

A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature

Nasser Alqurainy, Laura Miguel-Romero, Jorge Moura de Sousa, John Chen, Eduardo P.C. Rocha, Alfred Fillol-Salom, José Penadés

▶ To cite this version:

Nasser Alqurainy, Laura Miguel-Romero, Jorge Moura de Sousa, John Chen, Eduardo P.C. Rocha, et al.. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. 2022. pasteur-03952543v1

HAL Id: pasteur-03952543 https://hal.science/pasteur-03952543v1

Preprint submitted on 3 Nov 2022 (v1), last revised 23 Jan 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature

- 3
- 4 Nasser Alqurainy^{1,2,#}, Laura Miguel-Romero^{1,3,#}, Jorge Moura de Sousa⁴, John Chen⁵, Eduardo

5 P.C. Rocha⁴, Alfred Fillol-Salom^{1,3,*}, José R Penadés^{3,*}.

7	¹ Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life
8	Sciences, University of Glasgow, Glasgow, G12 8TA, UK; ² Department of Basic Science,
9	College of Science and Health Professions, King Saud bin Abdulaziz University for Health
10	Sciences, Riyadh, 11426, Saudi Arabia; ³ MRC Centre for Molecular Bacteriology and Infection,
11	Imperial College London, SW7 2AZ, UK; ⁴ Institut Pasteur, Université de Paris Cité, CNRS,
12	UMR3525, Microbial Evolutionary Genomics, Paris, France; ⁵ Department of Microbiology and
13	Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science
14	Drive 2, Singapore.
15	[#] Contributed equally to this work.
16	Running title: New PICI family.
17	Keywords: bacteriophage, pathogenicity islands, PICI, convergent evolution, gene
18	transfer, small capsid formation, packaging, tail.

19	*Corresponding author:	Alfred Fillol-Salom
20		MRC Centre for Molecular Bacteriology and Infection
21		Imperial College London
22		e-mail: a.fillol-salom@imperial.ac.uk
23		
24		José R Penadés
25		MRC Centre for Molecular Bacteriology and Infection
26		Imperial College London
27		e-mail: j.penades@imperial.ac.uk
28		
29		

30 Abstract

31 Phage satellites interfere with helper phage packaging through the production of smallcapsids, where only satellites can be packaged. So far, in all the analysed systems, the 32 satellite-sized capsids are composed of phage proteins. Here we report the first demonstration 33 that a family of phage-inducible chromosomal island (PICIs), a type of satellites, encodes all 34 the proteins required for both the production of the small-sized capsids and the exclusive 35 packaging of the PICIs into these capsids. Therefore, this new family, that we have named cf-36 PICIs (capsid forming PICIs), only requires phage tails to generate infective PICI particles. 37 Remarkably, the representative cf-PICI reproduces without cost for their helper phages, 38 39 suggesting that the relationship between these elements is not parasitic but commensalistic. Finally, our phylogenomic studies indicate that cf-PICIs are present both in Gram-positive and 40 Gram-negative bacteria and have evolved at least three times independently to spread widely 41 42 into the satellite universe.

43

44

45

47 Introduction

48 Mobile genetic elements (MGEs) are key players driving bacterial evolution and ecology (Koonin et al., 2019). Phage satellites are an important type of MGEs that couple their life cycle 49 to that of the helper phages they parasitise, a strategy that ensures their promiscuous 50 dissemination in nature at the expense of their helper phages. To date, the most studied phage 51 satellites are P4 in Enterobacterales (Sousa and Rocha, 2022), the phage-inducible 52 chromosomal islands (PICIs) in Bacillales and Gammaproteobacteria (Fillol-Salom et al., 2018; 53 Martínez-Rubio et al., 2017), and the phage-inducible chromosomal islands-like elements 54 (PLEs) in Vibrio spp. (O'Hara et al., 2017; Barth et al., 2019). Although the genetic organisation 55 56 of these families of satellites is different, all these elements encode genes required for their regulation, replication and preferential package at the expense of their helper phages 57 (Penadés and Christie, 2015; O'Hara et al., 2017; Christie and Dokland, 2012; Sousa and 58 59 Rocha, 2022). Importantly, these elements do not encode the proteins required for the 60 formation of their infective particles, and therefore, for their survival they must hijack the structural proteins and assembly processes of their helper phages (lbarra-Chávez et al., 2021; 61 Penadés and Christie, 2015). 62

Satellites have evolved different strategies to promote their preferential packaging into 63 capsids composed of phage-encoded proteins. A strategy commonly used by satellite phages 64 to interfere with phage packaging is the production of small capsids, which are commensurate 65 to the size of the satellite's genomes, but too small to accommodate the complete helper phage 66 genome. Remarkably, although this strategy is conserved, satellites use different mechanisms 67 to redirect phage capsid assembly, which represent a nice example of convergent evolution. 68 While the satellite phage P4 expresses Sid (an external scaffolding protein) to redirect P2 69 70 capsid assembly (Agarwal et al., 1990), PICIs have evolved multiple mechanisms, depending on the phage they parasite (recently reviewed in (Fillol-Salom et al., 2020)). Thus, some 71 staphylococcal pathogenicity islands (SaPIs), which are the prototypical members of the PICI 72 family, express CpmB, which operates as a scaffolding protein, binding to the phage capsid 73

protein, altering the curvature of the shells and redirecting its assembly and capsid size. This 74 system also requires CpmA, whose predicted function is to remove the phage scaffolding 75 protein (Christie and Dokland, 2012; Dearborn et al., 2017; Ubeda et al., 2007). Other SaPIs 76 that use the cos system for packaging express Ccm, which has homology with the helper 77 phage major capsid protein and redirects the assembly of the phage-encoded capsid protein 78 into the production of SaPI-sized small capsids (Quiles-Puchalt et al., 2014; Carpena et al., 79 2016; Hawkins et al., 2021). PICIs from Enterococcus faecalis (EfCI583)(Matos et al., 2013), 80 from Pasteurella multocida (PmCI172)(Fillol-Salom et al., 2018), and PLEs from Vibrio 81 cholerae (Netter et al., 2021), have also the ability to produce satellite-sized capsids, although 82 in these cases the proteins involved in this process have not been identified yet. 83

While capsid redirection severely reduces helper phage reproduction, it does not increase 84 per se the packaging of the satellite phages into the small capsids. To solve this problem, 85 86 satellites have evolved an arsenal of complementary and sophisticated strategies that ensure 87 their preferential packaging into the virions, facilitating their promiscuous transfer in nature. Phage packaging starts by the recognition by the phage-encoded small terminase (TerS) of 88 the cos or pac sites in the phage genomes. To promote their packaging, some satellites - such 89 as P4 and some SaPIs - carry the cognate helper phage cos site in their genomes (Quiles-90 91 Puchalt et al., 2014; Ziermann and Calendar, 1990). Other SaPIs encode a homologue of the phage TerS called TerS_S (Ubeda et al., 2007), which recognises the SaPI pac sequence (Chen 92 et al., 2015). To help TerS_s function, these SaPIs also encode Ppi (phage packaging 93 interference), which binds to the phage TerS, blocking its function (Ram et al., 2012, 2014). 94 Finally, some PICIs present in Proteobacteria encode Rpp (redirecting phage packaging), 95 which binds to the phage TerS. The Rpp-TerS complex recognises the PICI cos site (promoting 96 PICI packaging), but not the phage cos site, thus blocking phage reproduction (Fillol-Salom et 97 al., 2019). 98

99 While diverse, all the mechanisms of piracy described so far require that helper phages 100 express all the proteins necessary to generate not just the phage but also the PICI infective particles. We report here the discovery of a widespread family of PICIs, that we have named cf-PICIs (<u>c</u>apsid <u>f</u>orming PICIs), that encode not just all the proteins required for the production of PICI-sized capsids but also for the exclusive packaging of the cf-PICIs into the small-sized capsids. Therefore, and contrary to what is seen with other satellites, cf-PICIs only require phage tails to spread in nature. They represent a new strategy of molecular piracy.

106 Results

107 EcCIEDL933 is the prototypical member of the cf-PICI family

During the description of PICI elements in Proteobacteria (Fillol-Salom et al., 2018), one 108 intriguing element with an unusual genetic organisation, present in the E. coli strain EDL933, 109 raised our curiosity. This element, with a size of 15.4 kb, carried the *int*, *alp*A and *rep* genes, 110 111 identical to those present in the prototypical E. coli EcCICFT073 and EcCIED1a PICIs (Fig. 1A). However, in addition to these conserved PICI genes, this element seemed to encode all 112 the proteins required for the production of functional capsids (major capsid, head maturation 113 protease, portal, head-tail connectors), and for the packaging of the PICI DNA into these 114 115 capsids (HNH and small and large terminase proteins) (Fig. 1A). Interestingly, this element did not encode genes involved in the production of phage tails. 116

Based on this peculiar organisation, our initial thoughts were that this element could 117 represent a hybrid between a PICI and a phage. Note that the aforementioned DNA packaging 118 genes present in this putative hybrid element showed homology with phage genes (Fig. 1B). 119 Yet, sequence similarities between the genes present in this new element and those present 120 in phages were generally low and restricted to a few genes. To assess the similarity in gene 121 repertoires between the element present in strain EDL933, hereinafter named EcCIEDL933, 122 and the genomes of typical phages, we computed their weighted gene repertoire relatedness, 123 which we have used previously to class phages in families (see Methods)(Sousa et al., 2021). 124 Our analysis of 3725 complete non-redundant phage genomes retrieved from RefSeg shows 125 that the genome of EcCIEDL933 is very different from them. Indeed, 86% of the phage 126 genomes lack homologs in EcCIEDL933, with the remaining 14% (519 phage genomes) 127

having, at most, a wGRR of 0.09 (Fig S1). These cases represent phage-encoded homologs 128 to some of the proteins encoded by EcCIEDL933, and include, besides the aforementioned 129 capsid and terminase genes, homologs to the other capsid formation (portal, head-tail 130 131 connectors) or packaging (HNH) genes. Importantly, no single phage genome has more than six homologous proteins with EcCIEDL933 and the average number of homologs, among 132 phages with at least one homolog, is only 1.8 (Fig. S1D). Most of these rare homologs have 133 significant, but low sequence similarity (<40%, e-value<1e-04; Fig. S1C and S1D). On the 134 other hand, our KEGG orthology analyses showed that genes homologous to the ones present 135 in EcCIEDL933 are frequently found in genomic regions that could correspond to similar 136 elements in E. coli and other related species, including Salmonella enterica, Shigella flexneri, 137 Klebsiella pneumoniae, Pluralibacter gergoviae or Yersinia aleksiciae (Table S1). Therefore, 138 these results suggested that EcCIEDL933 could represent a new family of elements, distinct 139 from both phages and previously described PICIs. In support of this idea, members of this new 140 family integrate into the *E. coli* bacterial chromosome using six different attB sites. Of these, 141 two were exclusively used by the members of this new lineage, while the other four were also 142 143 used by members of the previously identified *E. coli* PICIs (Table S2 and Fig. S2).

The previous results suggested that the mechanism of induction of this new lineage could 144 145 be identical to that described for the classical PICIs present in E. coli. Once induced, the genes involved in DNA packaging could either promote the packaging of the cognate element and/or 146 could be used by the island to interfere with helper phage reproduction. To clearly demonstrate 147 that EcCIEDL933 is induced as the classical PICI elements, we searched for helper phages 148 able to induce and mobilise EcCIEDL933. To facilitate these studies, we inserted a cat marker 149 into the element present in the clinical EDL933 strain, which also carries 17 prophages (Perna 150 et al., 2001), and induced the resident prophages with mitomycin C (MC), expecting that one 151 of the resident prophages was able to mobilise EcCIEDL933 cat into the non-lysogen 594 E. 152 153 coli strain, used in this experiment as recipient. This was the case, although just a few transductants were obtained (Table 1), suggesting that none of the resident prophages present 154

in the EDL933 strain are the helper phage for this island. Note that in presence of a helper
phage, PICI transfer is extremely high (Humphrey et al., 2021). Thus, it is likely that neither of
the 17 prophages induces EcCIEDL933.

To search for one, we lysogenised the E. coli 594 strain carrying EcCIEDL933 cat-positive 158 with our collection of E. coli phages and tested the transfer of the PICI element after MC 159 induction of the different lysogenic strains. Two phages, HK106 and HK446, mobilised the 160 island at high frequencies (Table 1), suggesting they were able to induce the EcCIEDL933 161 cycle. This was confirmed with the screening lysate analysis of the DNA samples obtained 162 after induction of the different lysogenic strains carrying EcCIEDL933. As shown in Fig. 2, only 163 164 the strains lysogenic for either HK106 or HK446 showed the classical pattern of PICI induction: a high sized DNA band corresponding either to the PICI replicating concatemeric form or to 165 the PICI/phage DNA packaged into the phage-sized capsids, and a small band corresponding 166 167 to the PICI DNA packaged into small PICI-sized capsids.

Finally, we tested the transfer of the EcCIEDL933 *alp*A mutant. Note that in Gram-negative bacteria PICI induction and transfer requires the expression of the PICI-encoded *alp*A gene, a process that is activated by the helper phage (FilloI-Salom et al., 2018). As expected for a PICI-like element, mutation of *alp*A eliminated both helper-phage induction (Fig. 2) and transfer of this element (Table 1).

173 EcCIEDL933 produces PICI-sized capsids

Having established that this new family of satellites are induced like the classical PICIs, we 174 wanted to know whether the EcCIEDL933 genes with homology to the phage genes were 175 required for capsid formation and EcCIEDL933 packaging and transfer. The presence of the 176 PICI-sized small band in the EcCIEDL933 screening lysate suggested that this island had the 177 ability to produce PICI-sized capsids after induction. To test this, we analysed by electron 178 microscopy (EM) the infective particles present in the lysate obtained after induction of the 179 lysogenic strain for helper HK106, in presence or absence of EcCIEDL933. In the absence of 180 EcCIEDL933, only phage particles were observed, which had the characteristic size and shape 181

of a *Siphoviridae* phage with a hexagonal capsid of approximately 60 nm length and 57 nm width, with non-contractile tails which are approximately 160 nm long and 10 nm wide (Fig. 3A). By contrast, in the presence of EcCIEDL933 two different types of infective particles were observed: in addition to the phage-sized ones, we were able to detect PICI-sized capsids, which had a hexagonal capsid of 46 nm length and 42 nm wide, connected to the phage noncontractile tail (Fig. 3A).

Since the PICI genome is 1/3 of the size of the phage genome, it is obvious that the 188 complete phage genome cannot be packaged into the PICI-sized particles. However, some 189 PICIs can package 3 copies of their genomes in phage-sized capsids (Carpena et al., 2016; 190 191 Ubeda et al., 2007). To test whether this was also the case for EcCIEDL933, the packaged DNA present in the lysate containing both the phage and the PICI infective particles was 192 purified, separated on agarose gels, and analysed by Southern blot, using specific phage- or 193 194 PICI probes. In support of the EM images, two types of bands were observed, corresponding 195 to the size of the phage and EcCIEDL933 genomes, respectively (Fig. 3B). Importantly, the Southern blot analyses revealed that the packaging of the different elements is size specific 196 and mutually exclusive, with phages and PICIs being packaged uniquely in large- and small-197 sized capsids, respectively (Fig. 3C). 198

199 Characterisation of the EcCIEDL933 packaging module

200 The previous results suggested that the different sized capsids had different origins: the phage would be responsible for the production of the large capsids and the phage tails, while the 201 small capsids would be produced by the PICI. In support of this idea, comparison of the phage 202 and PICI packaging modules reveals that they have different genetic organisations and low 203 protein identities (Fig. 1B). To test this idea, we individually mutated each of the genes 204 belonging to the putative packaging module of EcCIEDL933 (Fig. 4A) and tested the transfer 205 of the different EcCIEDL933 mutants after induction of the helper prophage HK106. 206 Remarkably, while the replication of the different mutants was unaffected (Fig. S3), their 207 208 transfer was completely abolished in all cases except in the mutant for the hypothetical gene

1792, whose transfer was severely affected (Fig. 4B). To confirm that the observed phenotypes 209 were consequence of the mutations, complementation of the mutants restored PICI titres (Fig. 210 S4C). Interestingly, and in support of our idea, in all these cases the transfer of the helper 211 phage was unaffected, confirming that the PICI encoded proteins have no role in the packaging 212 of the helper phage (Fig. 4C). Importantly, the Southern blot analyses of the purified infective 213 particles obtained after induction of the different EcCIEDL933 mutant strains uniquely revealed 214 the presence of the phage-sized band, but not the PICI-sized ones, confirming that the small 215 capsids had a PICI origin (Fig. S5C). Next, we performed the same experiment, but now 216 mutating the phage genes encoding the homolog proteins to those encoded by the PICI. In 217 this case the mutations eliminated phage but not PICI transfer (Fig. 4E and 4F). Phage mutants 218 were complemented *in trans*, confirming that the phenotypes were due to the mutations (Fig. 219 S4D). Moreover, and in agreement with the idea that the large and small capsids had different 220 origins, only PICI-sized bands were observed in the Southern blot analyses of the purified 221 infective particles obtained after induction of the different phage HK106 mutant strains (Fig. 222 223 S5D). This was corroborated with the analysis of the lysate obtained after induction of the strain carrying the HK106 capsid (gp05) mutation and EcCIEDL933, which only contained 224 PICI-sized particles (Fig. 3). 225

226 Our previous results demonstrated that EcCIEDL933 encodes a functional packaging module responsible for both the production of the PICI-sized capsids and for the specific and 227 exclusive packaging of the island into these particles. Therefore, we propose here that 228 EcCIED933 is the prototypical member of a new family of PICI satellites, that we have named 229 capsid forming PICIs (cf-PICIs), with the ability to produce all the proteins required for the 230 specific packaging of these elements into cf-PICI encoded capsids. These results also 231 suggested that in terms of producing infective particles, EcCIEDL933 only requires the phage 232 tails to complete the formation of the PICI infective particles. To confirm this hypothesis, we 233 234 mutated two of the phage genes encoding important tail components: the tape-measure (gp14) and major tail (gp10) proteins. The strains carrying the mutant phages and EcCIEDL933 were 235

MC induced, and the phage and PICI titres quantified. As expected, these mutants abolished both phage and PICI transfer (Fig. 5A). Next, to confirm that EcCIEDL933 only relies on the phage tail proteins to produce PICI infectious particles, we analysed by EM the lysate obtained after the induction of a strain containing the PICI and a helper phage carrying mutations in the tape-measure (*gp14*) and the capsid (*gp05*) genes. Note that in this strain the phage does not produce large capsids nor tails. In support of our hypothesis, only PICI-sized capsids were observed in the lysate (Fig. 5B).

243 EcCIEDL933 does not block helper phage reproduction

244 One conserved characteristic of the satellites is their ability to severely interfere with their helper phage reproduction because they hijack its components (Fillol-Salom et al., 2020) 245 246 (O'Hara et al., 2017). To test whether EcCIEDL933 was also able to block the reproduction of its helper phages, we quantified the phages obtained after induction of the lysogenic strains 247 248 for HK106 or HK446, the EcCIEDL933 helper phages, in presence or absence of the island. Importantly, phages HK106 or HK446 were unaffected by the presence of EcCIEDL933 (Table 249 S3). To confirm this, we infected strains 594 or JP22295 (a derivative 594 strain carrying 250 EcCIEDL933) with phages HK106 or HK446, and compared their efficiency of plating. With the 251 252 classical PICIs, in presence of the islands, both the number and the size of the phage plaques are severely reduced, only being able to plaque those mutant phages that are unable to induce 253 the islands (Frigols et al., 2015). In this case, however, the scenario was completely different, 254 and as occurred after prophage induction, the presence of the island did not affect the capacity 255 of the helper phages to reproduce normally in the recipient strain carrying the island, compared 256 to the EcCIEDL933-negative strain (Fig. S6). These results suggest that EcCIEDL933 is not a 257 phage parasite, but rather a commensal 258

259 cf-PICIs are widespread in nature

We next analysed whether this new family of satellite phages is widespread in nature. We made a curated search across the GenBank database for similar cf-PICI elements among thirteen species of *Proteobacteria*, especially in members of the *Enterobacteriaeae*,

Pasteurellaceae and Orbaceae, where PICIs are frequent (Fillol-Salom et al., 2018). We 263 searched for elements carrying int or alpA genes identical to those present in the canonical 264 PICIs, but encoding a packaging module similar to that present in the cf-PICI EcCIEDL933. 265 Our preliminary analysis revealed that other cf-PICIs are frequent in Proteobacteria genomes 266 (Fig. S2; Table S2). Importantly, all the elements identified encode all, or most, of the 267 components present in EcCIEDL933, with a similar conserved genetic organisation (Fig. 1 and 268 S2). Their genes encoding the packaging module present sequence similarity with those from 269 EcCIEDL933 ranging from 50% to 90%, suggesting that they are indeed part of a single family 270 of satellites. 271

272 Using the same strategy that allowed us the identification of the cf-PICIs in *Proteobacteria*, we next interrogated the genomes of Firmicutes, the other phylum with known PICIs for the 273 presence of these elements. Importantly, our analysis was able to identify cf-PICIs in different 274 genera of Firmicutes, including Lactococcus, Enterococcus, Bacillus, Clostridium and 275 276 Staphylococcus. While the cf-PICIs in Proteobacteria showed a conserved genetic organisation, with the morphogenetic genes (capsid-protease-portal-head connectors) first, 277 followed by the ones involved in DNA recognition and packaging (*hnh-terS-terL*), two distinct 278 groups were observed in the cf-PICIs from Firmicutes. One group was composed by the 279 280 elements present in Bacillus, Clostridium and Staphylococcus, while the second group was composed by the elements present in Lactococcus and Enterococcus (Fig. S7; Table S4). 281 While both groups had similar gene content, the organisation/localisation of these genes within 282 the packaging operon was different. The genes encoding the portal, protease and capsid 283 proteins of the first group were present at the beginning of the operon, while the genes 284 encoding HNH, TerS and TerL start the operon of the second group. This suggests that cf-285 PICI may have different origins in these two phyla. 286

287 cf-PICIs arose three times independently

To detail the evolutionary history of cf-PICI, we searched specifically for homologs of their capsid and large terminase proteins in the database of complete phage genomes used in our

initial analysis. In each case (capsid or TerL), we collected the phage hits with highly significant 290 e-values (<1e⁻¹⁰) (see Methods). This allowed us to put together a list of homologs for the 291 capsid (113 phage + 61 cf-PICI) and TerL (420 phage + 60 cf-PICI) proteins present in the cf-292 293 PICIs or in the phages. We then built the phylogenetic trees of the two types of proteins. The conclusions were similar for the analyses of the capsid and the terminase proteins (Fig. 6 and 294 S8). We observed that cf-PICIs regrouped on three clades that are clearly separated from each 295 other by many phage genes. These three clades correspond to the three groups distinguished 296 in the previous section in terms of genetic organisation. The separations between the three 297 groups are robust to phylogenetic reconstruction uncertainty, as attested by high confidence 298 bootstrap values at the basis of each clade. This suggests the independent emergence of the 299 three groups of cf-PICIs. 300

The analysis of each of the cf-PICI clade shows a clear separation between the satellites 301 302 and the phage homologs, i.e. the clades only include cf-PICI components even if we 303 deliberately selected the phage homologs that were most similar to the cf-PICI. Furthermore. the phages closest to each clade of cf-PICIs tend to be the same in the TerL and capsid tree. 304 The consistent phylogeny for these components suggests strong genetic linkage between the 305 two functions. This further confirms that cf-PICIs are clearly distinguishable from the phages 306 307 in the database and suggests a low frequency of genetic exchanges of these key components between cf-PICIs and phages. 308

Within each clade of cf-PICI one identifies elements present in the genomes of multiple 309 bacterial genuses. In the EcCIEDL933-containing clade we could identify bacteria from very 310 different Gammaproteobacteria, from E. coli to Yersinia or Xenorhabdus. Similarly, the clade 311 containing the S. aureus element includes bacteria from Bacillus and Clostridium, which are 312 313 very distantly related. This shows that either these elements have an exceptionally broad host range upon transfer through virions, or that they are very ancient and have diversified within 314 distinct bacterial taxonomic groups. The analysis of the distances in the phylogenetic trees 315 shows very long branches between the cf-PICI and the closest phages even in the highly 316

conserved protein TerL (Fig. 6), which is also suggestive of an old origin for cf-PICIs. Hence,
the cf-PICIs are neither recently derived from phages nor the result of recent prophage genetic
degradation. Instead, they constitute deep lineages of elements that, compared to the other
previously described PICI, have more proteins that are homologous to those of phages.

321 Discussion

Satellites are MGEs whose life cycle depends on a helper virus but lack extensive nucleotide 322 sequence homology between them. So far, what is the origin of these elements, or how have 323 they evolved, remain a mystery. In this manuscript we report that a new family of phage 324 satellites is able to specifically package their DNA into small-sized capsids, which are of 325 satellite origin. Since the cf-PICI-encoded proteins responsible of these processes are similar 326 to those encoded by their helper phages, it is tempting to speculate that they have a phage 327 origin and have evolved not just to be able to produce the small-sized capsids, but also to 328 329 avoid interaction with the phage-encoded machinery.

In most of the previously analysed satellites, the production of the small-sized capsids and 330 331 the preferential packaging of the satellites are two independent processes. Thus, some SaPIs 332 that use the cos system for packaging, as well as the P4 satellite, are able to produce small capsids, but they do not package their DNA preferentially, since they carry the helper cos 333 sequence in their genomes and use the phage terminase complex to initiate packaging 334 335 (Carpena et al., 2016; Quiles-Puchalt et al., 2014; Christie and Dokland, 2012; Lindqvist et al., 1993). Another example corresponds to the SaPIs that use the headful mechanism for 336 packaging (pac SaPIs). Here, both the phage- and the SaPI-encoded small terminase can 337 interact with both the small and the large-sized capsids. Therefore, the production of the small 338 sized capsids limits phage reproduction not because the phage TerS cannot use these small 339 capsids, but because the phage genome cannot be completely packaged in these capsids 340 (Ubeda et al., 2007). An additional example refers to the other family of PICIs present in E. 341 coli. Although they are 1/3 of the size of their helper phages, these elements are packaged in 342 343 large capsids (probably carrying 3 concatemeric molecules per capsid), but their preferential packaging is driven by the expression of the PICI-encoded Rpp protein, which interacts with
the phage TerS to modify its specificity, promoting PICI packaging (Fillol-Salom et al., 2019).
Lastly, the recently described PLE satellites also produce small capsids, although the
mechanism of small capsid production and how they preferentially package their genomes into
these small sized capsids is still unknown (Netter et al., 2021).

Contrary to the previously described satellites, in the cf-PICI family of satellites both the 349 production of the small-capsids and the exclusive packaging of the elements are linked. In the 350 system characterised here, phage and satellite packaging are clearly independent, and they 351 have evolved to be also mutually exclusive. Why do different satellites use different strategies? 352 353 Most of the previously characterised satellites hijack the machinery of helper phages that use the classical cos or pac systems for packaging. In these systems, the terminase complex, 354 composed by the phage or PICI-encoded TerS, and the phage-encoded TerL proteins, interact 355 356 with their cognate pac or cos site to initiate packaging(Fillol-Salom et al., 2018)(Fillol-Salom et 357 al., 2020). Interestingly, the new family of satellites described here hijacks a different family of phages, present both in Proteobacteria and Firmicutes, which to initiate packaging require not 358 just the TerS-TerL complex but also the activity of an additional player, the HNH protein (Kala 359 et al., 2014; Quiles-Puchalt et al., 2014). One can hypothesise that these specific requirements 360 for packaging have selected for the existence of this new lineage of satellites, which have 361 evolved to promote the formation of the small-sized capsids and their preferential packaging 362 against these helper phages by incorporating and differentiating the phage-packaging module 363 into the satellite genome. 364

Another interesting characteristic of the EcCIEDL933 element is that it does not interfere, at least in the conditions tested in these studies, with the reproduction of their helper phages. Since EcCIEDL933 is the only element of this new lineage characterised so far, we do not know if this behaviour is exclusive of this satellite or is a characteristic of this new family. Since we have previously demonstrated that by interfering with phage reproduction PICIs drive phage evolution and ecology (Frígols et al., 2015), the lack of interference observed here

opens new avenues by which phages and satellites may interact. These are currently under 371 study, although one might speculate that encoding a packaging system and a capsid may allow 372 cf-PICIs to use the cell resources more efficiently than the other PICIs, and thus alleviate the 373 374 cost of their production on the replicating helper phage. Indeed, other satellites require the production of proteins to change capsid size and some of them cannot preclude the (non-375 productive) partial packaging of phages in the small capsids. The cf-PICIs may ensure an 376 optimal use of resources to produce their PICI particles and have a negligible impact on the 377 production of viral particles. 378

Importantly, this new strategy of parasitism is present in satellites from Proteobacteria and 379 380 Firmicutes, confirming its importance in nature. Their phylogeny and the wGRR analyses show that they are clearly distinct from phages, even for the proteins that have homologs in both 381 types of elements. The phylogenetic analysis further shows that there are at least three groups 382 383 of cf-PICIs that emerged independently raising interesting questions in relation to their origin. 384 We propose here that the capsid and packaging genetic module were incorporated together into ancestral PICIs present in different bacterial species and obtained from different phages. 385 Given the large evolutionary distances between cf-PICI and phages even in the highly 386 conserved large subunit of the terminase, the acquisition of the phage capsid and packaging 387 388 modules must have occurred a long time ago. The multiple independent acquisition of the modules from different phages explains the phylogenetic patterns and our observation of 389 different genetic organisation in the different groups. These modules then evolved to adapt to 390 the cf-PICI biology, which may have resulted in the elimination of accessory genes to fit the 391 small cf-PICI genomes leading to a minimal capsid module that has remarkably similar types 392 of components in the three groups. These components may correspond to a minimal set of 393 genes necessary to build a capsid. 394

Once again, PICIs have provided unexpected insights in the biology of the satellite viruses. Because of the simplicity of the experimental models, evolutionary studies with phages and their satellites can give insight into the general principles of the biology of the eukaryotic

viruses and their satellites. We have applied this concept here and have demonstrated the existence of a novel way by which satellites and helper phages interact. We anticipate that a better characterisation of this interaction will contribute to our understanding on how viruses and satellites evolve, and how this evolution and coexistence impacts on the biology of both the prokaryotic and eukaryotic cells infected by these elements.

403

404 Methods

405 Bacterial strains and growth conditions

Bacterial strains, plasmids and oligonucleotides used in this study are listed in Table S5, Table
S6 and Table S7, respectively. Strains were grown at 37°C or 30°C on Luria-Bertani (LB) agar
or in LB broth with shaking (120 r.p.m.) supplemented with Ampicillin (100 µg ml⁻¹), Kanamycin
(30 µg ml⁻¹) or Chloramphenicol (20 µg ml⁻¹; all Sigma-Aldrich) when required.

410 Plasmid construction

The plasmids used in this study (Table S6) were constructed by cloning PCR products,
amplified with primers listed in Table S7, into the pBAD18 vector using digestion and ligation.
Plasmids were verified by Sanger sequencing in Eurofins Genomics.

414 DNA methods

The introduction of the chloramphenicol (*cat*) resistance marker into the EcCIEDL933 element was performed as described (Fillol-Salom et al., 2018) using λ Red recombinase-mediated recombination. Briefly, marker was amplified by PCR using primers listed in Table S7 from plasmid pKD3, and the PCR product was transformed into the recipient strain harbouring plasmid pRWG99, which expresses the λ Red recombinase, and the marker was inserted into the PICI genome. The insertion of the resistance marker was verified by PCR.

For PICI mutagenesis, the site-directed scarless mutagenesis was performed as described previously (Blank et al., 2011; Hoffmann et al., 2017). Briefly, the *km*R marker together with an I-Scel recognition restriction site was amplified by PCR, using primers listed in Table S7. Then, PCR product was inserted into the recipient strain harbouring plasmid pRWG99, which expresses the λ Red recombinase protein. After verification of the insertion by PCR, 80mer DNA fragments derived from oligonucleotides which contains the desired mutation were electroporated into the mutant strain expressing the λ Red recombinasemediated system, and successful recombinants were selected by expression of I-*Scel* endonuclease. The different PICI mutants obtained were verified by PCR and Sanger sequencing in Eurofins Genomics.

For phage mutagenesis, an allelic replacement strategy was performed (Solano et al., 431 2009). Briefly, the allelic-exchange vector, pK03-Blue, was used to clone the desired genes 432 433 using the primers listed in Table S7. Then, plasmid was inserted into the strain carrying the prophage and transformants were selected on LBA plates supplemented with chloramphenicol 434 and incubated at 32°C for selection of the temperature-sensitive plasmid. To produce the 435 436 homologous recombination, the plasmid was forced to integrate into the phage genome at the 437 non-permissive temperature (42°C). Light blue colonies, which are indicative of plasmid integration, were grown in LB broth at 32°C and ten-fold serial dilution of the overnight cultures 438 plated containing X-gal (5-bromo-4-chloro-439 was plated on LBA 3-indolyl-B-Dgalactopyranoside) and sucrose 5% (to force the plasmid loss) and incubated at 32°C for 24 440 441 h. White colonies, which is indicative that the plasmid is loss, were screened for chloramphenicol sensitivity. The different phage mutants obtained were verified by PCR 442 and Sanger sequencing in Eurofins Genomics. 443

444 **Phage plaque assay**

A 1:50 dilution (in fresh LB broth) of the overnight strains were grown until an $OD_{600}=0.34$ was reached. Bacterial lawns were prepared by mixing 300 µL of cells with phage top agar (PTA) and poured onto square plates. Then, serial dilutions of phages were prepared in phage buffer (50mM Tris pH 8, 1mM MgSO₄, 4mM CaCl₂ and 100mM NaCl) and spotted on correspond plate, which were incubated at 37°C for 24h.

450 Phage and PICI induction

For PICI and phage induction, overnight cultures of lysogenic donor strains in presence and absence of the PICI were diluted 1:50 in fresh LB broth and grown at 37°C and 120 r.p.m. until an OD₆₀₀ of 0.2 was reached. Mitomycin C (2 mg ml⁻¹) was added to induce the prophage and the induced cultures were grown at 32°C with slow shaking (80 r.p.m.). Generally, cell lysis occurred 4-5 h post-induction and the induced samples were filtered using sterile 0.2 μm filters (Minisart® single use syringe filter unit, hydrophilic and non-pryogenic, Sartonium Stedim Biotech). The number of phage or PICI particles in the resultant lysate was quantified.

458 Phage titration

The number of phage particles were quantified using the tittering assay. Briefly, a 1:50 dilution 459 (in fresh LB broth) of an overnight recipient strain was grown until an OD_{600} of 0.34 was 460 reached. Then, recipient strain was infected using 100 µL of cells with the addition of 100 µL 461 of phage lysate serial dilutions prepared with phage buffer (50mM Tris pH 8, 1mM MgSO₄, 462 4mM CaCl₂ and 100mM NaCl), and incubated for 5 min at room temperature. The different 463 mixtures of culture-phage were plated out on phage base agar plates (PBA; 25 g of Nutrient 464 Broth No. 2, Oxoid: 7g agar) supplemented with CaCl₂ to a final concentration of 10mM. Plates 465 were incubated at 37°C for 24h and the number of plagues formed (phage particles present in 466 467 the lysate) were counted and represented as the plaque forming units (PFU/mL).

468 PICI transduction

The number of PICI particles were quantified using the transduction tittering assay. Briefly, a 469 1:50 dilution (in fresh LB broth) of an overnight recipient strain was grown until an OD_{600} of 1.4 470 was reached. Then, strains were infected using 1 mL of recipient cells with the addition of 100 471 µL of PICI lysate serial dilutions prepared with phage buffer (50mM Tris pH 8, 1mM MgSO₄, 472 4mM CaCl₂ and 100mM NaCl), and cultures were supplemented with CaCl₂ to a final 473 concentration of 4.4mM before incubation for 30 min at 37°C. The different mixtures of culture-474 PICI were plated out on LBA plates containing the appropriate antibiotic. LBA plates were 475 incubated at 37°C for 24h and the number of colonies formed (transduction particles present 476 in the lysate) were counted and represented as the colony forming units (CFU/mL). 477

478 Southern Blot

Following phage and PICI induction (mitomycin C; Sigma-Aldrich from Streptomyces 479 caespitosus), one millilitre of each sample was taken at defined time points and pelleted. 480 Samples were frozen at -20°C until all collections were accomplished. Then, samples were re-481 suspended in 50 µl lysis buffer (47.5 µl TES-Sucrose and 2.5 µl lysozyme [10 µg ml⁻¹]; Sigma-482 Aldrich) and incubated at 37°C for 1h. Then, 55 µl of SDS 2% proteinase K buffer (47.25 µl 483 H₂O, 5.25 µl SDS 20%, 2.5 µl proteinase K [20 mg ml⁻¹], Sigma-Aldrich from *Tritirachium* 484 album) was added to the lysates and incubated at 55°C for 30 min. Then, samples were 485 vortexed with 10 µl of 10x loading dye for 1h. Following this incubation, samples were frozen 486 487 and thawed in cycles of 5 min incubation in dry ice with ethanol and in a water bath at 65°C. This was repeated three times. To separate the chromosomal DNA, samples were run on 0.7% 488 agarose gel at 30V, overnight. Then, the DNA was transferred to Nylon membranes (Hybond-489 490 N 0.45 mm pore size filters; Amersham Life Science) using standard methods. DNA was 491 detected using a DIG-labelled probe (Digoxigenin-11-dUTP alkali-labile; Roche) and anti-DIG antibody (Anti-Digoxigenin-AP Fab fragments; Roche), before washing and visualisation. The 492 primers used to obtain the DIG-labelled probes are listed in Table S7. 493

494 Capsid precipitation

A large-scale induction was performed to precipitate phage and PICI particles and obtain their 495 496 dsDNA. Briefly, a total of 100 ml lysate was produced by MC induction. Then, lysates were treated with RNase (1 µg ml⁻¹) and DNase (10 µg ml⁻¹) for 30 min at room temperature. 497 Afterwards, 1 M of NaCl was added to the lysate and incubated 1 h on ice. After incubation, 498 the mix was centrifuged at 11,000 x g for 10 min at 4°C, and phages/PICIs were mixed with 499 10% wt/vol polyethylene glycol (PEG) 8000 and kept overnight at 4°C. Then, phages/PICIs 500 were precipitated at 11,000 x g for 10 min at 4°C and the pellet was resuspended in 1 ml of 501 phage buffer. 502

503 Phage and PICI DNA extraction

To extract the dsDNA, lysate from phage and PICI precipitation was treated with DNase (10 504 µg ml⁻¹) for 30 min at room temperature. Then, lysate was combined with an equal volume of 505 lysis mix (2% SDS and 90 µg ml⁻¹ proteinaseK) and incubated at 55°C for 1 h. DNA was 506 extracted with an equal volume of phenol:chloroform:isoamyl alcohol 25:24:1 and samples 507 were centrifuged at 12,000 x g for 5 min, and the aqueous phase containing the DNA was 508 obtained. The DNA was precipitated by 0.3M NaOAc and 2.25 volume of 100% ethanol, then 509 pelleted at 12,000 x g for 30 min at 4°C and washed once with 1 ml of 70% ethanol. After 510 centrifugation, the DNA pellets were air dried for 30 min and resuspended in 100 µl nuclease 511 free water. 512

513 Electron microscopy

To analyse the lysate by transmission electron microscopy (TEM), lysates were CsCl purified. 514 515 Briefly, the precipitated phages and PICIs were loaded on the CsCI step gradients (1.35, 1.5 and 1.7 g ml⁻¹ fractions) and centrifuged at 80,000 x g for 2h at 4°C. The phage and PICI bands 516 were extracted from the CsCl gradients using a 23-gauge needle and syringe. Then, phages 517 and PICIs were dialyzed overnight to remove CsCl excess using SnakeSkin[™] Dialysis Tubing 518 (3.5K MWCO, 16mm dry) into 50mM of Tris pH 8 and 150mM NaCl buffer. For TEM analysis, 519 520 ten microliters of the dialysed samples were incubated in a carbon-coated gold grid for 5 min. Then, samples were fixed with 1% Paraformaldehyde for 2 min, before washing three times 521 with distilled water for 30 sec. Afterwards, the samples were stained with 2% Uranyl Formate 522 for 30 sec, and they were allowed to dry at room temperature for 15 min. The JEOL 1200 TEM 523 microscope was used to examine the samples. Photos were obtained at 12K of magnification. 524

525 Identification of PICIs and KEGG analysis

The KEGG analysis performed previously(Fillol-Salom et al., 2018) suggested that the EcCIEDL933 element is the prototypical member of a new PICI family. To identify more members of this family, we searched manually on the NCBI database for elements with a size comprised between 10-15 kb, encoding a divergent pair or transcriptional regulators next to an *int* gene (Martínez-Rubio et al., 2017), and a packaging module similar to that present in EcCIEDL933. Additionally, these elements should have unique attachment sites that are never occupied by prophages, and they should lack phage lytic and tail genes. This search was followed by the analysis of orthologues performed for the EcCIEDL933 element (Table S1), which corroborates that the newly identified elements correspond to PICIs. The ortholog analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) databse (http://www.genome.jp/kegg; release July 12, 2018).

537 Phylogenetic analyses

We fetched the protein sequences of TerL and the Capsid from all cf-PICI in Fig. S2 and S6 538 (Table S2 and S4). For each protein we searched for homologs among a database of all (3725) 539 complete phages present in NCBI RefSeg (last accessed March 2021), using Diamond 540 v2.0.6.144 (Buchfink et al., 2015) with parameters --query-cover 50 --ultra-sensitive --541 542 forwardonly. We picked hits in phages that match either a capsid or a TerL of any cf-PICI with an e-value of at most 1e⁻¹⁰, and made a multiple alignment of these with the corresponding cf-543 PICI proteins, using mafft-linsi v7.490 (default parameters)(Katoh and Standley, 2013). The 544 multiple alignments of TerL and Capsid were then purged from non-informative sites using 545 clipkit v1.3.0 (Steenwyk et al., 2020) with the option -m kpi-gappy. We used the resulting 546 multiple alignments to make phylogenetic reconstructions using maximum likelihood with 547 iqtree v1.6.12 (Nguyen et al., 2015), using parameters -nt 6 -bb 1000 (to quantify the 548 robustness of the topology) -m TEST (to find the best model). The trees were visualised with 549 iTol v6.5.2 (Letunic and Bork, 2021) and the phage branches were collapsed for clarity. 550

551 Weighted Gene Repertoire Relatedness

We searched for sequence similarity between all proteins of all phages using mmseqs2 (release 13-45111 (Steinegger and Söding, 2017)) with the sensitivity parameter set at 7.5. The results were converted to the blast format and we kept for analysis the hits respecting the following thresholds: e-value lower than 0.0001, at least 10% identity, and a coverage of at least 50% of the proteins. The hits were used to retrieve the bi-directional best hits between

pairs of phages, which were used to compute a score of gene repertoire relatedness weighted
by sequence identity:

559

$$wGRR = \frac{\sum_{i}^{p} id(A_{i}, B_{i})}{\min(A, B)}$$

560

where A_i and B_i is the pair *i* of homologous proteins present in A and B, $id(A_i, B_i)$ is the 561 sequence identity of their alignment, and min(A,B) is the number of proteins of the genome 562 encoding the fewest proteins (A or B). wGRR is the fraction of bi-directional best hits between 563 two elements weighted by the sequence identity of the homologs. It varies between zero (no 564 565 bi-directional best hits) and one (all genes of the smallest genome have an identical homolog in the largest genome). wGRR integrates information on the frequency of homologs and 566 sequence identity. For example, when the smallest genome has 10 proteins, a wGRR of 0.2 567 can result from two homologs that are strictly identical or five that have 40% identity. 568

569 **ACKNOWLEDGEMENTS**

This work was supported by grants MR/M003876/1, MR/V000772/1 and MR/S00940X/1 from 570 the Medical Research Council (UK), BB/N002873/1, BB/V002376/1 and BB/S003835/1 from 571 the Biotechnology and Biological Sciences Research Council (BBSRC, UK), ERC-ADG-2014 572 Proposal n° 670932 Dut-signal (from EU), and Wellcome Trust 201531/Z/16/Z to JRP, and 573 grants INCEPTION project (PIA/ANR-16-CONV-0005), Equipe FRM (Fondation pour la 574 Recherche Médicale): EQU201903007835, Laboratoire d'Excellence IBEID Integrative 575 Biology of Emerging Infectious Diseases [ANR-10-LABX-62-IBEID], and SALMOPROPHAGE 576 ANR-16-CE16-0029 to EPCR. 577

578 AUTHOR CONTRIBUTIONS

JRP conceived the study; NA, LM-R and AF-S conducted the experiments; JMS and EPCR performed the genomic analyses; NA, LM-R, JMS, JC, EPCR, AF-S and JRP analysed the data. EPCR, AF-S and JRP wrote the manuscript.

582 **DECLARATION OF INTERESTS**

583 Authors declare no competing interests.

584 **References**

- Agarwal, M., Arthur, M., Arbeit, R.D., and Goldstein, R. (1990). Regulation of icosahedral virion
 capsid size by the in vivo activity of a cloned gene product. Proceedings of the National
 Academy of Sciences of the United States of America *87*, 2428–2432.
- 588 Barth, Z.K., Silvas, T.V., Angermeyer, A., and Seed, K.D. (2019). Genome replication 589 dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral 590 restriction. Nucleic Acids Research 48, 249-263.
- 591 Blank, K., Hensel, M., and Gerlach, R.G. (20*11*). Rapid and highly efficient method for scarless 592 mutagenesis within the Salmonella enterica chromosome. PloS One 6, e1*57*63.
- 593 Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using 594 DIAMOND. Nat Methods *12*, 59–60.
- Carpena, N., Manning, K.A., Dokland, T., Marina, A., and Penadés, J.R. (2016). Convergent
 evolution of pathogenicity islands in helper cos phage interference. Philosophical Transactions
 of the Royal Society of London. Series B, Biological Sciences 371, 20150505.
- 598 Chen, J., Ram, G., Penadés, J.R., Brown, S., and Novick, R.P. (2015). Pathogenicity island-599 directed transfer of unlinked chromosomal virulence genes. Molecular Cell 57, 138–149.
- 600 Christie, G.E., and Dokland, T. (2012). Pirates of the Caudovirales. Virology 434, 210–221.
- Dearborn, A.D., Wall, E.A., Kizziah, J.L., Klenow, L., Parker, L.K., Manning, K.A., Spilman,
 M.S., Spear, J.M., Christie, G.E., and Dokland, T. (2017). Competing scaffolding proteins
 determine capsid size during mobilization of *Staphylococcus aureus* pathogenicity islands.
 ELife 6, e*30*822.
- Fillol-Salom, A., Martínez-Rubio, R., Abdulrahman, R.F., Chen, J., Davies, R., and Penadés,
 J.R. (2018). Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.
 Isme J 12, 2114–2128.
- Fillol-Salom, A., Bacarizo, J., Alqasmi, M., Ciges-Tomas, J.R., Martínez-Rubio, R., Roszak,
 A.W., Cogdell, R.J., Chen, J., Marina, A., and Penadés, J.R. (2019). Hijacking the Hijackers:
 Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own
 Benefit. Molecular Cell 75, 1020-1030.e4.
- Fillol-Salom, A., Miguel-Romero, L., Marina, A., Chen, J., and Penadés, J.R. (2020). Beyond
 the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from
 bacteriophage predation. Current Opinion in Microbiology 56, 52–58.
- Frígols, B., Quiles-Puchalt, N., Mir-Sanchis, I., Donderis, J., Elena, S.F., Buckling, A., Novick,
 R.P., Marina, A., and Penadés, J.R. (2015). Virus Satellites Drive Viral Evolution and Ecology.
 PLoS Genetics 11, e1005609.
- Hawkins, N.C., Kizziah, J.L., Penadés, J.R., and Dokland, T. (2021). Shape shifter: redirection
 of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nat Commun 12,
 6408.
- Hoffmann, S., Schmidt, C., Walter, S., Bender, J.K., and Gerlach, R.G. (2017). Scarless deletion of up to seven methyl-accepting chemotaxis genes with an optimized method highlights key function of CheM in Salmonella Typhimurium. PloS One 12, e0172630.
- Humphrey, S., Fillol-Salom, A., Quiles-Puchalt, N., Ibarra-Chávez, R., Haag, A.F., Chen, J., and Penadés, J.R. (2021). Bacterial chromosomal mobility via lateral transduction exceeds
- that of classical mobile genetic elements. Nat Commun 12, 6509.

- Ibarra-Chávez, R., Hansen, M.F., Pinilla-Redondo, R., Seed, K.D., and Trivedi, U. (2021).
 Phage satellites and their emerging applications in biotechnology. Fems Microbiol Rev 45,
 fuab031.
- Kala, S., Cumby, N., Sadowski, P.D., Hyder, B.Z., Kanelis, V., Davidson, A.R., and Maxwell,
- K.L. (2014). HNH proteins are a widespread component of phage DNA packaging machines.
 Proceedings of the National Academy of Sciences *111*, 6022–6027.
- Katoh, K., and Standley, D.M. (2013). MAFFT Multiple Sequence Alignment Software Version
 7: Improvements in Performance and Usability. Mol Biol Evol 30, 772–780.
- Koonin, E.V., Makarova, K.S., Wolf, Y.I., and Krupovic, M. (2019). Evolutionary entanglement
 of mobile genetic elements and host defence systems: guns for hire. Nature Reviews. Genetics
 3, 546.
- Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293-W296.
- Lindqvist, B.H., Dehò, G., and Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiological Reviews 57, 683–702.
- Martínez-Rubio, R., Quiles-Puchalt, N., Martí, M., Humphrey, S., Ram, G., Smyth, D., Chen,
- 543 J., Novick, R.P., and Penadés, J.R. (2017). Phage-inducible islands in the Gram-positive cocci. 544 The ISME Journal 11, 1029–1042.
- Matos, R.C., Lapaque, N., Rigottier-Gois, L., Debarbieux, L., Meylheuc, T., Gonzalez-Zorn, B.,
 Repoila, F., Lopes, M. de F., and Serror, P. (2013). *Enterococcus faecalis* prophage dynamics
- and contributions to pathogenic traits. PLoS Genetics 9, e1003539.
- Netter, Z., Boyd, C.M., Silvas, T.V., and Seed, K.D. (2021). A phage satellite tunes inducing
 phage gene expression using a domesticated endonuclease to balance inhibition and virion
 hijacking. Nucleic Acids Res 49, 4386–4401.
- Nguyen, L.-T., Schmidt, H.A., Haeseler, A. von, and Minh, B.Q. (2015). IQ-TREE: A Fast and
 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol
 32, 268–274.
- O'Hara, B.J., Barth, Z.K., McKitterick, A.C., and Seed, K.D. (2017). A highly specific phage
 defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genetics 13,
 e1006838.
- Penadés, J.R., and Christie, G.E. (2015). The Phage-Inducible Chromosomal Islands: A
 Family of Highly Evolved Molecular Parasites. Annual Review of Virology 2, 181–201.
- Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F.,
 Evans, P.S., Gregor, J., Kirkpatrick, H.A., et al. (2001). Genome sequence of
 enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.
- Quiles-Puchalt, N., Carpena, N., Alonso, J.C., Novick, R.P., Marina, A., and Penadés, J.R.
 (2014). Staphylococcal pathogenicity island DNA packaging system involving *cos*-site
 packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of
 Sciences 111, 6016–6021.
- Ram, G., Chen, J., Kumar, K., Ross, H.F., Ubeda, C., Damle, P.K., Lane, K.D., Penadés, J.R.,
 Christie, G.E., and Novick, R.P. (2012). Staphylococcal pathogenicity island interference with
 helper phage reproduction is a paradigm of molecular parasitism. Proceedings of the National
 Academy of Sciences 109, 16300–16305.
- Ram, G., Chen, J., Ross, H.F., and Novick, R.P. (2014). Precisely modulated pathogenicity
 island interference with late phage gene transcription. Proceedings of the National Academy
 of Sciences 111, 14536–14541.
- Solano, C., García, B., Latasa, C., Toledo-Arana, A., Zorraquino, V., Valle, J., Casals, J.,
 Pedroso, E., and Lasa, I. (2009). Genetic reductionist approach for dissecting individual roles

- of GGDEF proteins within the c-di-GMP signaling network in *Salmonella*. Proceedings of the National Academy of Sciences *106*, 7997–8002.
- Sousa, J.A.M. de, and Rocha, E.P.C. (2022). To catch a hijacker: abundance, evolution and
 genetic diversity of P4-like bacteriophage satellites. Philosophical Transactions Royal Soc B
 Biological Sci 377, 20200475.
- Sousa, J.A.M. de, Pfeifer, E., Touchon, M., and Rocha, E.P.C. (2021). Causes and
 Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and
 Bacterial Taxa. Mol Biol Evol 38, 2497–2512.
- 683 Steenwyk, J.L., Buida, T.J., Li, Y., Shen, X.-X., and Rokas, A. (2020). ClipKIT: A multiple 684 sequence alignment trimming software for accurate phylogenomic inference. Plos Biol 18, 685 e3001007.
- 686 Steinegger, M., and Söding, J. (2017). MMseqs2 enables sensitive protein sequence 687 searching for the analysis of massive data sets. Nat Biotechnol 35, 1026–1028.
- Ubeda, C., Maiques, E., Tormo, M.A., Campoy, S., Lasa, I., Barbé, J., Novick, R.P., and
 Penadés, J.R. (2007). SaPI operon I is required for SaPI packaging and is controlled by LexA.
 Molecular Microbiology 65, 41–50.
- Ziermann, R., and Calendar, R. (1990). Characterization of the cos sites of bacteriophages P2
 and P4. Gene 96, 9–15.
- 693

694

Table 1. EcCIEDL933 transfer by different E. coli phages.

Donor strain	Phage titer ^a	PICI titer ^b
EDL933 1795-1796::cat	ND	30 ± 10
594 λ EcCIEDL933 1795-1796::cat	4.67E+07 ± 8.02E+06	<1
594 80 EcCIEDL933 1795-1796::cat	9.43E+08 ± 1.17E+08	<1
594 HK97 EcCIEDL933 1795-1796::cat	2.16E+10 ± 8.67E+09	4.85E+03 ± 1.35E+03
594 HK106 EcCIEDL933 1795-1796::cat	1.50E+10 ± 7.53E+09	4.37E+06 ± 6.66E+05
594 HK106 EcCIEDL933 1795-1796::cat alpA*	2.23E+10 ± 1.13E+10	<1
594 HK140 EcCIEDL933 1795-1796::cat	1.66E+08 ± 1.13E+08	<1
594 HK446 EcCIEDL933 1795-1796::cat	1.64E+10 ± 7.50E+09	3.64E+06 ± 1.74E+06
594 HK446 EcCIEDL933 1795-1796::cat alpA*	1.17E+10 ± 3.65E+09	<1
594 HK544 EcCIEDL933 1795-1796::cat	2.40E+10 ± 1.22E+10	5.47E+03 ± 4.05E+03

^aPhage or ^bPICI titre/ml of lysate, using *E. coli* 594 as recipient strain. The means and standard deviations from three independent experiments are presented.

ND: not determined

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
EDL933_1773	int	ece:Z1835	Escherichia coli	Escherichia coli O157:H7 EDL933	416	1		EcCIEDL933				
		sfe:SFxv_1284	Shigella flexneri	Shigella flexneri 2002017	416	1		PICI	1232274	1233524	14.4	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfn:SFy 1623	Shigella flexneri	Shigella flexneri 2003036	416	1		PICI	1198780	1200030	14.4	Same as Shigella flexneri 2002017
		sfs:SFyv_1675	Shigella flexneri	Shigella flexneri Shi06HN006	416	1		PICI	1217473	1218723	14.4	Same as Shigella flexneri 2002017
		ect:ECIAI39 2027	Escherichia coli	Escherichia coli O7:K1 IAI39	416	0.998		PICI	2073278	2074528	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eok:G2583_1387	Escherichia coli	Escherichia coli O55:H7 CB9615	416	0.995		PICI	1444732	1445982	11.2	Similar to EcCICFT073
		sfv:SFV 1147	Shigella flexneri	Shigella flexneri 8401	416	0.998		PICI	1193003	1194253	15.5	Same as Shigella flexneri 2002017 with insertion sequence:IS1
		ecs:ECs1574	Escherichia coli	Escherichia coli O157:H7 Sakai	409	1		PICI	1594751	1595980	15.4	Same as Escherichia coli O157:H7 EDL933
		elx:CDCO157 1506	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	409	1		PICI	1596693	1597922	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		sft:NCTC1_01185	Shigella flexneri	Shigella flexneri NCTC1	409	1		PICI	1133388	1134617	14.7	Similar to Shigella flexneri 2002017
		<u>sfx:S1211</u>	Shigella flexneri	Shigella flexneri 2457T	409	1		PICI	1177837	1179066	14.7	Similar to Shigella flexneri 2002017
		eoh:ECO103_1236	Escherichia coli	Escherichia coli O103:H2 12009	415	0.988		PICI	1326038	1327285	11.1	Similar to <i>Escherichia coli</i> O55:H7 CB9615
		ecf:ECH74115 1571	Escherichia coli	Escherichia coli O157:H7 EC4115	409	0.995		PICI	1535679	1536908	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		ecoh:ECRM13516_144 0	Escherichia coli	Escherichia coli O145:H28 RM13516	409	0.995		PICI	1438956	1440185	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		<u>ecoo:ECRM13514_148</u> 4	Escherichia coli	Escherichia coli O145:H28 RM13514	409	0.995		PICI	1462425	1463654	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		<u>elr:ECO55CA74_0677</u> 0	Escherichia coli	Escherichia coli O55:H7 RM12579	409	0.995		PICI	1438336	1439565	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		 etw:ECSP_1490	Escherichia coli	Escherichia coli O157:H7 TW14359	409	0.995		PICI	1535967	1537196	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		eoc:CE10_1211	Escherichia coli	Escherichia coli O7:K1 CE10	409	0.99		PICI	1260460	1261689	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eoj:ECO26 1646	Escherichia coli	Escherichia coli O26:H11 11368	409	0.99		PICI	1619628	1620857	11.1	Similar to <i>Escherichia coli</i> O55:H7 CB9615
		ecq:ECED1_1798	Escherichia coli	Escherichia coli O81 ED1a	409	0.91		PICI	1754788	1756017	16.3	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		elo:EC042 1767	Escherichia coli	Escherichia coli O44:H18 042	405	0.921		PICI	1842141	1843358	11	
		ecoi:ECOPMV1_00884	Escherichia coli	Escherichia coli PMV-1	412	0.772	403	PICI	920069	921307	10.5	
		eih:ECOK1 0883	Escherichia coli	Escherichia coli O18:K1:H7 IHE3034	412	0.772	403	PICI	920456	921694	10.5	Same as Escherichia coli PMV-1
		elu:UM146_13240	Escherichia coli	Escherichia coli UM146	412	0.772	403	PICI	2730562	2731800	10.5	Same as Escherichia coli PMV-1
		ssn:SSON 0868	Shigella sonnei	Shigella sonnei Ss046	412	0.774	403	PICI	922493	923731	14.3	
		ecc:c1483	Escherichia coli	Escherichia coli O6:K2:H1 CFT073	314	0.978	312	PICI	1378215	1379159	11.4	
		ecm:EcSMS35_0939	Escherichia coli	Escherichia coli SMS-3-5	406	0.665	403	PICI	955827	957047	15.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		elc:i14 0243	Escherichia coli	Escherichia coli clone D i14	291	0.861	288	PICI	249448	250323	10.6	
		eld:i02 0243	Escherichia coli	Escherichia coli clone D i2	291	0.861	288	PICI	249448	250323	10.6	Same as Escherichia coli clone D i14
		yak:ACZ76_07050	Yersinia aleksiciae	Yersinia aleksiciae 159	407	0.556	408	PICI	1526744	1527967	15.9	

Table S1. EcCIEDL933 orthologues.

EDL933_1774

alpA

Not annotated

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
EDL933_1775		Not annotated										
EDL933_1776	icd-like	Not annotated										
EDL933_1777	icd-like	ece:Z1840	Escherichia coli	Escherichia coli O157:H7 EDL933	61	1		EcCIEDL933				
		ecq:ECED1 1790	Escherichia coli	Escherichia coli O81 ED1a	61	1		PICI	1751707	1751892	16.2	Similar to Escherichia coli O157:H7 EDL933
		ecs:ECs1578	Escherichia coli	Escherichia coli O157:H7 Sakai	61	1		PICI	1597550	1597735	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157_1511	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	61	1		PICI	1599492	1599677	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		eoh:ECO103 4531	Escherichia coli	Escherichia coli O103:H2 12009	61	0.627	59	PICI	4658268	4658453	15.7	Similar to Escherichia coli O55:H7 CB9615
		ecoo:ECRM13514_463 <u>9</u>	Escherichia coli	Escherichia coli O145:H28 RM13514	61	0.593	59	PICI	4532419	4532604	11.9	
EDL933_1778		Not annotated										
EDL933_1779		ece:Z1841	Escherichia coli	Escherichia coli O157:H7 EDL933	86	1		EcCIEDL933				
		ecq:ECED1_1788	Escherichia coli	Escherichia coli O81 ED1a	87	0.977	86	PICI	1751284	1751547	16.2	Similar to Escherichia coli O157:H7 EDL933
		ecs:ECs1580	Escherichia coli	Escherichia coli O157:H7 Sakai	80	1	80	PICI	1597916	1598158	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157_1513	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	80	1	80	PICI	1599858	1600100	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		squ:E4343_10555	Serratia quinivorans	Serratia quinivorans strain PKL:12	90	0.37	54	PICI	2261903	2262175		
EDL933_1780		Not annotated										
EDL933_1781	pri	ece:Z1842_	Escherichia coli	Escherichia coli O157:H7 EDL933	324	1		EcCIEDL933				
		elx:CDCO157_1515	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	710	1	319	PICI	1600402	1602534	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 2648	Escherichia coli	Escherichia coli O81 ED1a	718	0.932	323	PICI	2572885	2575041	16.2	Similar to Escherichia coli O157:H7 EDL933
		sbc:SbBS512 E0756	Shigella boydii	Shigella boydii CDC 3083-94	711	0.802	323	Defective PICI?	711690	713825		
		elo:EC042 2427	Escherichia coli	Escherichia coli O44:H18 042	712	0.709	326	Defective PICI?	2555145	2557283		NC_017626
		kvq:SP68 11475	Klebsiella variicola	Klebsiella variicola DSM 15968	709	0.561	326	PICI	675020	677149		
		ece:Z1843	Escherichia coli	Escherichia coli O157:H7 EDL933	386	1		EcCIEDL933				
		elx:CDCO157_1515	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	710	1	386	PICI	1600402	1602534	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 2648	Escherichia coli	Escherichia coli O81 ED1a	718	0.938	386	PICI	2572885	2575041	16.2	Similar to Escherichia coli O157:H7 EDL933
		elo:EC042_2162	Escherichia coli	Escherichia coli O44:H18 042	688	0.927	386	Defective PICI?	2244313	2246379		NC_017626
		sbc:SbBS512 E0756	Shigella boydii	Shigella boydii CDC 3083-94	711	0.774	389	Defective PICI?	711690	713825		Only an int fragment and alpA
		kpr:KPR 1457	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. rhinoscleromatis SB3432	926	0.689	386	Defective PICI?	1525479	1528259		NC_021232
		pge:LG71_03480	Pluralibacter gergoviae	Pluralibacter gergoviae strain FB2	925	0.668	386	PICI?	721490	724267	19.9	CP009450
		kqv:B8P98 23010	Klebsiella quasivariicola	Klebsiella quasivariicola KPN1705	709	0.701	384	PICI?	4553066	4555195		CP022823
		ecls:LI67_021875	Enterobacter roggenkampii	Enterobacter roggenkampii 35734	711	0.694	385	PICI	4452924	4455059	16.9	
		kvq:SP68 11475	Klebsiella variicola	Klebsiella variicola DSM 15968	709	0.69	384	PICI	675020	677149		CP010523
		rtg:NCTC13098_01103	Raoultella terrigena	Raoultella terrigena NCTC13098	887	0.687	386	PICI?	902863	905526		LR131271
		elo:EC042_1762	Escherichia coli	Escherichia coli O44:H18 042	155	0.855	76	PICI	1832521	1843545	11	

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		eoj:ECO26_1649	Escherichia coli	Escherichia coli O26:H11 11368	154	0.855	76	PICI	1619447	1630554	11.1	Same as Escherichia coli O157:H7 EC4115
		etw:ECSP_1494	Escherichia coli	Escherichia coli O157:H7 TW14359	154	0.855	76	PICI	1535786	1547005	11.2	Same as Escherichia coli O157:H7 EC4115
		eoh:ECO103_1239	Escherichia coli	Escherichia coli O103:H2 12009	154	0.842	76	PICI	1325875	1336965	11.1	Similar to Escherichia coli O157:H7 EC4115
		eoi:ECO111_2917	Escherichia coli	Escherichia coli O111:H- 11128	77	0.849	73	PICI	2855234	2864550	9.3	
		eok:G2583_1393	Escherichia coli	Escherichia coli O55:H7 CB9615	77	0.849	73	PICI	1444572	1455794	11.2	Same as Escherichia coli O157:H7 EC4115
		sfe:SFxv_1288	Shigella flexneri	Shigella flexneri 2002017	66	0.981	54	PICI?	1232114	1246489	14.4	HNH; terL
EDL933_1782		ece:Z1844	Escherichia coli	Escherichia coli O157:H7 EDL933	83	1		EcCIEDL933				
		ecs:ECs1586	Escherichia coli	Escherichia coli O157:H7 Sakai	83	1		PICI	1600965	1601216	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157 1519	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	83	1		PICI	1602905	1603156	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecf:ECH74115 1578	Escherichia coli	Escherichia coli O157:H7 EC4115	83	0.915	82	PICI	1541251	1541502	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		ecoh:ECRM13516_144 7	Escherichia coli	Escherichia coli O145:H28 RM13516	83	0.915	82	PICI	1444527	1444778	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		<u>ecoo:ECRM13514_149</u> 1	Escherichia coli	Escherichia coli O145:H28 RM13514	83	0.915	82	PICI	1467997	1468248	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		elo:EC042 1758	Escherichia coli	Escherichia coli O44:H18 042	83	0.915	82	PICI	1837472	1837723	11	EcCIO42
		<u>elr:ECO55CA74_0681</u> 5	Escherichia coli	Escherichia coli O55:H7 RM12579	83	0.915	82	PICI	1443909	1444160	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		eoh:ECO103 1243	Escherichia coli	Escherichia coli O103:H2 12009	83	0.915	82	PICI	1331498	1331749	11.1	Similar to <i>Escherichia coli</i> O55:H7 CB9615
		eoj:ECO26 1653	Escherichia coli	Escherichia coli O26:H11 11368	83	0.915	82	PICI	1625080	1625331	11.1	Similar to <i>Escherichia coli</i> O55:H7 CB9615
		eok:G2583_1397	Escherichia coli	Escherichia coli O55:H7 CB9615	83	0.915	82	PICI	1450327	1450578	11.2	Similar to EcCICFT073
		etw:ECSP 1498	Escherichia coli	Escherichia coli O157:H7 TW14359	83	0.915	82	PICI	1541539	1541790	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		sbo:SBO 2129	Shigella boydii	Shigella boydii Sb227	93	0.915	82	PICI	2102851	2103132	10.7	
		sfe:SFxv 1293	Shigella flexneri	Shigella flexneri 2002017	92	0.889	81	PICI	1238098	1238376	14.4	Similar to Escherichia coli O157:H7 EDL933
		<u>sfl:SF1136</u>	Shigella flexneri	Shigella flexneri 301	92	0.889	81	PICI	1180747	1181025	14.7	Similar to Shigella flexneri 2002017
		sft:NCTC1 01192	Shigella flexneri	Shigella flexneri NCTC1	92	0.889	81	PICI	1139191	1139469	14.7	Similar to Shigella flexneri 2002017
		eoi:ECO111 2922	Escherichia coli	Escherichia coli O111:H- 11128	81	0.864		PICI	2861820	2862065	9.3	
		ecq:ECED1 1785	Escherichia coli	Escherichia coli O81 ED1a	92	0.795	78	PICI	1748669	1748947	16.3	Similar to Escherichia coli O157:H7 EDL933
		elc:i14 0251	Escherichia coli	Escherichia coli clone D i14	66	0.909		PICI	254958	255158	10.6	
		eld:i02 0251	Escherichia coli	Escherichia coli clone D i2	66	0.909		PICI	254958	255158	10.6	Same as Escherichia coli clone D i14
		<u>sfx:S1216</u>	Shigella flexneri	Shigella flexneri 2457T	66	0.909		PICI	1183718	1183918	14.7	Similar to Shigella flexneri 2002017
		ect:ECIAI39_2019	Escherichia coli	Escherichia coli O7:K1 IAI39	85	0.843	70	PICI	2068323	2068580	14.5	Similar to Escherichia coli O157:H7 EDL933
		eoc:CE10 1218	Escherichia coli	Escherichia coli O7:K1 CE10	85	0.843	70	PICI	1266375	1266632	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		<u>ecc:c1496</u>	Escherichia coli	Escherichia coli O6:K2:H1 CFT073	85	0.829	70	PICI	1384284	1384541	11.2	
		ecoi:ECOPMV1 00891	Escherichia coli	Escherichia coli PMV-1	85	0.829	70	PICI	925423	925680	10.5	
		eih:ECOK1_0890	Escherichia coli	Escherichia coli O18:K1:H7 IHE3034	85	0.829	70	PICI	925810	926067	10.5	Same as Escherichia coli PMV-1
		elu:UM146 13205	Escherichia coli	Escherichia coli UM146	85	0.829	70	PICI	2726191	2726448	10.5	Same as Escherichia coli PMV-1

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		ssn:SSON_0875	Shigella sonnei	Shigella sonnei Ss046	81	0.74	77	PICI	930165	930410	14.3	
		ecm:EcSMS35_0947	Escherichia coli	Escherichia coli SMS-3-5	81	0.727	77	PICI	961999	962244	15.2	Similar to Escherichia coli O157:H7 EDL933
		<u>sfn:SFy 1637</u>	Shigella flexneri	Shigella flexneri 2003036	59	0.915		PICI	1204708	1204887	14.4	Same as Shigella flexneri 2002017
		sfs:SFyv 1689	Shigella flexneri	Shigella flexneri Shi06HN006	59	0.915		PICI	1223396	1223575	14.4	Same as Shigella flexneri 2002017
		eln:NRG857 05750	Escherichia coli	Escherichia coli O83:H1 NRG 857C	81	0.688	77	Prophage?	1205337	1205582		Chimera prophage & PICI
EDL933_1783	ssb	ece:Z1845	Escherichia coli	Escherichia coli O157:H7 EDL933	136	1		EcCIEDL933				
		ecs:ECs1587	Escherichia coli	Escherichia coli O157:H7 Sakai	136	1		PICI	1601213	1601623	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157 1520	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	136	1		PICI	1603153	1603563	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecc:c1497	Escherichia coli	Escherichia coli O6:K2:H1 CFT073	136	0.985		PICI	1384538	1384948	11.2	
		ecq:ECED1 1784	Escherichia coli	Escherichia coli O81 ED1a	136	0.985		PICI	1748262	1748672	16.3	Similar to Escherichia coli O157:H7 EDL933
		eoj:ECO26 2319	Escherichia coli	Escherichia coli O26:H11 11368	136	0.985		PICI	2247460	2247870	14.9	Similar to Escherichia coli O157:H7 EDL933
		ecoh:ECRM13516_144 8	Escherichia coli	Escherichia coli O145:H28 RM13516	136	0.978		PICI	1444775	1445185	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		ecoo:ECRM13514_149 2	Escherichia coli	Escherichia coli O145:H28 RM13514	136	0.978		PICI	1468245	1468655	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		_ elo:EC042_1757_	Escherichia coli	Escherichia coli O44:H18 042	136	0.978		PICI	1837065	1837475	11	
		<u>elr:ECO55CA74_0682</u> 0	Escherichia coli	Escherichia coli O55:H7 RM12579	136	0.978		PICI	1444157	1444567	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		_ eoh:ECO103_1244	Escherichia coli	Escherichia coli O103:H2 12009	136	0.978		PICI	1331746	1332156	11.1	Similar to Escherichia coli O55:H7 CB9615
		eok:G2583 1398	Escherichia coli	Escherichia coli O55:H7 CB9615	136	0.978		PICI	1450575	1450985	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		sbo:SBO 2128	Shigella boydii	Shigella boydii Sb227	136	0.978		PICI	2102444	2102854	10.7	
		ecf:ECH74115 1579	Escherichia coli	Escherichia coli O157:H7 EC4115	136	0.971		PICI	1541499	1541909	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		etw:ECSP 1499	Escherichia coli	Escherichia coli O157:H7 TW14359	136	0.971		PICI	1541787	1542197	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		ect:ECIAI39 2018	Escherichia coli	Escherichia coli O7:K1 IAI39	136	0.824		PICI	2067916	2068326	14.5	Similar to Escherichia coli O157:H7 EDL933
		eoc:CE10 1219	Escherichia coli	Escherichia coli O7:K1 CE10	136	0.824		PICI	1266629	1267039	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eln:NRG857 05755	Escherichia coli	Escherichia coli O83:H1 NRG 857C	149	0.685		Prophage?	1205579	1206028		Chimera prophage & PICI
		ecoi:ECOPMV1 00892	Escherichia coli	Escherichia coli PMV-1	140	0.721		PICI	925677	926099	10.5	
		eih:ECOK1 0891	Escherichia coli	Escherichia coli O18:K1:H7 IHE3034	140	0.721		PICI	926064	926486	10.5	Same as Escherichia coli PMV-1
		elc:i14 0252	Escherichia coli	Escherichia coli clone D i14	140	0.721		PICI	255155	255577	10.6	
EDL933_1784		Not annotated										
EDL933_1785		ece:Z1846	Escherichia coli	Escherichia coli O157:H7 EDL933	100	1		EcCIEDL933				
		ecs:ECs1589	Escherichia coli	Escherichia coli O157:H7 Sakai	100	1		PICI	1601953	1602255	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157_1522	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	100	1		PICI	1603893	1604195	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1_1781	Escherichia coli	Escherichia coli O81 ED1a	100	0.91		PICI	1747637	1747939	16.3	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfl:SF1137	Shigella flexneri	Shigella flexneri 301	100	0.91		PICI	1181562	1181864	14.7	Similar to Shigella flexneri 2002017
		sfv:SFV_1153	Shigella flexneri	Shigella flexneri 8401	100	0.9		PICI	1199642	1199944	15.5	Similar to Shigella flexneri 2002017

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		eoj:ECO26_2317	Escherichia coli	Escherichia coli O26:H11 11368	74	1		PICI	2246827	2247051	14.9	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		ecoh:ECRM13516_145 1	Escherichia coli	Escherichia coli O145:H28 RM13516	74	0.986		PICI	1445595	1445819	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		ecoo:ECRM13514_149 5	Escherichia coli	Escherichia coli O145:H28 RM13514	74	0.986		PICI	1469065	1469289	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		elo:EC042_1755	Escherichia coli	Escherichia coli O44:H18 042	74	0.986		PICI	1836431	1836655	11	
		elr:ECO55CA74_0683 0	Escherichia coli	Escherichia coli O55:H7 RM12579	74	0.986		PICI	1444977	1445201	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		eoh:ECO103_1246	Escherichia coli	Escherichia coli O103:H2 12009	74	0.986		PICI	1332566	1332790	11.1	Similar to <i>Escherichia coli</i> O55:H7 CB9615
		etw:ECSP_1501	Escherichia coli	Escherichia coli O157:H7 TW14359	74	0.986		PICI	1542607	1542831	11.2	Same as <i>Escherichia coli</i> O55:H7 CB9615
		sbo:SBO_2127	Shigella boydii	Shigella boydii Sb227	74	0.986		PICI	2101810	2102034	10.7	
		sft:NCTC1_01195	Shigella flexneri	Shigella flexneri NCTC1	74	0.946		PICI	1140084	1140308	14.7	Similar to Shigella flexneri 2002017
		sfx:S1219	Shigella flexneri	Shigella flexneri 2457T	74	0.946		PICI	1184533	1184757	14.7	Similar to Shigella flexneri 2002017
		eas:Entas_3970	Enterobacter soli	Enterobacter soli LF7a	86	0.419	74	PICI	4262187	4262447		
		ecm:EcSMS35_0949	Escherichia coli	Escherichia coli SMS-3-5	80	0.444	72	PICI	962689	962931	15.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
EDL933_1786	capsid	ece:Z1847	Escherichia coli	Escherichia coli O157:H7 EDL933	385	1		EcCIEDL933				
		ecs:ECs1590	Escherichia coli	Escherichia coli O157:H7 Sakai	385	1		PICI	1602548	1603705	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157 1523	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	385	1		PICI	1604488	1605645	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		eoj:ECO26 2316	Escherichia coli	Escherichia coli O26:H11 11368	385	1		PICI	2245378	2246535	14.9	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 1780	Escherichia coli	Escherichia coli O81 ED1a	401	0.995	385	PICI	1746179	1747384	16.3	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eoc:CE10 1221	Escherichia coli	Escherichia coli O7:K1 CE10	385	0.992		PICI	1267609	1268766	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		pcol:F1325_15335	Proteus columbae	Proteus columbae T60	384	0.695	383	Defective PICI?	3267873	3269027		Only int and packaging genes
		ect:ECIAI39 2017	Escherichia coli	Escherichia coli O7:K1 IAI39	390	0.696	388	PICI	2066174	2067346	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		xne:XNC1 4107	Xenorhabdus nematophila	Xenorhabdus nematophila ATCC 19061	383	0.681	382	PICI	3980210	3981361		NC_014228
		xnm:XNC2 3961	Xenorhabdus nematophila	Xenorhabdus nematophila AN6/1	383	0.681	382	PICI	3979724	3980875		Similar to Xenorhabdus nematophila ATCC 19061
		xpo:XPG1 1127	Xenorhabdus poinarii	Xenorhabdus poinarii G6	382	0.683		PICI	1092722	1093870		
		<u>sfn:SFy 1641</u>	Shigella flexneri	Shigella flexneri 2003036	275	0.989		PICI	1205664	1206491	14.4	Same as Shigella flexneri 2002017
		sfs:SFyv 1693	Shigella flexneri	Shigella flexneri Shi06HN006	275	0.989		PICI	1224352	1225179	14.4	Same as Shigella flexneri 2002017
		sft:NCTC1_01196	Shigella flexneri	Shigella flexneri NCTC1	275	0.989		PICI	1140609	1141436	14.7	Similar to Shigella flexneri 2002017
		xdo:XDD1 1687	Xenorhabdus doucetiae	Xenorhabdus doucetiae FRM16	382	0.681		PICI	1687884	1689032		
		xbv:XBW1_2702	Xenorhabdus bovienii	Xenorhabdus bovienii CS03	384	0.674	383	PICI	2582109	2583263		FO818637
		ans:ArsFIN 22310	Arsenophonus nasoniae	Arsenophonus nasoniae FIN	384	0.674	383	Prophage?	2081325	2082479		CP038613 / Chimera prophage & PICI
		eas:Entas_3967	Enterobacter soli	Enterobacter soli LF7a	388	0.651	387	PICI	4259413	4260579		CP003026
		ebc:C2U52 10910	Enterobacteriaceae bacterium	Enterobacteriaceae bacterium ENNIH2	388	0.651	387	PICI	1834181	1835347	15.9	CP026192.1
		cfq:C2U38_23290	Citrobacter freundii	Citrobacter freundii complex sp. CFNIH3	388	0.652		PICI	4637771	4638937	16.4	CP026235
		ecls:LI67 021860	Enterobacter roggenkampii	Enterobacter roggenkampii 35734	388	0.646	387	PICI	4450286	4451452	16.9	

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
EDL933_1787	protease	<u>ece:Z1848</u>	Escherichia coli	Escherichia coli O157:H7 EDL933	190	1		EcCIEDL933				
		ecs:ECs1591	Escherichia coli	Escherichia coli O157:H7 Sakai	190	1		PICI	1603745	1604317	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157 1524	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	190	1		PICI	1605685	1606257	15.4	Same as Escherichia coli O157:H7 EDL933
		eoc:CE10 1222	Escherichia coli	Escherichia coli O7:K1 CE10	190	0.995		PICI	1268806	1269378	14.5	Similar to Escherichia coli O157:H7 FDI 933
		ecq:ECED1 1779	Escherichia coli	Escherichia coli O81 ED1a	190	0.979		PICI	1745567	1746139	16.2	Similar to Escherichia coli O157:H7 EDI 933
		sfe:SFxv 1299	Shigella flexneri	Shigella flexneri 2002017	190	0.979		PICI	1240350	1240922	14.4	Similar to Escherichia coli O157:H7 EDL933
		sfl:SF1139	Shigella flexneri	Shigella flexneri 301	190	0.979		PICI	1183362	1183934	14.7	Similar to Shigella flexneri 2002017
		<u>sfn:SFy 1643</u>	Shigella flexneri	Shigella flexneri 2003036	190	0.979		PICI	1206861	1207433	14.4	Same as Shigella flexneri 2002017
		sfs:SFyv 1695	Shigella flexneri	Shigella flexneri Shi06HN006	190	0.979		PICI	1225549	1226121	14.4	Same as Shigella flexneri 2002017
		sft:NCTC1_01198	Shigella flexneri	Shigella flexneri NCTC1	190	0.979		PICI	1141806	1142378	14.7	Similar to Shigella flexneri 2002017
		<u>sfx:S1222</u>	Shigella flexneri	Shigella flexneri 2457T	190	0.979		PICI	1186255	1186827	14.7	Similar to Shigella flexneri 2002017
		ect:ECIAI39 2016	Escherichia coli	Escherichia coli O7:K1 IAI39	191	0.953		PICI	2065563	2066138	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfv:SFV 1157	Shigella flexneri	Shigella flexneri 8401	185	0.978		PICI	1202234	1202791	15.5	Same as Shigella flexneri 2002017
		eoj:ECO26 2315	Escherichia coli	Escherichia coli O26:H11 11368	185	0.973		PICI	2244766	2245323	14.9	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		<u>mety:MRY16398_4673</u> <u>0</u>	Metakosakonia sp. MRY16-398	Metakosakonia sp. MRY16-398	186	0.649	188	PICI?	4874313	4874873		AP018756
		kpa:KPNJ1 00479	Klebsiella pneumoniae	Klebsiella pneumoniae 30660/NJST258_1	191	0.637	193	PICI	473286	473861	16	CP006923
		kps:KPNJ2 00518	, Klebsiella pneumoniae	Klebsiella pneumoniae 30684/NJST258_2	191	0.637	193	PICI	518333	518908	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpc:KPNIH10 23935	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH10	186	0.649	188	PICI	4884677	4885237	16	Same as Klebsiella pneumoniae 30660/NJST258 1
		kpg:KPNIH32 25110	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae KPNIH32	186	0.649	188	PICI	5008344	5008904	16	Same as Klebsiella pneumoniae 30660/NJST258_1
		kph:KPNIH24_04865	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH24	186	0.649	188	PICI	1025767	1026327	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		<u>kpj:N559_0490</u>	Klebsiella pneumoniae	Klebsiella pneumoniae JM45	186	0.649	188	PICI	510375	510935	16	Same as Klebsiella pneumoniae 30660/NJST258 1
EDL933_1788	portal	ece:Z1849	Escherichia coli	Escherichia coli O157:H7 EDL933	403	1		EcCIEDL933				-
		ecs:ECs1592	Escherichia coli	Escherichia coli O157:H7 Sakai	403	0.998		PICI	1604319	1605530	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157_1525	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	403	0.998		PICI	1606259	1607470	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 1778	Escherichia coli	Escherichia coli O81 ED1a	403	0.993		PICI	1744354	1745565	16.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eoj:ECO26 2314	Escherichia coli	Escherichia coli O26:H11 11368	403	0.993		PICI	2243553	2244764	14.9	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eoc:CE10 1223	Escherichia coli	Escherichia coli O7:K1 CE10	403	0.99		PICI	1269380	1270591	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfv:SFV_1158	Shigella flexneri	Shigella flexneri 8401	403	0.973		PICI	1202793	1204004	15.5	Same as Shigella flexneri 2002017
		<u>sfe:SFxv 1300</u>	Shigella flexneri	Shigella flexneri 2002017	403	0.975		PICI	1240924	1242135	14.4	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		<u>sfn:SFy_1644</u>	Shigella flexneri	Shigella flexneri 2003036	403	0.975		PICI	1207435	1208646	14.4	Same as Shigella flexneri 2002017
		sfs:SFyv 1696	Shigella flexneri	Shigella flexneri Shi06HN006	403	0.975		PICI	1226123	1227334	14.4	Same as Shigella flexneri 2002017
		<u>sfl:SF1140</u>	Shigella flexneri	Shigella flexneri 301	403	0.973		PICI	1183936	1185147	14.7	Similar to Shigella flexneri 2002017
		ect:ECIAI39 2015	Escherichia coli	Escherichia coli O7:K1 IAI39	404	0.965	401	PICI	2064347	2065561	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		sft:NCTC1 01199	Shigella flexneri	Shigella flexneri NCTC1	391	0.972		PICI	1142416	1143591	14.7	Similar to Shigella flexneri 2002017
		<u>sfx:S1223</u>	Shigella flexneri	Shigella flexneri 2457T	375	0.973		PICI	1186865	1187992	14.7	Similar to Shigella flexneri 2002017
		kpa:KPNJ1 00480	Klebsiella pneumoniae	Klebsiella pneumoniae 30660/NJST258_1	413	0.803	402	PICI	473863	475104	16	CP006923
		kpc:KPNIH10_23930	, Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH10	413	0.803	402	PICI	4883434	4884675	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpg:KPNIH32_25105	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae KPNIH32	413	0.803	402	PICI	5007101	5008342	16	Same as Klebsiella pneumoniae 30660/NJST258_1
		kph:KPNIH24_04870	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae KPNIH24	413	0.803	402	PICI	1026329	1027570	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		<u>kpj:N559_0491</u>	Klebsiella	Klebsiella pneumoniae JM45	413	0.803	402	PICI	510937	512178	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kpm:KPHS 48100	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae HS11286	413	0.803	402	PICI	4822860	4824101	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kpne:KU54_002360	Klebsiella	Klebsiella pneumoniae 32192	413	0.803	402	PICI	474960	476201	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
EDL933_1789	Head-tail connecto r	Not annotated	priodinionido									00000/1001200_1
EDL933_1790	Head-tail connecto r	ece:Z1851	Escherichia coli	Escherichia coli O157:H7 EDL933	98	1		EcCIEDL933				
		ecs:ECs1594	Escherichia coli	Escherichia coli O157:H7 Sakai	98	1		PICI	1605862	1606158	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157_1527	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	98	1		PICI	1607802	1608098	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		eoj:ECO26 2312	Escherichia coli	Escherichia coli O26:H11 11368	98	1		PICI	2242925	2243221	14.9	Similar to Escherichia coli O157:H7 EDL933
		eoc:CE10_1225	Escherichia coli	Escherichia coli O7:K1 CE10	98	0.99		PICI	1270923	1271219	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 1777	Escherichia coli	Escherichia coli O81 ED1a	98	0.99		PICI	1743726	1744022	16.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		<u>sfv:SFV_1159</u>	Shigella flexneri	Shigella flexneri 8401	98	0.98		PICI	1204336	1204632	15.5	Same as Shigella flexneri 2002017
		sfe:SFxv 1302	Shigella flexneri	Shigella flexneri 2002017	98	0.969		PICI	1242467	1242763	14.4	Similar to Escherichia coli O157:H7 EDL933
		<u>sfl:SF1142</u>	Shigella flexneri	Shigella flexneri 301	98	0.969		PICI	1185479	1185775	14.7	Similar to Shigella flexneri 2002017
		sft:NCTC1_01201	Shigella flexneri	Shigella flexneri NCTC1	98	0.969		PICI	1143923	1144219	14.7	Similar to Shigella flexneri 2002017
		<u>sfx:S1225</u>	Shigella flexneri	Shigella flexneri 2457T	98	0.969		PICI	1188372	1188668	14.7	Similar to Shigella flexneri 2002017
		ect:ECIAI39 2013	Escherichia coli	Escherichia coli O7:K1 IAI39	98	0.745		PICI	2063719	2064015	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		cfq:C2U38_23265	Citrobacter freundii	Citrobacter freundii complex sp. CFNIH3	97	0.653		PICI	4634747	4635040	16.4	
		eclz:LI64 18485	Enterobacter hormaechei	Enterobacter hormaechei subsp. Hormaechei 34983	97	0.642	95	PICI	3896093	3896386		
		eas:Entas_3963	Enterobacter soli	Enterobacter soli LF7a	97	0.642	95	PICI	4256943	4257236		CP003026
		<u>mety:MRY16398_4670</u> 0	Metakosakonia sp. MRY16-398	Metakosakonia sp. MRY16-398	96	0.633	98	PICI?	4872457	4872747		AP018756
		pcol:F1325_15320	Proteus columbae	Proteus columbae T60	98	0.602		Defective PICI?	3265752	3266048		Only int and packaging genes
		ebc:C2U52 10930	Enterobacteriaceae bacterium	Enterobacteriaceae bacterium ENNIH2	96	0.633	98	PICI	1837519	1837809	15.9	CP026192.1
		vak:ACZ76_06980	Yersinia aleksiciae	Yersinia aleksiciae 159	100	0.61		PICI	1517225	1517527	15.9	
		yel:LC20 00574	Yersinia enterocolitica	Yersinia enterocolitica LC20	94	0.596		PICI	513710	513994	15.9	
EDL933_1791	HNH	ece:Z1852_	Escherichia coli	Escherichia coli O157:H7 EDL933	129	1		EcCIEDL933				
		ecs:ECs1595	Escherichia coli	Escherichia coli O157:H7 Sakai	146	0.992	129	PICI	1606158	1606598	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		ect:ECIAI39 2012	Escherichia coli	Escherichia coli O7:K1 IAI39	146	0.992	129	PICI	2063279	2063719	14.5	Similar to Escherichia coli O157:H7 EDL933
		elx:CDCO157 1528	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	146	0.992	129	PICI	1608098	1608538	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 1775	Escherichia coli	Escherichia coli O81 ED1a	145	0.992	128	PICI	1743289	1743726	16.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfl:SF1143	Shigella flexneri	Shigella flexneri 301	146	0.984	129	PICI	1185775	1186215	14.7	Similar to Shigella flexneri 2002017
		sft:NCTC1 01202	Shigella flexneri	Shigella flexneri NCTC1	146	0.984	129	PICI	1144219	1144659	14.7	Similar to Shigella flexneri 2002017
		elo:EC042 2153	Escherichia coli	Escherichia coli O44:H18 042	129	0.829		Defective PICI?	2238523	2238912		
		ecm:EcSMS35_0955	Escherichia coli	Escherichia coli SMS-3-5	146	0.822	129	PICI	967055	967495	15.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		eas:Entas 3962	Enterobacter soli	Enterobacter soli LF7a	147	0.727	128	PICI	4256500	4256943		CP003026
		ecls:LI67 021835	Enterobacter roggenkampii	Enterobacter roggenkampii 35734	147	0.732	127	PICI	4447351	4447794	16.9	
		eclz:LI64 04020	Enterobacter hormaechei	Enterobacter hormaechei subsp. Hormaechei 34983	147	0.719	128	PICI	843681	844124		
		kpa:KPNJ1 00483	Klebsiella pneumoniae	Klebsiella pneumoniae 30660/NJST258 1	147	0.727	128	PICI	475732	476175	16	CP006923
		kpc:KPNIH10_23915	, Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH10	147	0 727	128	PICI	4882363	4882806	16	Same as Klebsiella pneumoniae 30660/NJST258_1
		kpg:KPNIH32_25090	Klebsiella	Klebsiella pneumoniae	147	0.727	129	PICI	5006020	5006472	16	Same as Klebsiella pneumoniae
		kph:KPNIH24_04885	Klebsiella	KI NII 132 Klebsiella pneumoniae subsp. pneumoniae KPNIH24	147	0.727	128	PICI	1028198	1028641	16	Same as Klebsiella pneumoniae
		kpne:KU54_002375	Klebsiella	Klabsialla pnaumaniaa 32102	147	0.727	120	PICI	476820	477272	16	Same as Klebsiella pneumoniae
		kpnu:L186_02380	Klebsiella	Klebsiella pneumoniae 32132	147	0.727	120		475585	476028	16	Same as Klebsiella pneumoniae
		kpq:KPR0928_23435	Klebsiella	Klebsiella pneumoniae subsp. pneumoniae	147	0.727	120	PICI	4797604	4798047	16	Same as Klebsiella pneumoniae
		kps:KPNJ2 00522	Klebsiella	Klebsiella pneumoniae 30684/N IST258 2	147	0.727	128	PICI	520779	521222	16	Same as Klebsiella pneumoniae
		kpw:KPNIH30 24210	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH30	147	0.727	120	PICI	4793717	4794160	17.2	Similar to Klebsiella pneumoniae 30660/NJST258_1
EDL933_1792		Not annotated	ļ									·····
EDL933_1793	terS	ece:Z1853	Escherichia coli	Escherichia coli O157:H7 EDL933	118	1		EcCIEDL933				
		ecq:ECED1 1774	Escherichia coli	Escherichia coli O81 ED1a	118	1		PICI	1742641	1742997	16.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		ecs:ECs1597	Escherichia coli	Escherichia coli O157:H7 Sakai	118	1		PICI	1606888	1607244	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ect:ECIAI39 2011	Escherichia coli	Escherichia coli O7:K1 IAI39	118	1		PICI	2062634	2062990	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		elx:CDCO157 1530	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	118	1		PICI	1608828	1609184	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		eoj:ECO26 2309	Escherichia coli	Escherichia coli O26:H11 11368	118	1		PICI	2241840	2242196	14.9	Similar to Escherichia coli O157:H7 EDL933
		ecm:EcSMS35_0956	Escherichia coli	Escherichia coli SMS-3-5	127	0.889	117	PICI	967757	968140	15.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		elo:EC042_2152	Escherichia coli	Escherichia coli O44:H18 042	165	0.889	117	Defective PICI?	2237878	2238375		
		cfq:C2U38 23250	Citrobacter freundii	Citrobacter freundii complex sp. CFNIH3	118	0.831		PICI	4633674	4634030	16.4	
		ecls:LI67_021830	Enterobacter roggenkampii	Enterobacter roggenkampii 35734	118	0.831		PICI	4446721	4447077	16.9	
		eas:Entas 3959	Enterobacter soli	Enterobacter soli LF7a	118	0.822		PICI	4255868	4256224		CP003026
		ebc:C2U52_10945	Enterobacteriaceae bacterium	Enterobacteriaceae bacterium ENNIH2	118	0.822		PICI	1838528	1838884	15.9	CP026192.1
		eclz:LI64 04025	Enterobacter hormaechei	Enterobacter hormaechei subsp. Hormaechei 34983	118	0.822		PICI	844400	844756		

EcCIEDL933 gene	Function	Orthologs	Species	Full name	Length	Similarity	Overlap	Element	Start	End	Size	Comments
		kpa:KPNJ1 00484	Klebsiella pneumoniae	Klebsiella pneumoniae 30660/NJST258_1	176	0.822	118	PICI	476277	476807	16	CP006923
		kpc:KPNIH10_23905	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH10	118	0.822		PICI	4881731	4882087	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpg:KPNIH32_25080	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH32	118	0.822		PICI	5005398	5005754	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kph:KPNIH24 04895	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH24	118	0.822		PICI	1028917	1029273	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpm:KPHS 48050	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae HS11286	118	0.822		PICI	4821157	4821513	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kpne:KU54 002385	Klebsiella pneumoniae	Klebsiella pneumoniae 32192	118	0.822		PICI	477548	477904	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpnu:L186 02390	, Klebsiella pneumoniae	Klebsiella pneumoniae 34618	118	0.822		PICI	476304	476660	16	Same as Klebsiella pneumoniae 30660/NJST258_1
		kpq:KPR0928_23425	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPR0928	118	0.822		PICI	4796972	4797328	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
EDL933_1794	terL	ece:Z1854	Escherichia coli	Escherichia coli O157:H7 EDL933	509	1		EcCIEDL933				
		elx:CDCO157 1531	Escherichia coli	Escherichia coli O157:H7 Xuzhou21	553	0.998	509	PICI	1609168	1610829	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecs:ECs1598	Escherichia coli	Escherichia coli O157:H7 Sakai	553	0.996	509	PICI	1607228	1608889	15.4	Same as <i>Escherichia coli</i> O157:H7 EDL933
		ecq:ECED1 1773	Escherichia coli	Escherichia coli O81 ED1a	553	0.984	509	PICI	1740996	1742657	16.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfv:SFV 1161	Shigella flexneri	Shigella flexneri 8401	553	0.986	509	PICI	1205604	1207265	15.5	Same as Shigella flexneri 2002017
		sfe:SFxv 1306	Shigella flexneri	Shigella flexneri 2002017	553	0.984	509	PICI	1243735	1245396	14.4	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sft:NCTC1 01204	Shigella flexneri	Shigella flexneri NCTC1	553	0.984	509	PICI	1145191	1146852	14.7	Similar to Shigella flexneri 2002017
		ect:ECIAI39 2010	Escherichia coli	Escherichia coli O7:K1 IAI39	553	0.978	509	PICI	2060989	2062650	14.5	Similar to Escherichia coli O157:H7 EDL933
		elo:EC042 2151	Escherichia coli	Escherichia coli O44:H18 042	553	0.943	509	Defective PICI?	2236233	2237894		
		eoj:ECO26 2308	Escherichia coli	Escherichia coli O26:H11 11368	492	0.984		PICI	2240195	2241673	14.9	Similar to Escherichia coli O157:H7 EDL933
		ecm:EcSMS35_0957	Escherichia coli	Escherichia coli SMS-3-5	553	0.943	509	PICI	968124	969785	15.2	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		sfl:SF1146	Shigella flexneri	Shigella flexneri 301	492	0.986		PICI	1186930	1188408	14.7	Similar to Shigella flexneri 2002017
		<u>sfn:SFy 1652</u>	Shigella flexneri	Shigella flexneri 2003036	492	0.986		PICI	1210429	1211907	14.4	Same as Shigella flexneri 2002017
		<u>sfs:SFyv 1704</u>	Shigella flexneri	Shigella flexneri Shi06HN006	492	0.986		PICI	1229117	1230595	14.4	Same as Shigella flexneri 2002017
		<u>sfx:S1228</u>	Shigella flexneri	Shigella flexneri 2457T	492	0.986		PICI	1189823	1191301	14.7	Similar to Shigella flexneri 2002017
		eoc:CE10 1229	Escherichia coli	Escherichia coli O7:K1 CE10	492	0.98		PICI	1272471	1273949	14.5	Similar to <i>Escherichia coli</i> O157:H7 EDL933
		kpa:KPNJ1 00485	Klebsiella pneumoniae	Klebsiella pneumoniae 30660/NJST258_1	553	0.835	509	PICI	476791	478452	16	CP006923
		kpc:KPNIH10_23900	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH10	553	0.835	509	PICI	4880086	4881747	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kpg:KPNIH32 25075	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH32	553	0.835	509	PICI	5003753	5005414	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1
		kph:KPNIH24_04900	Klebsiella pneumoniae	Klebsiella pneumoniae subsp. pneumoniae KPNIH24	553	0.835	509	PICI	1029257	1030918	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258 1
		kpj:N559 0497	Klebsiella pneumoniae	Klebsiella pneumoniae JM45	553	0.835	509	PICI	513865	515526	16	Same as <i>Klebsiella pneumoniae</i> 30660/NJST258_1

Table S2. cf-PICIs in Proteobacteria: Genomes and characteristics.

cf-PICI	Strain	Accession number (Genomic location)	Size (Kb)	att site core	att gene	Accessory genes
EcCIEDL933	Escherichia coli O157:H7str. EDL933	NZ_CP008957.1 (1680148-1695618)	15.4	GGACATATTT	ycfD-phoQ	rdgR; perC
EcCICFSAN00223 6	Escherichia coli O104:H21 str. CFSAN002236	CP023541.1 (1969075-1984466)	15.3	GGACATATTT	ycfD-phoQ	rdgR; perC
EcCIIAI39	Escherichia coli str. IAI39	CU928164.2 (2060161-2074688)	14.5	GGACATATTT	ycfD-phoQ	rdgR; perC
EcCIST130	Escherichia coli str. ST130	CP043478.1 (2044053-2060283)	16.2	GGACATATTT	ycfD-phoQ	rdgR; perC
EcCIPU0103	Escherichia coli str. PUO103	CP014752.1 (2068299-2084242)	15.9	ATAACAGCA	tqsA	rdgR; perC
EcCIRM10386	<i>Escherichia coli</i> O26 str. RM10386	CP028126.1 (2294845-2309731)	14.8	ATAACAGCA	tqsA	rdgR; perC
EcCIRM10042	<i>Escherichia coli</i> O43 str. RM10042	CP028122.1 (1829035-1844575)	15.5	ATAACAGCA	tqsA	rdgR; perC
EcCIED1a.2	Escherichia coli str. ED1a	NC_011745.1 (1739927-1756201)	16.2	ATAACAGCA	tqsA	rdgR; perC
EcCl315650	<i>Escherichia coli</i> strain 315650 SAMN09380356- rid9461733.denovo.011	AAAAWV020000011 .1 (88682-104064)	15.3	ATAACAGCA	tqsA	rdgR; perC
EcCIPA40	Escherichia coli PA40 PA40.contig.34	AKLQ01000035.1 (37524-53136)	15	ATAACAGCA	tqsA	rdgR; perC
EcCIHUST159	Escherichia coli str. HUST159	BFLF01000001.1 (341769-355219)	14.5	ATGATAGTTAT	cspD-clpS	<i>rdg</i> R
EcCISMS-3-5	Escherichia coli SMS-3-5	CP000970.1 (955625-970780)	15.1	AGAAATACCCGTAT	rcnR-thiM	<i>rdg</i> R
EcCID8	Escherichia coli strain D8	CP010151.1 (3045135-3059753)	14.5	AGTGATACACCG	gcd-hpt	<i>rdg</i> R
EcCI144	Escherichia coli strain 144	CP041550.1 (1226228-1243816)	16.2	TACGGCATGAACT	yhdJ-fis	
EcCl392917	Escherichia coli strain 392917 SAMN07599901-rid9192623	AASLTG010000005. 1 (198328-214392)	16	TACGGCATGAACT	yhdJ-fis	
EcCIEC11-7286	Escherichia coli strain EC11- 7286	DABIGM010000022. 1 (12211-28744)	16.5	TACGGCATGAACT	yhdJ-fis	
EcCIEO709	Escherichia coli strain eo709	DABIRI010000029.1 (11862-16534)	16.5	TACGGCATGAACT	yhdJ-fis	
EcCIWW223	Escherichia coli strain WW223	NNAO01000025.1 (12211-28743)	16.5	TACGGCATGAACT	yhdJ-fis	
EcCIPNUSAE0444 09	Escherichia coli strain PNUSAE044409	AAQWOW01000000 4.1	14.9	TACGGCATGAACT	yhdJ-fis	
SfCI8401	Shigella flexneri 5 str. 8401	CP000266.1 (1195009-1210654)	15.5	GGACATATTT	ycfD-phoQ	rdgR; perC

cf-PICI	Strain	Accession number (Genomic location)	Size (Kb)	att site core	att gene	Accessory genes
SfCI301	Shigella flexneri 2a str. 301	AE005674 (1174995-1191146)	14.7	GGACATATTT	ycfD-phoQ	rdgR; perC
SdCICFSAN01095 6	Shigella dysenteriae strain CFSAN010956	CP026827 (1440478-1467734)	14.7	ATAACAGCA	tqsA	rdgR; perC
SeCI08-1209	Salmonella enterica strain 08- 1209	ÀAELMS01000008 (110968-126650)	15.5	TCTAGGATACC	yecR-mug	<i>rdg</i> R
SeCI7830	Salmonella enterica subsp. enterica serovar Typhi strain 7830	MQUN01000001 (132158-147689)	15.7	TCTAGGATACC	sip-mug	rdgR
SeCIFDA336426-1	Salmonella enterica strain FDA336426-1	AACWNE01000000 2 (766394-782129)	16.1	TACGGCATGAACT	yhdJ-fis	
SeCIDerby	Salmonella enterica subsp. enterica serovar Derby strain CVM N30705	JYVB01000038 (94446-111998)	16.3	TACGGCATGAACT	yhdJ-fis	
SeCIKentucky	Salmonella enterica subsp. enterica serovar Kentucky strain CVM N42453	JYZP01000008 (10626-26683)	16	TACGGCATGAACT	yhdJ-fis	
KpCIAR_0148	<i>Klebsiella pneumoniae</i> strain AR 0148	CP021950 (3801580-3817416)	16	TACGGCATGAACT	acrEF/env CD-fis	
KpCIKpN01	<i>Klebsiella pneumoniae</i> strain KpN01	CP012987 (3246415-3261297)	15.4	TACGGCATGAACT	acrEF/env CD-fis	
KvCIGJ3	Klebsiella variicola strain GJ3	CP017289 (4878850- 4894260)	15.4	CTAGGATACCTATAGGATACC	gnat-mug	
KoCICAV1752	<i>Klebsiella oxytoca</i> strain CAV1752	CP018362 (2627065-2643239)	16.2	TACGGCATGAACT	acrEF/env CD-fis	
CfCICFNIH4	Citrobacter freundii complex sp. CFNIH4	CP026231.1 (3899503-3920597)	20.9	TACGGCATGAACT	acrEF/env CD-fis	
CpCITV06	<i>Citrobacter portucalensis</i> strain TV06	VTZD01000023.1 (172654-187873)	15.2	TCTAGGATACC	Hypothetic al- <i>mug</i>	
GaCISCGC	Gilliamella apicola SCGC AB- 598-B02 SCG598B02_1148	JAIM01000024.1 (2961-18737)	15.1	TGTTTATCTAA	bamD- qacE	
GaClwkB1	<i>Gilliamella apicola</i> strain wkB1	CP007445.1 (1377173-1393759)	16.5	TGTTTATCTAA	bamD- qacE	
PmCIATCC29906	Proteus mirabilis ATCC29906 contig00106	ACLE01000080.1 (234168-249990)	15.8	CTTTTTAATTCAATGT	Hypothetic al- <i>fis</i>	
EpCIETW41	Edwardsiella piscicida strain ETW41	CP019440 (2152154-2162424)	17	TACGGCATGAACT	acrEF/env CD-fis	
PgCIFDAARGOS_ 186	Pluralibacter gergoviae strain FDAARGOS_186	ČP020388 (395979- 412296)	16.2	TACGGCATGAACT	acrEF/env CD-fis	
XnCIATCC1906	Xenorhabdus nematophila ATCC 19061	FN667742	NI	NI		
YaCI159	Yersinia aleksiciae strain 159	CP011975 (1511457-1529439)	15.7	TACGGCATGAACT	acrEF/env CD-fis	

Table S3. Phage titres in presence or absence of EcCIEDL933.

Donor strain	Phage titer ^a
594 HK106	1.14E+10 ± 6.01E+09
594 HK106 EcCIEDL933 1795-1796::cat	1.89E+10 ± 1.05E+10
594 HK446	1.27E+10 ± 1.10E+10
594 HK446 EcCIEDL933 1795-1796::cat	2.25E+10 ± 1.31E+10

^aPhage titre/ml of lysate, using *E. coli* 594 as recipient strain. The means and standard deviations from three independent experiments are presented.

Table S4. cf-PICIs in Firmicutes bacteria: Genomes and characteristics.

cf-PICI	Strain	Accession number (Genomic location)	Size (Kb)	att site core	att gene	Accessory genes
SaCIC0673	Staphylococcus aureus str. C0673	JIZS01000037.1 (68245-54456)	13.8	ATGCCAGGTATGATGTA	groEL-gnat	
SaCIVET0180R	Staphylococcus aureus str. VET0180R	JIRR01000005.1 (113720-100048)	13.7	ATGCCAGGAATGATGTAAAAT	groEL	
SxCIHKUOPL8	Staphylococcus xylosus str. HKUOPL8	CP007208.1 (2740485-2753340)	12.9	NI	gmp-cpbp	
SsCICCUG38042	Staphylococcus saprophyticcus subsp bovis str. CCUG38042	NZ_PPRA01000056. 1 (1-14418)	14.5	ATGCCAGGTATGATGTAAAAT		
SeCIDMS15097	Staphylococcus equorum subsp. linens str. DMS15097	NZ_PPQL01000034. 1 (28076-14806)	13.3	TCCCGCCGTCTCCA	smpB-gnat	virE
ShCIS167	Staphylococcus haemolyticus str. S167	CP013911.1 (1221296-1210145)	12.9	NI	comGA	
ShCISNUC5746	Staphylococcus hominis str. SNUC5746	PZHW01000022 (14142-27645)	13.5	TCCCGCCGCCTCCAT	smpB-int	
SpCI589	Staphylococcus pettenkoferi str. 589	JVAY01000011 (103129-116168)	13	NI	pts	
SwCIDE0454	<i>Staphylococcus warneri</i> str. DE0454	VDRS01000006 (89595-75796)	13.8	ATGCCAGGTATGATGTAAA	groEL-sasC	
SaCIIOV5	Staphylococcus arlettae str. IOV5	NZ_SPPT01000005. 1 (102477-115671)	13.2	NI		
BcCIBAG6X1-2	Bacillus cereus str. BAG6X1-2	AHDP01000005 (9694-21878)	12.4	NI	groEL-gnat	
BkCIBDGP4	Bacillus kochii str.BDGP4	CP022983.1 (1531436-1545000)	13.6	TACATCATGCCGCCCATT	groEL-tetR	
BtCIBGSC4W14W1	Bacillus thuringiensis serovar kumamtoensis str. BGSC4W14W1	NFEH01000115.1 (170053-159556)	12.2	NI	s4p	
LcCIBL23	Lactobacillus casei str. BL23	FM177140.1 (3031502-3045382)	13.9	TATTCTGGGTGGTCAGGGGA	had	
LcCILc705	Lactobacillus casei str. Lc705	FM179323.1 (69837- 711868)	13.7	CTTAACGGGATTGAACC		
LrCIGG	Lactobacillus rhamnosus str. GG	NZ_CP031290.1 (2949164-2963077)	14.1	CTATTCTGGGTGGTCAGGGGA	had-dnas	
CbCIWB53	Clostridium beijerinckii str. WB53	CP029329.1 (1212114-1225061)	13	AGTACCCTAAAAACATTAGAGTA	s9p-ftsH	
CbCIEklund17B	Clostridium botulinum B str. Eklund17B	FR745875.1 (33017-45420)	12.5	NI	tRNA-70pol	
CsCl87-0535	Clostridium sporogenes str. 87- 0535	JZJP01000052 (44733-31901)	12.8	NI	tRNA-gluT	
EdCl4928STDY7071 318	Enterococcus durans str. 4928STDY7071318	NZ_CABGKX010000 028.1 (14603-7305)	14.5	ATGGAAGGCAGTGT	sufB-rec	

Table S5. Strains used in this study.

Strain	Description	Reference
594	E. coli. Laboratory strain	
DH5a	<i>E. coli.</i> Laboratory strain	
EDL933	E. coli. Natural isolate	
JP22295	594 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP12506	594 lambda lysogen	This work
JP12507	594 80 lysogen	This work
JP12508	594 HK97 lysogen	This work
JP12509	594 HK106 lysogen	This work
JP12510	594 HK140 lysogen	This work
JP12511	594 HK544 lysogen	This work
JP22300	594 HK446 lysogen	This work
JP22478	594 HK97 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22479	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22480	594 HK140 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22300	594 HK446 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22481	594 HK544 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22084	594 lambda EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22085	594 80 EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP19756	594 HK106 EcCIEDL933 1795-1796:: <i>cat alp</i> A*	This work
JP22282	594 HK446 EcCIEDL933 1795-1796:: <i>cat alp</i> A*	This work
JP17368	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1786* (capsid)	This work
JP22301	JP17368 pBAD18 empty	This work
JP22302	JP17368 pJP2670	This work
JP17246	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1787* (protease)	This work
JP17369	594 HK106 EcCIEDL933 1795-1796::cat ORF1787* (protease)	This work
JP17364	JP17369 pBAD18 empty	This work
JP17366	JP17369 pJP2671	This work
JP17365	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1788* (portal)	This work
JP17370	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1788* (portal)	This work
JP22303	JP17370 pBAD18 empty	This work
JP22304	JP17370 pJP2672	This work
JP17780	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1789* (head-tail connector I)	This work
JP22305	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1789* (head-tail connector I)	This work
JP22306	JP22305 pBAD18 empty	This work
JP22307	JP22305 pJP2673	This work
JP17248	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1790* (head-tail connector II)	This work
JP17371	594 phage HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1790* (head-tail connector II)	This work
JP17496	JP17371 pBAD18 empty	This work
JP17497	JP17371 pJP2674	This work

JP17247	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1791* (HNH)	This work
JP17373	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1791* (HNH)	This work
JP17374	JP17373 pBAD18 empty	This work
JP17498	JP17373 pJP2675	This work
JP17781	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1792* (HP)	This work
JP22285	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1792* (HP)	This work
JP22308	JP22285 pBAD18 empty	This work
JP22309	JP22285 pJP2676	This work
JP17264	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1793* (<i>ter</i> S)	This work
JP17265	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1793* (<i>ter</i> S)	This work
JP17266	JP17265 pBAD18 empty	This work
JP17267	JP17265 pJP2677	This work
JP17367	594 EcCIEDL933 1795-1796:: <i>cat</i> ORF1794* (<i>ter</i> L)	This work
JP17372	594 HK106 EcCIEDL933 1795-1796:: <i>cat</i> ORF1794* (<i>ter</i> L)	This work
JP22312	JP17372 pBAD18 empty	This work
JP22313	JP17372 pJP2678	This work
JP22482	DH5alpha pJP2670	This work
JP22483	DH5alpha pJP2671	This work
JP22484	DH5alpha pJP2672	This work
JP22485	DH5alpha pJP2673	This work
JP22486	DH5alpha pJP2674	This work
JP22487	DH5alpha pJP2675	This work
JP22488	DH5alpha pJP2676	This work
JP22489	DH5alpha pJP2677	This work
JP22490	DH5alpha pJP2678	This work
JP17556	DH5alpha pJP2679	This work
JP17553	DH5alpha pJP2680	This work
JP19139	DH5alpha pJP2681	This work
JP19140	DH5alpha pJP2682	This work
JP22491	DH5alpha pJP2683	This work
JP18451	DH5alpha pJP2684	This work
JP17554	DH5alpha pJP2685	This work
JP17555	DH5alpha pJP2686	This work
JP18450	DH5alpha pJP2687	This work
JP21206	DH5alpha pJP2688	This work
JP17204	DH5alpha pJP2689	This work
JP19412	DH5alpha pJP2690	This work
JP19071	DH5alpha pJP2691	This work
JP19413	DH5alpha pJP2692	This work
JP17205	DH5alpha pJP2693	This work
JP19414	DH5alpha pJP2694	This work
JP22492	DH5alpha pJP2695	This work
JP22493	DH5alpha pJP2696	This work
JP19411	DH5alpha pJP2697	This work

JP22497	DH5alpha pJP2698	This work
JP22370	594 HK106 <i>gp</i> 01*	This work
JP22311	594 HK106 <i>gp</i> 01* EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP19890	JP22370 pBAD18 empty	This work
JP19891	JP22370 pJP2679	This work
JP19892	JP22311 pBAD18 empty	This work
JP19893	JP22311pJP2679	This work
JP22371	594 HK106 <i>gp</i> 02*	This work
JP19757	594 HK106 gp02* EcCIEDL933 1795-1796::cat	This work
JP19886	JP22371 pBAD18 empty	This work
JP19887	JP22371 pJP2680	This work
JP19888	JP19757 pBAD18 empty	This work
JP19889	JP19757 pJP2680	This work
JP19416	594 HK106 <i>gp</i> 03*	This work
JP19660	594 HK106 gp03* EcCIEDL933 1795-1796::cat	This work
JP19730	JP19416 pBAD18 empty	This work
JP19731	JP19416 pJP2681	This work
JP19732	JP19660 pBAD18 empty	This work
JP19733	JP19660 pJP2681	This work
JP20793	594 HK106 <i>gp</i> 04*	This work
JP20811	594 HK106 <i>gp</i> 04* EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP21202	JP19660 pBAD18 empty	This work
JP21203	JP19660 pJP2682	This work
JP21204	JP20811 pBAD18 empty	This work
JP21205	JP20811 pJP2682	This work
JP22372	594 HK106 <i>gp</i> 05*	This work
JP19758	594 HK106 <i>gp</i> 05* EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP19807	JP22372 pBAD18 empty	This work
JP19808	JP22372 pJP2683	This work
JP22373	JP19758 pBAD18 empty	This work
JP19809	JP19758 pJP2683	This work
JP19959	594 HK106 <i>gp</i> 06*	This work
JP19960	594 HK106 <i>gp</i> 06* EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP20321	JP19959 pBAD18 empty	This work
JP20322	JP19959 pJP2684	This work
JP20333	JP19960 pBAD18 empty	This work
JP20334	JP19960 pJP2684	This work
JP20272	594 HK106 <i>gp</i> 07*	This work
JP20336	594 HK106 <i>gp</i> 07* EcCIEDL933 1795-1796:: <i>cat</i>	This work
JP22498	JP20272 pBAD18 empty	This work
JP22499	JP20272 pBAD18 pJP2685	This work
JP22500	JP20336 pBAD18 empty	This work
JP22501	JP20336 pBAD18 pJP2685	This work
JP17761	594 HK106 gp10*	This work

JP18367	594 HK106 gp10* EcCIEDL933 1795-1796::cat	This work
JP22374	JP17761 pBAD18 empty	This work
JP22375	JP17761 pJP2686	This work
JP22376	JP18367 pBAD18 empty	This work
JP22377	JP18367 pJP2686	This work
JP19659	594 HK106 gp14*	This work
JP19759	594 HK106 gp14* EcCIEDL933 1795-1796::cat	This work
JP19802	JP19659 pBAD18 empty	This work
JP19803	JP19659 pJP2687	This work
JP19804	JP19759 pBAD18 empty	This work
JP19805	JP19759 pJP2687	This work
JP22286	594 HK106 <i>gp</i> 65*	This work
JP22378	594 HK106 gp65* EcCIEDL933 1795-1796::cat	This work
JP22502	JP22286 pBAD18 empty	This work
JP22503	JP22286 pJP2688	This work
JP22504	JP22378 pBAD18 empty	This work
JP22505	JP22378 pJP2688	This work
JP22494	594 pJP2679	This work
JP19766	594 pJP2680	This work
JP19767	594 pJP2681	This work
JP22495	594 pJP2682	This work
JP19768	594 pJP2683	This work
JP20335	594 pJP2684	This work
JP20434	594 pJP2685	This work
JP22496	594 pJP2686	This work
JP19769	594 pJP2687	This work
JP22506	594 pJP2688	This work

Table S6. Plasmids used in this study.

Plasmid	Description	Reference
pBAD18	Amp ^R . Expression vector	(Guzman et al., 1995)
pWRG99	Amp ^R . Thermosensitive plasmid with Red system	(Blank et al., 2011)
	of lambda phage and I-Scel endonuclease under	
	control of tetracycline-inducible promoter (P _{tetA})	
pWRG717	Amp ^R , Km ^R . pBluescript II SK+ derivative, aph	(Hoffmann et al., 2017)
	resistance cassette and I-Scel cleavage site	
pK03-Blue	Cm ^r . Thermosensitive allelic exchange vector in	(Solano et al., 2009)
		This count
pJP2670	pBAD18 ORF1786 (capsid) EcclEDL933	I his work
pJP20/1	pBAD18 ORF1787 (protease) ECCIEDL933	This work
pJP20/2	pDAD to ORF 1700 (portal) ECCIEDL933	This work
pj=2073		
n.IP2674	nBAD18 ORE1790 (head-tail connector II)	This work
por 2014	FcCIEDI 933	
pJP2675	pBAD18 ORF1791 (HNH) EcCIEDL933	This work
pJP2676	pBAD18 ORF1792 (HP) EcCIEDL933	This work
pJP2677	pBAD18 ORF1793 (terS) EcCIEDL933	This work
pJP2678	pBAD18 ORF1794 (terL) EcCIEDL933	This work
pJP2679	pBAD18 gp01 (terL) HK106	This work
pJP2680	pBAD18 gp02 (terS) HK106	This work
pJP2681	pBAD18 <i>gp03</i> (portal) HK106	This work
pJP2682	pBAD18 <i>gp04</i> (protease) HK106	This work
pJP2683	pBAD18 <i>gp05</i> (capsid) HK106	This work
pJP2684	pBAD18 gp06 (head-tail connector I) HK106	This work
pJP2685	pBAD18 gp07 (head-tail connector II) HK106	This work
pJP2686	pBAD18 gp10 (major tail) HK106	
pJP2687	pBAD18 $gp14$ (tail tape measure) HK106	
pJP2688	pBAD18 gp03 (HNH) HK100 $pK03 Plug A ap01 (tod.) HK106$	This work
pJF2009	pros Blue $\Delta gp01$ (let) RK100	This work
pJF2090	pK03 Blue Agp02 (lef3) HK100	This work
pJF 2091	pK03 Blue Agp03 (portal) HK106	This work
pJ1 2092	nK03 Blue Agp04 (protease) Tik 100	This work
pJP2694	pK03 Blue $\Delta a \rho 06$ (head-tail connector I) HK106	This work
pJP2695	pK03 Blue $\Delta a \rho 07$ (head-tail connector II) HK106	This work
pJP2696	pK03 Blue $\Delta qp10$ (major tail) HK106	This work
pJP2697	pK03 Blue $\Delta gp14$ (tail tape measure) HK106	This work
pJP2698	pK03 Blue Δgp65 (HNH) HK106	This work

Table \$	S7. Pri	mer list.
----------	---------	-----------

Mutagenesis	Primers	Sequence (5'-3')
EcCIEDL933	Sakai-adjustchlor-	CCGTCACAGGTAGGCGCGCCGCTGCTGACCTCATTACACC
1795-	1m	CCGCTGAATTCTTCCAGTTTCTGGCGGTGGCTGTCGCTTA
1796:: <i>cat</i>		
	Sakai-adjustchlor-	
	20	CGCTTC
EcCIEDL933	EDL933-A1786-3m	TGCCGAGAATAATCGAATTACGCCAGCAGAAAACCGCCATT
ORF1786		AAAAATCAGAGGGTTTCCCAGTCACGAC
(capsid)*	EDL933-A1786-4c	CGCCCTCTGCATCGTTAAGGCTGCGGTTTTCTTTTCCGCG TTCTCCAGCTGCTTCCGGCTCGTATGTTG
	EDL933-1786- dimer-1m	TCGAATTACGCCAGCAGAAAACCGCCATTAAAAATCAGTAA TTAGTTGAGCTGGAGAACGCGGAAAAAGAAAACCGCAGCC TTAACGATGC
	EDL933-1786- dimer-2c	GCATCGTTAAGGCTGCGGTTTTCTTTTTCCGCGTTCTCCAG CTCAACTAATTACTGATTTTTAATGGCGGTTTTCTGCTGGCG TAATTCGA
EcCIEDL933 ORF1787	EDL933-A1787-1m	GGGTGAAAAAATTATGAAGAGTATGGAAATCCGGTCATCGG AAATCACCACCAGGGTTTCCCAGTCACGAC
(protease)*	EDL933-A1787-2c	CATAGCAGCTCTGAAAGGTTATCCCAGCGAACAACGTAGCC TGTAAGCGTGTGCTTCCGGCTCGTATGTTG
	EDL933-A1787- dimer-1m	GAAGAGTATGGAAATCCGGTCATCGGAAATCACCACCTAAT TAGTTGACACGCTTACAGGCTACGTTGTTCGCTGGGATAAC CTTTCAG
	EDL933-A1787- dimer-2c	CTGAAAGGTTATCCCAGCGAACAACGTAGCCTGTAAGCGTG TCAACTAATTAGGTGGTGATTTCCGATGACCGGATTTCCATA CTCTTC
EcCIEDL933 ORF1788	EDL933-A1788-1m	GCATGACGCTTGATGAGTTTATGGCGCTGGCTGGCACATC GAACACGGGGAGGGTTTCCCAGTCACGAC
(portal)*	EDL933-A1788-2c	TCACGGCGTTCATGACGGCGGGCAGTGATTCCGCTGTCCC CGATGATACGTGCTTCCGGCTCGTATGTTG
	EDL933-A1788- dimero-1m	GATGAGTTTATGGCGCTGGCTGGCACATCGAACACGGGGT CAACTAATTACGTATCATCGGGGACAGCGGAATCACTGCCC GCCGTCATG
	EDL933-A1788- dimero-2c	CATGACGGCGGGCAGTGATTCCGCTGTCCCCGATGATACG TAATTAGTTGACCCCGTGTTCGATGTGCCAGCCAGCGCCAT AAACTCATC
EcCIEDL933 ORF1789	EDL933-A1789-1m	GGCGACTGCGTGACAGGATAACGATTCAGACCCTGAAACA GACCAGAGCCAGGGTTTCCCAGTCACGAC
(head-tail connector I)*	EDL933-A1789-2c	TGTTCACGCTTGCCCAGAGTGTGTGACCGTCCTCCCACGTT TCGAGTATTTGCTTCCGGCTCGTATGTTG
	EDL933-1789- dimero-1m	GTGACAGGATAACGATTCAGACCCTGAAACAGACCAGAGC CTCAACTAATTAAATACTCGAAACGTGGGAGGACGGTCACA CACTCTGGGC
	EDL933-1789- dimero-2c	GCCCAGAGTGTGTGACCGTCCTCCCACGTTTCGAGTATTTA ATTAGTTGAGGCTCTGGTCTGTTTCAGGGTCTGAATCGTTA TCCTGTCAC
EcCIEDL933 ORF1789	EDL933-A1790-3m	GAAGAACTTATCACCCTGGAAGAAGTGAAACTCCATTGCCG CATCGATGGCAGGGTTTCCCAGTCACGAC
(head-tail connector II)*	EDL933-A1790-4c	GTATCTGGCACGCCTCAAGCGATGCGGCAATGTATCCGCT GATTAACTGGTGCTTCCGGCTCGTATGTTG
	EDL933-1790- dimero-1m	CACCCTGGAAGAAGTGAAACTCCATTGCCGCATCGATGGCT CAACTAATTACCAGTTAATCAGCGGATACATTGCCGCATCG CTTGAGGC

	EDL933-1790-	GCCTCAAGCGATGCGGCAATGTATCCGCTGATTAACTGGTA
	dimero-2c	ATTAGTTGAGCCATCGATGCGGCAATGGAGTTTCACTTCTT CCAGGGTG
EcCIEDL933	EDL933-AHNH-1m	GGCAACCATTAAGACGATGCACAGAACCAGGCTGTAACAG
(HNH)*	EDL933-AHNH-2c	GTCCTCGTCTGGCATCCTCTGCACGCCATGCCGCCCGCCT GTGCTCCTCATGCTTCCGGCTCGTATGTTG
	EDL933-HNH- dimero-1m	AGACGATGCACAGAACCAGGCTGTAACAGGCGCGTGAAGT AATTAGTTGATGAGGAGCACAGGCGGGCGGCATGGCGTGC AGAGGATGCC
	EDL933-HNH- dimero-2c	GGCATCCTCTGCACGCCATGCCGCCCGCCTGTGCTCCTCA TCAACTAATTACTTCACGCGCCTGTTACAGCCTGGTTCTGT GCATCGTCT
EcCIEDL933 ORF1792	EDL933-A1792-1m	CGGGCCGCTAACCGCAATAACTGGATGTATGACGCTGATG AATGAGCGGAGGGTTTCCCAGTCACGAC
(HP)*	EDL933-A1792-2c	CCTGTGTCTTCCATGCGTCACGCTGCCTTATAAGTCCACGG ATAAGGTGCTTCCGGCTCGTATGTTG
	EDL933-1792- dimero-1m	CTAACCGCAATAACTGGATGTATGACGCTGATGAATGAGCG GTCAACTAATTACCTTATCCGTGGACTTATAAGGCAGCGTG
		ACGCATGG
	EDL933-1792-	CCATGCGTCACGCTGCCTTATAAGTCCACGGATAAGGTAAT
	dimero-2c	
EcCIEDL933	EDL933-AterS-1m	AAAAATAATCTGGCGAAAAAATAAGCATGGCAAGACCACCG
ORF1793		AAAGCCCCCAGGGTTTCCCAGTCACGAC
(<u>ter</u> S)*	EDL933-AterS-2c	GTTCCGCAAGCTGCCGCGATTTTTCCCGCCACTGCTTCACG GCGATATCATGCTTCCGGCTCGTATGTTG
	EDL933-terS- dimero-1m	GGCGAAAAAATAAGCATGGCAAGACCACCGAAAGCCCCCT AATTAGTTGATGATATCGCCGTGAAGCAGTGGCGGGAAAAA TCGCGGC
	EDL933-terS- dimero-2c	GCCGCGATTTTTCCCGCCACTGCTTCACGGCGATATCATCA ACTAATTAGGGGGGCTTTCGGTGGTCTTGCCATGCTTATTTTT TCGCC
EcCIEDL933 ORF1794	EDL933-AterL-1m	GCAGACCCATTGAGCTGGAGCCGTGGCAGCAGTTCGCCTT TGCGTGCATCAGGGTTTCCCAGTCACGAC
(<i>ter</i> L)*	EDL933-AterL-2c	GCACTTCGATAAAGGCGCTCGTGTATTTGCGCCGTCCGGT GGCCTTAACCTGCTTCCGGCTCGTATGTTG
	EDL933-terL-	TGAGCTGGAGCCGTGGCAGCAGTTCGCCTTTGCGTGCATC
	dimero-1m	TAATTAGTTGAGGTTAAGGCCACCGGACGGCGCAAATACAC GAGCGCCT
	EDL933-terL- dimero-2c	AGGCGCTCGTGTATTTGCGCCGTCCGGTGGCCTTAACCTC AACTAATTAGATGCACGCAAAGGCGAACTGCTGCCACGGCT CCAGCTCA

Plasmid	Primers	Sequence (5'-3')
pBAD18		· · · · ·
pJP2670	- Sakai-ECs1590-1mS	ACGCGTCGACAAACGATCGGTGCGATTGCTG
	Sakai-ECs1590-2cH	CCCAAGCTTGACCGGATTTCCATACTCTTC
pJP2671	Sakai-ECs1591-1mS	ACGCGTCGACTCAAGATTCTGGAACTGCCAC
•	Sakai-ECs1591-2cH	CCC <u>AAGCTTC</u> TCATCAAGCGTCATGCTGCG
pJP2672	Sakai-ECs1592-1mS	ACGC <u>GTCGAC</u> CGTTCCCTGTATGAGCAGCAC
-	Sakai-ECs1592-2cH	CCCAAGCTTGGTCTGAATCGTTATCCTGTC
pJP2673	Sakai-ECs1593-1mS	ACGCGTCGACTCAAATCCGGCGTTATGTGCC
•	Sakai-ECs1593-2cH	CCC <u>AAGCTT</u> AGTTTCACTTCTTCCAGGGTG
pJP2674	Sakai-ECs1594-1mS	ACGC <u>GTCGAC</u> GGGCGTGTACTGAATATCATC
-	Sakai-ECs1594-2cH	CCC <u>AAGCTT</u> TTCTGTGCATCGTCTTAATGG
pJP2675	Sakai-ECs1595-1mS	ACGC <u>GTCGAC</u> AAAATCGCCAGATTGTCGCGG
	Sakai-ECs1595-2cH	CCC <u>AAGCTT</u> ATAAGTCCACGGATAAGGCGG
pJP2676	Sakai-ECs1596-1mS	ACGC <u>GTCGAC</u> TTATGCGTGCGATGCCTTGAG
	Sakai-ECs1596-2cH	CCC <u>AAGCTT</u> GCATAAAAATTTGAGGAGGCG
pJP2677	Sakai-ECs1597-1mS	ACGC <u>GTCGAC</u> CTGATGAGGCTGTATGACGG
	Sakai-ECs1597-2cH	CCC <u>AAGCTT</u> TTTTAACCGTTTACAGGCCGG
pJP2678	Sakai-ECs1598-1mS	ACGC <u>GTCGAC</u> AAAAATGGCCTCCTTGCTCGG
	Sakai-ECs1598-2cH	CCC <u>AAGCTT</u> GTAGTTCGGCTTCTGTCATGC
pJP2679	HK106-terL-7mK	GG <u>GGTACC</u> GAATACCAAAAACGAGCATC
	HK106-terL-2cS	ACGC <u>GTCGAC</u> TTCGCAGGTCAATCGTGTATTTA
		GG
pJP2680	HK106-terS-7mk	GG <u>GGTACC</u> TCAAATCTTCAAAACCTTTGC
	HK106-terS-8cS	
pJP2681	HK106-terL-9mK	
	HK106-gp03-565	
pJP2082	HK106 gp03-5mK	
n ID2692	HK100-gp04-005	
pjF2003	HK106-gp05-411E HK106-gp05-5cS	
n IP2684	HK106-gp05-500	
p31 2004	HK106-gp05-0niX HK106-gp06-4cS	
pJP2685	HK106-gp06-5mE	
pe: 2000	HK106-ap07-3cS	ACGCGTCGACTCATTTTTCAGCTCCCGTTT
pJP2686	HK106-ap09-2mE	CCGGAATTCTACGAGCCAGATTATCGGC
•	HK106-gp10-5cS	ACGCGTCGACTTAACTGATAGTAAGGGTGC
pJP2687	HK106-gp14-3mE	CCG <u>GAATTC</u> GGCAAATGAACAAGTTGAAG
-	HK106-gp14-4cH	CCC <u>AAGCTT</u> GTTTCGATAGCCATTTTTATC
pJP2688	HK106-gp65-4mE	CCG <u>GAATTC</u> CTGATATCCCTTTTAACG
	НК106-др65-7сН	CCC <u>AAGCTT</u> TTACGTGCTCCAGTGAGAC
pK03blue	_	
pJP2689	HK106-terS-3mB	CGC <u>GGATCC</u> ATCACAAACTCGAACAGGTAG
	HK106-terL-3cNotl	ATAAGAAT <u>GCGGCCGC</u> ACTCGCGTTTACTGATA
	HK106-Aterl -4m	GCTTTTGCATCGTGCCAGAAGGCTAATAATAAG
		ACCAACCTATGCGGTTGGACC
	HK106-AterL-2c	GGTCCAACCGCATAGGTTGGTCTTATTATTAGC
		CTTCTGGCACGATGCAAAAGC
pJP2690	HK106-gp65-3mB	CGC <u>GGATCC</u> CATGAACAAAGAGCCCCGC
	HK106-terL-10cNotl	ATAAGAAT <u>GCGGCCGC</u> CAGGTTAACCATCTTCA
		CCG
	HK106-Agp01-2m	CGGCGGCAGCGGTTCAGGCCTAATTAGTTGAAC
		TCGAGGACACCATCGATCC
	HK106-Agp01-3c	GGATCGATGGTGTCCTCGAGTTCAACTAATTAG
		GCCTGAACCGCTGCCGCCG

pJP2691	HK106-terL- 8mB		
	HK 100-9003-40N	C	
	HK106-Agp03-1m		
	HK106-Agp03-2c	CTGTGAGCCCTGATTTGGGGTGACGTCGACTCA TCATCAAAACCAGGACTGCAGCCTTGC	
pJP2692	HK106-gp03-8mB	CGC <u>GGATCC</u> CTCTCAACTGGCGAAAAAGTG	
	HK106-gp05-8cNotl	ATAAGAAT <u>GCGGCCGC</u> CAGCAGCCCGTTCAGA GAAG	
	HK106-Agp04-4m	GACCCGAAAAGTGGCGTAATTAGTTGAGGTACC GACGTGGGAACTGCCG	
	HK106-Agp04-5c	CGGCAGTTCCCACGTCGGTACCTCAACTAATTA CGCCACTTTTCGGGTC	
pJP2693	HK106-gp04-7mP	AA <u>CTGCAG</u> GCCTGAAATCGTAAAAACGC	
	НК106-др05-9сВ	ACGC <u>GGATCC</u> GATATAGCGGCCTTCATTG	
	HK106-Agp05-1m	TCGAAAGCACAGGCCAGGTTTCCAAATAATTAG	
		TTGAGGTACCGATGAAAGTACAGGAAGAGC	
	HK106-Agp05-2c		
n ID2604			
pjr 2094	HK106-gp05-9mB HK106-gp07-4cNotl		
	Intro-gpor-tonou	CCG	
	HK106-Aqp06-3m	CACGCTGTACGCCCAGGCCTAATTAGTTGACTA	
	01	AGCTTGCTGGTGCGATGAACC	
	HK106-Agp06-4c	GGTTCATCGCACCAGCAAGCTTAGTCAACTAAT	
		TAGGCCTGGGCGTACAGCGTG	
pJP2695	HK106-gp05-9mB		
	HK106-gp08-3cNoti	ATAAGAAT <u>GCGGCCGC</u> CACTTGCTCAATACCTC ATC	
	HK106-Agp07-2m	GATCAGCGGCAGAGAGCAGTAATTAGTTGAGAA	
	пк тоо-Аурол-эс	ATTACTGCTCTCTCCGCCGCCGAATTCTCAACTA	
pJP2696	HK106-gp09-1mB	CGC <u>GGATCC</u> GTGAATGAAGATAATATCTAC	
	HK106-gp10-4cNotl	ATAAGAAT <u>GCGGCCGC</u> TTAACTGATAGTAAGGG TGC	
	HK106-gp10-1m	CCAGCCACCAAAGAAACGATGGATTCCTAAACC GTCGACGATCTGAGTTGCACCATCAAAGAAATT C	
	HK106-gp10-2c	GAATTTCTTTGATGGTGCAACTCAGATCGTCGA CGGTTTAGGAATCCATCGTTTCTTTGGTGGCTG G	
pJP2697	HK106-gp11-4mB	CGC <u>GGATCC</u> CGAAGAAGAGCAGGTGCGTG	
	HK106-gp14-9cNotl	ATAAGAAT <u>GCGGCCGC</u> GATTGGGTAGCAGATTC AGC	
	HK106-Agp14-3m	CTATTACCGGGTAATGCAGACTTAATTAGTTGAA	
		TGTCGACCAGCTTCGCGTGAAACTC	
	HK106-Agp14-4C	ATTAAGTCTGCATTACCCGGTAATAG	
pJP2698	HK106-gp64-11mB	CGC <u>GGATCC</u> CCAACATTCCACAACGCATC	
	HK106-gp65-6cNotl	ATAAGAAT <u>GCGGCCGC</u> GCAAAGGTTTTGAAGAT TTG	
	HK106-Agp65-1m	AGCAGCACCCACTGTGTGTGTAATTAGTTGACT	
		CGAGGCGCATAACACCAGCAAC	
	HK106-Agp65-2c	GIIGCTGGTGTTATGCGCCTCGAGTCAACTAAT TACACACACAGTGGGTGCTGCT	

Southern blot	Primers	Sequence (5'-3')
EcCIEDL933 probe	EcCIEDL933-int-1m	CTGAGCGATACACAGCTGAG
-	EcCIEDL933-int-2c	CACTCATATCATCAAGAACG
Phage HK106 probe	HK106-int-2m	CAATTTTGTCCCACTCCCTG
	HK106-int-2c	GACTTACAGCTGACGAATAC

References

Blank, K., Hensel, M., and Gerlach, R.G. (2011). Rapid and highly efficient method for scarless mutagenesis within the *Salmonella enterica* chromosome. PloS One *6*, e15763.

Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology *177*, *4121*–4130.

Hoffmann, S., Schmidt, C., Walter, S., Bender, J.K., and Gerlach, R.G. (2017). Scarless deletion of up to seven methyl-accepting chemotaxis genes with an optimized method highlights key function of CheM in *Salmonella* Typhimurium. PloS One 12, e0172630.

Solano, C., García, B., Latasa, C., Toledo-Arana, A., Zorraquino, V., Valle, J., Casals, J., Pedroso, E., and Lasa, I. (2009). Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in *Salmonella*. Proceedings of the National Academy of Sciences USA *106*, 7997–8002.

Figure 1. Comparation of the different PICI lineages.

terl

portal

protease

capsid

Head-tail

connectors

22.4 %

27 %

TerS

TerL

terS

- (A) Comparative maps of the classical E. coli PICIs EcCICFT073 and EcCIED1a with EcCIED933. Genomes are aligned according to the prophage convention, with the integrase genes (int) present at the left end of the islands. Genes are colored according to their sequence and function (see box for more details). Using Easyfig alignment, vertical blocks between PICI sequences indicate regions that share similarity based on BLASTn (grey scale).
- (B) Comparison of the packaging modules present in either EcCIEDL933 or in helper phage HK106, at protein level, using BLASTp. Identities are shown for each encoded protein.

Figure 2. Phage induction of EcCIEDL933.

Different lysogenic strains carrying EcCIEDL933 (wt or mutant in *alp*A (*alp*A*) were MC (2 µg/ml) induced, samples were taken at the indicated time points (min) and processed to prepare minilysates, which were separated on a 0.7% agarose gel (upper panel), and Southern blotted (lower panel) with an EcCIEDL933 probe. M: Southern blot molecular marker (DNA molecular weight marker VII; Roche).

Β

С

Phage HK106 wt terL* EcCIEDL933 8.5 kb 7.4 kb Agarose gel Phage HK106 terL* wt

8.5 kb 7.4 kb

- (A) Electron microscopy analyses of different MC-induced HK106 lysogenic strains (wt or terL mutant (terL*) in presence or absence of EcCIEDL933. Different fields are shown, containing HK106 phage particles (left), EcCIEDL933 particles (right) or both (middle; PICI particles highlighted with white arrows). EcCIEDL933 particles have smaller heads. Scale bars are 200 nm.
- (B) Lysogenic strains carrying the wt or the terL mutant (terL*) HK106 prophage, in presence or absence of EcCIEDL933, were MC-induced, the DNA was extracted from the purified infective particles and resolved on a 0.7% agarose gel.
- (C) Southern blot of the purified DNA shown in panel (B) using either phage HK106 or EcCIEDL933 specific probes. First line contains the Southern blot molecular marker (DNA molecular weight marker VII; Roche).

Figure 4. Effect of different PICI and phage gene mutations on EcCIEDL933 and HK106 transfers.

Genetic maps of the EcCIEDL933 (A) or the phage HK106 (D) packaging modules. Lysogenic strains for phage HK106, carrying different EcCIEDL933 versions (wt or carrying mutations in the indicated genes), were MC (2 μ g/ml) induced and the PICI (B) or phage (C) transfers were determined using *E. coli* 594 as recipient strain. Lysogenic strains for HK106, carrying the wt or the different mutant prophages, were MC (2 μ g/ml) induced in the presence of EcCIEDL933 and the transfer of the island (E) or the phage titres (F) were determined using *E. coli* 594 as recipient strain. The means of the colony forming units (CFUs) or phage forming units (PFUs) and SD of three independent experiments are presented (n=3). A one-way ANOVA with Dunnett's multiple comparisons test was performed to compare mean differences between wt and individually point-mutations. Adjusted p values were as follows: *ns*>0.05; *p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.001.

HK106

HK106 gp10*

HK106 gp05* gp10* EcCIEDL933

Figure 5. EcCIEDL933 requires phage tails to generate infective particles.

- (A) Lysogenic strains for phage HK106 (wt, Δgp10 or Δgp14) carrying EcCIEDL933 were MC induced (2 µg/ml) and the phage and PICI titres were determined using *E. coli* 594 as recipient strain. Note that gp10 and gp14 encode major tail and tape-measure proteins, respectively, required for phage tail formation. The means of the colony forming units (CFUs) or phage forming units (PFU) and SD of three independent experiments are presented (n=3). A one-way ANOVA with Dunnett's multiple comparisons test was performed to compare mean differences between wt and individually point-mutations. Adjusted p values were as follows: *ns*>0.05; *p≤0.01; ***p≤0.001; ****p≤0.0001.
- (B) Electron microscopy analysis of different MC-induced HK106 lysogenic strains (wt and mutants) in presence or absence of EcCIEDL933. Different fields are shown, containing only HK106 phage particles, HK106-sized capsid particles or EcCIEDL933-sized capsid particles. EcCIEDL933 particles have smaller heads. Scale bars are 200 nm.

Figure 6. Capsid of cf-PICI form three distinct phylogentic groups and are evolutionarily separated from phage homologs.

Phylogenetic trees inferred from the alignment of 61 capsid homologs from cf-PICI and the best 113 phage capsid homologs. Phages branches are collapsed and shown as triangles. The different colors on the branches indicate the three different clades, formed by either *Gammaproteobacteria* (in blue), *Lactobacillus* (in orange) and a broader set of *Firmicutes* (in red). Bootstrap values for the main branches are indicated as grey circles. The tree was visualized and edited in iTOL (Letunic et al., 2021). Phylogenetic tree resulting from the alignment of Capsid proteins from 61 cf-PICIs and 3725 phage.

Figure S1. Genomic comparison between EcCIEDL933 and 3725 phage genomes.

- (A) Distribution of wGRR values between EcCIEDL933 and phage genomes. Inset shows a zoomed version between wGRR of zero and 0.1.
- (B) Distribution of the protein identity percentages, for all the potential homologs between EcCIEDL933 and phage genomes.
- (C) Distribution of the bitscores for all the potential homologs between EcCIEDL933 and phage genomes.
- (D) Boxplot with the number of homolog genes per phage, for all the phages in the database.

PICIs

Figure S2. Genome maps for cf-PICIs, from different Proteobacteria species.

PICIs

ky

1209

906

Salmonella enterica

attR fis

attR_fis

K

attR fis

terL

Head-tail

capsid protease portal connector HNH terS attR tRNA mug icd *rdg*R sip attl int pri terL SeCI7830 XХ Head-tail capsid protease portal connector HNH terS /hdJ attL int alpA KilAC icd pri terL SeCIDerby Head-tail capsid alpA KilAC pri protease portal connector HNH terS icd terL int SeCIKentuc Head-tail attR fis yhdJ attL alpA capsid protease portal connector HNH terS int terL SeCIFDA33 6426-1 , Head-tail vecR attL int *rdg*R protease portal connector HNH terS ahi attR tRNA mug alpA terL pr capsid SeCI08 Xenorhabdus nematophila Head-tail connector HNH terS Нср capsid protease portal attL int alpA pr terL Ner attR XnCIATCC1 Klebsiella pneumoniae Head-tail fis int alpA KilAC capsid protease portal connector HNH terS attR attl pri terL fis KpCIAR_01 _____ Head-tail fis int protease portal connector HNH terS alpA pri capsid terL attR fis KpCIKPN01 Klebsiella oxytor Head-tail capsid protease portal connector HNH terS attR fis fis attL int alpA KilAC icd pri terL KoCICAV1 75 Klebsiella variicola Head-tail protease portal connector HNH terS terL gnats attL icd capsid abi attR tRNA mug pri KvCIGJ3 Proteus mirabilis Head-tail alpA Rha capsid protease portal connector HNH terS attR pn terL fis PmCIATCC2 9906 Citrobactor portucalensis Head-tail attL in HicB icd pri capsid protease portal connector HNH terS terL attR_tRNA_mug CpCITV06 ₩ Citrobactor freundii Head-tail capsid proteaseportal connector HNH terS fis attL ISNCY ISNCY int alpA AntA-B icd pri CfCIC FNIH4 Pluralibacter gergoviae Head-tail protease portal connector HNH terS attR fis fis attL SSB capsid int alpA KilAC pri terL PgCIFDAAR GOS_186 Edwardsiella piscida tail attR fis fis attL int IS21 portal connector HNH terS alpA Rha icd pri capsid protease portal terL EpCIETW41 Yersinia aleksiciae tail attR fis fis attl alpA icd pri prtN capsid protease portal connector HNH terS terL ahi YaCI159 Encapsidation genes Replication (pri) Flanking genes (capsid/protease/portal/head-tail Attachment sites (attL/attR) connectors) Replication origin (ori)

Figure S2. Genome maps for cf-PICIs, from different Proteobacteria species. Genomes are aligned according to the prophage convention, with the integrase genes (int) present at the left end of the maps. Genes are colored according to their sequence and function (see box for more details).

Hypothetical

(rdgR/perC/Hcp/prtN)

Virulence

Integration (int)

Regulatory (alpA)

Packaging genes (HNH/small terminase

(terS), large terminase (terL) Phage interference

(ppi/pti/abiF)

Figure S3. Replication of the EcCIEDL933 mutants.

Lysogenic strains for phage HK106, carrying different EcCIEDL933 versions (wt or encoding individually point-mutations in the indicated genes), were MC (2 μ g/ml) induced, samples were taken at the indicated time points (min) and processed to prepare minilysates, which were separated on a 0.7% agarose gel (upper panel), and Southern blotted (lower panel) with an EcCIEDL933 probe.

Figure S4. Complementation of the different EcCIEDL933 and HK106 mutants restore PICI transfer and phage titres.

Genetic map of the EcCIEDL933 packaging module (A) or phage HK106 packaging module (B).

(C) Lysogenic strains for phage HK106 carrying different EcCIEDL933 versions (wt or mutants) were complemented with pBAD18 derivative plasmids expressing the different genes under study (+). Then, these strains were MC (2 μ g/ml) and arabinose (0.02%) induced and the transfer of the different islands analysed using *E. coli* 594 as recipient. (D) Lysogenic strains for phage HK106 (wt or mutants), carrying wt EcCIEDL933, were complemented with the corresponding pBAD18 derivative plasmid expressing the indicated phage gene (+). The strains were MC (2 μ g/ml) and arabinose (0.02%) induced and the phage titres determined using *E. coli* 594 as recipient. The means of the colony forming units (CFUs) or phage forming units (PFUs) and SD of three independent experiments are presented (n=3). A one-way ANOVA with Dunnett's multiple comparisons test was performed to compare mean differences between wt and individually point-mutations. Adjusted p values were as follows: *ns*>0.05; *p≤0.05; *rp≤0.01; ****p≤0.001; ****p≤0.001.

Figure S5. Effect of EcCIEDL933 or phage HK106 gene mutations on the formation of PICI or phage infective particles.

Genetic map of the EcCIEDL933 packaging module (A) or phage HK106 packaging module (B).

(C) Lysogenic strains for phage HK106, carrying the wt of the different EcCIEDL933 mutant versions, were MC induced, and the DNA from the infective particles purified and analysed by Southern blot, using phage- or PICI-specific probes.

(D) EcCIEDL933-positive strains, lysogenic for different version of the HK106 prophage (wt or carrying the indicated mutations), were MC induced, and the DNA from the infective particles purified and analysed by Southern blot, using phage- or PICI-specific probes.

Figure S6. EcCIEDL933 does not block helper phage reproduction.

Phage HK106 and HK446 dilutions were spotted on non-lysogenic *E. coli* strain 594, or on strain JP22295 (594 EcCIEDL933 *cat* positive).

Figure S7. Genome maps for cf-PICIs present in Firmicutes.

Figure S7. Genome maps for cf-PICIs present in Firmicutes. Genomes are aligned according to the prophage convention, with the integrase genes (*int*) present at the left end of the islands. Genes are colored according to their sequence and function (see box for more details).

Figure S8. TerL of cf-PICI form three distinct phylogentic groups and are evolutionarily separated from phage homologs.

Phylogenetic trees inferred from the alignment of 60 TerL homologs from cf-PICI and the best 420 phage TerL homologs. Phages branches are collapsed and shown as triangles. The different colors on the branches indicate the three different clades, formed by either Gammaproteobacteria (in blue), Lactobacillus (in orange) and a broader set of Firmicutes (in red). Bootstrap values for the main branches are indicated as grey circles. The tree was visualized and edited in iTOL ((Letunic et al., 2021).