Filter your results
- 39
- 11
- 26
- 14
- 4
- 2
- 2
- 1
- 1
- 2
- 33
- 16
- 9
- 1
- 1
- 6
- 2
- 1
- 3
- 8
- 1
- 6
- 5
- 3
- 1
- 4
- 4
- 3
- 1
- 2
- 45
- 5
- 44
- 32
- 25
- 4
- 4
- 3
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 50
- 14
- 13
- 9
- 9
- 7
- 6
- 6
- 6
- 5
- 4
- 3
- 3
- 3
- 3
- 3
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
50 Results
|
|
sorted by
|
|
Scalable clustering of segmented trajectories within a continuous time framework. Application to maritime traffic dataMachine Learning, 2023, Special Issue on Machine Learning for Earth Observation Data, 112, pp.1975-2001. ⟨10.1007/s10994-021-06004-8⟩
Journal articles
hal-02617575v3
|
||
|
Efficient Temporal Kernels between Feature Sets for Time Series ClassificationEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery, Sep 2017, Skopje, Macedonia
Conference papers
halshs-01561461v1
|
||
|
Sensor Networks for Ambient IntelligenceIEEE Workshop on Multimedia Signal Processing, Oct 2007, Chania, Greece. ⟨10.1109/MMSP.2007.4412806⟩
Conference papers
halshs-01138508v1
|
||
|
End-to-end Learning for Early Classification of Time Series2019
Preprints, Working Papers, ...
hal-02174314v1
|
||
|
Improving the Efficiency of Traditional DTW AcceleratorsKnowledge and Information Systems (KAIS), 2015, 42 (1), pp.215-243. ⟨10.1007/s10115-013-0698-7⟩
Journal articles
hal-00862176v1
|
||
|
Learning DTW-Preserving ShapeletsIDA 2017 - 16th International Symposium on Intelligent Data Analysis, Oct 2017, London, United Kingdom. pp.198-209, ⟨10.1007/978-3-319-68765-0_17⟩
Conference papers
hal-01565207v2
|
||
|
Searching in one billion vectors: re-rank with source codingICASSP 2011 - International Conference on Acoustics, Speech and Signal Processing, May 2011, Prague, Czech Republic. pp.861-864, ⟨10.1109/ICASSP.2011.5946540⟩
Conference papers
inria-00566883v1
|
||
|
Tslearn, A Machine Learning Toolkit for Time Series DataJournal of Machine Learning Research, 2020, 21, pp.1 - 6
Journal articles
hal-02883390v1
|
||
|
Match-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal AlignmentECML PKDD 2023, Sep 2023, Torino, Italy
Conference papers
hal-04189149v1
|
||
|
Classification de séries temporelles basée sur des "shapelets" interprétables par réseaux de neurones antagonistesCAp 2019 - Conférence sur l'Apprentissage automatique, Jul 2019, Toulouse, France. pp.1-2
Conference papers
hal-02268004v1
|
||
|
Data Augmentation for Time Series Classification using Convolutional Neural NetworksECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy
Conference papers
halshs-01357973v1
|
||
|
Time-Sensitive Topic Models for Action Recognition in VideosICIP - International Conference on Image Processing, Sep 2013, Melbourne, Australia
Conference papers
hal-00872048v1
|
||
|
Randomized Nonlinear Component Analysis for Dimensionality Reduction of Hyperspectral ImagesIGARSS 2017 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2017, Houston, United States. pp.1-4
Conference papers
hal-01620604v1
|
||
|
Early Classification for Agricultural Monitoring from Satellite Time SeriesAI for Social Good Workshop at International Conference on Machine Learning (ICML), 2019, Long Beach, United States
Conference papers
hal-02343851v1
|
||
|
Dynamic Time Warping Under Limited Warping Path LengthInformation Sciences, 2017, 393, pp.91 - 107. ⟨10.1016/j.ins.2017.02.018⟩
Journal articles
hal-01470554v1
|
||
|
Time Series Alignment with Global InvariancesTransactions on Machine Learning Research Journal, 2022
Journal articles
hal-02473959v1
|
||
|
POT : Python Optimal TransportJournal of Machine Learning Research, 2021
Journal articles
hal-03264013v1
|
||
|
A Hybrid Approach to Time Series Classification with ShapeletsIntelligent Data Engineering and Automated Learning -- IDEAL, Nov 2019, Manchester, United Kingdom. pp.137-144, ⟨10.1007/978-3-030-33607-3_16⟩
Conference papers
hal-02371422v1
|
||
|
Time Series Retrieval using DTW-Preserving ShapeletsSISAP 2018 – 11th International Conference on Similarity Search and Applications, Oct 2018, Lima, Peru. pp.257-270, ⟨10.1007/978-3-030-02224-2_20⟩
Conference papers
hal-01841995v1
|
||
|
Fused Gromov-Wasserstein Distance for Structured ObjectsAlgorithms, 2020, 13 (9), pp.212. ⟨10.3390/a13090212⟩
Journal articles
hal-02971153v1
|
||
MAD: Match-And-Deform for Time Series Domain AdaptationConférence sur l'Apprentissage automatique (CAp), Jul 2022, Vannes, France
Conference papers
hal-03932463v1
|
|||
|
Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warpingWater Resources Research, 2015, 51 (11), pp.8868-8882. ⟨10.1002/2015WR017338⟩
Journal articles
halshs-01228397v1
|
||
|
End-to-end learned early classification of time series for in-season crop type mappingISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196, pp.445-456. ⟨10.1016/j.isprsjprs.2022.12.016⟩
Journal articles
hal-04023073v1
|
||
|
Watch your Watch: Inferring Personality Traits from Wearable Activity TrackersUSENIX Security Symposium (USENIX Security), Aug 2023, Anaheim, CA, United States. pp.18
Conference papers
hal-04003119v1
|
||
|
Online Handwriting Trajectory Reconstruction from Kinematic Sensors using Temporal Convolutional NetworkInternational Journal on Document Analysis and Recognition, 2023
Journal articles
hal-04076399v2
|
||
|
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties2019
Preprints, Working Papers, ...
hal-02174316v1
|
||
|
Optimal Transport for structured data with application on graphsICML 2019 - 36th International Conference on Machine Learning, Jun 2019, Long Beach, United States. pp.1-16
Conference papers
hal-02174322v1
|
||
|
Dense Bag-of-Temporal-SIFT-Words for Time Series ClassificationAdvanced Analysis and Learning on Temporal Data, Springer, 2016, 978-3319444116. ⟨10.1007/978-3-319-44412-3_2⟩
Book sections
hal-01252726v4
|
||
|
Adversarial Regularization for Explainable-by-Design Time Series ClassificationICTAI 2020 - 32th International Conference on Tools with Artificial Intelligence, Nov 2020, online, Greece. pp.1-9
Conference papers
hal-03025671v1
|
||
|
Localized Random ShapeletsInternational Workshop on Advanced Analysis and Learning on Temporal Data, 2019, Wurzburg, Germany. pp.85-97, ⟨10.1007/978-3-030-39098-3_7⟩
Conference papers
hal-02513295v1
|
- 1
- 2