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Introduction

This work is concerned with software verification techniques, i.e. how to prove proper-
ties on softwares. The techniques we focus on do not require to execute the program.
These techniques are commonly qualified as static in opposition to dynamic techniques
like testing that require to run the program. Static techniques prove properties on a model
of the program built either from its code or from its specification. Model-checking proves
a temporal property on a program specification that is a specific model of a program. This
technique is based on the exploration of the graph of reachable program states which needs
to be finite or, at least, have a finite description. Static analysis builds an abstraction of
the program from its source code and then proves properties on this model. These models,
obtained using abstract interpretation, permit to prove properties on infinite sets of reach-
able program states. However, if the abstraction is too coarse, static analysis is not abble
to prove the expected property. Besides to these techniques, the complete specification and
verification can be performed using a proof assistant. In that case, the logic embedded
in the proof assistant is usually expressive enough to specify the program and prove the
expected property. However, the proof is generally done by hand with few automatic steps.

In the domain of static analysis and model-checking, verification techniques have to be
fully automatic. Hence, a verification technique needing additional information, provided
by a human, to succeed is not considered as reasonable. On the opposite, in the domain of
user-assisted proof, a verification technique that fails to prove a property and that cannot
be guided so as to finish one particular proof is frustrating. Our objective is to propose
a verification technique in between. On the one side, the technique we propose is based
on abstractions so as to handle infinite models. On the other side, when abstractions are
too coarse and proof fails, our technique permits to guide the verification by hand using
approximation refinement.

A verification framework based on rewriting
For the verification technique to be as general purpose as possible, the formalism needs to
be simple and expressive enough for modeling heterogeneous software systems. This is
the reason why we use Term Rewriting Systems (TRS for short) to model programs. TRS
are used for automated deduction for more than 40 years. More recently, they have been
used for program modeling. TRS are particularly well suited for this purpose and they can
model in a simple and readable way a large variety of computational systems. For instance,
TRS can model deduction systems, functions, parallel processes or transition systems for
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6 T. Genet

which rewriting respectively models: deduction, evaluation, progression or transitions. In
addition, rewriting makes it also possible to model any combination of them, for instance:
two processes executing functional programs or, as shown in Section 5.2.1, several threads
executing Java programs. Finally, another interest of the rewriting framework is that it
can be used to model programs either at high level of abstraction, e.g. a specification, or
at low level, e.g. machine code. Cryptographic protocols are an example of a high level
specification modeled in an abstract way using TRS. Messages are represented using terms
and dynamics of the protocol using TRS. Rewriting models the reaction of each agent
when receiving a specific message, i.e. rewrite rules are of the form “on reception of this
message, I send this message”. Though it is simple, this model is enough to perform very
deep and efficient verifications (Armando et al., 2005; Genet and Klay, 2000) and to come
up with tricky attacks on classical cryptographic protocols of the literature (Chevalier and
Vigneron, 2002) and even on industrial protocols under development (Heen et al., 2008).
By opposition to those high level models, we also use rewriting to model the execution
of Java at the lowest level, i.e. at the bytecode level (Boichut et al., 2007). In this case,
terms encode the Java Virtual Machine (JVM) state and rewriting represents the execution
of each bytecode instruction of the program.

The core verification technique: proving (un)-reachability
on rewriting

In the field of rewriting, the reachability problem is well-known: given a term rewriting
systemR and two ground terms s and t, t is said to beR-reachable from the initial term s
(denoted by s→R∗ t) if s can be rewritten into t with a finite number ofR rewriting steps.

On the opposition, t is R-unreachable from s (denoted by s 6→R∗ t) if there exists no way
to rewrite s into t.

Reachability and unreachability proofs can be used as general purpose verification tech-
niques for the systems modeled using rewriting. For deduction systems, functions, parallel
processes, transition systems, proving unreachability will respectively show that a property
cannot be deduced, a function call cannot be evaluated into a forbidden value, that a critical
configuration (like a deadlock) will never happen, or that a state is unreachable from the
initial configuration. On the two above examples: cryptographic protocols and Java byte-
code, an unreachability proof can ensure that a security protocol does not leak a secret or
that the execution of a given Java program never puts the JVM in a forbidden state.

All the contributions presented in this document are related to software verification
using (un)reachability proofs on term rewriting systems. When the TRS R is terminating
and the set of initial terms s is finite, the problem is decidable. Indeed, to decide if s→R∗ t
it is enough to rewrite s by R, in all possible ways, and check if it can be rewritten into
t. Since R is terminating, the rewriting tree is finite and so is its exploration. This is
close to a naive model-checking algorithm using exploration of the model. The situation is
different whenR is not terminating or when the set of initial term is not finite. For instance,
TRSs used for the verification of security protocols are not terminating (See Section 5.1).
One of the reasons for that is that the TRS encodes an unbounded number of successive
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protocol sessions. For Java program verification, though the TRS encoding the execution
of a program may terminate, it is uneasy to show it because it is huge. Besides to this,
the objective is generally to prove the safety of the program for any set of entries, i.e. an
unbounded number of initial terms s.

In those two situations, a finite exploration of the rewriting tree is impossible. However,
under some syntactic restrictions on R (detailed in Section 2.1.1), for a given set of initial
terms L, the set of reachable terms R∗(L) = {t | s ∈ L ∧ s →R∗ t} can be computed.

Since R may not be terminating and L may not be finite, R∗(L) is not necessarily finite.
Infinite sets of terms are usually finitely represented using tree automata. Thus, given
a tree automaton recognizing the set L and for some classes of TRS R, the set R∗(L) is
recognized by a tree automaton B and the reachability problem becomes decidable. Indeed,
deciding if B recognizes t is easy and it is equivalent to deciding if t ∈ R∗(L).

Nevertheless, as we will see in Section 2.1.1, syntactical classes for which there ex-
ists an automaton recognizing exactly R∗(L) are very restrictive and few TRSs mod-
eling real programs fall into those classes. For general TRS, it is possible to build an
over-approximation Approx of R∗(L) and thus give a criterion for unreachability only:
s 6→R∗ t if s ∈ L and t 6∈ App.

Contributions

This document surveys our main contributions to the proof of (un)reachability on term
rewriting systems as well as two applications. Our first contribution concerns the preci-
sion of the tree automata completion algorithm proposed in (Genet, 1998) whose role is
to build an automaton Appro over-approximating R∗(L). We show that, under exact nor-
malizing strategy, this algorithm computes exactly the set of reachable terms for many
interesting TRS classes. This is the case for most of the linear TRS classes for which the
set of reachable terms is known to be regular: Ground TRS (Dauchet and Tison, 1990;
Brainerd, 1969), Linear and Semi-Monadic (Coquidé et al., 1991), Linear and (inversely)
Growing (Jacquemard, 1996), Linear Generalized Semi-Monadic (Gyenizse and Vágvöl-
gyi, 1998), Linear Finite-Path Overlapping (Takai et al., 2000), Linear Generalized Finite-
Path Overlapping (Takai, 2004), Constructor Based (Réty, 1999). As a corollary, our results
provide simpler proofs of regularity for those classes. Furthermore, since the tree automata
completion algorithm was initially designed to build over-approximations, the same al-
gorithm can do both. Thus, tree automata completion computes reachable terms exactly
when the TRS belongs to one of the above classes and permits to over-approximate them
otherwise.

The second contribution is to have proposed and integrated in the completion proce-
dure two languages for defining approximations: normalization rules and approximation
equations. Normalization rules are an ad-hoc language that mimics the structure of the
completed tree automaton. As a result, this language lets the user fully adapt the approxi-
mation to its verification objective. However, since it is a low-level language, the precision
of the approximations defined using normalization rules is difficult to estimate. This is the
reason why we propose another language, approximation equations, whose semantics is
formal and is based on equivalence classes. Using this language makes it possible to prove
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a second precision result which is that any automaton produced by completion with a set
of approximation equations recognizes no more than terms reachable by rewriting modulo
the set of equations.

While the above results tend to refine the precision of completion and the precision of
approximations, we also worked on extending its scope. A third contribution is to have
extended the tree automata completion to the case of conditional term rewriting systems.
Using conditions significantly improves the expressiveness of the language used to model
the systems to verify and can lead to shorter specifications.

The fourth contribution is the implementation of all the above results in a tool. This
tool, Timbuk, permits to compute exactly the automaton recognizing the set of reachable
terms when possible and to build an over-approximation using normalization rules or equa-
tions, otherwise. This part is particularly concerned with the optimization of several of the
algorithms used in tree automata completion.

The last contribution, is to have applied reachability analysis using Timbuk on realistic
verification problems, namely verification of cryptographic protocol and static analysis of
Java bytecode programs. For cryptographic protocols, our work was one of the first to over-
approximate the execution of a protocol in an unbounded Dolev-Yao model, i.e. unbounded
number of protocol sessions, unbounded number of agents and unbounded number of sym-
bolic intruder actions. This approach was then refined so as to deal with an industrial
copy-protection protocol designed by Thomson R&D. For Java bytecode verification, our
objective was to show that tree automata completion is an interesting way of fast prototyp-
ing and fine tuning static analysis to a particular property to prove. Finally, since all the
above analysis rely on a similar model, i.e. a completed tree automaton, they can all be
certified using a common fixpoint checker. In particular, this checker is independent of the
program to verify, the property to prove and the precision of the approximation.

Outline of the document
Chapter 1 gives some definitions and notations necessary to read the document. Then, in
Chapter 2, we present a survey of known classes of TRS for which the set of reachable
terms R∗(L) is known to be computable exactly when L is recognized by a tree automa-
ton. In the same chapter, we also survey works closely related to over-approximation of
reachable terms. In Chapter 3, we propose our algorithm called tree automata comple-
tion as well as the two languages we use to define approximations: normalization rules
and equations. In this chapter, we show that completion without any approximation, com-
putes exactlyR∗(L) for left-linear TRSs falling into the decidable classes of Section 2.1.1.
Given a set of approximation equations E, we show a precision result saying that com-
pletion computes no more than R/E-reachable terms, i.e. terms that can be reached by
rewriting initial terms withRmodulo E. At the end of the chapter, we draw some compar-
ison with other techniques for exact and approximated computations of R∗(L) presented
in Chapter 2. Chapter 4, presents Timbuk as well as some other tools designed to experi-
ment with tree automata and tree automata completion. Finally, Chapter 5 details our two
main case studies of reachability analysis on TRS using tree automata completion, namely
cryptographic protocol verification and Java bytecode verification.



Chapter 1

Preliminaries

Comprehensive surveys can be found in (Dershowitz and Jouannaud, 1990; Baader and
Nipkow, 1998) for term rewriting systems, and in (Comon et al., 2008; Gilleron and Tison,
1995) for tree automata and tree language theory.

Definition 1 (Terms, T (F) and T (F ,X )) Let F be a finite set of symbols, each associ-
ated with an arity, and let X be a countable set of variables. T (F ,X ) denotes the set of
terms, and T (F) denotes the set of ground terms (terms without variables). �

Definition 2 (Term variables, Var(t)) The set of variables of a term t is denoted by Var(t).
�

Definition 3 (Substitution) A substitution is a function σ from X into T (F ,X ), which
can be extended uniquely to an endomorphism of T (F ,X ). �

Definition 4 (Term position) A position p for a term t is a word over N. The empty se-
quence ε denotes the top-most position. The setPos(t) of positions of a term t is inductively
defined by:

• Pos(t) = {ε} if t ∈ X

• Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}.

�

Definition 5 (Subterm at position p, t|p) If p ∈ Pos(t), then t|p denotes the subterm of t
at position p. �

Definition 6 (Term replacement, t[s]p) t[s]p denotes the term obtained by replacement of
the subterm t|p at position p by the term s. �

Definition 7 (Multiple term replacement, t[pi ← ti | 1 ≤ i ≤ m]) Let t be a term and
p1, . . . , pm be positions of t such that pi and pj are disjoint if i 6= j. The replace-
ment in t of subterms of t at positions p1, . . . , pm with terms t1, . . . , tm is denoted by
t[pi ← ti | 1 ≤ i ≤ m] �

9



10 T. Genet

Definition 8 (Ground context, C[ ]) A ground context C[ ] is a term of T (F ∪ {2}) con-
taining exactly one occurrence of the symbol 2. If t ∈ T (F) then C[t] denotes the term
obtained by the replacement of 2 by t in C[ ]. �

Definition 9 (Rewrite rule) A rewriting rule is a pair of terms (l, r) ∈ T (F ,X )×T (F ,X ),
denoted by l→ r, where l 6∈ X , and Var(l) ⊇ Var(r). �

Definition 10 (Term Rewriting System, TRS) A term rewriting systemR is a set of rewrite
rules. �

Definition 11 (Equation) An equation is a pair of terms (s, t) ∈ T (F ,X ) × T (F ,X ),
denoted by s = t. �

Definition 12 (Linear terms) A term t is linear if each variable of Var(t) occurs only
once in t. �

Definition 13 (Linear, Left-linear, Right-linear rewrite rule and TRS) A rewrite rule l→
r is left-linear (resp. right-linear) if l (resp. r) is linear. A TRS is left-linear (resp. right-
linear), if all its rewrite rules are left-linear (resp. right-linear). A rewrite rule (or a TRS)
is linear if it is left and right-linear. �

Definition 14 (Linear equation and linear set of equations) An equation s = t is linear
if s and t are linear. A set of equations is linear if all its equations are linear. �

Definition 15 (Rewrite relation,→R) Let R be a TRS and l → r a rewrite rule of R.

Let s, t ∈ T (F). The term s can be rewritten into t, denoted by s →R t, if there exists a

position p ∈ Pos(s) and a substitution σ such that s|p = lσ and t = s[rσ]p, i.e.

s = s[lσ]p →R s[rσ]p = t

�

The reflexive transitive closure of→R is denoted by→∗R.

Definition 16 (Termination ofR,→R) A term rewriting systemR, or the associated rewrite
relation→R, is said to be terminating if there is no infinite rewrite chain s→R s1 →R . . .
�

Definition 17 (Normal form, irreducible term, IRR(R)) A term s ∈ T (F ,X ) is said
to be in normal form or irreducible w.r.t. a TRSR if there exists no term t ∈ T (F ,X ) such
that s→R t. The set of terms irreducible w.r.t. R is denoted by IRR(R). �

Definition 18 (Rewriting up to a normal form,→R!) A term s ∈ T (F ,X ) can be rewrit-

ten into a normal form t ∈ T (F ,X ) if s →R∗ t and t ∈ IRR(R). This is denoted by

s→R! t. �



Reachability analysis of rewriting for software verification 11

Definition 19 (Confluence ofR,→R) A term rewriting systemR, or the associated rewrite

relation→R, is said to be confluent if for all terms s, t, u ∈ T (F ,X ) such that

s

R
∗

���������

∗
R

��????????

t u

then there exists a term v ∈ T (F ,X ) such that

t

R
∗

��>>>>>>>> u
∗
R����������

v

�

Definition 20 (E-equivalence or equality modulo E) The E-equivalence relation is de-
fined as follows.

• First, for two ground terms t, t′ ∈ T (F) and an equation l = r, we say that t = t′ if
there exists a substitution τ : X 7→ T (F) such that lτ = t and rτ = t′;

• Then, we define the equivalence relation =E⊆ T (F) × T (F) as the smallest con-
gruence containing the relation {(t, t′) ∈ T (F)× T (F) | t = t′}.

�

Definition 21 (E-equivalence class or quotient of a set of terms by a set of equations E)
The quotient of the set L ⊆ T (F) by a set of equations E, denoted by L/E, is the set of
sets of terms defined as follows.

• For t ∈ T (F), [t]E denotes the =E-equivalence class of t;

• Then, L/E = {[t]E | t ∈ L}.

�

Definition 22 (
←→
E ) For any set of equations E,

←→
E = {l→ r, r → l | l = r ∈ E}. �

Definition 23 (R-descendants,R∗(L)) The set ofR-descendants of a term setL ⊆ T (F)
is R∗(L) = {t ∈ T (F) | ∃s ∈ L s.t. s →∗R t}. We extend this notation to terms in the
following way: R∗(s) = R∗({s}). �

Definition 24 (R-normal forms,R!(L)) The set of R-normal forms of a term set L ⊆
T (F) isR!(L) = R∗(L) ∩ IRR(R). �

Definition 25 (Equational rewriting, rewriting modulo a set of equations) Given a TRS
R, a set of equationsE and two terms s, t ∈ T (F), s→R/E t⇐⇒ ∃s′, t′ ∈ T (F) s.t. s =E

s′ →R t′ =E t. �
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The relation→∗R/E is the reflexive transitive closure of→R/E .

Definition 26 (R/E-descendants) The set of R/E-descendants of a language of terms
L ⊆ T (F) isR∗E(L) = {t ∈ T (F) | ∃s ∈ L s.t. s→∗R/E t}. �

The verification technique we propose in this paper is based on the computation of
R∗(L). Note thatR∗(L) is possibly infinite: Rmay not terminate and/orLmay be infinite.
The set R∗(L) is generally not computable (Gilleron and Tison, 1995). However, it is
possible to over-approximate it (Feuillade et al., 2004; Takai, 2004) using tree automata,
i.e. a finite representation of infinite (regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q ∩ F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 27 (Transition, normalized transitions and epsilon transitions) A transition
is a rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q. A
normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F an n-ary
symbol, and q1, . . . , qn ∈ Q. An epsilon transition c→ q is such that c ∈ Q. �

Definition 28 (Bottom-up non-deterministic finite tree automaton (NFTA)) A bottom-
up non-deterministic finite tree automaton (tree automaton for short) is a quadruple A =
〈F ,Q,Qf ,∆〉, where Qf ⊆ Q and ∆ is a set of normalized transitions and epsilon tran-
sitions. �

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set ∆) is
denoted by→∆. When ∆ is clear from the context,→∆ will also be denoted by→A.

Definition 29 (Recognized language) The tree language recognized by A in a state q
is L(A, q) = {t ∈ T (F) | t →∗A q}. The language recognized by A is L(A) =⋃
q∈Qf L(A, q). A tree language is regular if and only if it can be recognized by a tree

automaton. �

Example 30 (Tree automaton and recognized language) Let F = {f, g, a} and A =
〈F ,Q,Qf ,∆〉, whereQ = {q0, q1, q2, q3, q4},Qf = {q0}, and ∆ = {f(q1)→ q0, g(q1, q1)→
q1, a→ q1}. The languages recognized by q1 and q0 are the following: L(A, q1) is the set
of terms built on {g, a}, i.e. L(A, q1) = T ({g, a}), and L(A, q0) = L(A) = {f(x) | x ∈
L(A, q1)}.

We also define epsilon and epsilon-free derivations which are necessary both for com-
pletion and simplification of tree automaton by equation application.

Definition 31 (epsilon and epsilon-free derivations) We denote by ε→ rewritings performed
by epsilon transitions. Conversely we denote by s → 6εA t (resp. s → 6ε∆ t) the fact that
s→A t (resp. s→∆ t) and no epsilon transition has been used for rewriting. �



Chapter 2

State of the art

In this chapter, we review some of the papers where regular languages are used to compute
or over-approximate the semantics of a TRS, tree transducer or more generally of a pro-
gram. The first section is devoted to the computation of the image of a regular language
by a TRS. We first review the known classes of TRS for which the image of a regular lan-
guage is regular. These classes are also known as classes of TRS preserving the regularity.
Then, we also review some papers dealing with regular over-approximations of the image.
In Section 2.3, we present some other papers not dealing with TRS but which are also us-
ing regular languages to model the semantics of tree transducers, functional programs and
imperative programs.

2.1 Term rewriting systems preserving the regularity

2.1.1 Known classes of the literature

The basic reachability problem we are going to consider is the following: given a term
rewriting system R and two terms s, t ∈ T (F), can we decide whether s →?

R t or not?
In this part, we focus on the existing solutions designed for particular cases. The simplest
case is whenR is terminating. Here is a simple but inefficient procedure: to decide whether
s→R? t or not it is enough to see if t ∈ R∗(s) sinceR∗(s) is finite and computable.

When R is not terminating, deciding reachability needs some additional formal tools.
For instance, tree automata can be used to finitely represent the infinite set R∗(s) and
then check if t ∈ R∗(s). Many works are devoted to the construction of R∗(S) for a
regular language S and a term rewriting system R. The set R∗(S) is clearly not always
regular, choose for instance S = {f(a, b)} and R = {f(x, y) → f(s(x), s(y)). In this
case, R∗(S) = {f(sn(a), sn(b)) | n ∈ N}. In fact, it was shown in (Gilleron and Tison,
1995) that deciding whether R∗(S) was regular is not possible in general, even if R is a
confluent and terminating linear TRS. Thus, most of the results define classes of TRS R
so that R∗(S) is regular. First, we present the classes which can be defined with simple
syntactic restrictions onR:

13
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G: R is a ground TRS (Dauchet and Tison, 1990; Brainerd, 1969).

RL-M: R is a right-linear and monadic TRS (Salomaa, 1988), i.e. right-hand sides of the
rules of R are either variables or terms of the form f(x1, . . . , xn) where f ∈ F and
x1, . . . , xn are variables.

L-SM: R is a linear and semi-monadic TRS (Coquidé et al., 1991), i.e. rules are linear and
their right-hand sides are of the form f(t1, . . . , tn) where f ∈ F and ∀i = 1, . . . , n,
ti is either a variable or a ground term.

L-G−1: In (Jacquemard, 1996), Jacquemard defines the class L-G of linear “growing”
TRS, where “growing” means that every left-hand side is either a variable, or a term
f(t1, . . . , tn) where f ∈ F , Ar(f) = n, and for all i = 1, . . . , n the term ti is a
variable, a ground term, or a term whose variables do not occur in the right-hand
side. Jacquemard also shows that if R is growing then (R−1)∗(S) was regular.
Those classes are essentially used for needness analysis of redex in rewriting, see for
instance (Durand and Middeldorp, 1997). In order to compare this class with all the
others on R∗(S), we can define the L-G−1 class using the restrictions in the other
direction. The L-G−1 class corresponds to linear TRS where the right-hand side
is either a variable, or a term f(t1, . . . , tn) where f ∈ F , Ar(f) = n, and for all
i = 1, . . . , n the term ti is a variable, a ground term, or a term whose variables do not
occur in the left-hand side. Thus, note that in this class the usual variable restriction
on rewrite rules, i.e. Var(l) ⊇ Var(r) does not hold.

RL-G−1: similar to L-G−1 except that left-linearity is not required. This result was proved
by Nagaya and Toyama in (Nagaya and Toyama, 1999).

L-IOSLT: R is a linear I/O separated layered transducing TRS (Seki et al., 2002). Those
TRS are defined on sets of symbols Fi, Fo and P such that ∀p ∈ P ′ : Ar(g) = 1
and Fi, Fo and P are disjoint. Symbols of Fi are input symbols and those of Fo are
output symbols. In the TRS, all the rewrite rules are of the form:

• fi(p1(x1), . . . , pn(xn))→ p(to), or

• p′1(x1)→ p′(t′o)

where fi ∈ Fi, p1, . . . , pn, p, p
′
1, p
′ ∈ P , x1, . . . , xn are disjoint variables, to, t′o ∈

T (Fo,X ) such that Var(to) ⊆ {x1, . . . , xn} and Var(t′o) ⊆ {x1}. This class
corresponds to linear tree transducers as explained in section 2.3.1.

Recently, new and more general classes were found. The classes of L-GSM linear general-
ized semi-monadic TRS (Gyenizse and Vágvölgyi, 1998), RL-FPO right-linear and finite-
path overlapping TRS, L-FPO linear finite-path overlapping TRS (Takai et al., 2000) and
L-GFPO linear generalized finite-path overlapping TRS (Takai, 2004). The regularity cri-
teria used in classes L-GSM, RL-FPO, L-FPO and L-GFPO are more sophisticated and
cannot be expressed as a simple syntactic restriction like above classes. They are based on
a careful inspection of the syntactic structure of rewrite rules so that recursive application
of rewrite rules are guaranteed to preserve regularity. We give some details on the RL-FPO
and RL-GFPO criteria in Section 2.1.2. Thanks to some results of (Takai et al., 2000) and
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in (Takai, 2004), the expressiveness of all the above mentioned classes can be ordered in
the following way.

Proposition 32 (Expressiveness of TRS classes)
G

��
RL-M

��

L-SM

��
L-G−1

yyrrrrrrrrrr

��
RL-G−1

��

L-GSM

��
L-FPO

xxqqqqqqqqqq

��
RL-FPO L-GFPO

and L-IOSLT is incomparable with others.

P. Réty (Réty, 1999) proposed another way of considering the problem and defined
a class where restrictions are weaker on the TRS and stronger on the regular language
S. Since this class imposes restrictions on the language S it is thus incomparable with
previous ones. We call this class constructor based. The alphabet F is separated into a
set of defined symbols D = {f | ∃l → r ∈ R s.t. Root(l) = f} and constructor symbols
C = F \ D. The restriction on S is the following: S is the set of ground constructor
instances of a linear term t, i.e. S = {tσ}where t ∈ T (F ,X ) is linear and σ : X 7→ T (C).
The restrictions onR are the following: for each rule l→ r

1. r is linear, and

2. for each position p ∈ PosF (r) such that r|p = f(t1, . . . , tn) and f ∈ D we have
that for all i = 1 . . . n, ti is a variable or a ground term, and

3. there is no nested function symbols in r

Finally, some works also consider the construction of sets of reachable terms under
classical evaluation strategies of rewriting or modulo theory. Réty and Vuotto have shown
in (Réty and Vuotto, 2002) that R∗(S) is still regular, with the same restriction as (Réty,
1999) on R and S, when rules of R are applied under some specific strategies: innermost,
outermost, . . . In (Bouajjani and Touili, 2005), Bouajjani and Touili show that the set of
reachable terms for subclasses of Process Rewrite Systems (Mayr, 1998) can be computed
exactly. Process Rewrite Systems can be seen as a particular case of TRS modulo the
associativity, commutativity and neutrality of some symbols.
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2.1.2 The FPO and GFPO criteria and algorithm
As seen above, RL-FPO and L-GPFO are some of the most general classes of TRS R
such that R∗(S) is regular if S is. We now detail the FPO and GFPO criteria which are
based on the notion of sticking-out. Roughly a term s sticks out of a term t if they have in
common a position p such that (1) all symbols encountered on the path from ε to p are the
same in s and t, and (2) t|p is a variable and s|p is either a variable or a non ground term.
This is formally defined as follows (Takai et al., 2000).

Definition 33 A term s sticks-out of a term t at position p with p ∈ PosX (t) \ {ε} if

• ∀o : ε � o ≺ p ∧ o ∈ Pos(s) =⇒ s(o) = t(o), and

• p ∈ Pos(s) and s|p 6∈ T (F).

Additionally, a term s properly sticks-out of a term t at position p it s|p is not a variable.
�

Example 34 Assume that F = {f, g, a, b} and X = {x, y, z, u}. The term f(x, g(b))
sticks out of term f(y, a) at position 1.ε and f(f(a, x), y) properly sticks-out of f(z, g(u))
at position 1.ε.

Definition 35 (Sticking-out graph) The sticking-out graph of a TRSR is a directed graph
G = (V,E) where V = R, the vertices are the rules of R, and the set E is defined as
follows. Let v1 and v2 be, possibly identical, vertices which corresponds to rewrite rules
l1 → r1 and l2 → r2 respectively. For i=1,2, replace each variable in Var(ri) \ Var(li)
by a fresh constant symbol �.

1. If r2 properly sticks-out of a subterm of l1, then E contains an edge from v2 to v1

with weight one.

2. If a subterm of r2 properly sticks-out of l1, then E contains an edge from v2 to v1

with weight one.

3. If a subterm of l1 sticks-out of r2, then E contains an edge from v2 to v1 with weight
zero.

4. If l1 sticks-out of a subterm of r2, then E contains an edge from v2 to v1 with weight
zero.

�

Example 36 LetF = {f, g, a, b},X = {x, y} andR = {p1 = f(x, a)→ f(h(y), x), p2 =
g(y)→ f(g(y), b) where for i = 1, 2 li (resp. ri) denotes the left (resp. right)-hand side of
pi. Since y occurs in r1 but not in l1 it is replaced by the � constant. Since r2 = f(g(y), b)
properly sticks out of f(x, a) at position 1.ε, in E we have an edge between p2 and p1 of
weight 1. Then, since l2 = g(y) sticks-out of r2 = f(g(y), b) at position 1.ε, in E we
have an cyclic edge of weight 0 on p2. Note that there is no cyclic edge on p1 because
r1 = f(h(�), x) does not sticks-out of l1 = f(x, a) at position 1.ε because r1|1.ε = h(�)
which is a ground term. The complete sticking-out graph is thus the following:
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p1p2

0

1

Definition 37 A TRS is Finite Path Overlapping (FPO) if its sticking-out graph has no
cycle of weight 1 or more. �

Theorem 38 (RL-FPO TRS preserve regularity (Takai et al., 2000)) If S is a regular lan-
guage S andR is a right-linear FPO (RL-FPO) TRS thenR∗(S) is regular.

When dealing with linear TRS, the criterion can be improved as shown in (Takai, 2004).
It is based on the notion of Generalized sticking-out graph we now define.

Definition 39 (Generalized sticking-out graph) The generalized sticking-out graph of a
TRS R is a directed graph G = (V,E). The set V of vertices is defined by V = {(l →
r, x) | l→ r ∈ R and x ∈ Var(l)∪Var(r)}. The set E of edges is defined as follows. Let
l1 → r1 and l2 → r2 be two rules ofR, possibly identical.

1. If r2 properly sticks-out at position p of l1|p′ with p′ ∈ Pos(l1), then for y = l1|p.p′
and for all variables x ∈ Var(r2|p), E contains edges from (l2 → r2, x) to (l1 →
r1, y) with weight one.

2. If l1|p′ with p′ ∈ Pos(l1) sticks-out of r2 at position p, then for x = r2|p and for all
variables y ∈ Var(l1|p.p′), E contains edges from (l2 → r2, x) to (l1 → r1, y) with
weight zero.

3. If r2|p′ with p′ ∈ Pos(r2) properly sticks-out of l1 at position p, then for y = l1|p
and for all variables x ∈ Var(r2|p.p′), E contains edges from (l2 → r2, x) to
(l1 → r1, y) with weight one.

4. If l1 sticks-out of r2|p′ at position p, then for x = r2|p.p′ and for all variables y ∈
Var(l1|p), E contains edges from (l2 → r2, x) to (l1 → r1, y) with weight zero.

�

Example 40 Let R = {h(f(x, h(g(y)))) → f(g(k(y)), h(x))}, l = h(f(x, h(g(y))))
and r = f(g(k(y)), h(x)). With p′ = 1.ε, we have that l|1.ε = f(x, h(g(y))) (properly)
sticks-out of r = f(g(k(y)), h(x)) at position p = 2.1.ε. We are in the second case of the
previous definition. We thus get that there are edges between r|p = x and all variables of
l|p′.p which is the set {y}. Hence we have an edge between (l → r, x) and (l → r, y) of
weight 0. Symmetrically, still with p′ = 1.ε, r = f(g(k(y)), h(x)) properly sticks-out of
l|p′ = f(x, h(g(y))) at position p = 1.ε. This corresponds to the first case of the previous
definition. Hence, there are edges between all variables of Var(r|p) = {y} and x = l|p′.p.
Thus, there is an edge between (l→ r, y) and (l→ r, x) of weight 1. Here is the complete
generalized sticking-out graph:

(l→ r, x)(l→ r, y)
0

1
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Definition 41 A TRS is Generalized Finite Path Overlapping (GFPO) if its generalized
sticking-out graph has no cycle of weight 1 or more. �

Theorem 42 (L-GFPO TRS preserve regularity (Takai, 2004)) If S is a regular language
S andR is a linear GFPO (L-GFPO) TRS thenR∗(S) is regular.

Theorem 43 (Expressiveness of GFPO (Takai, 2004)) L-GFPO ⊃ L-FPO

We now present the algorithm used to construct the automaton recognizing R∗(S)
when R is in L − GFPO. The algorithms proposed in (Takai et al., 2000) and (Takai,
2004) are very similar. In fact, on linear TRS they are exactly the same. We chose to detail
the one for L − GFPO because it is simpler and shows the main common idea of both
algorithms which is the notion of packed state (named structured state in (Takai, 2004)).

Definition 44 (Packed state (Takai et al., 2000) and Packed automaton) For a set of sym-
bols F and a set of states Q, the set of packed states, denoted by PF,Q, is defined by:

• if q ∈ Q then {q} ∈ PF,Q, and

• if F ∈ F , Ar(f) = n and p1, . . . , pn ∈ PF,Q then {f(p1, . . . , pn)} ∈ PF,Q, and

• if p1, p2 ∈ PF,Q then p1 ∪ p2 ∈ PF,Q.

If A is a tree automaton, the packed automaton pack(A) is the tree automaton where, for
all state q ∈ A, all occurrences of q in Q, Qf ,∆ are replaced by {q}. �

For readability, a packed state {p1, . . . , pn} is written as 〈p1, . . . , pn〉.

Example 45 Let F = {f, g} and Q = {q1, q2}. Here are some possible packed states of
PF,Q: 〈q1〉, 〈q1, q2〉, 〈f(g(〈q2〉), 〈q1, q2〉)〉.

Then, the tree automata construction can be defined as follows using the procedure
addtrans and modify.
Procedure addtrans(t) This procedure takes a term t of T (F ∪Q) as input and adds new
packed states to Q and new transitions to ∆.

• if 〈t〉 ∈ Q then do nothing;

• if t is a constant then add state 〈t〉 to Q and transition t→ 〈t〉 to ∆;

• if t = f(t1, . . . , tn) then add transition f(〈t1〉, . . . , 〈tn〉)→ 〈t〉 and execute addtrans(ti)
for all 1 ≤ i ≤ n.

Example 46 Assume thatQ = {〈q〉} and ∆ = {a→ 〈q〉}. If we call addtrans(f(〈q〉, f(a, b))),
Q becomes {〈q〉, 〈a〉, 〈b〉, 〈f(〈a〉, 〈b〉)〉, 〈f(〈q〉, 〈f(〈a〉, 〈b〉))〉} and ∆ = {a → 〈q〉, a →
〈a〉, b→ 〈b〉, f(〈a〉, 〈b〉)→ 〈f(〈a〉, 〈b〉)〉, f(〈q〉, 〈f(〈a〉, 〈b〉))→ 〈f(〈q〉, 〈f(〈a〉, 〈b〉))〉}.
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Procedure modify(A,R)
Input: tree automaton A = 〈F ,Q,Qf ,∆〉 and a linear TRSR.
Output: a tree automaton A′ defined as follows.
For any rule l → r ∈ R, any substitution σ : X 7→ Q and any packed state q such that

lσ →A∗ q and rσ 6→A∗ q then A′ is obtained from A by adding the transition 〈rσ〉 → q to

A and running addtrans(rσ).

Theorem 47 (Fixpoint of modify (Takai, 2004)) If there is a fixpoint automaton A∗ for
the equation X = modify(X,R) ∪ A thenR∗(L(A)) = L(A∗).

Note that this is very close to the tree automata completion algorithm defined in Sec-
tions 3.1 and Section 3.2.

2.1.3 The L-IOSLT algorithm
For the L-IOSLT class, we can define the algorithm using similar techniques, though it is
not exactly the case in (Seki et al., 2002). We use again the packed states defined in the
previous section and we define the following modifySLT procedure.
Procedure modifySLT(A,R)

Input: tree automaton A = 〈F ,Q,Qf ,∆〉 and a linear L-IOSLT TRSR.
Output: a tree automaton A′ defined as follows.
For all substitution σ : X 7→ Q, for all rewrite rule l → r ∈ R and all packed state

q ∈ Q such that lσ →A∗ q and rσ 6→A∗ q:

• if l = f(p1(x1), . . . , pn(x1)) → p(xi) = r with (1 ≤ i ≤ n) then A′ is obtained
from A by adding p(xiσ)→ q to A;

• l = p′1(x)→ p′(x) = r then A′ is obtained from A by adding p′(xσ)→ q to A;

• if l = f(p1(x1), . . . , pn(x1)) → p(g(t1, . . . , tn)) = r then A′ is obtained from
A by adding the transitions g(〈t1σ〉, . . . 〈tnσ〉) → [q, p] and p([q, p]) → q to A
where [q, p] is a state made of the pair q and p., Then, we run addtrans(t1σ), . . . ,
addtrans(tnσ);

• l = p′1(x)→ p′(g(t1, . . . , tn)) = r thenA′ is obtained fromA by adding the transi-
tions g(〈t1σ〉, . . . 〈tnσ〉)→ [q, p′] and p′([q, p′])→ q toA and running addtrans(t1σ),
. . . , addtrans(tnσ)

Theorem 48 (Fixpoint of modifySLT (Seki et al., 2002)) If R is a L-IOSLT TRS then
there is a fixpoint automatonA∗ for the equationX = modifySLT(X,R)∪A andR∗(L(A)) =
L(A∗).

2.2 Approximations of reachable terms

2.2.1 Equational abstraction
The papers (Meseguer et al., 2003, 2008) are not, strictly speaking, about computing a
regular language approximating the semantics of a TRS R. However, the approximations
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defined using, so-called, equational abstraction have much in common. In their framework,
TRS are used to represent a transition relation between states encoded by terms. Properties
are defined in Linear Temporal Logic (LTL) and verified using a model-checker that is
implemented, using the rewriting logic, in Maude (Clavel et al., 2001). When the system
has an infinite set of states, they propose to use a set E of equations to define equivalence
classes of states. If this setE is well chosen, then the set of equivalence classes is finite and
the corresponding approximation preserves the properties to prove. They show that it can
help in proving safety properties, i.e. something bad will not happen. Their work go even
further and show that, even with an over-approximation, it is possible to prove liveness
properties, i.e. something good will finitely happen.

The framework Meseguer et al. defined is very generic and powerful. Conjointly to
TRS, it also uses equations to state the axioms of the model. For simplicity, we chose here
to focus on a restricted part of their framework where the system is only defined using a
TRS R (with no axioms). Moreover, we only consider simple safety properties encoded
by s 6→R∗ t where s and t are terms encoding, respectively, an initial state and a bad
state. This is simpler than their framework, but the core problem is still there: sinceRmay
rewrite infinitely s, how prove that s 6→R∗ t? They propose to define a set of equations

E, show that s 6→∗R/E t and use the fact that→R⊆→R/E to prove that s 6→R∗ t. Under
certain conditions, even if R infinitely rewrites s, s 6→∗R/E t may be finitely proven. This
is the case if the set R∗E(s) contains only a finite set of E-equivalence classes and no one
contains t.

However, proving s 6→∗R/E t using only rewriting and a tool like Maude is not easy. In-
deed, for rewriting withR/E the equational part ofE is generally encoded using rewriting.
More precisely, E is oriented into another TRSR′ terminating and ground confluent. IfR′
enjoys those two properties, equality modulo E becomes decidable. For two ground terms
s and t, s =E t iff there exists a term u such that s →!

R′ u and t →!
R′ u. Let →R(R′)

be the relation →R(R′)=→∗R′ ◦ →R ◦ →∗R′ . Since R′ has been obtained by orienting
equations of E, if s →∗R(R′) t then s →∗R/E t. However the implication does not always
hold in the opposite direction.

Example 49 ((Viry, 2002)) Let R = {f(x+ y)→ g(x) + g(y)} and E = {x+ 0 = x}.
Equations of E can be oriented into R′ = {x + 0 → x} which is terminating and ground
confluent. We can prove that f(0 + 0) + 0→∗R/E g(0) + g(0) because f(0 + 0) + 0→R
g(0) + g(0) + 0→R′ g(0) + g(0). However, f(x) cannot be rewritten by→R(R′) though
f(x)→R/E g(x) + g(0) since f(x) =E f(x+ 0)→R g(x) + g(0).

Having →R(R′)⊆→R/E and not →R(R′)⊇→R/E is a problem for verifying safety
properties using equational abstractions. Indeed, the only provable facts with a rewriting
tool like Maude are of the form s 6→∗R(R′) t that do not always entail s 6→∗R/E t. For this
inclusion to be true in the opposite direction, the coherence (Viry, 2002) property has to be
proven onR andR′. Roughly,R andR′ are coherent if for all term s that can be rewritten
into t1 by R, on one side, and into t2 by R′, on the other side, then t1 can be rewritten by
R′ and t2 byR into a common term u.
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s
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//

R′

��
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R′∗

��
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R
∗

// u

This property cannot be shown in general but there exists a syntactic condition onR and
R′, called local coherence, that implies coherence. This criterion is based on a standard
critical pair technique between the rules of R and those R′. In (Meseguer et al., 2003,
2008), several examples show that finding a set of approximation equations E that can be
oriented into a TRS R′ enjoying termination, ground confluence and coherence with R
is not an easy task. However, when it exists, it permits to prove both safety and liveness
properties using only rewriting, and thus, in a very efficient way.

2.2.2 Inferring equational abstractions on tree automata
Additionally to the L-GFPO class (see Section 2.1.1), (Takai, 2004) proposes over-approximate
the set of reachable terms when it is not regular. It is defined as an extension of its modify
procedure. The extension proposed is based on abstract interpretation (Cousot and Cousot,
1977) and consists to add a widening operation to modify. The widening automatically
infers approximation from the Generalized sticking-out graph (Section 2.1.2). The inferred
widening can be seen as the application of an equation of the form C[C[x]] = C[x] where
C[ ] can be any context. The algorithm automatically construct the widening. However,
the form of the equation is fixed and cannot, thus, guarantee the existence of a fixpoint for
modify for any left-linear TRS.

In particular, equations of the form C1[C2[x]] = C2[C1[x]] or C[x] = x cannot be
found automatically nor manually added. When executing several steps of modify, if a
widening position is found, i.e. there exists at least one repetition of a context C[ ], then the
widening adds an epsilon transition encoding the repetition of C[ ]. This transition directly
widens the language of the form C[C[. . .]] by C∗[. . .]. More precisely, assume that the
tree automaton A is such that a →A∗ q1, C[q1] →A∗ q2 and that C[q2] →A∗ q3. We thus

have C[C[q2]] →A∗ q2. The widening detects the regularity and simply add the epsilon

transition q3 → q2. We thus obtain the looping derivation C[q2]→A∗ q3 → q2 recognizing

any language of the form C[. . . C[a] . . .] into q2.

2.3 Other analysis with tree abstract domains

2.3.1 Analysis of tree transducers
Tree transducers can be viewed as particular cases of TRS where rewriting is applied either
bottom-up or top-down. Here, we consider linear bottom-up tree transducer (Gécseg and
Steinby, 1984; Comon et al., 2008) that are defined as follows.

Definition 50 (Linear Tree Transducer) Let Fi be a set of input symbols, Fo a set of
output symbols and Q a set of (unary) states such that Fi ∩ Q = ∅, Fo ∩ Q = ∅ and
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∀q ∈ Q : Ar(q) = 1. A linear tree transducer T is a tuple 〈Q,Fi,Fo,Qf ,∆〉 where ∆ is
a set of rewrite rules of the form:

• f(q1(x1), . . . , qn(xn))→ q(u), or

• q′(x1)→ q′′(u′)

where f ∈ Fi, q1, . . . , qn, q, q
′, q′′ ∈ Q, x1, . . . , xn are disjoint variables, u, u′ ∈ T (Fo,X )

such that Var(u) ⊆ {x1, . . . , xn} and Var(u′) ⊆ {x1}. �

A transducer T recognizes a regular relation RT = {(t, t′) ∈ T (Fi)× T (Fo) | t→∗∆
q(t′) where q ∈ Qf}. We can define the image of a language by a transducer as follows:
given S ⊆ T (Fi), RT (S) = {t ∈ T (Fo) | s ∈ S and (s, t) ∈ RT }.

Theorem 51 (Recognizability of image (Gécseg and Steinby, 1984; Comon et al., 2008))
Given a recognizable language S and a linear tree transducer T , the set RT (S) is recog-
nizable.

In (Seki et al., 2002), Seki et al. proposed the class L-TL of linear layered transduc-
ing TRS which encompasses tree transducers. However, for a L-TL TRS R regularity of
R∗(S) is only ensured for the L-IOSLT class defined in Section 2.1.1 and corresponds
exactly to linear tree transducers. In the definition of L-IOSLT TRS, Fi and Fo are sup-
posed to be disjoint. This is not necessary in tree transducers because rewriting is nec-
essarily performed bottom-up. For instance, if a tree transducer has a rule of the form
f(q(x))→ q(f(x)) and thus rewrites f(q(a)) into q(f(a)) no rewriting can be performed
on the subterm f(a). This is not the case in general L-TL TRS and this leads to non regular
sets of reachable terms like it is shown in Example 5 of (Seki et al., 2002). However, with
the restriction Fi ∩ Fo we cannot have the rewriting rule f(q(x)) → q(f(x)) because f
cannot occur both in the left and right-hand side of the rule. This is a simple encoding of
the bottom-up strategy used in tree transducers in the symbols used in rewriting.

Several works are considering Regular Tree Model-Checking of protocols defined using
linear tree transducers. In this setting, the model-checking essentially consists in building
the tree automaton representing any number of application of the tree transducer. This
problem has been investigated for instance in (Bouajjani and Touili, 2002) and efficient
implementations have been proposed in (Abdulla et al., 2005). The construction proposed
in (Bouajjani and Touili, 2002) is not limited to tree transducers. They use a widening
technique to compute exactly the set of terms reachable by repeated applications of a tree
transducer on a regular set of terms. More precisely, if RnT is the combination of RT n
times and A is a tree automaton, the objective is to compute another tree automaton A′
such that L(A′) = R∗T (L(A)) =

⋃
n≥0R

n
T (L(A)), i.e. the reflexive transitive closure of

RT on L(A). The proposed widening is based on the detection of regularities an the hyper-
graph encoding of the tree automaton. The first result is that this widening is exact. The
second result is that it terminates for a specific class of TRS called Well-Oriented Systems
WOS. This is due to the fact that the application of TRS of this class can be simulated by
the application of a finite number of linear tree transducers. Using repeated applications of
Theorem 51, it is thus possible to prove that this class preserve regularity. The WOS class
can be defined as follows.
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Definition 52 (Well-Oriented Systems (Bouajjani and Touili, 2002)) Let S = S0∪. . .∪
Sn be disjoint finite sets of symbols. A n-phase well-oriented system over S is a set of
rewriting rules of the form:

b(a(x1, x2), c1(x3, x4)) → a(b′(x1, x2), c1(x3, x4))
a(b(x1, x2), c1(x3, x4)) → b′(a(x1, x2), c1(x3, x4))
a(b(x1, x2), c2(x3, x4)) → b′(a(x1, x2), a(x3, x4))

b(x1, x2) → d(x1, x2)
b(a(x1, x2), c1(x3, x4)) → d(a(x1, x2), c1(x3, x4))
a(b(x1, x2), c1(x3, x4)) → a(d(x1, x2), c1(x3, x4))
b(a(x1, x2), c2(x3, x4)) → a(d(x1, x2), d(x3, x4))

as well as the symmetrical forms of these rules obtained by commuting the children,
where a, b′, c1 ∈ Si+1, b, c2 ∈ Si, and d ∈ Si+2, such that 0 ≤ i ≤ n− 2. �

The WOS class is incomparable with RL-FPO, L-GFPO and L-IOSLT classes. This
can be shown as follows:

WOS 6⊆ RL-FPO: let us construct the sticking-out graph of the first form of rules of
WOS. Let l1 (resp. r1) be the left (resp. right) hand side of the rule. Since r1

properly sticks-out of the subterm a(x1, x2) of l1, we have a cyclic edge of weight 1
on this rule. Hence it is not RL-FPO.

RL-FPO 6⊆WOS: non left linear TRS cannot be handled by WOS.

WOS 6⊆ L-GFPO: as above the generalized sticking-out graph of the first form of rules
of WOS has a cyclic edge of weight 1. Let l1 (resp. r1) be the left (resp. right) hand
side of the rule. Since r1 properly sticks-out of the subterm a(x1, x2) of l1, we have
a cyclic edge of weight 1 on the node labeled by (l1 → r1, x1).

L-GFPO 6⊆WOS: collapsing rules, i.e. rules of the form f(x1, . . . , xn) → xi are not
covered by WOS.

WOS 6⊆ L-IOSLT: let us have a look at the form of the two first rules of the WOS class.
In the left-hand sides, a appears at position ε in the first rule and at position 1.ε in the
second one. This is impossible in the L-IOSLT (and even in L-LT) class where sets
of symbols occurring at position ε and i.ε in left-hand sides have to be disjoint.

L-IOSLT 6⊆WOS: in L-IOSLT, we can have rules of the form q(x) → q′(x) for all
symbols q, q′ ∈ Q. In WOS, the only rules of that form are b(x1, x2) → d(x1, x2)
where b ∈ Si, d ∈ Si+2 and Si ∩ Si+2 = ∅. As a result, L-IOSLT covers a sets of
rules of the form {q(x)→ q′(x), q′(x)→ q(x)} that are not covered by WOS.

When the exact value of R∗T (S) cannot be finitely computed, the algorithm and widen-
ing of (Bouajjani and Touili, 2002) does not terminate. This is why Bouajjani et al. pro-
posed in (Bouajjani et al., 2006a) the Abstract Regular Tree Model-Checking where over-
approximations of R∗T (S) are computed, so as to prove some unreachability properties.
The paper defines two main abstraction functions which can be seen as equivalence rela-
tions on states of the constructed tree automaton. One of the required property is that those
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equivalence relations are of finite index, i.e. there is only a finite number of equivalence
classes. This property forces the constructed tree automaton to have a finite number of
states and thus a finite number of transitions. Hence, the construction of the iterated appli-
cation of the tree transducer on the tree automaton is forced to terminate. Here are the two
proposed equivalence relations:

• two states are equivalent if their recognized languages are equal for terms of height
lesser or equal to a given n;

• given a set of tree automata P = {P1, . . . , PN}, two states q1 and q2 of A are
equivalent if {Pi ∈ P | L(Pi) ∩ L(A, q1) 6= ∅} and {Pi ∈ P | L(Pi) ∩ L(A, q2) 6=
∅} are equal.

The authors also mention the fact that this last relation has good properties for abstrac-
tion refinement. Assume that the approximation relation is too coarse because one of the
automata of P , say Pi, recognizes both t1 and t2. Roughly, to refine the approximation, it
is enough to add two new tree automata PN+1 and PN+2 recognizing respectively t1 and
t2 so that the new approximation will distinguish them. For instance, if t1 is a valid reach-
able term and t2 is due to the over-approximation, this is a natural way to exclude t2 of the
approximation. One of the results of (Bouajjani et al., 2006a) is a theorem guaranteeing
that any spurious counter-example can be removed using this technique.

2.3.2 Analysis of imperative, functional and logic programs using reg-
ular languages

As mentioned in (Cousot and Cousot, 1995), the idea of using regular tree grammar for
program analysis is due to (Jones and Muchnick, 1979; Jones, 1987; Jones and Andersen,
2007) following (Reynolds, 1969). Then it has been reformulated by (Heintze and Jaffar,
1990) as set based analysis. Note that, set based analysis does not produce regular lan-
guages but set constraints. However, the mechanism and the obtained result is very similar
to grammars obtained by (Jones, 1987), as it is mentioned in (Heintze, 1993).

We choose here to give a uniform description of the analysis techniques proposed in
those papers. Though not all papers actually use them, our equivalent description uses set
constraints. The program semantics is encoded into a generic set S of set constraints of
the form x ⊇ f(x1, . . . , xn), x ⊇ y ∪ z, x ⊇ y ∩ z, etc. defined on a set of variable
X = {x, y, z, x1, . . .}. Then, this set of constraints is solved by an algorithm producing a
tree grammar over-approximating the solution of S. Again, in all those the papers, the pre-
sentation of the solution looks different but its semantics is equivalent. For an imperative
program (Cousot and Cousot, 1995), variables of X represent the variables of the program
and a set constraint is associated to each program point. For logic programs (Heintze and
Jaffar, 1990), each occurrence of a variable of the program and each predicate symbol is as-
sociated to a variable ofX and the clauses of the program are translated into set constraints.
In particular, if a variable appears several times in the right-hand side of a clause, i.e. it is
non linear, each occurrence is associated to a different variable ofX . Finally, for functional
programs (Jones and Andersen, 2007), a variable of X is associated to each parameter in
function headers and the function definitions are translated into set constraints.
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Though the construction of set constraints differs with programming paradigms, their
resolution phases are very similar. The only difference is that constraints produced by
functional and imperative programs do not contain any constraint of the form x ⊇ y ∩ z
making the resolution far more easy. This is even mentioned by Heintze in (Heintze, 1993)
as the main cause for performance problems of logic program analysis. He even advise to
eliminate or limit as much as possible the use of intersection constraints for the modeling
of logic programs. In the following, we do not consider intersection constraints.

The approximation used for the resolution of the constraints is similar in all the men-
tioned papers. The intuition is the following: every set of tuples of the form {(a, b), (c, d)}
is approximated by the set {(a, b), (a, d), (c, b), (c, d)}. In other words, the approximation
forgets the relations between elements of a tuple in a set. This approximation is called “in-
dependent attributes” in (Jones and Andersen, 2007). (Cousot and Cousot, 1995) propose
some refinement of this approximation, based on a threshold for targeting the approxima-
tion, but the general idea remains the same. Since the results of the resolution techniques
are similar, we detail only one of them. We chose the analysis of (Jones, 1987; Jones
and Andersen, 2007) because it translates functional programs into TRS and, thus, makes
comparison with our techniques on TRS more accurate.

Example 53 Here is an example of a program, in ML-style, which is needing lazy evalua-
tion to terminate. It is borrowed from (Jones and Andersen, 2007).

l e t r e c f i r s t l 1 l 2=
match l1 , l 2 wi th

[ ] , _ −> [ ]
| 1 : :m, x : : x s −> x : : ( f i r s t m xs )

l e t r e c s e q u e n c e y= y : : ( s e q u e n c e ( 1 : : y ) )

l e t g n= f i r s t n ( s e q u e n c e [ ] )

This program can be encoded into the following TRS R where ’one’ encodes ’1’, ’cons’
encodes ’::’ and ’nil’ encodes the empty list ’[]’.

first(nil,Xs)→ nil
first(cons(one,M), cons(X,Xs))→ cons(X, first(M,Xs))
sequence(Y )→ cons(Y, sequence(cons(one, Y )))
g(N)→ first(N, sequence(nil))

Note that, the obtained TRS is left-linear by construction because functional definitions
are.

The algorithm described in (Jones, 1987; Jones and Andersen, 2007) propose to compute
a tree grammar over-approximating the collecting semantics of the function g for a given
set of inputs. It can be seen also as an over-approximation of the image of a set of inputs
by a function g. Informally, the grammar associates a non-terminal X to each variable X
of the program and, for each function call, several non-terminals Ri to represent its set
of intermediate results. More precisely, if the function f is defined using k rewrite rules
then k non-terminals are associated to f . Note that, when there is no intersection, any



26 T. Genet

set constraints can be translated into a tree grammar rule and vice versa. For instance, a
production of the form R0 →

G
f(a) | R1 | R0 corresponds to the set constraint R0 ⊇

f(a,R2) ∪R1 ∪R0 with set of variables {R0, R1, R2}. A first step for the analysis of the
program consists in building the grammar of the initial calls for which we want to analyze
the program. On the previous TRS, a grammar G describing some interesting inputs can
be:

R0 →
G

g(Ω)

Ω →
G

nil | cons(Atom,Ω)

Atom →
G

zero | one | . . .

Then, the algorithm tries to match left-hand sides of rules ofRwith (subterms of) the right-
hand sides of the productions of G. For instance, the definition of g(N) can be matched on
g(Ω) with solution {N 7→ Ω}. In that case several productions and non-terminal are added
to the grammar. First, since there is only one rewrite rule defining g, only one non-terminal,
say R1, is associated to any call of g. In our case, R1 represents the set of intermediate
results of the computation of g(N) with N = Ω. Then, one non-terminal per parameter in
the definition of g is added, i.e. here only oneN . Finally the following productions relating
the non-terminal to their values are added.

R0 →
G

R1

R1 →
G

first(N, sequence(nil))

N →
G

Ω

The first production encodes the fact that every result of R1 is also a result for R0, the
second one unfolds the definition of g and the last explicits the found match between N
and Ω. Then, the algorithm continues on G completed with those productions. The next
term to be replaced is sequence(nil). Like for g, the sequence function is defined using 1
rewrite rule. Let R4 be the non-terminal associated to the calls of the sequence function.
The left-hand side of the rule of R defining the sequence function i.e. sequence(Y ) can
be matched on the subterm sequence(nil) of the above productions leading to a solution
{Y 7→ nil}.

R1 →
G

first(N,R4)

R4 →
G

cons(Y, sequence(cons(one, Y )))

Y →
G

nil

as before, the first production explicits the link that exists between intermediate results for
R4 and R1. Then, matching between sequence(Y ) and sequence(cons(one, Y )) gives
the solution {Y 7→ cons(one, Y )}. Then, since the sequence function is associated to
the unique non-terminal R4, the term sequence(cons(one, Y )) is also replaced by R4.
Note that this naturally leads to looping rules for non-terminal R4 and Y in the generated
productions:

R4 →
G

cons(Y,R4)

Y →
G

cons(one, Y )

Now recall that, in G among all productions, we have the following ones:
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R1 →
G

first(N,R4)

N →
G

Ω

Ω →
G

nil | cons(Atom,Ω)

If we try to match first(nil,Xs) on first(N,R4), it cannot succeed directly because it
is not possible to match nil on N (note that they would they unify). However, since the
production N →

G

∗ nil is possible, we can replace N by nil and the problem becomes to

match first(nil,Xs) on first(nil, R4). This succeeds and gives the following solution
{Xs 7→ R4}. Since there are two rules defining the first function, letR2 (resp. R3) be the
non-terminal associated to its first (resp. second) rewrite rule. Since this step only concerns
the application of the first rewrite rule of first, the algorithm only adds productions forR2

to G:
R1 →

G
R2

R2 →
G

nil

Xs →
G

R4

Similarly, since in G we find the productions:
R1 →

G
first(N,R4)

N →
G

Ω

Ω →
G

nil | cons(Atom,Ω)

R4 →
G

cons(Y, sequence(cons(one, Y )))

R4 →
G

cons(Y,R4)

As before, it is impossible to match first(cons(one,M), cons(X,Xs)) on first(N,R4).
However, since N →

G

∗ cons(one,Ω) on the one side and R4 →
G

∗ cons(Y,R4) and R4 →
G

cons(Y, sequence(cons(one, Y ))) on the other side, this is equivalent to the two problems
of matching first(cons(one,M), cons(X,Xs)) on first(cons(one,Ω), cons(Y,R4)) and
matching first(cons(one,M), cons(X,Xs)) on first(cons(one,Ω), cons(Y, sequence(cons(one, Y )))).
Those two matching problems have the following solutions: {M 7→ Ω, X 7→ Y,Xs 7→
R4} and {M 7→ Ω, X 7→ Y,Xs 7→ sequence(cons(one, Y ))}, respectively. Note that
those two new solutions are obtained for the second rewrite rule of first and thus concerns
non-terminal R3. This results in the following new productions:

R1 →
G

R3

R3 →
G

cons(X, first(M,Xs))

M →
G

Ω

X →
G

Y

Xs →
G

R4 | sequence(cons(one, Y ))

The last step is achieved by matching first(cons(one,M), cons(X,Xs)) on the subterm
of the right-hand side of the above second production, i.e. first(M,Xs). Since M →

G

∗

cons(one,Ω), Xs →
G

∗ cons(Y,R4) and Xs →
G

∗ cons(Y, sequence(one, Y )), as above,

we get two solutions for the matching problem: {M 7→ Ω, X 7→ Y,Xs 7→ R4} and
{M 7→ Ω, X 7→ Y,Xs 7→ sequence(one, Y )}. Note that this is exactly the same solution
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as above, hence all the productions associating the variables to their values are already
present in G. Furthermore, since those solutions concern the second rewrite rule of first,
the subterm first(M,Xs) has to be replaced by R3. This leads to the following looping
transition:

R3 →
G

cons(X,R3)

Finally, since the left-hand side of the first rewrite rule of first, i.e. first(nil,Xs), can
be matched on first(M,Xs), this subterm can also be replaced by the non-terminal cor-
responding to the first rewrite rule: R2. This adds a last production leading to a stable
grammar:

R3 →
G

cons(X,R2)

Here was a running example of the algorithm of (Jones and Andersen, 2007). Though it
is somewhat hidden, the approximation used is exactly the one that is mentioned above:
it forgets the relation between elements of a tuple. In fact, it is built in the “one non-
terminal by variable” construction principle. For instance, let f(X,Y ) be a function and
f(a, b), f(c, d) be two function calls. Remember that a unique non-terminalX (resp. Y ) is
associated to the first (resp. second) parameter of f . Hence, when translating the two calls
f(a, b), f(c, d) we obtain the following grammar G:

R0 →
G

f(X,Y )

X →
G

a | c
Y →

G
b | d

which is producing the language {f(a, b), f(c, b), f(a, d), f(c, d)} where the relational in-
formation between a − b and c − d is lost. As mentioned above, the same kind of ap-
proximation is used in all the other cited works (Heintze and Jaffar, 1990; Cousot and
Cousot, 1995). This is standard because as far as we know, this is the only way to keep
an over-approximation regular if nothing is known about the program. However, since this
approximation is the default behavior of the algorithm and it is built-in, it is difficult to
adapt it even if something is known about the program behavior.

The above algorithm can compute an over-approximation of the collecting semantics
of a functional program with lazy-evaluation. In fact, it is shown in (Jones and Andersen,
2007) that it also covers higher-order functional programs. This is obtained thanks to a
specific encoding of higher-order functions into TRS we now present.

Example 54 Here is a simple higher-order program in ML-style borrowed from (Jones and
Andersen, 2007).

l e t do ub l e x = ( x , x )
l e t cons x y= ( x , y )

l e t r e c map f l=
match l wi th

[ ] −> [ ]
| x : : x s −> ( f x ) : : ( map f x s )

l e t f x= ( map d ou b l e x ) , ( map ( cons 5 ) x )
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This program can be encoded into the following TRS where ’app’ is an additional symbol
encoding function application, ’a’ encodes ’5’, ’fcons’ encodes ’cons’, ’cons’ encodes
’::’ and ’nil’ encodes the empty list [].

app(double,X)→ cons(X,X)
app(app(fcons,X), Y )→ cons(X,Y )
app(app(map,U), nil)→ nil
app(app(map,U), cons(X,Xs))→ cons(app(U,X), app(app(map,U), Xs))
app(f,X)→ cons(app(app(map, double), X), app(app(map, app(fcons, a)), X))

Since the algorithm of Jones and Andersen (2007) is able to deal with any left-linear
TRS, having such an encoding is enough to guarantee the feasibility of their analysis on
higher-order functions.
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Chapter 3

Theoretical contributions

In (Genet, 1998), we proposed the first version of the tree automaton completion algorithm
for over-approximating R∗(S) for a left-linear term rewriting system R and a regular lan-
guage S. It is referred as the standard tree automata completion algorithm in the following
and presented in Section 3.1. This algorithm, simple and efficient, was used for the verifi-
cation of real-sized programs as shown in Chapter 5. This algorithm has been, then, refined
into the equational tree automata completion (Genet and Rusu, 2009) which is presented
in Section 3.2.

3.1 The standard Tree Automata Completion algorithm
Let us first recall the tree automata completion principle. Starting from a tree automaton
A0 = 〈F ,Q,Qf ,∆0〉 and a left-linear1 TRSR, the aim of the approximation algorithm is
to compute a tree automaton A′ such that L(A′) ⊇ R∗(L(A0)). Approximations are used
to show that terms recognized by a tree automaton Abad are not reachable by rewriting
terms of L(A0) withR, i.e. ∀s ∈ L(A0) ∀t ∈ L(Abad) : s 6→R∗ t. For this, it is enough to

show that L(A′) ∩ L(Abad) = ∅ i.e., compute the automaton recognizing the intersection
and show that the recognized language is empty.

The technique consists in successively computing tree automata A1
R, A2

R, . . . such that
∀i ≥ 0 : L(AiR) ⊆ L(Ai+1

R ) and if s ∈ L(AiR), such that s →R t then t ∈ L(Ai+1
R ),

until we get an automaton AkR with k ∈ N such that L(AkR) = L(Ak+1
R ). Thus, AkR is a

fixpoint and AkR also verifies L(AkR) ⊇ R∗(L(A0)). More precisely, to construct Ai+1
R

from AiR, we achieve a completion step which consists in finding critical pairs between
→R and →AiR . For a substitution σ : X 7→ Q and a rule l → r ∈ R, a critical pair is
an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗AiR q and rσ 6→∗AiR q.
For rσ to be recognized by the same state and thus model the rewriting of lσ into rσ, it is
enough to add the necessary transitions to AiR to obtain Ai+1

R such that rσ →∗Ai+1
R

. The
two versions of the tree automata completion differs from the set of added transitions so as

1This restriction will be weakened in the following.
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to obtain rσ →∗Ai+1
R

.

3.1.1 The standard critical pair solving
In the standard tree automata completion, critical pairs are joined in the following way:

lσ R
//

∗AiR
��

rσ

∗

Ai+1
R

ooq

Hence, for each critical pair lσ →∗AiR q and rσ 6→∗AiR q, we add the new transition rσ → q

to AiR to obtain Ai+1
R . However, the transition rσ → q is not necessarily a normalized

transition of the form f(q1, . . . , qn) → q′ and so has to be normalized first. For example,
to normalize a transition of the form f(g(a), h(q′)) → q, we need to find some states
q1, q2, q3 and replace the previous transition by a set of normalized transitions: {a →
q1, g(q1)→ q2, h(q′)→ q3, f(q2, q3)→ q}.

Assume that q1, q2, q3 are new states, then adding the transition itself or its normal-
ized form does not make any difference. Now, assume that q1 = q2, the normalized
form becomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}. This set of nor-
malized transitions represents the regular set of non normalized transitions of the form
f(g∗(a), h(q′))→ q which contains the transition we wanted to add initially but also many
others. Hence, this is an approximation. We could have made an even more drastic approx-
imation by identifying q1, q2, q3 with q, for instance.

For every transition, there exists an equivalent set of normalized transitions. Normal-
ization consists in decomposing a transition s→ q, into a setNorm(s→ q) of normalized
transitions. In the standard completion algorithm, we abstract subterms s′ of s s.t. s′ 6∈ Q
by states of Q. The abstraction function α is defined as follows:

Definition 55 (Abstraction function) Let F be a set of symbols, andQ a set of states. An
abstraction function α maps every normalized configuration into a state:

α : {f(q1, . . . , qn) | f ∈ F ,Ar(f) = n and q1, . . . qn ∈ Q} 7→ Q

�

Definition 56 (Abstraction state) Let F be a set of symbols, and Q a set of states. For a
given abstraction function α and for all configuration t ∈ T (F ∪Q) the abstraction state
of t, denoted by topα(t), is defined by:

1. if t ∈ Q, then topα(t) = t,

2. if t = f(t1, . . . , tn) then topα(t) = α(f(topα(t1), . . . , topα(tn))).

�

Definition 57 (Normalization function) Let F be a set of symbols,Q a set of states, s→
q a transition s.t. s ∈ T (F ∪Q) and q ∈ Q, and α an abstraction function. The set
Normα(s→ q) of normalized transitions is inductively defined by:
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1. if s = q, then Normα(s→ q) = ∅, and

2. if s ∈ Q and s 6= q, then Normα(s→ q) = {s→ q}, and

3. if s = f(t1, . . . , tn), then Normα(s→ q) =

{f(topα(t1), . . . , topα(tn))→ q} ∪
⋃n
i=1Normα(ti → topα(ti)).

�

Example 58 (Abstraction function and normalization) Let s = f(g(q1, f(a))), and α1

be the abstraction function {a 7→ q4, f(q4) 7→ q3,
g(q1, q3) 7→ q2}. The normalization of transition f(g(q1, f(a))) → q0 with abstrac-
tion α1 is the following: Normα1(f(g(q1, f(a))) → q0) = {f(q2) → q0, g(q1, q3) →
q2, f(q4)→ q3, a→ q4}.

Definition 59 (Regular language substitution) A regular language substitution over an
automaton A with a set of states Q is a function σ : X 7→ Q. We can extend this definition
to a morphism σ : T (F ,X ) 7→ T (F ,Q). We denote by Σ(Q,X ) the set of regular
language substitutions built over Q and X . �

Definition 60 (One step automaton completion) Let A = 〈F ,Q,Qf ,∆〉 be a tree au-
tomaton, R a TRS and α an abstraction function. The one step completed automaton
CR,α(A) is a tree automaton 〈F ,Q′,Qf ,∆′〉 such that:

• ∆′ = ∆ ∪
⋃

l→r∈R, q∈Q, σ∈Σ(Q,X ), lσ→∗∆q

Normα(rσ → q), and

• Q′ = {q | c→ q ∈ ∆′}

�

Definition 61 (Automaton completion) Let A be a tree automaton, R a TRS and α an
abstraction function.

• A0
R,α = A

• An+1
R,α = CR,α(AnR,α) for n ∈ N

• A∗R,α is a fixpoint A∗R,α = AkR,α = Ak+1
R,α with k ∈ N

�

Note that A∗R,α does not exists in general, but it can be computed in many interest-
ing cases, provided that the abstraction function α ensures termination of the completion.
In the following proposition, we give some sufficient conditions for building an over-
approximation automaton B of the set of R-descendants of a regular language recognized
by A. First, we need a sufficient condition for the tree automaton B to over-approximate
(∗L(A)) whenR is not left-linear.
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Definition 62 LetA = 〈F ,Q,Qf ,∆〉 be an automaton andR a TRS,R andA satisfy the
left-coherence condition if:

∀τ : X 7→ T (F), ∀l→ r ∈ R, ∀q ∈ Q :

lτ →∗∆ q ⇒ ∃σ ∈ Σ(Q,X ) s.t. lτ →∗∆ lσ →∗∆ q

�

Lemma 63 Every left-linear TRS R and every tree automaton A, R and A satisfy the
left-coherence condition.

PROOF. In a left-linear TRS, every left-hand side l of a rewrite rule is of the form l =
C[x1, . . . , xn] where all the variables of {x1, . . . , xn} are distinct and there is no other
variable position in C. Since t = lτ →∗∆ q there exist some terms t1, . . . , tn and some
states q1, . . . , qn such that τ = {x1 7→ t1, . . . , xn 7→ tn}, t = C[t1, . . . , tn] and ∀i =
1 . . . n : ti →∗∆ qi. Since all the x1, . . . , xn are distinct, σ = {x1 7→ q1, . . . , xn 7→ qn} is
a function and thus is a valid substitution such that t→∗∆ lσ →∗∆ q.

On the opposite, note that if l is not linear the relation σ we build is not necessarily a
function. 2

This left-coherence condition is, in fact, necessary for non left-linear TRS. Roughly,
the problem with non left-linear rules is the following: let f(x, x) → g(x) be a rule of
R and let A be a tree automaton whose set of transitions contains f(q1, q1) → q0 and
f(q2, q3) → q0. Although we can construct a valid substitution σ = {x 7→ q1} for
matching the rewrite rule on the first transition, it is not the case for the second one. The
semantics of a completion between rule f(x, x) → g(x) and transition f(q2, q3) → q0

would be to find the common language of terms recognized both by q2 and q3. This can
be obtained by computing a new tree automaton A′ with a set of states Q′ such that Q′ is
disjoint from states of A and ∃q ∈ Q′ : L(A′, q) = L(A, q2) ∩ L(A, q3). Then, to end the
completion step it would be enough to add transitions of A′ to A with the new transition
g(q)→ q0.

On the other hand, one can remark that the non-linearity problem would disappear with
deterministic automata since for any deterministic automaton Adet and for all states q, q′

of Adet we trivially have L(A, q) ∩ L(A, q′) = ∅. However, determinization of a tree
automaton may result in an exponential blow-up of the number of states (Comon et al.,
2008).

A solution, between the two previous ones, is to use the left-coherence condition de-
fined above by ensuring determinism for a subset of states q ∈ Q which are to be matched
by the non linear variables of the non linear rules. This is what is called locally determin-
istic tree automata (Genet and Viet Triem Tong, 2001) (see Section 4.4.1).

We now define the condition called simple left-coherence which implies the left-coherence
condition and which is easier to check on a given tree automaton and TRS. Let A be an
automaton, l→ r a rewrite rule over T (F ,X ), {x1, . . . , xk} the set of variables non linear
in l and Y a set of variables distinct from X . LetRen(l) be the pair (l′, E) where l′ denotes
the term l where non linear variables are renamed and E is a set of constraints.
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Ren(l) = (l, ∅) if l is either a constant or a
variable that does not
appear in {x1, . . . , xk}

= (y, {x = y}) if l is a variable x ∈ {x1, . . . , xk}
and y if a fresh variable of Y

= (f(t′1, . . . , t
′
n),
⋃n
i=1Ei) if l = f(t1, . . . , tn) and

Ren(ti) = (t′i, Ei) for all i = 1 . . . n.

Definition 64 (Simple left-coherence condition) An automaton A and a TRS R satisfy
the simplified left-coherence condition if for all rules l → r ∈ R such that Ren(l) =
(l′, E):

∀(x = y) ∈ E, ∀σ ∈ Σ(Q,X ), ∀q, qx, qy ∈ Q :

l′σ →∗∆ q ∧ σ(x) = qx 6= qy = σ(y) =⇒ L(A, qx) ∩ L(A, qy) = ∅

�

Proposition 65 Simple left-coherence implies left-coherence.

PROOF. IfA does not verify the left-coherence condition induced by l→ r, there is at least
a ground term t recognized by a state q ofA, a substitution τ : X → T (F) such that t = lτ
and t →∗∆ q, and there is no Q-substitution σ ∈ Σ(Q,X ) such that t →∗∆ lσ ∧ lσ →∗∆ q.
However, if t is an instance of l then t is also instance of l′ the renamed version of l, let
t = l′ρ where ρ : Y → T (F). The problem is solved by case reasoning on t: t cannot be
a variable a otherwise l = a and A respects the coherence condition, hence t is a term of
depth at least 1. Let ρ : {y1, . . . , yk} 7→ T (F) such that ρ(yj) = tj . If t →∗∆ q then all
subterm of t are recognized by A and there are k states q1, . . . , qk such that tj → qj for
1 ≤ j ≤ k. Observing that tj → qj and ρ(yj) = tj , we can construct a Q-substitution
σ′ : {y1, . . . , yk} → Q defined by σ′(yj) = qj . We have t →∗∆ l′σ′ then l′σ′ →∗∆ q.
Either we have found a Q-substitution σ ∈ Σ(Q,X ) such that t→∗∆ lσ ∧ lσ →∗∆ q which
contradicts the hypothesis or there are at least two variables yi and yj such that

1. σ′(yi) = qi and σ′(yj) = qj with qi 6= qj

2. yi = yj is necessarily a constraint of E

3. ti = ρ(yi) = ρ(yj) = tj

The condition 1. and 2. hold true for at least one pair of variables (yi, yj) otherwise we
could construct aQ-substitution σ such that lσ = l′σ′. The condition 3. holds true because
t is an instance of l. In that case, A does not verify the simple left-coherence which is a
contradiction. 2

The following proposition states the necessary conditions on two tree automata A and
B so that the language recognized by B over-approximate the set ofR-descendants of terms
recognized by A.
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Proposition 66 Let R be a TRS, A = 〈F ,Q,Qf ,∆〉, and B = 〈F ,Q′,Qf ,∆′〉 two tree
automata such that R and B satisfy the left-coherence condition. We have R∗(L(A)) ⊆
L(B) if

1. ∆ ⊆ ∆′, and

2. ∀l→ r ∈ R, ∀q ∈ Q′, ∀σ ∈ Σ(Q′,X ), lσ →∗∆′ q implies rσ →∗∆′ q.

PROOF. By definition, any term t of R∗(L(A)) is such that ∃s ∈ L(A) s.t. s →∗R t. By
induction on the length of the derivation s →∗R t, we prove that if s →∗R t and s →∗∆′ q
with q ∈ Qf then t→∗∆′ q, which implies that t ∈ L(B).

1. if t = s then, since s ∈ L(A), we have that ∃q ∈ Qf s.t. t = s →∗∆ q. Moreover,
∆ ⊆ ∆′, hence ∃q ∈ Qf s.t. t→∗∆′ q,

2. if s →+
R t, then ∃s′ ∈ T (F) s.t. s →∗R s′ →R t. By induction hypothesis applied

to s →∗R s′, we obtain that ∃q ∈ Qf s.t. s′ →∗∆′ q. Moreover, since s′ →R t, there
exists a rule l→ r ∈ R, a substitution τ , and a position p in s′ such that lτ = s′|p and
t = s′[rτ ]p. By construction of bottom-up tree automata with normalized transitions,
if s′ →∗∆′ q, then any subterm of s′ is reducible by ∆′ into a state of Q′. Hence,
since lτ = s′|p, we get that ∃q′ ∈ Q′ s.t. lτ →∗∆′ q′ and s′[q′]p →∗∆′ q. Now, let
us show that rτ →∗∆′ q′. Let Var(l) = {x1, . . . , xk} be the variables of l. Since
R and B satisfy the left-coherence condition, we get that there exists σ ∈ Σ(Q,X )
such that lτ →∗∆′ lσ →∗∆′ q′. Hence, there exist some states qi ∈ Q such that
σ = {xi 7→ qi | i = 1 . . . k} and xiτ →∗∆′ qi for i = 1 . . . k. From xiτ →∗∆′ qi
we get that rτ →∗∆′ rσ. Finally, since rσ →∗∆′ q′, we get that rτ →∗∆′ q′ and thus
t = s′[rτ ]p →∗∆′ q.

2

In this first theorem, we show that completion always over-approximate the set of de-
scendants for TRSs and tree automata satisfying the left-coherence condition.

Theorem 67 Let A be a tree automaton, R be a TRS and α an abstraction function. If R
and A∗R,α satisfy the left-coherence condition then:

L(A∗R,α) ⊇ R∗(L(A))

PROOF. For proving L(A∗R,α) ⊇ R∗L(A), we can use Proposition 66 with A and B =
A∗R,α = 〈F ,Q′,Qf ,∆′〉. Thus, it is enough to prove that the approximation automata
A∗R,α verifies Conditions 1 and 2 of Proposition 66, for all abstraction function α. By
Definition 61, A∗R,α trivially verifies Condition 1. Now, to prove that A∗R,α also verifies
Condition 2 of Proposition 66, it is enough to prove that Normα(rσ → q) ⊆ ∆′ implies
rσ →∗∆′ q.

Let s′ be any subterm of rσ (possibly non-strict) and q′ ∈ Q′. By induction on the size
of s′, we show that Normα(s′ → q′) ⊆ ∆′ implies that s′ →∗∆′ q′:

• if s′ = q′, then we trivially have s′ →∗∆′ q′.
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• if s′ = q′′ ∈ Q′ s.t. q′′ 6= q′ then, by case 2 of definition of Norm, we get that
Normα(s′ → q′) = {s′ → q′}. Since Normα(s′ → q′) ⊆ ∆′, we have s′ →∗∆′ q′.

• if s′ = g(t1, . . . , tm) ∈ T (F ∪Q′), by applying case 3 of definition of Norm, we
get that

(a) {g(topα(t1), . . . , topα(tm))→ q′} ⊆ ∆′, and

(b)
⋃m
i=1Normα(ti → topα(ti)) ⊆ ∆′,

where ∀i = 1 . . .m, topα(ti) ∈ Q′ by definition ofA∗R,α. By applying the induction
hypothesis to (b), we get that ∀i = 1 . . .m, ti →∗∆′ topα(ti). On the other hand, (a)
implies that
g(topα(t1), . . . , topα(tm))→∆′ q

′. As a result, g(t1, . . . , tm)→∗∆′ g(topα(t1), . . . , topα(tm))→∆′

q′.

Hence Normα(rσ → q) ⊆ ∆′ implies rσ →∗∆′ q, and Condition 2 of Proposition 66 is
satisfied by A∗R,α. 2

3.1.2 Normalization rules
We now introduce the first formalism that we use to define approximations: normalization
rules. The general form for normalization rules is the following: [s → x] → [l1 →
x1, . . . , ln → xn] with s, l1, . . . , nn ∈ T (F ∪Q,X ) and x, x1, . . . , xn ∈ X∪Q. The term
[s→ x] is a pattern to be matched over the new transitions t→ q′ obtained by completion
and [l1 → x1, . . . , ln → xn] are rules used to normalize t. The syntactical constraint for
those rules is the following: either xi ∈ Q or xi ∈ Var(li)∪Var(s)∪{x}. To normalize a
transition of the form t→ q′, we match s on t and x on q′, obtain a substitution σ from the
matching and then we normalize t with the rewrite system {l1σ → r1σ, . . . , lnσ → rnσ}
where r1σ, . . . , rnσ are necessarily states.

Example 68 (Application of a normalization rule) Let us show how to normalize the tran-
sition f(h(q1), g(q2)) → q3 with the normalization rule [f(x, g(y)) → z] → [g(u) →
z]. We first match f(x, g(y)) on f(h(q1), g(q2)) and z on q3. This gives a substitution
σ = {x 7→ h(q1), y 7→ q2, z 7→ q3}. The set of rewrite rules instantiated by σ is thus
[g(u) → q3]. Finally, using those instantiated rewrite rules on the left-hand side of the
transition to normalize, i.e. f(h(q1), g(q2)), the subterm g(q2) can be rewritten into q3.
Hence, the transition f(h(q1), g(q2)) → q3 will be normalized into a normalized transi-
tion g(q2)→ q3 and a partially normalized transition f(h(q1), q3)→ q3.

3.1.3 The exact case
The aim of this part is to refine the previous result and show that some of the known regular
classes of descendants can be computed using the tree automata completion algorithm and
some particular abstraction functions. In a first part, we give some sufficient conditions
on the abstraction function α so that completion is exact w.r.t. R∗(S). Then we will see
how many regular classes of the literature can be expressed using abstraction functions
satisfying those conditions.
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During a completion step, for a rewrite rule l → r, adding a transition rσ → q for a
regular language substitution σ such that lσ →∗∆ q is not necessarily exact and may lead
to an over-approximation ofR∗(S). This can be the case in particular when r is not linear.
This is detailed in the following example.

Example 69 Let R = {f(x) → g(x, x)} be a non right-linear TRS and let A be the tree
automaton such that Qf = {q0} and ∆ = {f(q1)→ q0, a→ q1, b→ q1}. Note that A is
deterministic and that L(A) = {f(a), f(b)} is finite. However, the completed automaton
A1
R,α = A∗R,α (for any abstraction function α) has a new transition g(q1, q1)→ q0 and the

recognized language becomes L(A∗R,α) = {f(a), f(b), g(a, a), g(a, b),
g(b, a), g(b, b)}, a superset ofR∗(L(A)) = {f(a), f(b), g(a, a), g(b, b)}.

Note that this problem trivially disappears if every state q of the automaton recognizes
exactly one term. Hence, in the previous example, on an automaton A′ s.t. the set of final
states Qf is {q0, q

′
0} and the set of transitions is ∆ = {f(q1) → q0, f(q2) → q′0, a →

q1, b→ q2}, completion would produce two transitions g(q1, q1)→ q0 and g(q2, q2)→ q′0
recognizing exactly R∗(L(A′)). Instead of requiring that every state should recognize
exactly one term, we can somewhat relax this constraint by requiring that every state q
should recognize exactly one term t and any of its R-descendants. Thus, in example 69,
if R = {f(x) → g(x, x), a → b} the language recognized by A∗R,α is still L(A∗R,α) =
{f(a), f(b), g(a, a), g(a, b), g(b, a), g(b, b)} but this time exactly covers R∗(L(A)). This
weaker condition will be of interest in the following since completion steps iteratively
add some terms (which are R-descendants) in the languages recognized by every states.
Hence, under some assumptions, this condition is preserved by completion steps. Finally,
those restrictions can trivially be left if the TRS is right-linear. The following definition
formalizes all those aspects.

Definition 70 (Right-coherence condition) A TRSR and a tree automatonA = 〈F ,Q,Qf ,∆〉
satisfy the right-coherence condition if

1. R is right-linear, or

2. ∀q ∈ Q : ∃t ∈ T (F) : L(A, q) ⊆ R∗(t)

�

This condition focuses only on the initial automaton and not on the completed one.
Note that, this condition is trivially satisfied (using the second case) by any tree automaton
recognizing a finite language. This will be useful in the following theorems for defining
regular classes ofR∗(S) for finite sets S.

Lemma 71 Let R be a TRS, l → r ∈ R be a rewrite rule with r 6∈ X and A =
〈F ,Q,Qf ,∆〉 a tree automaton without dead states. Let σ : X 7→ Q be a substitution,
such that lσ →∗A q with q ∈ Q.

If R and A satisfy the right-coherence condition, for all t ∈ T (F) s.t. t →∗A rσ then
there exists δ : X 7→ T (F) s.t. lδ ∈ T (F), lδ →A∗ lσ →A∗ q and lδ →∗R rδ →∗R t.
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PROOF. Let {p1, . . . , pn} = PosX (r) and ∀i = 1 . . . n : xi = r|pi . Note that if there
exist pi and pj s.t. r|pi = r|pj then xi = xj . Let {y1, . . . , ym} = Var(l) \ Var(r) be the
set of variables of l that do not occur in r. Note that for l it is not necessary to distinguish
the multiple occurrences of non linear variables. Let q1, . . . , qn, q

′
1, . . . , q

′
m ∈ Q be the

states such that σ = {x1 7→ q1, . . . xn 7→ qn, y1 7→ q′1, . . . , ym 7→ q′m} and we obviously
have qi = qj for all i, j ∈ {1, . . . , n} such that xi = xj since σ is a function. Thus
r = r[x1, . . . , xn] and rσ = r[q1, . . . , qn]. On the other hand, by construction of tree
automata t →∗A rσ = r[q1, . . . , qn] implies that there exist t1, . . . , tn ∈ T (F) such that
t = r[t1, . . . , tn] and t1 →∗A q1, . . . , tn →∗A qn.

Now our aim is to show that there exists a substitution δ such that lδ → rδ = t. The
substitution δ we build is such that δ = δr ∪ δl where Dom(δr) = {x1, . . . , xm} and
Dom(δl) = {y1, . . . , ym}. First we show how to construct δr. Let δr be the relation
{x1 7→ t1, . . . , xn 7→ tn}. Note that δr is a substitution (i.e. a function) if and only if
there is no i, j ∈ {1, . . . , n} such that xi = xj and ti 6= tj . This is of course trivially the
case if r is linear. Otherwise, we may have xi = xj , ti →∗A qi, tj →∗A qj , qi = qj but
ti 6= tj and thus δr would not be a function. However, if condition 2. of definition 70 is
satisfied then we know that ∀i = 1 . . . n : ∃t′i : L(A, qi) ⊆ R∗({t′i}). Hence, every term
which is recognized into qi is either t′i or one of its descendants. As a result, since qi = qj
we have that ti, tj ∈ R∗(t′i). In this case, if we replace ti and tj by t′i in δr (and proceed
similarly for every other occurrence of a non linear variable), we obtain a valid substitution
δr such that rδr →R∗ r[t1, . . . , tn]. Thus, using case 1. or case 2. of definition 70 leads

to the same property: we have built a substitution δr such that rδr →R∗ r[t1, . . . , tn] and

r[t1, . . . , tn]→∗A r[q1, . . . , qn] = rσ.
Now, recall that δ = δr ∪ δl. For δl we construct a substitution mapping the variables

of l not occurring in r to any term recognized by the corresponding state in σ, i.e. δl =⋃
i=1...m{yi 7→ u′i | ∃u′i ∈ T (F) s.t. u′i →∗A q′i and q′i = σ(yi)}. Note that the existence

of u′i s.t. u′i →∗A q′i is guaranteed by the fact that q′i is a state of A and there is no dead
state in A. The relation δl is a functional substitution and so is δr. Furthermore, since
Dom(δr) ∩ Dom(δl) = ∅ then δ is a substitution. Finally. we have lδ ∈ T (F), lδ →∗A lσ
and lδ →∗R rδ →∗R r[t1, . . . , tn] = t. 2

We now introduce coherent abstraction function which define some subclasses of com-
pletion algorithms for which the automaton completion algorithm is exact. Informally, an
abstraction function is coherent with regards to a tree automaton A and a term rewriting
system R if for every configuration t and every state q such that α maps t to q, either q
is not a state of A (it is a new state) or terms recognized by q in A are either a term t′

recognized by t (i.e. t′ →A∗ t) orR-descendants of t′.

Definition 72 (Coherent abstraction function) LetR be a TRS,A = 〈F ,Q,Qf ,∆〉 be a
tree automaton and α be an abstraction function. The function α is said to be coherent with
R and A if for all t ∈ Dom(α), for all q ∈ Q ∩Ran(α) if α(t) = q then t→ q ∈ A and
there exists a term t′ ∈ T (F) called the representative of q s.t. t′ →A∗ t and L(A, q) ⊆
R∗({t′}). �

Note that any abstraction function αmapping any term to a state not inQ is trivially co-
herent. The following lemma shows some additional properties on the coherent abstraction
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functions.

Lemma 73 Let α be an abstraction function coherent with a TRSR and a tree automaton
A. For all t ∈ T (F ∪Q) and q ∈ A s.t. topα(t) = q then we have t →∗A q and the
representative t′ of q is such that t′ →∗A t.

PROOF. We proceed by induction on the height of t:

• if t = a a constant. From topα(a) = q we get that α(a) = q and from definition 72,
we obtain that a→ q ∈ A. Furthermore, since in that case the representative t′ of q
is a, we trivially have t′ = a→∗A a.

• if t = f(t1, . . . tn) then topα(f(t1, . . . , tn)) = α(f(topα(t1), . . . ,
topα(tn))) = q. Hence, there exist states q1, . . . , qn such that ∀i = 1 . . . n :
topα(ti) = qi and α(f(q1, . . . , qn)) = q. By definition 72, from α(f(q1, . . . , qn)) =
q, we get that f(q1, . . . , qn) → q ∈ A and thus q1, . . . , qn ∈ A. Applying the in-
duction hypothesis on q1, . . . , qn and ∀i = 1 . . . n : topα(ti) = qi we get that ∀i =
1 . . . n : ti →∗A qi and the corresponding representatives t′i are such that t′i →∗A ti.
From ti →∗A qi and from f(q1, . . . , qn)→ q ∈ A we get that t = f(t1, . . . , tn)→∗A
q. From t′i →∗A ti we get that t′ = f(t′1, . . . , t

′
n)→∗A f(t1, . . . , tn) = t.

2

The next lemma gives some sufficient conditions on a completion step to ensure that
terms recognized by CR,α(A) are all reachable terms. One of the condition is that α has to
be injective i.e. there is no couple of distinct terms t, t′ ∈ Dom(α) such that α(t) = α(t′).
The fact that the conditions used in this lemma are all necessary will be shown on examples
in the following.

Lemma 74 Let R be a TRS, A = 〈F ,Q,Qf ,∆〉 be a tree automaton and α be an ab-
straction function. If R and A satisfy the right-coherence condition and if α is injective
and coherent with regards toR and A then:

∀t ∈ T (F),∀q ∈ Q : t ∈ L(CR,α(A), q) =⇒ t ∈ R∗(L(A, q))

PROOF. For terms t such that t ∈ L(A, q), we trivially have that t ∈ R∗(L(A, q)). So, we
can restrict the proof to terms t such that t 6∈ L(A, q). Similarly, we can distinguish two
other particular cases where t→∗∆ q is in fact of the form t→∗∆ q′ → q.

• either q′ → q ∈ A and t 6∈ L(A, q). Since q′ → q is in A, we have L(A, q′) ⊆
L(A, q) and R∗(L(A, q′)) ⊆ R∗(L(A, q). Hence, to prove that t ∈ R∗(L(A, q) it
is enough to prove that t ∈ R∗(L(A, q′) from t →∗∆ q′. We can proceed similarly
to remove every epsilon transition of the form q1 → q2 which are already in A and
prove that t→∗∆ q′ implies that t ∈ R∗(L(A, q′) in the general case.

• either t ∈ L(A, q′), t 6∈ L(A, q) and q′ → q ∈ CR,α(A). In that case, the completion
step producing CR,α(A) from A necessarily builds a critical pair of the form lσ →R
rσ = q′ and lσ →A∗ q where l → r ∈ R. In that case, we necessarily have
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l = C[x] and r = x where x ∈ Var(l) and σ = {x 7→ q} ∪ σ′. Hence, we have
lσ = C[q′]σ′ →A∗ q and since t ∈ L(A, q′), we have C[t] →A∗ C[q′] →A∗ q and

thus C[t] ∈ L(A, q). Finally since the rule l → r is of the form C[x] → x we get
that t ∈ R∗(L(A, q)).

Now for the general case, we proceed by induction over the height of t.

• If height of t is 0 then t = awhere a is a constant. Since a ∈ L(CR,α(A), q) we have
a→ q ∈ CR,α(A). Since a 6∈ L(A, q) then the completion step producing CR,α(A)
from A necessarily builds a critical pair of the form lσ →R a and lσ →A∗ q where
l → a ∈ R. By lemma 71, we obtain that there exists a substitution δ such that
lδ ∈ T (F), lδ →A∗ q and lδ →R∗ a, hence a ∈ R∗(L(A, q)).

• Now, we assume that the property is true for terms of height n. Let us prove
that the property also holds for terms of height n + 1. Let t be a term of height
n + 1 such that t ∈ L(CR,α(A), q). Let f ∈ F and t1, . . . , tn ∈ T (F) terms
of height lesser or equal to n such that t = f(t1, . . . , tn). By construction of tree
automata, t ∈ L(CR,α(A), q) implies that there exist states q1, . . . , qn such that
f(t1, . . . , tn)→∗CR,α(A) f(q1, . . . , qn)→∗CR,α(A) q. Then by cases on f(q1, . . . , qn)→
q ∈ A, we obtain:

– Assume that f(q1, . . . , qn) → q ∈ A. Then q1, . . . , qn ∈ A and by induc-
tion hypothesis we get that ti ∈ R∗(L(A, qi)) for i = 1 . . . n. Hence, there
exist terms t′i such that t′i →A∗ qi and t′i →R ti. Hence f(t′1, . . . t

′
n) →A∗

f(q1, . . . , qn) →A q and f(t′1, . . . t
′
n) →R∗ f(t1, . . . , tn), i.e. f(t′1, . . . , t

′
n) ∈

L(A, q) and t ∈ R∗(L(A, q)).

– Now, assume that f(q1, . . . , qn)→ q 6∈ A. Thus, transition f(q1, . . . , qn)→ q
has been added toA by the completion step. Hence there exists terms t′′1 , . . . , t

′′
n

such that ∀i = 1 . . . n : topα(t′′i ) = qi and there is either a critical pair of the
form (a) lσ →R C[f(t′′1 , . . . , t

′′
n)], with topα(f(t′′1 , . . . , t

′′
n)) = q and lσ →A∗

q′ or (b) lσ →R f(t′′1 , . . . , t
′′
n) and lσ →A∗ q. Let us continue the proof on

those two cases:

(a) Assume that there is a critical pair of the form lσ →R C[f(t′′1 , . . . , t
′′
n)]

with topα(f(t′′1 , . . . , t
′′
n)) = q. From the fact that {f(q1, . . . , qn)→ q} ⊆

Normα(f(t′′1 , . . . , t
′′
n) → q), we get that α(f(q1, . . . , qn)) = q. But,

q ∈ A and since α is coherent withR and A we get that f(q1, . . . , qn)→
q ∈ A, which contradicts the hypothesis that f(q1, . . . , qn)→ q 6∈ A.

(b) Assume that there is a critical pair of the form lσ →R rσ = f(t′′1 , . . . , t
′′
n)

and lσ →A∗ q. First, let us prove that there exist terms s1, . . . , sn s.t.

∀i = 1 . . . n : si →R∗ ti and si →∗CR,α(A) t′′i . Doing so permits to

prove that there exists a term f(s1, . . . , sn) such that f(s1, . . . , sn) →R∗

f(t1, . . . , tn) = t and f(s1, . . . , sn) →∗CR,α(A) f(t′′1 , . . . , t
′′
n) = rσ. By

cases on qi ∈ A, we obtain:
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∗ Assume that qi occurs in A. Since topα(t′′i ) = qi and α is injective,
we know that there exists a unique term ui such that α(ui) = qi.
Furthermore, since qi ∈ A and α coherent with R and A we get
from definition 72 that ∃si ∈ T (F) s.t. si →∗A ui and L(A, qi) ⊆
R∗({si}) where si is the representative of qi. On the other hand, by
applying the induction hypothesis to ti →∗CR,α(A) qi, we get that ti ∈
R∗(L(A, qi)). Combining the two, we get that ti ∈ R∗(R∗({si}))
i.e. ti ∈ R∗({si}). Thus si →R∗ ti. Now, what remains to be

proved is that ∀i = 1 . . . n : si →∗A t′′i . Applying lemma 73 on
qi ∈ A where topα(t′′i ) = qi, α is coherent with R and A, and si is
the representative of qi, we get that si →∗A t′′i →∗A qi. Hence, we have
si →∗CR,α(A) t

′′
i →∗CR,α(A) qi and si →R∗ ti.

∗ if qi does not occur in A then the only rewriting from ti to qi is nec-
essarily ti →∗CR,α(A) t

′′
i →∗CR,α(A) qi, since the only rewriting path

to qi, which is t′′i →∗CR,α(A) qi, has been added by the current com-
pletion step (α is injective). Hence ti →∗CR,α(A) t

′′
i . In that case let

si = ti.
Thus, we have f(s1, . . . , sn)→∗CR,α(A) f(t′′1 , . . . , t

′′
n) = rσ, rσ →∗CR,α(A)

q and f(s1, . . . , sn) →R∗ f(t1, . . . , tn) = t. By, applying lemma 71 to

term f(s1, . . . , sn)→∗CR,α(A) rσ, we get that there exists δ such that lδ ∈
T (F), lδ →∗CR,α(A) lσ →

∗
CR,α(A) q and lδ →R∗ rδ →R∗ f(s1, . . . , sn).

Let {x1, . . . , xm} be the domain of σ. For all i = 1 . . .m let q′i = xiσ and
ui = δxi. Since ui ∈ L(CR,α(A), q′i) and ui is a subterm of t, we can ap-
ply the induction hypothesis on ui and we obtain that ui ∈ R∗(L(A, q′i)).
Let vi be a term of L(A, q′i) such that vi →R∗ ui. Finally let δ′ = {x1 7→
v1, . . . , xm 7→ vm}. We have lδ′ →A∗ q, lδ′ →R∗ lδ →R∗ rδ →R∗ t.

2

The following theorem states that under some conditions, iterating completion steps
builds an automatonAnR,α recognizing only reachable terms. By extension, this is of course
also true forA∗R,α when it can be built. However, this theorem is given usingAnR,α for all n
because it is more general. Furthermore it can be used to under-approximateR∗(L(A)) by
computing AnR,α for a fixed n when completion does not terminate (A∗R,α does not exist).

Theorem 75 LetR be a TRS,A = 〈F ,Q,Qf ,∆〉 a tree automaton and α an injective ab-
straction function coherent withR andA. IfR andA satisfy the right-coherence condition
then

∀n ∈ N : L(AnR,α) ⊆ R∗(L(A))

PROOF. We proceed by induction on the number of completion steps: n. If n = 0 we
have A0

R,α = A and thus L(A) ⊆ R∗(L(A)). Then, we assume that the property holds
for n completion steps and we prove that it holds for n + 1. Let us denote by B the tree
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automatonA1
R,α = CR,α(A). Then, the proof is done by using the induction hypothesis on

B since we haveAn+1
R,α = BnR,α. By lemma 74, we know that for every state q ∈ Q, and for

every term t ∈ L(B, q) = L(CR,α(A), q) we have t ∈ R∗(L(A, q)). This property is true
in particular for final states, thus we have: L(B) ⊆ R∗(L(A)). Now, in order to use the
induction hypothesis on B, we need to prove that B fulfills the conditions of the theorem,
i.e. that (a) α is coherent with R and B and that (b) R and B satisfy the right-coherence
condition.

(a) For every left-hand side of a normalized transition t ∈ T (F ∪Q) such that α(t) = q,

• if q ∈ A then we had already t → q ∈ A so t → q ∈ B. Since α is co-
herent with R and A, we know that L(A, q) ⊆ R∗({t′ | t′ →A∗ t}). By
applying the R∗ operator to both sides of the previous inequality, we obtain
that R∗(L(A, q)) ⊆ R∗(R∗({t′ | t′ →A∗ t})). On the other hand, by

lemma 74, we get that L(B, q) ⊆ R∗(L(A, q)). Note that R∗(R∗(S)) =
R∗(S) for any set S , hence we have: L(B, q) ⊆ R∗({t′ | t′ →A∗ t}). More-

over, since {t′ | t′ →A∗ t} ⊆ {t′ | t′ →∗B t} we have R∗({t′ | t′ →A∗

t}) ⊆ R∗({t′ | t′ →∗B t}) and by transitivity of ⊆, we get that L(B, q) ⊆
R∗({t′ | t′ →∗B t}).

• if q 6∈ A but q ∈ B then q is a state that has been introduced by CR,α(A) and
since α is injective we know that t is the unique left-hand side of a normalized
transition s.t. t→∗B q. Hence, L(B, q) = {t′ | t′ →∗B t} ⊆ R∗({t′ | t′ →∗B t}).

(b) We know by hypothesis that R and A satisfy the right-coherence condition. If R and
A satisfy the condition becauseR is right-linear then it will clearly be the case forR
and B. Otherwise, by hypothesis, we know that every term t′ recognized by q in A
has a common ancestor t such that t →R∗ t′, i.e. ∀q ∈ A : ∃t ∈ T (F) : L(A, q) ⊆
R∗(t). Now, we have to prove that it is also the case for B.

• if q ∈ A then we know that ∃t ∈ T (F) : L(A, q) ⊆ R∗(t). From lemma 74 we
get that every term recognized by q in B has an ancestor in the terms recognized
by q in A, i.e. ∀tB ∈ L(B, q) : ∃tA ∈ L(A, q) s.t. tA →R∗ tB. Since, by
hypothesis onA, all the terms recognized by have a common ancestor (w.r.tR)
t , it is also the case for terms recognized by q in B (and it is the same ancestor
t), i.e. t→R∗ tA →R∗ tB. Hence, ∀q ∈ B : ∃t ∈ T (F) : L(B, q) ⊆ R∗(t).

• if q 6∈ A but q ∈ B then q is a state that has been introduced by CR,α(A). Let
s → q′ be the new transition whose normalization has led to construction of
state q, i.e. s = C[u] and topα(u) = q. By induction on the height of u we
show that ∃t ∈ T (F) : L(B, q) ⊆ R∗(t):

– if u is a constant, since q 6∈ A and α is injective we know that u→ q is the
unique transition with q on the right-hand side, hence L(B, q) = {u} ⊆
R∗(u).

– if u = f(t1, . . . , tn) then since α is injective we know that there is a
unique left-hand side of a normalized transition f(q1, . . . , qn) such that
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f(q1, . . . , qn) →B q and ti →∗B qi for i = 1 . . . n. For every state qi,
i = 1 . . . n, it is possible to find a unique term t′i such that L(B, qi) ⊆
R∗(t′i). If qi 6∈ A then we use the induction hypothesis on transition
ti → qi. Otherwise, if qi ∈ A, then the proof is similar to the first case
of the proof: by hypothesis we know that L(A, qi) ⊆ R∗(t′i) and from
Lemma 74, we can lift this property to B, i.e. L(B, qi) ⊆ R∗(t′i). Finally
L(B, q) ⊆ R∗(f(t′1, . . . , t

′
n))

Finally, applying the induction hypothesis to B, we get that L(An+1
R,α) = L(BnR,α) ⊆

R∗(L(B)) ⊆ R∗(R∗(L(A))) = R∗(L(A)). 2

Theorem 76 LetR be a TRS,A be a tree automaton, α be an injective abstraction function
coherent withR and A.

L(A∗R,α) = R∗(L(A))

ifA∗R,α exists,R andA fulfills the right-coherence condition and ifR andA∗R,α fulfills
the left-coherence condition.

PROOF. Direct consequence of theorems 75 and 67. 2

This theorem states the general properties of A∗R,α but it says nothing about the ex-
istence of A∗R,α, i.e. of termination of the completion. In the following, we give some
interesting instances of this theorem as corollaries and some conditions for completion to
terminate. The two first corollaries permits one to use automata completion as a rewrit-
ing tool: for any given finite initial language, tree automata completion produces exactly
reachable terms. We will show in section 4.6.3 that using tree automata completion in this
setting provide an efficient alternative to breadth-first search for a particular descendant.

Corollary 77 Let R be a TRS, A = 〈F ,Q,Qf ,∆〉 be a tree automaton such that ∀q ∈
Q : Card(L(A, q)) = 1, α an injective abstraction such thatRan(α) ∩Q = ∅.

L(A∗R,α) = R∗(L(A))

if A∗R,α and A∗R,α andR satisfy the left-coherence condition.

PROOF. Consequence of Theorem 76. Since, A satisfies ∀q ∈ Q : Card(L(A, q)) = 1,
the right-coherence condition is trivially fulfilled. Similarly, since Ran(α) ∩ Q = ∅, α is
trivially coherent withR and A. 2

A direct consequence of this corollary is that applying completion to a tree automaton
recognizing one term models exactly rewriting if α is injective andR is left-linear. Now, let
us show that if any of the above restrictions is not satisfied then the completed automaton
no longer recognizes exactly the set of reachable terms.

Example 78 (Left-coherence condition is necessary) Let R = {f(x, x) → g(x), a →
b}, let A = 〈F ,Q,Qf ,∆〉 be the tree automaton with Q = {q0, q1, q2}, Qf = {q0}
and a set of transitions ∆ = {f(q1, q2) → q0, a → q1, b → q2}. Note that A is de-
terministic, it recognizes a finite language L(A) = {f(a, b)} and it satisfies ∀q ∈ Q :
Card(L(A, q)) = 1. However, for any abstraction function α, the tree automata comple-
tion produces a unique new transition: b → q1 and the completed automaton does not
recognize term g(b) which is a descendant of f(a, b).
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Example 79 (Unicity of initial recognized language is necessary ifR is not right linear)
Let R = {f(x) → g(x, x)}, let A = 〈F ,Q,Qf ,∆〉 be the tree automaton with Q =
{q0, q1}, Qf = {q0} and set of transitions ∆ = {f(q1) → q0, a → q1, b → q1}. Note
that A is deterministic and recognizes a finite language L(A) = {f(a), f(b)}. However,
completion with any α produces a new transition g(q1, q1) → q0 and thus the completed
automaton recognizes terms g(a, b) and g(b, a) which are not valid descendants of f(a)
nor of f(b).

Example 80 (Abstraction function needs to be injective) Let R = {f(c) → g(a, b)},
let A = 〈F ,Q,Qf ,∆〉 be the tree automaton with Q = {q0, q1}, Qf = {q0} and set of
transitions ∆ = {f(q1)→ q0, c→ q1}. Note that A is deterministic, it recognizes a finite
language L(A) = {f(c)} and it satisfies ∀q ∈ Q : Card(L(A, q)) = 1. However, tree
automata completion produces a new transition g(a, b) → q0 which has to be normalized.
Now assume that α is a non injective function mapping a and b to the same state q2, i.e.
α = {a 7→ q2, b 7→ q2}, then Normα(g(a, b) → q0) = {a → q2, b → q2, g(q2, q2) →
q0}. Thus, the completed automaton recognizes terms g(a, b) which is correct but also
g(a, a), g(b, b) and g(b, a) which are not valid descendants of f(a).

As we will see in Sections 3.1.2 and 3.2 with non regular sets of descendants, using non
injective abstraction functions is a very convenient way to force completion to terminate
and build over-approximations.

The following corollary will be used to give alternative proofs of results for ground
TRSs (Dauchet and Tison, 1990; Brainerd, 1969), linear and semi-monadic (Coquidé et al.,
1991), linear and “decreasing” TRSs (Jacquemard, 1996).

Corollary 81 Let R be a linear TRS, A be a tree automaton, α an injective abstraction
such thatRan(α) ∩Q = ∅. If A∗R,α exists then

L(A∗R,α) = R∗(L(A))

PROOF. Left-coherence, right-coherence and coherence of Theorem 76 are trivially satis-
fied. 2

Lemma 82 (Termination of tree automata completion) IfRan(α) is finite then comple-
tion terminates and the tree automaton A∗R,α exists.

PROOF. If Ran(α) is finite then the number of new states introduced by completion is
finite. If the number of new states is finite then the set of possible transitions built on F ,
Q and on the new states is finite and thus completion necessarily terminates. Hence, A∗R,α
exists. 2

In Section 3.3.1, we show how exact sets of reachable terms can be constructed us-
ing completion and injective finite abstraction functions α. Before that, let us show that
completion can be extended to conditional TRSs.

3.1.4 Extension to the conditional case
In this section, we propose an extension of the completion algorithm for dealing with con-
ditional term rewriting systems (CTRS for short). A natural way to compute the set of
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reachable terms for CTRSs is to encode CTRSs into TRS and use the tree automata com-
pletion algorithm for TRS. However, as shown in (Feuillade and Genet, 2003; Feuillade
et al., 2004), a completion algorithm adapted to the specific case of CTRS is likely to give
better results in practice. This algorithm specific to the conditional case is described in this
section.

A conditional term rewriting system (CTRS) over a set of ground terms T (F) is a set
R of conditional rules tl → tr if cond, where tl, tr ∈ T (F ,X ) and cond designates a
conjunction of conditions that must be checked before rewriting. Conditions are pairs of
terms denoted by c1 ↓ c2 where c1, c2 ∈ T (F ,X ), (V ar(c1)∪V ar(c2)) ⊆ Var(tl). Such
a condition, called join condition, is true for a substitution σ if there exists a term u ∈ T (F)
such that c1σ and c2σ can be both rewritten by the CTRSR into a same term u. Then, the
rewriting tlσ → trσ is said to be enabled and can be applied to the term t ∈ T (F) at
position p as for a TRS. →R also defines a rewriting relation on T (F) and thus the set
of reachable terms R∗(S) is defined as in the non-conditional case. For the following we
will only consider atomic join conditions, and then propose an extension to conjunction of
conditions in a very simple way.

For recognizing conditions in the tree automata and compute separately their value, we
will need separate states as well as the property that completion builds automata where
every states (not only final ones) are closed by rewriting.

We first define a rewriting relation t
↓n−→
R
s meaning that to rewrite t into s, it is

necessary to evaluate at most n recursive conditions (n is called the depth of the derivation
in (Dershowitz et al., 1988)).

Definition 83 For a CTRS R with a subset Rnc of non conditional rules, we note
↓n−→
R

the relation defined by:

• ↓0−→
R

=→Rnc

• a ↓n+1−→
R
b ⇔ a

↓0−→
R
b or ∃σ substitution, p ∈ Pos(a) and (l → r if s ↓ t) ∈ R

such that a|p = lσ, b = a[rσ]p and ∃u ∈ T (F) such that sσ
↓n−→
∗

R
u and tσ

↓n−→
∗

Ru.

Note that l→∗R r means that ∃n ∈ N s.t. l
↓n−→
∗

R
r. �

Let A0 be the tree automaton to be completed using the left-linear CTRS R. Let us
consider the following algorithm, where we complete at the ith step the automaton AiR =
〈F ,Qi,Qf ,∆i〉 to an automaton Ai+1

R . The set of state Qi is partitioned into three set of
states: Q0∪Qi,new∪Qi,cond. Q0 is the set of states ofA0,Qi,new is a set of states produced
by transition normalization and indexed by naturals, Qi,cond is a set of conditional states
indexed by terms of T (F , Qi). Let α be an abstraction function. We use the following
algorithm :

1. from Ai = 〈F ,Qi,Qf ,∆i〉, the ith step of completion, we compute the automaton
Ai+1 = 〈F ,Qi+1,Qf ,∆i+1〉 with the initialization: Qi+1 = Qi,∆i+1 = ∆i.
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2. Let us consider each critical pair without considering the condition of the rule. A
pair (q, r) of Q× T (F) is said to be critical for a rule either non conditional l → r,
or conditional l→ r if c1 ↓ c2 where σ ∈ Σ(Q,X ) is a regular language substitution
σ = {x1 7→ qi1 , x2 7→ qi2 , . . . , xn 7→ qin}, where {x1, x2, . . . , xn} = var(l), if
lσ →∗∆i

q and rσ 6→∗∆i
q.

3. for all of these critical pairs, the rule is either:

• a conditional one: l→ r if c1 ↓ c2. There are two possibilities

– there is no state indexed by c1σ or c2σ in the conditional subset of states
of Qi (qc1σ /∈ Qi,cond or qc2σ /∈ Qi,cond), then we create these two states
(or the one missing) and we add to the automaton Ai+1 the following
transitions :

Normα(c1σ → qc1σ) ∪Normα(c2σ → qc2σ)

– there exist two states qc1σ and qc2σ in Qi. We calculate L(Ai, qc1σ) ∩
L(Ai, qc2σ). If this set is empty, the condition is, for this completion step,
considered as false. If it is not empty, then the condition is true and we go
on processing the critical pair as if the rule were not conditional.

• a non conditional one (or it is conditional and the condition has been found true
in the previous step), then we add to the automaton the transitionsNormα(rσ →
q).

4. the new automaton Ai+1 = 〈F ,Qi+1,Qf,i+1,∆i+1〉 is the result of one step of
completion of Ai.

If there exists i ∈ N such that Ai = Ai+1, then Ai is the result. Each time we add a
transition to the automaton, we have to normalize it with new states (indexed by naturals
and added in Qi,new) and then we have the opportunity to make an approximation in order
to limit the number of new states created for the normalization. As in the non conditional
case, this completion may not have a fixed point: we may produce infinitely many new
states. However, approximation techniques similar to those of Section 3.1.2 apply: let
Qcond be the set of new states qc1σ and qc1σ produced by conditions, Qnew the set of new
states used to normalize the transitions, one may restrict in any way the set Qnew to force
completion to terminate. Note that there is no need to limit the number of states of Qcond,
since the number of possible conditions c1, c2 is finite and the number of possible σ is finite
if Qnew is.

Theorem 84 Let A0 be a tree automaton such that L(A0) ⊇ S and R a left linear CTRS.
If A′ is the result of the completion of A0 w.r.t R, then L(A′) is closed with respect to R
andR∗(S) ⊆ R∗(L(A0)) ⊆ L(A′)

PROOF. Let A′ = 〈F ,Q′,Qf ,∆′〉. We prove that ∀t ∈ T (F) s.t. ∃q ∈ Q′, t ∈ L(A′, q),
∀u ∈ T (F) s.t. t →∗R u, we have u ∈ L(A′, q). We prove by induction on n that ∀n ∈
N, q ∈ Q′, t ∈ L(A′, q), u s.t. t

↓n−→
∗

R
u, then u ∈ L(A′, q)
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• If q ∈ Q′, t ∈ L(A′, q), and t
↓0−→
∗

R
u then we trivially have u ∈ L(A′, q). Indeed,

↓0−→
∗

R
means that we consider the subset of non conditional rules of R and then the

proof follows from theorem 67 for the automaton A′ with q as final state.

• now suppose that for a given n: ∀k ≤ n, t
↓k−→
∗

R
u and t →∗∆′ q ⇒ u →∗∆′ q. We

want to show that:
t
↓n+1−→

∗

R
u and t→∗∆′ q ⇒ u→∗∆′ q

t
↓n+1−→

∗

R
u means that exists {t1, t2, . . . , tj} ⊆ T (F) such that

t0 = t
↓n+1−→

R
t1
↓n+1−→

R
t2
↓n+1−→

R
. . .
↓n+1−→

R
tj−1

↓n+1−→
R
tj = u

Now we show that for every ti, if ti →∗∆′ q then ti+1 →∗∆′ q, this leads to two cases:

– ti
↓n−→
R
ti+1, then using the induction hypothesis, ti+1 →∗∆′ q.

– ti 6
↓n−→
R
ti+1 and ti

↓n+1−→
R
ti+1, so there exists a rule (k) l→ r if c1 ↓ c2 ∈ R

a closed context C[], and a substitution σ such that:

ti = C[lσ]→R C[rσ] = ti+1 if c1σ ↓ c2σ

and ∃c s.t. c1σ
↓n−→
∗

R
c, and c2σ

↓n−→
∗

R
c

Since no critical pair betweenR and ∆′ exists because the automaton is a fixed
point for the completion, we necessarily have that ∃qc1σ, qc2σ ∈ Q′. Thus, we
have:

c1σ
↓n−→
∗

R
c and c1σ →∗∆′ qc1σ

c2σ
↓n−→
∗

R
c and c1σ →∗∆′ qc2σ

The induction hypothesis leads to c ∈ L(A′, qc1σ) and
c ∈ L(A′, qc2σ). Consequently, since ti →∗∆′ q, the condition L(A′, qc1,σ) ∩
L(A′, qc2,σ) 6= ∅ is true, andA is a fixed point for the completion for automaton
A, we necessarily have ti+1 →∗∆′ q.

We have t = t0 ∈ L(A′, q), so by induction ∀i ≤ j, ti ∈ L(A′, q), in particular
u = tj .

We get the result that t
↓n+1−→

∗

R
u and t→∗∆ q implies u→∗∆ q

So ∀n ∈ N, t ↓n−→
∗

R
u and t →∗∆′ q implies u →∗∆′ q, then t →∗R u and t →∗∆′ q

implies u →∗∆′ q. This leads us to ∀q ∈ Q′,L(A′, q) is closed under rewriting by R, in
particular for q ∈ Qf , thus L(A′) is closed under rewriting by R. Since completion is
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incremental, we have the inequalities ∆ ⊆ ∆′ and thus S ⊆ L(A0) ⊆ L(A′), and finally
R∗(S) ⊆ L(A′). 2

In order to compute the completion for a set of rules including rules with conjunction
of conditions, one can modify the algorithm in the following way: when such a rule is
involved in a critical pair, create a pair of new states for each atomic condition. Later, if the
same critical pair is found, the rule is enabled for the considered substitution if each related
atomic condition is satisfied (according to the emptiness checking of the intersection of the
conditional state languages). Then we have to normalize the right-hand term as in the non
conditional case.

3.2 Equational Tree Automata Completion
In this section, we propose a refinement of the tree automata completion called equational
tree automata completion. The objective of the refinement is double. First, we aim at
replacing normalization rules by equations in order to ease the definition of approximations
and also to authorize the evaluation of their precision. This is the subject of Section 3.2.1.
Second, this new algorithm permits to gain precision in the completed tree automaton by
preserving the rewriting graph of the reachable terms. This is based on a different way of
solving critical pairs which is presented in Section 3.2.3.

3.2.1 Simplification of Tree Automata by Equations
In this section, we define the simplification of tree automata A w.r.t. a set of equations
E. This operation consists in finding E-equivalent terms recognized in A by different
states and then by merging those states together. The merging of states is performed using
renaming of a state in a tree automaton.

Definition 85 (Renaming of a state in a tree automaton) LetQ,Q′ be set of states,A =
〈F ,Q,Qf ,∆〉 be a tree automaton, and α a function α : Q 7→ Q′. We denote by Aα the
tree automaton where every occurrence of q is replaced by α(q) in Q, Qf and in every left
and right-hand side of every transition of ∆. �

If there exists a bijection α such that A = A′α then A and A′ are said to be equivalent
modulo renaming. The following lemma shows that every term recognized in A is also
recognized in the renamed version of A.

Lemma 86 Let A,A′ be tree automata and q, qa, qb states of A such that A′ = A{qa 7→
qb}. For all term t ∈ T (F ∪Q):

• if t→ 6ε ∗A q then t{qa 7→ qb} →6ε ∗A′ q{qa 7→ qb}

• if t→A∗ q then t{qa 7→ qb} →∗A′ q{qa 7→ qb}

PROOF. We detail here the proof for t→A∗ q =⇒ t→∗A′ q{qa 7→ qb}. The proof for the

→ 6ε ∗A case is simpler. We proceed by induction on the height of term t:
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• if t is of height 0 then t is a state q1 such that q1 →A q2 →A . . . →A qn = q. If

∀i = 1 . . . n : qi 6= qa then the same derivation can be performed within A′ since all
transitions ∀i = 1 . . . n − 1 : qi →A qi+1 are part of A′, and thus q1 →∗A′ qn = q.
If ∃k = 1 . . . n : qk = qa, we have q1 →A q2 →A . . . →A qk−1 →A qa →A
qk+1 →A . . .→A qn. In A′ transitions qk−1 → qa and qa → qk+1 will respectively
be replaced by qk−1 → qb and qb → qk+1. Hence we have q1 →A′ q2 →A′ . . .→A′
qk−1 →A′ qb →A′ qk+1 →A′ . . .→A′ qn, or q1 →∗A′ qn = q.

• now, we assume that the property is true for terms of height lesser or equal to
n. Let us prove the property for the term t = f(t1, . . . , tn) of height lesser or
equal to n + 1. We know that f(t1, . . . , tn) →A∗ q. By the construction of tree
automaton derivation, we can deduce that there exists states q1, . . . , qn such that
f(t1, . . . , tn) →A∗ f(q1, . . . , qn) →A∗ q. Applying the induction hypothesis on

t1 →A∗ q1, . . . , tn →A∗ qn and f(q1, . . . , qn) →A∗ q, we obtain that t1{qa 7→
qb} →∗A′ q1{qa 7→ qb}, . . . , tn{qa 7→ qb} →∗A′ qn{qa 7→ qb} and f(q1{qa 7→
qb}, . . . , qn{qa 7→ qb}) →∗A′ q{qa 7→ qb}. Thus, f(t1, . . . , tn){qa 7→ qb} →∗A′
f(q1, . . . , qn){qa 7→ qb} →∗A′ q{qa 7→ qb}.

2

We use renamings for merging states in a tree automaton. For instance, a tree automaton
Awhere q1 and q2 are merged isA{q2 7→ q1}, i.e. a tree automaton where every occurrence
of q2 has been replaced by q1. Now we define the simplification relation which merges
states in a tree automaton according to an equation.

Definition 87 (Simplification relation) Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and
E be a set of linear equations. For s = t ∈ E, σ ∈ Σ(Q,X ), qa, qb ∈ Q such that
sσ → 6ε ∗A qa, tσ → 6ε ∗A qb, i.e.

sσ
E

A,6ε ∗
��

tσ

∗ A,6ε
��

qa qb

and qa 6= qb then A can be simplified into A′ = A{qb 7→ qa}, denoted by A ;E A′.
� �

Lemma 88 For all tree automataA,A′, all set of equations E and all states q, qa, qb of A
such that A;E A′ and A′ = A{qa 7→ qb}, we have L(A, q) ⊆ L(A{qa 7→ qb}, q{qa 7→
qb}).

PROOF. Direct consequence of Lemma 86 2

To build approximations, our objective is to apply repeatedly simplification on a tree
automaton up to a normal form. However, simplification is non deterministic: at each step
of simplification several equations may be used and on different couples of states. Hence,
it is important to guarantee that whatever the order of simplification steps performed the
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normal form is unique. First, we show that the simplification relation is well-founded.
Then that it is locally confluent. From those two lemmas, we can get the confluence and
uniqueness of normal forms.

Lemma 89 The simplification relation ;E is well-founded.

PROOF. Each step of simplification A ;E A′ replace every occurrence of a state q2 by
q1 in A to obtain A′. Hence, each step of simplification strictly decreases the number of
states in the tree automaton, which is bounded by 1. 2

Definition 90 For tree automata A,A′, we note A;!
E A′ if A;∗E A′ and A′ is normal

form w.r.t. ;E , i.e. ∀A′′ : A′ 6;E A′′. �

Lemma 91 (Local confluence) The relation ;E is locally confluent modulo a bijective
renaming of states.

PROOF. We prove here that for all tree automata A,A1,A2 if A ; A1 and A ; A2

then there exists a two tree automata A′1 such that A1 ;∗E A′1, A2 ;∗E A′2 and A′1 and
A′2 are equivalent modulo a bijective renaming of their states. Assume that A1 (resp. A2)
was obtained from A using the equation l1 = r1 (resp. l2 = r2) such that l1σ1 → 6ε ∗A qa
and r1σ1 → 6ε ∗A qb (resp. l2σ2 →6ε ∗A qc and r2σ2 → 6ε ∗A qd). Hence A1 = A{qa 7→ qb}
and A2 = A{qc 7→ qd}. Using this and Lemma 86, we get that there exists substitutions
σ′1 = σ1{qc 7→ qd} and σ′2 = σ2{qa 7→ qb} such that l1σ′1 →

6ε ∗
A2

qa{qc 7→ qd} and
r1σ
′
1 →

6ε ∗
A2

qb{qc 7→ qd} (resp. l2σ′2 →
6ε ∗
A1

qc{qa 7→ qb} and r2σ
′
2 →

6ε ∗
A1

qd{qa 7→ qb}). By
Definition87, we know that we necessarily have qa 6= qb and qc 6= qd. Then we proceed by
case study on the possibly equivalent states:

• if qa = qc, we are going to study two different cases: qb = qd and qb 6= qd:

– if qb = qd then we trivially have A1 = A{qa 7→ qb} = A2. Thus, A′1 = A1 =
A2 = A′2;

– if qb 6= qd then, from qa = qc, we get that A1 = A{qa 7→ qb} and A2 =
A{qa 7→ qd}. Besides this, as we have seen above, we know that there exists a
substitution σ′1 such that l1σ′1 →

6ε ∗
A2

qa{qa 7→ qd} and r1σ
′
1 →

6ε ∗
A2

qb{qa 7→ qd}.
Since we know from the beginning that qa 6= qb, we get that l1σ′1 →

6ε ∗
A2

qd

and r1σ
′
1 →

6ε ∗
A2

qb. Since we are in the case where qb 6= qd, we know that
simplification applies. Hence there exists a tree automatonA′2 = A2{qd 7→ qb}
such that A2 ;E A′2. We can apply the same reasoning on A1. Remember
that l2σ′2 →

6ε ∗
A1

qa{qa 7→ qb} and r2σ
′
2 →

6ε ∗
A1

qd{qa 7→ qb}. Besides to this
we know that qd 6= qa because otherwise we would have qd = qa = qC
which is a contradiction with qc 6= qd. Hence renamings on states can be
applied and we obtain: l2σ′2 →

6ε ∗
A1

qb and r2σ
′
2 →

6ε ∗
A1

qd. Like in the previous
case, this implies that there exists a tree automaton A′1 such that A1 ;E A′1
and A′1 = A1{qb 7→ qd}. What remains to be proved is that A′1 and A′2 are
equivalent modulo renaming.
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A′1 = A′2
A1{qb 7→ qd} = A2{qd 7→ qb}

(A{qa 7→ qb}){qb 7→ qd} = (A{qa 7→ qd}){qd 7→ qb}
A{qa 7→ qd, qb 7→ qd} = A{qa 7→ qb, qd 7→ qb}

Hence, A′1 is A where states qa, qb, qd are all merged together in qd and A′2
is A where qa, qb, qd are merged in qb. We can thus conclude that A′1 can be
obtained fromA′2 by simply renaming qb in qd. This renaming is bijective since
qd does not occur in A′2.

• if qa 6= qc and qb = qd then A1 = A{qa 7→ qb} and A2 = {qc 7→ qb}. Like in
the previous case, we can use the fact that l1σ′1 →

6ε ∗
A2

qa{qc 7→ qb} and r1σ
′
1 →

6ε ∗
A2

qb{qc 7→ qb} to deduce that l1σ′1 →
6ε ∗
A2

qa and r1σ
′
1 →

6ε ∗
A2

qb. The renamings can be
simplified in that way because, in the case we are studying qa 6= qc and we also have
qb 6= qc because, otherwise, we would have qc = qb = qd which is a contradiction
with qc 6= qd. From previous application of rule l1 = r1 we get that A2 ;E

A′2 = A2{qa 7→ qb}. From the symmetrical property, i.e. l2σ′2 →
6ε ∗
A1

qc{qa 7→ qb}
and r2σ

′
2 →

6ε ∗
A1

qb{qa 7→ qb}, and the fact that qa 6= qc and qa 6= qb, we obtain:
l2σ
′
2 →

6ε ∗
A1

qc and r2σ
′
2 →

6ε ∗
A1

qb. Hence, A1 ;E A′1 = A1{qc → qb}. Like in the
previous case, we have:

A′1 = A′2
A1{qc 7→ qb} = A2{qa 7→ qb}

(A{qa 7→ qb}){qc 7→ qb} = (A{qc 7→ qb}){qa 7→ qb}
A{qa 7→ qb, qc 7→ qb} = A{qc 7→ qb, qa 7→ qb}

Here, we directly have A′1 = A′2.

• if qa 6= qc, qd 6= qb and qb = qc, then A1 = A{qa 7→ qb} and A2 = {qb 7→ qd}.

– if qa = qd then A1 = A{qa 7→ qb} and A2 = {qb 7→ qa}. Then we directly
have A′1 = A1 and A′2 = A2 since A1 and A2 are equivalent modulo a bijec-
tive renaming. Indeed, A1 can be obtained from A2 by simply renaming qa in
qb. This renaming is bijective since qb does not occur in A2.

– if qa 6= qd, then from l1σ
′
1 →

6ε ∗
A2

qa{qc 7→ qd} and r1σ
′
1 →

6ε ∗
A2

qb{qb 7→ qd}
we get that simplification applies and A2 ;E A′2 = A2{qa 7→ qd}. For A1

we get that l2σ′2 →
6ε ∗
A1

qb{qa 7→ qb} and r2σ
′
2 →

6ε ∗
A1

qd{qa 7→ qb} and thus
A1 ;E A′1 = A1{qb 7→ qd}.
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A′1 = A′2
A1{qb 7→ qd} = A2{qa 7→ qd}

(A{qa 7→ qb}){qb 7→ qd} = (A{qb 7→ qd}){qa 7→ qd}
A{qa 7→ qd, qb 7→ qd} = A{qb 7→ qd, qa 7→ qd}

Here, we also directly have A′1 = A′2.

• the case where qa 6= qc, qd 6= qb and qa = qd is symmetrical to the previous one with
qb = qc and can thus be treated in the same way.

• In the remaining case, we know that qa 6= qc, qd 6= qb, qb 6= qc and qa 6= qd. Further-
more, as mentioned before, we have the general hypothesis saying that qa 6= qb and
qc 6= qd. Hence, in that case, we know that qa, qb, qc, qd are all different. As before,
from the usual property saying that l1σ′1 →

6ε ∗
A2

qa{qc 7→ qd} and r1σ
′
1 →

6ε ∗
A2

qb{qc 7→
qd}, we get that there exists A′2 such that A2 ;E A′2{qa 7→ qb}. Symmetrically,
there exists A′1 such that A1 ;E A′1 = A′1{qc 7→ qd}. Finally, we have to prove
that:

A′1 = A′2
A1{qc 7→ qd} = A2{qa 7→ qb}

(A{qa 7→ qb}){qc 7→ qd} = (A{qc 7→ qd}){qa 7→ qb}

Then, we can remark that, since qa, qb, qc, qd are all different, the ordering of re-
naming has no effect, i.e. (A{qa 7→ qb}){qc 7→ qd} = A{qa 7→ qb, qc 7→ qd} =
(A{qc 7→ qd}){qa 7→ qb}. Thus A′1 = A′2.

2

Thanks to the previous lemma and termination of ;E , we can prove that ;E is confluent
and that normal forms of ;E are unique modulo renaming.

Theorem 92 (Canonical Simplified Tree Automata) LetA,A′1,A′2 be tree automata and
E be a set of linear equations such that A ;!

E A′1 and A ;!
E A′2 then A′1 and A′2 are

equivalent modulo a bijective renaming.

PROOF. Since ;E is locally confluent and terminating, it is confluent. This is a general
property of abstract reduction systems (Baader and Nipkow, 1998). Moreover, by termi-
nation and confluence, we get the unicity of normal forms modulo a bijective renaming.
2

3.2.2 R/E-coherent Tree Automata
Now, we define more precisely the notion of R/E-coherence of tree automata which is a
key notion to prove the precision of approximations performed using equations. In the main
theorem of this part, we also show that simplification relation preservesR/E-coherence.
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Definition 93 (Coherent automaton) LetA = 〈F ,Q,Qf ,∆〉 a tree automaton,R a TRS
and E a set of equations. The automaton A is said to be R/E-coherent if ∀q ∈ Q : ∃s ∈
T (F) :

s→ 6ε ∗A q ∧ [∀t ∈ T (F) : (t→6ε ∗A q =⇒ s =E t) ∧ (t→A∗ q =⇒ s→∗R/E t)].

�

In the following, any term s such that s →6ε ∗A q is called a representative of q in A and
is denoted by rep(q). Another property enjoyed by R/E-coherent tree automata is that
they are filled. We now define this property and prove that it is true forR/E-coherent tree
automata.

Definition 94 A state q of a tree automaton A is filled if there exists at least one term
t ∈ T (F) such that t→ 6ε ∗A q. A tree automaton is filled if all its states are. �

Lemma 95 AnyR/E-coherent tree automaton is filled.

PROOF. This is clear since, for every state q of a coherent tree automaton A, there exists a
representative s such that s→6ε ∗A q. 2

Now we prove a lemma on the substitutions obtained by matching a linear term on a
filled tree automaton. This lemma is crucial for the next theorem that shows that simplifi-
cation preservesR/E-coherence.

Lemma 96 Let A be a filled tree automaton, t ∈ T (F ,X ) a linear term and σ a substi-
tution σ : X 7→ Q such that tσ →A∗ q (resp. tσ →6ε ∗A q). Then, there exists at least one

substitution µ : X 7→ T (F) such that tµ →A∗ q (resp. tµ → 6ε ∗A q). Furthermore, for all

substitution µ such that µ = {x 7→ t′ | x ∈ Dom(σ) ∧ t′ →A∗ σx (resp. t′ →6ε ∗A σx)},

then tµ→A∗ q (resp. tµ→6ε ∗A q).

PROOF. We achieve the proof for→ 6ε ∗A but it is similar for→A∗. Let t = C[x1, . . . , xn].

From tσ → 6ε ∗A q we know that {x1, . . . , xn} ⊆ Dom(σ). Let q1, . . . , qn ∈ A be the
states such that ∀i = 1 . . . n : qi = xiσ. Since the automaton is filled, we know that
there exists at least one term ti per state qi such that ti → 6ε ∗A qi. Hence, there exists at
least one substitution µ such that µ = {x1 7→ t1, . . . , xn 7→ tn}. Let µ mapping xi to
any term ti such that ti → 6ε ∗A qi. We thus have tµ = C[x1, . . . , xn]µ = C[t1, . . . , tn].
Since ∀i = 1 . . . n : ti → 6ε ∗A qi, we have C[t1, . . . , tn] →6ε ∗A C[q1, . . . , qn] = tσ. But, by
hypothesis, we know that tσ → 6ε ∗A q. Hence, tµ→6ε ∗A tσ →6ε ∗A q. 2

Theorem 97 Let A,A′ be tree automata, R a TRS, E a set of equations and qa, qb states
of A such that A ;E A′ and A′ = A{qa 7→ qb}. If A is R/E-coherent then so is
A′. Furthermore, for all state q of A if a term s is a representative of q in A then it is a
representative for q{qa 7→ qb} in A′.
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PROOF. The proof of R/E-coherence of A′ has two parts, corresponding to the two
conjuncts in Definition 93. Let Q and Q′ = Q \ {qa} be the set of states respectively of A
and A′.

1. We prove the first conjunct in Definition 93, that is, ∀q ∈ Q′. ∃s ∈ T (F). s → 6ε ∗A
q ∧ ∀t ∈ T (F) : (t→6ε ∗A′ q =⇒ s =E t). Let q ∈ Q′. Then q ∈ Q, and, since A is
R/E-coherent, we know that

(†) there exists a representative s ∈ T (F) such that s → 6ε ∗A q and for all terms
t′ ∈ T (F) : t′ →6ε ∗A q =⇒ s =E t′.

We prove that the same term s can serve as representative of q in A′.
For this, we have to prove s → 6ε ∗A′ q and for all t ∈ T (F) : t →6ε ∗A′ q =⇒ s =E t.
The first statement, s→ 6ε ∗A′ q, is a consequence of s→6ε ∗A q and of Lemma 86. There
remains to prove the second statement, that is for all t ∈ T (F) : t→ 6ε ∗A′ q =⇒ s =E

t, which is done by induction on t.

• if height of t is 1, by definition of→ 6ε ∗A′ we necessarily have t→ q ∈ A′. Then
by case on q:

– if q 6= qb then t → q ∈ A by definition of A′. By letting t′ = t in (†) we
obtain s =E t, which concludes this case.

– if q = qb, then, by definition of A′, either t→ qb ∈ A or t→ qb ∈ A.
∗ if t→ qb ∈ A the proof is similar to that of the previous case.
∗ if t → qa ∈ A, then from t →6ε ∗A qa and the fact that A is R/E-

coherent we know that there exists a representative u such that u→ 6ε ∗A
qa. We now show that

(‡) u =E s, where s is the representative for q = qb from (†).

Since A ;E A′ and A′ = {qa 7→ qb}, we know that there exists
an equation l = r of E and a substitution σ : X 7→ Q such that
lσ → 6ε ∗A qa and rσ → 6ε ∗A qb. From this and Lemma 96, we get that
there exists a substitution µ : X 7→ T (F) such that lµ → 6ε ∗A qa and
rµ→6ε ∗A qb. Since l = r ∈ E, we also have lµ =E rµ. Then by using
R/E-coherence of A on state qa we get that u =E lµ and, similarly,
on state qb we get that s =E rµ. Finally, by transitivity of =E we
obtain that u =E s,which concludes the proof of (‡).
From (‡) and u =E t (above) we get s =E t, which concludes the
proof in this case.

• now, we assume that the property is true for any term t of height lesser of equal
to n. Let us prove that the property is true for a term t = f(t1, . . . , tn)→ 6ε ∗A′ q
whose height is lesser or equal to n+ 1.
By construction of tree automata derivation, from t = f(t1, . . . , tn) →6ε ∗A′ q
we obtain that there exists states q′1, . . . , q

′
n such that: f(t1, . . . , tn) → 6ε ∗A′

f(q′1, . . . , q
′
n) → 6ε ∗A′ q. Like in the base case, we can discriminate between
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several subcases where q 6= qb, q = qb and f(. . .) → qb ∈ A, and q = qb
and f(. . .) → qa ∈ A. For the last case, the proof that a representative of
qb is also a representative for terms recognized by qa can be carried out like
in the base case. So, let us assume that q 6= qb and focus on the other part
of the proof where we assume that ∃k ∈ {1 . . . n} such that q′k = qb and this
state was obtained by the renaming of a qa, i.e. that f(q1, . . . , qa, . . . , qn) →
q ∈ A. Note that we assume here that there is only one state qk such that
qk = qa for simplicity, but the proof can be achieved in the same way with
any number of states equal to qa (or to qb). Using those assumptions, we have:
f(t1, . . . , tk, . . . , tn)→ 6ε ∗A′ f(q1, . . . , qb, . . . , qn)→ 6ε ∗A′ q and f(q1, . . . , qa, . . . , qn)→
q ∈ A. Since A is R/E-coherent we know that there exists representa-
tives s1, . . . , sk−1, sk+1, . . . , sn such that ∀i ∈ {1 . . . n}/{k} : si → 6ε ∗A qi.
Similarly, there exists a representative sa for qa such that sa → 6ε ∗A qa. Let
u = f(s1, . . . , sa, . . . , sn). We have u = f(s1, . . . , sa, . . . , sn) →6ε ∗A q.
Applying induction hypothesis on terms ∀i ∈ {1 . . . n}/{k} : ti, we obtain,
furthermore that representatives ∀i ∈ {1 . . . n}/{k} : si of qi in A are also
representatives of qi in A′. Hence, ∀i ∈ {1 . . . n}/{k} : ti → 6ε ∗A′ qi ∧ ti =E si.
To conclude the proof, it is thus enough to prove that sa =E tk. For this, we use
the fact that, still by R/E-coherence of A, we know that there exists a repre-
sentative sb for qb such that sb → 6ε ∗A qb. On the other hand, applying induction
hypothesis on tk → 6ε ∗A′ qb we obtain that any representative of state qb in A
becomes a representative for qb in A′, and thus, sb =E tk. Then we can apply
the same reasoning as in the base case to prove that sa =E sb. SinceA;E A′
and A′ = {qa 7→ qb}, we know that there exists an equation l = r of E and a
substitution σ : X 7→ Q such that lσ → 6ε ∗A qa and rσ →6ε ∗A qb. From this result
and Lemma 96, we get that there exists a substitution µ : X 7→ T (F) such that
lµ =E rµ, lµ→6ε ∗A qa and rµ→6ε ∗A qb. Then by usingR/E-coherence ofA on
state qa we get that sa =E lµ and, similarly, on state qb we get that sb =E rµ.
Finally, by transitivity of =E we obtain that sa =E sb. Recall that, using the
induction hypothesis, we have obtained that ∀i ∈ {1 . . . n}/{k} : si =E ti.
We also have that sa =E sb =E tk. Thus u = f(s1, . . . , sa, . . . , sn) =E

f(s1, . . . , sb, . . . , sn) and f(s1, . . . , sb, . . . , sn) =E f(t1, . . . , tk, . . . , tn) = t,
and by transitivity of =E we can conclude that u =E t. Finally, by R/E-
coherence of A we get that u =E s and s→ 6ε ∗A q where s is any representative
of q in A. From Lemma 86 and s →6ε ∗A q we obtain that s → 6ε ∗A′ q. Using
transitivity of =E on s =E u and u =E t we obtain that s =E t. Hence, any
representative s of q in A is still a representative of q in A′.

2. In the second case of the proof, we have to prove that ∀q ∈ Q′ : ∃s ∈ T (F) :
s → 6ε ∗A′ q ∧ (∀t ∈ T (F) : t →∗A′ q =⇒ s →∗R/E t). We proceed by induction
on the maximum height of t. Given a state q ∈ Q′ to prove that it has (at least) all
the representatives s of A, we build a representative u of the same height than t, and
then prove that s =E u, s→ 6ε ∗A′ q and u→∗R/E t, hence that s→∗R/E t.

• if height of t is 1, we have t→A′ q1 →A′ . . .→A′ qn where q = qn. Then by
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case on q1, . . . qn:
– ∀i = 1 . . . n : qi 6= qb, then we have a similar derivation in A, i.e. t →A
q1 →A . . .→A qn and byR/E-coherence ofA we obtain that there exists

a representative s of q in A, i.e. s → 6ε ∗A q and s →∗R/E t. Lemma 86

implies that s → 6ε ∗A′ q. Hence any representative s of q in A becomes a
representative of q in A′.

– ∃i = 1 . . . n : qi = qb, i.e. t →∗A′ qi = qb and qi →∗A′ qn. If t →A∗ qa
(resp. t →A∗ qb) and qa →A∗ qn (resp. qb →A∗ qn) then the proof is
similar to the previous case.

– ∃i = 1 . . . n : qi = qb, i.e. t →∗A′ qi = qb and qi →∗A′ qn and t →A∗ qa
and qb →A∗ qn. Note that the proof is similar for the dual case where if

t →A∗ qb and qa →A∗ qn. In the same way, even if there are some cycles
in the chain q1, . . . , qn and thus several occurrences of qa and qb, the proof
is similar. So, let us assume that t →A∗ qa and qb →A∗ qn. From R/E-
coherence of A we obtain that there exist representatives sa for qa, sb for
qb and s for q inA such that sa →∗R/E t and s→∗R/E sb. Like in the base
case of case (1), from the fact thatA;E A′ we can prove that there exists
an equation l = r and a substitution µ such that lµ =E rµ, lµ →A∗ qa
and rµ →A∗ qb and since A is coherent, sa =E lµ and sb =E rµ. Hence
sa =E sb and we thus have s →∗R/E sb =E sa →∗R/E t, or more briefly

s→∗R/E t. Finally, by Lemma 86, we obtain that s→ 6ε ∗A′ q and thus s is a
representative for q inA′. Note that the case where i = n can be treated in
the same way and that in that case one has to show that sa becomes also a
representative for q in A′ which is also the case since s = sb = sa →∗R/E
t.

• now, we assume that the property is true for any term t of height lesser of equal
to n. Let us prove that the property is true for a term t = f(t1, . . . , tn)→∗A′ q
whose height is lesser or equal to n+1. By construction of tree automata deriva-
tion, from t = f(t1, . . . , tn)→∗A′ q we obtain that there exists states q′1, . . . , q

′
n

such that: f(t1, . . . , tn) →∗A′ f(q′1, . . . , q
′
n) →∗A′ q. If f(q′1, . . . , q

′
n) →A′

q1 →A′ . . .→A′ qm = q and some qi = qb, then we can apply the same tech-
nique as in the base case. Let us focus on the other part of the proof where q 6=
qb and ∃k ∈ {1 . . . n} such that q′k = qb and this state was obtained by the re-
naming of a qa, i.e. that f(q1, . . . , qa, . . . , qn)→ q ∈ A. As for case (1), we as-
sume that there is only one qa for sake of simplicity but the proof can be carried
out for any number of qa or qb present in this transition. Using those assump-
tions, we have: f(t1, . . . , tk, . . . , tn) →6ε ∗A′ f(q1, . . . , qb, . . . , qn) → 6ε ∗A′ q and
f(q1, . . . , qa, . . . , qn)→ q ∈ A. Since A isR/E-coherent we know that there
exists representatives s1, . . . , sk−1, sk+1, . . . , sn such that ∀i ∈ {1 . . . n}/{k} :
si →6ε ∗A qi. Similarly, there exists a representative sa for qa such that sa → 6ε ∗A
qa. Let u = f(s1, . . . , sa, . . . , sn). We have u = f(s1, . . . , sa, . . . , sn) → 6ε ∗A
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q. Applying induction hypothesis on terms ∀i ∈ {1 . . . n}/{k} : ti, we obtain,
furthermore that representatives ∀i ∈ {1 . . . n}/{k} : si of qi inA are also rep-
resentatives of qi in A′. Hence, ∀i ∈ {1 . . . n}/{k} : ti →6ε ∗A qi ∧ si →∗R/E ti.
To conclude the proof, it is thus enough to prove that sa →∗R/E tk. For this,
we use the fact that, still by R/E-coherence of A, we know that there exists
a representative sb for qb such that sb → 6ε ∗A qb. On the other hand, applying
induction hypothesis on tk → 6ε ∗A′ qb we obtain that any representative of state
qb in A becomes a representative for qb in A′, and thus, sb →∗R/E tk. Then we
can apply the same reasoning as in the base case to prove that sa =E sb. Since
A ;E A′ and A′ = {qa 7→ qb}, we know that there exists an equation l = r

of E and a substitution µ : X 7→ T (F) such that lµ =E rµ, lµ → 6ε ∗A qa and
rµ→6ε ∗A qb. Then by usingR/E-coherence ofA on state qa we get that sa =E

lµ and, similarly, on state qb we get that sb =E rµ. Finally, by transitivity of
=E we obtain that sa =E sb. Then, from sa =E sb and sa =E sb →∗R/E tk
we obtain that sa →∗R/E tk. Besides of this, recall that using the induction
hypothesis, we have obtained that ∀i ∈ {1 . . . n}/{k} : si →∗R/E ti. Thus u =
f(s1, . . . , sa, . . . , sn) →∗R/E f(t1, . . . , tk, . . . , tn) = t. Finally, by R/E-

coherence of A we get that u =E s and s→ 6ε ∗A q where s is any representative
of q in A. From Lemma 86 and s →6ε ∗A q we obtain that s → 6ε ∗A′ q. Then, from
s =E u and u→∗R/E t we obtain that s→∗R/E t. Hence, any representative s
of q in A is still a representative of q in A′ and can be rewritten by→R/E into
t.

2

3.2.3 One step of equational completion

Given a tree automatonA and a TRSR, the tree automata completion algorithm, proposed
in (Genet, 1998; Feuillade et al., 2004), computes a tree automatonAkR such that L(AkR) =
R∗(L(A)) when it is possible (for the classes of TRSs where an exact computation is
possible) and such that L(AkR) ⊇ R∗(L(A)) otherwise.

Recall that completion builds a sequence A0
R,A1

R, . . . ,AkR of automata such that if
s ∈ L(AiR) and s →R t then t ∈ L(Ai+1

R ). As in the standard completion, we search
for critical pairs lσ →∗AiR q and rσ 6→∗AiR q with l → r ∈ R and q ∈ AiR. In equational
completion, critical pairs are solved as follows. For every critical pair detected between
R and AiR such that rσ 6→∗AiR q, the tree automaton Ai+1

R is constructed by adding new

transitions rσ → q′ and q′ → q toAiR such thatAi+1
R recognizes rσ in q, i.e. rσ →∗Ai+1

R
q.

lσ R
//

AiR
��

rσ

Ai+1
R

��
q q′
Ai+1
R

oo
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As before, the transition rσ → q′ is not necessarily a normalized transition of the form
f(q1, . . . , qn) → q′ and so it has to be normalized first. One of the aims of this paper
is to replace normalization rules by equations. Using equations require to build R/E-
coherent tree automata. This is the reason why, in order to have precise approximations,
the resolution of critical pairs is not identical to the one defined in (Genet, 1998). Indeed,
in (Genet, 1998), a critical pair was solved in the following way:

lσ R
//

∗AiR
��

rσ

∗

Ai+1
R

ooq

The transition rσ → q was added directly to Ai+1
R . In the version we propose here,

we add transitions so that rσ → q′ and an epsilon transition q′ → q. This is necessary to
preserve the precision of approximations achieved using the simplification relation defined
above. This is explained in the example below.

Example 98 Let A be a tree automaton, q1, q2, q3, q4 states of A,R a TRS, E = {s = u}
a set of equations, s, t, u, v be terms such that s →R t and u →R v. Assuming that A is

a tree automaton produced by the completion algorithm of (Genet, 1998), if s→A∗ q1 and

u→A∗ q2 then we have the following situation:

s
R

//

A,6ε ∗
��

t

∗ A, 6ε
��

q1 q1

u
R

//

A,6ε ∗
��

v

∗ A,6ε
��

q2 q2

Now recall that E = {s = u}, if we use the simplification relation defined above,
A ;E A′ such that:

s
R

//

A′, 6ε ∗
��

t

∗ A′, 6ε
��

q1 q1

u
R

//

A′, 6ε ∗
��

v

∗ A′, 6ε
��

q1 q1

In other words, s and u are equivalent in A′ (they are recognized by q1). This is coherent
withE. However, t and v are also equivalent to s and u. If using completion for verification
purposes this approximation may be too strong. If a program evolves from a state s to t
or from u to v (R encode the transition function of the program) and if the approximation
merges together states s and u, from

s

E

R
// t

u
R

// v

a representation
of the form

t

s, u R

77pppppp

R ''OOOOOO

v

is more precise
than

s, u
R

// t, v
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The proposed refinement of the completion procedure produces:

s
R

//

A,6ε ∗
��

t

∗ A,6ε
��

q1 q3ε
oo

u
R

//

A,6ε ∗
��

v

∗ A, 6ε
��

q2 q4ε
oo

and the approximation equation of E will simplify this automaton into:

s
R

//

A,6ε ∗
��

t

∗ A,6ε
��

q1 q3ε
oo

u
R

//

A,6ε ∗
��

v

∗ A, 6ε
��

q1 q4ε
oo

where s and u are recognized by the same state and t and v are recognized by distinct
states.

In this new completion algorithm, since approximations are performed by simplification
of the tree automaton as defined in Section 3.2.1, the definition of normalization can be
simplified. In particular, it does no longer need to be parameterized by an abstraction
function α. The simplified normalization function normalize subterms by either states of
Q (using transitions of ∆) or new states. A state q of Q is used to normalize a term t if
t →∗∆ q. Normalizing by reusing states of Q and transitions of ∆ permits to preserve the
determinism of→ 6ε∆. Indeed,→ 6ε∆ can be kept deterministic during completion though→∆

cannot.

Definition 99 (Normalization) Let Λ be the set of all transitions defined on T (F ∪Q).
Let s ∈ T (F ∪Q) and ∆ ⊆ Λ be a set of transitions. A new state is a state of Q not
occurring in ∆. The function Norm∆ has type T (F ∪Q) 7→ (Q×P(Λ)). Norm∆(s) is
inductively defined by:

1. if s ∈ Q then Norm∆(s) = (s, ∅),

2. if s = f(t1, . . . , tn), then Norm∆(s) = (q, {f(q′1, . . . , q
′
n)→ q} ∪

⋃n
i=1Ni)

where for i = 1 . . . n, we choose (q′i, Ni) and q such that:

• (q′i, Ni) =
{

(qi, ∅) if qi ∈ {u | t→6ε ∗∆ u} 6= ∅
Norm∆(ti), otherwise

• q is either

– the right-hand side of a transition f(q′1, . . . , q
′
n) → q if such a transition

exists in ∆
– or a new state, otherwise.

�
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Note that using this definition of Norm∆ it is possible to normalize with new states as
well as to reuse the states of Q and transitions of ∆. Thus it is either possible to preserve
the determinism of→ 6ε∆ or not, depending on the objective of the approximation. Now, we
can use this definition to formally define one step of completion. A step of completion only
concerns the resolution of critical pairs and not how approximations are performed. The
approximation step has been defined in Section 3.2.1 and the full completion algorithm will
be defined in Section 3.2.4. We first restrict the set of critical pairs to the non trivial ones.
A critical pair is trivial if one of the states substituted to the variables is rewritten by an
epsilon transition.

Definition 100 (Trivial critical pair) Let l→ r be a rule ofR such that l = C[x1, . . . xn],
A = 〈F ,Q,Qf ,∆〉 a tree automaton, q, q1, . . . , qn ∈ Q and σ = {x1 7→ q1, . . . , xn 7→
qn}. The critical pair

lσ R
//

∗A
��

rσ

q

is trivial if all derivations lσ = C[q1, . . . , qn] →A∗ q contains at least one epsilon

step between qi (1 ≤ i ≤ n) and q′ ∈ Q, i.e. the derivation is of the form lσ =
C[q1, . . . , qi, . . . , qn]→A C[q1, . . . , q

′, . . . , qn]→A∗ q. �

It is not necessary to consider critical pairs during completion. Here is an example
showing why.

Example 101 Let R = {f(x)→ g(x)} and A the tree automaton whose transition set ∆
is {f(q0) → qf , a → q0, b → q1, q1 → q0}. Let σ1 = {x 7→ q0} and σ2 = {x 7→ q1}.
The critical pair lσ1 →A qf is non trivial but lσ2 →A qf is, since f(q1) →A f(q0) →A
qf . Applying completion on the first critical pair produces the new transitions g(q0) →
q2, q2 → qf . Applying completion on the second critical pair gives the new transitions
g(q1) → q3, q3 → qf . However, note that this second set of transitions is useless to add
because with the first set and A we already have g(q1)→ g(q0)→→ q2 → qf .

Definition 102 (Set of (non trivial) critical pairs) Let a TRSR and a tree automatonA =
aut. The set of (non trivial) critical pairs between R and A is CP (R,A) = {(l →
r, σ, q) | l → r ∈ R and q ∈ Q and σ ∈ Σ(Q,X ) and lσ →∗A q and rσ 6→∗A q and (l →
r, σ, q) non trivial}. �

Definition 103 (One step automaton completion) Let A = 〈F ,Q,Qf ,∆〉 be a tree au-
tomaton,R be a left-linear TRS. The one step completed automaton is CR(A) = 〈F ,Q′,Qf ,∆′〉
where:

∆′ = ∆ ∪
⋃

(l→r,q,σ)∈CP (R,A)

NewT ∪ {q′ → q}

where (q′, NewT ) = Norm∆(rσ) and Q′ contains all the states of ∆′. �
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Example 104 Let A be a tree automaton with ∆ = {f(q1)→ q0, a→ q1, g(q1)→ q2}.

• If R = {f(x) → x} then there is a critical pair f(x)σ →A∗ q0 and f(x)σ →R xσ

where σ = {x 7→ q1}. Since xσ = q1, and Norm∆(q1) = (q1, ∅), we obtain that
∆′ = ∆ ∪ {q1 → q0};

• If R = {f(a) → g(a)} then there is a critical pair f(a)σ →A∗ q0 and f(a)σ →R
g(a)σ with σ = ∅. Since Norm∆(g(a)) = (q2, ∅), we obtain that ∆′ = ∆ ∪ {q2 →
q0};

• If R = {f(x) → f(g(x))} then the critical pair is f(x)σ →A∗ q0 and f(x)σ →R
f(g(x))σ with σ = {x 7→ q1}. Since Norm∆(f(g(q1))) = (q3, {f(q2)→ q3}), we
obtain that ∆′ = ∆ ∪ {f(q2)→ q3, q3 → q0}.

Now, we show that completion steps preserve R/E-coherence. This is done in two
steps. Assume that completion finds a term lσ →A∗ q′ such that lσ →R rσ. In a first

lemma, we first show that adding a term t = rσ alone preservesR/E-coherence. Then, in
a second lemma, we show that if we perform a complete CR step this also preserve R/E-
coherence. With regards to the first lemma, this essentially consists in proving that adding
an epsilon-transition q → q′, such that lσ →A∗ q and rσ →A∗ q′, to the tree automaton

preservesR/E-coherence.

Lemma 105 Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton,R a TRS, E a set of equations,
t ∈ T (F ∪Q) and (q′, NewT ) = Norm∆(t). If A is R/E-coherent, then so is the
automaton A′ = 〈F ,Q′,Qf ,∆ ∪NewT 〉.

PROOF. We prove this by induction on height of t.

• if t is of height 0 then t = q ∈ Q and NewT = ∅. Hence since A′ = A, A′ is
triviallyR/E-coherent.

• if t is of height 1 then NewT = {t → q′}. If t → q′ ∈ ∆ then A′ = A and A′
triviallyR/E-coherent. Otherwise, if t→ q′ 6∈ ∆ then q′ is necessarily a new state,
by Definition 99 and t is the only term recognized by q′ in A′. Hence, t is also the
representative of state q′ in A′, andR/E-coherence of q′ and thus of A′ is trivial.

• let us assume that the property holds for terms of height lesser or equal to n. We now
prove that the property holds for terms of height lesser or equal to n + 1. Let t =
f(t1, . . . , tn). By definition of normalization, Norm(f(t1, . . . , tn)) = (q′, NewT )
where NewT = {f(q′1, . . . , q

′
n) → q′} ∪

⋃n
i=1Ni). For Ni either it is empty and

q′i = qi if there exist a state qi such that ti →6ε ∗∆ qi, or Ni = Norm∆(ti). In
both cases the automaton 〈F ,Q,Qf ,∆ ∪Ni〉 isR/E-coherent. This is trivially the
case if Ni = ∅ and it can be shown using the induction hypothesis on Norm∆(ti)
otherwise. We can also successively use this result and build the tree automaton
A′′ = 〈F ,Q,Qf ,∆∪

⋃n
i=1Ni〉which is thusR/E-coherent. The last thing to prove

is that adding f(q′1, . . . , q
′
n)→ q′ preserves coherence of q′. If f(q′1, . . . , q

′
n)→ q′ ∈

∆ then this is trivial since A′ = A′′ which is coherent. Otherwise, q′ is a new state
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and we have to prove itsR/E-coherence. Since f(q′1, . . . , q
′
n)→ q′, any term u such

that u →∗A′ q′ is necessarily of the form f(u1, . . . , un) and f(u1, . . . , un) →∗A′
f(q′1, . . . , q

′
n) →A′ q′. Since the tree automaton A′ is coherent for q′1, . . . , q

′
n we

know that there exists representatives ∀i = 1 . . . n : si → 6ε ∗A′ qi ∧ si →∗R/E ui.

Hence, s = f(s1, . . . , sn) → 6ε ∗A′ q′ and f(s1, . . . , sn) →∗R/E f(u1, . . . , un), thus s
is a representative for q′, and q′ isR/E-coherent in A′.

2

Lemma 106 Let A be a tree automaton, R a TRS, E a set of equations. If A is R/E-
coherent then so is CR(A).

PROOF. Let A = 〈F ,Q,Qf ,∆〉. We prove that for any rewrite rule l → r, for any
substitution σ : X 7→ Q and for any state q ∈ Q such that lσ →A∗ q, if (q′, NewT ) =

Norm∆(rσ) then adding transitions q → q′ and NewT to A results into a tree automaton
A′ that is R/E-coherent. Thanks to Lemma 105, we know that adding NewT to A pro-
duces aR/E-coherent tree automaton, hence in particular ∃s′ ∈ T (F) : s′ → 6ε ∗A′ q′∧ [∀t ∈
T (F) : (t →∗A′ q′ =⇒ s′ →∗R/E t)]. Now it is enough to prove that adding q′ → q pre-

servesR/E-coherence of state q. For all term t ∈ T (F) such that t→ 6ε ∗A′ q′ → q, we know
that t =E s′. Furthermore, let µ′ : X 7→ T (F) such that for all variable x of σ µ′(x) = sx
where sx is a representative of state σ(x), i.e. sx → 6ε ∗A′ σ(x). From rσ → 6ε ∗A′ q′, the fact that
µ maps variables of σ to terms sx → 6ε ∗A′ σ(x), and Lemma 96, we obtain that rµ′ →6ε ∗A′ q′.
Hence, by R/E-coherence of q′ in A′, we have that rµ′ =E s′. Since A is coherent, for
state q we have that ∃s ∈ T (F) : s → 6ε ∗A q ∧ [∀t ∈ T (F) : (t →A∗ q =⇒ s →∗R/E t)].

We can instantiate this lemma for lµ′ → 6ε ∗A′ q, hence s →∗R/E lµ′. Finally, we have
s→∗R/E lµ′ → rµ′ =E s′ →∗R/E t, or s→∗R/E t for short. Thus s is a representative for
t recognized by state q in A′. 2

3.2.4 The full Completion Algorithm
We here define the full equational completion algorithm. This section also contains the
proof that completion produces a tree automaton that recognizes an over-approximation of
reachable terms (Completeness). Finally, we give the proof that this automaton is R/E-
coherent (Correctness w.r.t. R/E reachable terms).

Definition 107 (Automaton completion) Let A be a tree automaton, R a TRS and E a
set of equations.

• A0
R,E = A,

• An+1
R,E = A′ where CR(AnR,E) ;!

E A′, and µn+1 is the renaming such that A′ =
CR(AnR,E)µn+1

• A∗R,E is a fixpoint A∗R,E = AkR,E = Ak+1
R,E with k ∈ N.

�
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Note that, like for the standard completion, A∗R,E does not exists in general but it can be
computed provided that E ensures the termination.

Example 108 Let R = {f(x, y) → f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0

be the tree automaton with set of transitions ∆ = {f(qa, qb) → q0), a → qa, b → qb},
i.e. L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E which
is a fixpoint. Completion steps are summed up in the following table. To simplify the
presentation, we do not repeat the common transitions, i.e. AiR,E is supposed to contain
all transitions of A0, . . . ,Ai−1

R,E .

A0 A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb)→ q0 f(q1, q2)→ q3 f(q4, q5)→ q6 f(q1, q2)→ q6

a→ qa s(qa)→ q1 s(q1)→ q4 s(q1)→ q1

b→ qb s(qb)→ q2 s(q2)→ q5 s(q2)→ q2

q3 → q0 q6 → q3

L(A0) = {f(a, b)} L(A1
R,E) = {f(a, b), L(CR(A1

R,E)) = {f(a, b), L(A2
R,E) =

f(s(a), s(b))} f(s(a), s(b)), {f(s∗(a), s∗(b))}
f(s(s(a)), s(s(b))}

The automatonA1
R,E is exactly CR(A0) since equations do not apply. Then CR(A1

R,E)
contains all the transitions ofA1

R,E plus those obtained by the resolution of the critical pair
f(q1, q2) →A∗ q3 and f(q1, q2) →R f(s(q1), s(q2)). Solving this critical pair according,
adds the transitions shown in the above table. However, on this last automaton, simplifica-
tion can be applied as follows:

s(s(qa))
E

A,6ε ∗
��

s(qa)

∗ A,6ε
��

q4 q1

s(s(qb))
E

A,6ε ∗
��

s(qb)

∗ A,6ε
��

q5 q2

Hence, A2
R,E is obtained from CR(A1

R,E) by renaming q4 by q1 and q5 by q2, i.e.
A2
R,E = CR(A1

R,E){q4 7→ q1, q5 7→ q2}.

Some other practical examples will be given in Chapter 4. Now, we can state the com-
pleteness and correctness theorems. We show that tree automata completion is complete
w.r.t. R∗ and correct w.r.t. R∗E . The completeness theorem ensures that the completed au-
tomaton A∗R,E recognizes all R-reachable terms (but not all R/E-reachable terms). The
correctness theorem guarantees that all terms recognized byA∗R,E are onlyR/E-reachable
terms. This distinction is important to use this technique for verification. Indeed, ifRmod-
els the program and E defines the approximation then it is natural to focus the theorem on
the over-approximation of R-reachable terms rather than on R/E-reachable ones. In the
context of verification, R/E-reachable terms that are not R-reachable are not interesting:
they are necessarily part of a too coarse approximation. However, in Corollary 112, we
show that it is also possible to over-approximateR/E-reachable terms. For some restricted
classes of E it is even possible to compute them exactly, as shown in Corollary 111.
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Theorem 109 (Completeness) Let R be a left-linear TRS, A be a tree automaton and E
be a set of linear equations. If completion terminates on A∗R,E then

L(A∗R,E) ⊇ R∗(L(A))

PROOF. First, we prove that L(A∗R,E) ⊇ L(A). By definition of CR(A), this algorithm
only adds transitions to A hence, we trivially have L(CR(A)) ⊇ L(A). Then, thanks
to Lemma 88, we know that if CR(A) ;!

E A′ then L(A′) ⊇ L(CR(A)). Hence, by
transitivity of ⊇, we know that L(A′) ⊇ L(A). This can be successively applied to A1

R,E ,
A2
R,E , . . . so that L(A∗R,E) ⊇ L(A).

Now, the next step of the proof consists in showing that for all term s ∈ L(A) if
s→R∗ t then t ∈ L(A∗R,E). First, note that by definition of ;E final states are preserved,

i.e. if q is a final state in A then if A ;E A′ and q has been renamed in q′ then q′ is a
final state of A′. Hence it is enough to prove that for all term s ∈ L(A, q) if s→R∗ t then

∃q′ : t ∈ L(A∗R,E , q′). Because of previous result saying that L(A∗R,E) ⊇ L(A), from
s ∈ L(A, q) we obtain that there exists a state q′ such that s ∈ L(A∗R,E , q′). We know that
s →R∗ t hence, what we have to show is that t ∈ L(A∗R,E , q′). By induction on length of

→R∗, we obtain that:

• if length is zero then s→R∗ s and we trivially have that s ∈ L(A∗R,E , q′).

• assume that the property is true for any rewriting derivation of length lesser or equal
to n. Now, we prove that it is true for a derivation of length lesser or equal to n+ 1.
Assume that we have s →Rn s′ →R t. Using the induction hypothesis, we obtain

that s′ ∈ L(A∗R,E , q′) and it remains to prove that from s′ →R t we can deduce

that t ∈ L(A∗R,E , q′). Since s′ →R t we know that there exists a rewrite rule

l → r, a position p and a substitution µ : X 7→ T (F) such that s′ = s′[lµ]p →R
s′[rµ]p = t. Since s′ ∈ L(A∗R,E , q′), s′[lµ]p →∗A′ q′ and be definition of tree
automata derivation, we get that there exists a state q′′ such that lµ →∗A∗R,E q′′ and
l[q′′]p →∗A∗R,E q′′. Let Var(l) = {x1, . . . , xn}, l = l[x1, . . . , xn] and t1, . . . , tn ∈
T (F) such that µ = {x1 7→ t1, . . . , xn 7→ tn}. Since lµ = l[t1, . . . , tn]→∗A∗R,E q

′′,
we know that there exists states q1, . . . , qn such that ∀i = 1 . . . n : ti →∗A∗R,E qi and
l[q1, . . . , qn] →∗A∗R,E q′′. Let σ = {x 7→ q1, . . . , qn. We thus have lσ →∗A∗R,E q′′.
Since A∗R,E is a fixpoint of completion (in particular for CR), from lσ →∗A∗R,E q′′

we can deduce that rσ →∗A∗R,E q′′. Furthermore, since ∀i = 1 . . . n : ti →∗A∗R,E qi,
then rµ→∗A∗R,E q

′′. Finally, since besides of this s′[q′′]p →∗A∗R,E q
′, we finally have

t = s′[rµ]p →∗A∗R,E q
′, hence t ∈ L(A∗R,E , q′).

2

Theorem 110 (Correctness) Let R be a left-linear TRS, E a set of linear equations and
A aR/E-coherent tree automaton. For any i ∈ N:

L(AiR,E) ⊆ R∗E(L(A))
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PROOF. First, we can prove by induction on i that ∀i ∈ N : AiR,E is R/E-coherent. The
base case is trivial: we know that A is R/E-coherent. What remains to be proved is that,
assuming thatAiR,E isR/E-coherent, then so isAi+1

R,E . By Definition107, we know that if
A′ = CR(AiR,E) then A′ ;!

E A
i+1
R,E . Since AiR,E is coherent, then so is A′ = CR(AiR,E)

by Lemma 106. Finally, using repeated applications of Theorem 97 on A′ ;!
E A

i+1
R,E ,

R/E-coherence of A′ implies R/E-coherence of Ai+1
R,E . This concludes the proof that

∀i ∈ N : AiR,E isR/E-coherent.
What remains to be proved is that terms recognized by states of AiR,E are reachable

from terms recognized by A using R/E. Let µ = µi ◦ . . . ◦ µ1 be the combination of
all renamings applied by all completion steps up to AiR,E . We now prove the following
theorem:

∀q ∈ A : L(AiR,E , qµ) ⊆ R∗E(L(A, q))

SinceA isR/E-coherent for any state q inAwe know that there exists a representative
s such that s → 6ε ∗A q. By Definition103, we know that each transition occurring in A will
occur in CR(A). Furthermore, by repeated applications of Lemma 86, if CR(A) ;!

E A1

and µ1 is the renaming such that A1 = CR(A)µ1, we get that s → 6ε ∗A1
R,E

qµ1. We can

proceed similarly up to AiR,E and obtain that s→ 6ε ∗AiR,E qµ where µ = µi ◦ . . . ◦ µ1. Now

since AiR,E is R/E-coherent, we know that any term t→∗AiR,E qµ is such that s→R/E t

where s ∈ L(A, q). This ends the proof. 2

Computing exactly or over-approximatingR/E-reachable terms may be interesting for
automated deduction purposes. Using an over-approximation, we may prove for instance
that a term is not reachable by rewriting with R modulo an equational theory E like asso-
ciativity and commutativity. The first corollary shows that, on some restricted classes of
E, if the completion terminates then the resulting automaton recognizes exactly the set of
R/E-reachable terms. The second corollary is for general sets of linear equations E and
concerns only over-approximations ofR/E-reachable terms.

Corollary 111 Let R be a left-linear TRS, E be a set of linear equations such that ∀l =
r ∈ E : Var(l) = Var(r) and A be a R/E-coherent tree automaton. If completion
terminates on A∗

R∪
←→
E ,E

then

L(A∗
R∪
←→
E ,E

) = R∗E(L(A))

PROOF. Since E is linear and ∀l = r ∈ E : Var(l) = Var(r) then
←→
E is a valid

left-linear TRS. Thus, we can instantiate Theorem 109 with R ∪
←→
E and obtain that:

L(A∗
R∪
←→
E ,E

) ⊇ (R ∪
←→
E )∗(L(A)). We clearly have (R ∪

←→
E )∗(L(A)) = R∗E(L(A), we

get that L(A∗
R∪
←→
E ,E

) ⊇ R∗E(L(A)). To obtain the inclusion in the other way, we can simi-

larly instantiate Theorem 110 withR∪
←→
E and get that L(A∗

R∪
←→
E ,E

) ⊆ (R∪
←→
E )∗E(L(A)).

Note that (R ∪
←→
E )∗E(L(A)) = (R ∪

←→
E )∗(L(A)) which is equal to R∗E(L(A)). Hence,

L(A∗
R∪
←→
E ,E

) ⊆ R∗E(L(A)) and we get the result. 2
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Note that the restriction on E saying that ∀l = r ∈ E : Var(l) = Var(r) is necessary.
Otherwise, the oriented system

←→
E is no longer a valid TRS and this raises problems w.r.t.

R/E-coherence. We can illustrate this on a simple equation, say E = {x ∗ 0 = 0}. We
have

←→
E = {x ∗ 0 → 0, 0 → x ∗ 0}. The rule 0 → x ∗ 0 is not a valid TRS rule since

Var(0) 6⊇ Var(x ∗ 0). However, completion can be performed on such rules using a
technique close to (Jacquemard, 1996). The idea is to add a special state, say qT (F), and a
set of transitions to the initial automaton A, such that ∀t ∈ T (F) : t →A∗ qT (F). Then it
is enough to replace all variables occurring only in the right-hand side of a rule by qT (F)

and perform a usual completion on A extended with qT (F) and the related transitions.
During completion, if there is a critical pair between the rewrite rule 0 → qT (F) ∗ 0 and a
transition 0→A q, it can be solved by adding: qT (F)∗0→ q′ and q′ → q. However, adding

transitions to A such that ∀t ∈ T (F) : t →A∗ qT (F) prevents the tree automaton A from

being R/E-coherent in general. Indeed, for all t1, t2 ∈ T (F), t1, t2 are recognized by A
without epsilon transitions, i.e. t1 →6ε ∗A qT (F) and t2 →6ε ∗A qT (F). For this extended A to
beR/E-coherent, it would be necessary that ∀t1, t2 ∈ T (F) : t1 =E t2, which not true in
general. Without R/E-coherence it is not possible to prove correctness but completeness
is still valid for general linear system of equations as it is shown in the following corollary.

Let us call extended completion the completion described above, dealing with rules
l→ r such that Var(r) 6⊆ Var(l) using a qT (F) state recognizing T (F).

Corollary 112 LetR be a left-linear TRS, A be a tree automaton and E be a set of linear
equations. Let

←→
E = {l → r, r → l | l = r ∈ E} and B = A ∪ {f(qT (F), . . . , qT (F))→

qT (F) | f ∈ F}. If extended completion terminates on B∗
R∪
←→
E ,E

then

L(B∗
R∪
←→
E ,E

) ⊇ R∗E(L(A))

PROOF. It is easy to see that Theorem 109 can be lifted to the case of extended completion.
Given a rewrite rule of the form l→ C[x] where x does not occur in l, if a term s is rewritten
using this rule then s|p = lµ and s →R s[C[t]µ]|p, where t is possibly any term of T (F)

and µ : X 7→ T (F). During completion, as shown in Theorem 109, from s→R s[C[t]µ]|p
we can deduce that there necessarily exists a state q and a substitution σ : X 7→ Q such
that lµ →∗B lσ →∗B q. Extended completion will produce a new automaton B′ containing
transitions such that C[qT (F)]σ →∗B′ q. Since B′ also contains transitions recognizing any
term of T (F) in qT (F), we have in particular that C[t]µ→∗B′ C[qT (F)]σ →∗B′ q. The proof
that s[C[t]µ]|p is recognized by B′ can be finished in the same way as for Theorem 109.
Thus, this theorem lifted to extended completion can be instantiated byR∪

←→
E and B and

we obtain that: L(B∗
R∪
←→
E

) ⊇ (R ∪
←→
E )∗(L(B)). We clearly have (R ∪

←→
E )∗(L(B)) =

R∗E(L(B), thus we get that L(B∗
R∪
←→
E ,E

) ⊇ R∗E(L(B)). Finally since B is obtained from

A by a simple extension of its set of transitions, we trivially have L(B) ⊇ L(A). Hence
R∗E(L(B)) ⊇ R∗E(L(A)) and finally L(B∗

R∪
←→
E ,E

) ⊇ R∗E(L(A)). 2
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3.3 Comparison with other work
In this section we show how standard completion and equational completion compares with
other work. In the first part, we show that most of the known classes of TRS, presented
in Section 2.1.1, for which the set of reachable terms is regular are covered by the stan-
dard completion algorithm. In other words, for all those classes, the standard completion
algorithm terminates on a tree automaton recognizing exactly the set of reachable terms. In
the second part, we show that this result is still valid for the equational completion algo-
rithm. Then, in the third part, we compare the tree automata completion framework with
the equational abstraction due to Meseguer et al.. Finally, in the fourth part, we show how
classical static analysis techniques based on regular languages can be implemented using
the equational completion algorithm.

3.3.1 Recognizing regular classes with standard completion
If we consider the standard completion, we have proven in Theorem 76 that if the ab-
straction function α is injective, coherent with R and A that also fulfill the left and right
coherence conditions then if completion terminates on A∗R,α then L(A∗R,α) = R∗(L(A)).
Moreover, in Lemma 82, we have shown that if Ran(α) is finite then completion termi-
nates. Note that for injective abstraction functions, the range is finite if the domain is.
Hence, it is enough to prove that completion produce a finite number of distinct transitions
to be normalized. Now we give alternative algorithm and proofs of regularity ofR∗(S) for
some of the classes described in Section 2.1.1. In some cases, even if the TRS is not left-
linear, the left-coherence condition can be guaranteed by determinizing the tree automaton
after each completion step, as for RL-M class. However, for more complex classes as
RL-FPO, it is possible to do the same but, then, it is no longer possible to guarantee that
Ran(α) remains finite. This is the reason why the RL-FPO is not covered by completion.
Some intuitions about (Takai et al., 2000) for dealing with RL-FPO and alternatives to
determinisation for dealing with possibly non left-linear TRSs are given in Section 4.4.1.
Let S be a regular language andR a TRS belonging to one of the following classes:

G for ground TRS (Dauchet and Tison, 1990; Brainerd, 1969), we use corollary 81 (ground
TRSs are linear) and an injective abstraction α with a finite domain {r|p | l → r ∈
R and p ∈ Pos(r) \ {ε}}. We can restrict α to this finite domain since in every new
transition f(t1, . . . , tn) → q added by the completion, f(t1, . . . , tn) is necessarily
ground and is a right-hand side of a rule ofR. So it is enough to normalize t1, . . . , tn
and all their subterms to normalize the transition. Hence, in α for every rule l → r,
every strict subterm of r is mapped to a new state. Since the domain is finite, so is
the range and completion terminates.

RL-M for right-linear ans monadic TRS (Salomaa, 1988), we use theorem 76 and an ab-
straction function α with an empty domain which satisfy the coherence property
w.r.t. R and A and is also trivially injective. The domain of α is empty since ev-
ery new transition produced by the completion is of the form f(q1, . . . , qn) → q
where q1, . . . , qn are states or of the form q → q′. None of these forms needs to be
normalized. Assume that after each completion step, we determinize the completed
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automaton AnR,α. Since the domain of α is empty, completion ends on A∗R,α which
is determinized. Thanks to determinization of the last completion step left-coherence
condition is trivially satisfied and since the TRS is right linear, this is also the case
for right-coherence condition.

L-SM for linear and semi-monadic TRS (Coquidé et al., 1991), as in the ground case we
define α as an injective function on the finite domain: {r|p | l → r ∈ R and p ∈
PosF (r)}. Similarly, we can restrict to this finite domain since in every new transi-
tion f(t1, . . . , tn) → q added by the completion, ti is either a ground term (and can
be normalized by a single state) or is itself a state and thus does not need normaliza-
tion.

L-G−1 for linear and inversely growing TRS (Jacquemard, 1996), recall that it means that
every right-hand side is either a variable, or a term f(t1, . . . , tn) where f ∈ F ,
Ar(f) = n, and ∀i = 1, . . . , n, ti is a variable, a ground term, or a term whose
variables do not occur in the left-hand side. For this class, the proof and abstraction
function is similar to the linear and semi-monadic case except for variables occurring
in the right-hand side but not in the left-hand side. For those variables, it is enough to
substitute them by a specific state qT (F) (which recognize T (F)) and add the set of
transitions {f(qT (F), . . . , qT (F))→ qT (F) | f ∈ F , Ar(f) = n} to the transitions
of A. As in the linear and semi-monadic case, we define α as an injective function
on the finite domain: {r|p | l → r and p ∈ PosF (r)} where variables in r not
occurring in l are substituted by qT (F).

L-GFPO for linear generalized finite path overlapping TRS (Takai, 2004), we use theo-
rem 76 and we construct injective abstraction function α such thatRan(α)∩Q = ∅.
Furthermore since R is linear, left-coherence and right-coherence are satisfied. As
shown in Section 2.1.2, (Takai, 2004; Takai et al., 2000) normalize and add tran-
sitions to a tree automaton using the addtrans procedure. For all f ∈ F and
packed states q1, . . . , qn, this procedure normalize any configuration f(q1, . . . , qn)
by a packed state 〈f(q1, . . . , qn)〉. In other words, it creates an injection, say β, as-
sociating each configuration to a single packed state. Besides to this, the termination
theorem of (Takai, 2004) shows that using this normalization technique the tree au-
tomata construction only produces a finite number of new packed states. In other
words, the injection β maps all the configurations to a finite number of packed states,
i.e. its range is finite. Let us call P the range of β. To prove termination of tree
automata completion on this class, it is enough to define α as β. More formally, let
Q′ = {〈q〉 | q ∈ Q}. We can define α by ∀q1, . . . , qn ∈ Q′ ∪P : α(f(q1, . . . , qn) =
〈f(q1, . . . , qn)〉. Since α = β and Ran(β) = P is finite, so is the range of α, i.e.
Ran(α) = P . Note also thatRan(α) ∩Q = P ∩Q = ∅.

Constructor based (Réty, 1999) For this particular case, there is also a restriction on the
initial language S = {tσ} where t ∈ T (F ,X ) is linear and σ : X 7→ T (C). Let
A = 〈F ,Q,Qf ,∆〉 be the tree automaton recognizing S. In this particular case,
our aim is more to give an alternative algorithm rather than a proof of regularity. As
in (Réty, 1999), we focus on the algorithm for left and right-linear TRSs since the
left-coherence restriction can be discarded using determinization of tree automata (as
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in the right-linear and monadic case). We use theorem 76 and an injective abstraction
function α such thatRan(α)∩Q = ∅. Furthermore sinceR is linear, left-coherence
and right-coherence are satisfied. Now, let us prove that the domain of α is finite. Let
Qtσ be the finite set of states necessary to normalize deterministically tσ, Qarg be
the set of states necessary to normalize the ground subterms of the right-hand sides of
the rules and ∆arg the related set of transitions. In (Réty, 1999), it is shown that for
every defined symbol of t, for every substitution δ : X 7→ T (F), for every rewriting
lδ →R rδ, there exists a substitution σ : X 7→ Qtσ ∪Qarg such that lδ →∆∪∆arg

lσ
and rδ →∆∪∆arg rσ. Hence, every critical pair encountered during the completion
is of the form: lσ →A q and lσ →R rσ with σ : X 7→ Qtσ ∪ Qarg. Since the
number of defined symbols of t is finite, since Qtσ ∪Qarg is finite, then so is the set
of every possible critical pair and so is the domain of α.

In this last case, we did not give an explicit definition of α. The good news, and this
is one of the main interest of tree automata completion algorithm in practice, is that it is
useless to define α a priori since it can be constructed automatically during completion.
For all the above classes, since the domain of α is finite and since α is injective, we can
construct an injective α function “on-the-fly” by associating a new state to every subterm
occurring during the normalization of a new transition. This leads to a fully automatic and
terminating completion algorithm covering all the decidable classes we summed up here.
We call this normalization strategy the exact normalization strategy.

Definition 113 (Exact normalization strategy) The exact normalization strategy consists
in building α incrementally during completion. We start from α = ∅. Then, during com-
pletion, letA = 〈F ,Q,Qf ,∆〉 be the automaton to complete and c a new configuration to
normalize.

• If c ∈ Dom(α) then we normalize c with α(c), otherwise

• we create a new state q such that q 6∈ Ran(α) and q 6∈ ∆, add the association c 7→ q
in α and normalize c with q

�

Note that the approximation function α produced by the exact normalization strategy
is coherent and injective by construction. We can thus benefit of the Theorem 76 and be
sure that, when using the exact normalization strategy, completion produces a tree automa-
ton recognizing exactly reachable terms. Furthermore, we have seen that completion is
guaranteed to terminate for all the above decidable classes. In those cases, the completed
automaton A∗R,α recognizes R∗(S) if R is linear or if R is right-linear and R and A∗R,α
satisfy the left-coherence condition. Note that all the TRSs of the above classes are at least
right-linear and thus right-coherence condition is fulfilled. The left-coherence condition is
implied either by left-linearity or by successive determinization of each completion steps.

Now, for the two classes IOS-LTS and WOS we do not give an alternative proof of
regularity but show how to compute the set of reachable terms using standard completion
with normalization rules.
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L-IOSLT (Seki et al., 2002) For this class, as for the L-GFPO class, we can simulate the
application of the addtrans procedure by defining an injectionα byα(f(q1, . . . , qn)) =
〈f(q1, . . . , qn)〉. What remains to be done is to simulate the construction of product
states. Recall that for all transition p(g(t1, . . . , tn))→ q to be added, a unique prod-
uct state [q, p] is created so as to recognize the term g(t1, . . . , tn). As a result the
above transition is normalized into the set {p([q, p]) → q, g(t1, . . . , tn) → [q, p]}
and terms t1, . . . , tn are normalized, if necessary, using the addtrans procedure.
The construction of those product states can be implemented using the following set
of normalization rules:

{[p(x)→ z]→ [x→ prod(z, p)] | p ∈ P}

where prod : Q× P 7→ Q is a specific new state symbol of arity 2.

WOS (Bouajjani and Touili, 2002) Recall that L-IOSLT are equivalent to linear bottom-
up tree transducers. Furthermore, it is shown in (Bouajjani and Touili, 2002) that
the set of reachable terms by a WOS TRS can be obtained using by computing
closures R∗Ti of a finite number of tree transducers RTi for i = 1 . . . n. Since,
each of these tree transducers can be encoded into a L-IOSLT whose closure can be
computed as above, WOS reachable terms can be obtained by repeated applications
of completion.

Finally, beside to the classes described above, completion with exact normalization
strategy can compute exactly sets of reachable terms for cases that are not included in the
known decidable classes. A very simple example is the TRS R = {f(g(x)) → g(f(x))}
and the initial language S = {h∗(f(g∗(a)))}. First, this TRS does not preserve regularity
of all set S. For instance, if we choose the initial set S ′ = {(fg)∗(a)} the setR∗(S ′) is not
regular. This is due to the fact that R!(S ′) = R∗(S ′) ∩ IRR(R) and IRR(R) is regular.
If R∗(S ′) was regular then so would be R!(S ′). However, R!(S ′) = {gn(fn(a)) | n ∈
N} which is not regular and, thus, R∗(S ′) is not regular. Hence, this TRS is outside
of all the classes that do not impose restrictions on the initial set of terms, i.e. all of
them except the class Constructor based. This particular example is also outside of the
Constructor based class because the initial set is not of the form {tσ} where t is a linear
term. However, this TRS is linear and completion terminates with an injective abstraction
function automatically built with the exact completion strategy. Thus, we have a proof of
the regularity ofR∗(S) and it is recognized by the completed automaton A∗R,α.

Another simple example is the TRS R = {f(x) → f(g(f(x)))} and the initial lan-
guage S = {f(a)}. This TRS is outside of all the regular classes we survey in Chapter 2.
In particular, it is outside the L-GFPO class because its GFPO-graph has only one node
and a looping edge of weight 1 on it. This is due to the fact that f(g(f(x))) properly
sticks out of f(x). It is also outside of the Constructor based class because the right
hand side of the rewrite rule has nested function symbol: f . However, again, completion
terminates with the exact completion strategy and ends on a tree automaton recognizing
R∗(S) = {(fg)∗f(a)}.
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3.3.2 Recognizing regular classes with equational completion
In previous Section 3.3.1, we showed that many of the known regular classes were covered
by the standard tree automata completion algorithm. In this section, we lift the recogniz-
ability results to the case of the equational completion algorithm. We are going to use a
similar exact normalization strategy and an empty set of equations. What we need to show
is that the epsilon-based completion step does not jeopardize termination of completion on
regular classes of Section 3.3.1. Here, we only consider the classes for which no normal-
ization rules were necessary, i.e. all the classes except the IOS-LTS and WOS classes.

First, we can remark that the exact normalization strategy (Definition 113 of Sec-
tion 3.3.1) is compatible with Definition 99 of normalization for equational completion.
We can implement the exact normalization strategy in Norm∆ as follows. Let ∆0,∆1, . . .
be the respective sets of transitions of automata A0,A1

R, . . . obtained by equational com-
pletion. Hence, ∆0 is the set of transitions of the initial automaton A before completion.
At step k of completion, in the Definition 99 of normalization, instead of choosing arbitrar-
ily q, we define q as the right-hand side of a transition of the form f(q′1, . . . , q

′
n) → q

if it exists in ∆k \ ∆0 and as a new state otherwise. This implements the exact nor-
malization where we use the set ∆k \ ∆0 in place of the abstraction function α. Let
αk be the definition of α at step k of completion. We define αk in the following way:
∀c ∈ T (F ∪Q) \ Q : ∀q ∈ Q : αk(c) = q if c→ q ∈ ∆k \∆0. Note that, α is a function
because ∆k \∆0 is deterministic by construction. This is due to the fact that each transition
of this set is added by Norm∆ and that, when it implements the exact completion strategy,
this function normalize each configuration by a distinct state.

Thus, using the Theorem 110 and the Theorem 109, if equational completion of A for
a TRS R and E = ∅ terminates on a tree automaton A∗R,E then we have L(A∗R,E) =
R∗(L(A)). Since E = ∅, in the following we denote each equational completion step
AiR,E by AiR. What remains to be proven is that equational completion terminates for the
same TRS classes than standard completion.

Theorem 114 With the exact normalization strategy, if the standard completion terminates
then so is the equational completion with E = ∅.

PROOF. Since E = ∅, no simplification step is performed between each completion steps.
As a results, the only difference between standard and equational completion is how critical
pairs are solved, i.e. use

lσ R
//

AiR
��

rσ

Ai+1
R

��
q q′
Ai+1
R

oo
instead of

lσ R
//

∗AiR
��

rσ

∗

Ai+1
R

ooq

Each equational completion step potentially introduce a new state q′. Now, we prove
that adding those new states only add a finite number of critical pairs to consider and,
thus, that equational completion terminates. Let A be a tree automaton and R a TRS
such that standard completion terminates on A, R. Let B0

R = A,B1
R, . . . be the standard

completion steps and A0
R = A,A1

R, . . . be the equational completion steps. Let PAk (resp.
PBk ) be the union of all the substitutions σ : X 7→ Q of all critical pairs (l → r, σ, q)
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encountered during the equational (resp. standard) completion of A up the AkR (resp BkR).
Since standard completion terminates, we know that the fixpoint B∗R exists and that PB∗ is
finite. Now, we aim at proving that PA∗ = PB∗ and thus is finite. We prove that those two
sets are equal for any number k ∈ N of completion steps. This proof is done by induction
on k.

• For the first completion step, i.e. producing A1
R from A0, we trivially have PA1 =

PB1 . Indeed, since both algorithm compute the substitutions from the same automa-
ton A0, they have the same value.

• Now, we assume that the property PAk = PBk is true up the k-th completion step.
Note that, up to completion step k, we can assume that all new transitions, found
by both completion algorithm, are normalized in the same way, with the same state
numbering. For every l → r ∈ R, if there is a similar critical pair lσ →∗BiR q

and lσ →∗AiR q′ with i ≤ k, then we assume that all the subterms of rσ will be

normalized by the same states in Bi+1
R and Ai+1

R .

Now, we consider the k + 1 completion step, i.e. we compute Ak+1
R from AkR and

Bk+1
R from BkR. Assume that after completion step k + 1 there exists a state p′ not

occurring in any substitution of PBk+1 but occurring in the range of a substitution σ′ ∈
PAk+1\PBk+1. Since up to k-th completion step all substitutions and normalizations of
both completion algorithm coincide, the state p′ necessarily appeared in a completion
step i (1 ≤ i < k) to recognize the right-hand side of a rewrite rule, i.e.

lσ R
//

AiR
��

rσ

Ai+1
R

��
q p′
Ai+1
R

oo

Note that in the above transitions p′ appears only in the left-hand side of an epsilon
transition p′ → q and, thus, cannot appear in the range of the substitution of a non
trivial critical pair. Indeed, a state r appears in a substitution of a non trivial critical
pair only if it appears in the left-hand side of regular transitions f(. . . r . . .) → r′

of ∆. Hence, for p′ to appear in a regular transition f(. . . p′ . . .) → r′, it needs
to have been used to normalize a subterm t in f(. . . t . . .). Besides to this, for p′

to appear in a substitution, this imposes that there exists a rewrite rule whose left-
hand side contains a subterm of the form f(. . . x . . .). Moreover, we also know
that this subterm matches the transition f(. . . p′ . . .) → r′. Since the normalization
strategy is deterministic and since, from the above critical pair solving, we know
that rσ →∗Ai+1

R
p′, we necessarily have t = rσ. For f(. . . rσ . . .) to have been

normalized, this means that during completion step j (1 ≤ j < k) another critical
pair of the form
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s
R
//

AjR
��

C[f(. . . rσ . . .)]

Aj+1
R

��
q1 p1

Aj+1
R

oo

has been solved. Moreover, f(. . . rσ . . .) has been normalized into rσ → p′ and
f(. . . p′ . . .) → r′. Since the two completion algorithm produce tree automata rec-
ognizing the same languages, C[f(. . . rσ . . .)] is also recognized by BjR. Since, up
to completion step k, sets of substitutions coincide, we know that a similar criti-
cal pair has been solved on tree automaton BjR. Hence, a transition of the form
C[f(. . . rσ . . .)] → q2 has been normalized in order to be added to BjR. As men-
tioned above, we can assume that new transitions produced by both completion algo-
rithm can be normalized using the same state numbering. Thus, the state recognizing
rσ is similar in Aj+1

R and in Bj+1
R , it is thus p′. This proves that the configura-

tion f(. . . p′ . . .) appears also in BjR and that it can thus be matched by the subterm
f(. . . x . . .) of the left-hand side of a rule. We can thus build a substitution mapping
x to p′ in BkR. Finally, this proves that p′ also appears in a substitution σ′ of PBk+1

which is a contradiction. Thus, PAk+1 = PBk+1

Since the set PBk of substitutions σ for standard completion finitely reaches a fixpoint, so
is PAk+1. Hence, in equational completion there are only a finite number of possible rσ to
add. Since we use a deterministic exact normalization strategy, each rσ is normalized by a
distinct state q′. We thus have only a finite number of critical pairs to solve and this proves
that equational completion terminates. 2

3.3.3 Equational abstraction
In this section, we compare the equational tree automata completion framework with the
equational abstraction technique defined by (Meseguer et al., 2003) and also related to (Takai,
2004). As far as we know the idea of defining abstractions using equations was first intro-
duced in (Genet and Viet Triem Tong, 2002). However, it was more convincingly defined
in (Meseguer et al., 2003), followed by (Takai, 2004) and then by (Genet and Rusu, 2009).
Though the abstraction principle is the same, it has been put into practice differently in all
those works.

(Takai, 2004) defined a completion-like algorithm that is able to deal exactly with the
L-GFPO class and, if the TRS is not included in this class, performs a widening. In some
cases, the widening forces the algorithm to terminate. The widening consists in inferring
automatically abstraction transitions (see Section 2.2.2) forcing the creation of loops in the
completed tree automaton. (Takai, 2004) says that those abstraction transitions can be seen
as the result of the application of abstraction equations. However, this is essentially an in-
tuition and no formal proof is given. In our setting, thanks to the correctness Theorem 110
and under some hypothesis on the tree automaton, we know that the automaton resulting of
completion exactly recognizes the result of the application of abstraction equations. Nev-
ertheless, unlike (Takai, 2004) our completion framework does not propose any technique
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to detect a widening position and automatically build an approximation. It would be in-
teresting to refine the widening technique proposed by Takai to produce automatically a
set of approximation equations and to apply them using our equational completion algo-
rithm. Since equational completion can handle any set of linear equations, it can deal with
any equation found by Takai algorithm which are necessary of the form C[C[x]] = C[x].
Furthermore, in our setting, if completion does not terminate using this automatically gen-
erated set of equations, it is possible to enrich it by hand so as to force termination.

As explained in the introduction, we believe that asking a human for approximation
equations is reasonable when fully automatic verification techniques fail. Similarly, (Meseguer
et al., 2003) assume that we have an a priori set of abstraction equations. The objective of
the paper is to check by rewriting some properties on the model abstracted by those equa-
tions. The properties detailed in this paper are safety and liveness properties. On the one
side, safety properties can be seen as unreachability proofs, i.e. “nothing bad happens”,
and very similar to the properties we are interested in this document. On the other side,
liveness properties, i.e. “something good eventually happens” are out of reach of the tech-
niques proposed here. Furthermore, the class of TRS they can use to model programs is
more general. They are not restricted to left-linear TRS or left-linear conditional TRS. On
the contrary, they theoretically can deal with general conditional TRS modulo associativity,
commutativity etc., i.e. the general rewriting framework of the Maude tool (Clavel et al.,
2001). Additionally, the abstraction equations are not limited to linear ones but can be non
linear and even conditional. The only limitation this framework has, w.r.t. equational tree
automata completion, is that it can only handle finite sets of initial terms S.

However, the generality of their framework has a strong counterpart. As explained in
Section 2.2.1, given a TRS R, a set of equations E and two terms s and t for proving
that s 6→R∗ t they rely on the property→R⊆→R/E and prove that s 6→∗R/E t. Since the

Maude framework performs only rewriting, in order to model rewriting with R/E, the set
of equations E has to be oriented into a TRS R′ enjoying many properties. Among other
properties, the TRS R′ has to be terminating, ground confluent and coherent with R (see
Section 2.2.1). This is a strong restriction on the sets of equations which can be used to
perform the abstraction. The equation set you need may not have this property and even if
it has the property the proof may be non trivial as it is shown Section 9.3 of (Clavel et al.,
2008) or in (Meseguer et al., 2003).

Finally, if the set E has the good properties it remains to prove that s 6→∗R/E t. For
doing this proof in Maude, it is necessary for s to be rewritten byR/E into a finite number
of E-equivalent terms. In other words, R/E needs to be terminating on s or starting from
s there is only a finite number of E-equivalent reachable terms. We now show that, in
this case and on the subclasses of TRS we consider, equational completion offers the same
termination guarantee.

Lemma 115 IfR is left-linear and E is linear and→R/E terminates on s then equational
completion withR and E terminates on the tree automaton recognizing s.

PROOF. Let A be an epsilon-free deterministic tree automaton obtained by normalizing
s. The tree automaton A is R/E-coherent by construction. In a deterministic R/E-
coherent tree automaton, each state represents an equivalence class. Since equational
completion preserves R/E-coherent tree automata (Lemma 106 and Theorem 97), this
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property is preserved during completion. During completion of A, the fact that ∀t ∈
T (F) : ∀q1, q2 ∈ A : t →6ε ∗A q1 and t → 6ε ∗A q2 =⇒ q1 = q2 can be guaranteed
by normalizing the new transitions added to A using the existing transitions of A. Be-
sides to this, on R/E-coherent tree automata, equational completion computes a subset
of E-equivalent R-reachable terms (Theorem 110). From this last result and the fact
that there are only a finite number of E equivalent R reachable terms we get that com-
pletion produces a tree automaton recognizing a finite set of E-equivalent terms. Fi-
nally, since we know that the produced tree automaton is R/E-coherent and such that
∀t ∈ T (F) : ∀q1, q2 ∈ A : t → 6ε ∗A q1 and t →6ε ∗A q2 =⇒ q1 = q2, there is at most one
state by E-equivalence class of R-reachable terms. This is enough to prove that the set of
states on the completed tree automaton is necessarily finite. 2

In section 4.6.4, we show that the verification of safety properties on examples from (Clavel
et al., 2008; Meseguer et al., 2003) carried out using equational abstraction can be done us-
ing equational completion and the Timbuk tool.

3.3.4 Regular and abstract regular tree model-checking
In this domain, programs or systems are modeled using tree transducers. Since TRS and
tree transducers are rather different this makes the comparison difficult. Linear tree trans-
ducers can be seen as the particular IOS-LTS class of TRSs as shown in Section 2.1.1. This
draws strong restriction of the expressive power of tree transducer model. For instance in
Section 2.3.2, we have seen that a functional programs can be straightforwardly translated
into a TRS. This is not the case for tree transducers. But, because of this restriction, tree
transducers enjoy a desirable property w.r.t. to reachability that TRS do not have. As seen
in Section 2.3.1, given a tree automaton A and a linear tree transducer RT , it is possible
to construct a tree automaton B such that L(B) = RT (L(A)). This could be seen as “one
step of application” of the tree transducer RT . LetR be a TRS, S a set of terms andR(S)
the set defined by R(S) = {t | s ∈ S and s →R t}. In general building a tree automaton

recognizing R(L(A)) is not easy. In particular, completion is not able to do that, as we
show on the next example.

Example 116 Let R = f(x) → g(x) and A = 〈F ,Q,Qf ,∆〉 the tree automaton such
that Qf = {q0} and ∆ = {f(q0) → q0, a → q0}. We have L(A) = {f∗(a)} and
R(L(A)) = {f∗(g(f∗(a)))}. However, if we apply completion onR and A, after the first
step we obtain A1

R = A ∪ {g(q0) → q0}. This tree automaton is such that L(A1
R) =

{(fg)∗(a)} = R∗(L(A)), hence L(A1
R) ⊃ R(L(A)).

With tree transducers, the execution of a program is modeled using repeated applica-
tion of one (or several) tree transducers. Thus, the objective is to compute or to over-
approximate the setR∗T (L(A)). There are examples, like the WOS class (see Section 2.1.1),
where the repeated application of the tree transducers correspond to the application of a sin-
gle TRS. In that case, we have shown that the construction of the set of reachable terms can
be done using completion (see Section 3.3.1). However, in general, such correspondence
between tree transducers and TRS is uneasy to define and may also be irrelevant.

Besides to this, when the exact construction of R∗T (L(A)) is not possible abstract reg-
ular tree model-checking benefits of many abstraction techniques inherited of the abstract
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regular (word) model-checking community. In Section 2.3.1, we have recalled some of
those techniques, taken from (Bouajjani et al., 2006a). Those techniques are based on the
definition of an equivalence relation between states of the automaton. Our simplification
technique based on equations is, of course, closely related to this one. Recall that in their
framework, two different equivalence relations are considered.

• two states are equivalent if their recognized languages are equal for terms of height
lesser or equal to a given n;

• given a set of tree automata P = {P1, . . . , PN}, two states q1 and q2 of A are
equivalent if {Pi ∈ P | L(Pi) ∩ L(A, q1) 6= ∅} and {Pi ∈ P | L(Pi) ∩ L(A, q2) 6=
∅} are equal.

Those two equivalence relations are incomparable with the one we consider, defined
using equations on terms. In other words, none can be defined with the other. The second
relation can be used to encode ground equations or equations where left and right hand
sides do not share variables. For instance, an equation f(x) = g(y) can be encoded by
two tree automata P1 recognizing the set {f(t) | t ∈ T (F)} and P2 recognizing the set
{g(t) | t ∈ T (F)}. However, an equation of the form f(x) = g(x) is not possible to define
using this simple encoding. On the opposite, assume that P = {P1, P2}, L(P1) = {a} and
L(P2) = {b}. This set P defines 4 equivalence classes on:

1. states recognizing a and b ({P1, P2}),

2. states recognizing a and not b ({P1}),

3. states recognizing b and not a ({P2}),

4. states recognizing neither a nor b ({}).

Classes 2. and 3. can be defined using the equations a = a and b = b. However, classes 1.
and 4. cannot be defined using simplification by equations as defined in Section 3.2.1. A
great advantage offered by the above equivalence relations is that they can be automatically
refined if necessary (Bouajjani et al., 2006a). This is not the case for equational completion,
but this is ongoing work. Furthermore, refinement of approximations built by standard
completion is possible (Boichut et al., 2008).

3.3.5 Static Analysis
In Section 2.3.2, we have seen that approximation of reachable terms have been used for the
flow analysis of imperative, functional and logic programs. As explained in that section,
since all those analysis share a common mechanism, we focus on the analysis of (Jones,
1987; Jones and Andersen, 2007) because it is defined through TRS and thus makes com-
parison more accurate. Now, we show how to use equational completion to perform a
similar analysis. If necessary, the precision of the approximation can even be easily im-
proved. We show in particular how we can lift the precision of an approximation from a
basic flow analysis to a shape analysis. Instead of building by hand the automata produced
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by equational completion, we use the Timbuk tool which will be presented more in detail
in Chapter 4.

The contributions of (Jones and Andersen, 2007) are to deal with higher order functions
and lazy evaluation. Since the higher order part can be done by reusing their encoding of
higher-order function into first order TRS (detailed in Section 3.3.5), we here focus on
the lazy evaluation part. This example is interesting because the resulting grammar is
fully detailed in their paper so that we can compare. In (Jones and Andersen, 2007), the
functional program is directly given in its TRS form:

g(N) -> first(N, sequence(nil))
first(nil, Xs) -> nil
first(cons(one,M), cons(X,Xs)) -> cons(X,first(M,Xs))
sequence(Y) -> cons(Y,sequence(cons(one,Y)))

For any list N composed of n one symbols, the function g computes the list of the n
first elements of the infinite list [nil, [one], [one, one], . . .]. Note that this program needs
a lazy or outermost evaluation strategy to terminate because the sequence function does
not terminate and builds the infinite list [nil, [one], [one, one], . . .]. The initial set of terms
is defined by the following automaton:

Automaton A0
States q0 ql qa q1 qnil
Final States q0
Transitions
g(ql) -> q0
cons(qa,ql) -> ql
cons(q1,ql) -> ql
cons(q1,qnil) -> ql
cons(qa,qnil) -> ql
nil -> qnil
atom -> qa
one -> q1

recognizing all terms of the form g(l) where l is any list of atoms that can be one
or any other atom, as in (Jones and Andersen, 2007). Though (Jones and Andersen, 2007)
do not comment on it, since the set of atoms is potentially infinite and grammars or au-
tomata can only be finite, it is necessary to finitely abstract it. We do this using two distinct
constants one representing itself and atom representing all the other atoms distinct from
one. In (Jones and Andersen, 2007), the objective is to infer the term structure of possible
values for parameters and results of every function f without a priori knowledge on the
inputs of the f function. Since completion covers all reachable terms, it covers also those
that can be reached by a lazy evaluation. In fact, we can achieve exactly the same flow
analysis and obtain the same result using equations defining a similar independent attribute
approximation. This can be done using contextual equations (see Section 4.1.2). Recall
that the intuition behind an independent attribute approximation for a function f is simply
to merge together all possible call values for f . Hence, for the function first which
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has two parameters, such an approximation can be defined using the single contextual
equation for first: [first(X,Y), first(Z,U)] => [X=Z Y=U]. Similarly,
for sequence the equation will be: [sequence(X), sequence(Y)] => [X=Y].
Using those equations, we obtain a completed automaton of 11 states and 18 transitions.
Among the transitions, we can find the following subset recognizing the set of results of
the g calls:

nil -> q13
cons(q10,q13) -> q13
nil -> q10
cons(q3,q10) -> q10
one -> q3

which is the same result as the one obtained by (Jones and Andersen, 2007), i.e. any
list whose elements are flat lists of one symbols.

Adapting the approximation to the property to prove

In order to illustrate the impact of equations on the precision of the approximation, we aim
at proving some property on the reverse function. This function is classically defined by:

append(nil,X) -> X
append(cons(X,Y), Z) -> cons(X, append(Y,Z))
rev(nil) -> nil
rev(cons(X,Y)) -> append(rev(Y), cons(X,nil))

Assume that we want to know what can be the result of rev(l) where l can be any flat list of
a, b, c and d (in that order) and such that l contains at least one occurrence of each symbol.
The language rev(l) is defined by the following tree automaton:

Automaton A0
States q0 qla qlb qlc qld qnil qf qa qb qc qd
Final States q0
Transitions
f(qla) -> q0
cons(qa, qla) -> qla
cons(qa, qlb) -> qla
cons(qb, qlb) -> qlb
cons(qb, qlc) -> qlb
cons(qc, qlc) -> qlc
cons(qc, qld) -> qlc
cons(qd, qld) -> qld
cons(qd, qnil) -> qld
nil -> qnil
a -> qa
b -> qb
c -> qc
d -> qd
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The expected result is, of course, the language of flat list where symbols are in the
opposite order and occur at least once. This can be seen as a shape analysis. If we use
an independent attribute approximation, as in the previous section, using the following
equations:

[append(X,Y), append(Z, U)] => [X=Z Y=U]
[rev(X), rev(Y)] => [X=Y]

the Timbuk tool produces a tree automaton where state q29 recognizes the result of
rev(l):

nil -> q29
cons(q7,q29) -> q29
cons(q8,q29) -> q29
cons(q9,q29) -> q29
cons(q10,q29) -> q29
d -> q10
c -> q9
b -> q8
a -> q7

This language is the language of flat lists possibly containing symbols a, b, c and d
but in any order. This result is coherent with an independent attribute approximation since
all call values of append are merged together. For all function f(x, y), we can improve
the approximation by merging together the calling values for x on one side and for y on
the other side, only if the calling context are similar. This is the same idea that is used
to improve a 0-CFA analysis into a 1-CFA analysis: take the direct calling context into
account. For the append symbol, for instance, this can be done using the following kind of
equations:

[cons(append(X,Y),_), cons(append(Z,U),_)] => [X=Z Y=U]
[cons(_,append(X,Y)), cons(_,append(Z,U))] => [X=Z Y=U]
[append(append(X,Y),_), append(append(Z,U),_)] => [X=Z Y=U]
[append(_,append(X,Y)), append(_,append(Z,U))] => [X=Z Y=U]

where we merge call values of append only if the calling context at depth 1 is the same.
Even if it improves the precision of the approximation, the resulting automaton still does
not preserve the order of symbols in the list. In fact, even by distinguishing between any
calling context of depth k ∈ N (like in a k-CFA analysis), the approximation would not
be precise enough to obtain the result we expect. However, we can construct a different
approximation using the single equation:

append(append(X,Y),Z)=append(X,Z)

Using this equation, we obtain an approximation preserving the order of symbols: the
resulting language contains any flat list of d, c, b and a in that order. However, the ap-
proximation is still too coarse since there is no guarantee on the occurrence of every
symbol in the list. This is due to the fact that, using the previous equation, we have
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in particular the following equality: append(append(cons(b, nil), cons(a, nil)), nil) =
append(cons(b, nil), nil) meaning that every occurrence of the first term is equivalent to
the second. This equation preserve the order of symbols but not their occurrence in the list:
the symbol a has disappeared. Finally, it is possible to use the following equations:

cons(a, cons(a, X))=cons(a,X)
cons(b, cons(b, X))=cons(b,X)
cons(c, cons(c, X))=cons(c,X)
cons(d, cons(d, X))=cons(d,X)

expressing more precisely where contractions of infinite lists have to be performed. These
equations permit to construct a completed tree automaton whose recognized language is
the expected one, and contains 19 states and 59 transitions.

Dealing with higher-order functions

In (Jones and Andersen, 2007) another contribution is to deal with higher order functions
encoding them in a curried way into term rewriting systems. First, here is the functional
program.

cons = λXλY.(X : Y )
double = λX.(X : X)
map = λFλL.if L = nil then nil else (F X) : (map F Xs)
f = λX.(map double X) : (map (cons a) X)

where ’a’ is an atom, ’:’ and ’nil’ are the usual constructors for lists. Now here is its
encoding into a TRS, using the curried form, where app stands for the application, fcons
stands for ’cons’ and cs stands for ’:’

app(app(fcons, X), Y) -> cs(X, Y)
app(double, X) -> cs(X, X)
app(app(map, F), nil) -> nil
app(app(map, F), cs(X, Xs)) -> cs(app(F,X), app(app(map, F), Xs))
app(f,X) -> cs(app(app(map, double), X), app(app(map, app(fcons, a)), X))

In (Jones and Andersen, 2007), the objective is to infer the term structure of possible
values for parameters and results of every function f without a priori knowledge on the
inputs of the f function. We can do a similar analysis using Timbuk with the following set
of contextual equations:

[app(app(map, X), Y), app(app(map, Z), U)] => [X=Z Y=U]
[app(double, X), app(double,Y)] => [X=Y]

Note that equations on double and fcons are even not necessary for the completion
to terminate.
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Chapter 4

Practical contributions

Experimenting with tree automata and completion, quickly requires a tool to help. The
main reason is that, contrary to a word automaton, a tree automaton is a formal structure
which is uneasy to draw. Hence, reasoning on tree automata on the paper is hard. The other
reason is that, even on simple examples, tree automata completion can produce complex
and large automata that cannot be managed by hand.

4.1 The Timbuk library
As a result, we developed several softwares in order to deal with tree automata, all gath-
ered in a library called Timbuk. These software are the Timbuk completion tool (see
Section 4.1.2), Taml a command line tool for basic calculations on tree automata (see Sec-
tion 4.1.3) and Tabi a graphical interface for browsing tree automata (see Section 4.1.4).
The Timbuk library is based on the Objective Caml language (Leroy et al., 2000). Tim-
buk’s development started in 2000 and still continues. In particular, the matching algorithm
was optimized several times (Section 4.2) and was implemented in the Timbuk completion
tool (Section 4.3). The Timbuk tool was also refined in order to deal with non left-linear
TRS and conditional TRS (Section 4.4). Recently, a certified checker has been developed
in Coq so as to certify the results obtained by completion tools (see Section 4.5). Finally,
the library is distributed under the LGPL license since the beginning and has some well
identified users, as we will see in Section 4.1.5

4.1.1 History
Before detailing the tools contained in Timbuk library, we present a brief history of the
library versions with their contributors.

Timbuk 1.0: This version contains implementations of tree automata completion as well
as all the basic operations on tree automata:

• boolean operations: intersection, union, inversion
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• emptiness decision, inclusion decision

• cleaning, renaming

• determinization

• matching of terms over tree automata

• construction of the automaton recognizing IRR(R) for a left-linearR
• normalization of transitions

• parsing, pretty printing

• reading and writing automata to files

However, since the aim was to rapidly experiment with the verification on programs
modeled using TRS, optimization efforts were essentially made on the necessary al-
gorithms: completion, intersection, cleaning and emptiness decision. Most of the
other available operations are essentially a straightforward implementation of text-
book algorithms (Comon et al., 2008). With regards to the approximation technique,
Timbuk 1.0 was only proposing interactive approximations, i.e the user was asked to
give the state names used to normalize transitions obtained by completion.

Timbuk 2.0 This was improved in Timbuk 2.0 with the introduction of normalization rules
(see Section 3.1.2). The two tools Taml and Tabi were also added to the library. Tabi
has been developed with a group of Master’s students, namely: Boinet Matthieu,
Brouard Robert, Cudennec Loic, Durieux David, Gandia Sebastien, Gillet David,
Halna Frederic, Le Gall Gilles, Le Nay Judicael, Le Roux Luka, Mallah Mohamad-
Tarek, Marchais Sebastien, Martin Morgane, Minier François and Stute Mathieu. In
this version, the Timbuk completion tool has been developed in collaboration with
Valérie Viet Triem Tong.

The objective of normalization rules is to let Timbuk users state their approximation
in a declarative way. Normalization rules revealed to be a very powerful and adapt-
able way to define approximations. Our experience while Modeling and verifying
the SmartRight cryptographic protocol (Genet et al., 2003) (see Section 5.1.3) using
Timbuk shows that having declarative approximations is a strength for this kind of
verification technique. With normalization rules it is possible to tune the approxi-
mation for a specific program or property to prove. Another improvement was the
integration in Timbuk of the optimized matching algorithm described in Section 4.2.
This algorithm expresses the matching problem as a product between the completed
automaton and a tree automaton representing all the left-hand sides of rules. By
computing a single product, it is possible to build in one pass all the substitutions
corresponding to the application of all the rules at every position in the completed
tree automaton. This optimization improved the overall efficiency of Timbuk by a
factor 10 on combinatorial TRSs such as cryptographic protocol specifications. This
result can be explained by the fact that, with TRSs encoding cryptographic protocol,
for each completion step many rewrite rules (in particular those encoding the intruder
behavior) can be applied at many positions. The new matching algorithm is clearly
well adapted for this kind of TRSs.
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Although normalization rules are expressive and efficient, they are not easy to write.
As a solution to this problem, Y. Boichut, Pierre-Cyrille Héam and Olga Kouchnarenko
proposed to automatically generate those normalization rules from a careful inspec-
tion of the TRS. This approach was successful when the TRS encodes a crypto-
graphic protocol and approximations are used to prove secrecy on an unbounded
number of interleaved protocol sessions (Boichut et al., 2004). These theoretical re-
sults were implemented in the TA4SP verification tool (Boichut, 2005) that is part of
the well known AVISPA protocol verification tool (Armando et al., 2005).

Timbuk 3.0 Another way to ease the definition of approximations is to use a simpler lan-
guage. Normalization rules are based on tree automata formalism and, thus, it is
impossible to define such a rule without being a tree automata expert. In Timbuk-
3.0 we replaced normalization rules by equations that do not require specific tree
automata knowledge to be defined. Although the modification seems of secondary
importance, it implied many deep transformations of the completion algorithm (see
Section 3.2.3). Thus, the implementation of Timbuk 3.0 is totally new and fully
dedicated to reachability analysis. As a consequence, it does no longer provide basic
tree automata operations.

Timbuk 2.2 is around 13000 lines of Ocaml and the new version 3.0 re-developed from
scratch is around 11000 lines of code. Timbuk 2.2 contains the following tools: Timbuk
reachability analysis tool, Taml and Tabi, we now detail.

4.1.2 Timbuk tree automata completion and reachability analysis tool
Basic features: completing and checking (un)reachability

Initially, the library was implemented so as to experiment with the tree automata comple-
tion algorithm. The objective was to show that tree automata completion and reachability
analysis of TRSs could be an alternative technique for program verification. The Timbuk
tool computes exactly or approximately R∗(E) for given TRS R and set of initial term E
and also check thatR∗R(E) ∩Bad = ∅. Sets of terms E,Bad and term rewriting system
R are defined in a Timbuk specification file. Let us begin by a simple example with the
basic.txt specification file where one TRS R and three sets of terms init, check1
and check2 are defined:

(* basic.txt *)

Ops f:1 g:1 a:0

Vars x

TRS R
f(x) -> g(f(x))

Set init
f(a)
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Set check1
g(g(g(g(f(a)))))
g(f(g(a)))

Automaton check2
States qf q0 q1
Final States qf
Transitions
g(qf) -> qf
f(q1) -> qf
g(q0) -> q1
a -> q0

The first line is a comment. The next two declarations are for operators and variables. Then
the TRS R is defined. The first two sets of terms init and check1 are finite and thus
can be defined by extension as lists of ground terms. The last set check2 is not finite
and is defined as a tree automaton. To execute Timbuk on this specification it is enough to
execute:

timbuk basic.txt

on the command line. Then Timbuk reads the above specification and, by default,
start a completion on the first TRS and first set of terms. In our case, it tries to compute
R∗(init). When given a finite set of terms using the Set constructor, Timbuk transforms
it into a tree automaton recognizing exactly this set, i.e. the set {f(a)} in our case. The
other sets (and thus other tree automata) associated with names check1 and check2 will
be used later for verification purpose. Initially Timbuk produces the following output:

Completion step: 0
Do you want to:
(c)omplete one step (use Ctrl-C to interrupt if necessary)
complete (a)ll steps (use Ctrl-C to interrupt if necessary)
(m)erge some states
(s)ee current automaton
(b)rowse current automaton with Tabi
(d)isplay the term rewriting system
(i)ntersection with verif automata
intersection with (o)ther verif automata on disk
search for a (p)attern in the automaton
(v)erify linearity condition on current automaton
(w)rite current automaton, TRS and approximation to disk
(f)orget old completion steps
(e)quation approximation in gamma
(g)amma normalisation rules
(det)erminise current automaton
(u)ndo last step
(q)uit completion
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(c/a/m/s/b/d/i/o/p/v/w/f/e/g/det/u/q)?

meaning that the current completion step number is 0 and that Timbuk expect you to give
one command. For instance, by typing s it is possible to display the current tree automaton
being completed:

States qterm0:0 qterm1:0

Final States qterm0

Transitions
a -> qterm1
f(qterm1) -> qterm0

which is a tree automaton recognizing the set of terms {f(a)}. Now it is possible to search
for reachable terms from {f(a)} by doing some completion steps. Type c to achieve one
completion step. Timbuk finds a new reachable term which corresponds to a new tree
automata transition to add to the current tree automaton:

Adding transition:

g(f(qterm1)) -> qterm0

Adding this transition to the tree automaton will permit to recognize the term g(f(a))
which is reachable from f(a) when applying rule f(x) → g(f(x)). However the transi-
tion g(f(qterm1)) -> qterm0 has to be normalized first. In our case, the subterm
f(qterm1) has to be replaced by a state. When the specification does not contain nor-
malization rules, Timbuk interactively asks for normalization instructions. The user can
either propose state names or use automatic normalization with new states instead. Auto-
matic normalization causes Timbuk to create a new state qnew0 to normalize automati-
cally the transition into a set of two normalized transitions equivalent to g(f(qterm1))
-> qterm0:

Adding transition:

g(qnew0) -> qterm0

... already normalised!

Adding transition:

f(qterm1) -> qnew0

... already normalised!

This ends the first completion step. Using the same normalization methodology (i.e. al-
ways normalize with new states) it is possible to complete step 2, step 3 and so on, but
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completion does not terminate with this strategy. This is not really surprising since rule
f(x)→ g(f(x)) is not terminating on term f(a) and we are incrementally adding an infi-
nite set of descendants of f(a). However, since this example belongs to the decidable class
L-GFPO (see Section 2.1.2) and is thus covered by completion (see Section 3.3.1) using
the exact normalization strategy (see Definition 113). This can be done by starting again
Timbuk in this particular mode:

timbuk -strat exact basic.txt

Then either type repeatedly c or type once a for achieving completion until Timbuk
succeeds at step 2:

Automaton is complete!!
------------------------

Then, it is possible to see the final completed automaton by typing s:

States qterm0:0 qterm1:0
Final States qterm0
Transitions
a -> qterm1
f(qterm1) -> qterm0
g(qterm0) -> qterm0

The obtained automaton recognizes the set of reachable terms. Then, it is possible to check
if terms of the sets check1 and check2 are R-reachable from f(a). This can be done by
computing an intersection between R∗(init) = R∗({f(a)}) and check1 and check2.
Intersections with finite sets or other automata contained in the same specification file can
be done by typing i, this results in:

Intersection with check1 gives (not empty):

States q5:0 q4:0 q3:0 q2:0 q1:0 q0:0

Final States q5

Prior
f(q0) -> q1
a -> q0

Transitions
a -> q0
f(q0) -> q1
g(q1) -> q2
g(q2) -> q3
g(q3) -> q4
g(q4) -> q5

for check1, meaning that some terms of check1 (in fact the term g(g(g(g(f(a)))))) is
reachable from f(a) using R. For check2, a similar test results in:
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Intersection with check2 gives (the empty automaton):

States

Final States

Transitions

meaning that the term of check2 are all not reachable by rewriting f(a) with R. Another
way to check that a term is (un)reachable is to use the pattern detection of this tool. After
the completion of this example, it is possible to type p to look if a given pattern can be
found in the automaton.

Type a term and hit Return: g(g(g(x)))

Solutions:
Occurence in state qterm0!
solution 1: x <- qterm0

If we look for a term of the form g(g(g(x))) in the completed tree automaton A∗R, the an-
swer is that such a term can be found and both a position (Occurrence in...) and a
substitution (solution...) is given. On this example, this means that g(g(g(qterm0)))→∗A∗R
qterm0. In other words, there exists a ground substitution σ and a state qterm0 such that
g(g(g(x)))σ →∗A∗R tt qterm0, i.e. g(g(g(x)))σ is recognized by a state in A∗R. This means
that there exists a reachable term with subterm g(g(g(x)))σ. Moreover, if the occurrence
state is final then the term belongs to L(A∗R) and thus the term is reachable. Note that it is
the case here. If such occurrence and state are not found the subterm is not reachable:

Type a term and hit Return: f(g(g(a)))

Pattern not found!

Defining approximations using normalization rules

This is what can be done on TRS and initial sets of terms for which completion naturally
terminates, i.e. problems having a finite set of reachable terms or TRSs in the decidable
classes covered by the completion (see Section 3.3.1). Recall that normalization rules (see
Section 3.1.2) in Timbuk, are rules of the form:

[s→ x]→ [l1 → r1 . . . ln → rn]

where s, l1, . . . , ln are terms that may contain symbols, variables and states, and x, r1,
. . . , rn are either states or variables such that if ri is a variable then it is equal to x. To
normalize a transition of the form t → q′, we match the pattern s on t and x on q′, obtain
a substitution σ and then we normalize t with the rewrite system {l1σ → r1σ, . . . , lnσ →
rnσ} where r1σ, . . . , rnσ are necessarily states. We illustrate the use of normalization
rules on the following specification:



90 T. Genet

(* normrules.txt *)

Ops f:1 g:1 a:0

Vars x z

TRS R
g(x) -> f(g(f(x)))

Set init
g(a)

Set check2
f(f(f(g(f(f(a))))))

Approximation Simple
States q0 q1 q2 q3
Rules

[f(g(f(q0))) -> z] -> [f(q0) -> q2 g(q2) -> q3]
[f(g(f(q2))) -> z] -> [f(q2) -> q0 g(q0) -> q1]
[f(g(f(x))) -> z] -> [f(x) -> q0 g(q0) -> q1]

In this example the set R∗({g(a)}) = {fn(g(fn(a))) | n ∈ N} which is not regular and
thus cannot be computed exactly using a tree automaton. However, it is possible to over-
approximate it. The objective, here, is to prove that the term f3(g(f2(a))) is not reachable.
In this case, we can use a simple approximation where we collapse chains of f(f(f(. . .)))
such that we only distinguish between even and odd number of f symbols above and below
the g symbols. This is done by the above normalization rules whose role is to normalize
transitions of the form f(g(f(q)))→ q′, i.e. determine state names for subterms f(q) and
g(f(q)). For that purpose, we use distinct states q0, q1, q2, q3 such that:

• q0 recognizes an odd number of f below g

• q1 recognizes a g above an odd number of f

• q2 recognizes an f above a q0, i.e. an even number of f below g

• q3 recognizes a g above an even number of f

Starting Timbuk completion on this specification results in the following tree automa-
ton:

States q0:0 q1:0 q2:0 q3:0 qterm0:0 qterm1:0

Final States qterm0

Transitions
a -> qterm1
g(qterm1) -> qterm0
f(qterm1) -> q0
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g(q0) -> q1
f(q1) -> qterm0
f(q0) -> q2
g(q2) -> q3
f(q3) -> q1
f(q2) -> q0
f(q1) -> q3

which recognizes the language {(ff)∗(g((ff)∗(a))), f((ff)∗(g((ff)∗(f(a)))))}, i.e.
terms of the form fn(g(fm(a))) such that n and m are both even or both odd. Thus the
intersection with {f3(g(f2(a)))} is empty. Note that, to ease the understanding of the lan-
guage recognized by an initial or completed tree automaton we can use the graphical tool
Tabi which is presented on that example in Section 4.1.4.

Defining approximations using equations, conditional equations and contextual equa-
tions

A similar approximation and result can be obtained using Timbuk 3.0 and equational ap-
proximation. The syntax is very similar to the one used in Timbuk 2.0 except the field
Patterns that defines a list of term of T (F ,X ) that have to be matched on the terms
recognized by the completed automaton after each step of completion. If a solution is
found then the term is recognized by the completed automaton. If the pattern has to be
matched everywhere in the tree automaton and not only at top position of terms, we can
use the SubPatterns flag instead.

% equations.txt

Ops f:1 g:1 a:0

Vars x y

TRS R
g(x) -> f(g(f(x)))

Set init
g(a)

Patterns
f(f(f(g(f(f(a))))))

Equations Simple
Rules

f(f(x))=x

Note that the approximation definition corresponds exactly to what has been proposed
above using normalization rules but in a simpler and more concise way. Interactions with
Timbuk 3.0 are also simpler than with Timbuk 2.0. On the previous specification, we can
run the completion by simply typing:
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timbuk 8 equations.txt

where 8 is the maximal number of completion steps that are going to be performed. On the
previous specification, Timbuk 3.0 ends as follows:

States q1 q2 q3 q4 q5 q6 q7
Final States q1
Transitions
f(q6) -> q7
g(q5) -> q6
f(q3) -> q6
a -> q5
f(q2) -> q5
f(q3) -> q4
g(q2) -> q3
f(q6) -> q3
f(q5) -> q2
g(q5) -> q1
f(q3) -> q1

Step: 4

Automaton complete!
------------------

meaning that the tree automaton has successfully been completed in 4 steps and that the
pattern has not been found, thus proving that the term f3(g(f2(a))) is not reachable. The
above example shows that equations are far more declarative than normalization rules to
define approximations. However, normalization rules have some facilities that have disap-
peared in equations: the ability to define contextual approximations. With normalization
rules it is possible to state that the approximation has to be carried out under a particular
context. For instance, the following normalization rule:

[f(g(x))→ z]→ [g(x)→ q]

states that any term of the form g(x) is normalized by a unique state q but only if it appears
under an f . A similar approximation, where all terms of the form g(x) have to be merged
together only if they appear under an f , is impossible to achieve using equations. However,
such contextual approximations revealed to be crucial for static analysis: the independent
attribute approximation of Section 3.3.5 as well as for other analysis on more realistic
programs (see Section 5.2). This is the reason why, in Timbuk 3.0 we added contextual
equations that can have three different forms:

1. [s]⇒ [s1 = t1 . . . sn = tn]

2. [s, t]⇒ [s1 = t1 . . . sn = tn]

3. [s = t]⇒ [s1 = t1 . . . sn = tn]
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Assuming that A is a tree automaton, applying those contextual equations on A is done as
follows. The right-hand side of ⇒ is a list of equation to be applied on A provided that
the left-hand side can be matched on A. A left-hand side of the form [s] means that we
look only for matching solution for s on A, for [s, t] we look for solutions for both s and
t independently and for [s = t] we look for solutions such that matches for s and t belong
to the same equivalence class, i.e. recognized by the same state of A. Going back to our
approximation example, where we wanted to merge all the terms of the form g(x) provided
that they appear under an f , it can be defined by the following contextual equation:

[f(g(x)), f(g(y))]⇒ [g(x) = g(y)]

Finally Timbuk 3.0 also offer a restricted form of conditional equations. These conditional
equations are of the form:

f(g(x), y) = f(h(x), z) if x 6= y ∧ y 6= z

Simplification (see Section 3.2.1) is performed using this equation if and only if, when
matching f(g(x), y) and f(h(x), z) in the automaton, the states associated to x, y and z
satisfy the given condition.

4.1.3 Taml
Taml is a very simple interactive tool for achieving basic tree automata computations. The
aim of this section is essentially to show what a Taml working session looks like and how
Taml functions and Ocaml top-level nicely interact. We use Taml to check simple properties
on tree automata like inclusion, emptiness, . . . , as well as compute intersections or the
automaton recognizing IRR(R) for a given left-linear TRSR. Actually, Taml is an Ocaml
interpreter extended with Timbuk library functionalities and pretty printing (see (Genet,
2003) for reference manual of Taml and see (Leroy et al., 2000) for details about Ocaml
syntax). Taml permits to define alphabets, sets of variables, terms, term rewriting systems
and tree automata and also to apply basic tree automata operations using specific functions.
We define an alphabet f, a variable set v and a ground term t as follows (where the #
symbol represents the Taml prompt).

# let f= alphabet "app:2 cons:2 nil:0 a:0 b:0";;
val f : Taml.Alphabet.t = app:2 cons:2 nil:0 a:0 b:0

# let v= varset "x y z u";;
val v : Taml.Variable_set.t = x y z u

# let t= term f v "cons(a, cons(b, nil))";;
val t : Taml.Term.t = cons(a,cons(b,nil))

Since Taml is built on the top of a complete Ocaml interpreter, it is thus possible to use usual
Ocaml syntax facilities and also to combine Taml functions with usual Ocaml functions.
For instance, it is possible to define a specific term function specialized for alphabet f
and variable set v in the following way:



94 T. Genet

# let fvterm= term f v;;
val fvterm : string -> Taml.Term.t = <fun>

Now it is possible to construct a list of terms built on alphabet f and variable set v using the
specialized function fvterm as well as Ocaml List.map function (mapping a function
to every element of a list) in the following way:

# let l= List.map fvterm ["app(cons(a, nil),cons(b, cons(b, nil)))"; "a"; "cons(a,nil)"];;
val l : Taml.Term.t list = [app(cons(a,nil),cons(b,cons(b,nil)));a;cons(a,nil)]

Similarly we can construct term rewriting systems and tree automata directly in the inter-
preter.

# let tt= trs f v "app(nil, x) -> x app(cons(x, y), z) -> cons(x, app(y, z))";;
val tt : Taml.Rewrite.t =
app(nil,x) -> x
app(cons(x,y),z) -> cons(x,app(y,z))

# let aut= automaton f "
States qa qb qla qlb qf
Final States qf
Transitions

a -> qa
b -> qb
cons(qa, qla) -> qla
nil -> qla
cons(qb, qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf";;

val aut : Taml.Automaton.t =
States qa:0 qb:0 qla:0 qlb:0 qf:0

Final States qf

Transitions
a -> qa
b -> qb
cons(qa,qla) -> qla
nil -> qla
cons(qb,qlb) -> qlb
nil -> qlb
app(qla,qlb) -> qf

We can prove that a given term is recognized by a particular state in a tree automaton.

# let t1= List.hd l;;
val t1 : Taml.Term.t = app(cons(a,nil),cons(b,cons(b,nil)))

# let s= state "qf";;
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val s : Taml.Automaton.state = qf

# run t1 s aut;;
- : bool = true

We can compute the automaton recognizing the set of terms irreducible by TRS tt by
typing the following command:

# let aut_irr= irr f tt;;
val aut_iff : Taml.Automaton.t =
States q2:0 q1:0 q0:0

Final States q0 q1 q2

Transitions
b -> q2
a -> q2
nil -> q1
app(q2,q2) -> q2
app(q2,q1) -> q2
cons(q1,q1) -> q0
cons(q2,q2) -> q0
cons(q2,q1) -> q0
cons(q1,q2) -> q0
cons(q0,q0) -> q0
cons(q2,q0) -> q0
cons(q1,q0) -> q0
cons(q0,q2) -> q0
cons(q0,q1) -> q0
app(q2,q0) -> q2

Now, we can check that no term of aut is irreducible by the following computation:

let intersec= simplify (inter aut aut_irr);;
val intersec : Taml.Automaton.t = States

Final States

Transitions

where inter is the tree automata intersection and simplify combines two cleanings
of the tree automaton: an accessibility and an utility cleaning. Accessibility cleaning of
a tree automaton A suppress all states q (and corresponding transitions) such that ∀t ∈
T (F) : t 6→A∗ q. In the tree automaton A, utility cleaning suppresses every state q such

that ∀t ∈ T (F) : ∀q′ ∈ Qf and for all derivation t →A∗ q′, q does not appear in the
derivation. The above results proves that no term recognized by aut is irreducible. On the
opposite, we can check that all the terms of aut are reducible terms as follows.
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# let inv= inverse aut_irr;;
val inv : Taml.Automaton.t =
States q0:0 q1:0 q2:0 q3:0 q4:0 q5:0

Final States q5

Transitions

nil -> q3
a -> q4
b -> q4
app(q0,q0) -> q5
app(q0,q4) -> q5
app(q0,q5) -> q5
app(q3,q0) -> q5
app(q5,q0) -> q5
app(q3,q5) -> q5
app(q0,q3) -> q5
app(q2,q3) -> q2
app(q4,q0) -> q4
app(q4,q3) -> q4
app(q4,q4) -> q4
app(q2,q4) -> q2
app(q2,q2) -> q2
app(q4,q2) -> q2
app(q2,q0) -> q2
app(q2,q1) -> q2

app(q3,q3) -> q5
app(q3,q4) -> q5
app(q4,q1) -> q2
app(q4,q5) -> q5
app(q5,q5) -> q5
app(q5,q3) -> q5
app(q5,q4) -> q5
cons(q3,q2) -> q1
cons(q3,q0) -> q0
cons(q3,q1) -> q1
cons(q1,q3) -> q1
cons(q0,q4) -> q0
cons(q5,q5) -> q5
cons(q3,q3) -> q0
cons(q3,q4) -> q0
cons(q2,q1) -> q1
cons(q4,q3) -> q0
cons(q4,q5) -> q5
cons(q2,q4) -> q1
cons(q3,q5) -> q5

cons(q4,q2) -> q1
cons(q2,q2) -> q1
cons(q5,q0) -> q5
cons(q1,q2) -> q1
cons(q1,q0) -> q1
cons(q1,q1) -> q1
cons(q0,q3) -> q0
cons(q4,q4) -> q0
cons(q0,q2) -> q1
cons(q0,q1) -> q1
cons(q2,q0) -> q1
cons(q0,q5) -> q5
cons(q0,q0) -> q0
cons(q4,q1) -> q1
cons(q4,q0) -> q0
cons(q1,q4) -> q1
cons(q2,q3) -> q1
cons(q5,q3) -> q5
cons(q5,q4) -> q5

# is_included aut inv;;
- : bool = true

where is_included a1 a2 tests that the language recognized by automaton a1 is
included in the language recognized by a2. The inverse operation implements the usual
complement operation on languages. The above results guarantees that all terms of aut
are reducible.

4.1.4 Tabi
Tabi has been developed in collaboration with a group of Master’s students: Boinet Matthieu,
Brouard Robert, Cudennec Loic, Durieux David, Gandia Sebastien, Gillet David, Halna
Frederic, Le Gall Gilles, Le Nay Judicael, Le Roux Luka, Mallah Mohamad-Tarek, Mar-
chais Sebastien, Martin Morgane, Minier François and Stute Mathieu. This tool offers a
graphical interface designed to browse automata and build representatives of their recog-
nized language. Let us consider again the tree automaton of Section 4.1.2:

States q0:0 q1:0 q2:0 q3:0 qterm0:0 qterm1:0

Final States qterm0
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Transitions
a -> qterm1
g(qterm1) -> qterm0
f(qterm1) -> q0
g(q0) -> q1
f(q1) -> qterm0
f(q0) -> q2
g(q2) -> q3
f(q3) -> q1
f(q2) -> q0
f(q1) -> q3

Above, we stated that this tree automaton recognizes the language {(ff)∗(g((ff)∗(a))), f((ff)∗(g((ff)∗(f(a)))))},
i.e. every term is of the form fn(g(fm(a))) such that n and m are both even or both odd.
This can be inferred from a careful browsing of this tree automaton. Using Tabi it is possi-
ble to interactively build terms recognized by states of the tree automaton. Starting from the
final state (here qterm0) and by clicking on this state it is possible to chose in a list box
which transition to unfold, between g(term1) -> qterm0 and f(q1) -> qterm0.
Assume that we choose the second one, we thus have chosen the top symbol, i.e. f and
can continue the unfolding on q1. After several unfolding, we reach the situation depicted
in Figure 4.1. In this figure, we can remark that when the mouse pointer is over a subterm,
here f(q3), then it is highlighted in green and its recognizing state, here q1, is shown as
a label.

Figure 4.1: An example of automata browsing with Tabi
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For a given state, instead of building terms by hand, Tabi also proposes to produce
representatives randomly. If we do so on the final state qterm0, we obtain the screen
displayed in Figure 4.2. We can check that the values computed randomly all verify the
property given above, i.e. that terms are all of the form fn(g(fm(a))) with n and m both
even or both odd. Finally, when the terms under study become huge, Tabi also permits
to switch from linear mode to tree mode at the subterm level for a better readability (see
Figure 4.3).

Figure 4.2: Random generation of terms recognized by a given state

4.1.5 Known users
Besides the experiment we performed (see Section 5), some other research group use
Timbuk for software verification. Frédéric Oehl and David Sinclair from Dublin Uni-
versity have proposed an hybrid verification approach for cryptographic protocols com-
bining assisted proofs with Isabelle/HOL and approximations with Timbuk (Oehl and
Sinclair, 2001; Oehl et al., 2003). Later, Pierre-Cyrille Héam, Yohan Boichut and Olga
Kouchnarenko have used Timbuk to develop TA4SP (Boichut et al., 2004; Boichut, 2005),
one of the automatic proof back-ends of the AVISPA tool (Armando et al., 2005). AVISPA
is a very well know cryptographic protocol verification tool. Among the 4 verification
back-ends of AVISPA, TA4SP is the only one to prove secrecy properties for an unbounded
number of sessions thanks to Timbuk approximations.

Finally, Timbuk is used as a basic implementation of tree automata in other works and
tools. Gaël Patin, Mihaela Sighireanu and Tayssir Touili (Patin et al., 2007a) use Tim-
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Figure 4.3: Switching from linear to tree display mode on subterms

buk for the analysis of Multi-threaded Dynamic and Recursive Programs and it is part of
the related verification tool: SPADE (Patin et al., 2007b). Timbuk is also a part of the
PRESS (Sighireanu and Touili, 2006) verification tool used for the verification of process
rewrite systems by Mihaela Sighireanu and Tayssir Touili. Finally, Ahmed Bouajjani, Pe-
ter Habermehl, Adam Rogalewicz and Tomás Vojnar use Timbuk for experimenting with
Abstract Regular Tree Model Checking (Bouajjani et al., 2006b).

4.2 Tree automata matching optimization
After having presented the practical use of Timbuk, we introduce several optimizations
and extensions of the tool which have been done. The first optimization concerns the
matching operation of Timbuk. The efficiency of the matching algorithm is crucial for
the overall efficiency of completion. Given a rewrite rule l → r and a tree automaton A,
matching consists of finding all regular language substitutions σ and states q of A such
that lσ →A∗ q. In the next section, we give the basic matching algorithm. Then, in
Section 4.2.2 we propose an optimized matching algorithm for epsilon free tree automata.
The later is extended to the case of tree automata with epsilon transitions in Section 4.2.3.
Details on the real implementation of the matching algorithm in Timbuk 3.0 will be given
in Section 4.3.

4.2.1 Basic matching algorithm
This algorithm proposed in (Genet, 1997) is close to a standard matching algorithm on
terms. It is defined using deduction rules over specific formulas called matching problems.
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In the following, a matching problem is a quantifier-free first order formula built on literals
⊥, s� c where s ∈ T (F ,X ), c ∈ T (F ∪Q), and closed by the connectives ∨ and ∧. The
literal s� c should be read as s is matched over c. An empty conjunction

∧
∅ is a trivially

true matching problem.

Definition 117 Let φ, φ1, φ2 be matching problems, s ∈ T (F ,X ) be a term, c ∈ T (F ∪Q),
and A = 〈F ,Q,Qf ,∆〉 a tree automaton. A solution to the matching problem φ is a reg-
ular language substitution (see Definition 59) σ ∈ Σ(Q,X ) such that

• if φ = s� c, then sσ →∗∆ c, or

• if φ = φ1 ∧ φ2, then σ is a solution of φ1 and a solution of φ2, or

• if φ = φ1 ∨ φ2, then σ is a solution of φ1 or a solution of φ2.

�

For simplicity, we assume that matching is applied to automata without epsilon-transitions.
If necessary, epsilon-transitions can be replaced by sets of epsilon-free transitions (see (Comon
et al., 2008)).

Definition 118 Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton, f ∈ F , Ar(f) = n, g ∈ F ,
Ar(g) = m, q, q1, . . . , qn, q

′
1, . . . , q

′
n ∈ Q, c1, . . . , cd ∈ T (F ∪Q), s, s1, . . . , sn ∈

T (F ,X ) and φ1, φ2, φ3 be non-empty matching problems. The matching algorithm con-
sists in normalizing any matching problem of the form s� q by the following set of rules.

Decompose
f(s1, . . . , sn) � f(q1, . . . , qn)

s1 � q1 ∧ . . . ∧ sn � qn

Clash
f(s1, . . . , sn) � g(q′1, . . . , q

′
m)

⊥

Configuration
s� q

s� c1 ∨ . . . ∨ s� cd ∨ ⊥

if s 6∈ X , for all ci ∈ T (F ∪Q) i = 1 . . . d such that ci → q ∈ ∆.

Moreover, after each application of any of these rules, matching problems are normalized
by the following set of rules ξ:

φ1 ∧ (φ2 ∨ φ3)

(φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

φ1∨ ⊥

φ1

φ1∧ ⊥

⊥

�

Correctness, completeness and termination of the algorithm comes from the following the-
orem of (Genet, 1997).
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Theorem 119 Given A = 〈F ,Q,Qf ,∆, s ∈ T (F ,X ), and q ∈ Q, every matching
problem s� q has a normal form such that

• if it is ⊥ then there is no regular language substitution σ s.t. sσ →∗∆ q,

• if it is empty, then for all regular language substitution σ, sσ →∗∆ q,

• otherwise, the normal form is a disjunction
∨k
i=1 φi s.t. φi =

∧ni
j=1 x

i
j � qij , where

xij ∈ X and qij ∈ Q, and σ1 = {x1
j 7→ q1

j | j = 1 . . . n1}, . . . , σk = {xkj 7→
qkj | j = 1 . . . nk} are the only regular language substitutions s.t. sσi →∗∆ q.

Thanks to this algorithm, for a given rule l→ r and a given state q, it is possible to find
every regular language substitution σ s.t. lσ →∗∆ q.

Example 120 Let A = 〈F ,Q,Qf ,∆〉, where F = {f, g, a}, Q = {q0, q1}, Qf = {q0}
and ∆ = {f(q1) → q0, g(q1) → q1, a → q1}. The language L(A) = {f(g∗(a))}. Let
R = {f(g(x))→ g(f(x))}. If we apply matching on f(g(x))�q0, we obtain the following
deductions, where the name of the applied rule is given on the right, and normalization with
simplification rules are omitted:

f(g(x)) � q0 rule Configuration

f(g(x)) � f(q1) rule Decompose

g(x) � q1 rule Configuration

g(x) � g(q1) ∨ g(x) � a rule Clash

g(x) � g(q1) rule Decompose
x� q1

Let σ be the regular language substitution σ = {x 7→ q1}. Thus, we deduced that lσ =
f(g(q1))→∗∆ q0.

4.2.2 An optimized algorithm for epsilon-free automata
Given a TRS R and a tree automaton A, for computing all regular language substitutions,
it is necessary to run the previous algorithm for ever rule l→ r ∈ R and every state q ∈ Q.
Now, we propose a more efficient algorithm for epsilon-free tree automata dealing with all
rules of R at the same time. Note that the case of automata with epsilon transition will be
treated as an extension of this algorithm in Section 4.2.3. The idea behind the optimized
matching algorithm is to represent the set of terms to be matched, i.e. the set of left-
hand sides of R by a tree automaton AR and use the tree automata intersection algorithm
between AR and A, the automaton to complete, to compute the set of substitutions. First,
for every term t ∈ T (F ,X ), we define a tree automaton whose language is exactly {t}
using abstraction and normalization functions defined in Section 3.1.

Definition 121 (Term automaton) Let S be a finite set S ⊆ T (F ,X ), and consider Sub
the set of all the subterms of S, QS a set of states, and α : Sub → Qt an injective
abstraction function. The term automaton for S is defined by Aα,S = 〈F ,Qt,QSf ,∆S〉
where QSf = {topα(t) | t ∈ S} and ∆S =

⋃
t∈S Normα(t→ topα(t)). �
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Proposition 122 If S ⊆ T (F ,X ), α is an injective abstraction andAα,S its term automa-
ton then

L(Aα,S) = S

PROOF. The proof is done by an inductive reasoning over the depth of terms t of S. 2

Let us now define the substitution automaton A∩ = Aα,S ∩ A which recognizes a set
of Q-instances which corresponds to the substitutions solutions of the matching of terms
of S on A.

Definition 123 (Substitution automaton) Let A = 〈F ,Q,Qf ,∆〉 be an automaton, α
an injective abstraction function and Aα,S = 〈F ,QS ,QSt,∆t〉 the automaton of S ⊆
T (F ,X ). We denote by A∩ = 〈F ∪ (X ×Q),Q∩,Qf,∩,∆∩〉 the substitution automaton
of S in A by:

• Q∩ = QS ×Q

• Qf,∩ = QSf ×Q

• ∆∩ = {f((q1, q
′
1), . . . , (qn, q′n))→ (qn+1, q

′
n+1) | qi ∈ Qt, q′i ∈ Q,

f(q1, . . . , qn)→ qn+1 ∈ ∆S , f(q′1, . . . , q
′
n)→ q′n+1 ∈ ∆}

∪{(x, q)→ (qx, q) | x→ qx ∈ ∆S , q ∈ Q}

�

Definition 124 (Q-instance) Let F be an alphabet,Q a set of states, X a set of variables,
we inductively define the set Q-instances:

• every pair (x, q) for x ∈ X and q ∈ Q is a Q-instance

• ∀f ∈ F ar(f) = n, if i1, . . . , in are some Q-instances then f(i1, . . . , in) is also a
Q-instance.

�

Definition 125 (Recognized Q-instance) Let A∩ = 〈F ,Q∩,Q∩f ,∆∩〉 be a substitution
automaton. A∩ defines the set of all Q-instances i such that there exists a final state
q ∈ Q∩f verifying i→∗∆∩ q �

Definition 126 (Regular language substitution defined by a Q-instance) AQ-instance s
inductively defines a set of regular language substitutions

• if s = (x, q), then s defines the regular language substitution {x 7→ q}

• if s = (a, a) then s defines the empty substitution

• if s = f(s1, . . . , sn), then if {σi,j}i∈Ij are the substitutions associated to sj , s define
the set of substitutions τ = σ1,i1 ◦ . . . ◦ σn,in .

�



Reachability analysis of rewriting for software verification 103

Example 127 Let AR be the automaton for term f(x, g(y)). Let A be the automaton
recognizing the language {f(a, g∗(b)), f(g∗(b), a). Let A∩ be the intersection automaton
between AR and A. The automaton A∩ recognizes, in final state (qf , q4), a unique Q-
instance f((qx, q1), g((qy, q3)) which defines the regular language substitution σ = {x 7→
q1, y 7→ q3} and means that f(x, g(y))σ →A∗ q4.

AR with
Q = {qx, qy, qf, qg}
Qf = {qf}
∆ =

y → qy
g(qy) → qg

x → qx
f(qx, qg) → qf

A with
Q = {q1, q2, q3, q4}
Qf = {q4}
∆ =

a → q1

b → q2

g(q2) → q3

g(q3) → q3

f(q1, q3) → q4

f(q3, q1) → q4

A∩ with
Q = {qx, qy, qf, qg} × {q1, q2, q3, q4}
Qf = {qf} × {q1, q2, q3, q4}
∆ = (we omit useless transitions)

(y, q2) → (qy, q2)
(y, q3) → (qy, q3)
(x, q1) → (qx, q1)
(x, q3) → (qx, q3)

g((qy, q2)) → (qg, q2)
g((qy, q3)) → (qg, q3)

f((qx, q1), (qg, q3)) → (qf, q4)
f((qx, q3), (qg, q1)) → (qf, q4)

Theorem 128 Let A = 〈F ,Q,Qf ,∆〉 be an automaton, R a TRS, AR the automaton of
all left-hand sides of R and A∩ the substitution automaton. Furthermore, we assume that
A respects the left-coherence condition induced by R. For all rewrite rule l → r ∈ R, for
all state q ∈ A, the set of regular language substitutions defined by the state (topα(l), q)
of A∩ is exactly the set of regular language substitutions {σi}i∈I such that lσi →A∗ q.

PROOF.

1. First assume that {σi}i∈I is a set of regular language substitutions defined by a term
s such that s →∗ (α(l), q) in A∩. For all σi, we prove that lσi →∗ q by induction
on the length of the derivations s→n (α(l), q):

• If s→1
A∩ (α(l), q) then depth(s) = 1 and

– either s = (a, a) where a is a constant, we have (a, a) →A∩ (α(a), q)
then l = a and l→∆ q, s defines the substitution of empty domain.

– or s = (x, a) we have also (x, a)→A∩ (α(a), q) then l = x, and s defines
σi = {x 7→ q}, we have lσ = a and a→ q

• Assume now that for all set {σi}i∈I defined by a term s of A∩ verifying s→k

(α(l), q) for every k ≤ n then lσi →∗ q in A.
Consider now {τi}i∈I defined by a term s such that s→n+1 (α(l), q). Clearly
s is a term of the form f(s1, . . . , sn), where sj = (lj , qj) define {τi}i∈I such
that τi = σ1,i1◦. . .◦σn,in where σj,ij range over the set of substitutions defined
by the term sj .
f(s1, . . . , sn) →A∩ (α(l), q) then l is of the form f(l1, . . . , ln) and there ex-
ist some states qj verifying sj →k

A∩ (α(lj), qj). We use the inductive hy-
pothesis sj →k (α(lj , qj) with k ≤ n, then ljσj →∗ qj in A and for all τi
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there exists a combination of σi,j verifying lτi → f(l1σ1,i1 , . . . , lnσn,in) →
f(q1, . . . , qn)→∗∆ q

2. We use now a structural induction over l to prove that if lσ →∗∆ q then σ correspond
to a term s in L(A∩):

(a) if l is a constant a
On the one hand a →At α(a) and on the other hand there exists a state q in Q
such that a →A q then (a, a) →A∩ (α(a), q) and (α(a), q) is a final state of
A∩, A∩ recognized (a, a), that defines the empty substitution.

(b) If l is a variable x
x →At α(x) and all the terms recognized by A may be an instance of x, we
have {(x, q) → (α(x), q)|q ∈ Q} ⊂ ∆∩ and Qf,∩ = {α(x)} × Q we have
defined all the regular language substitution {{x 7→ q}|q ∈ Q}.

(c) If l is of the form f(l1, . . . , ln)
A recognized lσ then there exist some states q, q1, . . . qn inA such that f(q1, . . . , qn)→∗A
q, liσ →A qi. Assume that s = f((α(l1), q1), . . . , (α(ln), qn)), there exist qi
inA and qi recognized tiσ then thanks to induction hypothesis for each li there
exists si, Q-instance defining σi. If σ1 ◦ . . . σn is not defined then lσ is not
recognized by A, contradiction ; else σ1 ◦ . . . σn exists and A∩ recognized
s = f(s1, . . . , sn) and s define σ.

2

4.2.3 Dealing with epsilon transitions and matching
In Timbuk 3.0, epsilon transitions are part of the completed automata. However the algo-
rithm of Section 4.2.2 can easily be adapted so as to cover them. First, remark that epsilon
transitions can only be encountered in the tree automaton to complete, e.g. A, and not in
AR. The problems encountered when matching a term on a tree automaton with epsilon
transitions are summed-up in the following example.

Example 129 Let A = 〈F ,Q,Qf ,∆〉, where F = {f, g, a}, Q = {q0, q1, q2, q3},
Qf = {q0} and ∆ = {f(q1) → q0, g(q2) → q2, q2 → q1, q3 → q2, . . .}. Let R =
{f(g(x))→ g(x)}. On the matching problem f(g(x)) � q0, a correct matching algorithm
should give a substitution set S = {{x 7→ q2}, {x 7→ q3}} since we have f(g(q2))→A∗ q0

and f(g(q3))→A∗ q0. However, if we use previous algorithm that do not take epsilon tran-

sitions into account it would answer S = ∅.

To adapt the matching algorithm of Section 4.2.2 to tree automata with epsilon transi-
tions, it is enough to extend the construction of the A∩. It is similar to the one of Defini-
tion 123, except that ∆∩ may contain also epsilon transitions.
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Definition 130 (Substitution automaton (with epsilon transitions)) IfA contains epsilon
transitions,A∩ is defined as in Definition 123 except that definition of ∆∩ is completed with
a last case and becomes:

∆∩ = {f((q1, q
′
1), . . . , (qn, q′n))→ (qn+1, q

′
n+1) | qi ∈ Qt, q′i ∈ Q,

f(q1, . . . , qn)→ qn+1 ∈ ∆S , f(q′1, . . . , q
′
n)→ q′n+1 ∈ ∆}

∪{(x, q)→ (qx, q) | x→ qx ∈ ∆S , q ∈ Q}
∪(q, q1)→ (q, q2) | q ∈ QS ∧ q1, q2 ∈ Q ∧ q1 → q2 ∈ ∆}

�

Other definitions can be kept as is. Like in the epsilon-free case, the algorithm obtained
by computing the set of substitution induced byQ-instance is exactly the set of valid regular
language substitutions.

Example 131 Let AR be the automaton for left-hand side of rule f(g(x)) → g(x). Let
A be the tree automaton used in Example 129. Let A∩ be the intersection automaton
betweenAR andA. The automatonA∩ recognizes, in final state (qf, q0), twoQ-instances
f(g(qx, q2)) and f(g(qx, q3)) which define the regular language substitutions σ = {x 7→
q2} and σ′ = {x 7→ q3} such that f(g(x))σ →A∗ q0 and f(g(x))σ′ →A∗ q0.

AR with
Q = {qx, qf, qg}
Qf = {qf}
∆ =

x → qx
g(qx) → qg
f(qg) → qf

A with
Q = {q0, q1, q2, q3}
Qf = {q0}
∆ =
f(q1) → q0

g(q2) → q2

q2 → q1

q3 → q2

. . .

A∩ with
Q = {qx, qf, qg} × {q0, q1, q2, q3}
Qf = {qf} × {q0, q1, q2, q3}
∆ = (we omit useless transitions)

(x, q2) → (qx, q2)
g((qx, q2)) → (qg, q2)
f((qg, q1)) → (qf, q0)

(qg, q2) → (qg, q1)
(qx, q3) → (qx, q2)

When automata include epsilon transitions, we can also remark that not all the com-
puted substitutions are necessary for completion. If we look back at the previous example
(Example 129), with the refined algorithm, we obtain the expected set of substitutions S =
{{x 7→ q2}, {x 7→ q3}}. Corresponding transitions to add are T1 = {g(q2)→ q′, q′ → q0}
and T2 = {g(q3)→ q′′, q′′ → q0}. However, one can remark that it is redundant to add T2

once T1 has been added since because of q3 → q2 inA, in the completed automaton we will
have: g(q3)→ε g(q2)→ q′ → q0. This is a trivial critical pair (see Definition 100). More-
over, we can remark that the substitution {x 7→ q3} has been added because of the tran-
sition q3 → q2, we can deduce that there is no need to consider such substitutions during
matching. During the construction of instances it is thus useless to consider rewritings with
epsilon transitions of ∆∩ on “variable states”. In the previous example, this means that sub-
stitutions obtained with the instance f(g(x, q3)) → f(g(qx, q3)) → f(g(qx, q2)) → . . .
are not necessary because of the use of transition (qx, q3) → (qx, q2) on state (qx, q3).
As a result, it is not necessary to add any transition of the form (qx, q) → (qx, q′) when
building A∩.

This matching algorithm is implemented in Timbuk 3.0 using a specific oriented graph
structure for epsilon transitions, i.e. a graph where states are vertices and epsilon transitions
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are edges. We also use specific algorithm to compute the transitive closure of this graph in-
crementally after each adding of a new epsilon transition. This permits to efficiently resolve
instance constructions with epsilon transitions of ∆ext and also to avoid looping compu-
tations due to possible cycles in the epsilon graph of ∆ext. Some other implementation
details, as tabling of substitutions, are explained in the next section.

4.3 Implementation and use of matching in Timbuk

As explained above, the matching algorithm is the core of the completion implementa-
tion. This is particularly true in Timbuk 3.0 where matching is also used for detection
of equations application (see Section 3.2.1) as well as for checking for forbidden patterns
reachability (see Section 4.1.2). In previous section we have presented optimizations per-
formed on the matching algorithm itself. Now, we present some hints used for efficient
implementation of this algorithm.

4.3.1 Tabling and propagation of new substitutions

In Timbuk 3.0, substitutions are tabled. Every new found substitution for every state (not
necessarily final) (q, q′) of A∩ is added to a table. To quickly construct new substitutions
and only consider states ofA∩ where they may occur, the construction ofA∩ is performed
incrementally.

Let A be a tree automaton, R be a TRS, Ai−1
R (resp. AiR) be the i − 1-th (resp. i-th)

step completion automaton, AR be the tree automaton for left-hand sides of R and Ai∩ be
the intersection of automataAR andAiR. It is possible to incrementally constructAi∩ from
Ai−1
∩ usingAR and ∆Ext the set of new transitions added toAi−1 to obtainAi. To obtain
Ai∩ from Ai−1

∩ it is enough to add to ∆R ×∆Ext to ∆i−1
∩ . This product give a precise list

of states where a new substitution can be found.

Thus, it is useless to compute from scratch the set of Q-instance for every new Ai∩
but, instead, propagate the information contained in ∆R × ∆Ext bottom-up in order to
determine new substitutions. We show how this is done on the following example.

Example 132 Let AR be the automaton for TRS R = {f(x)→ g(x), g(x)→ h(x)} and
let A0 = A be the tree automaton to complete. It recognizes the term f(a). Thus, A0

∩ is
the intersection automaton between AR and A0.
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AR with
Q = {qx, qf, qg}
Qf = {qf, qg}
∆ =

x → qx
g(qx) → qg
f(qx) → qf

A0 with
Q = {q0, q1}
Qf = {q0}
∆ =
f(q1) → q0

a → q1

A0
∩ with
Q = {qx, qf, qg} × {q0, q1}
Qf = {qf, qg} × {q0, q1}
∆ =

(x, q1) → (qx, q1)
(x, q0) → (qx, q0)

f((qx, q1)) → (qf, q0)

A1 with
Q = {q0, q1, q2}
Qf = {q0}
∆ =
f(q1) → q0

a → q1

g(q1) → q2

q2 → q0

A1
∩ with
Q = {qx, qf, qg} × {q0, q1, q2}
Qf = {qf, qg} × {q0, q1, q2}
∆ =

(x, q1) → (qx, q1)
(x, q0) → (qx, q0)

f((qx, q1)) → (qf, q0)

g((qx, q1)) → (qg, q2)
(qf, q2) → (qf, q0)
(x, q2) → (qx, q2)

From A0
∩ we can find (and table) the association (qf, q0) 7→ {{x 7→ q1}} meaning

that there is a substitution for left-hand side of the rule f(x) → g(x) on state q0, i.e.
f(q1) →∗A0 q0. To obtain A1 from A0 we add the transitions necessary to recognize
g(q1) into q0. Similarly to produce A1

∩ from A0
∩ we only add the 3 last transitions of A1

∩.
They come from product between AR and the new transitions of A1 (what we called ∆Ext

above). From this product, we directly obtain that there are only new substitutions for the
second rule (qg) on state q2. In particular, the substitution found at previous step, i.e. first
rule (qf ) on q0 is naturally not considered again.

The above example illustrates how the construction is performed but not how propa-
gation and combination of existing substitutions is optimized. An example of this could
be the following. Assume that at step i, ∆R × ∆Ext = {f((q′1, q1)) → (q′, q)}. Since
there is no new transition leading to (q′1, q1) at step i, we know that substitutions com-
puted at step j < i and tabled for (q′1, q1) are still valid, i.e. no new substitutions need
to be computed for (q′1, q1). Let us call S1 this set of substitution. Since the transition
f((q′1, q1)) → (q, q′) is in ∆R × ∆Ext this means that above (q′, q) there may be a new
substitution. Now, assume that Ai−1

∩ contains the transition g((q′0, q0), (q, q′))→ (q′f , qf ).
Like above, since ∆R×∆Ext does not contain any transition leading to (q′0, q0), we know
that substitutions tabled for this state are still valid. Let us call S2 this set of substitutions.
What needs to be done, however, is to compute the combination of substitutions of S1 and
S2 and to propagate them to (q′f , qf ). Combination of sets S1 and S2 is simply the set
S = {σ1 ◦ σ2 | σ1 ∈ S1 ∧ σ2 ∈ S2}. If some substitutions of S are not already tabled for
(q′f , qf ) then they are added, propagated above, and so on. A new transition is produced,
i.e. a substitution is applied, if it covers a complete left-hand side of a rule (and not only
a subterm). This happens each time that a final state of A∩ is met during new substitution
propagation.
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This technique permits to compute only new substitutions and trigger the addition of a
new transition each time that a complete substitution is found.

4.3.2 Simplification of tree automata with equations
As said above, matching and tabling of substitution is performed for optimizing the detec-
tion of simplification positions, i.e. for any equation s = t a regular language substitution
σ and two distinct states q1 and q2 such that sσ →A∗ q1 and tσ →A∗ q2. Since detecting
a rule application is very similar to detecting a simplification position, we use techniques
similar to those presented in the previous section.

After having found a simplification position, recall that we applied merging on the
tree automaton, i.e. replace A by A{q1 7→ q2} (see Section 3.2.1). The two obvious
consequences of this renaming are a complete removal of state q1 in A and a collapsing
of transitions related to q1 and q2. An interesting property of the transition product is the
following.

Proposition 133 Let ∆1 and ∆2 be sets of transitions on distinct set of states and ρ a
renaming of states of ∆2.

∆1 × (∆2ρ) = (∆1 ×∆2)ρ

As a consequence, ∆R × (∆{q1 7→ q2}) = (∆R ×∆){q1 7→ q2}. In other words, if
we have Ai∩ and a merging is applied to Ai, then the substitution automaton between AR
and the merged version of Ai can be obtained by applying the same merging to Ai∩.

Another interesting property is that substitutions remain valid once renamed. The prin-
ciple is to rename tables indexes and substitution sets. Assume that the table contains
only three entries (qf, q1) 7→ S1 and (qf, q2) 7→ S2 and (qg, q1) 7→ S3 and that the re-
naming is ρ = {q1 7→ q2}. The renamed table will contain: (qf, q2) 7→ (S1 ∪ S2)ρ
and (qg, q2) 7→ S3ρ. As in the previous section, this kind of renaming may produce new
substitutions that have to be propagated above, etc.

4.4 Tree automata completion extensions

4.4.1 Discussion about non left-linear term rewriting systems
The algorithms proposed in Chapter 3 can straightforwardly deal with left-linear TRSs and
with non left-linear TRS provided that tree automata and TRS fulfill the left coherence con-
dition (see Definition 62). Let us recall what is the problem with tree automata completion
on non left-linear rules and the two solutions proposed in Chapter 3. Let f(x, x)→ g(x) be
a rule ofR and let A be a tree automaton whose set of transitions contains f(q1, q1)→ q0

and f(q2, q3) → q0. Although we can find a valid substitution σ = {x 7→ q1} and obtain
a critical pair f(q1, q1) → q0 g(q1) 6→ q0 on the first transition, it is not the case for the
second one since it is not possible to find a substitution mapping x to q1 and to q2. The
semantics of a completion between rule f(x, x) → g(x) and transition f(q2, q3) → q0

would be to find the common language of terms recognized both by q2 and q3. There are
two main solutions to this problem:
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1. Compute an intersection between languages recognized by q2 and q3 and use the state
recognizing this language in the substitution σ. This can be obtained by computing
a new tree automatonA′ with a set of statesQ′ such thatQ′ is disjoint from states of
A and ∃q ∈ Q′ : L(A′, q) = L(A, q2)∩L(A, q3). Then, to end the completion step
it would be enough to add transitions of A′ to A and the new transitions g(q) → q′

and q′ → q.

2. Determinize tree automata. Indeed, one can remark that the non-linearity problem
would disappear with deterministic automata since for any deterministic automaton
Adet and for all states q, q′ of Adet we trivially have L(A, q) ∩ L(A, q′) = ∅. How-
ever, determinization of a tree automaton may result in an exponential blow-up of the
number of states (Comon et al., 2008). Furthermore note that the tree automata com-
pletion algorithm does not preserve deterministic tree automata. For instance, the tree
automatonA with set of final states {q0, q1} and set of transitions {a→ q0, b→ q1}
is deterministic, but if we apply completion w.r.t. TRS R = {a → b} we obtain
a new transition q1 → q0. In the end, the completed tree automaton is no longer
deterministic since it recognizes b into state q0 and into state q1.

In the literature, some papers consider non left-linear TRSs but the given solution is
more theoretical than practical (Gyenizse and Vágvölgyi, 1998; Réty, 1999; Feuillade et al.,
2004). For instance, in (Réty, 1999; Feuillade et al., 2004), the construction of R∗(L(A))
step by step adds some transitions to A, that have to be determinized (leading to expo-
nential blow-up) if non left-linear rules are under concern. In (Genet and Viet Triem Tong,
2001) (mentioned also in Chapter 3), we proposed a solution between the two previous ones
where, named locally deterministic tree automata where only a subset of states are kept de-
terministic. If we switch back to our previous example: rule f(x, x)→ g(x) and transitions
f(q1, q1) → q0, f(q2, q3) → q0, the aim is to only add the transitions g(q1) → q, q → q0

and keep q2, q3 deterministic. In the end of completion, in order to verify that the fix-
point automaton A∗R,E is complete w.r.t. f(x, x) → g(x), it is necessary to check that
L(A∗R,E , q2)∩L(A∗R,E , q3) = ∅. In practice, this solution avoids the exponential blow-up
of determinization while enabling the use of non left-linear TRSs. This was successfully
used in the particular case of cryptographic protocols, see Section 5.1.

This solution, even if it is well adapted for specific needs, is only partial. To the
best of our knowledge, the only paper giving a complete solution is the framework pro-
posed by Takai et al. in (Takai et al., 2000). Takai et al. uses an algorithm, similar
to completion, extended with so called packed states (see Definition 44) i.e. states rep-
resenting intersections of languages. Non left-linear rules are applied by producing a
tree automaton recognizing the intersection between the languages concerned by the non
linear variable (case 1.). On our example with rule f(x, x) → g(x) and packed tran-
sitions f(〈q1〉, 〈q1〉) → 〈q0〉, f(〈q2〉, 〈q3〉) → 〈q0〉, Takai et al.’s algorithm produces
new transitions g(〈q1〉) → 〈g(〈q1〉)〉, 〈g(〈q1〉)〉 → 〈q0〉 on one side and g(〈q2, q3〉) →
〈g(〈q2, q3〉)〉, 〈g(〈q2, q3〉)〉 → 〈q0〉 on the other side. Each time that a new packed state,
here 〈q2, q3〉 is found, their algorithm also adds the entire set of transitions recognizing
terms in this packed state. In this case, it corresponds to adding the transitions of the tree
automaton recognizing L(A, q2) ∩ L(A, q3). This corresponds to the first proposed solu-
tion. Although, it avoids the exponential blow-up of determinization, this algorithm may
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produce very big tree automata in practice. Indeed, each application of a non left-linear
rule may increase the size of the completed automaton by a quadratic factor.

A first optimization of packed states

While developing the version 3.0 of Timbuk, we experimented with a tree automata rep-
resentation using packed states and non left-linear rules. We added several optimizations
so as to avoid, whenever it is possible, to compute tree automata intersections. First, we
remarked that completion produces a lot of trivial inclusion constraints that can be used.
Indeed, the completion algorithm of Section 3.2.3 is based on critical pair solving of the
form:

lσ R
//

AiR
��

rσ

Ai+1
R

��
q q′
Ai+1
R

oo

From such a completion step, we can deduce that L(Ai+1
R , q′) ⊆ L(Ai+1

R , q), hence
that L(Ai+1

R , q′) ∩ L(Ai+1
R , q) = L(Ai+1

R , q′). In other words, for achieving a completion
step with a rule f(x, x)→ g(x) on a transition f(q2, q3)→ q0, if we know that q3 →∗ε q2,
then it is not necessary to build a tree automaton recognizing the intersection between q2

and q3, since it is already present in the tree automaton and recognized by q3. Using packed
states, this would mean that 〈q2, q3〉 = 〈q3〉.

However, this simple optimization is not enough to solve the intersection problems in
the general case and it is often necessary to add transitions recognizing the intersection.

Example 134 Assume that we have the following transitions in a completed tree automa-
ton:

f //

��������

???????? q f //

��������

???????? q′

q1

ε

55q2 q3 q4

ε

ii

Then, we clearly have 〈q1, q3〉 = 〈q1〉 and 〈q2, q4〉 = 〈q4〉. In order to recognize the
intersection language of state 〈q, q′〉 it is necessary to add the transition f(〈q1〉, 〈q4〉) →
〈q, q′〉.

A second optimization of packed states

When we create a new packed state recognizing an intersection language, i.e. a packed
state with at least two states, it is not always necessary to add the corresponding transitions
to the tree automaton. This can be done in a lazy way, by producing the transitions when
a rewrite rule has to be matched into a packed state. More precisely, for any rewrite rule
l→ r and any packed state, say 〈q1, q2〉, of a tree automaton A:



Reachability analysis of rewriting for software verification 111

• it is never necessary to produce transitions for 〈q1, q2〉 to match l over 〈q1, q2〉 (on
top position). The reason is simple. Assume that there exists a substitution σ such
that lσ →A∗ 〈q1, q2〉. Since the packed state 〈q1, q2〉 recognizes the intersection
of languages recognizes by q1 and q2, there exist substitutions σ1 and σ2 such that
lσ1 →A∗ q1, lσ2 →A∗ q2 and the intersection of languages corresponding to lσ1

and lσ2 is lσ. In that case, completion adds transitions rσ1 → q′1, q
′
1 → q1 and

rσ2 → q′2, q
′
2 → q2. It is easy to see that, in that case, the intersection of the

languages corresponding to rσ1 and rσ2 is recognized, implicitly by packed state
〈q′1, q′2〉. In other words, the completion of the intersection of states is obtained by
the intersection of each state on which completion has been applied separately. As
a result, doing completion on intersection packed states would introduce redundant
information in the tree automaton.

• if l is of the form f(. . . g(. . .) . . .) and we have a transition f(. . . 〈q1, q2〉 . . .) → q0

then it is necessary to produce all the transitions recognizing 〈q1, q2〉 before trying to
match f(. . . g(. . .) . . .) on f(. . . 〈q1, q2〉 . . .)→ q0.

Conclusion on the experiments with non left-linearity

The experiments we made during the development of Timbuk 3.0 showed that dealing with
non left-linear rules add a great overhead to the completion times. Even more annoying,
we realized that optimizing the treatment of inclusion constraints was bringing down the
overall performances of the completion even for left-linear rules.

On a more pragmatic point of view, we studied the general form of non left-linear rules
we needed in the modelization of cryptographic protocols or Java bytecode programs (see
Section 5.1 and Section 5.2). We made two observations. The first one is that in those
two formal models we needed very few non left-linear rules. In the case of Java bytecode
programs, it appeared that, with rather small effort, it was even possible to avoid them
totally. The second one is that non left-linear rules we needed were generally of the form:
f(x, x, y)→ g(y). This is the case, for instance, for the general knowledge deduction rule
used by an intruder in cryptographic protocols verification: store(encr(k,m), k) → m.
This rule means that if an intruder knows a message m ciphered by a key k and he also
knows k then he is able to deducem in clear. Similarly, one can find a rule for the definition
of the ⊗ operator: x ⊗ x → 0. Those two rules share a common form f(x, x, y) → g(y)
that checks that the same x is found at position 1 and 2 but then only use the y value.
Applying completion on such a rewrite rule and the transition f(q1, q2, q3)→ q0 thus only
require to check that the intersection of languages recognized by q2 and q3 is not empty and
then to add the transitions g(q3)→ q′, q′ → q0. It does not require to add to the completed
automaton any transitions for language intersection between q1 and q2.

Recall that adding language intersections may increase the size of the tree automaton
by a quadratic factor at each step of completion. This is the reason why, in Timbuk 3.0,
we finally chose only to cover the particular case of non left-linearity shown above, and
thus preserve the overall performances of the completion. In order to make this restriction
explicit in the syntax of Timbuk specifications, we chose to forbid non left-linear rules and
accept a restricted form of conditional rules encoding the above non left-linearity form.
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4.4.2 Restricted conditional term rewriting systems
Timbuk 3.0 accepts conditional rules of the form l → r if x1 ↓ x′1 and . . . and xn ↓ x′n
where x1, x

′
1, . . . , xn, x

′
n ∈ Var(l). Completion using these conditional rules is defined

according to the theoretical framework of Section 3.1.4. Any non-left linear rule of the form
f(x, x, y) → g(y) can thus be encoded using a conditional rule f(x, x′, y) → g(y) if x ↓
x′. Note also that any rule of the form f(x, x) → g(x) will necessarily be encoded by
a conditional rule of the form f(x, x′) → g(x) if x ↓ x′ (or f(x, x′) → g(x′) if x ↓ x′)
making explicit the fact that no intersection is computed by completion. Indeed, assume
that we have a transition f(q2, q3) → q0 in the tree automaton, the critical pair would
thus add g(q2) → q (or g(q3) → q) and q → q0. Of course, this is less precise than
computing the intersection of languages recognized by q2 and q3 but, how it is explained in
the previous section, it keeps completed automata size reasonable in practice.

Limitation of conditional term rewriting systems w.r.t. non left-linear rules

In Section 3.1.4, we have given the theory about completion with general conditional TRSs.
Let f(x, x′) → g(x) if x ↓ x′ be the conditional rule to apply and f(q2, q3) → q0 be
the transition of the tree automaton to be considered. By definition of completion with
conditional rules, the transitions g(q2) → q′ and q′ → q0 will be added if and only if
L(A, q2) ∩ L(A, q3) 6= ∅. This reveals another weakness of the encoding of non left-
linear rules into conditional rules. Indeed, this encoding is not convenient for non left-
linear rules where there are strictly more than 2 occurrence of the same variable. For
instance, a rule of the form f(x, x, x, y) → g(x), though it can exactly be encoded using
a conditional rule f(x, x′, x′′, y) → g(x) if x ↓ x′ and x′ ↓ x′′ when rewriting terms, this
is no longer the case with completion. For instance, a reasonable semantics for completion
of a transition f(q2, q3, q4, q5) → q0 w.r.t. rule f(x, x, x, y) → g(y) would be to add
transitions g(q5)→ q′ and q′ → q0 if and only if

(1)L(A, q2) ∩ L(A, q3) ∩ L(A, q4) 6= ∅.

When using the above encoding in conditional rewrite rule f(x, x′, x′′, y) → g(x) if x ↓
x′ and x′ ↓ x′′, the checking becomes:

(2)L(A, q2) ∩ L(A, q3) 6= ∅ and L(A, q3) ∩ L(A, q4) 6= ∅).

Of course, (1) implies (2) (and thus we still have an over-approximation) but they are not
equivalent. However, on the practical cases we had, no such non left-linear rules with 3 or
more occurrences are necessary.

Now, we give some details about the implementation of completion with these restricted
conditional rules. The optimization of matching of linear left-hand sides of rules on the tree
automaton is detailed in Section 4.2. Thus, we here focus on the optimization of the test of
non-emptiness of the intersection, i.e. L(A, q) ∩ L(A, q′) 6= ∅ for given q and q′.

For this test, we neither build the intersection automaton nor check for emptiness but
achieve both at once. Let ∆ andQ be respectively the set of transitions and the set of states
ofA. The algorithm uses two sets ok ⊂ Q×Q and rec ⊂ Q×Q and a recursive function
check : Q × Q 7→ bool. The call check(q, q′) answers true if L(A, q) ∩ L(A, q′) 6= ∅.
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The objective of the algorithm is to find, as quickly as possible, a common term between
states q and q′ or on the opposite to prove rapidly that no such term exists.

The general principle of check(q, q′) is the following: if there are two transitions
f(q1, . . . , qn)→ q and f(q′1, . . . , q

′
n)→ q′ and check(q1, q

′
n) = true, . . . , check(qn, q′n) =

true then check(q, q′) = true. Used as is, this function may not terminate on recursive
transition sets. The reason for non termination is the following. Assume that we want to
check non emptiness of the intersection between q and q′ and that ∆ contains transitions
f(q) → q and f(q′) → q′ then this recursive algorithm may go on forever. Note however,
that those recursive transitions are not necessary to consider for non-emptiness decision.
Indeed, in the previous case (q, q′) is not empty only if some other transitions contribute to
the languages recognized by states q and q′. This is the reason why we use the rec state for
tabling couples that have already been recursively inspected.

This general principle needs to be completed with several optimization for better ef-
ficiency. First, we use the ok set to table all couple of states whose intersection has
already proven non empty. Second, there are some cases where check(q, q′), and thus
L(A, q) ∩ L(A, q′) 6= ∅, can be computed without recursive calls by a careful inspec-
tion of the set of epsilon transitions or a careful inspection of ∆. Here is a more detailed
description of the recursive check function.

check(q, q′) =

1. if (q, q′) ∈ ok then return true

2. if (q, q′) ∈ rec then return false

3. if q →A∗ q′ or q′ →A∗ q then ok := (q, q′) ∪ ok; return true1

4. if there exists at least a common constant symbol a ∈ F such that a → q ∈ ∆ and
a→ q′ ∈ ∆ then ok := (q, q′) ∪ ok; return true

5. rec := rec ∪ (q, q′)

6. for all functional symbol f ∈ F of arity n such that f(q1, . . . , qn) → q ∈ ∆ and
f(q′1, . . . , q

′
n)→ q′ ∈ ∆ do

• if check(q1, q
′
1) and . . . and check(qn, q′n) then ok := (q, q′)∪ok; return true

done

7. otherwise return false

After each completion step, values of ok and rec are initialized to ∅ and the check function
is evaluated for all conditions to check. Note that the value of the ok set could be used from
one step to another but this is not the case in the current implementation. Indeed, on the one
side, completion only adds transitions to states. On the other side, state couples of ok could
be renamed according to state merging operation due to simplification with equations. For

1provided that corresponding states are filled (see Definition 94) which we always assume on all states of all
tree automata we consider. Note that, this property is guaranteed onR/E-coherent tree automata.
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instance if (q, q′) ∈ ok, i.e. L(A, q) ∩ L(A, q′) 6= ∅, and q′ is merged with q′′ we trivially
have L(A, q) ∩ L(A, q′′) 6= ∅ and we can simply replace (q, q′) by (q, q′′) in the ok set so
that it remains valid.

4.5 Tree automata completion checker
Like many verification tools, Timbuk is a complex programs and a single error may jeop-
ardize the entire trust chain. Efforts have been made to certify static analyzers (Klein and
Nipkow, 2003; Barthe and Dufay, 2004; Cachera et al., 2005) or to certify the results ob-
tained by static analyzers (Letouzey and Théry, 2000; Besson et al., 2006) in Coq(Bertot
and Castéran, 2004) in order to increase confidence in the analyzers. In (Boyer et al.,
2008), we have instantiated the general framework of (Besson et al., 2006) to the particular
case of analyzing term rewriting systems by tree automata completion. The proof that the
tree automaton produced by completion recognizes an over-approximation of all reachable
terms is automatically done within the Coq proof assistant. Coq is based on constructive
logic (Calculus of Inductive Constructions) and it is possible to extract an Ocaml function
implementing exactly the algorithm whose specification has been expressed in Coq. The
extracted code is thus a certified implementation of the specification given in the Coq for-
malism. Extracted programs are standalone and do not require the Coq environment to
be executed. For details about the extraction mechanisms, readers can refer to (Bertot and
Castéran, 2004).

A specific challenge is to marry constructive logic and efficiency. The efficiency of
a tree automata completion defined in constructive logic would not be sufficient for real
size problems. Case studies with tree automata completion, on cryptographic protocols
(see Section 5.2) and on Java bytecode (see Section 5.1) show that we need an efficient
completion algorithm to verify properties on this kind of models. As a result, the current
implementation of completion, Timbuk 3.0 is based on imperative data structures like hash
tables whereas Coq allows only pure functional structures. A second problem is the ter-
mination of completion. Since Coq can only deal with total functions, functions must be
proved terminating for any computation. In general, such a property cannot be guaran-
teed on completion because it mainly depends on term rewriting system and approximation
equations given initially.

For these two reasons, there is little hope to specify and certify an efficient and purely
functional version of the completion algorithm. Instead, we have adopted a solution based
on a result-checking approach. It consists of building a smaller program (called the checker)
- certified in Coq - that checks if the tree automaton computed by Timbuk is sound.
In (Boyer et al., 2008), we studied the case of left-linear term rewriting systems which
revealed to be sufficient for verifying Java programs (Boichut et al., 2007).

The extracted checker, proposed in (Boyer et al., 2008), is able to decide if the given
tree automaton is a valid fixpoint of tree automata completion. A great advantage of using
an external checker is that it is totally independent of the completion tool we use. In
particular, the implementation of the completion tool can be optimized as necessary: as
long as it outputs a tree automaton, this result can be certified by our checker. Another
interesting consequence is that the checker is able to certify fixpoints computed by other
completion tools like those presented in Section 4.6.2.
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From the Coq formal specification (about 2000 lines for definitions and 5500 lines for
proofs), we have extracted an Ocaml checker implementation which is connected to the
Timbuk parser. Since Coq extraction ignore all Ocaml data types (integers, lists, maps...)
and redefine all them (including primitive types), we defined a set of functions to convert
Coq types into Ocaml types and conversely.

In the following table, we have collected several benchmarks showing that certification
is possible and, in fact, very efficient. For each test, we give the size of the two tree au-
tomata (initial A0 and completed A∗R) as number of transitions/number of states. For each
TRS R we give the number of rules. The ’CS’ column gives the number of completion
steps necessary to complete A0 into A∗R and ’CT’ gives the completion time. The ’CKT’
column gives the time for the checker to certify the A∗R and the ’CKM’ gives the memory
usage. The important thing to observe here is that, the completion time is very long (some-
times more than 24 hours), the checking of the corresponding automaton is always fast (a
matter of seconds).

The four tests are Java programs translated into term rewriting systems using the tech-
nique detailed in Section 5.2. All of them are completed using Timbuk 2.2 except the ex-
ample List2.java which has been completed using another optimized completion tool:
a Tom-based completion tool detailed in Section 4.6.2. Even if the input and output of this
tool are tree automata, the internal computation mechanism is exclusively based on term
rewriting and uses no tree automata algorithms. This shows that the completed automaton
produced by a totally different algorithm and fully optimized tool is also accepted by the
checker. The List1.java and List2.java corresponds to the same Java program
but with slightly different encoding into TRS and approximations. The Ex_poly.java
is the example given in (Boichut et al., 2007) and the Bad_Fixp is the same problem
as Ex_poly.java except that the completed automaton A∗R has been intentionally cor-
rupted. Thus, this is thus not a valid fixpoint and rejected by the checker.

Name A0 A∗R R CS CT CKT CKM
List1.java 118/82 422/219 228 180 ≈ 3 days 0,9s 2,3 Mo
List2.java 1/1 954/364 308 473 1h30 2,2s 3,1 Mo
Ex_poly.java 88/45 951/352 264 161 ≈ 1 day 2,5s 3,3 Mo
Bad_Fixp 88/45 949/352 264 161 ≈ 1 day 1,6s 3,2 Mo

4.6 Comparison with other tools
We here compare Timbuk with other available tools. We first compare with Autowrite (Du-
rand, 2006) which implements some techniques described in Chapter 2. Then, we briefly
present two other completion tools, one based on Bddbddb (Whaley et al., 2004) and one on
Tom (Tom, 2009). Finally, we compare with Maude (Clavel et al., 2009) with and without
equational abstraction.

As far as we know the only other tool dealing with a TRS class of Section 2.1.1 is
Autowrite developed by Irène Durand (Durand, 2005, 2006) for the LL-G−1 class. We
will compare Timbuk and Autowrite for the computation of reachable terms on this class.

For tree transducers and static analysis techniques based on regular languages, no tool
comparison will be done. For tree transducers, as explained in Section 3.3.4, comparison



116 T. Genet

of tree transducer models with TRS models is, anyway, difficult. Additionally, as far as we
know there is no distributed implementation of the abstract regular tree model-checking as
defined in Section 3.3.4. There exists some other tools, like SPADE (Patin et al., 2007b) or
PRESS (Sighireanu and Touili, 2006), dedicated to the reachability analysis of systems and
using tree automata to represent reachable states. But, those tools run on program mod-
els which are different from tree transducers and are, themselves built over the Timbuk
library to implement tree automata operations. Finally, with regards to static analysis tech-
niques using regular languages, it seems that no implementation of techniques described in
Section 2.3.2 is available.

4.6.1 On regular classes

As explained above, Autowrite is one of the rare available tools able to deal with some of
the classes of Section 2.1.1. Autowrite (Durand, 2005) is in fact a very complete tool to
manipulate Tree Automata and TRS. In particular, it implements all the operation that may
be desirable on tree automata: intersection, union, emptiness decision, determinization,
inclusion, equality, etc. The implementation of all those basic operations is generally much
more efficient in Autowrite than in the Timbuk 2.2 library.

For a given left-linear growing TRS R, Autowrite permits to compute set of ancestors
of a given regular set of terms. Since Autowrite is essentially used for call by need analysis,
it is generally used to compute ancestors of the set IRR(R) which is regular if R is left-
linear. This can be seen as computing the set (R−1)∗(IRR(R)). This is, in fact, the set of
terms having a normal form, i.e. weakly normalizable terms. For this purpose, Autowrite
approximates any TRS by a TRS for which this set can be computed exactly. This approx-
imation, directly performed on the TRS, over-approximates its set of weakly normalizable
terms. Several kind of approximations are possible among which the growing approxima-
tion (Jacquemard, 1996). The growing approximation consists in replacing variables of the
left-hand side by new variables if they occur at depth 2 or more in the right-hand side. One
can see that the growing approximation transforms any TRS in a TRS of the class RL-G of
Section 2.1.1. The growing approximation is the most precise approximation proposed by
Autowrite.

Using the approximation is generally not well suited for reachability analysis because
it is very rough. However, we can compare the efficiency of Autowrite and Timbuk to
compute (R−1)∗(IRR(R)). Autowrite is also able to deal with left-linear growing TRS,
possibly being non right-linear. In that case, R−1 can be non left-linear. This raises the
same problem as explained in Section 4.4.1. However, in the particular case of growing
TRSs, it is possible to keep the tree automaton recognizing (R−1)∗(IRR(R)) determinis-
tic. The construction is more complex but is efficiently implemented in Autowrite. Since
Timbuk does not deal with deterministic tree automata we are going to consider only linear
growing TRSs.

On nearly every example provided in its distribution, Autowrite constructs (R−1)∗(IRR(R))
within milliseconds. In the table of Figure 4.4, we gather the computation times for some
more meaningful examples having a computation time greater to a second. The examples
R1, R4 and R5 come from (Durand, 2005), Fib is a TRS computing Fibonnacci numbers
and HL is computing prime numbers. All those examples are distributed with Autowrite.
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Autowrite Timbuk 3.0
TRS Time (secs) # states # transitions Time (secs) # states # transitions
R5 1.12 5 667 0.52 16 108
R1 3.56 26 1357 1.45 173 836
R4 8.55 11 1608 8.97 1627 3344
Fib 146.33 12 734 1.21 77 742
HL - - - 4475.06 86 6339

Figure 4.4: Computation of (R−1)∗(IRR(R)) with Autowrite and Timbuk 3.0

Note that using TRSs in the reverse order and with growing approximations has some
strong consequences on R−1. In particular all rules of the form g(x) → x in R become
x → g(x) in R−1. These are no longer regular rewrite rules and they are not handled
by Timbuk. Those rules are unfolded on any symbol f ∈ F . In other words, all rules
like above are replaced by a finite set of rules {f(x1, . . . , xn) → g(f(x1, . . . , xn)) | f ∈
F and Ar(f) = n}. Moreover, with growing TRS, sets of variables do not necessarily
coincide between the left and right-hand sides. For instance, we can have rules of the form
f(g(x)) → h(g(y)). In this case, y can have any possible value in T (F). In Timbuk we
can take this behavior into account using a trick that is common to all the theoretical works
and tools. This trick has been also used in Section 3.2.4 for Corollary 112. It consists in us-
ing a specific state, say qT (F), and to add transitions {f(qT (F), . . . , qT (F))→ qT (F) | f ∈
F} to the automaton to complete. Then, during completion, every occurrence of a variable
y that cannot be instantiated by a state is replaced by qT (F).

For each example, we computed the IRR(R) automata using Autowrite and completed
it using Autowrite, on one side and Timbuk 3.0 on the other side. Those experiments
were carried out on a 2.16 Ghz Intel Core Duo computer. The results are gathered in the
table of Figure 4.4. Additionally to the computation times, the table also gives the num-
ber of states and transitions of the automaton recognizing the growing approximation of
(R−1)∗(IRR(R)). For each example, when the example files contain terms which are sup-
posed to belong to (R−1)∗(IRR(R)) or not, it is checked on both results. For instance, the
fib constant term in the Fib TRS rewrites to the infinite list of Fibonacci numbers. It cannot
be normalized in any way. We can check that it does not belong to the linear growing ap-
proximation of (R−1)∗(IRR(R)). On the opposite, the term nth(s(s(s(s(s(0))))), fib)
which computes the 5-th Fibonacci number from the infinite list can be finitely rewritten.
It is thus normalizable. Again, we were able to check that it belongs to the approximation
of (R−1)∗(IRR(R)) with both tools.

The number of states and transitions obtained by Timbuk is generally greater that what
is obtained by Autowrite because it does not use an algorithm dedicated to growing TRSs
but the exact completion strategy, see Section 3.3.2, which covers more that just growing
TRSs. In particular, in Timbuk 3.0 it adds a renamed copy of the initial tree automaton to
the completed one. This partially explains the difference between, for instance, the 11 states
and 1608 transitions for Autowrite and 1627 states and 3344 transitions for Timbuk 3.0 on
theR4 example. In fact, after removing all the states that are not reachable and thus useless,
the Timbuk tree automaton contains only 31 states and 1654 transitions.
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For the last benchmark HL, there is no value for Autowrite because computation was
manually stopped after 10 hours. On some other Autowrite examples, we had to stop both
Autowrite and Timbuk. The fact that rather small TRSs exhaust those tools is not really
surprising. This is due to the fact that each computation starts from the tree automaton
IRR(R) which is very combinatorial and whose size can be exponential w.r.t. the size of
R.

4.6.2 Other tree automata completion tools

We briefly present two other completion tools: one encoding the completion into horn
clauses and an other one into pure rewriting. Surprisingly, though the two encodings were
independently defined, they are very similar. They rely on the slicing of both left and
right-hand sides of rewrite rules.

Tree automata completion by horn clauses

The first technique, proposed by (Gallagher and Rosendahl, 2008), is based on an encod-
ing of both tree automata and term rewriting systems into Horn clauses. The rewriting
symbol → used for rewriting and tree automata is encoded by a binary first order predi-
cate _ → _. A tree automaton transition f(q1, . . . , qn) → q is represented by the horn
clause (f(q1, . . . , qn) → q) ← true. A rewrite rule plus(s(x), y) → s(plus(x, y)) will
be replaced by the following horn clauses:

(1) (plus(X,Y )→ q(X,Y ))← (s(X)→ Q1), (plus(Q1, Y )→ Q)
(2) (s(q(X,Y ))→ Q)← (s(X)→ Q1), (plus(Q1, Y )→ Q)

Now, let us explain how application of horn clauses on an initial tree automaton models
completion. Assume that the tree automaton contains the following transitions:

plus(q1, q2)→ q0

s(q3)→ q1

encoded by the facts
(unit horn clauses)

(3) (plus(q1, q2)→ q0)← true
(4) (s(q3)→ q1)← true

Using the clauses (1) and (2) representing the TRS and the facts (3) and (4), we can
thus deduce the following facts. Using clause (1) (resp. (2)) with X = q3, Q1 = q1

Y = q2 and Q = q0, we obtain the fact (5) (resp. (6)):

(5) (plus(q3, q2)→ q(q3, q2))← true
(6) (s(q(q3, q2))→ q0)← true

which is exactly the set of transitions that would have been obtained using completion
and normalization with a new state named q(q3, q2). However, like for completion the
construction of the least Herbrand model is unlikely to terminate. The approach developed
in (Gallagher and Rosendahl, 2008) computes an approximation using state-of-the-art static
analysis tools for logic programs, i.e. the Bddbddb tool (Whaley et al., 2004). This results
into a very efficient completion tool as shown in the table Figure 4.5. However, as for
other static analysis tools (see Section 2.3.2) the approximation precision is fixed. This is
different from what can be done using normalization rules or equations.
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Tree automata completion by rewriting

The second technique, proposed in (Balland et al., 2008), encodes completion into the
Tom rewriting tool (Tom, 2009). The encoding of tree automata uses a special variadic
symbol sons for representing sets of terms. For instance, the set of tree automata transitions
{f(q1, q2) → q, g(q) → q} is represented using a constant q that is associated to the term
sons(f(q1, q2), g(q)). Then, as in the previous work, left-hand sides of rewrite rules are
sliced as follows. Given f(x, g(y))→ f(g(x), g(y)) a rewrite rule, its sliced encoding is

g(y)→ C1(y)
f(x,C1(y))→ C2(x, y)

Taking advantage of Tom’s matching algorithm on variadic symbols, those rules can be
replaced by the following set of Tom’s rules:

(1) g(y)→ C1(y)
(2) f(x, sons(_∗, C1(y), _∗))→ C2(x, y)
(3)C2(x, y)→ f(g(x), g(y))

Now, we briefly explain how completion works. Let q = sons(f(q1, q2)) and q2 =
sons(g(q3)) be the initial tree automaton. Rule (1) can be applied on the term q2 that be-
comes: q2 = sons(g(q3), C1(q3)). Hence, rule (2) can be applied on term q because q can
be unfolded as sons(f(q1, sons(g(q3), C1(q3))) and the term f(x, sons(_∗, C1(y), _∗))
matches the subterm at position 1.ε such that x = q1 and y = q3. Hence, q becomes
sons(f(q1, q2), C2(q1, q3). The next rewriting step consists in rewriting C2(q1, q3) into
f(g(q1), g(q3)). Like in usual tree automata completion, this term needs to be normal-
ized first by introducing new terms (in place of the new states of completion), i.e. terms
q4 = sons(g(q1)). Hence q becomes sons(f(q1, q2), C2(q1, q3), f(q4, q2).

Comparison of the efficiency of the different completion techniques

The two encodings presented above lead to very efficient implementation of completion.
We here give a comparison of the overall performances of the different tools implementing
completion on some typical examples. In the table Figure 4.5, the automaton size is given as
(number of transitions / number of states) except for the bddbddb-based tool whose number
of transitions is unknown. The benchmarks were done on different computers but with very
similar characteristics: dual core computers with 4GByte RAM. Comparison of the Tom-
based and Bddbddb-based implementation can only done on the NSPK, View-Only and
Combinatory examples because these are the only examples present in both papers.

The Combinatory example is a tiny TRS whose completion produces a large number
of substitutions. Let R = {g(f(x1), h(h(h(x2, x3), x4), x5)) → u(x1, x2, x3, x4, x5)}
and A be the tree automaton whose transition set is the following: {nil → qh, f(qa1) →
qf , g(qf , qh)→ qg}∪{t→ qt, h(qh, qt)→ qh | t ∈ {ai, bi, ci, di | i = 1, . . . , 5}}. For the
variables x1, x3, x4 and x5 there are twenty possible instantiations during the completion.
The variables x1 and x2 take only and respectively the values qa1 and qh. So, there are 203

transitions to compute by completion.
The NSPK example, i.e. Needham-Schroeder public key protocol is partially described

in Section 5.1.2. This is, in fact, the version of the protocol corrected by G. Lowe (Lowe,
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Combinatory NSPK View-Only Java prog. 1 Java prog. 2
TRS size (nb of rules) 1 13 15 279 303
Initial Automaton size 43 / 23 14 / 4 21 / 18 26 / 49 33 / 33
Timbuk 2.2:
Final Automaton size 8043 / 23 151 / 16 730 / 74 1127 / 334 751 / 335
Time (secs) 51.1 19.7 6420 25266 37387
Timbuk 3.0:
Final Automaton size 8043 / 23 259 / 104 353 / 100
Time (secs) 60.1 3.1 2452
Tom-based tool:
Final Automaton size 8043 / 23 171 / 21 938 / 89 1974 / 637 1611 / 672
Time (secs) 5.9 5.9 150 360 303
Bddbddb-based tool:
Final Automaton size ? / 25 ? / 183 ? / 97
Time (secs) 0.008 2.9 3.3

Figure 4.5: Benchmarks on three completion implementations

1996b) and used in (Genet and Klay, 2000). The View-Only example is another crypto-
graphic protocol composing the Smartright system SmartRight (2001) designed by Thom-
son, see Section 5.1.3. Finally, Java Prog examples are TRS obtained by translation of Java
bytecode applications as detailed in Section 5.2.

From this table, it is clear that the Bddbddb-based tool by (Gallagher and Rosendahl,
2008) is the most efficient one. What needs to be remarked, however, is that it does not
tackle the same objective. Indeed, the approximation it computes is fully automatic and
built-in the tool. As a consequence, if the approximation is too coarse, there is no way
to refine it so as to prove the property. It is the case, for instance, for the NSPK and
View-Only examples where the approximation computed by the Bddbddb-tool does not
permit to prove the expected property whereas approximation computed by Timbuk and
the Tom-based tool do. On all results computed by Timbuk 2.2 the expected properties
were proved. It is also the case for Timbuk 3.0 except for the View-only example where
only one of the numerous security has been proved (secrecy of so-called control words)
using approximation equations.

4.6.3 Completion as an alternative for breadth-first search
For “positive” reachability analysis, i.e. proving that s→R∗ t, rewrite tools like Maude (Clavel
et al., 2009) or Tom (Tom, 2009) generally give the fastest answer. For instance the
search command in Maude is able to solve this problem even for non terminating TRSs.
Given an initial problem of the form reach s =>* t, Maude rewrites s by R using a
breadth-first search strategy and tables every obtained term. Tabling is used to avoid loop-
ing rewriting on a term. If a term u is in the table and if u is encountered again during
rewriting then u will not be rewritten. If the term t is obtained then it is signaled by Maude.

Timbuk is able to achieve such “positive” proofs on left-linear TRSs. First, recall that
using the exact normalization strategy (Definition 113 of Section 3.3.1) the produced ab-
straction function is injective. Then, using Corollary 77, we get that if R is left-linear,
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L(A0) = {s} and there exists n ∈ N such that t ∈ L(AnR,α) then s →∗R t. Besides to
this, we can remark that the completion algorithm is, by definition, also tabling all reach-
able terms. Each term is stored in the completed tree automaton structure. Furthermore,
the tabling operation is even more advanced in Timbuk than in Maude since, because of
normalization of tree automata transitions, every subterm of every reachable term is tabled.
We can also note that the exact normalization strategy normalize each new term in a deter-
ministic way, i.e. each term is tabled once. This guarantees a tabling strategy with maximal
sharing. We here give an example illustrating all those aspects.

Example 135 Let R = {a → f(a, b), b → f(b, a)} and the reachability problem be
a →R∗ f(f(a, b), f(b, a)). Let A0 be the initial automaton with Q0

f = {q0} and ∆0 =

{a → q0}. We now consider, on one side, what would be the table constructed by Maude
and what are the completed automaton produced by Timbuk.

0 a
1 f(a,b)
2 f(f(a,b),b)

f(a,f(b,a))
3 f(f(f(a,b),b),b)

f(f(a,f(b,a)),b)
f(f(a,b),f(b,a))
f(a,f(f(b,a),a))
f(a,f(b,f(a,b)))

4 . . .

A0 a→ q0

A1
R f(q0, q1)→ q2

b→ q1

q2 → q0

A2
R f(q1, q0)→ q3

q3 → q1

As we can see, in both cases, after 3 rewritings on the Maude side and after 2 com-
pletion steps on Timbuk side, we can prove that a →R∗ f(f(a, b), f(b, a)). On the Tim-

buk side we have f(f(a, b), f(b, a)) →∗A2
R
f(f(q0, q1), f(q1, q0)) →∗A2

R
f(q2, q3) →∗A2

R

f(q0, q1)→∗A2
R
q0 and q0 is a final state of A2

R. We thus have similar results. However, on
Timbuk side we can see that the term a occurs only once, it is then replaced by the state
q0 which can be seen as its tabling index. Moreover, all terms that can be reached from
a will also be recognized by q0. In other words, q0 represents all reachable terms from
a. Hence, with regards to what Maude is doing, in the term f(a, b) it is not necessary to
explicitly consider the possible rewritings of a into f(a, b), f(f(a, b), b), . . . since in the
tree automaton a has been replaced by q0 in the term f(a, b) and q0 will recognize all terms
reachable from a. Finally, note that the above example is in the G class of Section 2.1.1 and
that completion ends on the A2

R tree automaton, i.e. every possible reachable by rewriting
a withR is recognized by A2

R.
In spite of the sophisticated tree automata data structure of Timbuk, Maude is at least 10

times faster than Timbuk to prove reachability on examples where the TRS has a narrow
rewriting tree. This difference is less important on TRSs which are more combinatorial
and, thus, having a wider rewriting tree. For instance on the TRS encoding the readers-
writers protocol of Section 4.6.4, which is only a bit more non-deterministic, Timbuk is
only 3 times slower for reachability problems on big terms. Finally, we also experimented
with TRSs automatically generated from Java byte code programs with Threads (see Sec-
tion 5.2). Those TRS are huge and manipulate big terms. For instance, the following Java
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program can be compiled into bytecode and then into a TRS of around 2000 rules.

class T extends java.lang.Thread{
Object lock;
public T(Object lock){

this.lock = lock;
}

public void action(){
System.out.println(1);

}

public void run(){
synchronized(lock){

this.action();
}

}
}

class ExThreads1{
public static void main(String[] argv){

Object lock = new Object();
T thread = new T(lock);
T thread2 = new T(lock);
thread.start();
thread2.start();
try{

thread.join();
} catch (InterruptedException e){}
System.out.println(2);
System.out.println(3);

}
}

Using the Copster tool (see Section 5.2), we can export both Timbuk and Maude spec-
ifications. In our encoding of Java programs into TRS, outputs are lists of terms stored as a
parameter of the term representing the Java program state. On the above example, we can
check that any output list [2, 3, 1, 1] is unreachable. This can be automatically proved using
Timbuk and the exact completion strategy in less than a minute and 300 Mb of memory.
On the same example Maude is not able to answer: it has to be stopped since it exhausted
the memory (1 Gb) in less than 3 minutes. Moreover, the fixpoint automaton, computed by
Timbuk and used to prove unreachability, was certified using the checker (of Section 4.5)
within seconds.

4.6.4 Equational abstraction with Maude
We borrow the example of readers-writers system from Section 9.3 of (Clavel et al., 2008).
States are represented by terms of the form state(R,W) where R indicates the number
of readers and W indicates the number of writers accessing the critical resource. Readers
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and writers can leave the resource at any time. A writer can gain access to the resource
if nobody else is using it, and readers only if no writer is using it. The initial state is
state(o,o) where o is the term representing the number 0. The two properties to prove
are mutual exclusion, i.e. readers and writers never access the resource at the same time and
one writer, i.e. at most one writer accesses the resource at the same time. This is defined
by the following Timbuk specification.

Ops state:2 o:0 s:1
Vars R W
TRS R1

state(o,o) -> state(o,s(o)) % Writer can start if alone
state(R,o) -> state(s(R),o) % Reader can start if no writer
state(R,s(W)) -> state(R,W) % Readers and writers can stop
state(s(R),W) -> state(R,W) % anytime

Set A1
state(o,o)

Patterns
state(s(_),s(_)) % at least a writer and a reader at the same time
state(_,s(s(_))) % at least two writers

Equations Abs
Rules

s(s(_))=s(s(o))

In Timbuk 3.0 specifications, the TRS section is followed by either an Automaton or
Set section defining the initial set of terms, a Patterns section defining the patterns of
forbidden terms and an Equation section defining the approximation equations. When
the set of initial terms has an unbounded size, it is given using a tree automaton. In the
previous specification, since there is only one initial term, it is thus given as a finite set of
ground terms. Patterns are terms with variables (possibly anonymous, i.e. the ’_’ used here)
that are matched on the completed tree automaton. If a substitution is found then a ground
term matched by the pattern is reachable. Finally, in the equation section we can find the
approximation equation used here. Note that it is defined using an anonymous variable
and is thus noted s(s(_))=s(s(o)) but could also be written s(s(R))=s(s(o)).
This equation merges every term representing a natural number x ≥ 2 with 2. Processing
this specification using Timbuk we obtain immediately a fixpoint tree automaton where no
occurrence of the forbidden patterns is found. This means that the mutual exclusion and
one-writer properties are guaranteed on this specification. Note that, here, no other proof
are needed to prove those properties. This is different from (Clavel et al., 2008) where
some additional properties have to be proven on the oriented set of approximation equa-
tions: ground confluence, sort-decrease, termination, sufficient completeness and ground
coherence.

Furthermore, since the initial set of terms is finite, we can easily build aR/E-coherent
tree automaton recognizing it. For instance, if t=state(o,o) is the term to recognize,
the easiest way to do that is to normalize t using new states and the Norm∆ function
(Definition 99). In the resulting tree automaton A, since every state recognize exactly one
term, A is triviallyR/E-coherent. Thus, from Theorem 110, we get the the guarantee that
the fixpoint recognize only terms ofR∗E({t}).
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The equation s(s(_))=s(s(o)) is enough to prove the properties but it is simpler
than the one used in (Clavel et al., 2008). In (Clavel et al., 2008) the equation is more
precise since it states that only natural numbers for readers should be abstracted. This
approximation is enough since the system should only give access to at most one writer at
a time. Hence, no approximation is necessary on the writer number. For defining similar
approximations, in Timbuk we use contextual equations (see Section 4.1.2) of A. In our
specification, we can thus replace the equation s(s(_))=s(s(o)) by the following
contextual equation:

[state(s(s(R)), o)] => [s(s(R))=s(s(o))]

meaning that every natural number x ≥ 2 is merged with 2 provided that it appears on the
reader position. This leads to a more precise approximation comparable to the one used
in (Clavel et al., 2008).

The second example is the bakery protocol of (Meseguer et al., 2003). In this protocol
two processes are accessing a common critical section. Each process has a state that is
either sleep, wait or crit and a ticket value, which is a natural number. Initially each
process is in wait state with a o value for its ticket. When a process wants to access to the
critical section, he sets its ticket to the ticket value of the other process plus one and moves
to state wait. A waiting process can move to the crit state if the ticket value of the
other process is o or if he has the smallest ticket. Then, when leaving the critical section
the process goes back to sleep state and sets its ticket to o. The safety property to prove
is, of course, that the two processes cannot be in crit state at the same time. The original
Maude specification is a conditional TRS where tickets are compared using the ’<’ Maude
built-in operator. This is encoded using Timbuk’s restricted form of conditional rules where
conditions can be put on variables. Here is a possible Timbuk specification for the bakery
protocol with two processes.

Ops state:4 o:0 s:1 sleep:0 wait:0 crit:0
Vars X Y P Q Z U
TRS R

state(sleep, X, Q, Y) -> state(wait, s(Y), Q, Y)
state(wait, X, Q, o) -> state(crit, X, Q, o)
state(wait, X, Q, s(Y)) -> state(crit, X, Q, Y) if X <-> Y
state(crit, X, Q, Y) -> state(sleep, o, Q, Y)
state(P, X, sleep, Y) -> state(P, X, wait, s(X))
state(P, o, wait, Y) -> state(P, o, crit, Y)
state(P, s(X), wait, Y) -> state(P, X, crit, Y) if X <-> Y
state(P, X, crit, Y) -> state(P, X, sleep, o)

Set A1
state(sleep,o,sleep,o)

Patterns
state(crit,_,crit,_)

With this TRSR the objective is thus to prove that ∀i, j ∈ N : state(sleep, 0, sleep, 0) 6→R∗

state(crit, i, crit, j). To prove this property, an abstraction is needed becauseR is not ter-
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minating and the values for i and j are not bounded. Here is a possible execution illustrating
this last point.

state(sleep, 0, sleep, 0) →R state(wait, s(0), sleep, 0)

→R state(crit, s(0), sleep, 0)

→R state(crit, s(0), wait, s(s(0)))

→R state(sleep, 0, wait, s(s(0)))

→R state(wait, s(s(s(0))), wait, s(s(0)))

→R state(wait, s(s(s(0))), crit, s(s(0)))

→R state(wait, s(s(s(0))), sleep, 0)

→R state(wait, s(s(s(0))), wait, s(s(s(s(0)))))

→R . . .

A possible abstraction is to define equivalence classes between states. In the above
rewriting derivation, we can remark that the term state(wait, s(0), sleep, 0) and the term
state(wait, s(s(s(0))), sleep, 0) play a similar role. In fact, to prove the safety, only three
distinct tickets value need to be considered: 0, 1 and 2. The 0 value represents only tickets
of value 0. For any state of the form state(x, i, y, j), if i = 0 and j 6= 0 then j is mapped
to any value different from 0, say 1. If i 6= 0, j 6= 0 and i > j then i is mapped to 2 and j
to 1, and vice versa. This is the abstraction used in (Meseguer et al., 2003). In (Meseguer
et al., 2008), the definition of the abstraction and the verification process are more precisely
detailed. The abstraction is defined using 6 equations, 4 being conditional. Conditional
equations are necessary in this case to map i to 2 and j to 1 only if i > j. As said in the
paper, those equations are more complex than required by the abstraction principle so as
to get a terminating set of oriented equations. The paper also details the necessary proofs
of ground convergence of the oriented equations and ground coherence of the TRS and
oriented equations.

In Timbuk, since we do not have comparable conditional equations, it is not possible to
define the same approximation. However, by a careful observation of the above rewriting
derivation, one may remark that values of i and j are linked. If one of the tickets is i then the
other ticket j is either 0, i+1 or i−1. This is why another abstraction is possible. It simply
needs to distinguish between 0, i, i−1 and i+1. This can be done by using 4 distinct equiv-
alence classes: [0], [1], [2], [3]. Like above, the [0] class contains only 0, [1] contains tickets
{1, 4, 7, . . .}, [2] contains tickets {2, 5, 8, . . .} and [3] contains {3, 6, 9, . . .}. This abstrac-
tion permits to prove the property because, for any two tickets i, j and term state(x, i, y, j)
where i ≥ 1, it is enough to distinguish between j = 0, j = i − 1 and j = i + 1. For
instance, assume that i = 3 and j = 4 then [i] = [3] and [j] = [1] which are distinct classes.
Furthermore, since we have s(i) = j we also have s([i]) = [j], i.e. s([3]) = [1]. Hence, the
process having the ticket 3 is guaranteed to enter critical section before the process having
ticket 42. Note that we need at least the above equivalence classes. Restricting to a smaller
set of equivalence classes [0] = {0}, [1] = {1, 3, 5, . . .}, [2] = {2, 4, 6, . . .} would merge
too many terms and prevent us to prove the property. With such equivalence classes, if a
process p1 has the ticket 2 and another one p2 has the ticket 3, p1 can enter the critical

2This is also due to the fact that the TRS do not use conditions on < but direct comparisons with regards to
the number of s(. . .) symbols.
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section. But, since [3] = 1 and s([3]) = s([1]) = 2 process p2 can do the same, leading to
a safety violation.

Let us come back to the good approximation based on 4 equivalence classes [0] =
{0}, [1] = {1, 4, 7, . . .}, [2] = {2, 5, 8, . . .}, [3] = {3, 6, 9, . . .}. An interesting point, here,
is that this abstraction can be done in Timbuk with the single equationE = {s(s(s(s(X)))) =
s(X)}. With this equation, completion terminates and Timbuk can prove the safety prop-
erty on the over-approximation of reachable terms. Note that, the above proof can be
carried out in Timbuk only because of the specific encoding of ’<’ using restricted condi-
tional rules. This encoding relies on the fact that with two processes, for any two tickets i
and j, i < j if and only if j = i + 1. However, a similar remark holds for any number of
processes. For instance for 3 processes having three tickets i, j, k, the process having the
ticket i can enter in critical section if either j = 0 and k = 0, j = 0 and k = i+1, j = i+1
and k = 0, j = i+ 1 and k = i+ 2, or j = i+ 2 and k = i+ 1. Hence, we can encode the
bakery protocol for any fixed number of processes n in a Timbuk TRS in a similar way. As
a result, since 3 equivalence classes plus one for 0 were necessary to abstract 2 processes,
n + 1 classes plus one for 0 should be necessary to abstract n. Hence, for n processes an
equation of the form s(sn+1(X)) = s(X)} should be enough to prove the safety property.

To conclude on this part, by restricting to safety properties, conditional left-linear TRS
and linear equations, we do not not need any additional proof of ground convergence,
coherence, etc. to guarantee the safety of the system. This is a real advantage w.r.t. the
equational abstractions defined by (Meseguer et al., 2003). One of the main advantage
is that, except linearity, no restriction is made on the set of equations. However, their
framework is more general and permits to tackle liveness properties which are, for the
moment, out of reach of the equational completion and the Timbuk tool. Note that another
restriction they have, finite sets of initial terms, have even recently been weakened using
narrowing in (Escobar and Meseguer, 2007).



Chapter 5

Applications

This chapter reviews two of the main applications of tree automata completion to verifi-
cation: security proof of cryptographic protocol and Java bytecode analysis. Those two
problems are of a very different nature and this is intentional. The first objective is to show
that both the modeling using TRS and the verification using tree automata completion are
agile techniques. The second objective is to demonstrate that the technique scales to verify
an industrial cryptographic protocol and large term rewriting systems generated by trans-
lation of Java bytecode into TRS. Finally, in the last section, we briefly present another
application of tree automata completion to prove deadlock freeness of programs.

5.1 Cryptographic protocol verification

5.1.1 The problem
A cryptographic protocol is a protocol executed by several agents through a network where
the messages, or at least some parts of the messages, are produced using cryptographic
functions (encryption, hashing, . . . ). In the following we denote by 〈x, y〉 the pair of mes-
sage components x and y and by {x}k the result of the encryption of the message x by the
key k. Note that, we use the same notation for symmetric and asymmetric encryptions. For
any key k, the inverse key will be denoted by k−1. For symmetric encryption, we will as-
sume that k = k−1. Finally the result of the hashing of a message x is denoted by hash(x)
and the Xor of two messages x and y is denoted by Xor(x, y). For readability, {〈x, y〉}k
is noted {x, y}k and 〈x, 〈y, z〉〉 is noted 〈x, y, z〉, i.e. we assume that 〈, 〉 is associative.
Cryptographic protocols are used for various purposes between the agents:

• exchanging secret information (like secret keys)

• authenticating one, some or all the agents

• achieving a transaction (Electronic Commerce)

• voting
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• . . .

The mechanism of the protocol is supposed to resist to the attacks of, so called, intruders
who are dishonest agents. Verifying a protocol consists in checking that whatever the
intruders activity may be they should not be able to modify the expected result of the
protocol, e.g.

• obtain a secret information

• pretend to be someone else

• modify a transaction

• vote several times

Although the core of a cryptographic protocol is usually small 1, its formal verification
is hard. Indeed, for the verification to be relevant, it is necessary to take intruders into
account and this leads to very combinatorial models. One of the most famous intruder
model is the one by Dolev and Yao (D.Dolev and Yao, 1983). This model is informally
summarized by two mottos: “cryptographic functions are blackbox” and “the intruder is
the network”. The first motto means that cryptographic functions (symmetric, asymmetric,
hash functions) are supposed to be invulnerable. For instance, this model assumes that
the intruder cannot obtain any information from {m}k nor modify it without knowing k.
This assumption is very strong and not always true in practice since it depends on the
robustness of the cryptographic function used, on the length of k, on the fact that m has to
be unpredictable etc. However, by careful choices during the implementation of m, k and
{m}k, such assumption is realistic. On the opposite, the second motto “the intruder is the
network” is an assumption that may be stronger than reality. This means that the intruder
is able to

• intercept, block, replay any message,

• store any message or message component he has seen,

• decrypt a message if he knows (has stored) the inverse key,

• encrypt any message with any key he knows,

• compose or decompose message he knows.

This can be summarized by the set of deduction rules of Figure 5.1, following (Clarke
et al., 1998). These rules perform deduction on S the, so-called, knowledge or store of the
intruder. The store represents the set of informations the intruder can intercept during the
execution of the protocol.

Besides to this, when protocols are designed for use on open networks, like Internet
protocols for instance, the verification on Dolev-Yao model should hold for an unbounded
number of agents executing the protocol at the same time and as often as needed. The veri-
fication has, thus, three unbounded dimensions: the number of agents running the protocol,

1It generally consists of 3 to 6 exchanged messages.
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(Axiom)
S,M `M

(Decryption)
S ` {M}K S ` K−1

S `M
(Encryption)

S `M S ` K
S ` {M}K

(UnpariringL)
S ` 〈X,Y 〉
S ` X

(UnpairingR)
S ` 〈X,Y 〉
S ` Y

(Pairing)
S ` X S ` Y
S ` 〈X,Y 〉

Figure 5.1: Dolev-Yao intruder capabilities as deduction rules

the number of sessions run by each agent and the number of intruder’s action. As a result,
if the verification is performed using a model-checker, it will only be on a bounded abstrac-
tion of the original problem (Lowe, 1996a). Note that some works propose model-checking
techniques avoiding the bound on the number of intruder’s action like (Turuani, 2003).

5.1.2 Encoding into TRS and verification by tree automata completion
TRS are a convenient formal way to model cryptographic protocols. As far as we know
the first work using TRS for this purpose is (Denker et al., 1998) for attack detection.
Then, it was followed by many other works like (Jacquemard et al., 2000) and (Genet and
Klay, 2000) where the rewriting models are used for security proof. Those works use a
set of rewrite rules for the intruder close to deduction rules of Figure 5.1. Encoding those
deduction rules into a TRS needs to overcome a technical detail: deduction rules operate
on sets and rewrite rules on terms. Though sets are difficult to encode as terms, multisets
are enough and can be encoded into terms using an associative and commutative symbol.
This is the case, for instance, in (Genet and Klay, 2000) with the symbol t2 and also
in (Jacquemard et al., 2000). The encoding is even clearer in (Rusinowitch and Turuani,
2001). The set of deduction rules of 5.1 can thus be encoded by the following set of rewrite
rules where t is supposed to be an associative and commutative operator. Those rules
rewrite a term (a multiset) representing the knowledge of the intruder.

(Decryption) {M}K tK−1 →M t {M}K tK−1

(Encryption)M tK → {M}K tM tK

(UnpairingL) 〈X,Y 〉 → X t 〈X,Y 〉

(UnpairingR) 〈X,Y 〉 → Y t 〈X,Y 〉

(Pairing)X t Y → 〈X,Y 〉 tX t Y

This is for the representation of the Dolev-Yao intruder with TRS. For the verification
part, the aim is to finitely represent the infinite set of messages that an intruder is able to
construct. For that purpose, tree automata are now a very commonly used technique. The
idea of using tree automata for verifying those specific softwares was independently pro-
posed by (Monniaux, 1999; Genet and Klay, 2000; Goubault-Larrecq, 2000). The common
intuition behind those works is the following: represent the potentially infinite knowledge
of the intruder as a tree automaton. (Monniaux, 1999) encodes the disassembly of the
messages using TRS. The concerned TRS is thus restricted to the rules:

2Note that the associative and commutative behavior is made explicit in (Genet and Viet Triem Tong, 2001).
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(Decryption) {M}K tK−1 →M t {M}K tK−1

(UnpairingL) 〈X,Y 〉 → X t 〈X,Y 〉

(UnpairingR) 〈X,Y 〉 → Y t 〈X,Y 〉

In (Monniaux, 1999), pairing and encryption operations of the intruder (the other rules)
are simulated by the tree automaton itself. This requires a separated manual proof. How-
ever, in this case, the knowledge of the intruder can entirely be represented by a regular set
of non associative and commutative terms, and the operator t becomes useless. The TRS
used in (Monniaux, 1999) uses explicit decryption and unpairing operators as follows:

(Decryption) decrypt({x}k, k−1)→ x

(UnpairingL) proj1(〈x, y〉)→ x

(UnpairingR) proj2(〈x, y〉)→ y

The set of reachable terms w.r.t. to this TRS is over-approximated using a tree automa-
ton. However, though it is not mentioned by Monniaux, the above TRS is in the RL-M
class and reachable terms can thus be exactly computed.

The technique proposed in (Genet and Klay, 2000) and (Goubault-Larrecq, 2000) goes
further and represent the entire protocol execution and intruder activity using a TRS. In
this case, the corresponding TRS is no longer in a regular class of Section 2.1.1 and the
set of reachable terms needs to be approximated. These two works use a tree automata
completion algorithm close to the one presented in Section 3.1 to perform the verification.

In (Genet and Klay, 2000), the case study was the Needham-Schroeder public key pro-
tocol (Needham and Schroeder, 1978) (NSPK for short) which was, at that time, the typical
benchmark of security protocol verification techniques. On this protocol, once the normal-
ization rules are defined, secrecy can be verified automatically on an unbounded number
of agents, protocol sessions and intruder’s basic actions. As far as we know, (Genet and
Klay, 2000) was one of the first technique able to prove such a general result in a (semi-
)automatic way. Before that, D. Bolignano (Bolignano, 1996) proposed to prove protocols
using abstract interpretation, and thus approximations. However, proofs were essentially
manual and done in the Coq proof assistant.

Another interest of tree automata based verification, that aroused during this experi-
ment, is that it eases the minimization of models. For instance, on the NSPK example, if
we achieve an exact completion after 4 steps the completed automaton has already more
than 4500 states and is, of course, not complete. This shows the state explosion problem we
face on such specifications. On the same initial tree automaton and TRS, with a very rough
approximation, completion terminates after 6 steps and obtain a fixpoint automaton with
only 16 states. In such an approximation, for instance, we even forget the message struc-
ture itself, i.e. the ordering of components in the messages is lost. Although this fixpoint is
imprecise, it is still sufficient to prove the security property. The benefit of this experiment
was thus to show that the fine tuning of approximations is a good way to scale-up verifica-
tion by tree automata completion to real-size problem. This is illustrated in Section 5.1.3
on an industrial cryptographic protocol and in Section 5.2 on Java bytecode verification.
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5.1.3 The SmartRight case study
The SmartRight system

The SmartRight system (SmartRight, 2001) offers a high protection against illegal copies
within a digital home network. The SmartRight system was proposed to the Digital Video
Broadcasting (DVB) ad-hoc group (DVB, 2003) on Copy Protection Technology in reply
to a call for proposals on Copy Protection and Content Management technologies. The
security is vital to the SmartRight system, since the subvert of system may cause serious
revenue loss of content industry. The security of the SmartRight system relies on the two
key technologies:

• Cryptography: the system uses a number of cryptographic protocols to create the
personal private network and protect content against illegal copies.

• Smart cards: tamper resistance of smart cards offers a secure environment to handle
secret keys needed for the protocols. Furthermore, it guarantees a trusted behavior
of main elements of the system.

The design of a cryptographic protocol is a particularly error-prone process. In addition
to the choice of well-designed cryptographic functions, we must ensure that the crypto-
graphic protocols do not have flaw. This is the reason why Thomson R&D was interested
in using formal methods to verify the cryptographic protocols in the SmartRight system.

Converter Card Communication Terminal Card
1. get new CW

generate random
VoKey , VoR

2. {VoKey,Xor(CW ,VoR)}Kc −→
3. decrypt usingKc

extract VoKey , Xor(CW ,VoR)
generate random VoRi

4. ←−VoRi

5. delete VoKey , VoR VoR, {Hash(VoRi)}VoKey −→
6. verify {Hash(VoRi)}VoKey

using VoKey , then
extract CW using VoR

Figure 5.2: specification of the protocol

The ’view-only’ protocol is one of the cryptographic protocols used in SmartRight.
Figure 5.2 shows a complete execution of the protocol (called a session). This protocol is
deployed between an access device (e.g. a decoder) receiving a scrambled digital content
(e.g. video) and a presentation device (e.g. television) which is supposed to unscramble
the content before rendering it. The keys used to scramble the content are called control
words (CW) and change periodically (typically every 10 seconds). Both access device
and presentation device are equipped with a smartcard, called Converter Card (CC) and
Terminal Card (TC), respectively. CC and TC share a secret symmetric encryption key Kc
which is embedded in the card. The access device encrypts CW and sends it together with
the scrambled content to the presentation device (step 2). The presentation device extracts
CW (step 6) and unscrambles the content if it received a good response (step 5) to the
challenge (step 4).
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The property to prove is the following: the control word CW (input of CC at step 1)
may be extracted by TC (at step 6.) only once at the time where the protocol is played.
This property guarantees that the content can be viewed only once. Even if the content
(encrypted CW + scrambled content) is recorded, the protocol ensures that the sequence of
CW cannot be replayed. This property has to be verified under the following assumptions:
a hacker can impersonate the Converter Card and the Terminal Card and it can attack all
exchanged messages of the protocol: modify, delete a message during a session or replay a
message of a session in following sessions. However, it is impossible for him to know Kc

or to modify the behavior of CC and TC since they are sealed in the smart card.

Using Timbuk for verifying SmartRight

This protocol runs over a home network and we can thus limit the analysis to a bounded
number of agents. On the opposite, the verification must hold for any number of protocol
sessions. Thus, this verification cannot be performed using a model-checking tool which
only inspect a finite number of sessions. A session is a sequence of protocol configurations.
A configuration of the protocol is a record of actors’ and intruder’s knowledge as well as the
exchanged messages. Each configuration is represented by a term. A step of the protocol
is described using a rule rewriting a configuration to another. Thus, executing the protocol
consists in rewriting repeatedly a term representing the current configuration of the system.
Intruder’s actions are also modeled using rewrite rules.

Starting from an initial configuration t and using Timbuk, we compute a tree automata
recognizing an over-approximation of all the configurations that can be reached by applying
the TRS (finitely or not) on t. Then, to verify a property on the protocol, it is enough to
represent faulty configurations by terms and check that they are not recognized by the
automaton.

Modeling the SmartRight protocol

Both the Converter Card and the Terminal Card are represented by a term containing their
respective knowledge. The termCC(l, v1, v2) will represent a Converter Card whose list of
incoming control words is l and whose current VoKey is v1 and current VoR is v2. Similarly
the Terminal Card is represented by a term TC(i, v, l) where v is the current Vori, l is a
term of the form theRead(CWn, . . . Read(CW1, nil)) whereCW1, . . . , CWn are control
words that have been accepted by the Terminal Card, in this order. In i is stored the last
pair (V oKey, Xor(CW,V oR)) received by the Terminal Card. Keys VoKey, VoR (resp.
VoRi) must be fresh for each new session of the Converter Card (resp. Terminal Card).

A safe modeling choice for a key generated by a card c is to make it depend on an
information known by c and that is changing at the beginning of every new session of c.
For instance, the Converter Card starts a new session for every new control word cw it
receives. Thus we represent randomly generated keys of the Converter Card by the terms
V oKey(cw) and V oR(cw). On the other hand, when the Terminal Card generates V oRi
it does not have access to cw so it is not possible to make depend V oRi on this parameter.
A safe choice is to build this key as follows: V oRi(v, l)3 where v is the last V oKey the

3Note that V oRi(v) would not be fresh enough since if the intruder replays the first message of the Converter
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Terminal Card received and l is its list of accepted control words. The two smart cards
are supposed to communicate in an insecure world: the network is supposed to be ruled
by a Dolev-Yao intruder. In the model, the intruder is represented by its knowledge: a
term of the form Store(e1, . . . Store(en, emptystore)) where e1, . . . , en are the pieces
of messages the intruder knows. Finally a configuration in SmartRight is represented by
a term of the form State(m, cc, tc, st) where m is the current message, cc, tc and st are
respectively the Converter Card, the terminal card and the intruder.

Steps of the protocols are described with rewrite rules. We first show the rule that
initializes the protocol session: the converter card receives some control word and sends
the first message (all small letters denote variables and x :: l denotes the list whose first
element is x and whose remainder is l).

State(m,CC(cw :: l, v1, v2), tc, i) →

State({V oKey(cw), Xor(cw, V oR(cw))}Kc), CC(cw :: l, V oKey(cw), V oR(cw)), tc, i)

This rule corresponds to the steps (1) to (2) of the protocol where the converter card
has at least one control-word cw to send. The other steps of the protocol are encoded in the
same way.

(2) to (4) State({vok, e}Kc , cc, TC(x, y, cwl), i)→

State(vori(vok, cwl), cc, TC(〈vok, e〉, vori(vok, cwl), cwl), i)

(4) to (5) State(vor, CC(cw :: l, run, v1, v2), tc, i)→

State(〈vor, {v1, hash(vor)}Kc〉, CC(l, init, v1, v2), tc, i))

(5) to (6) State(〈vor, {vok, hash(vori)}Kc〉, cc, TC(〈vok,Xor(cw, vor)〉, vori, cwl), i)→

State(nil, cc, TC(nil, nil, read(cw, cwl)), i)

Besides to this, the intruder’s actions are encoded by another set of rewrite rules. Here
are the rewrite rules for the intruder:

• The intruder can read and store every sent message and he can send every data he
knows:

State(x, cc, tc, st)→ State(x, cc, tc, Store(x, st))

State(y, cc, tc, Store(x, st))→ State(x, cc, tc, Store(x, st))

• The intruder can flip elements in its store (he can reorder it):

Store(x, Store(y, z))→ Store(y, Store(x, z))

Card with a key v and a control word cw, then the reply sent by the Terminal Card will be identical: V oRi(v),
so will be the third message and we will get an attack: cw will be read twice.
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• The intruder can decrypt a message m encrypted with k if he has k (k is a symmetric
key):

Store({m}k, Store(k, st))→ Store(m,Store(encrypt(k,m), Store(k, st)))

• An intruder can crypt any element of its store with key (or anything else) of its store:

Store(x, Store(k, st))→ Store(encrypt(k, x), Store(x, Store(k, st)))

• An intruder can decompose message that are not encoded:

Store(〈x, y〉, st)→ Store(x, Store(y, Store(〈x, y〉, st)))

• An intruder can compose messages from elements found in the store:

Store(x, Store(y, st))→ Store(〈x, y〉, Store(x, Store(y, st)))

• The intruder can apply a hash function:

Store(x, st)→ Store(Hash(x), Store(x, st))

• The intruder can build Xor:

Store(x, Store(y, st))→ Store(Xor(x, y), Store(x, Store(y, st)))

• The intruder can decompose Xor if he has one of the elements:

Store(Xor(x, y), Store(x, st))→ Store(y, Store(Xor(x, y), Store(x), st)))

Store(Xor(x, y), Store(y, st))→ Store(x, Store(Xor(x, y), Store(y, st)))

The verification of SmartRight

Adjusting the initial tree automaton makes it possible to analyze the protocol starting from
different hypothesis or different initial configurations. It is possible to study what happens
if the intruder knows some keys, or some control word by adding them to the initial con-
figuration of the intruder. Similarly, we can study the behavior of the protocol for different
capacity of the intruder by incrementally adding some rewrite rules to the intruder behavior.

Starting from the initial configuration and from the TRS modeling both the protocol
and the intruder actions, we use Timbuk to compute the set of reachable terms. We used
it both in exact and approximated mode. In practice, the exact mode helps in finding
attacks and the approximated mode is used, when attacks are no longer found, to prove
that there are no more. For the SmartRight protocol verification, our methodology for
building approximation was the following:

“Observe one protocol session among a safe over-approximation of an unbounded
number of past and future protocol sessions, all attacked by an unbounded number of
intruder’s actions”. In the approximation we built, the list of control words received by
the Converter Card is approximated by normalization rules into [old_cw, . . . , old_cw,
current_cw, next_cw, . . . , next_cw]. In other words, all control words are approxi-
mated by only three equivalence classes. The current_cw contains only one control word
which is the observed one. All past (resp. next) control words are all considered as equiv-
alent and merged into the class old_cw (resp. next_cw). Then, to check the anti-replay
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property, it is enough to use Timbuk’s pattern matching (see Section 4.1.2) on the ap-
proximation automaton and verify that a pattern of the form Read(x,Read(y, z)) does
only accept solutions where old_cw, current_cw, next_cw are accepted in this order and
current_cw at most once. For instance, one has to verify that no solution of the form
Read(old_cw,Read(current_cw, . . .)) is obtained (this solution represents an old con-
trol word that have been accepted after the current control word). For SmartRight, we have
computed several tree automata recognizing the over-approximations of reachable config-
urations of the protocol under different hypothesis. First, we have verified the model of the
protocol without any intruder action. This has permitted to validate the model by verifying
that if the control words are all emitted by the Converter Card then some of them4 are re-
ceived, at most once and in the right order by the Terminal Card. Secondly, we computed
an approximation with a stronger intruder able to listen, erase and replay messages. On the
computed automaton, while searching for a pattern Read(x,Read(y, z)), we found:

Solutions:
[...]
solution 4: x <- qcurrent_cw, y <- qold_cw, z <- qnil,
solution 5: x <- qcurrent_cw, y <- qcurrent_cw, z <- qreadcurrent,
solution 6: x <- qcurrent_cw, y <- qcurrent_cw, z <- qreadold,
[...]

where Read(current_cw,Read(current_cw, . . .)), shows that control words may be
accepted repeatedly (but in the right order). A careful study of the automaton pointed out
that this attack was due to an element missing in the protocol specification. After step 6.
of the protocol, if the intruder replays the message {V oR, {Hash(V oRi)}V oKey}Kc before the
terminal card starts its new session and changes its key V oRi, then this message can be
read several times by the Terminal Card and the control word may also be extracted several
times. This is no longer possible if the terminal card deletes its key V oRi as soon as
it has extracted the control word. This is exactly what had been added to the Thomson
specification to fix the problem. On this fixed specification the anti-replay property has
been proved.

Finally, we have computed a third approximation automaton for an intruder having
maximal capabilities w.r.t. the verification assumption. We have given to the intruder some
keys (but not Kc) and the ability to listen, erase, replay, construct, deconstruct, decrypt (if
he has the key), encrypt messages and also the ability to construct or deconstruct Xors. The
completed automaton has 74 states and 732 transitions. On this approximation automaton,
it was possible to prove the following properties:

Secrecy: Kc, V o_Key and all the control words CW remain secret. This can simply be
done by checking that no pattern of the form Store(Kc, x), Store(V oKey(x), y),
etc. can be found in the automaton.

Authentication Control words sent by the Terminal Card are all correctly authenticated,
i.e. no control word sent by the intruder is accepted. This can be done by checking

4They are not all received since a Converter Card may start a new session with a new control word before the
previous session was completed. Note that, we also modeled the case where TC can complete its session before
CC starts a new one and we proved a form of liveness where all the sent control words are received, at most once
and in the right order.
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that a pattern of the form Read(x, y) accepts no solution mapping x to a data owned
by the intruder.

Anti-replay As before, we can check that control words are received at most once and in
the right order using a pattern of the form Read(x,Read(y, z)).

The anti-replay property proved on this protocol is stronger than classical secrecy and
authentication properties and heavily relies on the freshness of the data sent in the mes-
sages. With Timbuk, we are able to prove this property in an automatic way with some
user interactions limited to the definition of the normalization rules. As far as we know,
this kind of property seems difficult to tackle, on an unbounded number of sessions, with
a fully automatic verification tool (Catherine Meadows, 2001). It could have also been
proved using a proof assistant like in (Paulson, 1997; Bolignano, 1996) since induction is
well adapted to handle properties where freshness of keys and nonces is crucial. Neverthe-
less, we believe that using a proof assistant would have needed more time and energy to
achieve the same goal.

Those experiments with the exact completion strategy of Timbuk permitted to detect
very early some omissions in the Thomson specification. Finally, rewrite approximations
permits to prove automatically the property in a general setting: unbounded number of
sessions, unbounded number of intruder actions.

5.1.4 Comparison with other tools
The preliminary work on the Needham-Schroeder public key protocol was carried out
in 2000 and the above case study on the SmartRight protocol was done in 2003. Then,
this approach was automatized in (Oehl et al., 2003; Boichut et al., 2004) and integrated
in the AVISPA security protocol verification tool (Armando et al., 2005). It was extended
for attack reconstruction in (Nesi et al., 2003). Another extension was proposed in (Zunino
and Degano, 2006) so as to deal with non linear rules of specific operators like the Xor.

However, Timbuk is not targeted to verification of cryptographic protocols. As a result,
some tools like ProVerif (Blanchet, 2001), specially designed for this purpose rapidly over-
took Timbuk. Proverif is also using approximations on cryptographic protocol modeled as
sets of Horn clauses. Approximations are very efficient but statically defined in the tool
itself (Blanchet, 2001). The only remaining interest in using Timbuk for cryptographic
protocol verification is the fact that correctness of fixpoints (and approximations) can be
certified using the checker presented in Section 4.5. This is not straightforward since the
checker proposed in (Boyer et al., 2008) is defined for left-linear TRS and encoding of
cryptographic protocols are not. But the result of (Boyer et al., 2008) is very likely to be
extended to non left-linear TRSs.

5.2 Prototyping of static analyzers
The aim of this section is to show how to combine rewriting theory with principles from
abstract interpretation in order to obtain a fast and reliable methodology for implementing
static analyzers for programs. In Section 5.1 we showed that reachability analysis based
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on tree automata is a powerful technique for analyzing cryptographic protocols (Genet and
Klay, 2000; Feuillade et al., 2004; Genet et al., 2003). In this section, we set up a framework
that allows to apply those techniques to a general programming language. Our framework
consists of three parts. First, we define an encoding of the operational semantics of the
language as a term rewriting system. Second, we give a translation scheme for transforming
programs into rewrite rules. Finally, an over-approximation of the set of reachable program
states represented by a tree automaton is computed using the tree automata completion
algorithm. This framework is instantiated on a real test case, namely Java. We encode the
Java Virtual Machine (JVM for short) operational semantics and Java bytecode programs
into TRS and construct over-approximations of JVM states.

With regards to classical static analysis, the objective is here to use tree automata com-
pletion as a foundational mechanism for ensuring, by construction, safety of static analyz-
ers. In particular, we aim at defining a class analysis on Java bytecode programs. Moreover,
using approximation rules instead of abstract domains makes the analysis easier to fine-tune
and to prove correct. This is of great interest, when a standard analysis is too coarse, since
our technique permits to adapt the analysis to a particular property to prove and preserve
safety. Last but not least, all the analysis performed using these technique can be certified
a unique checker defined in Section 4.5. Actually, this is the core of the RAVAJ certified
analysis chain (see Figure 5.3 and Figure 5.4).
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Figure 5.3: The RAVAJ Java bytecode analysis chain
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Certifier
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Incomplete

Figure 5.4: The RAVAJ Approximation checker

In the first section, we introduce the translation of Java bytecode into TRSs. Then, in
the next sections, we define a class analysis and how to refine it using normalization rules.
Finally, we present the Copster tool (Barré et al., 2009) that implements the translation part.
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5.2.1 Translation of Java Bytecode Semantics into TRS

This section describes how to formalize the semantics of an object-oriented language (here,
Java bytecode) using rewriting rules. From a bytecode Java program p, we have developed
a tool named Copster (see Section 5.2.4) that automatically produces a TRSR modeling a
significant part of the Java semantics (threads, stacks, frames, objects, references, methods,
heaps, integers) as well as the semantics of p. For the moment, exceptions are not taken
into account but they can be elegantly encoded using rewriting (Meseguer and Rosu, 2004;
Farzan et al., 2004). The formalization follows the structure of standard Java semantics
formalizations (Bertelsen, 1997; Freund and Mitchell, 1999).

Formalization of Java Program States

We first formalize semantics of Java programs without threads. A Java program state con-
tains a current execution frame, a frame stack, a heap, and a static heap. A frame gives
information about the method currently being executed: its name, current program counter,
operand stack and local variables. When a method is invoked the current frame is stored
in the frame stack and a new current frame is created. A heap is used to store objects and
arrays, i.e. all the information that is not local to the execution of a method. The static heap
stores values of static fields, i.e. values that are shared by all objects of a same class.

Let P be the infinite set of all the possible Java programs. Given p ∈ P , let C(p) be
the corresponding finite set of class identifiers and Cr(p) be C(p) ∪ {array}. A value is
either a primitive type or a reference pointing to an object (or an array) in the heap. In our
setting, we only consider integers, chars, strings and boolean primitive types. Let PC(p)
be the set of integers from 0 to the highest possible program point in all the methods in p.
Let M(p) be the set of method names and Mid(p) be the finite set of pairs (m, c) where
m ∈ M(p), c ∈ C(p) and m is a method defined by the class c. This last set is needed to
distinguish between methods having the same name but defined by different classes. For
the sake of simplicity, we do not distinguish between methods having the same name but a
different signature but this could easily be done.

Following standard Java semantics we define a frame to be a tuple f = (pc,m, s, l)
where pc ∈ PC(p), m ∈Mid(p), s an operand stack, l a finite map from indexes to values
(local variables). An object from a class c is a map from field identifiers to values. The
heap is a map from references to objects and arrays. The static heap is a map from static
field names to values. A program state is a tuple s = (f, fs, h, k) where f is a frame, fs is
a stack of frames, h is a heap and k a static heap.

A Program State as a Term

Let FC(p) = C(p) and FCr (p) = Cr(p) = C(p) ∪ {array} be sets of symbols. We
encode a reference as a term loc(c, a) where c ∈ Cr(P ) is the class of the object being
referenced and a is an integer. This is coherent with Java semantics where it is always
possible to know dynamically the class of an object corresponding to a reference. We use
Finteger = {succ : 1, pred : 1, zero : 0}, Fbool = {true : 0, false : 0}. The set Fchar
is built with ASCII codes of characters and Fstring = {Cons : 2, Nil : 0} ∪ Fchar.
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(pop)
(m, pc, x :: s, l)
(m, pc+ 1, s, l)

(storei)
(m, pc, x :: s, l)

(m, pc+ 1, s, x→i l)

Figure 5.5: Example of bytecodes operating at the frame level

More precisely, integers are encoded using Peano’s notation and strings are lists of char-
acters built using Cons and Nil operators. Freference(p) = {loc : 2, succ : 1, zero :
0} ∪ FCr (p) for references and Fvalue(p) = Finteger ∪ Fbool ∪ Fchar ∪ Fstring ∪
Freference(p) for values. For example, loc(foo, succ(zero)) is a reference pointing to
the object located at the index 1 in the foo class heap. Let x be the higher program
point of the program (p), then FPC(p) = {pp0 : 0, pp1 : 0, ..., ppx : 0}. FM (p) is
defined the same way as FC(p). FMid

(p) = {name : 2} ∪ FM (p) ∪ FC(p). For ex-
ample name(bar,A) stands for the method bar defined by the class A. Let l(p) denote
the maximum of local variables used by the methods of the program package p. We use
Fstack(p) = {stack : 2, nilstack : 0} ∪ Fvalue(p) for stacks, FlocalV ars(p) = {locals :
l(p), nillocal : 0} ∪ Fvalue(p) for local variables and Fframe(p) = {frame : 4} ∪
FPC(p)∪FMid

(p)∪Fstack(p)∪FlocalV ars(p) for frames. A possible frame thus would be:
frame(name(bar,A), pp4, stack(succ(zero), nilstack), locals(loc(bar, zero),
nillocal)) where the program counter points to the 4th instruction of the method bar de-
fined by the class A. The current operand stack has the integer 1 on the top. The first local
variable is a reference and the other is not initialized.

The alphabet Fobjects(p) contains the same symbols as FC(p), where the arity of each
symbol is the corresponding number of non-static fields. As an example, objectA(zero) is
an object from the class A with one field whose value is zero.

Let nc be the number of classes. We chose to divide the heap into nc class heaps
plus one for the arrays. In a reference loc(c, a), a is the index of the object in the list
representing the heap of class c. An array is encoded using a list and indexes in a similar
way. We use Fheap(p) = {heaps : (nc + 1), heap : 2} ∪ Fstack(p) ∪ Fobjects(p) for
heaps, and Fstate(p) = {state : 4} ∪ Fframe(p) ∪ Fheap(p) for states.

Java Bytecode Semantics

Figure 5.5 presents some rules of the semantics operating at the frame level. For a given
instruction, if a frame matches the top expression then it is transformed into the lower
expression. Considering the frame (pc,m, s, l), pc denotes the current program point, m
the current method identifier, s the current stack and l the current array of local variables.
The operator ’::’ models stack concatenation. The storei instruction is used to store the
value at the top of the current stack in the ith register, where x →i l denotes the new
resulting array of local variables.

Figure 5.6 presents a rule of the semantics operating at the state level. For a state
((m, pc, s, l), fs, h, k), the symbols pc,m, s and l denote the current frame components, fs
the current stack of frames, h the heap and k the static heap. The instruction invokeV irtualname
implements dynamic method invocation. The method to be invoked is determined from
its name and the class of the reference at the top of the stack. The internal function
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(getF ieldname)
((m, pc, ref :: s, l), fs, h, k), f = getf(name, ref, h, k)

(m, pc+ 1, f :: s, l)
(invokeV irtualname)

((m, pc, ref :: s, l), fs, h, k), c = class(ref, h, k),m′ = lookup(name, c)
((m′, 0, [], storeparams(ref :: s,m′)), (m, pc+ 1, popparams(ref :: s,m′), l) :: fs, h, k)

Figure 5.6: Example of bytecodes operating at the state level

class(ref, h, k) is used to get the reference’s class c and lookup(name, c) searches the
class hierarchy in a bottom-up fashion for the the method m′ corresponding to this name
and this class. There are internal functions to manage the parameters of the method (pushed
on the stack before invoking): storeparams(ref :: s,m′) to build an array of local vari-
ables from values on the top of the operand stack and popparams(ref :: s,m′) to remove
from the current operand stack the parameters used by m′. With those tools, it is possible
to build a new frame pointing at the first program point of m′ and to push the current frame
on the frame stack. Some other examples can be found in (Boichut et al., 2006).

Java Bytecode Semantics using Rewriting Rules

In this section, we encode the operational semantics into rewriting rules in a way that
makes the resulting system amenable to approximation. The first constraint is that the term
rewriting system has to be left-linear (see Theorem 109). The second constraint, is that
intermediate steps modeling internal operations of the JVM (such as low level rewriting
for evaluating arithmetic operations +, ∗, . . .), should be easy to filter out. To this end, we
introduce a notion of intermediate frames (named xframe) encompassing all the internal
computations performed by the JVM, which are not part of operational semantic rules.
We can express the Java Bytecode Semantics of a Java bytecode program p by means of
rewriting rules. For instance, we give here the encodings of pop, invokeV irtual and
getF ield instructions.

In the following, symbols m, c, pc, s, l, fs, h, k, x, y, a, b, adr, l0, l1, l2, size, h,
h0, h1, ha are variables. For a given program point pc in a given method m, we build
an xframe term very similar to the original frame term but with the current instruction
explicitly stated. The xframes are used to compute intermediate steps. If an instruction
requires several internal rewriting steps, we will only rewrite the corresponding xframe
term until the execution of the instruction ends. Assume that, in program p, the instruction
at program point pp2 of method foo of class A is pop. In figure 5.7, Rule 1 builds an
xframe term by explicitly adding the current instruction to the frame term. Rule 2
describes the semantics of pop. Rule 3 specifies the control flow by defining the next
program point.

Now, assume that, in program p, the instruction at program point pp2 of method foo
of class A is invokeV irtual. This instruction requires to compile some information about
methods and the class hierarchy into the rules. Basically, we need to know what is the
precise method to invoke, given a class identifier and a method name. In p, assume that A
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1 frame(name(foo,A), pp2, s, l) → xframe(pop, name(foo,A), pp2, s, l)
2 xframe(pop,m, pc, stack(x, s), l) → frame(m,next(pc), s, l)
3 next(pp2) → pp3

Figure 5.7: An example pop instruction by rewriting rules, for program p

andB are two classes such thatB extendsA. Let set be a method implemented in the class
A (and thus available from B) with one parameter and reset a method implemented in the
class B (and thus unavailable from A) with no parameter. Figure 5.8 presents the resulting
rules for this simple example.

1 frame(name(foo,A), pp2, s, l) → xframe(invokeV irtual(set),
name(foo,A), pp2, s, l)

2 state(xframe(invokeV irtual(set),
m, pc, stack(loc(A, adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set, A), pp0, s,
locals(loc(A, adr), x, nillocal)),
callstack(storedframe(m, pc, s, l), fs), h, k)

3 state(xframe(invokeV irtual(set),
m, pc, stack(loc(B, adr),
stack(x, s)), l), fs, h, k)

→ state(frame(name(set, A), pp0, s,
locals(loc(B, adr), x, nillocal)),
callstack(storedframe(m, pc, s, l), fs), h, k)

4 state(xframe(invokeV irtual(reset),
m, pc, stack(loc(B, adr),
s), l), fs, h, k)

→ state(frame(name(reset, B), pp0, s,
locals(loc(B, adr), nillocal, nillocal)),
callstack(storedframe(m, pc, s, l), fs), h, k)

5 next(pp2) → pp3

Figure 5.8: invokeV irtualset instruction by rewriting rules

The last instruction we present here, getF ield, loads the value of a field of an object
stored in the heap. We use a sub rewriting system to extract the object, we are looking for,
from the corresponding heap. We consider a small example of a class A with no fields and
a classB with a field field0. In our setting, the heap is made of 3 different heaps here. The
first one is for class A, the second for class B and the last one for arrays (See Figure 5.9).
Rule 2 extracts from the general heap the one corresponding to class A. Rules 4 and 5
locate the object corresponding to the address. Rules 3 put the value of the field we were
looking for, on the stack.

To complete the modeling of the semantics and the program by rewriting rules we need
stubs for native libraries used by the program. At present, we have developed stubs for some
of the methods of java.io.InputStream, java.io.PrintStream and java.lang.String
classes. We model interactions of a Java program state with its environment using a term
of the form IO(s, i, o) where s is the state, i is the input stream and o the output stream.

Encoding threads in TRS semantics

The above TRS semantics for Java bytecode does not deal with threads. To cover threads
it is necessary to adapt the encoding and add the semantics of several bytecodes. First,
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1 frame(name(foo,A), pp2, s, l) → xframe(getF ield(f), name(foo, 1), pp2, s, l)
2 state(xframe(getF ield(field0),

m, pc, stack(loc(B, adr), s), l),
fs, heaps(h0, heap(size, h1), ha), k)

→ state(xframe(xGetF ield(B, field0, h1,
size, adr),m, pc, s, l), fs,
heaps(h0, heap(size, h1), ha), k)

3 xframe(xGetF ield(B, field0
, stackB(objectB(x), h1),
succ(zero), zero),m, pc, s, l)

→ frame(m,next(pc), stack(x, s), l)

4 xGetF ield(B, field0, h1,
succ(size), succ(adr))

→ xGetF ield(B, field0, h1, size, adr)

5 xGetF ield(B, field0, stackB(x, h1),
succ(succ(size)), zero)

→ xGetF ield(B, field0, h1, succ(size), zero)

6 next(pp2) → pp3

Figure 5.9: getF ield instruction by rewriting rules

instead of having only one executable state we need one for every thread. As a result the
general JVM executable state becomes:

IO(state(threadlist(T1, threadlist(T2, ...)), h, hs, lt), i, o)

where T1, T2 are threads, h, hs and lt are respectively the heap, the static heap and a lock
table that is detailed below. Each thread is of the form:

T1 = thread(ref , frame(...), callstack(storedframe(...))))

where the construction of each thread term is similar to the construction of term states
used in single threaded programs. The only difference is the ref , the reference of the
thread object itself, stored in the first field of the thread term. To adapt the single-threaded
rewriting rules for dealing with multi-thread programs, it is enough to transform the set of
rules operating at the state level as follows:

For rewrite rules accessing the heap For example, the getfield instruction. It is neces-
sary to replace any term or subterm of the form the state(f, cs, h, k) by the term
state(threadlist(thread(x, f, cs),y), h, k, tl) where x,y and tl are variables that
will respectively match the reference of the thread, the rest of the list of thread and
the lock table. For instance, the Rule 2 of the getF ield set of rules of Figure 5.9
becomes:

2 state(threadlist(thread(x, xframe(getF ield(field0),
m, pc, stack(loc(B, adr), s), l),
fs),y), heaps(h0, heap(size, h1), ha), k, tl)

→ state(threadlist(thread(x, xframe(xGetF ield(B,
field0, h1, size, adr),m, pc, s, l),
fs),y), heaps(h0, heap(size, h1), ha), k, tl)

For rules accessing the call stack Those rules do not access the heap and can thus be ap-
plied independently of the other threads. For example, the invokeV irtual instruc-
tion. It is enough to replace any rule rooted by state(f, cs, h, k) by thread(ref , f, cs)
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where ref will match the reference of the thread. For instance, rule 2 of Figure 5.8
becomes:

2 thread(ref , xframe(invokeV irtual(set),
m, pc, stack(loc(A, adr), stack(x, s)), l), fs)

→ thread(ref , frame(name(set, A), pp0, s,
locals(loc(A, adr), x, nillocal)),
callstack(storedframe(m, pc, s, l), fs))

Similarly, rules describing the accesses to the IO term have to be adapted so as to deal
with a thread list instead of a unique thread. However, any thread which is not accessing the
heap or to the in/out channels can be rewritten independently from others. This is reflected
in the rules, like for invokeV irtual above, that can be applied on any thread of the list.
As a consequence, each thread term can be rewritten independently with rules rooted by
thread, frame and xframe symbols as well as low level rules encoding the basic JVM
operation, e.g. addition. With this encoding, a basic scheduler of threads defined as follows:

threadlist(x, threadlist(y, z))→ threadlist(y, threadlist(x, z))

This scheduler does not guarantee liveness of the multi-threaded program but guarantee
to cover every possible behavior of it. More precisely, if a thread wants to access to the
heap, and thus need to be at the first position of the thread list, then there exists a rewrit-
ing derivation making it happen. In the encoding given above, the reference ref and the
lock table are necessary for synchronization purposes. In Java, there are several ways to
synchronize threads. In Copster, we only cover two of them, namely synchronize and
join.

In Java, it is possible to synchronize the execution of a code block B by taking a lock
on an object x using the construction synchronized(x){B}. When a thread T exe-
cutes this instruction it tries to lock the object x. If T is the proprietary of the lock then
it can execute B, otherwise it has to wait for its being free. If an object x is locked by a
thread T, the lock table (represented by the term lt in our model) stores the fact that x is
locked by T and how many times5. At the bytecode level, the synchronized instruc-
tion is replaced by two instructions monitorenter and monitorexit surrounding the
bytecode translation of B. The JVM executes a monitorenter instruction for a thread T
by checking that T can lock the object whose reference is on the top of the operand stack
of T. If so, the execution can pass the monitorenter. Later, when the monitorexit is
executed, the lock taken on the object is released.

The other synchronization mechanism we cover is join. In the code of a thread T
it is possible to write T2.join which means that thread T waits for thread T2 comple-
tion before continuing its execution. The encoding of the two above mechanism is rather
straightforward. For instance, here is the form of the first rewrite rule encoding the join
instruction.

state(threadlist(thread(ref, frame(join, pp0,
stack(x, s), l), cs), threadlist(
thread(ref2, xframe(returnV oid,m1, pc1, s1, ll),
nilcallstack), ntl)), h, k, lt)

→ state(threadlist(thread(ref, xframe(
xJoin(eqRef(x, ref2)), join, pp0, s, l), cs),
threadlist(thread(ref2, xframe(returnV oid,
m1, pc1, s1, ll), nilcallstack), ntl)), h, k, tc)

5In Java, a thread can lock an object several times.
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The intuition behind this rule is the following. If the first thread of the list is expected to
join another thread whose reference is x then, we look for a reference ref2 of a completed
thread (a thread whose xframe is executing the returnV oid method and whose frame
stack is empty nilcallstack). Then, the role of the xJoin(eqRef(ref1, ref2)) is to check
if the two reference are equal. In this case, the join instruction is passed.

5.2.2 Analysis in the single threaded case
In most program analyzes, it is often necessary to know the control flow graph. For Java,
as for other object-oriented languages, the control flow depends on the data flow. When
a method is invoked, to know which one is executed, the class of the involved object is
needed. For instance, on the Java program of Figure 5.10, x.foo() calls this.bar().
To know which version of the bar method is called, it is necessary to know the class of
this and thus the class of x in the x.foo() call. The method actually invoked is deter-
mined dynamically during the program run. Class analysis aims at statically determining
the class of objects stored in fields and local variables, and allows to build a more precise
control flow graph valid for all possible executions. Note that in this example, exceptions
around System.in.read() are required by the Java compiler. However, they are not
taken into account by the translation.

There are different standard class analyzes, from simple and fast to precise and expen-
sive. We consider k-CFA analysis (Shivers, 1991). In these analyzes, primitive types are
abstracted by the name of their type and references are abstracted by the class of the objects
they point to. In 0-CFA analysis, each method is analyzed only once, without distinguish-
ing between the different calls (and hence the arguments passed) to this method. k-CFA
analyzes different calls to the same method separately, taking into account up to k frames
on the top of the frame stack.

Starting from a term rewriting systemRmodeling the semantics of a Java program, and
a tree automaton A recognizing a set of initial Java program states, we aim at computing
an automatonAkR,α over-approximatingR∗(L(A)). From the Java source program of Fig-
ure 5.10, one can obtain the files Test.class, A.class and B.class whose content
is around 90 lines of bytecode. The TRS R produced by compilation of those classes is
composed of 275 rewrite rules. The number of rewrite rules is linear w.r.t. the size of the
bytecode files. The analysis itself is performed using Timbuk. Successively, this section
details a 0-CFA, a 1-CFA and an even more precise analysis obtained using the same TRS
R and automaton A, but using different sets of approximation rules. On this program, the
set of reachable program states is infinite (and thus approximations are necessary) because
the instruction x=System.in.read(), reading values in the input stream, is embedded
in an unbounded loop. As long as the value stored in the variable x is different from 0,
the execution continues. Moreover, since we want to analyze this program for any possible
stream of integers, in the automaton A the input stream is unbounded.

0-CFA Analysis

For a 0-CFA analysis, all integers are abstracted by their type, i.e. they are defined by the
following transitions in A: zero → qint, succ(qint) → qint and pred(qint) → qint. The
input stream is also specified by A as an infinite stack of integers: nilstackin → qin and
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class A{ o1= new A();
int y; o2= new B();
void foo(){this.bar();} try{
void bar(){y=1;} x=System.in.read();

} }
class B extends A{ catch (java.io.IOException e)

void bar(){y=2;} { x = 0;}
} while (x != 0){
class Test{ execute(o1);

public void execute(A x){ execute(o2);
x.foo(); try{

} x=System.in.read(); }
public void main(String[] argv){ catch (java.io.IOException e)

A o1; { x = 0;}}
B o2; }
int x; }

Figure 5.10: Java Program Example

stackin(qint, qin)→ qin. Normalization rules for integers, streams and references are de-
fined by: [x→ y]→ [zero→ qint, succ(qint)→ qint, pred(qint)→ qint, nilstackin→
qin, stackin(qint, qin) → qin, loc(A, z) → qrefA, loc(B, u) → qrefB ] where x, y, z and
u are variables. The pattern [x→ y] matches any new transition to normalize and the rules
loc(A, z)→ qrefA and loc(B, u)→ qrefB merge all references to an object of the class A
and an object of the class B into the states qrefA and qrefB , respectively.

The normalization rules for frames and states are built according to the principle il-
lustrated in Figure 5.11. The frames representing two different calls to the method m of
the class c are merged independently of the current state of the execution in which the
method m is called. The set of normalization rules α is completed by giving such an ap-
proximation rule for each method of each class. Using α, we can automatically obtain a
fixpoint automaton A145

R,α over-approximating the set of all reachable Java program states.
The result of the 0-CFA class analysis can be obtained, for each program location (a pro-
gram point in a method in a class), by asking for the possible classes for each object in
the stack or in the local variables. For instance, to obtain the set of possible classes c for
the object passed as parameter to the method execute, i.e. the possible classes for the
second local variable at program point pp0 of execute, one can use the following pattern:
frame(name(execute,Test), pp0, _, locals(_, loc(c, _), ...)). The result obtained for this
pattern is that there exists two possible values for c: qA and qB which are the states recog-
nizing respectively the classes A and B. This is consistent with 0-CFA which is not able to
discriminate between the two possible calls to the execute method.

1-CFA Analysis

For 1-CFA, we need to refine the set of normalization rules into α′. In α′ the rules on
integers, the input stream and references are similar to the ones used for 0-CFA. In α′, the
normalization rules for states and frames are designed according to the principle illustrated
in Figure 5.12. Contrary to Figure 5.11, the frames for the method m of the class c are
merged if the corresponding method calls have been done from the same program point
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(in the same method m′ of the class c′). For example, there are two normalization rules
for the method execute of the class Test: one applying when execute is invoked from
the program point pp18 of the method main, and one applying when it is done from the
program point pp21 of this same method. Applying the same principle for all the methods,
we obtain a complete set of approximation rules α′. Using α′, completion terminates on
A140
α′,R. The following patterns:
state(frame(name(execute, Test), pp0, _, locals(_, loc(c, _), ...)), stack(storeframe(_, pp18, ...), _)...)

state(frame(name(execute, Test), pp0, _, locals(_, loc(c, _), ...)), stack(storeframe(_, pp21, ...), _)...)

gives the desired result: each pattern has only one solution for c: qA for the first and qB
for the second. Using a similar pattern to query the 0-CFA automaton A145

R,α,gives qA and
qB as solution for c for both program points.

Fine-tuning the precision of the analysis

Assume that we want to show that, after the execution of the previous program, field y has
always a value 1 for objects of class A and 2 for objects of class B. This cannot be done
by 1-CFA nor by any k-CFA since, in those analyzes, integers are abstracted by their type.
One of the advantage of our technique is its ability to easily make approximation more
precise by removing some approximation rules.

The property we want to prove is related to values 1 and 2 so it is tempting to re-
fine our approximation so as not to merge those values. However, only distinguishing
these two values is not enough for the analysis to succeed. Further experimentation with
the approximation shows that refining the approximation of the integers by distinguishing
between 0, 1, 2 and “any other integer” is enough to prove the desired property. For-
mally, this is expressed by the following transitions: 0 → q0, succ(q0) → q1, succ(q1) →
q2, succ(q2) → qint, succ(qint) → qint. For specifying the negative integers, the follow-
ing transitions are used: pred(q0) → qnegint and pred(qnegint) → qnegint. The input
stream representation is also modified by the following transitions: nilstackin → qin,
stackin(qnegint, qin) → qin, stackin(qint, qin) → qin and stackin(qj , qin) → qin with
j = 0, . . . , 2.

No other approximation is needed to ensure termination of the completion. In the fix-
point automaton A161

R,α, we are then able to show that, when the Java program terminates,
there are only two possible configurations of the heap. Either the heap contains an object
of class A and an object of class B whose fields are both initialized to 0, or it contains
an object of class A whose field has the value 1 and an object of class B whose field has
the value 2. These verifications have been performed using a pattern matching with all the
frames whose pp value is the last control point of the program.

This result is not surprising. The first result is possible when there is zero iterations of
the loop (x is set to 0 before the instruction while (x != 0){...). The second result
is obtained for 1 or more iterations. Nevertheless, this kind of result is impossible to obtain
with the two previous analyzes presented in Section 5.2.2 and 5.2.2.

5.2.3 Analysis of multi-threaded programs
Analysis of multi-threaded programs is still ongoing work. However to give a taste of what
will be possible to do, we present a small multi-threaded Java program example with a
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simple analysis. The program is the following.

class T1 extends java.lang.Thread{
public void run(){

while(true){
synchronized(Top.lock){

System.out.println(Top.f);
int j= Top.f;
Top.set(1);
System.out.println(j);
Top.set(j);

}
}

}
}

class Top{
public static Object lock;
public static int f;
public static void set(int i){

f=i;
}
public static void main(String[] argv){

lock = new Object();
Top.f=0;
for(int i=0;i<=1;i++){

T1 t1 = new T1();
t1.start();

}
}

}

From the bytecode of this Java program, Copster produces a TRS of 867 rewrite rules.
The objective of the analysis is to prove that whatever the scheduling of threads, noth-
ing else than 0 will be printed on the output stream. In other words, we aim at proving
that the critical portion of the code which affects the Top.f shared variable is really pro-
tected by the Java synchronize instructions. Initially Top.f is 0. Each thread prints
Top.f, set Top.f to 1, then sets Top.f to its initial value and repeat this from the
beginning. If synchronization fails then several threads may execute this critical code
at the same time and we are likely to print 1 values. Since threads loop for ever, an
approximation equation is necessary. On this simple example, the only term that may
grow infinitely is the term representing the output stream. These terms are of the form
outstack(x, outstack(y, . . .)) representing an output stream whose last printed element
is x and y was printed immediately before. Hence, a very simple approximation equa-
tion of the form outstack(x, outstack(y, z)) = outstack(x, z) is enough for the comple-
tion to terminate in less than a minute after 267 steps on a tree automaton A267

R,α having
2406 states and 9643 transitions. Then, on A267

R,α we can easily check that the pattern
outstack(succ(zero), _) is not found, meaning that no 1 are printed in the output stream.
Finally, it is also possible to certifyA267

R,α that this approximation is safe using the checker.



Reachability analysis of rewriting for software verification 149

5.2.4 Copster
Copster (Barré et al., 2009) is a translator from Java byte code to TRS which implements
the transformations defined in Section 5.2.1. Copster parses a .class file and produces
a TRS modeling the execution of the corresponding program on the JVM. This tool was
used to achieve the experiments done in the previous section. Copster is able to translate
any bytecode program dealing with:

• types integers, boolean, chars, strings, objects

• class definition, inheritance, public/private/protected visibility modifiers for method
definition

• basic instructions on integers, booleans, char: addition, multiplication, comparisons,
. . .

• basic thread mechanisms: thread creation, synchronize and join

• the following library classes and methods

public class java.io.IOException extends java.lang.Object{
}

public class java.io.InputStream extends java.lang.Object{
public int read{};

}

public class java.io.PrintStream extends java.lang.Object{
public void println{int};
public void println{char};
public void println{java.lang.String};

}

public class java.lang.System extends java.lang.Object{
public static java.io.InputStream in;
public static java.io.PrintStream out;

}

public class java.lang.String extends java.lang.Object{
public native char charAt{int};
public native java.lang.String concat{java.lang.String};
public native int length{};
public native java.lang.String substring{int};

}

public class java.lang.StringBuilder extends java.lang.Object{
}
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5.3 Proof of strong non termination
The two previous sections describe the main applications of tree automata completion to
verification namely: cryptographic protocols and Java bytecode. Those two applications
are both based on reachability analysis. Before concluding this chapter, let us mention an-
other application to verification. Tree automata completion can be used to prove strong non
termination of term rewriting systems which is related to deadlock freeness of programs.

Definition 136 (Strong non-termination) Let E be a set of terms and R be a TRS. The
TRSR is said to be strongly non-terminating on E if there exists no finiteR-rewrite chains
from terms of E. �

As far as we know, this property of TRS has never been defined elsewhere in the litera-
ture. However, it is closely related to deadlock freeness property of transition systems. We
now give a way of proving it on a given initial language E and a given TRSR.

Theorem 137 A TRSR is strongly non-terminating on E ifR!(E) = ∅.

PROOF. Obvious, since R!(E) = ∅ means that every term of E is reducible, and so are
every termsR-reachable from E. 2

When the TRS represents some parallel processes, the strong non-termination property
is close to deadlock-freeness. Let us show a very simple example of this aspect.

Example 138 Assume that we have two processes each one having a list of elements to
count. Assume that the counter is a shared variable that should not be accessed by the two
processes at the same time. Each process has two possible states ’busy’ if it is accessing
the shared counter or ’free’ otherwise. A similar flag is associated to the shared counter
in order to protect it from a concurrent access. The behavior of this system is described by
the following TRS R where x, y, z, u are variables, Proc represents a process, cons and
null are used to build the lists and S represents a configuration of the system:

S(Proc(free, cons(x, y)), z, free, u)→ S(Proc(busy, cons(x, y)), z, busy, u)
S(Proc(busy, cons(x, y)), z, busy, u)→ S(Proc(free, y), z, free, s(u))
S(z, Proc(free, cons(x, y)), free, u)→ S(z, Proc(busy, cons(x, y)), busy, u)
S(z, Proc(busy, cons(x, y)), busy, u)→ S(z, Proc(free, y), free, s(u))
S(Proc(x, null), P roc(y, null), z, u)→ S(Proc(x, null), P roc(y, null), z, u)

The initial language E is recognized by the following tree automaton A whose final
state is q0 and set of transitions is:

S(q1, q1, q2, q3)→ q0 free→ q2 0→ q3

Proc(q2, q4)→ q1 null→ q4 cons(q3, q4)→ q4

E contains terms of the form S(Proc(free, l1), P roc(free, l2), free, 0) where l1 and l2
are any lists of 0 (possibly infinite). Using the exact normalization strategy, the comple-
tion does not terminate. On the 7-th completion step the completed tree automaton A7

R,α
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contains 41 transitions. In order to make the completion terminate, we can add an ap-
proximation equation s(x) = x which merge some states and transition of A7

R,α together
so that the tree automaton contains only 19 transitions. Finally A8

R,α = A7
R,α, hence

A∗R,α = A7
R,α. The automaton A∗R,α over approximatingR∗(E) is the following:

Ops S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0
Automaton current
States qnew10:0 qnew9:0 qnew8:0 qnew7:0 qnew6:0 qnew5:0 qnew4:0

qnew3:0 qnew2:0 qnew1:0 qnew0:0 q0:0 q1:0 q2:0 q3:0 q4:0
Final States q0
Prior

s(qnew10) -> qnew10 Proc(qnew5,q4) -> qnew4 free -> qnew5
Proc(qnew1,qnew3) -> qnew0 cons(qnew10,q4) -> qnew3 busy -> qnew1

Transitions
S(q1,q1,q2,qnew10) -> q0 free -> q2
o -> qnew10 Proc(q2,q4) -> q1
null -> q4 cons(qnew10,q4) -> q4
busy -> qnew1 cons(qnew10,q4) -> qnew3
Proc(qnew1,qnew3) -> qnew0 free -> qnew5
Proc(qnew5,q4) -> qnew4 S(qnew0,qnew4,qnew1,qnew10) -> q0
S(qnew0,q1,qnew1,qnew10) -> q0 S(qnew4,qnew0,qnew1,qnew10) -> q0
S(q1,qnew0,qnew1,qnew10) -> q0 S(qnew4,q1,qnew5,qnew10) -> q0
S(q1,qnew4,qnew5,qnew10) -> q0 S(qnew4,qnew4,qnew5,qnew10) -> q0
s(qnew10) -> qnew10

Now, if we compute the intersection with IRR(R) we obtain an automaton over-
approximating R!(E). The automaton obtained by intersection recognizes an empty lan-
guage. Hence, we also have R!(E) = ∅ and thus R is strongly non-terminating on E. We
can thus conclude that the above system of processes is deadlock-free.
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Chapter 6

Conclusion

This document sums up our contributions in the field of software verification based on
reachability analysis of term rewriting systems. This technique is rooted in the tree au-
tomata completion technique whose purpose is to compute exactly, when possible, or to
over-approximate the set of reachable terms. We are conscious that this technique is not
mature enough to be considered as an alternative to any well-established verification tech-
nique like model-checking or static analysis. Nevertheless, the aim of the work and ex-
periments reported here is to demonstrate that tree automata completion has clearly some
strong advantages for this purpose.

TRS as program models This strong point is shared with other verification techniques
using TRS as formal models. TRS revealed to be agile enough to cover many veri-
fication problems: processes, high-order functions... In particular, it covers our two
main case studies (security protocols and Java bytecode) which are of very different
nature w.r.t to their abstraction level, computational model and verification objective.

Reachability analysis is exact when possible A unique algorithm, completion with the
exact normalization strategy, covers most of the known classes for which an exact
construction is possible. Those classes are covered by the standard and the equational
tree automata completion algorithm. Furthermore, the implementations of those al-
gorithms benefits from the optimizations performed on completion in general.

Approximations are correct by construction Each time that completion terminates, the
resulting tree automaton is an over-approximation of reachable terms whatever the
normalization rules or approximation equations may be. This is not always the case
in general abstract interpretation nor in equational based abstractions where addi-
tional hand proofs are needed. In addition, all approximations computed by comple-
tion tools can be verified using a common certified checker (as shown in Section 4.5).

Approximations are declarative and can be tuned The great difference with usual static
analysis techniques is that approximations are not built-in but, on the opposite, are
defined using a declarative language (normalization rules or equations). Once de-
fined and if necessary, these approximations can be refined by hand and adapted to a
specific program or property to prove.

153
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A step towards precision of the approximations with equations Sets of reachable terms
are computed as precisely as possible on decidable classes. Normalization rules are
very efficient and precise way to define approximation but, their precision is hard to
estimate. When using approximation equations, no more than terms reachable by R
modulo E are added to the completed automaton.

Completion can be scaled up to real size problems With reasonable optimizations, we
managed to improve the efficiency of the Timbuk prototype so as to deal with an
industrial cryptographic protocol and a detailed encoding of the JVM. Furthermore,
encodings of the problem into rewriting tools (Balland et al., 2008) and logic pro-
grams static analyzers (Gallagher and Rosendahl, 2008) shows that efficiency can
still be improved a lot.

On the other hand, as it is presented in this document, there is still room for further
improvements to this technique. In the following, we will see that most of these points
have already been addressed in other works or are ongoing research.

Discriminating between counterexamples and false positive When the approximation is
successfully built but the intersection with bad configuration is not empty, two situa-
tions are possible: we have a counterexample or this term is in the over-approximation
but is not reachable (false positive). It should be possible to easily discriminate be-
tween the two so as to correct the specification or correct the approximation.

Tuning approximation require expertise We eased the definition of approximations us-
ing equations rather than normalization rules. We tackled the initial objective that
was to let the user define an approximation without knowing about the tree automata
structure. Definition of approximations by hand using equations is more intuitive,
however, it is still a trial and error process. When completion diverges this means
that normalization rules or equations are incomplete and that there exists an infinite
rewriting or a sequence of rewrite rules that are recursively applied on an infinite
tree. However, with the current Timbuk prototype, such positions are difficult to
locate and, thus, tuning of approximation require expertise.

Ensuring termination of completion before running it Approximation computed by com-
pletion are safe if completion terminates. However, for the moment, there is no way
to predict its termination. Again, building a set of normalization rules or equations
ensuring termination is a trial and error process.

Reachability is not enough The technique proposed here only covers reachability prop-
erties. However, temporal properties (like liveness) are of particular interest in veri-
fication.

For discriminating between counterexamples and false positive, it is possible to use crit-
ical pairs computed during completion (Boichut and Genet, 2006). These first results show
that, with the epsilon-free completion algorithm of Section 3.1 and from a term t found
in the approximation, if t is reachable then it is possible to build the rewriting derivation
backward up to an initial term. If t is not reachable this process may diverge. We think that
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the process of (Boichut and Genet, 2006) can be improved and considerably simplified by
using the new completion algorithm of Section 3.2.3 where an abstraction of the rewriting
path is stored in the graph of epsilon transitions.

For the tuning of approximations, there are several research directions. First, an auto-
matic refinement is possible. This is investigated in (Boichut et al., 2008) for normalization
rules. We believe that this approach can be extended to equations as follows. If a term
t (a bad configuration) is found in the approximation and is not reachable, we can recon-
struct backward the rewriting graph until we find that an approximation equation has been
applied. Then the corresponding equation is constrained by a disequality preventing that
it can be applied in that case. Then, completion is run again. However, automatic refine-
ment is unlikely to succeed in all the cases and we need tools to ease the manual tuning of
approximations. As discussed above, the replacement of normalization rules by equations
is a step in that direction. What is still missing in the Timbuk prototype is an efficient
tool to locate divergence sites. Some attempts of tree automata visualization and graphical
merging on terms were carried out in the Tabi tree automata browsing interface (see Sec-
tion 4.1.4). This solution behave well on small examples but are clearly not sufficient for
real size verification problems. A research direction is thus to define a divergence visual-
ization tool automatically focusing on divergence sites and providing enough information
to guide approximation equation definition.

Termination of completion can be formally proven for a specific approximation strat-
egy, like for the ancestor approximation (Genet, 1998). With normalization rules, termi-
nation of completion can be enforced using drastic rules placed at the end of the approxi-
mation specification and acting as default rules. Rules like [x -> y] -> [z -> q]
normalizing any transition subterm by the same state q guarantee completion termination.
However, given a set of normalization rules, proving that it ensures completion termination
is hard. The situation is better with approximation equations because their semantics is for-
mal. Recall that equations define equivalence classes of terms. A sufficient condition for
completion to terminate is that the set of equivalence classes defined by E is finite. Given a
set of equations E, this problem is not decidable in general (Tison, 2008) and is a collateral
result of (Filiot and Tison, 2008). However, as remarked by (Tison, 2008), this problem
becomes decidable if the set of equations E can be oriented into a left-linear terminating
and confluent TRS R. In that case, since R can be used to decide =E , the set IRR(R)
has as many normal form as equivalence classes in T (F)/=E . If R is left linear then it is
possible to build a tree automaton recognizing IRR(R) and check that this tree automaton
recognize a finite language. Though the problem is undecidable in general, an interesting
research direction is to define a criterion on E sufficient for T (F)/=E to be finite.

Unreachability proofs, corresponding to safety properties, are central but not always
enough. Proving temporal properties (LTL properties for instance) on the rewriting graph,
like it is done in (Meseguer et al., 2003), is also of great interest. Using the epsilon free
completion algorithm of Section 3.1, tackling this kind of properties is uneasy because no
information on the order of reachable terms is kept in the approximation automaton. Re-
cently, Courbis et al. showed that it is possible using several approximation construction
to mimic the behavior of temporal connectives. Besides to this, with the new completion
algorithm of Section 3.2.3, the graph of epsilon transition represents an abstraction of the
rewriting graph. For instance, on Example 138 with 8 exact steps of equational completion,
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we obtain the rewriting graph of Figure 6.1 between states of the completed automaton. On
this graph it is possible to prove temporal properties. Similarly, using equational approxi-
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Figure 6.1: A rewriting graph between states exported by Timbuk 3.0

mation makes it possible to complete the automaton and obtain an over-approximation of
the rewriting graph (see Figure 6.2). In (Boyer and Genet, 2009), we take advantage of this
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Figure 6.2: An over-approximation of a rewriting graph between states exported by Tim-
buk 3.0

to build from the same completed automaton a Kripke structure on which LTL properties
can be proven. For the moment, the construction is limited to finite rewriting graphs but is
likely to be extended to infinite rewriting graphs with approximations.

This last research direction is more long term. However, it should significantly widen
the scope of properties covered by tree automata completion: from safety properties to live-
ness properties. Our aim is, of course, to benefit from tree automata over-approximations
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to ease the proof of temporal properties on infinite models which is a challenging prob-
lem. Furthermore, it should be possible to combine this research with our results on Java
program verification so as to prove temporal properties on multi-threaded Java programs.
The static analysis of this kind of programs, using abstract interpretation, is already a very
active research field. For the moment, our contribution is preliminary but shows that reach-
ability analysis of Java multi-threaded programs using tree automata completion is pos-
sible. Like for single-threaded Java, we first aim at prototyping classical static analysis
using equations. A second improvement would be to prove temporal properties on over-
approximations of multi-threaded Java programs.
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