Filter your results
- 17
- 8
- 5
- 1
- 1
- 1
- 1
- 1
- 15
- 1
- 1
- 1
- 1
- 1
- 3
- 4
- 2
- 3
- 1
- 2
- 1
- 15
- 1
- 1
- 5
- 5
- 4
- 4
- 4
- 3
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 17
- 5
- 5
- 4
- 4
- 4
- 4
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
17 Results
|
|
sorted by
|
|
Comparing Time Series Similarity Perception under Different Color Interpolations[Research Report] RR-9189, Inria. 2018
Reports
hal-01844994v3
|
||
|
ProS: data series progressive k-NN similarity search and classification with probabilistic quality guaranteesThe VLDB Journal, 2022, ⟨10.1007/s00778-022-00771-z⟩
Journal articles
hal-03888664v1
|
||
|
An Overview of End-to-End Entity Resolution for Big DataACM Computing Surveys, In press
Journal articles
hal-02955445v1
|
||
|
Characterizing Home Device Usage From Wireless Traffic Time Series19th International Conference on Extending Database Technology (EDBT), Mar 2016, Bordeaux, France
Conference papers
hal-01249778v1
|
||
|
Progressive Similarity Search on Time Series DataBigVis 2019 - 2nd International Workshop on Big Data Visual Exploration and Analytics, Mar 2019, Lisbon, Portugal
Conference papers
hal-02103998v1
|
||
|
Report on the First International Workshop on Personal Data Analytics in the Internet of Things (PDA@IOT 2014)ACM, 44 (1), 2015, SIGMOD Record ⟨10.1145/2783888.2783905⟩
Books
hal-01253709v1
|
||
|
SentiQ: A Probabilistic Logic Approach to Enhance Sentiment Analysis Tool QualityWISDOM 2020 : The 9th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining, Aug 2020, San Diego, United States
Conference papers
hal-03299105v1
|
||
|
Comparing Similarity Perception in Time Series VisualizationsIEEE Transactions on Visualization and Computer Graphics, 2018, TVCG 2019 (InfoVis 2018), 25 (1), pp.523 - 533. ⟨10.1109/TVCG.2018.2865077⟩
Journal articles
hal-01845008v3
|
||
|
Report on the First and Second Interdisciplinary Time Series Analysis Workshop (ITISA)2nd International Interdisciplinary Workshop on Time Series Analysis (CNRS/MASTODONS), Volker Beckmann; Themis Palpanas, Dec 2016, Paris, France. pp.36-40, ⟨10.1145/3377391.3377400⟩
Conference papers
hal-02395480v1
|
||
ImitatesSoftware hal-02095640v1 |
|||
|
POPS: An Efficient Framework for GPU-based Feature Extraction of Massive Gridded Planetary LiDAR Data [Scalable Data Science]2022
Preprints, Working Papers, ...
hal-03797767v1
|
||
|
DPiSAX: Massively Distributed Partitioned iSAXICDM: International Conference on Data Mining, Nov 2017, New Orleans, United States. pp.1135-1140, ⟨10.1109/ICDM.2017.151⟩
Conference papers
lirmm-01620125v1
|
||
|
Data Series Progressive Similarity Search with Probabilistic Quality GuaranteesACM SIGMOD International Conference on Management of Data, Jun 2020, Portland, United States. pp.1857-1873, ⟨10.1145/3318464.3389751⟩
Conference papers
hal-02560760v1
|
||
|
Appliance Detection Using Very Low-Frequency Smart Meter Time SeriesProceedings of the 14th ACM International Conference on Future Energy Systems, 2023, ⟨10.1145/3575813.3595198⟩
Journal articles
hal-04144919v1
|
||
|
Détection d'anomalies et identification de leurs précurseurs dans des larges collections de séries temporelles - Application à un matériel de centrales EDFCongrès Lambda Mu 23 « Innovations et maîtrise des risques pour un avenir durable » - 23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la Maîtrise des Risques, Oct 2022, Paris Saclay, France
Conference papers
hal-03966492v1
|
||
|
Distributed Algorithms to Find Similar Time SeriesECML-PKDD 2019 - European Conference on Machine Learning and Knowledge Discovery in Databases, Sep 2019, Wurtzbourg, Germany. pp.781-785, ⟨10.1007/978-3-030-46133-1_51⟩
Conference papers
lirmm-02265726v1
|
||
|
Massively Distributed Time Series Indexing and QueryingIEEE Transactions on Knowledge and Data Engineering, 2020, 32 (1), pp.108-120. ⟨10.1109/TKDE.2018.2880215⟩
Journal articles
lirmm-02197618v1
|