-linéaire à large incrément de
temps (LATIN) est par la suite présentée. Dans un second temps et à partir des obser-
vations faites précédemment, une méthode LATIN accélérée est proposée en s’inspirant
des méthodes multigrilles non-linéaires de type “full approximation scheme” (FAS). Cette
méthode s’apparente en partie aux méthodes de réduction de modèle de type a poste-
riori. De plus, une stratégie de calcul de modes à partir d’un modèle de substitution
est proposée. Par la suite, la décomposition propre généralisée (PGD) est utilisée afin de
développer une méthode de résolution non-linéaire efficace reposant fondamentalement sur
une approche de réduction de modèle de type a priori. Enfin, quelques extensions sont
proposées telle que la résolution de problème faisant intervenir des études paramétriques,
ou encore la prise en charge de non-linéarités supplémentaires telle que la plasticité.

Mot clés : contact frottant, LATIN, réduction de modèle, PGD, modèles de substitution.
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Summary

Computational mechanics is an essential tool for mechanical engineering purposes. Nowa-
days, numerical models have to take into account complex physical phenomenons to be
even more realistic and become larger and larger. As a consequence, more and more
computing capacities are required in order to tackle not only non-linear problems but
also large scale problems. For that purpose, both computers and numerical methods have
to be developed in order to solve them efficiently. In the last decades, model reduction
methods show great abilities to assign such challenges.

The frictional contact problem between elastic solids is particularly well-known for
its difficulty. Because its governing laws are highly non-linear (non-smooth), prohibitive
computational time can occur. In this dissertation, model reduction methods (both a
posteriori and a priori approaches) are deployed in order to implement efficient numerical
methods to solve frictional contact problem in the finite element framework.

First, small perturbations hypothesis with a quasi-static evolution are assumed. Then,
reducibility of some frictional solutions is emphasized and discussed using the singular
value decomposition. In addition, a scale separability phenomenon is enlightened. Then,
the non-linear large time increment method (LATIN) is introduced. Secondly, an ac-
celerated LATIN method is suggested by drawing an analogy between previous scale
separability observations and the non-linear multigrid full approximation scheme (FAS).
This accelerated non-linear solver relies essentially on the a posteriori model reduction
approach. A precomputation strategy for modes relying on surrogate models is also sug-
gested. Next, the proper generalized decomposition (PGD) is used to implement a non-
linear solver relying fundamentally on an a priori model reduction method. Finally, some
extensions are given to assign parametric studies and to take into account an additional
non-linearity such as elastoplastic constitutive laws.

Key words : frictional contact, LATIN, model reduction, PGD, surrogate model.
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Introduction

Contact mechanics is an interaction phenomenon occurring between one (auto-contact)
or several bodies at their interface and is relevant to a wide range of engineering appli-
cations: from small mechanical assembly involving few solids to granular media. Such a
fundamental phenomenon is governed by complex laws (non-linear and non smooth laws)
and arouses strong numerical issues as far as the computational time is concerned. The
scope of this dissertation focuses on structural design and mechanical assemblies involv-
ing few contacting bodies with friction (on the contrary to granular media). The finite
element method will be used and the quasi-static small perturbation regime (small sliding
motion) will be assumed. All in all, the herein presented works aims at solving a time
dependent problem involving a non-smooth behavior localized at the boundary.

Even if the previously described framework is considered, classic non-linear solvers can
lead to prohibitive computational time to solve the frictional contact problem. For that
purpose, several classes of solvers were proposed such as augmented Lagrangian methods
[BMP12], non-linear Gauss-Seidel methods [Jea99], Newton’s methods [Ren12], as well as
gradient methods [RA05] but their efficiency depends strongly on the the studied problem.
Moreover, their convergence proof are difficult to provide due to the involved non-smooth
laws. To address computational time issues, acceleration strategies based on multilevel
computing techniques and multigrid methods were also suggested in [Gre95, LRR07].
During the last decades, model reduction techniques surge in enthusiasm to accelerate
the resolution of both linear and non-linear solvers. Such methods consist in solving a
problem into a reduced subspace which is expected to capture the “most dominant trends”
of the solution. Usually, two classes of model reduction techniques are distinguished:

• a posteriori approach consisting in reusing prior knowledge about the solution (prior
computations, surrogate models, etc.) to design the considered reduced subspace
wherein the considered problem is solved;

• a priori approach consisting in designing on the fly a suited reduced subspace.

Both of these methods result in cheap reduced basis computations sparing hence compu-
tational work. In this dissertation, these two model reduction approaches will be tackled
to implement efficient non-linear solvers for frictional contact problem.

“Dominant trends” of the solution can be identified by computing the proper orthog-
onal decomposition (POD) or its singular value decomposition (SVD). Originally, such

1
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decomposition were designed to capture “coherent structures” in a turbulent flow [HLB98].
Nowadays, they are precious tools to design reduced basis that capture the most relevant
and the most contributory components (or modes) of the solution. Thereby, one can
expect to write the solution with a sample of few modes (reducibility property). In our
framework, it will be pointed out that the concept of dominant trends is still meaningful
throughout the different scales of the problem (structural scale and contact scale).

At a first glance, a priori model reduction techniques seems to be inappropriate to solve
frictional contact problems. Indeed, if one uses an incremental approach to solve the time-
dependent non-linear problem (for instance the Newton-Raphson procedure), an a priori
approach is expected to catch the dominant modes of the solution from first time steps
and guess a relevant reduced subspace. Nonetheless, the non-smooth behavior of involved
laws does not allow such an achievement. To circumvent this issue, the non-increment
large time increment (LATIN) [Lad99] method will be introduced and will play a key role
in implementing accelerated strategies. It consists in a global space-time approach.

This typescript is outlined as follows:

• In a first chapter, an overview of reduction methods is given. Then, a brief theoret-
ical background of POD and SVD is recalled. Afterwards, the reference frictional
contact problem is posed by starting from the continuous model up to its discretiza-
tion with the finite element method. Next, the SVD is applied on some frictional
solutions to exemplify the concept of space-time reducibility and to make sense of
“dominant trends” (i.e. identify scales of the problem). Finally, the LATIN method
is introduced and formulated to solve the frictional contact problem.

• In a second chapter, an accelerated version of the LATIN method is proposed. It
is based on an analogy with multigrid methods. A computational strategy is also
suggested in order to guess in an inexpensive way dominant trends of the sought
solution using surrogate models.

• In a third chapter, an a priori approach is introduced to solve the frictional contact
problem. Such a method is able to solve the frictional problem without a priori
knowledge about the solution in a computed on-the-fly subspace. It will be pointed
out that such a strategy shows a quasi-optimal property in the sense that the de-
signed subspace is close to the most suited one.

• In a fourth chapter, some development paths are given as extensions for the proposed
strategies. First, parametric studies are tackled using reduced order model (ROM)
techniques and, then, proper generalized decomposition (PGD). Second, a material
non-linearity (plasticity) is tackled. An introductory LATIN formulation embedding
an a priori reduced basis strategy is proposed to solve this new problem.

Along this dissertation, numerical examples will be exhibited to illustrate and to discuss
performances of the suggested strategies.

2



Chapter 1

Reduction methods applied to frictional
contact problem

Abstract

Computational contact mechanics is a challenging issue. Even if computer architec-
tures or numerical methods greatly improve, simulations of those numerical prob-
lems lead to strong numerical difficulties and especially long computational times.
Nowadays, reduction methods surge in enthusiasm. This class of numerical meth-
ods shows great abilities to assign this issue. This first chapter sets the framework
of this dissertation. For that purpose, main definitions and techniques related to
reduction methods are given. Afterwards, the frictional contact problem is posed.
Next, the reducility of a frictional contact solution and its multiscale content is ex-
emplified and discussed in a global space-time framework. Even if application of
reductions methods to such problems seems to be inappropriate, those observations
seem to open us promising horizons. Those techniques will be essentially deployed
to develop efficient non-linear solvers for frictional contact problems.
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1.1. The computational speedup race

1.1 The computational speedup race

Computer sciences provide attractive and efficient tools for various mathematical modeling
fields and industrial purposes. Since 1960, computer simulations have become an essential
part of physics, engineering, industrial development and in even more unexpected field
such as financial prediction, social science, biology... Last decades, evolution of computer
and supercomputer architectures provides a first response to more and more demanding
communities and break the petaflop barrier in 2008 with the IBM Roadrunner. This
hardware evolution with the HPC1 was intuited by the so-called Moore’s law [Moo65].

This overall computational improvement is also due to a simultaneous evolution of
numerical methods [GKC+09]. These last acted on an equal level as far as the speedup
was gained. To illustrate it, figure 1.1 shows the relative speedup achieved by the evolution
of algorithms to solve the linear Poisson equation.
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Figure 1.1 – Data collected from [CDJGK03]. Memory requirements and performance to solve
the linear 3D Poisson equation on a uniform n3 (n = 64) grid with the finite difference method.
The Moore’s conjecture stating that performances is doubled every 18 months is also plotted.

We understand that the global computational acceleration is a synergy between not
1High Performance Computing
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only hardware capabilities but also numerical methods.
Last decades, reduction methods spur a strong interest to design efficient algorithms.

Such techniques shows great abilities to accelerate solutions for numerous linear and non-
linear problems and provide well suited strategies for parametric studies. On the other
hand, frictional contact problems are well known for their toughness and raise convergence
issues. However, application of reduction methods seems to be inappropriate due to
the non-smooth properties of such problems. This dissertation tackles this challenging
issue and aims to provide efficient solvers based on reduction methods to accelerate the
computational time of frictional contact problems.

1.2 Introduction to reduction methods

1.2.1 Numerical modeling

Before obtaining a workable numerical model, several modeling steps occur. These gen-
erate three kinds of error which has to be estimated to qualify the relevancy of the final
result. In this dissertation, only the numerical aspect is tackled. Hence, it is assumed
that the only numerical error accounts. A brief overview of the different modeling phases
is hereinafter given.

Continuous modeling The physical model is put into equations. Thus, one has to
choose the most suited mathematical models and governing laws to fit it at best. This
first choice induces a modeling error.

Discretized model Generally speaking, the mathematical model is formulated with par-
tial differential equations (PDEs) and can not be formally solved. Then, numerical meth-
ods are used (e.g. finite element method, finite difference method, etc) and characteristic
variables are discretized. The time is also discretized by using time schemes according
to quasi-static or dynamic formulations (e.g. θ-method [SP91, BGH00], Newmark based
methods [CH93], etc). Then, a discretization error results. An upper bound for this
error is generally provided and depends on a characteristic length of the discretization
[Ern04, LP05]. Hereinafter, we consider this numerical model as the reference.

Numerical resolution Once the model is discretized, the problem is generally cast into
an algebraic formulation. The resulting linear or non-linear system may be large and
suited solvers provide the desired solution. But, it is affected by a numerical error involved
solver parameters, computer arithmetic, round-off errors, etc. This stage is generally
time consuming depending on the size of the numerical problem and may arouse memory
storage issues. In this dissertation, reduction methods are suggested to accelerate and
enhance the resolution process.
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1.2.2 Reduction methods

The finite element method (FEM) is an efficient and widespread numerical method for
spatial discretization of structural mechanics problems. Generally speaking, it provides
an algebraic formulation of the problem which has to be solved into a space E of dimension
n (i.e. the number of degrees of freedom) for some m discrete time steps. The space E
is spanned by the canonical basis composed of n unitary vectors (equaling 1 at a given
degree of freedom and 0 elsewhere). Reduction methods consist in finding an appropriate
basis composed of r < n vectors (the so-called reduced basis) spanning a subspace of E
wherein the problem will be solved. This way, computational work may be spared. For
instance, in modal analysis of mechanical systems, the modal reduction method consists
in choosing the subspace spanned by the first normal modes of the studied body (modal
truncation method). Similarly, the Craig and Bampton method [BC68] consists in choos-
ing other specific modes according to given boundary conditions and external loads. A
large literature shows how large is the field of applications of such techniques. Neverthe-
less, finding a basis providing both an attractive dimensional reduction and a relevant
solution is challenging. As the solution is prescribed to a given subspace an additional
error may also occur. It depends of course on the relevancy of the considered subspace
and could be estimated [LC11]. Generally speaking, reduction methods are distinguished
between a posteriori approaches and a priori approaches.

First, an a posteriori approach consists in prescribing a basis spanning a subspace
before performing computations. Then, equations of the numerical model are projected
using e.g. a Galerkin method. Finally, sought solution is computed (online phase) using
the resulting reduced order model (ROM). The computed solution belongs to the pre-
scribed subspace and its accuracy depends strongly on the relevancy of the considered re-
duced basis [HBN13, HBN12]. It generally requires a low computational effort and a such
strategy is particularly suited for on-board computations and parametric problems. Both
linear and non-linear problems can be tackled [KGAB11, KV01, RCCA06, AZF12b]. Nev-
ertheless, to design a working subspace some prior knowledge about the solution (called
snapshots) are required. These prerequisites can be obtained from prior computations, an-
alytic solutions, approximation of the solution on surrogate models, etc. Then, a relevant
reduced basis for them is computed using for instance a proper orthogonal decomposition
or a singular value decomposition. This preliminary phase is called offline phase and may
be expensive.

On the contrary, a priori approach does not require prior knowledge about the solution.
The reduced basis is computed and adapted on-the-fly during the resolution process. This
dissertation will focus on the widespread a priori reduced basis method called proper
generalized decomposition (PGD) [LPN10, CAC10, CLC11, BGA13, CKL14]. It is a
general method tackling various problems and consists in searching the solution into a
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Chapter 1. Reduction methods applied to frictional contact problem

low rank approximation (or separated form):

u(x, t) '
p∑

k=1
fk(x)gk(t) (1.1)

A such representation for the solution provides several advantages as far as the compu-
tational work is engaged and the storage memory is required. Nonetheless, drawbacks of
this approach rely on the sustainability of the low rank format for the solution (lack of
orthogonal properties on the basis). It is generally expected that a short expansion (i.e. p
is small) suffices to obtain a good approximation for the solution. For some applications
such as transient dynamics [BGA13] or problems involving moving boundaries, the low
rank approximation is seemingly inappropriate and advanced other features are required.

Generally, efficient reduction methods involves a mixed approach between a posteriori
and a priori. For instance, given a reduced basis, some calculations are performed on a
ROM but results obtained do not satisfy a certain level of accuracy (a posteriori approach).
Then, the considered reduced basis can be enriched to span an improved solution. A priori
methods are able to fulfill this goal. To take another example, instead of initializing a
priori methods from scratch, prior knowledge about the solution could be reused providing
a first guess for the subspace to compute on-the-fly. That’s why generally speaking,
efficient strategies involve both a posteriori and a priori methods in complementary roles
[Ryc05, KGAB11, Gal11, GGMR11, HBN13].

To clarify this section, a summarizing workflow is proposed on figure 1.2. In this
dissertation, a posteriori (LATIN-FAS and LATIN-ROM) and a priori (LATIN-PGD)
strategies are tackled. But as mentioned before, except for the suggested LATIN-ROM
(pure a posteriori approach), both approaches are mixed. In this dissertation, reduction
methods are deployed principally to design efficient solvers for frictional contact problems.
Parametric studies is here not widely tackled and only development paths are given in
chapter 4.

1.3 Reduced basis design

This section tackles compression issues and provides efficient tools to extract dominant
trends of an amount of data. In our framework, considered data types are evaluation func-
tions also called snapshots obtained from computations (e.g. a generalized displacement
field u). For a sake of memory usage and to address storage issues, a compression method
aims at computing a basis for the considered amount of data (e.g. in our case, it would be
a basis of functions spanning the snapshots). For that purpose, a Gram-Schmidt process
could be used for instance. By doing so, the different trends of snapshots can be identified
and redundancy among snapshots is eliminated. Nevertheless, such and orthogonalization
process does not provide the most dominant directions for snapshots. To achieve it, spe-
cific methods such as the the proper orthogonal decomposition (POD) and singular value
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decomposition (SVD) are hereinafter presented. These methods originate mainly from
the statistical field (principal component analysis, Karhunen-Loève decomposition, etc.)
and aims to provide a reduced basis composed of most dominant vectors for snapshots.

1.3.1 The proper orthogonal decomposition (POD)

The POD was introduced by [HLB98] and can be related to various mathematical model-
ing fields. Given a set of snapshots, POD is able to compute the optimal basis according to
a given norm. In other words, vectors of the POD basis are sorted according to their suit-
ability to snapshots arising the optimality property for the POD basis. For instance, the
first empirical modes will be the most representative in an average sense of the considered
snapshots.

Continuous case

Hereinafter, a summarized definition and elements of proof for the POD are given. Inter-
ested readers can refer to [HLB98, Ber04] wherein detailed and rigorous definitions can
be found. Let us define a vector-valued function u(X) defined on a space-time domain
D = Ω × R+. A function Φ ∈ L2(D) is sought such that the correlation between Φ and
u are maximal. In other words, function Φ maximizes its projection on u and according
to the canonical inner product on the space domain only denoted by (· | ·) and a time
averaging operator denoted by 〈·〉 (e.g. mean of the function):

Φ = arg max
Ψ∈L2(D)
(Ψ|Ψ)=1

〈(u | Ψ)〉 (1.2)

so that (Φ | Φ) = ‖Φ‖2 = 1. It can be shown that the previous maximization problem
can be cast into an eigenvalue decomposition (EVD) of the operator R : L2(D) 7→ L2(D)
defined as follows:

R(Φ) =
∫

D

[
〈u(X)⊗ u(Y)〉Φ(Y)

]
dY (1.3)

The sought function Φ is the eigenfunction corresponding to the largest eigenvalue
of the EVD: R(Φ) = λΦ. Thanks to properties of operator R (positive, linear and
self-adjoint), some important remarks can be noticed:

• The EVD of R has a countable infinity solutions denoted by eigenvalues λk and
eigenfunctions Φk.

• Eigenvalues λk are real and positive and can be indexed in decreasing order:

λ1 > λ2 > · · · > λ∞ > 0 (1.4)
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• Eigenfunctions Φk form a complete orthonormal set (i.e. a basis for u). In other
words, denoting by δij the Kronecker symbol:

u =
∞∑

k=1
akΦk(X) =

∞∑

k=1
(u | Φk)Φk(X) with (Φi | Φj) = δij (1.5)

• Accounting the decreasing indexing for λk, the POD basis is the basis formed by
the first K eigenfunctions Φk. These functions are called POD modes or empirical
modes.

• Among all basis of K functions denoted (Ψk)K1 ∈ L2(D), the POD basis denoted by
(Φk)K1 ∈ L2(D) is the optimal one. This is the optimality property:

〈∥∥∥u−
K∑

k=1
(u | Φk)Φk

∥∥∥
2
〉
6

〈∥∥∥u−
K∑

k=1
(u | Ψk)Ψk

∥∥∥
2
〉

(1.6)

Discrete case

Instead of considering a vector-valued function, we introduce snapshots which are evalu-
ations of u(X) for certain values X (e.g. numerical evaluations, experimental measures).
Previous properties can be easily transposed to the present discrete case:

• The corresponding EVD has K = dim
[
span

(
u(Xi)

)]
real and positive eigenvalues.

• Eigenvalues λk can be indexed in decreasing order:

λ1 > λ2 > · · · > λK > 0 (1.7)

• Eigenvectors Φk form a complete orthogonal set.

• Each snapshot u(X) can be written as a linear combination of vectors Φk.

• Each vector Φk can be written as a linear combination of snapshots u(X).

• Accounting the decreasing indexing for λk, the POD basis is the basis formed by the
first K vectors Φk.

• The optimality property pertains.

• As POD modes can be written as a linear combination of snapshots, if snapshots
meet homogeneous Dirichlet boundary conditions, then POD modes respect also
individually homogeneous boundary conditions.

In practice, to compute the POD basis of a given set of snapshots, an inner product
and a time average operator as to be chose. Then, an EVD has to be solved.
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1.3.2 The singular value decomposition (SVD)

Let us define a snapshot matrix U. For instance, in the finite element framework, gener-
alized displacements (n degrees of freedom) for all time steps t06k6m can be cast into U
as follows:

U =




u1(t0) u1(t1) · · · u1(tm)
u2(t0) u2(t1) · · · u2(tm)

... ... . . . ...
un(t0) un(t1) · · · un(tm)




=
[
u(t0) u(t1) · · · u(tm)

]
(1.8)

U ∈ Rn×m is a real rectangular matrix and u(tk) are snapshots of the generalized
displacement field. According to the singular value theorem [EY36], U can be factorized
using SVD:

U = ΥΣΦT =
[
Υ1 · · · Υn

]




σ1 0 · · · 0
0 σ2

...
... . . . 0
0 · · · 0 σr
0 · · · 0 0







ΦT
1
...

ΦT
m


 (1.9)

with r = min(n,m), Υ ∈ Rn×m is an unitary matrix containing left-singular vectors,
Φ ∈ Rm×m an unitary matrix containing right-singular vectors and Σ ∈ Rn×m containing
positive singular values σi in decreasing amplitudes. This decomposition is unique up to
an arbitrary sign for pair (Υi,Φi). The SVD factorization (1.9) can be rewritten into the
following rank one expansion:

U =
r∑

k=1
σiΥiΦT

i (1.10)

Snapshots u(tk) can be written as a linear combination of left singular vectors Υi

which coordinates Φi(tk) are amplified by singular values σi:

u(tk) =
r∑

k=1
σiΥiΦi(tk) (1.11)

Given a matrix U ∈ Rn×m whose its general entries is denoted by uij, the matrix
p-norm is defined as follows:

‖U‖p =



n∑

i=1

m∑

j=1
|uij|p




1
p

(1.12)

The above norm has to be distinguished form matrix induced norms. For p = 2, the
Frobenius norm is defined and is denoted by ‖U‖F . Taking into account only the K ≤ r
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first singular values of the SVD expansion of U allows to define a low rank approximation
of U denoted by Ǔ and yields to:

Ǔ = σ1Υ1ΦT
1 + σ2Υ2ΦT

2 + · · ·+ σKΥKΦT
K (1.13)

According to the Eckart-Young’s low rank approximation theorem [EY36], Ǔ is the best
approximation of rank K of U according to the Frobenius’ norm. Moreover, if K = r

then Ǔ = U. In other words, considering the Frobenius norm, the SVD provides the
discrete POD of U. Moreover, it can be easily shown that the relative error between the
snapshot matrix U and its SVD approximation Ǔ is given by:

E(U) = ‖U− Ǔ‖F
‖U‖F

= ‖U−
∑K
i ΥiΥT

i U‖F
‖U‖F

=

√√√√
∑r
i=K+1 σ

2
i∑r

i=1 σ
2
i

(1.14)

For data compression issues, SVD is particularly interesting. Indeed, instead of storing
the whole n × m entries of the snapshot matrix U, only the first K pairs of vectors is
retained representing K(m + n) entries. In order to be efficient as far as the memory is
concerned, we deduce the following criterion:

K(m+ n) 6 nm ⇔ K 6
nm

(m+ n) (1.15)

Generally, K is chosen in such a way that a great compression is gained as far as the
amount of data to store is concerned and the corresponding low rank approximation is
sufficiently accurate (e.g. E(U) < 0.1).

1.3.3 Application to image compression

To illustrate the SVD compression ability, we propose to compress a grayscale picture
sizing n×m = 800× 600 pixels. Then a snapshot matrix, say U ∈ Rm×n whose entry is
the grayscale value for a given pixel, can be factorized with the SVD. Consequently, an
amount of 600 modes are computed. An efficient compression leads to choose p modes
such that p < mn

m+n = 342. Considering only given K first SVD modes, we are able rebuilt
an approximated or compressed picture (see figure 1.3).

Depending the desired rendering, 50 to 100 modes are seemingly sufficient to get a
compressed but qualitative picture.
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(a) Original image (b) 1 SVD mode (c) 5 SVD modes (d) 10 SVD modes

(e) 25 SVD modes (f) 50 SVD modes (g) 100 SVD modes (h) 200 SVD modes

Figure 1.3 – Original photo (rowing oars) rebuilt with SVD modes.
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1.4 Frictional contact problems

1.4.1 Reference problem and governing equations
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Figure 1.4 – Problem set.

A flexible body is contacting a rigid basement (figure 1.4). We define Ω, the domain
occupied by this solid whose boundary is ∂Ω at time t ∈ [0, T ] ⊂ R. This boundary can
be split into three complementary parts:

• ∂1Ω: the part of the boundary where displacements up are prescribed;

• ∂2Ω: the part of the boundary where external loads fext are prescribed;

• ∂3Ω: the part of the boundary where contact conditions may occur (potential contact
interface).

For multibody problems, all of above quantities are affected by a superscript (i) ac-
cording to bodies indexing. For a sake of clarity, this superscript is dropped off for single
flexible body problem.
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1.4.2 Strong formulation of governing equations

Linear behavior

Linear assumptions are assessed (small perturbations and strains, homogeneous-isotropic-
linear-elastic material, small slidings). External loads are time-dependent and a quasi-
static regime is assumed. The problem can be set as follows: find the displacement field
and the Cauchy’s stress field denoted respectively by u(x, t) and σ(x, t) satisfying:

• kinematic admissibility:

u(x, t) ∈ U [0,T ] and U [0,T ] =
{
u ∈ H1(Ω) with u |∂1Ω×[0, T ]= up

}
(1.16)

the strain-displacement relationship with linear assumptions reads:

∀(x, t) ∈ Ω× [0, T ] : ε(u) = 1
2(∇u + ∇Tu) (1.17)

and the trace of the displacement field on the contact interface is v = u |∂3Ω×[0, T ].

• static admissibility: σ(x, t) is balanced with external force and contact forces λ, i.e.




∀(x, t) ∈ ∂2Ω× [0, T ] : σ n = fext

∀(x, t) ∈ ∂3Ω× [0, T ] : σ n = λ

∀(x, t) ∈ Ω× [0, T ] : div(σ) = 0
(1.18)

where n is the local outward normal vector of the considered domain.

• constitutive laws:

– Hooke law for elasticity:

∀(x, t) ∈ Ω× [0, T ] : σ = Kε(u) (1.19)

where K is the linear elasticity Hooke operator.
– Signorini condition and Coulomb frictional law for contact. With v and λ, the

traces of displacement field and contact force field (both normal and tangential)
on the contacting interface ∂3Ω, these conditions can be written formally as:

R(v,λ) = 0 (1.20)

To be more precise for the frictional behavior, fields at the contacting interface ∂3Ω
can be split into a normal and a tangential part as:

∀(x, t) ∈ ∂3Ω× [0, T ] :




v(x, t) = uNn + uT
λ(x, t) = λNn + λT

(1.21)

R governs the contact behavior at the interface ∀(x, t) ∈ ∂3Ω× [0, T ].
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Non-linear behavior (flexible body vs. rigid obstacle)

According to Signorini conditions and Coulomb law on the displacement field and contact
force field:

• Normal contact with Signorini conditions given in [Sig59],

g(u) = uN − j = u · n− j 6 0 Non-penetration condition
λN = (σ n) · n 6 0 Compressive contact force

λNg(u) = 0 Complementarity condition
(1.22)

where j is the initial gap and g(u) is the gap function.

• Tangential contact with Coulomb friction law [Cou85]:

‖λT‖2 = µ|λN | if sliding: ‖δuT‖2 6= 0 and δuT = −ρλT with ρ > 0
‖λT‖2 6 µ|λN | if sticking: ‖δuT‖2 = 0

(1.23)

where µ ∈ [0 ,+∞[ is the friction coefficient and δuT is the increment of tangential
displacement.

Non-linear behavior (flexible body vs. flexible body)

The previous relationships can be extended for two contacting flexible bodies. Writing
them on the outward normal of the body 1 denoted by n(1) yields to:

• Normal contact:

g(u(2),u(1)) = j + (u(2) − u(1)) · n(1) > 0 Non-penetration condition
λ(1) · n(1) = λN 6 0 Compressive contact force

λ(2) · n(1) = −λN > 0 Reciprocity of contact force
λNg(u(2),u(1)) = 0 Complementarity condition

(1.24)

where j is the initial gap between the two bodies and g the gap function.

• Tangential contact with Coulomb friction law :

λ
(1)
T = −λ(2)

T

‖λT‖2 = µ|λN | if sliding: ‖δu(2/1)
T ‖2 6= 0 and δu(2/1)

T = −ρλ(1)
T with ρ > 0

‖λT‖2 < µ|λN | if sticking: ‖δu(2/1)
T ‖2 = 0

(1.25)

where µ ∈ [0 ,+∞[ is the friction coefficient and δu(2/1)
T is the increment of tangential

relative displacement (displacement of body 2 relatively to body 1).
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Chapter 1. Reduction methods applied to frictional contact problem

1.4.3 Weak formulation

We define the following set of homogeneous kinematically admissible functions as:

u(x, t) ∈ U [0,T ]
0 with U [0,T ]

0 =
{
u ∈ H1(Ω) and u |∂1Ω×[0, T ]= 0

}
(1.26)

Equilibrium (1.18) is equivalent to the following integral formulation with compatibil-
ity of contact force field and displacement field to contact conditions (1.22) and (1.23):

∀u∗ ∈ U [0,T ]
0 :

∫

Ω
σ : ε(u∗)dV −

∫

∂2Ω
fext · u∗dS −

∫

∂3Ω
λ · u∗dS = 0 (1.27)

1.4.4 Semi-discretized weak formulation

Using Hooke law for σ = Kε and the finite element approximation for displacement field
yields to the so-called semi-discretized equilibrium equation with respect to frictional
contact conditions at each contacting node:

∀u?(t) :
∫ T

0
[u?(t)]TKu(t) dt =

∫ T

0
u∗T (t)[fext(t) + fctc(t)] dt

with





v(t) = Bu(t)
fctc(t) = BTλ(t)
R(v,λ) = 0

(1.28)

K is the stiffness matrix, fext(t) and fctc(t) are generalized forces and B is a boolean
matrix mapping the global vector of nodal values to the values on contact boundary nodes.
All in all, we have to find displacement field u(t) (and v(t) is straightforwardly deduced)
and contact force field λ(t) verifying (1.28) for all trial functions u∗(t).

1.4.5 Discretized weak formulation

The time interval is discretized into a sequence of time steps t06k6m describing a regular
time stepping (i.e. tk+1 = tk + ∆t). Then, the discretized space-time reference problem
is defined as follows:





Ku = fext + BTλ

v = Bu
with





v = Bu
fctc = BTλ

R(v,λ) = 0
(1.29)

1.4.6 Challenges of frictional contact

Origin and frictional contact modeling

In 1933, Signorini posed the so called Signorini’s problem: a linear elastic body resting
on a rigid frictionless plane and gave unilateral contact conditions (1.22) (“Problema
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1.4. Frictional contact problems

con ambigue condizioni al contorno” in [Sig59]). These equations govern the interaction
between two contacting bodies in the normal direction. The complementarity condition
states that either the gap is positive (contact open) then contact force must be null or
the gap is null (contact close) then contact forces appears. Case of both gap and contact
force are null is called grazing touch. In 1963, Fichera [Fic64, Fic73] gave the proof of
existence and uniqueness of the solution of this problem.

In 1699, Amontons [Amo32] states first principles of the Coulomb’s frictional model:

• Friction force is proportional to the normal force.

• Frictional force depends only on material of contacting surfaces (characterizing the
coefficient of friction).

In 1785, Coulomb [Cou85] added :

• Friction force is independent of the sliding velocity and resists relative lateral motion.

A frictional coefficient µ = 0 corresponds to the frictionless case. Usually µ 6 1 and
depends of the couple of involved materials, roughness, etc. Static friction and kinetic
friction can be distinguished:

• Static friction with µs occurs between two solids in contact that are not moving
relative to each other initially. This friction has to be overcome to move one of them
.

• Kinetic friction with µk occurs between two solids in contact that are sliding relative
to each other initially. In general, the force to apply in order to maintain the relative
motion between these solids is less than the force to apply to overcome static friction.

Then, µs > µk. Variation of coefficient of friction is usually invoked to explain stick-slip
phenomena. We assume that static friction is equivalent to kinetic friction (i.e. µs =
µk = µ). Generally speaking, frictional phenomenon is complex and hard to model. In
the first half of the 20th century, more sophisticated frictional laws with varying frictional
coefficient (according to temperature, relative velocity, etc) was proposed (e.g. Stribeck’s
law). Mathematically speaking, elements to prove existence and uniqueness for a frictional
Signorini’s problem considering a Coulomb’s model can be found in [Coc84, Kla90, RC01,
BB05, Cap11].

Numerical challenges

Contact mechanics is a broad topic involving several geometrical, optimization and nu-
merical aspects relying on strong mathematical foundations. A great coverage of com-
putational contact mechanics with all its basic ingredients is available in [Yas13]: from
contact detection to implementation of contact algorithms in a finite element software. We
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Chapter 1. Reduction methods applied to frictional contact problem

will focus on the algorithmic aspect to solve frictional contact problem. Then, geometry,
discretization and contact detection issues are not in the scope of this dissertation.

Frictional contact problems are strongly non-linear due to status switches (contact /
no contact, sticking / sliding). Evolution of status is not regular, making such problems
non-smooth and hence non-differentiable in the classic Frechet’s sense. Due to this fact,
specific mathematical modeling field related to the convex optimization theory is required.
[Mor67, Mor76, Roc97, HUL01, CPS09]. Numerically speaking, this tough non-smooth
property is challenging and specific solvers have to be designed to fulfill suited calculations.

Over the last decades, various solving methods have been developed. Contact prob-
lems can be formulated as an optimization problem subject to mathematical constraints
with the augmented Lagrangian formulation. Such formulation can be solved using aug-
mented Lagrangian methods [SL92, Lau92a, Wri95, HL99, PC99, FG00, AD08, BMP12].
Non-linear Gauss-Seidel solvers are also developed and applied to problems involving
multi-contact bodies (rigid or flexible) [JAJ98, Jea99, DHK02]. But these last methods
are not the most efficient to solve large systems (poor rate of convergence). Gradient
methods are developed and adapted [BAV01, DF01, RA05, DS05] (with projection of the
descent direction on feasible region for contact laws or active-set violation control strategy
...) in order to recover well-known performances of such methods for linear systems. But
the main drawback of them is the difficulty to provide a convergence proof. In spite of
the non-smooth property of contact problems, widely used Newton’s methods (general-
ized Newton’s methods) are studied [CA88, Ala97, LF00, Ren12]. Such methods proved
their efficiency and robustness in large scale elasticity problems with contact and friction.
Once again and due to non-smooth property of contact problems, convergence proof of
generalized Newton’s methods are hard to provide.

According to the Lagrange method, contact problems can be cast into a linear comple-
mentarity problem (LCP) and using specific solvers such as active-set methods, Lemke’s
algorithm, projected successive over relaxation (PSOR) [MDL88]. In [AP97], an LCP
formulation is used to solve a frictional contact problem by faceting the Coulomb’s cone.
Nevertheless, this approximation is tough and not really efficient (the problem to solve
becomes larger). Nowadays, LCP formulations are very well suited to frictionless prob-
lems.

In general case, constraint optimization problems can be also solved with the penalty
method. Despite its easy implementation, such method does not converge to the exact
solution of the reference problem [BF95] and suffers numerically of bad conditioning.

Finally, the bipotential method [DSF98, JF08] provides a framework wherein suited
algorithms allowing some computer cost reduction can be applied.

In [Woh11], main results on space discretization scheme and non-linear solver for the
solution of frictional contact problems are provided.

Generally speaking and even within a quasi-static context, all these non-linear solvers
can lead to prohibitive time of computations. Efficiency of these solver families depends
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1.4. Frictional contact problems

on the complexity of the mechanical system (e.g. number of contacting points, see figure
1.5).

To address this computational issue, several acceleration methods can be used. First,
an acceleration strategy based on multigrid methods were proposed in [AL95, LRR07].
It consists in computing cheaply corrections on coarser discretizations (grids) to acceler-
ate the convergence rate of a non-linear solver (e.g. non-smooth Newton method) also
called smoother on the finest description of the problem. Second, domain decomposition
techniques (FETI-based) were also proposed for frictional contact problems [DKH+10,
DKM+12]. Such techniques aims at partitioning bodies into non-overlapping sub-domains
processed independently. Then, interesting scalability property can be gained. On the
other hand and over the last decade, model reduction techniques surge in enthusiasm
within the computational mechanics field. For both linear and non-linear problems, im-
pressive accelerations can be obtained. Nevertheless, for frictional contact mechanics,
the use of such reduced basis methods [HSW12, KP14] seem to be difficult due the non-
smoothness of the constitutive laws. As proposed and claimed in [GDGR14], using a
space-time approach allows to circumvent this difficulty and benefiting from computa-
tional gain of such reduced basis approaches. That’s why, in this dissertation, the large
time increment method [Lad99] is focused and introduced. It is closed to widespread
augmented Lagrangian methods [Cha96, ADR06].

Few contacts Numerous
contacts

Condensation
methods

Augmented La-
grangian methods

Bipotential method Projected Gauss-
Seidel methods

Figure 1.5 – Classification of contact problems.

1.4.7 Analogy with plasticity

Velocity formulation for frictional contact

Frictional contact conditions (1.22) and (1.23) can be equivalently rewritten using a ve-
locity formulation. According to the viability Moreau’s lemma [Mor88], unilateral contact
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Chapter 1. Reduction methods applied to frictional contact problem

conditions become:

g(u) = u · n− j 6 0
λN = (σ n) · n 6 0

λNg(u) = 0
⇔





If g(u) > 0 then λN = 0

If g(u) = 0 then





u̇ · n 6 0
λN 6 0
(u̇ · n)λN = 0

(1.30)

Associated flow rule

An interesting analogy can be done between standard flow rule used for metal plasticity
and frictional contact laws. For isotropic elastoplastic hardening laws, a solid is said to
yield once the load function f (called also plastic potential) is zeroed and defined by:

f(σ) = J(σ)− (σY +R) 6 0 (1.31)

with J(σ) a plastic criterion (e.g. Von-Mises), σY the yield stress, R the hardening law.
If f is negative, the solid behaves as an elastic material. The standard or associated flow
rule states that once the yield limit is reached (i.e. f = 0) the plastic strain increment,
and the normal to pressure dependent yield surface, have the same direction (normality
condition):

dεp = λ
∂f

∂σ
:




If f(σ) < 0 then λ = 0
If f(σ) = 0 then λ > 0

⇔





f(σ) 6 0
λ > 0
f(σ)λ = 0

(1.32)

with dεp the plastic strain rate, σ the Cauchy’s stress tensor and λ the plastic multiplier.
Similarly from these conditions, viability Moreau’s lemma can be applied leading to

the Prager’s consistency condition [Pra49] stating df = 0 when f = 0:




If f(σ) < 0 then λ = 0

If f(σ) = 0 then





df > 0
λ > 0
dfλ = 0

(1.33)

As for frictional laws, elastoplastic governing rules are also characterized by non
smooth laws (yielding or not yielding status) leading to a similar formulation. The most
popular method for integrating these equations is the radial return method [OS86, Pon98].
Plasticity aspects will be detailed in the last chapter as an extension of linear frictional
problems to elastoplastic frictional problems.
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1.5. A posteriori empiric analysis

1.4.8 Analogy with fracture mechanics

M

s(t)

Figure 1.6 – Cracked body.

As well as plasticity, another analogy can be made with linear fracture mechanics and its
maximum energy release rate (MERR, see [Gri21]) principle. Variational formulations for
linear elastic fracture mechanics was proposed in [SC11] due to plasticity analogies. Let
s(t) be the elongation (see figure 1.6) at the crack tip at time t and its velocity denoted
by ṡ(t). First, the crack propagation is considered as irreversible, then ∀t : ṡ(t) > 0. One
denotes usually by ϕ(KI , KII , θ), the maximum energy release rate criteria with KI and
KII the stress intensity factors and θ the kink angle. At time t, the crack does not advance
if ϕ < 0 or growth if ϕ = 0. All in all, this can be put into the following formulation:





ṡ(t) > 0
ϕ
(
KI(t), KII(t), θ(t)

)
6 0

ṡ(t)ϕ
(
KI(t), KII(t), θ(t)

)
= 0

(1.34)

The above formulation can be proved from a thermodynamical point of view [SC] and
corresponds to unilateral contact condition formulation.

1.5 A posteriori empiric analysis

In this section, SVD analysis for some frictional contact problems are carried out to illus-
trate and exemplify arising empiric modes and enlighten a scale separability phenomenon
in structural mechanics with friction. For that purpose, two numerical examples are pro-
posed in the following. The first is a two dimensional extrusion problem involving large
frictional zones relatively to the studied body. Such a problem is particularly tough. De-
velopments given in this dissertation will be mainly illustrated on this telling example.
Then, the second example is a larger three dimensional problem involving two contacting
flexible bodies.
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Chapter 1. Reduction methods applied to frictional contact problem

In this section, it will be assumed that solutions of suggested problem are known.
These are respectively composed of the generalized displacement field and the contact
force field and denoted by s = (u,λ). These fields verify internal balance equation and
frictional contact condition:

Ku = fext + BTλ and R(Bu,λ) = 0 (1.35)

Thanks to superposition principle, the solution is partitioned s = s0 + s∗ = (u0,λ0) +
(u∗,λ∗) with u0 a kinematically admissible displacement field and u∗ a kinematically
admissible displacement field to zero. Those new fields verify:

Ku = K(u0 + u∗) = fext + BTλ with





Ku0 = fext + λ0

λ0 = 0
Ku∗ = BTλ∗

λ∗ = λ

(1.36)

Solution s0 can be solved easily by solving a linear system and does not account for
contacting boundaries. Whereas s∗ is a “corrective solution” for s0 to make it compatible
to frictional contact conditions. In this dissertation, suggested numerical methods are
iterative algorithms for which the provided initial guess for the solution will be s0. Then,
the corrective part s∗ is the target field to solve. Because u∗ is linearly bound to λ by
stiffness K, this partitioning is particularly suitable for following analysis.

The displacement field u (respectively u∗) can be cast into a snapshot matrix U
(respectively U∗). Then, a SVD analysis will be carried out for both. From these two
analyses, different quantities can be exhibited and discussed:

• From the SVD analysis of U, a low rank approximation for the displacement field
u, say ǔ, can be provided. Hence, evolution of the error can be depicted according
to the size of this expansion. Moreover, the elastic energy integrated over the time
interval of the solution u defined by:

E = 1
2

∫ T

0
u(t)Ku(t) dt (1.37)

It can be distributed among empiric modes as E = ∑
iEi where

Ei = 1
2σi

2ΥT
i KΥi

∫ T

0
ΦT
i Φi dt = 1

2σi
2ΥT

i KΥi (1.38)

Accounting K modes and rebuilding ǔ, the fraction of captured elastic energy is∑K
i=1Ei/E. Nonetheless, a corresponding contact force field cannot be rebuilt. In-

deed, this analysis is mainly displacement field oriented.

• From the SVD analysis of U∗, a low rank approximation for the displacement field
u∗, say ǔ∗, can be provided. Moreover, from these space modes, say Υ, one is able
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1.5. A posteriori empiric analysis

to compute associated contact force modes as follows:

KΥ = F (1.39)

Contact force mode F are ensured to be localized at the contacting interface (i.e.
F = BTΛ) due to the fact that each Υ can be written as a linear combination of
snapshots u∗ verifying Ku∗ = BTλ. This way, low rank approximations for solution
fields s∗ can be computed. Furthermore, and given u0, one is able to rebuilt the
whole solution s of the problem. Errors between rebuilt fields and solution can be
computed following the Frobenius norm. For instance, error for the displacement
field is defined as follows:

E(u) = ‖(U0 + Ǔ∗)−U‖F
‖U‖F

(1.40)

with U0 the snapshot matrix of u0 and Ǔ∗ the snapshot matrix of u∗. Similarly, the
error E(λ) is also defined.

In both cases, left singular SVD modes (or empiric modes) are generalized space vectors
and right singular one are time vectors. As a consequence, the SVD provides a space-time
separated representation for these considered fields.

1.5.1 Extrusion problem

The first example consists in an extrusion of an elastic aluminum billet into a rigid con-
ical die (see figure 1.7). This problem [KO88, Lau92b] is investigated assuming small
perturbations even if such hypothesis is not ensured (large deformations occur). The fi-
nite element method is used and the solid is meshed with linear quadrangles elements. A
displacement is prescribed in such a way that the billet is pushed into and extracted from
a conical die. The solution is assumed to be known and is plotted for some time steps on
figure 1.8.

y0

x0

Ω

Friction µ

∂3Ω

∂1Ω

90◦ + α

254

50.8

(a) Numerical model
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t

up · y0

(b) Prescribed displacement

Property Value
Young modulus E 68.86 GPa

Poisson ratio ν 0.32
Frictional coefficient µ 0.1

Time interval [0, T ] [0, 1]
Time stepping ∆t 5 · 10−3 s

Degrees of freedom n 368
Contacting nodes nC 42

Angle α 5◦

(c) Properties

Figure 1.7 – Aluminum billet pushed into conical die.
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Figure 1.8 – Solution s: displacement and contact force fields. The color map refers to the
norm of the strain tensor field ‖ε‖ =

√
ε : ε and red arrows correspond to nodal contact force.
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Figure 1.9 – SVD space modes of U and U∗ (denoted by mode∗) scaled by a corresponding
factor 0.2√σi. The color map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε.

The SVD of U provides space modes (see figure 1.9), time modes, singular values am-
plitudes and energy distribution (see figure 1.10). Remarkably, to rebuilt exactly (up the
machine zero point) the displacement field u, only 33 SVD modes are needed. To qualify
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Figure 1.10 – Modes contribution for both U and U∗ and SVD time modes scaled by a
corresponding factor 0.2√σi.

the rebuilt displacement field ǔ with a given number K of space-time modes, both relative
error according to the criterion 1.14 and the captured elastic energy may be considered.
Obviously, the more elevated is K, the more accurate is the approximation ǔ. For in-
stance, if one takes 5 space-time modes, the rebuilt displacement field ǔ captures 99.8%
of the integrated elastic energy and its relative error is less than 0.09%. Consequently,
the displacement field u is highly reducible. In practice, 2 or 3 modes could be considered
to compress u efficiently.

The SVD of U∗ provides also space modes (see figure 1.9), time modes with their
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corresponding amplitudes (see figure 1.10). In addition, errors defined by formula (1.40)
for both displacement field and contact force field are plotted according to the number of
modes considered for their corresponding low rank approximation. One can notice that,
thanks to the heritage of homogeneous Dirichlet boundary conditions, each space mode is
kinematically admissible to zero. Once again and for the same observation, solution fields
u∗ as well as λ are highly reducible (even if λ is seemingly less compressible than u∗).
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1.5.2 Fretting problem

The fretting problem (figure 1.11) consists in an elastic hemicylindrical body contacting a
frictional rigid basement. Displacements on the upper boundary are prescribed such that
a large contact zone occurs. The scale of the structure and the scale of the contact zone
are similar. Initially, the solid is not contacting. From time-step t1 to t40, it approaches
and becomes pressed on the rigid basement. Meanwhile, a tangential displacement is
prescribed to activate a global frictional reaction at the contacting zone. Some snapshots
of the solution are given in figure 1.12.
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Property Value
Young modulus E 3000 Pa

Poisson ratio ν 0.3
Frictional coefficient µ 0.15

Time interval [0, T ] [0, 1]
Time stepping ∆t 5 · 10−3 s

Degrees of freedom n 1144
Contacting nodes nC 101

(c) Properties

Figure 1.11 – Hemicylindrical body contacting a rigid basement.
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Figure 1.12 – Solution s: displacement and contact force fields. The color map refers to the
norm of the strain tensor field ‖ε‖ =

√
ε : ε and red arrows correspond to nodal contact force.

The SVD of both U and U∗ provide space modes (figure 1.13) and time modes (figure
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Figure 1.13 – SVD space modes of U and U∗ (denoted by mode∗) scaled by a corresponding
factor √σi. The color map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε.
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Figure 1.14 – Modes contribution for both U and U∗ and SVD time modes scaled by a
corresponding factor √σi.
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1.14). Once again, both displacement fields u and u∗ are reducible and less than 5 modes
are required to rebuilt accurately the whole space-time solution.

1.5.3 Cantilevered indenter

This problem (figure 1.15) consists in an elastic cantilevered hemicylindrical indenter con-
tacting a frictional rigid basement. External loads are designed in order to get different
status at the contacting nodes during the studied time interval (no contact, sliding, stick-
ing). The size of the effective contact area is smaller than the scale of the structure. Some
snapshots of the solution are given in figure 1.16.
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Property Value
Young modulus E 3000 Pa

Poisson ratio ν 0.3
Frictional coefficient µ 0.15

Time interval [0, T ] [0, 1]
Time stepping ∆t 5 · 10−3 s

Degrees of freedom n 2564
Contacting nodes nC 101

(c) Properties

Figure 1.15 – Cantilevered contacting a rigid basement.

From figures 1.17 and 1.18, same conclusions as for the previous cases can be drawn.
Status switching seems to not affect reducibility of the solution. For this problem, the
length scale of the global structure is more separated from the one of the contact area,
and this is depicted in the succession of spatial modes.
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Figure 1.16 – Solution s: displacement and contact force fields. The color map refers to the
norm of the strain tensor field ‖ε‖ =

√
ε : ε, red arrows correspond to nodal contact force and

yellow arrows correspond to the external load.
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Figure 1.17 – SVD space modes of U and U∗ (denoted by mode∗) scaled by a corresponding
factor √σi. The color map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε.
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Figure 1.18 – SVD time modes of U scaled by a corresponding factor √σi, singular value
amplitudes and elastic energy distribution.
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1.5.4 Cantilevered indenter with a mobile charge

This problem (figure 1.19) is the same as the previous one excepting for the external
loads. A mobile Gaussian-lobe load moving along the upper boundary of the body is
designed with an increasing amplitude. It is well-known that this kind of solicitation is
not efficiently described by a finite set of separated function (1.13). A soft contact occur
at the bottom of the hemicylindrical part. In figure 1.19, a space variable ` localizing the
position of the lobe is defined. The evolution of ` according the time variable is prescribed
as follows:

∀` ∈ [0, L] :





t ∈ [0, T4 ] : ` = 4L t
T

t ∈ [T4 ,
T
2 ] : ` = 4L(1− t

T
)

t ∈ [T2 ,
3T
4 ] : ` = 4L t

T

t ∈ [3T
4 , T ] : ` = 4L(1− t

T
)

(1.41)

All in all, the mobile charge moves twice, from an abscissa 0 to L and then comes back
to 0.

R

Ω

up = 0 (clamped) fext(t) = (Gauss bump)`(−y0)

`

L

∂3Ω

intial gap

y0

x0

(a) Numerical model

Figure 1.19 – Cantilevered indenter with a mobile charge contacting a rigid basement
(properties are the same as the cantilevered indenter). The mobile charge sweeps the upper

boundary twice.

With the mobile charge, the displacement field u is clearly less compressible relatively
to the previous case (see figure 1.22b to compare with 1.18b). More modes are required
to rebuild the snapshots U (to capture 99% of the elastic energy, more than 10 modes are
required instead of 4 for the previous case). One can remark that the displacement field
u∗ is highly reducible. Indeed, u∗ is obtained from u by subtracting the displacement
field associated to the external load. As a consequence, the poor compressible part of u
(i.e. induced by the mobile charge) vanishes and the remaining u∗ is in this case highly
compressible. All exemplified displacement fields u∗ show a great compressible property.
Nonetheless, for large sliding motions involving a moving effective contact zone, the same
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Figure 1.20 – Solution s: displacement and contact force fields. The color map refers to the
norm of the strain tensor field ‖ε‖ =

√
ε : ε, red arrows correspond to nodal contact force and

yellow arrows correspond to the external load.

behavior as described above occurs. Then, displacement field u∗ would become poorly
compressible.

Finally, one can also notice the periodicity of time modes due to the periodicity of the
mobile charge (two sweeps).
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Figure 1.21 – SVD space modes of U and U∗ (denoted by mode∗) scaled by a corresponding
factor √σi. The color map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε.
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Figure 1.22 – SVD time modes of U scaled by a corresponding factor √σi, singular value
amplitudes and elastic energy distribution.
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1.5.5 Three dimensional multibody problem

The following example consists in an assembly of two bolted annular rings (see figure
1.23). Instead of dealing with full rings, only a 40◦ sector is considered and periodic
boundary conditions are prescribed for the displacement field. Boundaries are designed
such that, first a screwing force pinches the two rings, then, small displacements occur to
activate friction. The solution is assumed to be known and is plotted for some time steps
on figures 1.25 and 1.26.

Unlike previous examples, multibody systems require a special attention as far as
the discretization and the contact detection are concerned. For the sake of simplicity,
we use a node-to-node discretization [FZ75] with conforming meshes for involved bodies.
Then, contact condition are easily written at each pair of nodes. Such a discretization
is very simple to implement and to handle numerically. Its great drawbacks are the
need of conforming meshes, and the fact that only small deformation and small slip
can be handled. On the one hand, to address those limitations, other methods such as
node-to-segment [HTS+76, ZDL09] or segment-to-segment [WS85, PL04] were developed.
Nonetheless, one has to be advised that all of these methods are not ensured to pass
the Taylor’s patch test [TP91, EAB01]. On the other hand, mortar [BMP93, LM97,
BHL98, ML00, Woh00, Hil00] and Nitsche [BHS03, WZ08, FHW04] methods seem to be
the most efficient to take into account large deformations and slip between bodies non-
conformingly meshed. These methods pass the Taylor’s test but the price to pay is their
highly complicated implementation (namely for 3D cases).
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Figure 1.23 – Model of the bolted annular rings.
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Young modulus E 1 GPa

Poisson ratio ν 0.3
Frictional coefficient µ 0.5

Time interval [0, T ] [0, 1]
Time stepping ∆t 5 · 10−3 s

Degrees of freedom n 2× 4845
Contacting nodes nC 2× 291

(b) Properties

Figure 1.24 – Bolted annular rings.
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Figure 1.25 – Solution: displacement field. The color map refers to the norm of the
displacement field.

Solution of this problem includes the solution for the first body s(1) and the solution for
the second body s(2). Displacement fields are concatenated into the same snapshot matrix
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Figure 1.26 – Contact force field. Red and blue arrows correspond respectively to the first
(lower) and second (upper) body nodal contact force.

from which the SVD is performed. But, one may carry out following SVD analyses for
each individual body. The SVD of U provides space modes (see figure 1.27), time modes,
singular values amplitudes and energy distribution (see figure 1.29). As the size of the
problem is larger than previously, less than roughly 90 space-time modes are required to
rebuilt exactly the solution. Remarkably, accounting 2 space-time modes leads to a low
rank approximation ǔ with a relative error of 0.8% relatively to u capturing 99.8% of the
integrated elastic energy. Again, field u is highly reducible.

The SVD of U∗ provides space modes (see figure 1.28), time modes with their cor-
responding amplitudes (see figure 1.29). In addition, errors defined by formula (1.40)
for both displacement field and contact force field are plotted according to the number
of modes considered for their correspond low rank approximation. Again and for same
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observation, solution fields u∗ as well as λ are highly reducible even if λ is seemingly less
compressible than u∗.
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Figure 1.27 – SVD space modes of U scaled by a corresponding factor √σi. The color map
refers to the norm of the displacement field.
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Figure 1.28 – SVD space modes of U∗ scaled by a corresponding factor √σi (the color map
refers to the norm of the displacement field). Red and blue arrows correspond respectively to

the first (lower) and second (upper) body nodal contact force.

43



Chapter 1. Reduction methods applied to frictional contact problem

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

0.2

t

Φ1 Φ2 Φ3

Φ4 Φ5 Φ6

(a) Time modes of U

1 10 20 30 40 50 60 70 80

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Mode order

Singular value (%)
Relative error E(u)

0.92

0.96

1

E
lastic

energy
(%

)

Elastic energy (%)

(b) Modes contribution of U

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

0.2

t

Φ1 Φ2 Φ3

Φ4 Φ5 Φ6

(c) Time modes of U

1 10 20 30 40 50 60 70 80

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Mode order

Singular value (%)
Relative error E(u)
Relative error E(λ)
Error LATIN I

(d) Modes contribution of U∗

Figure 1.29 – Modes contribution for both U and U∗ and SVD time modes scaled by a
corresponding factor √σi.
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1.6. The large time increment (LATIN) method

1.5.6 Scale separability observation

From all of these previous SVD analyses, great compressible properties were exemplified.
Indeed for the presented cases, a few modes are needed to provide an accurate approx-
imation for fields of interest. Last but not least in addition to the reducibility, a scale
separability phenomenon is enlightened. For all problems, two scales can be distinguished
at least: a global / structural scale and a scale localized at the contacting interface.
For the cantilevered indenter with a mobile charge a third scale related to the moving
boundary condition can be also identified.

The first SVD modes (most energetic ones) include global trends of the analyzed
field. Whereas higher order modes bring local corrections enhancing precision at con-
tact interface. Time modes are also affected by the scale separability. First time modes
are associated to global space mode to depict structural scale displacements (∼ low fre-
quency) whereas higher order ones correspond to local space modes bringing correction
at the contacting interface (higher frequency). Such observations were also remarked in
[GDGR14].

All of these remarks show that a frictional contact solution and adopting a global
space-time approach is reducible and has remarkable different scales. In other words, a
relevant and a multiscale reduced basis for the solution can be computed with for instance
a sample of SVD space modes.

1.6 The large time increment (LATIN) method

1.6.1 Space-time global approach

Incremental vs. non-incremental

t

s

t0 t1 · · · tk−1 tk tk+1 · · · T

· · ·

(a) Incremental approach

t

s

t0 t1 · · · tk−1 tk tk+1 · · · T

(b) Non-incremental approach

Figure 1.30 – Comparison between an incremental and a non-incremental iterative solver.

To tackle a time dependent non-linear problem, several non-linear iterative solvers are
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Chapter 1. Reduction methods applied to frictional contact problem

suited. Generally, these can be distinguished into two families: incremental solvers and
non-incremental ones. The major difference between them lies on the manner the time
dimension is handled.

An incremental solver consists in making iterations to solve the non-linear problem
for a given time step tk (e.g. until the internal balance equation is reached). Once the
convergence criterion is ensured (e.g. norm on the equilibrium residual), thesolution found
at tk is stored and the same process is repeated for tk+1, etc, up to T . This is the most
widespread procedure in commercial codes (e.g. Newton-Raphson, quasi-Newton, Newton
modified methods).

On the contrary, non-incremental solvers iterate on the space domain but also on the
whole time interval (all time steps are swept at each iteration). Each non-incremental
iteration ends on an space-time approximation of the solution. The iterating process is
stopped once a global space-time convergence criterion (e.g. based on constitutive laws)
is reached. This is one of the major point of the large time increment (LATIN) method
well-known for its ability to solve general non-linear problems. Nevertheless, memory re-
quirements for such a method are consequent because space-time fields have to be stored
and processed. That’s why, the LATIN method was proposed with the radial approx-
imation consisting in searching the solution into a low rank approximation presaging
nowadays PGD method [Lad99].

Toward reduction methods for frictional contact

Generally speaking, an incremental approach combined with an a priori reduction method
lacks in efficiency. Indeed, the time dependent non-linear problem is attempted to be
solved in a reduced basis at a fixed time step. The reduced basis can be extended using
enriching strategies as in [Ryc05, RCCA06] until the solution fulfills a convergence cri-
terion. By doing so, obtained modes may not be the most significant in regards to the
converged solution (i.e. lack in identifying the different scales of the problem). Partic-
ularly for frictional problems, numerous enrichments can be required to capture status
switches occurring between time steps in order to fulfill a convergence criterion. Then,
benefits of dimensionality reduction are lost. That’s why, reduction methods seem to be
inappropriate and cumbersome for such problems.

Nonetheless, space-time approaches with a non-incremental method can circumvent
this difficulty. Indeed, exploring the whole time interval at each iteration enables to iden-
tity appropriate modes (i.e. capture scales of the problem). As a consequence, the problem
is expected to be solved into a more and more relevant subspace. Indeed, computed modes
are globally (in the space-time sense) suited to the full space-time problem.
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1.6.2 Formulation of the LATIN method for frictional contact

In this dissertation, one of the major ingredients of proposed strategy is the (LATIN)
method introduced in [Lad99]. Hereinafter, its formulation for frictional contact problems
is given. This method closed to augmented Lagrangian methods is well-known for its
ability [HT96] to solve difficult non-linear and time-dependent large problems with a
global time-space approach (non-linear material [BBL90, CL93, RNB13], contact problems
[BLPR97, CCDL97, CCL99, GDGR14], large displacement [BLPR97], transient dynamics
[LLB00, LBL02, OBG10], fracture mechanics [DMB01, RBDG07, PBG10, TGBNT12] ...).
Originally, the non-incremental LATIN method was proposed as a commitment of three
principles:

(P1) Separation of the linear and non-linear behaviors. A denotes the set of
solutions s = (u,λ) satisfying linear constitutive law, kinematic admissibility and
static admissibility. These are defined on the whole space-time domain Ω× [0, T ]. Γ
denotes the set of solutions ŝ = (v̂, λ̂) verifying frictional contact conditions and are
defined locally at the contacting interface and on the whole time interval ∂3Ω×[0, T ].
The solution of the problem is s ∈ A ∩ Γ.

(P2) A two-staged iterative algorithm. The solution of the problem is searched with
the construction of two sequences of approximations belonging alternatively to A
and Γ. At the ith iteration, the local stage consists in finding ŝi = (v̂i, λ̂i) ∈ Γ with a
search direction (̂si−si−1) = (v̂i−vi−1, λ̂i−λi−1) ∈ E+. Note that si−1 = (v̂i−1, λ̂i−1)
is known from the previous iteration. Then, the global stage consists in finding
si = (vi,λi) ∈ A with another search direction (si − ŝi) = (vi − v̂i,λi − λ̂i) ∈ E−.
Note that ŝi = (v̂i, λ̂i) is known from the previous local stage.

(P3) Radial approximation or space-time separation. Unknown fields are repre-
sented as a sum of products between a space function and a time function to limit
memory usage. This supplementary constraint makes the problem over-determined.
In order to respect admissibility conditions stated (P1), the search direction equation
E− is verified in a weak sense.

These principles are illustrated on figure 1.31. For certain cases and for a sake of simplicity,
the LATIN method can be formulated without the space-time separation (P3). In this case
several similarities can be stated with augmented Lagrangian methods [ADR06]. All in
all, the LATIN method for frictional contact problems consists in global / local strategy
whose global stage does not require matrix re-factorization (stiffness operator remains
constant, symmetric and definite positive through LATIN iterations) and local stage is
explicit (no iterations are required to handle the non-linear behavior at the contacting
boundary). As a consequence, comparisons between LATIN and Newton solvers is not
an easy task as the number of iterations is not a good performance indicator for possible
comparison. Only CPU measures seem a good approach for that purpose.
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Γ×[0, T ]

A×[0, T ]

s si =
(

vi,λi

)

ŝi =
(

v̂i, λ̂i

)

si−1 =
(

vi−1,λi−1
)

ŝi−1 =
(

v̂i−1, λ̂i−1
)

s0 =
(

v0,λ0
)

(a) Considering (P1) and (P2)

Γ×[0, T ]

A×[0, T ]

si =
(
vi,λi

)

si−1 =
(
vi−1,λi−1

)

s

s0 =
(
v0,λ0

)

ŝi =
(
v̂i, λ̂i

)

ŝi−1 =
(
v̂i−1, λ̂i−1

)

∆si = (∆ui, ∆λi)

(b) Considering (P1), (P2) and (P3) principles

Figure 1.31 – Illustration of LATIN non-linear iterative solver. Waving arrows symbolize
approximated search directions in (b).

Local stage (flexible body vs. rigid obstacle)

Given a solution s = (u,λ) verifying the internal balance, kinematic admissibility and
static admissibility, the local stage is an updating stage occurring at the contacting inter-
face. At each node, non-linear frictional contact conditions and search direction equations
have to be verified. At contacting nodes, search direction equations for both normal and
tangential components read:

(E+) :



λ̂N − λN = kN(v̂N − vN)
λ̂T − λT = kT (v̂T − vT )

(1.42)

v is the trace of the displacement field u at the contacting interface such that v = Bu,
kN and kT are parameters of the method (details are provided in a next section).

Search direction equations can be equivalently rewritten introducing the gap parameter
(for the normal component) and the displacement of the previous time step (for the
tangential component, with a superscript k − 1). This yields to the following equations:




cN = λN − kN(vN − j) = λ̂N − kN(v̂N − j)
cT = λT − kT (vkT − v̂k−1

T ) = λ̂T − kT (v̂kT − v̂k−1
T )

(1.43)

vkT refers to the nodal displacement on the contacting interface in the tangential plane
at time step tk. Then, contact conditions can be easily applied on each term of cN and
cT . Explicit solutions of the local stage are given in table 1.1 and have to be computed
for each node belonging to the contacting interface and for each time step. Hence, the
solution of the local stage ŝ = (v̂, λ̂) verifies exactly frictional contact conditions and
provides a prediction for a given solution s = (v,λ) verifying internal balance in a second
step. Moreover, ŝ is computed explicitly.
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Normal components

λ̂N = 〈cN 〉− v̂N = j− 1
kN
〈cN 〉+

Tangential components

Sliding: ‖cT ‖2 > µ|λ̂N | Sticking: ‖cT ‖2 6 µ|λ̂N |

t = cT /‖cT ‖2
λ̂T = µ|λ̂N |t

v̂kT = v̂k−1
T − 1

kT

(
‖cT ‖2 − µ|λ̂N |

)
t

λ̂T = cT

v̂kT = v̂k−1
T

Table 1.1 – Solutions of the local stage (between a flexible solid and a rigid obstacle).

Local stage (flexible body 1 vs. flexible body 2)

Given solutions s(1) = (v(1),λ(1)) and s(2) = (v(2),λ(2)) verifying the internal balance,
kinematic admissibility and static admissibility for respectively body 1 and 2, search
direction equations can be written as above for respectively body 1 and 2. Considering
the local coordinate system at the contact interface oriented with the outward normal of
the body 1, we define the following known quantities:





c(1)
N = λ

(1)
N − kNv(1)

N = λ̂
(1)
N − kN v̂(1)

N

c(1)
T = λ

(1)
T − kT (vk(1)

T − v̂k−1(1)
T ) = λ̂

(1)
T − kT (v̂k(1)

T − v̂k−1(1)
T )

c(2)
N = λ

(2)
N − kNv(2)

N = λ̂
(2)
N − kN v̂(2)

N

c(2)
T = λ

(2)
T − kT (vk(2)

T − v̂k−1(2)
T ) = λ̂

(2)
T − kT (v̂k(2)

T − v̂k−1(2)
T )

(1.44)

Previous equations can be combined and rewritten as follows:



CN = (c(1)

N − c(2)
N ) · n + kNj = −2λ̂N + kN(v̂(2)

N − v̂(1)
N + j)

CT = c(2)
T − c(1)

T = λ̂
(2)
T − λ̂

(1)
T + kT

[
v̂k(1)
T − v̂k−1(1)

T − (v̂k(2)
T − v̂k−1(2)

T )
] (1.45)

Explicit solutions are given in table 1.2 and have to be computed for each node be-
longing to the contacting interface of each body and for each time step.

Global stage without separated representation (“full fields formulation”)

Given a solution ŝ = (v̂, λ̂) from the previous local stage, the global stage consists in
finding a space-time solution defined on the whole space domain and time interval verifying
the linear constitutive law, kinematic admissibility, static admissibility. We introduce an
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Normal components

λ̂N = −1
2 〈CN 〉−




λ̂

(1)
N = −λ̂Nn
λ̂

(2)
N = λ̂Nn





v̂(1)
N = −(c(1)

N − λ̂
(1)
N )/kN

v̂(2)
N = −(c(2)

N − λ̂
(2)
N )/kN

Tangential components

Sliding: ‖CT ‖2 > 2µ|λ̂N | Sticking: ‖CT ‖2 6 2µ|λ̂N |



λ̂T = 1

2‖CT ‖2
t = −CT /‖CT ‖2




λ̂

(1)
T = λ̂T t
λ̂

(2)
T = −λ̂T t





v̂k(1)
T = v̂k−1(1)

T + (λ̂(1)
T − c(1)

T )/kT
v̂k(2)
T = v̂k−1(2)

T + (λ̂(2)
T − c(2)

T )/kT




λ̂

(1)
T = −1

2CT

λ̂
(2)
T = 1

2CT





v̂k(1)
T = v̂k−1(1)

T + (λ̂(1)
T − c(1)

T )/kT
v̂k(2)
T = v̂k−1(2)

T + (λ̂(2)
T − c(2)

T )/kT

Table 1.2 – Solutions of the local stage (between two flexible bodies).

additional search direction equation for the local stage frictional contact prediction. This
stage consists in finding a displacement field and a contact force field s = (u,λ) defined
over ∂3Ω× [0, T ]. These fields have to verify the admissibility equations:





Ku = fext + BTλ

v = Bu
(1.46)

v is the trace of the displacement field over ∂3Ω× [0, T ] whereas u is defined over the
whole space-time domain. According to the second principle of the LATIN method, the
search direction has to be verified as well. Let us write search direction equations for the
whole contacting interface (with Id the identity matrix):

(E−) :
{
λN
λT

}
−
{
λ̂N
λ̂T

}
=
[
kNId 0

0 kT Id

]

︸ ︷︷ ︸
k

({
v̂N
v̂T

}
−
{

vN
vT

})
(1.47)

All in all, taking into account only the first and the second principle of the LATIN
method, leads to solve the following linear system for each time step:





[K + BTkB]u = fext + BT (λ̂+ kv̂)
v = Bu
λ = λ̂+ k(v̂− v)

(1.48)

Note that the operator [K+BTkB] is symmetric definite positive and remains constant
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along the iterations. For multibodies problems, the global stage occurs for each contacting
body considering respective local stage results. Generally, the global stage is the most
computationally expensive stage.

Global stage without separated representation (“correction formulation”)

The previous formulation can be equivalently rewritten into a correction scheme in space
and time. Indeed, given the solution of the previous global stage si−1 = (ui−1,λi−1), a
correction ∆s = (∆u,∆λ) is sought such that the updated solution is s = si−1 + ∆s =
(ui−1 + ∆u,λi−1 + ∆λ), hence called the correction formulation. As above, updated
solution has to fulfill the linear constitutive law, kinematic admissibility, static admissi-
bility. Subtracting appropriate quantities to equations (1.46) yields to the following linear
system in order to solve the corrective increments:





∆u = u− ui−1

∆λ = λ− λi−1

K∆u = BT∆λ
∆v = B∆u
∆λ+ k∆v− ressd = 0

⇔





[K + BTkB]∆u = BT ressd

∆v = B∆u
∆λ = ressd − k∆v

(1.49)

where ressd = λ̂−λi−1+k(v̂−vi−1) is known at this stage. This formulation is particularly
suited. Starting from the initial guess s0 as defined in equation (1.36), this correction
scheme builds progressively the complementary corrective solution s∗ = (u∗,λ∗). It is the
first step toward the space-time separated representation which will be detailed in 3.

Search direction parameters

Search directions parameters are similar to the penalty parameter in an augmented La-
grangian formulation. Different values for the normal and tangential problem can be
chosen. They influence only the convergence rate of the method and optimal values are
related to mechanical properties of the studied body [Lad99, CCL99, BC03, TGBNT12].
According to [BC03], close-to-optimum values are searched as follows:

k = ELc (1.50)

with E the Young’s modulus and Lc a contact characteristic dimension. kN,T have the
dimension of a stiffness.

Let us write the pressure distribution p(x) = Np with N the shape functions and p
generalized force. The finite element weak formulation yields to the integrated force as
follows F =

∫
Ω NTNp dΩ = Mp with M a mass-like operator. For linear elements, vector

force F and p are signed identically, so contact conditions can be applied indifferently
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on F or p (this is not true for quadratic elements). Optimal search direction parameter
values given in (1.50) are such that:

F = Mp = kv ⇒ p = M−1kv = k′v (1.51)

where v is a generic displacement field at the contacting boundary. In this dissertation
and for a sake of simplicity, considered contact forces are generalized forces p. So, search
direction values in following are k′. Optimal values for k′ can be estimated using the
following approximation:




k′ ∼ E

L′c
= E

(eL)/(2Lc) 2D problem
k′ ∼ E

L′c
= E

S/(3Lc) 3D problem
(1.52)

with respectively L and S characteristic length and surface of considered elements and e a
characteristic thickness in agreement with the literature [PBG10, RBDG07, TGBNT12].

Initialization and stopping criterion

The iterative LATIN process is initialized with s0 the following linear contactless elastic
solution (first guess):

s0 = (u0,λ0) such that




Ku0 = fext

λ0 = 0
(1.53)

Iterations are stopped once I < ε is respected with the convergence indicator (1.54)
introduced in [RBDG07]:

I = max


√√√√ ‖sN − ŝN‖2

∞
‖sN‖2

∞ + ‖ŝN‖2
∞
,

√√√√ ‖sT − ŝT‖2
∞

‖sT‖2
∞ + ‖ŝT‖2

∞




with ‖sN,T‖2
∞ = max

∂3Ω,t

[
1

kN,T
λ2
N,T + kN,Tu

2
N,T

]
(1.54)

where kN,T is the search direction parameter. Note that subscripts N and T refer respec-
tively to normal and tangential components. Using maximum norms, the convergence
criterion (1.54) is a very tough criterion. A comparison with an other far less restrictive
indicators is available in [GDGR14]. In practice, a required precision of 10−2 to 10−4 for
this indicator provides an accurate solution.

Algorithms

Pseudo-codes for both LATIN formulations for frictional contact problems are given in
algorithms 1 and 2.
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Algorithm 1: LATIN method for frictional contact (full approximated fields formulation).
Input:
First guess of the solution s0 = (u0,λ0)
Precision ε

Maximum number of iterations imax
Output: Solution s = (u,λ)

1 Initialization: i = 0
2 while I > ε or i < imax do
3 for t16k6m do
4 Solve local stage with

(
v(tk),λ(tk)

)
as input to get

(
v̂(tk), λ̂(tk)

)
satisfying

R(v̂(tk), λ̂(tk)
)

= 0
5 end
6 for t16k6m do

7 Solve global stage





[K + BTkB]u(tk) = fext(tk) + BT
(
λ̂(tk) + kv̂(tk)

)

v(tk) = Bu(tk)
λ(tk) = λ̂(tk) + k

(
v̂(tk)− v(tk)

)

8 end
9 Compute convergence criterion I

10 i← i+ 1
11 end
12 if i = imax then no convergence
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Algorithm 2: LATIN method for frictional contact (correction formulation).
Input:
First guess of the solution s0 = (u0,λ0)
Precision ε

Maximum number of iterations imax
Output: Solution s = (u,λ)

1 Initialization: k = 0
2 while I > ε or i < imax do
3 for t16k6m do
4 Solve local stage with

(
v(tk),λ(tk)

)
as input to get

(
v̂(tk), λ̂(tk)

)
satisfying

R(v̂(tk), λ̂(tk)
)

= 0
5 end
6 for t16k6m do
7 Compute ressd(tk) = λ̂(tk)− λ(tk) + k

(
v̂(tk)− v(tk)

)

8 Solve the linear system





[K + BTkB]∆u(tk) = BT ressd(tk)
∆v(tk) = B∆u(tk)
∆λ(tk) = ressd(tk)− k∆v(tk)

9 Update solution





u(tk)← u(tk) + ∆u(tk)
v(tk)← Bu(tk)
λ(tk)← λ(tk) + ∆λ(tk)

10 end
11 Compute convergence criterion I
12 i← i+ 1
13 end
14 if i = imax then no convergence

54



1.6. The large time increment (LATIN) method

108 109 1010 1011 1012 1013
108

109

1010

1011

1012

1013

kN

k
T

10−10

10−8

10−6

10−4

10−2

100

(a) Error reached according search direction parameters

0 20 40 60 80 100

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Iterations

Convergence criterion
Error according I

(b) LATIN convergence

Figure 1.32 – Convergence and search direction parameters. kN = 2× 1010 N
m and

kT = 1× 1010 N
m reach an error of 6.5 · 10−11.

Numerical application

The extrusion problem is solved with the presented LATIN method. First, search direction
parameters are set to kN = 2 × 1010 N

m and kT = 1 × 1010 N
m . Approximately, these

can be deduced from (1.52) considering for Lc the width of the billet: k = 2ELc
eL

=
2×50.8×10−3×E

1×0.0127 ∼ 5.5 × 1011 N
m . On figure 1.32 is shown error reached after 100 iterations

according to different value of search direction parameters. Value provided by formula
(1.52) and experimental approach are relatively close. Secondly, the problem is processed
with the LATIN method. Both evolution of convergence indicator and error compared to
a reference solution (computed with a high level of accuracy) are plotted on figure 1.32.

Convergence diagram on figure 1.32 provides a global “measure” of the convergence
but does not pay attention of the different scales of the solution illustrated in section 1.5.
In order to know which scales are captured or processed, other tools are required and
suggested in the next section.

1.6.3 Convergence analysis through empiric modes

Modal assurance criterion (MAC) diagrams

Given two sets of vectors of same dimension (Xi)p1 and (Yi)q1, the MAC matrix [All03]
denoted by M is defined as follows:

(M)16i6p
16j6q

= |XT
i Yj|2

‖Xi‖2‖Yj‖2 ∈ [0, 1] (1.55)

The coefficient Mij measures the correlation between modes Xi and modes Yj. If Mij = 1,
then Xi and Yj are colinear (highly correlated). On the contrary, Mij = 0 means that
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Xi and Yj are orthogonal (uncorrelated).

LATIN convergence analysis

The LATIN method iterates solutions such that it becomes more and more accurate.
Intuitively, we suppose that the global scale of the structure is firstly captured active
contact zones are coarsely identified. Then, the local scale (i.e. contact scale) is solved
more precisely. To illustrate this speculation, we propose to use Modal Assurance Crite-
rion (MAC) diagrams. For that purpose, at given numbers of LATIN iteration, iterated
solution is analyzed with the SVD providing a set of space-time modes. Given a reference
set of modes (e.g. ones obtained from the solution), correlation between the obtained set
and the reference one is estimated via MAC diagrams. Hence, one is able to identify
which scale of the solution is processed or solved. On figure 1.33 are plotted different
MAC matrices computed at given numbers of LATIN iteration for the extrusion problem.

According to figure 1.33, the assumption is confirmed. But, one has to keep in mind
that the convergence of the LATIN method is also governed by search direction parameters
as far as the convergence rate is concerned. Nevertheless, MAC diagrams show that
the LATIN method operates separately the different scales of the solution. First, the
structural scale (first reference SVD modes) is solved then the local contact scale (higher
order ones). So, one can state that the computational work aims at identifying and
solving the different scales of the solution successively. Mac diagrams will be used in the
next chapter as an efficient way to study the performances of proposed non-linear solvers
involving reduction methods.
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1.6. The large time increment (LATIN) method
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(a) Iteration 1: space (left) and time (right)
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(b) Iteration 5: space (left) and time (right)
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(c) Iteration 10: space (left) and time (right)

10 20 30

10

20

30

Reference SVD mode order

It
er

at
ed

so
lu

tio
n

m
od

e
or

de
r

10 20 30

10

20

30

Reference SVD mode order

It
er

at
ed

so
lu

tio
n

m
od

e
or

de
r

0

0.2

0.4

0.6

0.8

1

(d) Iteration 15: space (left) and time (right)
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(e) Iteration 20: space (left) and time (right)
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(f) Iteration 30: space (left) and time (right)

Figure 1.33 – MAC diagrams for the extrusion problem. Color of each mark square
corresponds to the value of the correlation between a reference vector and the tested one.
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Chapter 2

The FAS/LATIN solver

Abstract

The previous chapter shows a strong scale separability as far as a frictional solution
is concerned. This observation fosters greatly multilevel computational techniques
such as multigrid methods. This second chapter suggests the FAS/LATIN method
which is an accelerated version of the LATIN method relying reduced basis compu-
tations. Its basic concept is directly inspired from multigrid methods. So and firstly,
main multigrid methods will be briefly reviewed. Then, the FAS/LATIN method
introduced. Next, a computational technique for reduced basis is proposed using
a surrogate model. Finally, the FAS/LATIN is applied on the previous extrusion
problem and resulting performances discussed.
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Chapter 2. The FAS/LATIN solver

2.1 Multigrid methods

In the 70s, multilevel computations [Bra77] presaged nowadays well-known multigrid
(MG) methods. They belong to an efficient family of both linear and non-linear solvers
well suited for problems exhibiting multiscale aspects. The basic idea consists in taking
advantage of the smoothing effect observed for some iterative methods (also called relax-
ation methods) and introducing a hierarchy of discretizations (also called grids). It has
been shown in that relaxation methods have a convergence rate depending on the pro-
cessed wavelength component of the solution (relatively to the discretization): Jacobi’s
method in [VL00] and conjugate gradient method in [Dur97]. This observation suggests
that each wavelength component of the solution has to be tackled differently. Hence,
multigrid methods consist in accelerating convergence rate of a relaxation method by
computing the different wavelength components of the solution on different discretization
levels. Due to their efficiency, multigrid methods are widely used for various applications
to solve both linear and non-linear problems. Hereinafter, smoothing effect and the two
most widespread MG methods are briefly recalled. But interested readers can refer to a
wide literature [Bra05, VL00, Ran08, BGLC10, BHM00]. More recent developments rely
on a kind of automation for designing such approaches, mainly on the definition of coarse
levels [BMH85, VMB96, Stü01].

2.1.1 Smoothing effect

As a general behavior, relaxation methods have a great ability to diminish short wave-
length components of the error contrary to long wavelength ones (relatively to the dis-
cretization). This is why they are also called smoothers (e.g. Jacobi, Gauss-Seidel, suc-
cessive over relaxation, conjugate gradients, etc). To exemplify the difficulty to eliminate
low frequency component of the error with these solvers, the following two dimensional
Laplace equation is solved with a linear Gauss-Seidel method:





∆u(x, y) = 0 on Ω = [0, 1]2

u(x, y) = up(x, y) on the boundary ∂1Ω
(2.1)

with the Dirichlet Boundary condition:

up(x, y) =




sinh(π) sin(πy) if x = 1
0 otherwise

(2.2)

The continuous exact solution is v(x, y) = sinh(πx) sin(πy) and can be obtained with
the variable separation method. For this example, the above problem is solved numerically
with the finite difference method on a uniform square Cartesian grid 32× 32 leading to a
linear system to solve. This system is solved using a direct method providing a numerical
solution considered as the reference. The 2-norm of the error between the reference and
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2.1. Multigrid methods

the continuous solution is 4.9× 10−4. Then, a Gauss-Seidel method is used and iterated
solutions with the error map relatively to the reference are plotted on figure 2.1.

The initial guess of the solution is a zero field except at the boundary where Dirichlet
conditions are prescribed. It is designed such that the long wavelength component has to
be propagated on the domain Ω. Error maps depict clearly that the computational work
is mainly concentrated to eliminate a long wavelength component error.

2.1.2 The linear multigrid correction scheme (MG-CS)

The multigrid correction scheme (MG-CS) method is a linear solver consisting in bringing
corrections computed on coarser discretizations after a first group of relaxations denoted
by ν1. Then, coarse discretizations are expected to produce corrections reducing effi-
ciently long wavelength components of the error. To transfer fields, a restriction operator
denoted by R and prolongation (or interpolation) operator P are defined. Generally,
coarse problems are small and easy to solve (possibly with direct solvers). Let h be the
characteristic length of the finest grid Gh. Coarse grids are usually designed by using the
following rule of thumb for the mesh size 2p × h. According to [VL00], 2p factors are the
optimal ones. Figure 2.2 gives the workflow of the MG-CS and the algorithm 3 gives the
pseudo-code for the MG-CS involving two grids.

Algorithm 3: MG-CS linear solver for Ku = f (with two grids).
Input: Initial guess u0
Output: Solution u

1 Compute residual res = f −Ku0
2 Initialization k = 1
3 while ‖res‖/‖f‖ > precision do
4 ν1 relaxations on Gh starting from uk−1 leading to solution uk−2/3
5 Compute residual on Gh providing res = f −Kuk−2/3
6 Restrict residual to G2h providing ¯res = Rres
7 Compute coarse correction on G2h by solving the coarse problem K̄∆ū = ¯res
8 Coarse correction of the solution on Gh leading to uk−1/3 = uk−2/3 + P∆ū
9 ν2 relaxations on Gh starting from uk−1/3 leading to solution uk

10 Increment cycle k ← k + 1
11 end

Since coarse correction stage may generate high frequency error, a second relaxation
stage (post-smoothing stage) is used. Literature provides multiple possibilities to define
restriction and prolongation operator (according to different weighting method). Nonethe-
less, to preserve the conservation of the internal work they have to verify R = PT (see
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Figure 2.1 – The Gauss-Seidel method lacks in diminishing the low frequency component of
the error.
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Figure 2.2 – The MG-CS workflow involving two or three discretizations. Such a process is the
V-cycle. Other cycling versions like W-cycle were also proposed.

[Ran08]). Coarse operators are generally also defined with the Galerkin projected operator
K̄ = RKP.

2.1.3 The non-linear multigrid full approximation scheme (MG-FAS)

Multigrid methods also tackles non-linear problems with the multigrid full approximation
scheme (MG-FAS). The overall process remains the same as for the MG-CS (workflow
on figure 2.2). But full approximations ū are processed on the different grids instead of
corrective increments ∆ū, hence the eponymous method. Due to a non-linear operator
denoted formally by L, the property L(u + v) = L(u) + L(v) no longer stands and the
coarse problem has to be reformulated. Moreover, one has to remark that relaxation
stages (and usually the coarse problem as well) are non-linear. Quasi-Newton methods
(e.g. BFGS) are often used as smoothers. Let us denote by L a formal non-linear operator
on the finest grid and L̄ on the coarser one. The main difficulty lies in the definition of
the coarse problem aiming to diminish the error on the finest grid. Let u be the solution
on the finest grid. Then, it verifies:

L(u) = f (2.3)

Starting from a guess uk−1, relaxation methods are able to provide an iterated solution
denoted by uk−2/3 yielding to the residual vector:

res = f − L(uk−2/3) (2.4)

The error vector is defined as:
ε = u− uk−2/3 (2.5)

Substituting equation (2.4) and (2.5) into (2.3) reads:

L(uk−2/3 + ε) = L(uk−2/3) + res (2.6)
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Chapter 2. The FAS/LATIN solver

Then, equation (2.6) is expected to be solved on the coarse grid:

L̄(ū) = L̄(R̄uk−2/3) + Rres (2.7)

Once an approximation for ū obtained, the solution uk−2/3 is corrected providing an
updated iterated solution uk−1/3:

uk−1/3 = uk−2/3 + P(ū− R̄uk−2/3) (2.8)

Hence, the MG-FAS estimates a correction P(ū−R̄uk−2/3) for the error ε. Restriction and
prolongation operators defined for MG-CS are also available for MG-FAS. Nevertheless,
one can remark that not only residual vector res is restricted (by operator R) but also
uk−2/3 (by operator R̄). R̄ and R can be chosen differently [Ran08]. The corresponding
MG-FAS pseudo-code is given on algorithm 4.

Algorithm 4: MG-FAS non-linear solver for L(u) = f (with two grids).
Input: Initial guess u0
Output: Solution u

1 Compute residual res = f − L(u0)
2 Initialization k = 1
3 while ‖res‖/‖f‖ > precision do
4 ν1 relaxations on Gh starting from uk−1 leading to solution uk−2/3
5 Compute residual on Gh providing res = f − L(uk−2/3)
6 Compute coarse solution on G2h by solving L̄(ū) = R ¯res + L̄(R̄uk−2/3)
7 Coarse correcting on Gh leading to uk−1/3 = uk−2/3 + P(ū− R̄uk−2/3)
8 ν2 relaxations on Gh starting from uk−1/3 leading to solution uk
9 Increment cycle k ← k + 1

10 end

For non-linear problems, other applications based on MG methods were also proposed.
For example, the full multigrid method (FMG) [BHM00, BL11] consists in computing rel-
evant approximations computed on coarse grids (cheap computations) to start relaxation
sweeps on finer ones. Such a method seems to be nowadays one of the most efficient
multigrid approach.

2.2 The FAS/LATIN algorithm

The scale separability for frictional contact solutions observed in section 1.5 fosters mul-
tiscale and multilevel strategies. These are general methods to solve physical problems
which have important features at multiple scales (both spatial and temporal) [Ste08,
Hor10]. For instance, in [PBG10], a cracked body is studied taking into account frictional
contacts between crack faces. The behavior at interfaces (crack faces) is treated as an

64



2.2. The FAS/LATIN algorithm

autonomous problem (own discretization, constitutive law, internal variables) and then
linked in a weak sense to the global problem. In [KPB11], a local/global strategy is used
by solving the global problem in a reduced subspace while the local problem (where a
localized damage phenomenon occurs) is fully resolved. Then, both of the global and
local problems are coupled. For contact problems in [Leb89, LRLG91, Gre95, LRR07],
MG-methods were proposed.

On the one hand, multigrid methods propose a relevant approach by adapting the
computational support (i.e. grids) to the different scales of the solution. On the other
hand, the LATIN convergence analysis shows that the computational work focuses differ-
ent scales of the solution (see section 1.6.3) during its iterative process. Hence, an analogy
with the multigrid basic idea is proposed by adapting the computational support to pro-
cessed scales. Global scale empiric modes could be considered as generating coarse grid
subspace and higher order ones as finer grids. Therefore, by computing coarse corrections
on coarse modes, it is expected to accelerate the LATIN method on those scales. Coarse
space-time corrections are computed in a reduced subspace requiring a low computational
effort. Then, they are transferred to the full dimensional model to accelerate the con-
vergence rate of the iterative LATIN solver (considered as the smoother). The MG-FAS
formulation is used to achieve the accelerated FAS/LATIN method. Doing so, the overall
algorithm consists in:

1. a few iterations (i.e. ν1 relaxations) with the non-linear LATIN solver;

2. computing a coarse correction in a reduced subspace spanned by given space vectors;

3. a few iterations (i.e. ν2 relaxations) with the non-linear LATIN solver.

To transfer quantities between the reduced subspace to the full dimensional space, analogs
of intergrid operators (restriction and prolongation) are defined:

• P is the prolongation operator (space vectors) for displacement field (primal)

• P̄ is the prolongation operator (space vectors) for contact force field (dual)

• R̄ is the reduction operator for dual quantities

• R is the reduction operator for primal quantities

As mentioned in [Ran08], reduction and prolongation operators have to fulfill energy
conservation condition. Consequently, R = PT has to be ensured.

2.2.1 Full dimensional problem (fine problem)

LATIN iterations are considered as relaxation sweeps on the finest description of the
model and converge to the solution of the reference problem. Contrary to the MG-FAS
formulation, the non-linear operator L and its arising residual res are not explicitly given.
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Chapter 2. The FAS/LATIN solver

An analog for res as an error estimator could be the convergence criterion defined in (1.54)
used for the LATIN method. At the end of the first (respectively second) relaxation stage,
the solution sk−2/3 = (uk−2/3,λk−2/3) (respectively sk = (uk,λk)) is produced.

2.2.2 Reduced problem (coarse problem)

A mix between the LATIN solver and the MG-FAS formulation is proposed. The coarse
problem is expected to provide a relevant solution computed in a reduced subspace for
both displacement field and contact force field issued. Then and as prescribed by the MG-
FAS method, one looks for a full approximated coarse solution š = (ǔ, λ̌). It is computed
such that internal balance and frictional contact conditions are verified as well as possible
(up to the accuracy of the reduced basis). For that purpose, a two-stage iterative process
with a non-linear local stage and a “reduced” global stage is formulated. This reduced
LATIN is a non-linear iterative solver formulated in such a way that the solution of the
global stage is processed in a subspace spanned with a given reduced basis.

Local stage

The local stage of the coarse problem consists in computing (û, λ̂) satisfying frictional
contact conditions (i.e. R(û, λ̂) = 0 as denoted in equation (1.20)) given a coarse solution
(ǔ, λ̌) as input. Frictional contact conditions are chosen to be strictly verified (i.e. not
written into a reduced basis as in [HSW12]). Thus, the local stage described in the LATIN
method (see section 1.6.2) is reused.

Reduced global stage

Given (û, λ̂) and a previous guess for coarse solution (ǔ, λ̌), one looks for increments
∆ǔ and ∆λ̌ such that the accuracy of the updated coarse solution (ǔ + ∆ǔ, λ̌+ ∆λ̌) is
improved (see correction scheme LATIN formulation on section 1.6.2) :





K∆ǔ = BT∆λ̌
∆v̌ = B∆ǔ
∆λ̌+ k∆v̌− ressd = 0

(2.9)

where ressd = λ̂ − λ̌ + k(v̂ − v̌) is known at this stage. Moreover, increments are
represented using a space-time separated form with p prescribed space vectors (i.e. are
cast into P): 




∆ǔ = ∑p
i Piψi(t)

∆λ̌ = ∑p
i P̄iθi(t)

(2.10)

Unknowns of the coarse global stage are time vectors ψ(t) and θ(t). Taking into
account this representation, the linear system (2.9) becomes overdetermined. Therefore,
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2.2. The FAS/LATIN algorithm

corrective increments are chosen such that internal balance is preserved and the search
direction equation approximated. Doing so, the following conditions have to be fulfilled:

K∆ǔ = BT∆λ̌ ⇒ ∀t ∈ [0, T ] :




KP = BT P̄
ψ(t) = θ(t)

(2.11)

According to the above conditions, fixing P (basis of space vectors for displacement field)
prescribes P̄ (basis of space vectors for contact force field) and unknowns time functions
are equal. Let us define a trial function u? = Pjψ

?
j (t) associated to the jth space vector.

The corresponding weakened search direction equation yields to:

∀ψ?j :
∫ T

0
ψ?j (t)PT

j

[
BT

( p∑

i=1
P̄iθi(t)

)
+ BTkB

( p∑

i=1
Piψi(t)

)
−BT ressd

]
dt

=
∫ T

0
ψ?j (t)PT

j

[
(K + BTkB)

( p∑

i=1
Piψi(t)

)
−BT ressd

]
dt = 0

(2.12)

If one writes all weak forms associated to each prescribed space vectors, one will obtain a
linear system with time functions as unknowns. It can be cast into the following matrix
form:

[R(K + BTkB)P]ψT = RBT ressd (2.13)

The size of the above linear system is equal to the number of considered space modes.
Moreover, choosing a suited orthonormality condition (related to the operator K+BTkB),
it can be 1-diagonalized. Once solved for ψ, the coarse solution can be updated and reads:

š =




ǔ← ǔ + PψT

λ̌← λ̌+ P̄ψT
(2.14)

Initialization

The coarse problem is initialized with a time function deduced by restricting the solution
of the previous relaxation stage:

ξ0 = R̄(uk−2/3 − u0) (2.15)

Then, the initial coarse solution is š0 = (ǔ = u0 + PξT0 , λ̌ = λ0 + P̄ξT0 ).

Terminating the coarse problem iteration and FAS correction stage

Once the coarse problem iterations are terminated, a full approximated coarse solution
can always be written in the following form:

š =




ǔ = u0 + PξT

λ̌ = λ0 + P̄ξT
(2.16)
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Chapter 2. The FAS/LATIN solver

because each iteration on the coarse problem is restricted to a reduced space basis (i.e.
each coarse iteration corresponds to an update of the time function ξ adding an increment
ψ). The solution of the previous relaxation stage is afterwards corrected according to the
MG-FAS coarse correcting stage:

sk−1/3 =




uk−1/3 = uk−2/3 + P[ξT − R̄(uk−2/3 − u0)]
λk−1/3 = λk−2/3 + P̄[ξT − R̄(uk−2/3 − u0)]

(2.17)

One has to keep in mind that the coarse problem does generally not converge to the
reference solution. It depends on the accuracy of the considered subspace (which may or
may not span the reference solution). The provided coarse solution š is the one satisfying
as well as possible internal balance, frictional conditions and space-time representation
with prescribed space vectors. The convergence criterion defined in equation (1.54) mea-
suring the error between the local and the reduced global solutions may stagnates (i.e.
the prescribed space vectors does not allow further improvement as far as global and
local behavior are concerned). Moreover, the coarse problem has to produce a relevant
solution to efficiently correct the solution of relaxation stages. Hence, the coarse problem
iterations are terminated once the convergence criterion stagnates or once the quality of
the coarsely corrected solution sk−1/3 does not improve.

One can also remark that the FAS/LATIN method tackles the part s∗ defined in
equation (1.36) of the sought solution s.

Pseudocode of the FAS/LATIN

The pseudocode of the suggested FAS/LATIN is in algorithm 5. FAS/LATIN cycling
process is firstly started with the coarse stage in order to provide an improved initial
guess s0 for the first relaxation stage. This trick is known as the full multigrid method
and turns out to be efficient for general non-linear problems as mentioned in [LRR07].
In [GDGR14], a FAS/LATIN formulation slightly different than the one previously is
given. The main difference lies in the definition of the coarse problem. In [GDGR14], the
coarse problem is defined in such a way the internal balance is not ensured (but verified
in a weak sense) and search direction equations satisfied arising nonetheless important
accelerations. The new suggested and improved FAS/LATIN provides same performances
but is more robust. Following observations and discussions lead to same conclusions for
both FAS/LATIN formulations.

2.3 Computational methods for space modes

To perform the coarse problem, space vectors defining operators P, P̄, R have to be
defined. They have to span an appropriate subspace wherein relevant solutions are com-
puted. This subspace has to approximate the part s∗ (defined on equation (1.36)) of the
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2.3. Computational methods for space modes

Algorithm 5: The FAS/LATIN method .
Input:
First guess of the solution s0 = (u0,λ0)
Precision ε

Maximum number of FAS/LATIN cycles kmax and iterations of coarse stage imax
Number of relaxations ν1 and ν2

1 Initialization k = 0
2 while I > ε or k < kmax do

3 if k = 0 then s = s0 else s = sk−1

4 ** 1st relaxation stage
5 if k > 0 then
6 Perform ν1 LATIN sweeps to get sk−2/3 = (uk−2/3,λk−2/3) and convergence

criterion Ik−2/3
7 end

8 ** Coarse stage
9 Create or update operators R̄, P, P̄ = KP

10 Compute initial time vector ξT = R̄(uk−2/3 − u0)
11 Compute initial coarse solution š = (u0 + PξT ,λ0 + P̄ξT )
12 Initialization i = 0
13 while i < imax do
14 for t16k6m do
15 Solve local stage with

(
v(tk),λ(tk)

)
as input to get

(
v̂(tk), λ̂(tk)

)
satisfying

R(v̂(tk), λ̂(tk)
)

= 0
16 end
17 for t16k6m do
18 Compute ressd(tk) = λ̂(tk)− λ(tk) + k

(
v̂(tk)− v(tk)

)

19 Compute time functions by solving [R(K + BTkB)P]ψT (tk) = RBT ressd(tk)
20 end
21 Update coarse time functions ξ ← ξ +ψ
22 Compute coarse solution š = (u0 + PψT ,λ0 + P̄ψT )
23 Compute coarsely corrected solution

sk−1/3 =





uk−1/3 = uk−2/3 + P[ξT − R̄(uk−2/3 − u0)]
λk−1/3 = λk−2/3 + P̄[ξT − R̄(uk−2/3 − u0)]

24 Compute convergence criterion Ik−1/3 = I(sk−1/3)
25 if Ik−1/3 > Ik−2/3 then i = imax else i← i+ 1
26 end

27 ** 2nd relaxation stage
28 Perform ν2 LATIN sweeps to get sk = (uk,λk) and convergence criterion I
29 Increment cycles k ← k + 1
30 end
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Figure 2.3 – SVD space modes of coarse u∗ scaled by a corresponding factor 0.2√σi. The color
map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε and red arrows correspond to

deduced nodal contact force.

solution . For instance, a reduced basis including SVD space modes computed from the
solution in section 1.5.1 is well-suited. Such a basis will firstly be investigated to exemplify
its influence on the LATIN solver (see numerical application on section 2.4). Then, other
kinds of vectors will be used.

2.3.1 Surrogate model

Some space modes may be obtained from surrogate computational models (coarse dis-
cretizations, analytic solution, etc.). For instance, coarse space-time discretizations suffice
to capture the global behavior of the solution (i.e. at structural scale). Then, some of
these space vectors can be reused for the FAS/LATIN on the reference computational
model. This method is illustrated on the extrusion problem depicted on figure 1.7. A two
times coarser space-time discretization is considered for the coarse computational model.
Once it is solved, SVD modes of the solution field s∗ are computed (see figures 2.3 and
2.4).
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Figure 2.4 – SVD time modes of u∗ scaled by a corresponding factor 0.2√σi, singular value
amplitudes and rebuilding errors according the number of considered modes.

Remarkably, both space and time modes computed from the coarse computational
model show great similarities with ones computed on the reference computational model
in section 1.5.1. One can also observe the influence of the discretization on the number
of modes. Indeed, the twice coarser solution requires roughly twice less space-time modes
to be rebuilt exactly. It can be also seen that after the 7th order, the characteristic scale
of spatial modes is strongly related to the mesh of the solid (i.e. the discretization scale).
The next step consists in transferring space modes on the reference computational model
mesh. For that purpose, several mesh transferring methods for displacement fields could
be used (e.g. collocation method, mortar-based techniques [DB06], etc.). Herein, using
a collocation method, space displacement modes on figure 2.3 are interpolated on the
reference mesh. Finally, an additional re-orthogonalization step for interpolated space
modes is applied and space modes are ready to use for the FAS/LATIN method.

Interpolated space modes (see figure 2.5) are outstandingly close to reference modes
computed in section 1.5.1. They capture successfully some scales of the exemplified prob-
lems (structural scale, some contact scales). Contact force modes can also be deduced
using relationship (1.39). One can remark that they are globally well captured but not
as well as displacement modes (interpolation error).

2.3.2 Toward an hybrid a posteriori/a priori approach

The previous method to compute space modes is related to an a posteriori approach.
In other words, space modes are computed during an offline phase. Then the online
phase occurs with the FAS/LATIN running with a prescribed subspace spanned by given
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Figure 2.5 – Interpolated SVD space modes of coarse u∗ scaled by a corresponding factor
0.2√σi. The color map refers to the norm of the tensor strain field ‖ε‖ =

√
ε : ε and red

arrows correspond to deduced nodal contact force.
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space modes. Another method consists in computing space modes on-the-fly (i.e. during
the FAS/LATIN cycling process). Doing so, the FAS/LATIN method is able to start
from scratch (i.e. from an empty basis), or given a reduced basis, on-the-fly computed
vectors may complete it. Such a calculation is closely related to a priori approach and is
hereinafter presented.

Let us assume first that a sample of space vectors for P is already fixed (“a posteriori
space vectors”). Computed on-the-fly “a priori space vectors” have to span an orthogonal
subspace to a posteriori ones. This subspace can be obtained by computing a reduced
basis of the following “orthogonal displacement field”:

u⊥ = (u− u0)−PPT (u− u0) (2.18)

One has to be advised that such a computation can be expensive. Consequently, a com-
promise has to be reach between the relevancy of the coarse stage and its online compu-
tational cost induced by such vectors. Once P is fixed, P̄ is deduced according. It would
be possible to first compute P̄ (whose size is the number of contact points whereas P size
is the number of degrees of freedom) and then deduce P solving a linear system.

2.4 Application of the FAS/LATIN method and discussion

Convergence of the FAS/LATIN method is hereinafter discussed. Its convergence is plot-
ted on figure 2.6 according to the different kinds of space vectors previously described.
On those graphs is plotted the evolution of the error versus the number of relaxations
(the coarse stage is assumed to be costless).

As a general result, the number of required relaxation stages to reach a given level of
accuracy is reduced using the accelerated FAS/LATIN method. The following discussion
is strongly bound to the analysis carried out in section 1.5.1 throughout SVD modes of
the sought solution. Some important elements are recalled to interpret the FAS/LATIN
convergence graphs:

• The reference solution is generated by 31 SVD space-time modes (optimal ones);

• To break the LATIN precision threshold of 10−2, 12 modes are required at least;

• To break the LATIN precision threshold of 10−3, 29 modes are required at least;

The FAS/LATIN method shows different but interesting behaviors according to the
way space vectors are obtained.

On figure 2.6 case (a), the considered space basis is composed of vectors computed on
section 1.5.1 with an analysis of the reference solution. The FMG initialization produces
an interesting gain when starting the first relaxation stage. Unsurprinsigly, the larger
is the basis, the more accurate is the initialization. Moreover, one can remark that the
considered space basis is the most suited one to correct the first guess s0 = (u0,λ0).

73



Chapter 2. The FAS/LATIN solver

0 20 40 60 80 100

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Relaxations

LATIN error
5 SVD
15 SVD
30 SVD

(a) From reference SVD

0 20 40 60 80 100

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Relaxations

LATIN error
5 ⊥
15 ⊥
30 ⊥

(b) Computed on-the-fly

0 20 40 60 80 100

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Relaxations

LATIN error
15 SVD + 0 ⊥
15 SVD + 15 ⊥
15 SVD + 20 ⊥
15 SVD + 25 ⊥

(c) Computed on-the-fly completing SVD ones

0 20 40 60 80 100

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Relaxations

LATIN error
5 surrogate + 0 ⊥
5 surrogate + 25 ⊥
5 surrogate + 30 ⊥
5 surrogate + 35 ⊥

(d) From a surrogate problem

Figure 2.6 – FAS/LATIN convergence according different kind of space vectors. Relaxations
stage are such that ν1 = ν2 = 1.
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(a) Relaxation 1: space (left) and time (right)
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(b) Relaxation 5: space (left) and time (right)
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(c) Relaxation 10: space (left) and time (right)
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(d) Relaxation 15: space (left) and time (right)

Figure 2.7 – MAC diagrams for the extrusion problem solved with the FAS/LATIN method
accounting 15 SVD modes and 20 extra vectors computed on the fly.

Moreover, with a 15 space mode basis, the precision reached after the first relaxation
stage (roughly 8×10−3) corresponds to the precision of the solution rebuilt from these 15
SVD modes (see figure 1.10). If one has considered the whole SVD space basis, the solution
would have been fully computed after the first correction stage. This allows to conclude
that the FMG initialization is well-suited. It can be seen that two regimes of convergence
occurs. During a first group of relaxations the FAS/LATIN shows a high convergence rate,
then the rate of the former LATIN method is recovered. We can suppose that during the
first group of relaxations, structural scales are processed and accelerated by the coarse
correction stage. Then, no more correction are brought because the considered basis does
not allow to compute more accurate solution.

On figure 2.6 case (b), the considered space basis is computed on the fly and updated at
each FAS/LATIN cycle according the formula in (2.18). Since the basis of space vectors is
initially empty, the FMG initialization is skipped. The FAS/LATIN is highly accelerated
during roughly 5 to 8 relaxations according the size of the considered basis. Then, the
convergence rate of the LATIN method is recovered. One can remark for instance that
in the case of the basis with 30 space modes (which are not ensured to be the optimal
ones), the convergence rate modification occurs when the precision 2 × 10−4 is reached.
Such a precision corresponds also approximately to the error of the solution rebuilt from
the 30 SVD optimal modes. In other words, beyond this precision no more relevant
correction can be brought to accelerate the FAS/LATIN convergence rate because the
reduced problem is too small.
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On figure 2.6 case (c), an interesting compromise seems to be reach by combining
the two previous method. The space basis includes 15 space vectors obtained on section
1.5.1 and additional vectors computed on the fly. On the one hand, benefits of the
initialization occur as described above. On the other hand, extra vectors produce an
accelerated convergence rate during the first relaxation stages. One can remark that to
pertain a worthwhile improvement, a total basis size of 35 is required at least. Indeed,
accounting the first 30 SVD optimal modes for the solution enables to reach a precision
of 4 × 10−4 (see figure 1.10). Consequently, a basis including 30 non optimal vectors
cannot provide relevant correction beyond the precision 4× 10−4. Remarkably, the total
basis size of 40 shows an astonishing accelerated regime and counts a larger number of
vectors than necessary to generate the solution. Such a behavior suggests that not only
the identified different scales of the solution have to be solved but also other directions
generated at relaxation stages have to be corrected. This is achieved by computing extra
vectors on-the-fly generating those directions whereon suited corrections are computed.
On figure 2.7 are plotted MAC diagrams for the configuration 15 + 20 ⊥. After the first
relaxation, the solution is properly rebuilt according its 15 first SVD modes (thanks to
the coarse stage initialization). Then, modes of the solution are quickly found (after only
5 relaxations). Then, the computational work aims to find appropriate amplitudes for
found modes and correct iterated but parasitic modes.

Finally, on figure 2.6 case (d), 5 vectors obtained from the surrogate problem instead
of the reference one are used and completed with on-the-fly vectors. Only the first 5
space modes (see figure 2.5) are considered in order not to introduce mode characterized
by the coarse discretization scale and parasitic influence of interpolation. Of course,
the FMG initialization is worse than the one obtained with SVD modes of the solution.
But, it produces an interesting start to reach a standard level of accuracy, say 10−2.
According to the number of extra vectors considered, the convergence to the precision
10−3 is globally faster. Nevertheless, one can remark that beyond this precision, the classic
LATIN method could provide a faster convergence rate. Coarse stage may introduce
misleading corrections. Using a very large basis, a highly accelerated convergence rate is
also gained for the same reason as suggested before.

Throughout the FAS/LATIN and given an appropriate basis, one is able to take ad-
vantage of model reduction methods thanks to the global space-time approach. The a
posteriori approach shows great abilities to reuse prior computations to accelerate new
ones. Such an approach provides an efficient solver to assign parametric studies [GDGR14]
for instance. Nevertheless, it has been observed that to pertain an accelerated regime,
additional vectors have to be computed on-the-fly in order to maintain the relevancy of
the reduced basis and hence the coarse problem. The next goal is of course the full a priori
approach solving the problem exclusively into a reduced subspace. This way expensive
relation stages on the full dimensional model are avoided. For that purpose, PGD meth-
ods seem to be at the forefront. They consists in building progressively an appropriate
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reduced subspace (i.e. identify the different scales of the problem) wherein the problem
is solved. Such techniques are developed in the next chapter.
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Chapter 3

Toward an optimal a priori reduced basis
strategy

Abstract

The FAS/LATIN method shows limits of pure a posteriori methods. This third chap-
ter suggests a non-linear a priori reduced basis strategy to solve frictional contact
problems. For that purpose, a LATIN formulation is proposed with practical devel-
opments issued from the proper generalized decomposition. The resulting method
exhibits a quasi-optimal property. It is able to compute progressively a frictional
solution close to its SVD expansion. This property will be illustrated and discussed
throughout numerical applications. Finally, a pre-computation technique for PGD
modes from a surrogate model is also suggested.
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3.1 The proper generalized decomposition

Reduced basis method are precious tools to design efficient solvers. Given prior infor-
mation (e.g. prior computations, surrogate models ...), one is able to perform cheap but
relevant computations. For instance, the FAS/LATIN method reuses prior knowledge
to compute corrections on a reduced basis accelerating the overall convergence of the
LATIN method. As it was exemplified in the previous chapter, main drawbacks of the
FAS/LATIN method and more generally of a posteriori methods rely on the prior require-
ments which can be expensive to obtain. Accuracy and effectiveness of the FAS/LATIN
depends strongly on the quality of the considered reduced basis and to pertain a worth-
while acceleration, the considered subspace has to be adapted according to the desired
precision.

A priori methods seem to be particularly suited to assign this challenge. Contrary
to a posteriori methods, not only they do not require prior knowledge about the solu-
tion but also, the solution is sought into a reduced subspace designed on-the-fly. The
proper generalized decomposition (PGD) is one of the most widespread methods which
has demonstrated great abilities to solve efficiently both linear and non-linear problems
[CAC10, CKL14, CC14]. Over the 10 last years, this novel technique surges in enthusiasm
for its aptitude to tackle high dimensional models in various computational fields (from
kinetic theory or quantum chemistry to fluid and solid mechanics [AMCK06, AMCK07]).
The PGD is based on the so-called separated representation. It consists in searching a
solution, say u, under the following separated form:

u(x1, x2, ..., xN) ' ǔ(x1, x2, ..., xN) =
p∑

i=1
f 1
i (x1)× f 2

i (x2)× · · · × fNi (xN) (3.1)

with xi are generic variables of the problem (e.g. space variable, time variable, parameters
of the problem, etc) and fi are univariate functions of the PGD expansion. This repre-
sentation was first introduced in [Lad99] and called the radial space-time approximation.
It was also designed to limit memory usage.

To illustrate the ingenuity of this approach, let us take a pragmatic and imaginary
example. A linear and time dependent solid mechanics problem is tackled with the finite
element method. For sake of simplicity, the resulting discretized problem is assumed to
have N degrees of freedom and N time steps. Thus, the size of the space-time problem
is N ×N . With the PGD method, one searches the generalized displacement field vector
u(t) into the following separated form:

u(t) ' ǔ(t) =
p∑

i=1
Vivi(t) =

p∑

i=1
VivTi︸ ︷︷ ︸

rank 1 matrix
or dyad

(3.2)

where Vi are generalized displacement vectors and vi are time vectors both of size N .
The above PGD expansion is a low rank approximation. Considering criterion (1.15) for
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p, one can expect to reach a reasonable accuracy for ǔ(t) with a small expansion size.
Then, data to store requires a size of p× (N +N) instead of N ×N . Now, let us increase
the dimensionality of the problem by adding an additional parameter, say µ. Then, one
has to search the solution u(t, µ) for N discrete values for µ ∈ [µ1, · · · , µN ]. Using the
brute force approach leads to solve the solution u(t, µ) of size N ×N ×N while the PGD
method provides the solution under the following low rank tensor approximation:

u(t, µ) ' ǔ(t, µ) =
p∑

i=1
Vi ⊗ vi(t)⊗ νi(µ)
︸ ︷︷ ︸

rank 1 tensor

(3.3)

with νi(µ) is an additional univariate function according to the parameter µ. Then,
the amount of data to store becomes p × (N + N + N). Throughout this example, we
understand that the PGD is an exciting method to overcome dimensionality issues for en-
gineering problems. PGD has a complexity scaled linearly according to the space wherein
the problem is defined while brute force mesh based methods have a complexity scaled
exponentially. Furthermore, PGD methods allows to reduce drastically time of compu-
tations by focusing the computational work on univariate functions. In our example,
instead of tackling a whole N × N × N approximation, only functions of size N have
to be handled. By doing so, a great computational work can be spared. PGD approach
was also extended to stochastic problems [GLMN14]. A detailed review of several PGD
methods is given in [Nou10].

Despite its appeal, PGD remains nowadays challenging especially for parametric anal-
ysis. The main difficulty is to provide a practicable low rank expansion (i.e. p is small)
ensuring a reasonable accuracy for ǔ. For space-time problems, tensors to handle are sec-
ond order and handled easily with matrix algebra. Nevertheless for higher order tensors,
extension to the tensor algebra is not straightforward at all. Nowadays, tensor decom-
position or tensor rank determination remain highly challenging [Kol01, DLDMV00b,
DLDMV00a, LDH11]. HO-SVD and PARAFAC methods aim at providing equivalents of
the SVD decomposition for high order tensors and are still widely studied.

In this dissertation, the PGD method is focused on. But for both linear and non-
linear problems other a priori methods exist such as the a priori reduction and the a
priori hyper-reduction method (APR and APHR) described in [Ryc05, RCCA06].

3.2 Space-time separated form mastering

In the following, a space-time separation is considered to build the PGD expansion of a
vector field of interest. For instance, the displacement field u is sought under the following
form:

u ' ǔ = u0 + u∗ = u0 +
p∑

i=1
Viφi(t) = u0 +

p∑

i=1
Viφ

T
i (3.4)
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with the initial guess u0. For the point of view of memory usage, it can be envisaged that
u0 is obtained also with a PGD method and hence provided into a compressed separated
form. The PGD method is applied to build progressively a low rank approximation for
u∗. It proceeds by successive enrichments in such a way that accuracy of u∗ improves.

In this section, optimality of expansion (3.4) is discussed. For specific problems (e.g.
data post-compression), PGD can be used to compute SVD of given snapshots [CKL14].
But for general problems, even if they are expected to be close, PGD modes does not
correspond to the optimal ones. In our case and due to the involved non-smooth behaviors,
the resolution of frictional contact problems requires to capture precisely tough and brutal
status switch (contact / no contact, sliding / sticking, etc.). Even if the solutions show
a remarkable “regularity” as well as a strong scale separability throughout its space-time
modes, finding them a priori is challenging. To capture them, one can be expected that
a large amount of attempts (numerous PGD enrichments) will be required before finding
suited ones. Consequently, an efficient strategy has to be implemented in order to identify
dominant and contributory modes and get rid of useless iterated ones. More generally, the
concept of optimality of the PGD expansion has to be handled. Before running the PGD
method, one has to master its expansion for sake of memory usage and computational
efficiency. The inflation of the PGD expansion will be illustrated in the following on a
numerical application. Hereinafter, we denote respectively by (Vk)p1 and (φk)p1, p−tuples
of space and time modes (or functions) for a some space-time field. These are respectively
a space basis or a time basis for the PGD expansion.

3.2.1 Orthonormality condition for space modes

First, an orthonormality condition is considered for space modes (i.e. VT
i Vj = δij with

δij the Kronecker symbol). Assuming a new pair (V, φ) is provided, it has to complete
a preexisting PGD expansion respecting orthonormality condition for space modes. For
that purpose, one can use algorithm 6.

Numerical experiments show that orthonormality is not enough to stem PGD expan-
sion inflation as described previously (see the next numerical applications). Indeed, it
achieves a compression for space modes but time modes are not tackled. Observations
show that an important redundancy occurs for these last.

3.2.2 Toward quasi-optimal space-time separated form

Optimality property for the PGD expansion can be guaranteed by performing an expen-
sive SVD computation of the sought field after each enrichment stage [GR70, BGVD12]
(brute force method). A less expansive method consists in deploying SVD updating tech-
niques [BN78, Bra06]. Nevertheless, all of those lie on burdensome methods. Such a high
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Algorithm 6: Orthogonal enrichment.
Input:
Preexisting p−tuples (Vk)p1 and (φk)p1 with VT

i Vj = δij
New pair of modes V and φ

Output:
Enriched (p+ 1)-tuples (Vk)p+1

1 and (φk)p+1
1 with VT

i Vj = δij

1 for k = 1 to p do
2 Projection on existing space modes α = VT

kV
3 Update corresponding time modes φk = φk + αφ

4 Subtract projected component V← V− αVk

5 end
6 Norm of remaining space mode β = ‖V‖2
7 Normalize space mode Vp+1 ← V/β
8 Amplify time mode φp+1 ← βφ

computational effort is not worthwhile knowing that the current iterated field may be
inaccurate relatively to the desired level of accuracy. So, enforcing the strict optimality
is seemingly useless. Instead, a soft compression or downsizing approach is preferred (i.e.
diminishing the size p without actually reaching its minimal size but sustaining a good
quality for the spanned field). For that purpose, the following space-time projection strat-
egy is implemented. In order to illustrate it, let us take an approximation ǔ of rank 2
written as follows:

ǔ = V1φ
T
1 + V2φ

T
2 with ViVj = δij (3.5)

Equation (3.5) can be rewritten considering that φ2 has a redundant component with φ1
(i.e. φ2 = αφ1 + φ̄2 and φ̄T2φ1 = 0) as follows:

ǔ = (V1 + αV2)φT1 + V2φ̄
T

2 = V̄1φ
T
1 + V2φ̄

T

2 (3.6)

Rewriting (3.6) does not respect orthogonality for space vectors (i.e. V2 = βV̄1 + V̄2 and
V̄T

1 V̄2 = 0). Applying a re-orthogonalization for spatial modes yields to:

ǔ = V̄1(φT1 + βφ̄
T

2 ) + V̄2φ̄
T

2 = V̄1φ̄
T

1 + V̄2φ̄
T

2 (3.7)

Finally, norms of spatial modes can be normalized by reporting amplitudes in time modes
as follows

ǔ = V̄1

‖V̄1‖
(
‖V̄1‖φ̄T1

)
+ V̄2

‖V̄2‖
(
‖V̄2‖φ̄T2

)
(3.8)

This process does not change ǔ and preserves orthogonality property for space modes
but does not ensure it for time modes. The first projection step (3.6) compresses redun-
dancy between φ1 and φ2 into a new vector φ̄1 but looses the orthogonality for space
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vectors justifying step (3.7). Incidentally, enforcing this property makes φ̄1 and φ̄2 partly
linearly dependent (but less than original vectors). This process can be repeated until
having φ̄1 and φ̄2 orthogonal (i.e. producing the SVD of ǔ). Algorithm 7 generalizes the
above process for larger rank for ǔ. Steps (3.6), (3.7) are applied respecting a prescribed
sorting (according to time modes amplitudes) for space-time modes. The weakest am-
plitude space-time dyad is projected on larger amplitude ones. More details about this
process is given in appendix A.

Algorithm 7: Downsizing.
Input:
Existing p−tuples (Vk)p1 and (φk)

p
1 with VT

i Vj = δij
Max iterations ξmax
Cut-off amplitude ε
Output:
Downsized q−tuples (Vk)q1 and (φk)

q
1 with VT

i Vj = δij

1 for ξ = 1 to ξmax do
2 Sort space-time modes such that ‖φ1‖2 > · · · > ‖φp‖2
3 for i = p down to 2 do
4 for j = 1 up to i− 1 do
5 Projection of time mode α = φTj φi/(φTj φj)
6 Update corresponding space mode Vj ← Vj + αVi

7 Subtract projected component φi ← φi − αφj
8 Projection of space mode β = VT

j Vi/(VT
j Vj)

9 Update corresponding time mode Vi ← Vi − βVj

10 Subtract projected component φj ← φj + βφi
11 Norm of the jth space mode ζ = ‖Vj‖2
12 Normalization Vj ← Vj/ζ and φj ← ζφj
13 end
14 Norm of the ith space mode γ = ‖Vi‖2
15 Normalization Vi ← Vi/γ and φi ← γφi
16 end
17 end
18 for i = p down to 1 do
19 if ‖vi‖2 6 ε then
20 Elimination of Vi and φi
21 Decrement basis size: p← p− 1
22 end
23 end
24 q = p

The complexity of algorithm 7 is denoted by c (floating operations) and estimated by
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3.3. Toward a quasi-optimal a priori reduced basis strategy

c/ξmax = n(5
2p

2 − 1
2p− 2) +m(5

2p
2 − 3

2p− 1) + 3
2p

2 − 1
2p− 1 = O(3

2(n+m)p2). A cut-off
amplitude ε can be fixed relatively to a desired accuracy for ǔ. Embedded in the PGD
process, the downsizing method stems efficiently the inflation of the PGD expansion. In
practice, a very few iterations ξmax (1 or 2 iterations) is enough. More iterations make
converge to the SVD of ǔ. To compare with classical and widespread techniques: Lanczos
thin-SVD method has a O(nmp2) complexity [GVL12] and fastest SVD updating methods
have a complexity O(nmp) [Bra02]. All in all, those practical developments provide
efficient tools to compress and deal with PGD low rank approximation of the solution
considered as quasi-optimal.

3.3 Toward a quasi-optimal a priori reduced basis strategy

In this section, the LATIN method including the space-time separated representation is
presented. Such a method coupled with the previous practical developments is able to
build a suitable PGD expansion for the solution.

3.3.1 Formulation of the LATIN method with space-time separation

As it is the most expensive stage, space-time separation aims to lighten the computational
work of the global stage and reduce memory usage for the solution storage. The local stage
remains the same. The LATIN method including the space-time separated representation
consists in searching fields s∗ = (u∗,λ∗) into a separated form such that solution field
s = (u,λ) reads:

u(t) = u0(t) + u∗(t) = u0(t) +
p∑

k=1
Vkφk(t)

λ(t) = λ0(t) + λ∗(t) = λ0(t) +
q∑

k=1
Lkψk(t)

(3.9)

Vectors Vk (resp. Lk) are space modes associated to the displacement field defined over
Ω (resp. contact force mode defined over ∂3Ω) and functions φk(t) (resp. ψk(t)) are time
functions associated to Vk (resp. Lk) defined on [0, T ]. Vectors u0 and λ0 are initial
guesses. The approximation (3.9) can be written equivalently using a matrix notation as
follows:

u = u0 +
p∑

k=1
Vkφ

T
k

λ = λ0 +
q∑

k=1
Lkψ

T
k

(3.10)

At the ith iteration, solution si−1 = (ui−1,λi−1) and the last local stage result ŝ = (v̂, λ̂)
are given. Considering the correction scheme of the global stage (see section 1.6.2), a
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correction ∆s = (∆u,∆λ) is sought such that accuracy of the updated solution si =
si−1 +∆s improves. The LATIN formulation without separated space-time representation
provides the following system to compute suitable corrections:





K∆u = BT∆λ
∆v = B∆u
∆λ+ k∆v− ressd = 0

(3.11)

where ressd = λ̂−λi−1 +k(v̂−vi−1) is known at this stage. The separated representation
is now introduced for corrective increments with space and time modes:





∆u = Vφ(t) on Ω× [0, T ]
∆λ = Lψ(t) on ∂3Ω× [0, T ]

(3.12)

Accounting space-time representation (3.12) in addition to linear system (3.11) makes the
global stage overdetermined. Then, solution is computed such that s ∈ A (i.e. internal
balance equation is respected) as well as space-time separated representation. But search
direction equations are approximated (i.e. verified at best or in a weak sense). Substituting
representations (3.12) into internal balance equation leads to the following conditions for
sought modes:

∀t ∈ [0, T ] : KVφ(t) = BTLψ(t) ⇔




KV = BTL
φ(t) = ψ(t)

(3.13)

All in all to solve the global stage with a space-time representation, the above conditions
have to be respected. By doing so, search direction equation is verified at best by solving
the following optimization problem in the general case:

{W, φ(t)} = argmin
W?,φ?(t)

‖W?φ?(t)− ressd‖F (3.14)

with W = L + kBV. W and φ(t) have to be found in such a way that (3.14) is verified
at best. Definition of space mode W is a computational trick. Indeed, to avoid complex
algebraic manipulations with equations (constraint (3.13) to substitute into (3.14)), an
auxiliary space mode W is defined arousing an easy formulation for the optimization
problem (3.14).

Once W and φ(t) are found, the global stage ends. Those vectors corresponds to
enrichments for the on-going solution which includes preexistent represented corrections.
In practice, only modes W and time modes φ(t) are stored into respective p−tuples
(Wk)p1 and (φk)p1 accounting the orthonormality and size control. When it is required (e.g.
one wants to build solution fields), associated vectors (Vk)p1 and (Lk)p1 can be deduced,
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respecting conditions (3.13), as follows:

∀k ∈ J0, pK :





[K + BTkB]Vk = BTWk

Lk = Wk − kBVk

ψk = φk

(3.15)

and then solution fields rebuild according to (3.9). moreover, at a given iteration, the
quantity ressd can be computed directly from (Wk)p1 and (φk)p1 as follows:

ressd = (λ0 + kBu0)− (λ̂+ kû) +
p∑

k=1
Wkφk(t) (3.16)

To solve the optimization problem (3.14), several approaches could be used.

• Time function updating (preliminary stage).

• Space function updating.

• Enrichment stage.

3.3.2 Preliminary stage

One looks for solving global stage defined in (3.14) with prescribed space modes (Wk)p1
and a corresponding set of time functions (φ̃k)p1 is sought. Time modes (φ̃k)p1 are solution
of the following optimization problem:

φ̃k = argmin
φ?

‖Wkφ
? − ressd‖F (3.17)

To solve the above problem, a Galerkin method is applied with the trial function ω? =
Wkφ

?(t) and yields to:
φ̃k = WT

k ressd/(WT
kWk) (3.18)

Then, updated set of time modes are (φk)p1 ← (φk + φ̃k)p1. The corresponding pseudo-code
of this approach is given in algorithm 8.

Thanks to orthonormality property for (Wk)p1, quantity ressd has not not to be reeval-
uated after each time function update. Hence, this approach is highly parallelisable.

3.3.3 Extension of the preliminary stage

An extension of this preliminary phase is proposed by updating also space modes. In other
words, global stage (3.14) is solved with prescribed time modes (φk)p1. Then, new corre-
sponding (W̃k)p1 space modes have to be found according to the following optimization
problem:

W̃k = argmin
W?

‖W?φk − ressd‖2 (3.19)
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Algorithm 8: Time modes update.
Input:
ressd
p-tuple of existing space modes (Wk)p1
p-tuple of existing time modes (φk)p1
Output:
p-tuple of updated time modes (φk)p1

1 for k = 1 to p do
2 for t16k6m do
3 Update time modes φk(tk)← φk(tk) + WT

k ressd(tk)/(WT
kWk)

4 end
5 end

Again, a Galerkin method with the trial function ω? = W?φk(t) is applied and yields to:

W̃k =
∫ T

0
ressdφk(t) dt

/∫ T

0
φ2
k(t) dt (3.20)

Because of orthonormality condition, new space modes (Wk)p1 can not be updated
directly. Each of them has to be projected in the preexistent spatial basis. The corre-
sponding pseudo-code is given in algorithm 9.

The updating stage for time functions and the updating stage for space functions form
an extended preliminary stage. Once it is solved, PGD expansion is modified and becomes
more accurate pertaining its size. Nevertheless, one has to keep in mind that the size of
a given low rank approximation (even if it is the optimal one) gives a lower-bound for
the error. To break through it, one has to extend the PGD basis (i.e. enrich the PGD
expansion).

3.3.4 Enrichment stage

In [BBL90], the updating stage for time functions as described previously in section 3.3.2
is called the preliminary stage. Then, the enrichment stage is used only if the convergence
criterion is not sufficiently decreased by the updating stage (e.g. criterion decreases by a
factor less than 10%). The enrichment stage consists in generating a new pair of modes
extending the PGD basis. For that purpose, the global stage (3.14) is equivalent to the
following optimization problem:

{W, φ(t)} = argmin
W?,φ?(t)

‖W?φ?(t)− ressd‖F (3.21)
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Algorithm 9: Space modes update.
Input:
ressd
p-tuple of existing space modes (Wk)p1
p-tuple of existing time modes (φk)p1
Output:
p-tuple of updated space modes (Wk)p1

1 for i = 1 to p do
2 New space mode W̃i =

∫ T
0 ressdφi(t) dt

/ ∫ T
0 φ2

i (t) dt
3 Update ressd ← ressd + W̃iφi(t)
4 for j = 1 to p do
5 Projection of the new space mode α = WT

j W̃i

6 Update corresponding time modes φj ← φj + αφi

7 Subtract projected component W̃i ← W̃i − αWj

8 end
9 Correction of space mode Wi ←Wi + W̃i

10 Norm of space mode β = ‖Wi‖2
11 Normalization Wi ←Wi/β

12 Amplification φi ← βφi

13 end
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Based on a space-time weak form modeling method (1.28), a Galerkin method is applied
with the trial function ω? = W?φ(t) + Wφ?(t) and yields to:

∀(W?, φ?) :
∫ T

0
ω?T

(
Wφ(t)− ressd

)
dt =

W?T
(
W

∫ T

0
φ2(t) dt−

∫ T

0
ressdφ(t) dt

)
+
∫ T

0
φ?(t)

(
Wφ(t)− ressd

)
dt = 0 (3.22)

The non-linear system (3.22) is solved with a robust iterative strategy [CALK11]. It
proceeds in two steps, repeated until convergence. The first step consists in computing
vector W knowing φ(t) from the previous step. Then, the second step consists in updating
φ(t) knowing W from the first step. The process is stopped when W and φ(t) are no
more significantly updated.

First step Space vector W is updated knowing φ(t) from the previous step:

W =
( ∫ T

0
ressdφ(t) dt

)/( ∫ T

0
φ2(t) dt

)
(3.23)

Second step Time vector φ(t) is updated knowing W from the first step:

φ(t) = (WT ressd)/(WTW) (3.24)

In practice, very few iterations are needed and a normalization condition is applied for one
of the two vectors to ensure uniqueness of the product of the two modes. The pseudo-code
of this method is given in the algorithm 10.

Algorithm 10: Enrichment stage.
Input:
ressd
Maximum number of iterations ξmax
Output:
New space and time modes W, φ(t)

1 Initialize φ(t) (e.g. φ(t) = 1)
2 for ξ = 1 to ξmax do
3 Compute space mode W =

( ∫ T
0 ressdφ(t) dt

)/( ∫ T
0 φ2(t) dt

)

4 Compute time mode φ(t) =
(
WT ressd

)/(
WTW

)

5 Space mode amplitude α = ‖W‖2
6 Normalize space mode W←W/α

7 Amplify time mode φ← αφ

8 end
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Once the new pair is found, space and time basis are enriched using algorithm 6
(enrichment of p−tupes respecting orthonormality condition for space modes).

3.3.5 The quasi-optimal LATIN-PGD algorithm for frictional contact

The whole pseudo-code of the quasi-optimal LATIN-PGD is given in algorithm 11. Note
that, the cut-off amplitude criterion of the downsizing stage is choosen in relation to the
LATIN-PGD convergence indicator.

3.4 Toward an hybrid a posteriori/a priori strategy

The suggested LATIN-PGD method is an a priori method solving a given frictional contact
problem into a suited subspace designed through on-the-fly computed vector basis. Due
to the low rank approximation format for the solution arousing cheap computations and
low memory usage, the computational work is reduced. Instead of starting from scratch,
PGD basis could also be initialized with prior knowledge. For instance, a surrogate model
based on coarser discretizations could capture global modes. Given these modes, they can
be reused (probably modified and enhanced through PGD process) to start the suggested
algorithm.

A surrogate model is assumed to be solved. Then, its solution s̃ = (ũ, λ̃) = (ũ0, λ̃0) +
(ũ∗, λ̃∗) is provided. Modes (Ṽk)p1 and modes (L̃k)p1 spanning (u∗,λ∗) can be deduced
with a SVD computation as in section 1.5. Consequently, auxiliary modes (W̃k)p1 and
time modes (φ̃k)p1 can also be computed. These can be obtained directly by performing
the following computation:

W̃Σ̃Φ̃T = svd(λ̃∗ + kBũ∗) (3.25)

(W̃k)p1 and (φ̃k)p1 are respectively deduced from the p first columns of W̃ and (Σ̃Φ̃T )T .
Next, the LATIN-PGD algorithm is initialized with them instead of empty sets. By doing
so, one can expect to represent structural modes and make PGD focused on local modes
saving up much more computational time.

3.5 Applications and examples

3.5.1 Extrusion problem

In this section, the suggested LATIN-PGD method is applied to the illustrative example
described on section 1.5.1. The convergence is discussed with the evolution of the error
and the evolution of the size of the PGD basis (Wk)p1 along iterations.

Three different methods are compared on figure 3.1:
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Algorithm 11: Quasi-optimal LATIN-PGD algorithm for frictional contact.
Data:
Precisions ε, εmax
Enriching criterion 0 6 θ 6 1

1 Solve the linear elastic solution Ku0 = fext and λ0 = 0
2 Initialization of the PGD basis p = 0, (Wk)p1 = ∅ and (φk)p1 = ∅
3 while I > ε do
4 ** Local stage
5 Build solution at the contacting interface → (v,λ)
6 Solve the local stage such that R(v̂, λ̂) = 0→ (v̂, λ̂)
7 ** Extended preliminary stage
8 if p > 1 then
9 for t16k6m do

10 Compute ressd(tk) = (λ0(tk) + kBu0(tk))− (λ̂(tk) + kû(tk)) +
∑p
k=1 Wkφk(tk)

11 end
12 Time modes update → (φk)p1
13 for t16k6m do
14 Compute ressd(tk) = (λ0(tk) + kBu0(tk))− (λ̂(tk) + kû(tk)) +

∑p
k=1 Wkφk(tk)

15 end
16 Space modes update → (Wk)p1
17 end
18 ** Enrichment stage
19 if (1− I/Iold < θ) then
20 for t16k6m do
21 Compute ressd(tk) = (λ0(tk) + kBu0(tk))− (λ̂(tk) + kû(tk)) +

∑p
k=1 Wkφk(tk)

22 end
23 Enrichment stage → {W, φ}
24 Orthogonal enrichment → {(Wk)p+1

1 , (φk)p+1
1 }

25 Increment basis size p← p+ 1
26 end
27 ** Downsizing stage
28 if p > 1 then
29 Downsizing stage with ξmax = 1 and εmax → {(Wk)q1, (φk)q1}
30 Update basis size p = q

31 end
32 ** Convergence check
33 Save previous convergence criterion Iold ← I
34 Compute convergence criterion I
35 end
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Figure 3.1 – Comparison between the LATIN method, the LATIN method accounting (P3)
and the suggested quasi-optimal LATIN-PGD.

• The LATIN method without separated representation considered as the reference
non-linear solver. Such a solver solves the problem on the full dimensional model
and provides the reference solution;

• The LATIN method as originally proposed in [Lad99] including the space-time rep-
resentation. For that purpose, the suggested formulation based on (Wk)p1 basis is
considered accounting the thin preliminary phase;

• The quasi-optimal LATIN-PGD method including the suggested formulation based
on (Wk)p1, the extended preliminary phase and the downsizing stage.

Remarkably, reduced basis methods (i.e. both LATIN-P3 and LATIN-PGD) are able
to compute highly accurate solutions. Both converge to the reference solution. This
suggests clearly that the working subspace is adapted progressively through iterations
and fit iterated solutions according to their level of accuracy. Nevertheless to reach a
same level of precision, more iterations are required in comparison to the full dimensional
LATIN method. But one has to keep in mind that iterations of LATIN-P3 or LATIN-PGD
is far less expensive.

The LATIN-PGD seems to perform better than the LATIN-P3. During the first 50
iterations, both performances and low rank approximation sizes are similar. Note that
after 50 iterations, roughly 32 modes are found by both of methods. That corresponds to
the size of the subspace spanning the reference solution. Between 50 and 70 iterations,
the LATIN-PGD has an accelerated regime until recovering the convergence rate of the
LATIN method whereas the LATIN-P3 after 50 iterations. One order of magnitude is
gained for the LATIN-PGD. Another interesting observation concerns also basis sizes.
The LATIN-PGD does not largely oversize the working subspace to span the solution
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Figure 3.2 – LATIN-PGD with PGD basis initialized with modes from the surrogate model
(coarsly discretized).

contrary to the LATIN-P3. The LATIN-PGD computes a basis growing until reaching
the required size for the solution and useless additional dimensions are removed thanks
to the downsizing stage. On this illustrative case, the PGD basis inflation aroused first
does not occur and the orthogonality property considered for the LATIN-P3 is seemingly
sufficient to pertain a sustainable working subspace.

On figure 3.2, the PGD basis of the LATIN-PGD is initialized with modes obtained
from the surrogate model with coarse discretizations. Initialization with modes obtained
from a surrogate model shows auspicious performances. First, these modes provide an
enhanced initial guess to start the LATIN-PGD. Indeed, the larger is the number of
modes, the better becomes the initial guess. But, one can see that considering more than
5 surrogate modes does not allow to improve the initialization. Indeed, beyond the fifth
order, modes are clearly bound to the discretization scale of the surrogate model and does
not bring additional relevant information. Regardless to this initial gain, the more modes
are considered, the faster is the global convergence (convergence curves are shifted towards
lower error values). This suggests that modes initially irrelevant are quickly corrected to
span a suited subspace for the considered problem. The last interesting observation is the
evolution of the PGD basis size. Starting from an initial basis, the LATIN-PGD algorithm
completes and adapts it until it finds the suited basis for the solution (sizing 32) thanks
to the downsizing stage.

The progressive suitability of the PGD basis through iterations is the so-called quasi-
optimality property and an analysis with MAC diagrams is carried out. Starting from
scratch, the LATIN-PGD computes on-the-fly PGD modes are compared to reference ones
obtained from the solution of the problem (see figure 3.3).

Figure 3.3 shows clearly that iterated PGD modes are close to the reference ones
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(a) Iteration 10: space (left) and time (right)
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(b) Iteration 20: space (left) and time (right)
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(c) Iteration 40: space (left) and time (right)
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(d) Iteration 60: space (left) and time (right)

Figure 3.3 – MAC diagrams after given numbers of iteration of LATIN-PGD. Reference modes
are computed from the solution of the problem.

on the contrary to modes iterated by the LATIN-P3 method (see figure 3.4). It means
that the LATIN-PGD succeeds in capturing quickly the different scales of the problem
by identifying modes really close to optimal ones. As it was previously mentioned, SVD
modes of the solution depict specific scales of the problem. The same behavior can be
illustrated for modes (Wk)p1 from which (Vk)p1 and (Lk)p1 are deduced. All in all, the
suggested method computes through iterations a low rank approximation of the solution
quite close to the optimal ones, hence achieving a quasi-optimal a priori reduced basis
approach.

3.5.2 Three dimensional multibody problem

The suggested LATIN-PGD method is also applied successfully to the three dimensional
multibody problem described on section 1.5.5. The LATIN method, the LATIN-P3 and
the LATIN-PGD are compared on figure 3.5.

For this problem, the LATIN-PGD converges even faster than the LATIN method and
the computed PGD expansion has the same behavior as described the previous example:
PGD basis grows until reaching roughly the size of the subspace spanning the solution
(here, 83 vs. 81 required modes; more sweeps for the downsizing stage may reduce this
size to fit more precisely the targeted size 81). The LATIN-P3 shows slightly worse
performances than the LATIN-PGD up to the precision 10−1 (10 iterations). After this
point, its basis inflates greatly despite the prescribed orthonormality and lacks in both
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(a) Iteration 10: space (left) and time (right)
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(b) Iteration 20: space (left) and time (right)
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(c) Iteration 40: space (left) and time (right)
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(d) Iteration 60: space (left) and time (right)
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(e) Iteration 80: space (left) and time (right)
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(f) Iteration 100: space (left) and time (right)
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(g) Iteration 120: space (left) and time (right)
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(h) Iteration 140: space (left) and time (right)

Figure 3.4 – MAC diagrams after given numbers of iteration of LATIN-P3. Reference modes
are computed from the solution of the problem.
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Figure 3.5 – Comparison between the LATIN method, the LATIN method accounting (P3)
and the suggested quasi-optimal LATIN-PGD.

convergence rate and computational efficiency (after 350 iterations, LATIN-P3 counts
657 space-time modes !). This example demonstrates particularly the efficiency of the
suggested downsizing stage.

For multibody problems, several PGD formulations could be tackled:

• All bodies are tackled globally. The global stage is solved using the PGD formulation.
An only pair of space and time modes is computed (Wk)p1, (φk)p1 wherein the whole
unknowns are assembled. This approach was here chosen for a sake of simplicity.

• Each body is tackled individually. The global stage is solved using the PGD formu-
lation and pairs of space and time modes are computed (W(1)

k )p1
1 , (φ(1)

k )p1
1 , (W(2)

k )p2
1 ,

(φ(2)
k )p2

1 ... and are associated to each solid. This approach is suited for paral-
lel computing. But it is harder to handle because multiple sets of vectors have
to be handled, and a particular gluing at the contacting interface should be dealt
with. Then, domain decomposition methods are useful tools to deal with this issue
[LT94, LTS95, BHL98, Hil00, ARLF04, DHK+05, AF09].
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Chapter 4

Prospects and future developments

Abstract

The non-linear LATIN solver and PGD method open up several prospects for the
suggested strategies. In previous chapters, reductions methods were essentially used
to develop efficient solvers for frictional contact problems. Nonetheless, they can
also assign efficiently parametric studies. In this last chapter, this aspect will be
first investigated and some development paths will be given for both a posteriori
reduction methods with ROM and PGD method. Then, the non-linear LATIN
method formulation for frictional contact problems will be extended to material non-
linearity involving plasticity. A primer a priori reduction method for this extended
non-linear solver will be also given.
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Chapter 4. Prospects and future developments

4.1 Extensions to parametric studies and real time computing

Usually, to design a mechanical structure, engineers aim to meet the best compromise be-
tween performance and cost. Such an objective involves most of the time to choose among
several possibilities, for instance material properties and physical parameters. Simulation
tools are then helpful to ease the decision-making process. Nonetheless, wide ranges for
parameters lead to carry out numerous computations resulting in large computational
times. Up to this chapter, reduction methods were exclusively used to design efficient
solvers. Nevertheless, they are also well suited to assign parametric studies. Parameters
to handle are generally related to (i) the geometry of studied bodies or to (ii) the material
properties and possibly boundary conditions:

(i) Geometry. For shape optimization design, specific reduced basis approaches have
to be developed as suggested in [RHP08, LR10, RM10, RLM11]. To study the
influence of given parameters on a varying geometry, projection methods have to be
considered [BM00, GJMN05, HL03, DB06] or mesh morphing techniques [Ale02].

(ii) Material properties. As the studied space-time domain remains the same, im-
plementation of reduction methods is easier in this case. It consists in performing
some computations for some well chosen parameter values (also called design points).
Then, a reduced basis is deduced from these snapshots and it is expected to be rele-
vant for the whole parameter sets. Finally, remaining computations are carried out
on the deduced ROM. The main challenge consists in choosing appropriate design
points resulting in a relevant ROM [HBN13, AFL07, ACF10, AZF12a]. The PGD
could also be extended to parametric studies. This a priori approach consists in
finding a whole space-time-parameter solution into a low rank tensor approximation
and it is expected to be cheap. Then, solutions associated to different parameter
values are post-processed (i.e. no online phase is required) as in [NACC08, CLB+13].
The challenge lies essentially on the computation of a low rank tensor approxima-
tion format. As suggested in the previous chapter, mastering high order tensor is
actually not straightforward.

Several other tools such as response surface methods may also be used to assign para-
metric and optimization problems. Advantages of such reduced basis strategy lies on
physically-based formulations contrary to pure statistical methods. Consequently, result-
ing approximated models are generally more relevant.

Suggested FAS/LATIN method and LATIN-PGD method can also handle parametric
studies [GDGR14] by considering as surrogate models some design point. Then, a basis
reusing strategy as in [RCB11] can be deployed to solved accurately each configuration in
the parametric space. In the following, some development paths are given to address para-
metric studies related to material properties. Previously discussed methods are reviewed
or extended to be parametric-oriented.
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4.1.1 The LATIN-ROM solver

In this section, a non-linear ROM based on the LATIN method formulated for frictional
contact is suggested. Actually, it corresponds to the coarse problem of the FAS/LATIN.
Given a reduced basis (stored in the operator P), the coarse problem computes very
cheaply the most suited solution belonging to the spanned subspace satisfying at best
frictional contact conditions. The expensive global stage of the LATIN method is substi-
tuted with the reduced global stage as described in section 2.2.2 without accounting the
FAS correction scheme. The corresponding pseudo-code of the LATIN-ROM is described
in algorithm 12.

Algorithm 12: The LATIN-ROM method with prescribed space modes.
Input:
First guess of the solution s0 = (u0,λ0)
Precision ε

Maximum number of LATIN-ROM iterations kmax
Matrix of vector basis P
Stagnation criterion θ

1 Initialization k = 0
2 Compute basis for contact force field P̄ = KP
3 while I > ε or k < kmax or (1− I/Iold < θ) do
4 for t16k6m do
5 Solve local stage with

(
v(tk),λ(tk)

)
as input to get

(
v̂(tk), λ̂(tk)

)
satisfying

R(v̂(tk), λ̂(tk)
)

= 0
6 end
7 for t16k6m do
8 Compute ressd(tk) = λ̂(tk)− λ(tk) + k

(
v̂(tk)− v(tk)

)

9 Compute time functions by solving [R(K + BTkB)P]ψT (tk) = RBT ressd(tk)
10 end

11 Update solution s =





u← u + PψT

λ← λ+ P̄ψT

12 Save previous convergence criterion Iold ← I
13 Compute convergence criterion I
14 Increment iterations k ← k + 1
15 end

In practice, the LATIN-ROM computational cost is very low but depends strongly on
the quality of the considered reduced basis. Given a basis of size K, the unknowns for
the reduced global stage are K time functions sizing m (i.e. the number of time steps).
The K ×K system has to be solved m times (corresponding to each time step).

According to the above previously LATIN-ROM formulation, the solution is repre-
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sented using a space-time separated form with prescribed space functions. To reduce
once more the computational charge, one can prescribe not only the space modes but also
the time modes. Then, the unknowns of this new reduced global stage would be scalar
amplitudes for each time-space mode. In the following, the corresponding formulation is
given. Starting from the global stage formulation to search corrective increments:





K∆ǔ = BT∆λ̌
∆v̌ = B∆ǔ
∆λ̌+ k∆v̌− ressd = 0

(4.1)

where ressd = λ̂− λ̌+ k(v̂− v̌) is known at this stage, one looks for increments written
into a separated form with p prescribed space-time modes, say PiΨi(t). Space-time modes
are chosen to be “orthonormal” as follows:

(
PiΨi(t) | PjΨj(t)

)
= PT

j Pi

∫ T

0
Ψi(t)Ψj(t) dt = δij (4.2)

The space-time separated form for corrective increments reads:




∆ǔ = ∑p
i aiPiΨi(t) = PAΨT

∆λ̌ = ∑p
i aiP̄iΨi(t) = P̄AΨT

(4.3)

where ai are unknowns (amplitudes) and A = diag(a) is a diagonal matrix including each
ai for entries. Note that, to ensure the internal balance (see conditions on equation (2.11)),
time functions are chosen equal. Applying a Galerkin weak form modeling method using
a trial function ω? = a?jPjΨj(t) provides the value aj:

aj =
(
PT
j

∫ T

0
BT ressdΨj(t) dt

)/(
PT
j (K + BTkB)Pj

)
(4.4)

With this new formulation prescribing K space-time modes, global stage consists in
performing K scalar divisions and hence the computational effort is greatly reduced.
The corresponding pseudo code for this reduced global stage is given in algorithm 13.
Nonetheless, one has to be advised that such a reduction is very tough and restrictive.
Indeed, even if a great computational work can be spared, rebuilding solutions with
prescribed space-time mode can be difficult due to the lack in freedom to adjust the
accuracy.

To illustrate both LATIN-ROM formulations with prescribed space modes or with
prescribed space-time modes, the extrusion problem is solved for different frictional coef-
ficients µ ∈ Iµ = [0, 0.5]. Different choices for the basis are studied: from SVD modes of
a single frictional solution or from a combination of SVD modes for different solutions.

Accuracy of solutions obtained with both LATIN-ROM formulations are plot on figures
4.1 and 4.2. Accuracy criterion is based on the LATIN error I defined on equation (1.54).
To remind some order of magnitudes:
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Algorithm 13: The LATIN-ROM method with prescribed space-time modes.
Input:
First guess of the solution s0 = (u0,λ0)
Precision ε

Maximum number of LATIN-ROM iterations kmax
Matrix of vector basis P
Stagnation criterion θ

1 Initialization k = 0
2 Compute basis for contact force field P̄ = KP
3 while I > ε or k < kmax or (1− I/Iold < θ) do
4 for t16k6m do
5 Solve local stage with

(
v(tk),λ(tk)

)
as input to get

(
v̂(tk), λ̂(tk)

)
satisfying

R(v̂(tk), λ̂(tk)
)

= 0
6 Compute ressd(tk) = λ̂(tk)− λ(tk) + k

(
v̂(tk)− v(tk)

)

7 end
8 Compute amplitudes by solving [PT (K + BTkB)P]a = PTBT ressdΨ

9 Update solution s =





u← u + P diag(a)ΨT

λ← λ+ P̄ diag(a)ΨT

10 Save previous convergence criterion Iold ← I
11 Compute convergence criterion I
12 Increment iterations k ← k + 1
13 end
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(a) LATIN-ROM with 20 space modes. The frictionless solution counts only 15 SVD modes.
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(b) LATIN-ROM with 30 space modes

Figure 4.1 – Lowest error reached by the LATIN-ROM with prescribed space modes to solve
the same problem with different frictional coefficients. Considered reduced basis are obtained

from different solution. The range for the frictional coefficient Iµ = [0, 0.5] is sampled
uniformly using a step of 0.05. For instance, the second legend entry indicates the error plot
with a basis obtained from a frictional solution with µ = 0.1 of including the 20 first SVD

modes among the 32 available ones.
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(a) LATIN-ROM with 20 space-time modes. The frictionless solution counts only 15 SVD modes.
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(b) LATIN-ROM with 30 space-time modes

Figure 4.2 – Lowest error reached by the LATIN-ROM with prescribed space-time modes to
solve the same problem with different frictional coefficients. Considered reduced basis are

obtained from different solutions.
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• I ∼ 10−1 corresponds roughly to a 2 norm relative error of 10−2 for the displacement
field and 10−1 for the contact force field

• I ∼ 10−2 corresponds roughly to a 2 norm relative error of 10−4 for the displacement
field and 10−2 for the contact force field

In practice, the LATIN-ROM methods require a very few iterations to reach the max-
imal precision allowed by the considered reduced basis.

As an example, on figure 4.1 case (a) – red curve with square marks – shows the
best accuracy reachable with the LATIN-ROM using 20 space modes obtained from the
frictional solution µ = 0.1. In this case, the computed frictional solutions for µ 6 0.1
have an error less than 10−2. For µ ≥ 0.1, error increases. One can also remark that for
µ = 0.1, the recomputed solution error corresponds to the best precision reachable with
the 20 optimal modes (see a posteriori analysis in section 1.5.1). Similarly, if one takes
the whole modes of a solution, its recalculation will converge to it (see the frictionless
case).

The LATIN-ROM with prescribed space modes (figure 4.1) shows interesting perfor-
mances. Of course, the larger the basis, the better becomes the overall performance but
the heavier becomes the computational costs. It seems that the most suited basis is the
one obtained from the higher frictional solution (µ = 0.5). This can be explained by the
fact that such a solution captures both global trends of whole solutions. On the contrary,
the frictionless solution does not capture frictional behavior; therefore, the computations
involving its SVD modes are not accurate.

The LATIN-ROM with prescribed space-time modes (figure 4.2) shows also some good
performances. As suggested above, this formulation does not improve the accuracy but
accelerates and reduces the computational work by prescribing time modes. Furthermore,
one can see that this formulation is clearly restrictive and is actually efficient to solve
only very short range for µ. For instance, a space-time basis of size 30 obtained from
the frictional solution µ = 0.4 will be relevant (I < 10−1) to recompute solutions for
µ ∈ [0.35, 0.45] ; elsewhere the error is too large. As this LATIN-ROM formulation
requires a very light computational effort, one can afford to consider a larger amount
of modes (from different solutions) still keeping in mind that the offline phase becomes
more expensive. In this case, a great improvement could be gained: the space-time basis
including 15 + 15 = 30 space-time modes from the solutions µ = 0 and µ = 0.5 is
definitely more accurate than the others but remains less accurate than the LATIN-ROM
formulation prescribing only space modes.

All in all, both LATIN-ROM formulations show their advantages and their drawbacks
but seems to be interesting to tackle frictional problems up to standard level of accuracy.
Further developments would consist in obtaining SVD modes through surrogate models,
using interpolation methods for snapshots [AF08, ACCF09, AF11, AZF12a], deploying an
efficient strategy to select suited design points [MNPP07], or deploying specific methods
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4.1. Extensions to parametric studies and real time computing

such as hyper-reduction to tackle large problems [CFCA13]. To conclude, the challenging
issues is the computation of a relevant reduced basis.

4.1.2 The LATIN-PGD extended to parametric problems

The extension of the LATIN-PGD for parametric studies is here discussed. It consists in
solving once and for all, a space-time-parameter solution defined on Ω× [0, T ]× Iµ. For
that purpose, the solution is sought as a low rank tensor approximation, as in equation
(3.3). Considering the frictional coefficient as a parameter, the LATIN-PGD space-time-
parameter formulation is given in the following. The global stage of the LATIN method
yields to solve the following system:





K∆u(t, µ) = BT∆λ(t, µ)
∆v(t, µ) = B∆u(t, µ)
∆λ(t, µ) + k∆v(t, µ)− ressd(t, µ) = 0

(4.5)

with ressd(t, µ) = λ̂(t, µ)− λ(t, µ) + k(v̂(t, µ)− v(t, µ)) is known at this stage. The low
rank tensor approximation for increments reads:





∆u(t, µ) = Vφ(t)w(µ)
∆λ(t, µ) = Lψ(t)ι(µ)

(4.6)

The internal balance has to be ensured yielding to the following condition for modes:

KVφ(t)w(µ) = BTLψ(t)ι(µ) ⇒ ∀t, ∀µ :





KV = BTL
φ(t) = ψ(t)
w(µ) = ι(µ)

(4.7)

Then, the search direction equation is attempted to be verified at best using a weak form
Galerkin method with the trial function ω? = W?φ(t)w(µ) + Wv?(t)w(µ) + Wφ(t)w?(µ)
on the domain D = [0, T ]× Iµ as follows:

∀(W?, v?, w?) :
∫

D
ω?
(
∆λ+ k∆v− ressd

)
dt dµ =

∫

D
(W?)Tvw

(
Wvw − ressd

)
dt dµ

+
∫

D
v?WTw

(
Wvw − ressd

)
dt dµ+

∫

D
w?WTv

(
Wvw − ressd

)
dt dµ = 0 (4.8)

with the auxiliary variable W = L + kBV. To find suitable modes W, v and w, this
non-linear system can be solved using the same method as in section 3.3.4. As three
modes has to be solved, three corresponding steps are required:

First step Space vector W is updated knowing φ(t) and w(µ) from previous steps:

W =
( ∫

D
ressdφ(t)w(µ) dt dµ

)/( ∫ T

0
v2(t) dt

∫

Iµ
w2(µ) dµ

)
(4.9)
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Second step Time vector φ(t) is updated knowing W and w(µ) from previous steps:

φ(t) = (WT
∫

Iµ
ressdw(µ) dµ)

/(
WTW

∫

Iµ
w2(µ) dµ

)
(4.10)

Third step Parameter vector w(µ) is updated knowing W and φ(t) from previous steps:

w(µ) = (WT
∫ T

0
ressdφ(t) dt)

/(
WTW

∫

Iµ
v2(t) dt

)
(4.11)

In practice, very few iterations are needed and a normalization is applied for two of these
three vectors. Once converged these three vectors are stored and achieve the global stage.
The pseudo-code of this method is given in the algorithm 14.

Algorithm 14: LATIN-PGD space-time-parameter enrichment stage.
Input:
ressd(t, µ)
Maximum number of iterations ξmax
Output:
New space mode, time mode, parameter mode W, φ(t), w(µ)

1 Initialize φ(t) and w(µ) (e.g. φ(t) = w(µ) = 1)
2 for ξ = 1 to ξmax do
3 Compute W =

( ∫
D ressdφ(t)w(µ) dt dµ

)/( ∫ T
0 v2(t) dt

∫
Iµ
w2(µ) dµ

)

4 Compute φ(t) = (WT
∫
Iµ

ressdw(µ) dµ)
/(

WTW ∫
Iµ
w2(µ) dµ

)

5 Compute w(µ) = (WT
∫ T

0 ressdφ(t) dt)
/(

WTW ∫
Iµ
v2(t) dt

)

6 Space mode amplitude α = ‖W‖2
7 Normalize space mode W←W/α

8 Time mode amplitude β = ‖φ(t)‖2
9 Normalize time mode φ(t)← φ(t)/β

10 Report amplitude in parameter function w(µ)← αβw(µ)
11 end

These 3 mode vectors are stored once they are found. Space vectors V and L can be
deduced from stored W vector using relationships (3.15) in order to rebuild the solution
as follows:

s =




u(t, µ) = u0 +∑p
i=1 Vivi(t)wi(µ)

λ(t, µ) = λ0 +∑p
i=1 Livi(t)wi(µ)

(4.12)

Similarly, a preliminary stage can also be formulated by choosing an appropriate trial
function (in the same fashion as it was done for the LATIN-PGD space-time formulation)
to improve some preexisting modes. To stem the inflation of the PGD expansion and
for sake of computational efficiency, a storing strategy has to be planed. Contrary to
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the space-time separation formulation, compression and downsizing approach are chal-
lenging because tensors at stake are third order ones. Indeed, the optimality for such
a PGD expansion is no more related to orthogonality property for modes. Compression
and optimal decomposition for high order tensors are challenging. Some decomposition
trying to generalize the well known SVD to high order tensors can be found in the lit-
erature: HOSVD, PARAFAC, CanDecomp but remains nowadays under development
[Bro97, Kol01, KB09, DLDMV00b, DLDMV00a, LDH11].

In the following, each space-time-parameter is stored in a raw once computed. No
orthogonal property stands and no downsizing strategy is implemented. The pseudo code
of this extended version of the LATIN-PGD is described in algorithm 15.
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Algorithm 15: The extended LATIN-PGD method for parametric studies.
Data:
Precisions ε, εmax
Enriching criterion 0 6 θ 6 1

1 Solve the linear elastic solution Ku0 = fext and λ0 = 0
2 Initialization of the PGD basis p = 0, (Wk)p1 = ∅, (φk)p1 = ∅, (wk)p1 = ∅
3 while I > ε do
4 ** Local stage
5 for ∀µ ∈ Iµ do
6 for t16k6m do
7 Solve the local stage such that R(v̂, λ̂) = 0→ (v̂, λ̂)
8 end
9 end

10 ** Extended preliminary stage
11 if p > 1 then
12 Compute ressd
13 for i = 1 to p do
14 Space modes update → (Wk)p1
15 Update ressd
16 Time modes update → (φk)p1
17 Update ressd
18 Parameter modes update → (wk)p1
19 Update ressd

20 end
21 end
22 ** Enrichment stage
23 if (1− I/Iold < θ) then
24 Compute ressd
25 Enrichment stage → {W, φ, w}
26 Raw enrichment → {(Wk)p+1

1 , (φk)p+1
1 , (wk)p+1

1 }
27 Increment basis size p← p+ 1
28 end
29 ** Convergence check
30 Save previous convergence criterion Iold ← I
31 Compute convergence criterion I
32 end

This method is applied on the extrusion problem considering Iµ = [0, 0.5]. The conver-
gence criterion defined in (1.54) is extended to take into account the parameter dimension:

I = max


√√√√ ‖sN − ŝN‖2

∞
‖sN‖2

∞ + ‖ŝN‖2
∞
,

√√√√ ‖sT − ŝT‖2
∞

‖sT‖2
∞ + ‖ŝT‖2

∞




with ‖sN,T‖2
∞ = max

∂3Ω,t,µ

[
1

kN,T
λ2
N,T + kN,Tu

2
N,T

]
(4.13)
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Figure 4.3 – Behavior of the extended LATIN-PGD accounting the parameter µ.

The evolution of the error (denoted with I and relatively to reference solutions obtained
by performing a full dimensional LATIN method with appropriate µ) and the evolution
of the PGD basis are plotted on figure 4.3.

The extended LATIN-PGD shows promising performances. Indeed, a satisfying level
of accuracy, say 10−2, with a very tough convergence criterion is reached. For the tested
case, this method is able to compute a priori and at once a solution which would in-
volve 11 separate computations. Moreover, the solution is provided as a low rank tensor
approximation which is easy to store and ready to use for post-processing devices.

4.2 Extension to material plasticity

The LATIN method is a general solver for non-linear and time dependent problems. Here-
inafter, in addition to frictional contact, non-linearity induced by plasticity is accounted.
In the following, a LATIN formulation is briefly given and some development paths for a
LATIN-PGD formulation are given.

4.2.1 Hardening material and associated flow rule

In this section, a brief review of some general elastoplastic constitutive models is given.
First, we assume that the plastic regime is governed by a hardening law (see figure 4.4).
If an elastoplastic body is taken beyond the yield stress denoted by σY up to a given
stress σl > σY , it begins to derform plastically. When the load is released, a permanent
plastic deformation, say εp, remains. If the body is loaded again, no additional plastic
deformation occurs until the stress reaches σl: the material is hardened.

In the biaxial stress plane (see figure 4.5), any stress state in the initial yield surface
(yellow) is in the elastic region. Once the body is taken beyond the initial yield surface,
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Figure 4.4 – Pure tensile test : uniaxial stress-strain curves.
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Figure 4.5 – Isotropic vs. kinematic hardening rule.
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4.2. Extension to material plasticity

it experiences plastic deformation.

• With an isotropic hardening rule, the center of the yield surface remains the same
but it expands. Any stress state inside the new yield surface will experience elastic
deformation. New plastic deformations occurs when the stress state reaches the new
surface (delimited by the dashed region).

• With a kinematic hardening rule, the center of the yield surface translates but its
shape remains the same. Any stress state inside the new yield surface will experience
elastic deformation. New plastic deformation occurs when the stress state reaches
the new surface (delimited by the dashed region). This rule is able to model the
Bauschinger effect and similar response where a hardening in tension will lead to a
softening in a subsequent compression.

• A more general hardening consists in combining both isotropic and kinematic rules.

In metal plasticity, the plastic strain increment is usually assumed to have the same
principal directions as the deviatoric stress tensor and it is normal to the yield surface
(normality condition). For rock and soil plasticity theory, such an assumption is not
suited (overestimation of the plastic volume expansion [Man66]). In the following, a
linear isotropic hardening rule is selected. Then, the yield surface is defined with the
following plastic potential:

f(σ, R) = J(σ)− [σY +R(p)]



f(σ, R) 6 0 elastic regime
f(σ, R) = 0 at yield

(4.14)

with J a yield criterion (taken equal to the norm of the deviatoric stress), R(p) a function
governing the hardening law and p the cumulative plastic strain. As a linear hardening
law is considered, the function R(p) = hp is linear where h is the hardening modulus.
The normality condition can be expressed with the following flow rule:





dεp = λ ∂f
∂σ

dp = −λ ∂f
∂R

and




if f(σ, R) < 0 then λ = 0
if f(σ, R) = 0 then λ > 0

⇔





f(σ, R) 6 0
λ > 0
λf(σ, R) = 0

(4.15)

with λ the plastic multiplier. This law is an associated (or standard) flow rule [Hil58,
Dru57, SH] and has convenient mathematical properties related to the convex analysis.
Nevertheless, such a law is not universal and other classes of flow rules (e.g. non-associated
flow rules) were suggested. In the following, this associated flow rule is considered.

In addition, in order to eliminate the unknown λ, one can consider the Prager consis-
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tency condition [Pra49]:




f(σ, R) < 0 then λ = 0
f(σ, R) = 0 then df = 0

⇔





If f(σ, R) < 0 then λ = 0

If f(σ, R) = 0 then





df > 0
λ > 0
λ df = 0

(4.16)

with df = ∂f
∂σ : dσ+ ∂f

∂R
: dR. As mentioned in the first chapter, those conditions can be

obtained from (4.15) using the Moreau’s viability lemma [Mor88].

4.2.2 A LATIN formulation for frictional contact with elastoplasticity

In this section a LATIN formulation (without space-time representation) accounting both
frictional contact and the above plastic constitutive law is proposed. It still consists
in a two stage iterative and non-incremental process dealing separately with the linear
(internal balance) and the non-linear behavior (both frictional contact and plasticity). For
a non-linear problem involving only plasticity, several formulations are given in [Lad99].
Each stage aims at solving for fields defined on the space-time domain.

Global stage (linear stage)

Given the previous solution of the local stage denoted by ŝ = (σ̂, ε̂, v̂, λ̂), a solution
s = (σ, ε,v,λ) verifying internal balance, static admissibility, kinematic admissibility is
sought for. A correction formulation leads to solve the following system:





BT
σσ = fext + BTλ

ε = Bεu
v = Bu

and





σ = σi−1 + ∆σ
u = ui−1 + ∆u
λ = λi−1 + ∆λ

(4.17)

with Bε the gradient operator, Bσ the stress equilibrium operator. Moreover, the following
search direction equations are introduced:




σ −Dε = σ̂ −Dε̂
λ+ kv = λ̂+ kv̂

(4.18)

where the search direction parameter for strain-stress pair is taken equal to the Hooke’s law
operator D. All in all, the system providing the suited correction ∆s = (∆σ,∆ε,∆v,∆λ)
is:





BT
σ∆σ = BT∆λ

∆σ −DBε∆u = resP
∆λ+ kB∆u = resC
∆v = B∆u
∆ε = Bε∆u

⇔





[K + BTkB]∆u = BT resC −BT
σ resP

∆v = B∆u
∆ε = Bε∆u
∆σ = resP + DBε∆u

(4.19)
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with resP = (σ̂ −Dε̂)− (σi−1 −DBεui−1), resC = (λ̂+ kv̂)− (λi−1 + kBui−1) and the
stiffness operator K = BσDBε. Once the global stage is solved, the solution s = si−1 +∆s
is deduced.

Non-linear stage (local stage)

Given s = (σ, ε,v,λ), the non-linear stage aims to compute ŝ = (σ̂, ε̂, v̂, λ̂) verifying
frictional contact conditions and plasticity behavior. Frictional conditions and plasticity
behavior are tackled separately and independently. Therefore, the local stage defined for
frictional contact in 1.6.2 is used to find (v̂, λ̂). Hereinafter, the problem to find (σ̂, ε̂) is
formulated.

First, the associated plasticity flow rule accounting an isotropic linear hardening rule
yields to:





dε̂p = λ̂ ∂f

∂σ̂
dp̂ = −λ̂ ∂f

∂R̂

with





f(σ̂, R̂) 6 0
λ̂ > 0
λ̂f(σ̂, R̂) = 0

(4.20)

with the plastic potential defined as follows:

f(σ̂, R̂) = ‖dev(σ̂)‖ − (σY + R̂) (4.21)

with dev(σ̂) is the deviatoric part of the stress tensor σ̂ and R̂ = hp̂. The deviatoric
norm is such that ‖dev(σ̂)‖ =

√
3
2 trace[dev(σ̂) dev(σ̂)]. Furthermore, the Hooke’s law

states:
σ̂ = D(ε̂− ε̂p) (4.22)

And finally, the search direction equation is introduced:

σ̂ + Dε̂ = σ + Dε ⇔ σ̂ = σ + Dε−Dε̂ (4.23)

Combining the Hooke’s law and the search direction equation yields to:

σ̂ = 1
2 [(σ + Dε)−Dε̂p] (4.24)

Then, the θ-method scheme [SP91, BGH00] is introduced to express ε̂p (at time step tk)
with anterior quantities (at the previous time steps tk−1) denoted with superscript k− 1:

σ̂ = 1
2 [(σ + Dε)−D(êp + θ∆t dε̂p)] = 1

2

[
(σ + Dε)−Dêp − θ∆tλ̂D ∂f

∂σ̂

]
(4.25)

with êp = ε̂(k−1)
p + (1 − θ)∆t dε̂(k−1)

p and ∂f̂

∂σ̂ = dev(σ̂)
‖dev(σ̂)‖ . Then, the deviatoric part of σ̂

can be deduced denoting by G the shear modulus:

dev(σ̂) = dev
(

1
2

[
(σ + Dε)−Dêp − θ∆tλ̂D σ̂D

‖σ̂D‖

])

= dev
(

1
2

[
(σ + Dε)−Dêp − 2θ∆tλ̂G σ̂D

‖σ̂D‖

])
(4.26)
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One can compute the norm the above deviatoric part yielding to:

‖dev(σ̂)‖ = ‖1
2 dev(σ + Dε−Dêp)‖ − θ∆tλ̂G (4.27)

In the same fashion, the hardening laws can be rewritten with the θ-method scheme:

R̂ = hp̂ = h(π̂ + θ∆t dp̂) = hπ̂ − hλ̂θ∆t ∂f
∂R̂

(4.28)

with π̂ = p̂(k−1) + (1 − θ)∆t dp̂(k−1) and ∂f

∂R̂
= −1. The plastic potential is then deduced

and reads:
f̂ = ‖dev(σ̂)‖ − (σY + R̂) = γ − λ̂(θ∆tG+ hθ∆t) (4.29)

with γ = ‖1
2 dev(σ+ Dε−Dêp)‖− hπ̂− σY = f̂ + λ̂(θ∆tG+ hθ∆t). From γ, the plastic

multiplier is deduced using complementarity condition:




If γ < 0⇒ f̂ < 0⇒ λ̂ = 0
If γ > 0⇒ f̂ = 0⇒ λ̂ = γ

θ∆tG+hθ∆t
(4.30)

Once λ̂ found, ŝ is easily deduced from the above relationship.

Initialization and stopping criterion

An error indicator for the plastic behavior was proposed in [RNB13] and reads:

IP = max
(‖ε̂− ε‖
‖ε̂+ ε‖ ,

‖σ̂ − σ‖
‖σ̂ + σ‖

)
(4.31)

Then, the error indicator for the formulated LATIN method for elastoplastic body with
frictional contact is defined as follows:

IC+P = max(I, IP ) (4.32)

To initialize the LATIN method, s0 = (σ0, ε0,v0,λ0) is computed as follows:

Ku0 = fext and {v0 = Bu0, ε0 = Bεu0,σ0 = Dε0,λ0 = 0} (4.33)

with u0 is kinematically admissible.

Pseudo-code

To sum up the whole suggested formulation, the pseudo-code of this LATIN formulation
is given on algorithm 16.
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Algorithm 16: The LATIN method for elastoplastic frictional contact problem.
Data:
Precision ε

Maximum number of iterations imax
Time scheme parameter θ (e.g. θ = 1

2 )
1 Solve the linear elastic solution s0
2 Initialization i = 0
3 while IC+P > ε do
4 ** Local stage (contact)
5 for k = 2 to m (time steps) do
6 Solve the local stage such that R(v̂, λ̂) = 0
7 end
8 ** Local stage (plasticity)

9 Set initial condition for (σ̂(1), ε̂(1)) = (σ̂(1)
0 , ε̂

(1)
0 ) and p

(1)
0 = 0 and ε̂(1)

p = 0
10 Initialize êp = 0 and π̂ = 0
11 for k = 2 to m (time steps) do
12 Compute γ and deduce λ̂ using (4.30)
13 Compute dev(σ̂) using (4.26)
14 Compute dε̂(k)

p = λ̂ dev(σ̂(k))
‖dev(σ̂(k))‖

15 Compute ε̂(k)
p = êp + θ∆t dε̂(k)

p

16 Compute σ̂(k) = 1
2 [(σ(k) + Dε(k))−Dε̂(k)

p ]
17 Compute ε̂(k) = D−1[σ(k) + Dε(k) − σ̂(k)]
18 Compute p̂(k) = π̂ + λ̂θ∆t
19 Increment êp ← êp + θ∆t dε̂(k)

p and π̂ ← π̂ + λ̂θ∆t
20 end
21 ** Global stage
22 for k = 2 to m (time steps) do
23 Compute res(k)

P = (σ̂(k) −Dε̂(k))− (σ(k)
i−1 −DBεu(k)

i−1)
24 Compute res(k)

C = (λ̂
(k)

+ kv̂(k))− (λ(k)
i−1 + kBu(k)

i−1)
25 Solve [K + BTkB]∆u(k) = BT res(k)

C −BT
σ res(k)

P

26 Compute ∆ε(k) = Bε∆u(k)

27 Compute ∆σ(k) = res(k)
P + DBε∆u(k)

28 Compute the solution s(k)
i = (σ(k)

i−1, ε
(k)
i−1,v

(k)
i−1,λ

(k)
i−1) + (∆σ(k),∆ε(k),∆v(k),∆λ(k))

29 end
30 ** Convergence check
31 Compute convergence criterion IC+P
32 Increment i← i+ 1
33 end
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Toward a novel quasi-optimal reduced basis strategy formulation

The global stage requires to solve the expensive linear system defined on (4.19). More-
over, additional variables such as the stress field and the strain field have to be stored
arising some memory storage issues. The PGD seems to be again a convenient method
to address these issues. Using the same approach as in the previous chapter, the global
stage accounting frictional contact and elastoplastic material could be reformulated using
the following representation: 




∆σ = Ss(t)
∆λ = Ll(t)
∆u = Vv(t)

(4.34)

Note that the strain field increment is straightforwardly deduced using ∆ε = BεVv(t).
Hereinafter, an enrichment stage is formulated. The internal balance and the above
representation has to be ensured leading to following conditions for some modes:





BT
σS = BTL

s(t) = l(t)
(4.35)

search direction equations will be therefore approximated. The challenge of this new
formulation is to get a suited strategy to find the most relevant modes ensuring internal
balance and approximating at best search direction equation. To address it, the following
formulation (a primer) for modes is suggested. First, displacement modes are sought by
solving:

{V, v(t)} = arg min
V?,v?

(
[K + BTkB]V?v?(t)− (BT resC −BT

σ resP )
)

(4.36)

Then, representations for the remaining modes are prescribed as follows:




∆σ = Ss(t)
∆λ = Ll(t)
s(t) = l(t) = v(t)

(4.37)

To approximate the search direction equations, a Galerkin method can be used yielding
to:

L =
∫ T
0 resCv(t) dt
∫ T

0 v2(t) dt
− kBV S =

∫ T
0 resPv(t) dt
∫ T
0 v2(t) dt

+ DBεV (4.38)

One can verify that the above modes satisfy conditions in equation (4.35) thanks to (4.36).
This is a formulation for the enrichment stage. Future works would consist in formulating
a suited preliminary stage and an efficient strategy to store the suggested sets of modes.
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Figure 4.6 – Solution s: displacement and contact force fields. The color map refers to the
cumulated plastic strain and red arrows correspond to nodal contact force.

4.2.3 Numerical application

The suggested LATIN formulation with frictional contact for elastoplastic material is
applied on the two dimensional extrusion problem. Additional material properties are
considered such as the yield stress σY = 3.1 × 107 and the hardening modulus h =
2.612 × 108 (h = E

264). For sake of computational time, the time interval is discretized
using ∆t = 0.02. Some snapshots of the solution are plotted in figure 4.6 and convergence
of the proposed LATIN formulations on figure 4.5.

The number of required iterations to reach a reasonable accuracy is quite large. More-
over, one has to keep in mind that the non-linear stage tackling the plasticity behavior is
computationally expensive (whereas the non-linear and local stage tackling the frictional
behavior is cheap). That can be firstly explained by the fact that the search direction for
the contact behavior are not optimal. Indeed, they depend on the material stiffness (i.e.
Young modulus) which is softened (i.e. hardening modulus) in the plasticity regime. This
technical aspect could be a prospect to enhance the suggested algorithm.

4.3 General outlooks

Extension of the PGD method to parametric applications and extension to other kind of
non-linearity are direct and pragmatic continuations for work developed in this disserta-
tion. Other orientations could also be envisaged such as large sliding motion, large dis-
placements [BLPR97], transient dynamic and impact [OBG10, LLB00, LBL02, BGA13].
Analogy with multigrid methods may also be further investigated by deploying localized
multigrid strategy as in [Ran08].
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Figure 4.7 – Convergence of the LATIN method and LATIN-PGD method for elastoplastic
material and frictional contact.
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Conclusion

In this dissertation, innovative strategies based on model reduction methods were sug-
gested to solve efficiently the non-linear and time-dependent frictional contact problems.
It has been illustrated that a frictional solution is expected to be easily compressed. In
other words, such a solution can be cast into a separated form or a low rank format using
for instance the singular value decomposition. From the provided singular time-space
modes, an interesting scale separability phenomenon has been pointed out. The first
modes which are the most energetic ones capture the global trend of the solution and are
related to the structural scale of the studied body. Then, next ones are related to localized
phenomenon such as for instance frictional contact zones or boundary conditions. This
observation can be carried out on both spatial and temporal dimensions. Despite the non-
smooth properties of the involved constitutive laws, a space-time frictional solution can
be written into a separated form and accurately approximated into a reduced subspace.
Thus, model reduction techniques can be applied using a global space-time approach.

The core of the presented work is related to the so-called non-linear large time incre-
ment (LATIN) method. This method tackles a problem using a non-incremental approach
(i.e. space-time approach) and iterates on global space-time solutions. In this way, the
different scales of the whole space-time solution can be rapidly identified and such a fea-
ture would not be possible with classic incremental approaches such as for instance the
Newton-Raphson method. Indeed, building incrementally the solution time step per time
step does not allow to have knowledge about dominant trends or modes of the whole
time-space solution before having the last time steps converged. This is a key point for
implementing efficient model reduction strategies.

First, an accelerated LATIN method was proposed: the FAS/LATIN method. Scale
separability observations foster multilevel computational techniques such as multigrid
method. The FAS/LATIN idea is inspired from the multigrid full approximation scheme
consisting in adapting the computational support (grids) to the process wavelength com-
ponents of the solution. In our case, some modes characterizing different scales of the
solution are considered as grids and corrections are cheaply computed in a reduced ba-
sis composed of these modes. In this way, LATIN iterations considered as smoothing
relaxations can be greatly accelerated. Obtained performances depend strongly on the
relevancy of the provided modes. To compute them, several possibilities were suggested
such as surrogate models based on coarse space-time discretization (quite cheap compu-
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tational work), on-the-fly computed modes (more expensive to achieve), etc. Nonetheless,
these requirements for modes are the main drawbacks of the method.

Second, a quasi-optimal LATIN reduced basis strategy was proposed. Such an ap-
proach embeds the PGD method and aims at searching directly from scratch (i.e. without
prior knowledge) the solution into a separated form. So, on the one hand, computational
work can be greatly spared because of only univariate functions are tackled. On the other
hand, memory storage issues are addressed due to the prescribed low rank format (PGD
expansion) for the solution. The main attractive feature of the proposed strategy lies on
the so-called quasi-optimality property. Indeed, it has been illustrated that the processed
PGD expansion is close to SVD modes of the reference solution. This is achieved by effi-
cient techniques mastering through non-linear space-time iterations the PGD expansion
of the solution (extended preliminary stage and downsizing).

Finally, some development paths for further extensions of this work were roughly
studied. Indeed, in this dissertation model reduction methods were essentially deployed
to develop efficient solvers. But they also address parametric studies. Thus, a LATIN
formulation based on reduced order model (ROM) formulation was proposed to solve
several problems with a parametrized frictional coefficient. Nonetheless, challenging issues
such as building a relevant reduced basis has to be studied. An extended space-time-
parameter LATIN-PGD formulation was also suggested for this kind of problem. But,
it lacks in computational efficiency due to involved high order tensor. Additionally, it
has been pointed out that the framework is able to take into consideration other kinds of
non-linearities such as elastoplastic behaviors.

In this dissertation, only academic cases were studied as examples. Of course, the next
pragmatic extension of this work would be the implementation of all of those methods
on industrial large scale problem including large sliding motion and general multibod-
ies aspects. Such challenges involve numerous issues related to computational geometry
(contact detection) and interesting solutions are suggested in [YCF11, AYM13].

122



Bibliography

[ACCF09] D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat. A method for in-
terpolating on manifolds structural dynamics reduced-order models. Inter-
national journal for numerical methods in engineering, 80(9):1241–1258,
2009.

[ACF10] D. Amsallem, J. Cortial, and C. Farhat. Towards real-time computational-
fluid-dynamics-based aeroelastic computations using a database of reduced-
order information. AIAA journal, 48(9):2029–2037, 2010.

[AD08] P. Alart and D. Dureisseix. A scalable multiscale latin method adapted to
nonsmooth discrete media. Computer Methods in Applied Mechanics and
Engineering, 197(5):319–331, 2008.

[ADR06] P. Alart, D. Dureisseix, and M. Renouf. Using Nonsmooth Analysis for
Numerical Simulation of Contact Mechanics, volume 12 of Advances in
Mechanics and Mathematics. Springer US, 2006.

[AF08] D. Amsallem and C. Farhat. Interpolation method for adapting reduced-
order models and application to aeroelasticity. AIAA journal, 46(7):1803–
1813, 2008.

[AF09] P. Avery and C. Farhat. The feti family of domain decomposition methods
for inequality-constrained quadratic programming: Application to contact
problems with conforming and nonconforming interfaces. Computer Meth-
ods in Applied Mechanics and Engineering, 198(21):1673–1683, 2009.

[AF11] D. Amsallem and C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific Computing,
33(5):2169–2198, 2011.

[AFL07] D. Amsallem, C. Farhat, and T. Lieu. Aeroelastic analysis of f-16 and
f-18/a configurations using adapted cfd-based reduced-order models. In
The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference, pages 1–20, 2007.

123



Bibliography

[AL95] P. Alart and F. Lebon. Solution of frictional contact problems using ilu
and coarse/fine preconditioners. Computational mechanics, 16(2):98–105,
1995.
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et contrôle optimal: application au sillage laminaire d’un cylindre circu-
laire. PhD thesis, Vandoeuvre-les-Nancy, INPL, 2004.

[BF95] D. Boukari and A.-V. Fiacco. Survey of penalty, exact-penalty and multi-
plier methods from 1968 to 1993*. Optimization, 32(4):301–334, 1995.

[BGA13] L. Boucinha, A. Gravouil, and A. Ammar. Space-time proper generalized
decompositions for the resolution of transient elastodynamic models. Com-
puter Methods in Applied Mechanics and Engineering, 255:67 – 88, 2013.

[BGH00] G. J. Barclay, D. F. Griffiths, and D. J. Higham. Theta method dynamics.
LMS Journal of Computation and Mathematics, 3:27–43, 2000.

[BGLC10] E. Biotteau, A. Gravouil, A. A. Lubrecht, and A. Combescure. Multigrid
solver with automatic mesh refinement for transient elastoplastic dynamic
problems. International Journal for Numerical Methods in Engineering,
84(8):947–971, 2010.

[BGVD12] C. G. Baker, K. A Gallivan, and P. Van Dooren. Low-rank incremental
methods for computing dominant singular subspaces. Linear Algebra and
its Applications, 436(8):2866–2888, 2012.

125



Bibliography

[BHL98] F. B. Belgacem, P. Hild, and P. Laborde. The mortar finite element method
for contact problems. Mathematical and computer modelling, 28(4):263–
271, 1998.

[BHM00] W. Briggs, V. Henson, and S. McCormick. A Multigrid tutorial 2nd ed.
Siam, Philadelphia, 2000.

[BHS03] Roland Becker, Peter Hansbo, and Rolf Stenberg. A finite element method
for domain decomposition with non-matching grids. ESAIM: Mathematical
Modelling and Numerical Analysis, 37(02):209–225, 2003.

[BL11] Achi Brandt and Oren E Livne. Multigrid techniques: 1984 guide with
applications to fluid dynamics, volume 67. SIAM, 2011.
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[RC01] Rémi Rocca and Marius Cocu. Existence and approximation of a solution
to quasistatic signorini problem with local friction. International journal
of engineering science, 39(11):1233–1255, 2001.

[RCB11] V Roulet, L Champaney, and P-A Boucard. A parallel strategy for the mul-
tiparametric analysis of structures with large contact and friction surfaces.
Advances in Engineering Software, 42(6):347–358, 2011.

[RCCA06] D. Ryckelynck, F. Chinesta, E. Cueto, and A. Ammar. On the a priori
model reduction: Overview and recent developments. Archives of Compu-
tational Methods in Engineering, 13:91–128, 2006.

[Ren12] Y. Renard. Generalized newton’s methods for the approximation and res-
olution of frictional contact problems in elasticity. Computer Methods in
Applied Mechanics and Engineering, 256:38–55, 2012.

[RHP08] Gianluigi Rozza, DBP Huynh, and Anthony T Patera. Reduced basis
approximation and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations. Archives of Computational
Methods in Engineering, 15(3):229–275, 2008.

[RLM11] G. Rozza, T. Lassila, and A. Manzoni. Reduced basis approximation for
shape optimization in thermal flows with a parametrized polynomial ge-
ometric map. In Spectral and high order methods for partial differential
equations, pages 307–315. Springer, 2011.

136



Bibliography

[RM10] Gianluigi Rozza and Andrea Manzoni. Model order reduction by geometri-
cal parametrization for shape optimization in computational fluid dynam-
ics. In Proceedings of the ECCOMAS CFD 2010, V European Conference
on Computational Fluid Dynamics, number EPFL-CONF-148535, 2010.
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Appendix A

Toward the SVD using a recursive
compression function

A.1 Compression function F

In the following, we consider the canonical euclidean inner product. Let ǔ be the low
rank approximation defined as follows:

ǔ = V1φ
T
1 + V2φ

T
2 with





VT
i Vj = δij

‖φ1‖2 > ‖φ2‖2 (A.1)

We define the function F providing new vectors Ṽ1, φ̃1, Ṽ2, φ̃2 such that:

(Ṽ1, φ̃1, Ṽ2, φ̃2) = F (V1,φ1,V2,φ2) (A.2)

Such a function consists in doing the following steps:

1. Time mode φ2 is written as follows φ2 = αφ1 + φ̄2 with φT1 φ̄2 = 0 and α = φT

1φ2

φT

1φ1
.

2. ǔ can be rewritten as follows ǔ = V̄1φ
T
1 + V2φ̄

T

2 with V̄1 = V1 + αV2. One can
remark that V̄T

1 V2 6= 0.

3. Space modes are reorthogonalized by writting V2 = βV̄1 + V̄2 with V̄T
1 V̄2 = 0 and

β = V̄T
1 V̄2

V̄T
1 V̄1

= α
1+α2 .

4. ǔ can be rewritten as follows ǔ = V̄1φ̄
T

1 + V̄2φ̄
T

2 with φ̄1 = φ1 + βφ̄2.

5. Space modes are unitarized by doing




Ṽ1 = V̄1/‖V̄1‖
φ̃1 = ‖V̄1‖φ̄1

and




Ṽ2 = V̄2/‖V̄2‖
φ̃2 = ‖V̄2‖φ̄2

.

Due to the fact that new vectors are obtained by input vector partitions, ǔ can be rewritten
exactly as follows:

ǔ = Ṽ1φ̃
T

1 + Ṽ2φ̃
T

2 (A.3)
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Appendix A. Toward the SVD using a recursive compression function

with the following properties:

ṼT
i Ṽj = δij Orthogonality of left vectors (A.4)

φT1φ2 > φ̃
T

1 φ̃2 Compression (A.5)
‖φ̃1‖2 > ‖φ̃2‖2 Sorting by ascending order (A.6)

In this chapter, we first provide a proof for properties (A.4), (A.5), (A.6) and then
we will generalize the function F to a recursive procedure computing the SVD of ǔ. We
recalls the following useful formulae which will be used in the following.

α = φT1φ2

φT1φ1
(A.7)

φ̄2 = φ2 − αφ1 (A.8)
V̄1 = V1 + αV2 (A.9)

φ̄1 = φ1 + α

1 + α2 (φ2 − αφ1) = 1
1 + α2φ1 + α

1 + α2φ2 (A.10)

V̄2 = V2 −
α

1 + α2 (V1 + αV2) = − α

1 + α2 V1 + 1
1 + α2 V2 (A.11)

‖V̄1‖ =
√

1 + α2 (A.12)

‖V̄2‖ = 1√
1 + α2

(A.13)

A.2 Proofs

A.2.1 Orthogonality of left vectors (property (A.4))

The property (A.4) results directly from the third step consisting in orthogonalizing space
functions.

A.2.2 Compression (property (A.5))

The notion of compression refers to the redundancy occurring in right vectors (orthogo-
nality implies no redundancy whereas colinearity implies a high redundancy). According
to property property (A.5) to demonstrate, F is expected to compress right vectors (i.e.
make them less colinear). Before providing its proof, we gives following elements:

• φ̃
T

1 φ̃2 = ‖V̄1‖‖V̄2‖φ̄T1 φ̄2 = φ̄
T

1 φ̄2

• Coefficient α defined in (A.7) is assumed to be positive which can always be pre-
scribed by choosing an appropriate sign for φ1 or φ2 doing for instance V1(−φT1 ) =
(−V1)φT1 . Using the Cauchy-Schwarz inequality and properties of right vectors in
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A.3. Iterated compression function F ξ

(A.1) yields to:

0 6 φT1φ2 6
√
φT1φ1

√
φT2φ2 6

√
φT1φ1

√
φT1φ1 ⇒ 0 6 φT1φ2 6 φ

T
1φ1

⇒ 0 6 α 6 1 (A.14)

The following quantity is developed:

φ̄
T

1 φ̄2 = 1− α2

1 + α2φ
T
1φ2−

α

1 + α2

[
φT1φ1−φT2φ2

]
= φT1φ2

(φT1φ1)(φT2φ2)− (φT1φ2)2

(φT1φ1)2 + (φT1φ2)2
︸ ︷︷ ︸

C1

(A.15)

Using the Cauchy-Schwarz inequality and properties of right vectors in (A.1) yields to:

0 6 (φT1φ2)2 6 (φT1φ1)(φT2φ2) ⇔ 0 6 (φT1φ1)(φT2φ2)− (φT1φ2)2

⇔ 0 6 (φT1φ1)(φT2φ2)− (φT1φ2)2 6 (φT1φ1)2 + (φT1φ2)2 (A.16)

Consequently, φ̃T1 φ̃2 = C1φ
T
1φ2 with C1 6 1 prooving (A.5).

A.2.3 Preservation of the ascending sorting (property (A.6))

The property (A.6) ensures that the sorting property according the norms of right vectors
is preserved after the application of F . Before providing its proof, we give following
elements:

• The amplitude ratio η = ‖φ2‖2

‖φ1‖2 = φT

2φ2

φT

1φ1
6 1 thanks to property (A.1). Moreover,

η = ‖φ2‖2

‖φ1‖2 = α2 + φ̄
T

2 φ̄2

φT

1φ1
. According to (A.14), α is bounded, so 0 6 α2 6 η 6 1.

• ‖φ̃1‖2 = ‖V̄1‖2φ̄
T

1 φ̄1 = φT1φ1
1+(2+η)α2

1+α2

• ‖φ̃2‖2 = ‖V̄2‖2φ̄
T

2 φ̄2 = φT1φ1
η−α2

1+α2

Consequently,
‖φ̃1‖2 > ‖φ̃2‖2 ⇔ 1 + (2 + η)α2 > η − α2 (A.17)

which is true prooving property (A.6).

A.3 Iterated compression function F ξ

Thanks to the properties (A.4) and (A.6) suited for inputs of F , function F can be
composed to obtain an even more compressed low rank approximation. Thus, denonting
ξ a functional power, one obtains the iterated function F ξ such that:

F ξ = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
ξ times

(A.18)
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The larger is the functional power ξ, the more compressed are right vectors. Let αξ
be the coefficient defined in (A.7) at ξth iteration of F . In this section, we study the
evolution of the sequence (α)ξ versus ξ. One can compute, the recurrence relationship
between αξ and αξ+1 as well as ηξ and ηξ+1:

given (η0, α0) :





αξ+1 =
αξ(ηξ − α2

ξ)
1 + α2

ξ(2 + ηξ)

ηξ+1 =
ηξ − α2

ξ

1 + α2
ξ(2 + ηξ)

= αξ+1

αξ

(A.19)

The above relationships are not obvious to formulate explicitly with ξ but some interesting
elements marked or recalled:

• (αξ) is bounded such that 0 6 αξ 6 1 thanks to property (A.14).

• (αξ) decreases thanks to property (A.5).

• So, (αξ) converges to α∞ = 0 (i.e. right vectors become orthogonal).

• (ηξ) is bounded such that 0 6 α2
ξ 6 ηξ 6 1.

• If ξ sufficiently large, αξ becomes close to 0 and ηξ stagnates to a value, say, η∞.

• Asymptotically, the convergence rate of the process is:

lim
ξ→+∞

αξ+1 − α∞
αξ − α∞

= η∞

Generally, η∞ is expected to be such such 0 < η∞ < 1 providing a η∞-linear con-
vergence rate (geometric convergence). In practice, one can expect reasonably that
10−6 < η∞ < 10−1. If ηξ = 0 then αξ = 0 and if αξ = 1 then ηξ = 0, the function
is maximally compressed the next iteration. If η∞ has been equal to 0, the process
would have been superlinear.

• The litigious cases is for ηξ = 1. If ηξ = 1 and αξ = 1, the next iteration leads to
αξ+1 = ηξ+1 = 0. If ηξ = 1 and αξ < 1, the next iteration leads to αξ+1 < αξ yielding
to ηξ+1 < 1 (standard case).

The first terms α0 and η0 depend on the nature of the low rank approximation to
compress. In the following, subscripts ξ for both left and right vectors obtained after ξ
application of F are dropped off for the sake of clarity. Convergence plots are given on
figure A.1 for different values α0 and η0. For the case α0 = 1 ⇒ η0 = 1, only 1 iteration
is needed.

On figure A.2 are plot trajectories (ηξ, αξ) starting from some different (η0, α0) in the
plane (η, α). One can see evolution of both parameters (α coefficient and convergence
rate). All curves go toward low values for α (convergence to zero) and show also that the
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convergence rate η is stabilized to η∞ after a few iterations. The convergence behavior is
remarkably governed by the starting point (η0, α0):

• The higher is α0, the lower becomes η and the higher is the convergence rate.

• The lower is η0, the faster is the convergence.

• The lower is α0 (right vectors are poorly correlated) and the higher η0 (amplitudes
of right vectors are similar), the lower is the convergence rate. This observation
is perturbing because in this extend one has quasi-orthogonal right vectors and
in other words, the job is quite completed. But the discrepancy between right
vectors amplitudes is not enough to distinguish the most contributory rank one
approximation.
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Figure A.1 – Convergence of iteration fonction F for some α0 and η0 characterizing some time
modes.
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Figure A.2 – Evolution of both αξ and ηξ through iteration ξ starting from some (η0, α0). Each
mark corresponds to an iteration ξ.

Once α nullifies, both space modes (V1 and V2) and time modes (φ1 and φ2) are
orthogonal and ǔ reads:

ǔ = V1φ
T
1 + V2φ

T
2 =

[
V1 V2

] [‖φ1‖2 0
0 ‖φ2‖2

] [
φ1
‖φ1‖2

φ2
‖φ2‖2

]T
(A.20)

Such a factorization is unique and is called the singular value decomposition of ǔ.

A.4 Generalization to a SVD algorithm

In this section, the compression stage is generalized with the following larger low rank
approximation:

ǔ =
p∑

k=1
Vkφ

T
k with





∀(i, j) ∈ J1, pK2 : i 6 j

VT
i Vj = δij

‖φi‖ > ‖φj‖ > 0
(A.21)

We introduce the following symmetric matrix Φ:

Φ =
[
φ1 φ2 · · · φp

]T [
φ1 φ2 · · · φp

]
=




φT1φ1 φT1φ2 · · · φT1φp
φT2φ1 φT2φ2 · · · φT2φp

... ... . . . ...
φTpφ1 φTpφ2 · · · φTpφp




(A.22)

If Φ is diagonal, then right vectors φi are orthogonal. In this case and as right vectors
Vi are orthonormal, ǔ is written under its (unique) SVD.
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Given ξ compression stages, all coefficients (αξ)ij = φT

i φj

‖φi‖
are cast into the matrix Aξ:

Aξ =




0 (αξ)12 · · · (αξ)1p
0 0 · · · (αξ)2p
... ... . . . ...
0 0 · · · 0




(A.23)

Obviously, if Aξ = 0 then Φ is diagonal. We propose to apply the iterated compression
function F ξ to nullify the coefficients (αξ)ij. For that purpose, the algorithm 17 is used.

By generalizing the previously presented proof ∀(i, j) ∈ J1, pK2 : i 6 j (i.e. compression
function F is applied pair-by-pair Vi,φi and Vj,φj as above), one is able to show that
all coefficient (αξ)ij decreases (i.e. ‖Aξ+1‖F 6 ‖Aξ‖F ). Moreover, useful properties (A.1)
are conserved through iteration ξ. As a consequence, algorithm 17 converges iterates until
having all (αξ)ij = 0 (i.e. having the SVD decomposition for ǔ).

Algorithm 17: Recursive SVD
1 while ξ 6 ξmax do
2 for i = p down to 2 do
3 Sort the low rank approximation such that ‖φ1‖2 > · · · > ‖φp‖2
4 for j = 1 up to i− 1 do
5 (Vi,φi,Vj ,φj) = F (Vi,φi,Vj ,φj)
6 end
7 end
8 ξ ← ξ + 1
9 end
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