Anisotropic damage and dynamic behavior of reinforced concrete structures until failure - Archive ouverte HAL Access content directly
Theses Year : 2009

Anisotropic damage and dynamic behavior of reinforced concrete structures until failure

Endommagement anisotrope et comportement dynamique des structures en béton armé jusqu'à la ruine.

(1)
1
Marion Chambart
  • Function : Author
  • PersonId : 865054

Abstract

Dynamic loadings such as impact on reinforced concrete structures lead to degradations and structural failures significantly different to the ones observed for quasi-static loadings. Local effects (spalling, compaction...) and global mechanisms (bending, shear, perforation ...) are experimentally observed. Wave propagation due to dynamics loadings can lead to failure in tension in a part of a structure or a component previously in compression. Induced damage anisotropy in concrete is partly responsible for the dissymmetry of behavior between tension and compression. Concrete anisotropy can be modelled by means of a second order damage tensor . In the damage model considered, damage growth is governed by the positive extensions. The model, written in the thermodynamics framework, is robust and is able to compute efficiently Reinforced Concrete (RC) structures. The initial anisotropic model is here extended to dynamics by introducing a viscosity law to govern dynamic damage evolution. The strain rate effect observed experimentally in tension (strength increases with strain rate) is reproduced. In compression no strain rate is introduced since inertial forces seem sufficient to reproduce the strength enhancement in dynamics. One also focuses on regularization issues. For high strain rates the solution is regularized since the characteristic time introduced indirectly defines an internal length and since the damage rate is bounded by a maximum damage rate parameter (visco/delay damage law). This visco/delay regularization is efficient at large strain rates, otherwise, the delay in damage evolution is too small to let damage grow in a wide enough zone. For quasi-static or low speed dynamic cases, the regularization is gained by means of classical non-local damage . For intermediary loading rates where both the strain rate effect and the non-local regularization are needed, a non-local delay-damage model is written (and used in 3D computations). The example of a dynamic tension test by spalling is given. The strain rate range in which each method is efficient is obtained. The model presented is validated by simulating impact tests on reinforced concrete beams. These tests have been carried out at the CEA Saclay on a drop tower.
Cette thèse est dédiée au développement et à la validation d'un nouveau modèle d'endommagement anisotrope pour le béton dans le cadre d'applications dynamiques. Le modèle d'endommagement développé par Desmorat et al. (2007) reproduit l'anisotropie induite de l'endommagement du béton par l'intermédiaire d'une variable tensorielle d'ordre 2. Ce modèle est étendu à la dynamique par l'introduction d'un «effet retard» dans la loi d'évolution de l'endommagement afin de reproduire l'effet de la vitesse sur le comportement du matériau. Cette dépendance temporelle du comportement permet, dans une certaine gamme de vitesse de sollicitation, de régulariser la solution qui dépend pathologiquement du maillage pour les modèles (adoucissants) d'endommagement. L'influence de la vitesse de sollicitation sur la régularisation est étudiée, et les résultats sont comparés avec ceux obtenus par régularisation non-locale intégrale (avec et sans effet retard). L'état de sollicitation en dynamique est par nature fortement lié aux phénomènes de propagation et de reflexions d'ondes qui conduisent à des états de sollicitations alternées. La dissymétrie du comportement du béton impose que l'on y accorde une attention particulière. Le concept de désactivation des dommages (Souid 2008) est transposé à la dynamique et l'endommagement à effet retard. On établit l'expression de la dissipation intrinsèque due à l'endommagement ce qui permet d'estimer l'influence de l'effet retard sur l'énergie dissipée. Enfin, on prouve par la méthodes des perturbations, l'existence d'un nouveau type d'instabilité, inhérente à l'aspect induit de l'anisotropie. Une nouvelle écriture du modèle, qui ne modifie pas le comportement pour des sollicitations simples, est proposée, elle permet de stabiliser complètement le comportement. Des simulations numériques d'impacts et de souffle sur des structures 3D en béton armé montrent les capacités du modèles à mener ce type de calcul jusqu'à la ruine. La description continue de l'endommagement permet de représenter finement l'amorçage, la propagation, la coalescence, la bifurcation et l'embranchement de fissures. L'arrêt et le redémarrage d'une fissure est également représenté, et on peut estimer la vitesse de propagation des fissures, qui reste inférieure à la vitesse des ondes de Rayleigh dans le béton. Les résultats numériques des simulations d'impact sont comparés à ceux des essais sur tour de chute réalisés lors de cette thèse au Laboratoire d'Etudes de Dynamique du CEA Saclay. La nouveauté de ces essais est l'analyse par corrélation d'images des des films d'essais réalisés avec une caméra rapide (10000 images/secondes).
Fichier principal
Vignette du fichier
rapport.pdf (13.48 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00436617 , version 1 (27-11-2009)

Identifiers

  • HAL Id : tel-00436617 , version 1

Cite

Marion Chambart. Endommagement anisotrope et comportement dynamique des structures en béton armé jusqu'à la ruine.. Mécanique [physics.med-ph]. École normale supérieure de Cachan - ENS Cachan, 2009. Français. ⟨NNT : ⟩. ⟨tel-00436617⟩
681 View
2804 Download

Share

Gmail Facebook Twitter LinkedIn More