Filter your results
- 23
- 9
- 1
- 25
- 3
- 2
- 1
- 1
- 1
- 2
- 30
- 11
- 1
- 1
- 4
- 4
- 8
- 3
- 5
- 2
- 1
- 2
- 1
- 1
- 28
- 5
- 23
- 13
- 13
- 13
- 10
- 9
- 4
- 4
- 4
- 3
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 33
- 22
- 15
- 8
- 6
- 5
- 4
- 4
- 3
- 3
- 3
- 3
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
33 Results
|
|
sorted by
|
|
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian contextNIPS 2014 Workshop on Transfer and Multi-task learning: Theory Meets Practice, Dec 2014, Montréal, Canada
Conference papers
hal-01093565v2
|
||
|
Une analyse PAC-Bayésienne de l'adaptation de domaine et sa spécialisation aux classifieurs linéairesConférence sur l'apprentissage automatique, Jul 2013, Villeneuve d'Ascq, France. pp.3
Conference papers
hal-00850242v1
|
||
Interpreting Neural Networks as Majority Votes through the PAC-Bayesian TheoryWorkshop on Machine Learning with guarantees @ NeurIPS 2019, Dec 2019, Vancouver, Canada
Conference papers
hal-02335762v1
|
|||
|
PAC-Bayesian Bounds based on the Rényi DivergenceInternational Conference on Artificial Intelligence and Statistics (AISTATS 2016), May 2016, Cadiz, Spain
Conference papers
hal-01384783v1
|
||
|
A New PAC-Bayesian Perspective on Domain Adaptation33rd International Conference on Machine Learning (ICML 2016), Jun 2016, New York, NY, United States
Conference papers
hal-01307045v1
|
||
|
Domain-Adversarial Training of Neural NetworksGabriela Csurka. Domain Adaptation in Computer Vision Applications, Springer, 2017, Advances in Computer Vision and Pattern Recognition, 978-3-319-58346-4. ⟨10.1007/978-3-319-58347-1⟩
Book sections
hal-01624607v1
|
||
Revisite des "random Fourier features" basée sur l'apprentissage PAC-Bayésien via des points d'intérêtsCAp 2019 - Conférence sur l'Apprentissage automatique, Jul 2019, Toulouse, France
Conference papers
hal-02148600v1
|
|||
|
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural NetworksNeurIPS 2019 - Thirty-third Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada
Conference papers
hal-02139432v2
|
||
Dérandomisation des Bornes PAC-BayésiennesCAp 2021, Jun 2021, St Etienne, France
Conference papers
hal-03328677v1
|
|||
|
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear ClassifiersInternational Conference on Machine Learning 2013, Jun 2013, Atlanta, United States. pp.738-746
Conference papers
hal-00822685v1
|
||
|
A New PAC-Bayesian View of Domain AdaptationNIPS 2015 Workshop on Transfer and Multi-Task Learning: Trends and New Perspectives, Dec 2015, Montréal, Canada
Conference papers
hal-01223164v1
|
||
Apprentissage de Vote de Majorité par Minimisation d'une C-Borne PAC-BayésienneCAp 2021, Jun 2021, St Etienne, France
Conference papers
hal-03328689v1
|
|||
|
Pseudo-Bayesian Learning with Kernel Fourier Transform as PriorThe 22nd International Conference on Artificial Intelligence and Statistics, Apr 2019, Naha, Japan
Conference papers
hal-01908555v2
|
||
|
PAC-Bayesian Theory Meets Bayesian InferenceNeural Information Processing Systems (NIPS 2016), Dec 2016, Barcelone, Spain. pp.1876-1884
Conference papers
hal-01324072v3
|
||
Une borne PAC-Bayésienne en espérance et son extension à l'apprentissage multivuesConférence Francophone sur l'Apprentissage Automatique (CAp), Jun 2017, Grenoble, France
Conference papers
hal-01529219v1
|
|||
PAC-Bayesian Analysis for a two-step Hierarchical Mutliview Learning Approach27th European Conference on Machine Learning , Jul 2017, Skpoje, Macedonia
Conference papers
hal-01769773v1
|
|||
|
Learning Landmark-Based Ensembles with Random Fourier Features and Gradient Boosting2019
Preprints, Working Papers, ...
hal-02148618v1
|
||
|
Interpretable Domain Adaptation for Hidden Subdomain Alignment in the Context of Pre-trained Source Models36th AAAI Conférence on Artificial Intelligence, Feb 2022, Vancouver, Canada
Conference papers
hal-03505639v1
|
||
|
PAC-Bayesian Contrastive Unsupervised Representation LearningUAI 2020 - Conference on Uncertainty in Artificial Intelligence, Aug 2020, Toronto, Canada
Conference papers
hal-02401282v1
|
||
|
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-BoundECML PKDD 2021, Sep 2021, Bilbao, Spain
Conference papers
hal-03208948v2
|
||
|
PAC-Bayesian Learning and Domain AdaptationMulti-Trade-offs in Machine Learning, NIPS 2012 Workshop, Dec 2012, Lake Tahoe, United States
Conference papers
hal-00749366v1
|
||
|
PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers[Research Report] Université Jean Monnet, Saint-Étienne (42); Département d'Informatique et de Génie Logiciel, Université Laval (Québec); ENS Paris; IST Austria. 2016
Reports
hal-01134246v3
|
||
Théorèmes PAC-Bayésiens pour l'apprentissage multi-vuesConférence Francophone sur l'Apprentissage Automatique (CAp), Jul 2016, Marseille, France
Conference papers
hal-01329763v1
|
|||
|
Landmark-based Ensemble Learning with Random Fourier Features and Gradient BoostingEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2020, Ghent, Belgium
Conference papers
hal-02900044v1
|
||
|
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural NetworksML with guarantees -- NeurIPS 2019 workshop, Dec 2019, Vancouver, Canada
Poster communications
hal-02482354v1
|
||
|
PAC-Bayes and Domain AdaptationNeurocomputing, 2020, 379, pp.379-397. ⟨10.1016/j.neucom.2019.10.105⟩
Journal articles
hal-01563152v3
|
||
|
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization BoundNeurIPS, 2021, Online, France
Conference papers
hal-03278470v1
|
||
PAC-Bayes Bounds for the Risk of the Majority VoteAdvances in Neural Information Processing Systems (NIPS'06), Dec 2006, Vancouver, Canada. pp.769-776
Conference papers
hal-01352012v1
|
|||
|
A New PAC-Bayesian Perspective on Domain Adaptation[Research Report] Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023 Saint-Etienne, France; Département d'informatique et de génie logiciel, Université Laval (Québec); INRIA - Sierra Project-Team, Ecole Normale Sup´erieure, Paris, France. 2015
Reports
hal-01163722v3
|
||
|
Improved PAC-Bayesian Bounds for Linear RegressionAAAI 2020 - Thirty-Fourth AAAI Conference on Artificial Intelligence, Feb 2020, New York, United States
Conference papers
hal-02396556v1
|
- 1
- 2