Gesture recognition from video sequences - Archive ouverte HAL
Thèse Année : 2009

Gesture recognition from video sequences

Reconnaissance de gestes à partir de séquences vidéos

Résumé

In this thesis, we aim to recognize gestures (e.g. hand raising) and more generally short actions (e.g. fall, bending) accomplished by an individual. Many techniques have already been proposed for gesture recognition in specific environment (e.g. laboratory) using the cooperation of several sensors (e.g. camera network, individual equipped with markers). Despite these strong hypotheses, gesture recognition is still brittle and often depends on the position of the individual relatively to the cameras. We propose to reduce these hypotheses in order to conceive general algorithm enabling the recognition of the gesture of an individual involving in an unconstrained environment and observed through limited number of cameras. The goal is to estimate the likelihood of gesture recognition in function of the observation conditions. Our method consists of classifying a set of gestures by learning motion descriptors. These motion descriptors are local signatures of the motion of corner points which are associated with their local textural description. We demonstrate the effectiveness of our motion descriptors by recognizing the actions of the public databases KTH and IXMAS.
Dans cette thèse, nous voulons reconnaître les gestes (par ex. lever la main) et plus généralement les actions brèves (par ex. tomber, se baisser) effectués par un individu. De nombreux travaux ont été proposés afin de reconnaître des gestes dans un contexte précis (par ex. en laboratoire) à l'aide d'une multiplicité de capteurs (par ex. réseaux de cameras ou individu observé muni de marqueurs). Malgré ces hypothèses simplificatrices, la reconnaissance de gestes reste souvent ambigüe en fonction de la position de l'individu par rapport aux caméras. Nous proposons de réduire ces hypothèses afin de concevoir un algorithme général permettant de reconnaître des gestes d'un individu évoluant dans un environnement quelconque et observé à l'aide d'un nombre réduit de caméras. Il s'agit d'estimer la vraisemblance de la reconnaissance des gestes en fonction des conditions d'observation. Notre méthode consiste à classifier un ensemble de gestes à partir de l'apprentissage de descripteurs de mouvement. Les descripteurs de mouvement sont des signatures locales du mouvement de points d'intérêt associés aux descriptions locales de la texture du voisinage des points considérés. L'approche a été validée sur les bases de données de gestes publiques KTH et IXMAS; des résultats encourageants ont été obtenus.
Fichier principal
Vignette du fichier
medbecha-thesis.pdf (6.53 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00428690 , version 1 (29-10-2009)
tel-00428690 , version 2 (04-11-2009)

Identifiants

  • HAL Id : tel-00428690 , version 2

Citer

Mohamed Kaâniche. Gesture recognition from video sequences. Signal and Image processing. Université Nice Sophia Antipolis, 2009. English. ⟨NNT : ⟩. ⟨tel-00428690v2⟩

Collections

INRIA INRIA2
668 Consultations
3259 Téléchargements

Partager

More