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Abstract

5-methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its

role exists for invertebrates. How 5mC contributes to phenotypic variation in invertebrates can be

investigated by experimental alteration of methylation patterns. Here, we apply new non-nucleoside

DNA  methyltransferase  inhibitors  (DNMTi)  to  introduce  global  changes  into  the  methylome  of

mollusk species. Flavanone inhibitor Flv1 was highly efficient in reducing 5mC in the freshwater snails

Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea

water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC

level in the treated  B. glabrata generation and in its untreated offspring. Drug treatment triggers

significant variation in the morphometric traits in both generations. An epigenotyping by sequencing

method corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies

one  Differential  Methylated  Region  (DMR)  out  of  8,  found  both  in  Flv1-exposed  snails  and  its
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progeny, demonstrating a multigenerational effect of an induced epimutation. By targeted bisulfite

sequencing, we confirmed hypomethylation in a locus associated with reduced gene expression. 

Keywords: DNMT inhibitors, 5-methylcytosine, mollusks, Invertebrates, epigenetic inheritance, 

epimutation.

Background

DNA methylation is an epigenetic mark that can be associated with changes in gene function without 

changes in the underlying DNA sequence (Ganesan, Arimondo, Rots, Jeronimo, & Berdasco, 2019). 

Modifications in DNA methylation can be induced by the environment and some changes can be 

mitotically and/or meiotically heritable and/or are reversible (Dupont, Armant, and Brenner 2009, 

Nicoglou and Merlin 2017). Some of these modifications can influence gene function by providing 

differential access to the underlying genetic information in cells, and thus may alter their 

phenotypes. Epigenetic marks such as DNA methylation may provide an additional dimension to 

inheritance, linked to but different from genetic inheritance. Epimutations can be provoked directly 

by environmental stresses and contribute to rapid evolutionary changes but unlike genetic variation, 

epimutations have higher rates and are reversible (Bossdorf, Richards, and Pigliucci 2008, Cosseau et 

al. 2017). Biochemically, DNA methylation is the modification of a DNA base, and is present in a 

diverse range of eukaryotic organisms, ranging from fungi to mammals (Chen 2011). One type of 

DNA methylation is cytosine methylation that is catalyzed by the DNA methyltransferases (DNMTs), 

enzymes that transfer the methyl group (-CH3) from the co-substrate S-adenosyl-L-methionine (SAM) 

to the carbon-5 of the cytidine, to form 5-methylcytidine (5mC) (Moore, Le, and Fan 2013). In 

vertebrates, DNA methylation occurs on cytosines in a CpG context (cytidine followed by a 

guanosine) (Li and Zhang 2014) whereas, DNA methylation can also occur in CHH and CHG (H=A, T, C)

context (Meng et al. 2015) in plants. Less is known about the methylation in invertebrates, though 

many species present DNA methylation in a CpG context (Glastad et al. 2011). 
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DNA methylation is assumed to be evolutionary ancient, but its function and pattern is very 

diversified. This is consistent with the notion of a dynamically evolving mechanism that can adapt to 

perform various functions (Zilberman 2008), but having a common origin and being always part of an 

inheritance system (Aliaga et al. 2019). Major differences in DNA methylation are observed among 

phyla (Keller, Han, and Yi 2016). In the animal kingdom, vertebrates have one of the highest levels of 

DNA methylation that is uniformly spread all over the genome and found in all sorts of genomic 

contexts such as gene bodies, gene promoters, intergenic regions and repetitive DNA such as 

transposons (Suzuki and Bird 2008) (“global methylation”). Only promoter sequences are generally 

unmethylated and methylation here has been demonstrated to modulate gene expression in cis. 

Methylation also affects DNA repair stability, splicing, imprinting, development, germ cell 

pluripotency and cell fate (Schübeler 2015). In contrast, in many invertebrates, a common type of 

DNA methylation is the “mosaic” pattern consisting in large domains of methylated DNA separated 

by large domains of unmethylated DNA (Hendrich and Tweedie 2003). Another pattern observed is a 

very low level (Gowher, Leismann, and Jeltsch 2000) or a total absence of DNA methylation (Capuano

et al. 2014, Aliaga et al. 2019). When methylation is of mosaic type, 5mC is often found in genes (in 

exons and sometimes to a lesser degree in introns), a type of methylation also called Gene Body 

Methylation (GBM). GBM is considered as the ancestral form of DNA methylation (Feng et al. 2010). 

Higher GBM is believed to be associated with active transcription in vertebrates and invertebrates, 

while promoter methylation in vertebrates is associated with repression of gene expression (Sarda et

al. 2012). 

An important aspect of epigenetic marks is their inheritance. There is evidence in model species, 

mainly plants (Johannes et al. 2009), that heritable variation in ecologically important traits can be 

generated through changes in DNA methylation and that these changes may be inherited to future 

generations. Nevertheless, in contrast to plants and vertebrates, there is little evidence of 
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transgenerational stability of DNA methylation in invertebrates. Consequently, more evidence is 

needed about whether environmental-based DNA methylation changes can be inherited across 

generations in invertebrates and in here we focused on this question in mollusks. DNA methylation 

has been relatively little investigated in mollusks as discussed in (Fallet, Luquet, David, & Cosseau, 

2020), where information is essentially based on data from two species: the pacific oyster 

Crassostrea gigas and the freshwater snail Biomphalaria glabrata. In the abovementioned work, 

authors distinguish the terms multigenerational and transgenerational.  Multigenerational effect 

results from a direct exposure of the germline, gametes or embryos to the environmental stress, 

while a transgenerational effect involves a germ line transmission between generations without 

direct exposure to the environmental stress (Fallet et al. 2020). In this work, we investigated these 

two mollusks species and added the previously unstudied Physa acuta, i.e. three molluscan models of

medical, economic and ecological importance.

The snail B. glabrata is the intermediate host of Schistosoma mansoni, the causative agent of 

schistosomiasis, a parasitic disease affecting 200 million people in 78 countries (McManus, 2019). 

The interaction of these species is characterized by a phenomenon called compatibility 

polymorphism, meaning that some snail phenotypes can be infected by a specific parasite phenotype

while others cannot (Theron et al. 2014). It has been demonstrated that epigenetic alterations are 

involved in the B. glabrata parasite compatibility phenotype (Knight et al. 2016), even though 

contrasting results have been obtained by others (Sullivan 2018, Allan et al. 2020). It remains, 

therefore, an open question whether epigenetic mechanisms play a role in the capacity of B. glabrata

to produce phenotypic plasticity or variability. DNA methylation machinery components in B. 

glabrata include a maintenance DNMT (BgDNMT1), a DNA/tRNA methyltransferase (BgDNMT2) and 

a methyl-CpG-binding domain protein (BgMBD2/3), BgDNMT1 and BgDNMT2 being probably 

responsible for the 5mC modifications (Fneich et al. 2013, Geyer et al. 2017).
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Crassotrea gigas is a mollusk of commercial importance and its phylogenetic position and life traits 

make this bivalve an ideal model to study the physiological, ecological and evolutionary implications 

of DNA methylation (Rivière 2014). In silico analysis revealed that genes predicted to be 

hypermethylated are generally involved in DNA and RNA metabolism and genes predicted to be 

sparsely methylated are involved in cell adhesion (Roberts and Gavery 2012a). Similar results were 

found in B. glabrata: genes predicted to be methylated are associated with housekeeping functions 

and genes predicted to be poorly methylated are associated with inducible functions (Fneich et al. 

2013). These findings suggest that DNA methylation has regulatory functions in genes implicated in 

stress and environmental responses meaning it could contribute to increase phenotypic plasticity in 

mollusks and/or produce potentially heritable phenotypic variation (Roberts and Gavery 2012b).

Physa acuta is one of the most widespread freshwater snail invaders (Vinarski 2017) and is an 

occasional host of several human trematode diseases, including echinostomiasis and fasciolasis 

(Dreyfuss et al. 2002, Kanev 1994). Besides it has been demonstrated to be a bioindicator species for 

its sensitivity to environmental contaminants (Müller et al. 2016, Bal, Kumar, and Nugegoda 2017). P.

acuta has a short generation time that makes it a good model for multigenerational studies (Seeland 

et al. 2013). Studies about the impact of toxic compounds in the global DNA methylation of P. acuta 

and in its phenotypic traits (Bal, Kumar, and Nugegoda 2017) suggest that DNA methylation can play 

a role in the phenotypic plasticity of this snail, however, further work is needed to explore this 

hypothesis.

We reasoned that to investigate the role of DNA methylation in mollusks, we must modify its 

methylation. We borrowed an approach from cancer biology in which the use of DNMT inhibitors 

(DNMTi) has brought considerable advancements in the understanding of DNA methylation 

mechanism but also in therapeutic approaches (Gnyszka, Jastrzebski, and Flis 2013, Lopez, Halby, and
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Arimondo 2016, Geyer et al. 2011(Pechalrieu, Etievant, & Arimondo, 2017). The most used DNMTi in 

invertebrates is 5-azacytidine (5-AzaC) (Athanasio et al. 2018, Maharajan et al. 1986, Geyer et al. 

2018), nevertheless important advancements in the design of DNMTi have been done in the last 

years, notably in decreasing the toxicity and improving the specificity of these compounds (Gros et al.

2012, Pechalrieu et al 2017). Further, 5-AzaC induces unstable and major side-effects, e. g. it caused 

malformations and apoptosis in the fetal nervous system when administered into pregnant mice 

(Ueno et al. 2002). We therefore used to alter DNA methylation in mollusks by using the 

commercially available non-covalent nucleoside inhibitor, zebularine (Champion et al., 2010) and 

novel generation of non-nucleoside DNMT inhibitors that do not incorporate into DNA and therefore 

induce minimal side effects (Erdmann et al. Arimondo, 2015). In addition, we evaluate if DNMTi-

induced DNA methylation modifications are inherited to offspring. For global DNA methylation 

screening, we developed a simple, low cost, antibody-based method to measure DNA methylation 

levels over large sample numbers and requiring only small amounts of DNA. Our dot blot method and

a commercial ELISA-based kit showed equivalent results. For genome-wide methylation profiling we 

used epi-genotyping-by-sequencing method (epiGBS) (van Gurp et al. 2016, Gawehns et al. 2020) and

we compared the results with a previous methylation information obtained by Whole Genome 

Bisulfite Sequencing (WGBS) (Adema et al. 2017). 

We tested two types of DNMTi with different mechanisms of action (Supplementary file 1: Figure S1).

We used zebularine, a nucleoside analogue of cytidine that has proven to be an inhibitor of DNA 

methylation in human cancer cells (Cheng et al. 2004) but differently from 5-AzaC, it does not form 

an irrevesible covalent complex with the DNMTs (Champion et al. 2010) and two custom made 

compounds (nitroflavanones) that showed in vitro inhibition activity against DNMT1 and DNMT3a-c 

in human cancer cell lines (Pechalrieu et al. 2020). 
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In summary, our results showed that flavanone Flv1 significantly decreased the 5mC level in the 

exposed generation and its progeny, it triggered variation in the morphometric traits in both 

generations and it did not show toxic effects. EpiGBS sequencing confirmed the genome-wide effect 

caused by Flv1 and allowed us to find Differential Methylated CpG sites (DMCs) between treatment 

and control samples. Furthermore, a parental effect was demonstrated by the presence of a 

Differential Methylated Region (DMR) in Flv1 exposed snails and its offspring. Flv1-induced 

hypomethylation in the BGLTMP010125 locus was associated with reduced gene expression. Since 

Flv1 inhibitor demonstrated efficiency as DNMTi in B. glabrata, it was also tested in the two other 

mollusk species: the oyster C. gigas and the freshwater snail P. acuta, where it triggered also 

significant decrease of 5mC, suggesting that Flv1 can be used to modify methylation in other mollusk 

species and possibly other invertebrate’s taxa. Our results also indicate that induced DNA 

hypomethylation is associated with increased phenotypic variance.

Methods

Ethics statement

B. glabrata albino Brazilian strain (BgBRE) was used in this study. P. acuta juvenile individuals were 

raised in the Centre d’Ecologie Fonctionnelle et Evolutive CEFE UMR 5175 in Montpellier, France. C. 

gigas juveniles’ oysters were a generous gift of Bruno Petton from the Marine Mollusks Platform 

IFREMER in Bouin, France. B. glabrata mollusks were maintained at the IHPE laboratory facilities; 

they are kept in aquariums and fed with lettuce ad libitum. C. gigas and P. acuta mollusks were 

maintained during the 10 days of drug exposure in the quarantine room at the IHPE laboratory to 

avoid contact with the home breeding species (B. glabrata strains). The Direction Départementale de

la Cohésion Sociale et de la Protection des Populations (DDSCPP) provided the permit N°C66-136-01 

to IHPE for experiments on animals. Housing, breeding, and animal care were done following the 

national ethical requirements.

7

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

13

14



DNA methyltransferase inhibitor (DNMTi) treatments in B. glabrata

Three types of DNMT inhibitors were tested in the snail B. glabrata, the cytidine analogue zebularine 

(Sigma, France, Cat. No. 3690-10-6) and custom-made inhibitors, previously selected for their 

inhibitory activity against hDNMT1 and hDNMT3-c (Ceccaldi et al. 2011, , Pechalrieu et al. 2020).

The custom-made compounds consist in the active flavanones: Flv1, Flv2, and Flv-neg corresponding 

to compounds MLo1507 (3b), DD880 (880) and MLo1607 (19) in Pechalrieu et al. 2020. Stock 

solution at 10 mM were made in ultrapure Milli-Q water and aliquoted and stored at -20°C for all 

compounds. 

For each condition, 100 snails B. glabrata Brazilian strain (Bg BRE) of approximately the same age (8 

weeks) and size (5-7 mm) 7mm) were randomly assigned to treatment groups and control groups, 

the treatments were done with the drug at a final concentration of 10 µM in 1000 mL of well water in

a plastic container, a single aquarium was made within each treatment. The Bg BRE strain is not an 

inbred strain, it can show concomitant genetic variability (Carvalho et al. 2001). The water was 

replaced once with fresh drug-containing water at the same concentration, the replacement was 

performed after 3 days and 22 h. After 10 days of exposure, the drug was removed and replaced by 

drug-free water. Snails were then raised in the plastic tank for 70 days, during which different life 

history traits were measured. Mortality was measured at days 3, 4, 6, 8 and then each week. The 

egg-capsules laid by the snails of the generation F0 were separated each week to raise the F1 

generation in another plastic container, the fecundity was reported as a single measure of number of

juveniles and total number of eggs per treatment. At day 70, snails of the generation F0 and F1 were 

collected, the shell width, shell height and weight of each snail were recorded to compare 

morphometric trait variations between treatments. Finally, snails were stored wrapped in aluminum 

sheets individually at -20 °C.
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Flv1 treatment in C. gigas and P. acuta

Thirty individuals of P. acuta and thirty of C. gigas were raised as the control groups. Thirty 

individuals of P. acuta and thirty of C. gigas were exposed to the Flv1 inhibitor at a concentration of 

10 µM. The water was replaced once with fresh water for P. acuta and with filtered sea water for C. 

gigas both containing Flv1 inhibitor at the same concentration, the replacement was done after 3 

days and 22 h. After 10 days of exposure, snails and oysters were collected and stored in aluminum 

sheets individually at -20°C. 

Genomic DNA extraction

Zirconia/Silica beads and the NucleoSpin® Tissue Kit (Macherey-Nagel, Düren, Germany) a method 

developed to extract DNA from the Pacific oyster (de Lorgeril et al. 2018) were used for DNA 

extraction from whole body without shell of B. glabrata (n=300, 30 per treatment), P. acuta (n=60) 

and C. gigas (n=60). Briefly, for the lysis phase, 180 µL of lysis buffer, 25 µL of Proteinase K (20 

mg/mL) and 100 µg of zirconia/silica beads (BioSpec, USA, Cat. No. 11079110z) were added to 

samples that were submerged in liquid nitrogen and then shaked in a Mixer Mill (Retsch MM400) at a

frequency of 30 Hz for 12 min. Then an incubation in water bath at 56 °C during 1 h 30 was done.

After lysis, the NucleoSpin® Tissue Kit protocol was applied according to the manufacturer 

instructions. Elution was performed into a final volume of 100 µL elution buffer. The samples were 

stored at -20°C. DNA concentrations of all samples were quantified using a Qubit® 2.0 fluorometer 

(Invitrogen) and a fluorescence-based Qubit™ dsDNA BR Assay Kit (Invitrogen, Q32853).

DNA methylation screening 

Detection and quantification of DNA methylation in genomic DNA were performed by dot blot assays 

using an antibody against 5mC. Before large screening, we optimized the dot blot method with DNA 

extracted from HeLa cells as a positive control and unmethylated PCR products as negative control. 
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Different concentrations of HeLa cells were spotted to test the sensitivity and linearity of the 

method. After standardization of the method, genomic DNA of the control and treated mollusks (100 

ng in 5 µL per replicate for equal loading) were denatured with 0.3 M NaOH at 42 °C for 10 min and 

spotted on nitrocellulose membranes (Hybond®). The membranes were blocked in 5% powdered 

milk diluted in 1×TBS containing 0.05% Tween 20 (TBST) for 1 h 30 at room temperature. Then, the 

membranes were incubated with a 1:500 dilution ratio of anti-5mC antibody (Abcam, #ab73938) and 

5% powdered milk in TBST for 1 h 30, followed by 3×10 washes with TBST and elliptical agitation. 

Then incubation with a 1:500 dilution ratio of HRP-conjugated Goat anti-mouse IgG secondary 

antibody (ClinicSciences, #AS111772) was done.

The antibody mixture was then removed, and the membrane was washed with TBST under elliptical 

agitation during 3×10 min. Lecture of the signal was performed using the SuperSignal™ West Pico 

Chemiluminescent system (Thermo Fisher Scientific, USA) and the ChemiDoc MP Imaging System. 

Finally, the densitometry of the 5mC was analyzed with the software ImageLab5.1. Detailed protocol 

of this method is found in our preprint (Luviano et al. 2018). 

ELISA-based 5mC quantification 

Methylated DNA Quantification Kit (Colorimetric) (Abcam, ab117128) was used to determine global 

5mC level in isolated genomic samples of mollusk controls (n=15 for B. glabrata and n=10 for P. 

acuta and C. gigas) and Flv1 treated (n=15 for B. glabrata and n=10 for P. acuta and C. gigas) 

according to manufacturer instructions. To quantify the absolute amount of methylated DNA, a 

standard curve was generated plotting the OD values versus the amount of positive control at each 

concentration point. 
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Statistical analyses

The data of mean spot densitometry provided by the software ImageLab5.1 was normalized by the 

DNA amount to obtain a relative measure of the 5mC level. Then, we calculated the 5mC % using the 

following equation:

5mC % = [sample densitometry/ng] ∕ [positive control densitometry/ng] × Positive control 5mC %

where the positive control densitometry corresponds to 6.9 ± 1.2 per ng of HeLa cells and the 

positive control 5mC % corresponds to 2.3% of cytosines methylated in HeLa cells (Diala and Hoffman

1982).

Rstudio was used for statistical analysis. When data displayed normal distribution, Student’s T test 

was used to compare means and when data did not display a normal distribution, then the Wilcoxon 

Mann-Whitney test was applied to test significance of differences in means. The survival curves were 

compared by a Mantel-Cox test and the fecundity was measured as the number of offspring and the 

number of eggs laid by the snails. A contingency table was elaborated with the number of offspring, 

the non-hatched eggs and the total of eggs laid, then a Fisher’s exact test was done to test for 

significant differences between the treatments. PCA analyses with the three morphometric measures

(shell width, shell height and weight) were done to examine variability in all treatments.

Library preparation and high throughput bisulfite sequencing

We used an existing protocol called epiGBS (van Gurp et al. 2016, Gawehns et al. 2020), a reduced 

representation bisulfite sequencing method for cost-effective exploration of DNA methylation and 

genetic variation designed for multiplexed high-throughput sequencing to maximize sample size 

while losing loci. epiGBS sequencing was performed with the snails exposed to the DNMTi that 

showed the most significant changes in the global 5mC % (Supplementary file 2, Figure S3). Eight 

samples per treatment were sequenced from control group, Flv1-treated, and from the progeny of 
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control and the Flv1-treated group. 32 DNA isolated samples were quantified with Qubit fluorometer 

with the dsDNA HS Assay Kit (Invitrogen). The concentration was homogenized in all samples to 10 

ng/µL in a total volume of 35 µL. epiGBS library preparation was applied as described in the step- by-

step most recent protocol (Gawehns et al. 2020). Paired-end sequencing (2 × 150 bp) using an 

Illumina NextSeq™550 instrument at the Bio-Environment NGS Platform at the University of 

Perpignan. 

Bioinformatics epiGBS pipeline

We used the epiGBS2 pipeline (https://github.com/nioo-knaw/epiGBS2) to remove PCR duplicates, 

and demultiplex samples. We took the filtered and demultiplexed reads from epiGBS2 pipeline to use

another adapted pipeline (Meröndun, Murray, and Shafer 2019). Adapter removing was done using 

TrimGalore! V06.5 (Krueger 2012), 30 nucleotides were removed from 3’ and 5’ end. Single-end 

reads were aligned to B. glabrata genome v BglaB1 from 

https://www.vectorbase.org/organisms/biomphalaria-glabrata without scaffolds < 5kb with BSMAP 

Mapper (Xi and Li 2009). Then mapped reads were merged and used as input in BSMAP Methylation 

Caller to get a tabular file with cytosine and thymine counts that was used as input to calculate 

coverage and Frequency of C and T for subsequent analysis. 

After alignment, we filtered the CpG sites covered by 8 or more reads and pairwise comparisons and 

differential methylated analyses were done between control and treated samples in individuals of 

the same generation (F0 and F1) using MethylKit (Akalin et al. 2012). The parameters to calculate the 

Differentially Methylated Cytosines (DMCs) in MethylKit were q-value < 0.01 and > 15% methylation 

difference. The visualization of DMCs was done in Integrative Genomics Viewer (IGV). Reference 

transcriptome of B. glabrata was uploaded with bigwig files to see the location of DMCs. Genomic 

feature annotation was done by visualizing each differential methylated DMCs. Promoter was 

arbitrarily defined as the region 2 Kb upstream of transcription start site (TSS).
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Bisulfite conversion

300 ng of DNA from 8 control snails and 8 Flv1-treated snails were bisulfite converted as described 

previously (Boyd and Zon 2004, Frommer et al. 1992, Grunau, Clark, and Rosenthal 2001). 2 µg of 

tRNA from baker’s yeast (S. cerevisiae) were added to each sample, 3 M NaOH was added to a final 

concentration of 0.3 M, and DNA was denatured at 42 °C for 20 min. Then, 240 µL of freshly prepared

bisulfite solution (5.41 g of sodium metabisulfite + 7 mL of distilled water + 0.5 mL of diluted 

Hydroquinone [0.022 g/10 mL]) were added to the denatured DNA samples and incubated in the 

dark during 4 h at 55 °C. After that, 200 µL of distilled water were added to the samples, and the total

volume was transferred to an Amicon column (UFC501024, Millipore), and centrifugation was done 

at 12 000 g during 5 min. The column was washed 3 times with 350 µL of distilled water and 

centrifugation at 12 000 g during 5 min was done each time. Following this, 350 µL of 0.1 M NaOH 

was added to the DNA in the Amicon column, centrifuged at 12 000 g during 5 min, subsequently 350

µL of distilled water were added and a centrifugation at 12 000 g for 5 min was done. 50 µL of 10 mM

TRIS/Cl pH 7.5-8.0 was added to the DNA in the Amicon column and it has been incubated at room 

temperature during 5 min. Finally, the tube was inverted, and the DNA was collected by 

centrifugation at 1000 g for 3 min. DNA was stocked at -80 °C. 

Nested PCR amplification of bisulfite converted DNA

Primers were designed for PCR amplification in a CpG rich region of the first intron of the 

BGLTMP010125 gene using MethPrimer (Li and Dahiya 2002). The external primers (forward 

ATTGTGTTTTTATTTTGATGGTTATGATA and reverse CCCCAAAACTTACAAAAACCTTAC) were used to 

amplify a region spanning 861 bp in the BGLTMP010125 gene (Scaffold 4692: 13866-14343). The 

internal primers used in the nested PCR were the forward primer AGTTTTTTTTATTTTGTATGTAGAGT 

and the reverse primer ATCCTTTCAAAAAACAAATCATATATC; that amplify an amplicon of 565 bp. The 

initial PCR amplification was performed using 1 μL of the bisulfite converted gDNA samples as 
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templates with external primer set as follows: 94 °C for 2 min, 5 cycles of 94 °C for 1 min, 50 °C for 2 

min and 72 °C for 3 min, followed by 30 cycles of 94 °C for 30 secs, 50 °C for 2 min and 72 °C for 1:30 

min and finally 72 °C for 10 min. The nested PCR was performed on a 10-fold dilution of the first PCR 

product using the internal primer set in the same conditions as for the first PCR. PCR products were 

separated by electrophoresis through 2% agarose gels to check for the specific amplification of each 

target gene. PCR products were sequenced by Sanger sequencing (Genoscreen, Lille, France). 

Sequence chromatograms were analyses as previously described (Jiang et al. 2010) to measure T-

peaks heights for unmethylated cytosines converted to thymines, and C-peaks heights for 

methylated cytosines, providing an estimate for the degree of methylation.

Dual DNA and RNA extraction and RT-qPCR

DNA and RNA were extracted from the same samples (n=8 per treatment) with TRIzol reagent (Sigma

Life Science) according to manufacturer’s instructions. DNA was subsequently bisulfite converted as 

described previously and RNA was reverse transcribed to first strand cDNA using Maxima H Minus 

First Strand cDNA Synthesis Kit with dsDNase to remove contaminating genomic DNA and following 

manufacturer’s instructions (Cat. Num. K1682, ThermoFisher, Scientific). Real-time RT-qPCR analyses 

were performed using the LightCycler 480 System (Roche) in a 10 µL final volume comprising 5 µL of 

No Rox SYBR Master Mix blue dTTP (Takyon), 1.75 µL of ultrapure MilliQ water, and 1 µL of each 

primer at a concentration of 1 µM. The primers used for the RT-qPCR are shown in the Table 1. Two 

housekeeping genes were used to normalize the results, the 28S ribosomal protein gene and the 

αTubulin protein gene, the primers efficiencies were previously evaluated by amplifying four 

different dilutions of each couple of primers at the RT reaction (1:1, 1:10; 1:100 and 1:1000), a 

standard curve was generated and the efficiency was calculated with the equation (Efficiency of the 

amplification= 10^(1/-slope), as earlier described (Jozefczuk and Adjaye 2011). The cycling program was: 

denaturation step at 95 °C for 2 min, 40 cycles of amplification (denaturation at 95 °C for 10 secs, 
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annealing at 58 °C for 20 secs, and elongation at 72°C for 30 secs), with a final elongation step at 72°C

for 5 min. For each reaction, the cycle threshold (Ct) was determined using the second derivative 

method of the LightCycler 480 Software release 1.5.0 (Roche). Reactions without RT served as 

negative control for each sample (in duplicate) to exclude amplification of DNA. None of these 

negative RT reactions amplified the target. All PCR experiments were performed in duplicates 

(technical replicates). The mean Ct value of each reaction was calculated and the 2−ΔΔCT method was 

applied to calculate relative gene expression, the geometric mean of the Ct values of two 

housekeeping genes (28S and α-Tubulin) were used to normalize gene expression. Corrected melting 

curves were checked using the Tm-calling method of the LightCycler 480 Software release 1.5.0.

TABLE 1. Biomphalaria glabarata gene-specific primers used to amplified gene fragments used in the 

RT-qPCR.

Gene Primer Sequence Amplicon lenght Primer efficiency

28S ribosomal protein

F : GCTGGCACGACCGCTCCTTT 100 bp 2.01

R : TTTGAACCTCGCGACCCGGC

α-Tubulin
F : CGACATCTGCCGCCGTAACCT 112 bp 2.04

R : GGCGCCATCAAACCTGAGGGA

BGLTMP010125-RA:
F : TTGCTGTGACTGTCAGTGTC 95 bp 1.90

R : TAGACTCAATGGACGGTGGAC

Nuclear fraction extraction 

Nuclear fractions were prepared by collecting Bge cells (the embryonic cell line of our model B. 

glabrata) by centrifugation, then cell pellet was lysed with a dounce homogenizer (7 mL) for 10 min 

at room temperature with cold 10 mM HEPES pH 7.7, 10 mM KCl, 0.1 mM EDTA, 1 mM DTT, and 0.4%

IGEPAL CA-630 in the presence of protease inhibitors. The lysed cells were centrifuged at 15,000 x g 

for 3 min and the soluble fractions removed. The pellet was resuspended in 20 mM HEPES pH 7.7, 0.4

M NaCl, 10% glycerol, 1 mM DTT in the presence of protease inhibitors by vortexing for 2 h at 4 °C, 

followed by centrifugation at 15,000 x g (5 min, 4 °C) to provide the nuclear fractions (supernatant) 
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and a membrane pellet. The nuclear fractions were quantified with the 2D Quant Kit (GE Healthcare 

Life Sciences, USA) and then stored at -80 °C until use. 

Chemical stability measurement

The flavanone compounds stability was measured by High Performance Liquid Chromatography 

(HPLC) by the method described in Pechalrieu et al., 2020. HPLC analysis were done using an X-terra 

column (100 × 4.6 mm; 5 µm) with 1 mL/min flow and the following gradient: H2O acetonitrile 95:5 

for 2 min then up to 0:100 in 10 min and maintained at 0:100 for 2 min with H2O and acetonitrile 

containing 0.1% of trifluoroacetic acid. First, flavanone compounds (Flv1, Flv2 and Flv-neg) were 

injected in solution at 100 µM in 100% DMSO to check its purity. Then 50 µL of solution at 10 µM of 

tested compound was prepared by dilution in DNMT3A-c enzyme buffer (Hepes 20 mM pH 7.2, KCl 

50 mM, EDTA 1 mM final concentration), in freshwater used in the aquariums of B. glabrata or in 

filtered sea water used in the aquariums of C. gigas. The percentages of remaining compound were 

determined with the area of the corresponding HPLC peak on the 250 nm chromatogram. 

DNMT inhibition assays

Compound activities were determined with a fluorescence-based assay (Ceccaldi et al. 2011). In brief,

a double-strand DNA with a unique CpG site overlaying an endonuclease restriction site for 

methylation-sensitive enzyme was used. This oligonucleotide comprises a 6-carboxyfluorescein (6-

FAM) at one end and biotin on the other end allowing immobilization into a 384-well plate 

(PerkinElmer) pre-coated with avidin. Compounds to be evaluated and SAM as methyl donor were 

added followed by DNMT3A-c to start the methylation reaction, which was prolonged 1 h at 37 °C. 

After several washing, with PBS tween (0.05%) containing NaCl (0.5 M) and PBS tween (0.05%). 

Restriction step was performed with HpyCH4IV (New England, BioLabs) to hand on only the specific 

fluorescence signal. Fluorescence was quantified on a spectrofluorometer SAFAS FLX-Xenius. 
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Methylation activities are defined as [(Xmeth-Xrestri)/(XDNA-Xrestri)]x100, where Xmeth, Xrestri and XDNA are 

respectively the fluorescence signals of the compound methylation, restriction and DNA controls. 

Results

New DNMTi influence global DNA methylation in vivo over two consecutive generations 

(multigenerational effect)

Using a newly developed population epigenetics screening method that delivered results comparably

to ELISA (Supplementary file 2, Figure S4 and S5) but at much lower costs (Luviano et al. 2018) we 

showed that, in the F0 generation, zebularine did not produce a statistically significant difference in 

5mC % compared to the control group (W=383, p=0.32). However, 5mC % was significantly different 

in the groups treated with Flv1 (W=365 p<0.0001) and Flv2 (W=445, p<0.0001) compared to control. 

The reduction in 5mC % between control (2%) and Flv1 (0.96%) was 2-fold (Figure 1a). Unlike Flv1, 

Flv2 showed a significant difference compared to the inactive flavanone Flv-neg (W=361, p<0.0001). 
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In the F1 generation, offspring snails of the Flv1 exposed generation presented a significantly lower 

5mC % (W=713, p<0.0001) than the control group (Figure 1b).

Control Zebularine Flv1 Flv2 Flv-neg
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0.50

1.00

1.50

2.00

2.50

(a). Generation F0 (Exposed)

Treatment

%
 5

 m
C

18

*

*

*

404

405

406

35

36



Control Zebularine Flv1 Flv2 Flv-neg
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0.20

0.40
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(b). Generation F1 (Not exposed)

Treatment applied to the previous generation

%
5m

C

FIGURE 1. 5mC % of B. glabrata snails upon DNMTi treatments at a concentration of 10 µM, error 

bars represent SD, n=30 per treatment. (a) 5mC % in the F0 generation (exposed), black bar for 

control, grey bar for zebularine, blue bars represent the flavanone inhibitors (blue bar for Flv1 and 

light blue bar for Flv2) and the white bar with blue outline represent the inactive Flv-neg. (b) 5mC % 

in the non-exposed F1 generation. Compounds are the ones used in F0. Mann-Whitney Wilcoxon test

was applied, if not otherwise indicated, between treatment and control significant differences are 

marked as * for p<0. 0001. 5mC ng was normalized to the 5mC global percentage present in the 

genome of B. glabrata.

Flv1 blocks DNMT activity in vitro

After having firmly established that Flv1 inhibits DNA methylation in vivo in B. glabrata we wondered 

if this effect was due to a direct action on DNMT or whether it was indirect by influencing upstream 

pathways. To verify this, we extracted soluble nuclear proteins from Bge cells and performed an in 

vitro enzyme inhibition assay. We showed that methylation activity of Bge nuclear protein extract 

was inhibited by 55% and 78% after treatment with 32 µM and 100 µM of Flv1, respectively 

(Supplementary data 1, Figure S2). 
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DNMTi influence survival, fecundity and morphometric traits

Since our findings had clearly indicated that Flv1 had an in-vivo and in-vitro demethylating activity i.e.

probably due to a direct effect on the DNMT we wondered if this epimutagenic activity had 

phenotypic consequences. Therefore, we measured survival, fecundity and morphometric traits in 

the DNMT-treated snails. We used as pharmacological reference molecule zebularine. Zebularine 

induced the lowest mortality with no significant difference compared to control group (Mantel-Cox 

test χ2=0.3, p=0.56). This compound followed a similar trend as the control and the snail final survival

rate reached 80% compared to 84% in the control. (Figure 2a). The mollusks treated with Flv1, Flv2 

and the inactive Flv-neg had a survival rate of 68%, 73%, and 69%, respectively (Figure 2b), and none 

of these rates were statistically different compared to the control group (χ2=3.5, p=0.06 for Flv1, 

χ2=1.16, p=0.2 for Flv2 and χ2=5.9, p=0.1 for Flv-neg). 

FIGURE 2. Kaplan-Meier survival curves upon treatment with the two types of DNMTi. (a) Cytidine-

analogue zebularine (grey line). (b) Flavanones Flv1 (blue line with triangles) and Flv2 (blue line with 

squares) and their inactive derivative Flv-neg (blue line with circles). 

The fecundity of snails was affected by the treatment with Flv2. With zebularine the number of the 

offspring was significantly lower than the control group (Fisher’s exact test, p<0.0001) and the 
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number of eggs was very high compared to the other treatments (Table 2). Mollusks treated with 

Flv2 presented a low number of offspring (n=20) and it was significantly different compared to 

control group (p=0.004); the treatments with Flv1 and Flv-neg showed no significant difference in the

number of offspring against control group. 

TABLE 2. Contingency table of fecundity of the snails exposed to different DNMTi. Total number of 

laid eggs (first row), number of non-hatched eggs (second row) and number of offspring snails (third 

row). Fisher’s exact test was applied, significant differences with control group are marked with * for 

p<0.005 and ** for p<0.0005.

Control Flv1 Flv2 Flv-neg Zebularine

Total number

of laid eggs
191 183 199 188 326

Number of

non-hatched

eggs

152 147 179 147 301

Number of

offspring
39 36 20* 41 25**

To visualize the variation of morphometric traits induced by DNMTi treatment in the F0 generation 

and in its respective offspring, we performed PCA with three morphometric measures. Flv1 

treatment induced the largest variance (the highest range of values in the axis of the PCA plot) in 

both the F0 and F1 generations (Figure 3). In other words, the inhibition of DNMT activity by Flv1 led 

to a decrease of global DNA methylation and resulted in a higher diversity of morphometric traits in 

the Flv1-treated population and its offspring (Figure 3 e-f). 
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FIGURE 3. PCA of morphometric traits of all treatments of F0 (a) and F1 generation (b). PCA analyses 

splitted by treatment, (c) PCA of morphometric traits after zebularine treatment and (d) its offspring 

(e) PCA of morphometric traits of snails exposed to flavanone derivatives F0 generation and (f) the 

non-exposed F1 generation. The confidence ellipses show a confidence interval of 95%. The axis 1 

includes the three morphometric measures (shell width, height and weight) and the axis 2 include 

shell width and height.
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epiGBS reduces sequencing effort roughly 10x but allows for reliable evaluation of global 5mC level

and identification of differentially methylated sites and regions  

To obtain a clearer picture of where hypomethylation occurred in the epigenomes of the DNMTi 

exposed populations and their offspring we adapted a reduced representation technique that was 

originally developed for mosaic methylation of plants: epigenotyping by sequencing (epiGBS). Since it

was the first time epiGBS was used on mollusks, we first had to make sure that it delivers reliable 

results here. We used our previously obtained WGBS data (Adema et al. 2017) to compare the WGBS 

to epiGBS results on B. glabrata. We reanalyzed the WGBS data with updated pipeline analysis and 

generated a new reference methylome of B. glabrata. Using the BSMAP Mapper, 46.2% of reads 

mapped unambiguously to the B. glabrata reference genome. Paired-end sequencing of the 32 

pooled epiGBS libraries (8 per treatment) resulted in a total of 140,751,495 filtered and 

demultiplexed reads. After quality control and alignment, an average of 34% of unique reads per 

sample mapped to the B. glabrata reference genome using BSMAP Mapper (Supplementary file 1, 

Table S1). After methylation calling, 6 samples per treatment with CpG sites covered by ≥8 reads 

were retained for further analysis, the removed samples showed very low number of CpG sites 

(<4200). After filtering; we obtained an average of 47,715 +/- 31,774 methylated CpG methylation 

positions per sample (Supplementary file 1, Table S1). 

To analyze the distribution of methylated CpG over the entire genome we represented its frequency 

distribution. We found a characteristic distribution of two peaks for both WGBS and epiGBS 

indicating the majority of the CpG sites being either unmethylated or completely methylated, as 

expected for a species that displays a mosaic distribution type of DNA methylation pattern (Figure 4 

a-c). The peak of methylated CpG sites was higher in the epiGBS sequencing results compared to 

WGBS, but mean CpG methylation values and confidence interval (CI) of 95% were highly similar in 

both methods (Figure 4 a-c). 
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FIGURE 4. Histograms of CpG methylation distribution, (a) histogram of F0-control epiGBS libraries 

(b) histogram of F1-control epiGBS libraries and (c) histogram of WGBS library. The abscissa 

represents the CpG methylation % (0-100) and the ordinate showed the density of CpG positions. The

dashed red line indicates the mean CpG methylation value and the blue arrow indicates the 

confidence interval (CI) of 95%.

A direct comparison was done to examine the data obtained for CpG methylation from epiGBS library

versus WGBS (Supplementary file 1, Table S1). We chose the best covered control samples from each 

generation of epiGBS libraries to compare them with WGBS. WGBS data had a higher mapping 

efficiency than epiGBS (46.2% compared to 32.8%). The number of CpG sites with a minimum read 

coverage of 8x was of 34,646 and 63,892 for epiGBS libraries and 4,061,906 for WGBS. epiGBS 

represents 0.8% (epiGBS F0) and 1.6% (epiGBS F1) of the CpG sites covered by WGBS. However, the 

average levels of CpG methylation percentage were very similar between both methods (Table 3). 
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TABLE 3. Mapping efficiencies, CpG coverage and average genome-wide methylation levels resulting 

from epiGBS and WGBS libraries.

Samples Mapping
efficiency%

Sequence
reads

Total 
no. CpGs

CpGs ≥ 8x
coverage

Methylated
CpG sites

Methylated CpG
% 

epiGBS 
F0

34.3 707 010 95 369 34 646 7 621 22.0

epiGBS 
F1

34.5 1 299 293 180 852 63 892 13 982 21.9

WGBS 46.5 152 842 929 17 493 207 4 061 906 855 624 21.1

To evaluate concordance of epiGBS and WGBS, a correlation was done with the methylation values 

of CpG positions covered by both methods. A high correlation was found between WGBS and epiGBS,

Spearman correlation, R=0.74, p<2.2e-16. We also visualized the CpG methylation profile of epiGBS 

samples compared to WGBS in IGV in a wide-ranging Scaffold. Visual inspection showed that both 

epiGBS libraries of F0 and F1-controls have similar methylation profiles (Figure 5 yellow bars) while, 

naturally, epiGBS results represent a small fraction of the information found with WGBS (Figure 5, 

blue bars). 

FIGURE 5. Screenshot of IGV of the region LGUN_random_Scaffold28: 1-800 Kb, that showed the 

regions covered by epiGBS libraries (in yellow) versus the regions covered by WGBS library (blue). 

We then produced the CpG methylation metagene profiles across gene bodies from 2kb upstream of 

the transcription start sites (TSS) and 2kb downstream of the transcription end sites (TES). The CpG 

sites used for these profiles were those covered by both methods. We found that CpG methylation 

levels remained a plateau after TSS and along the gene bodies and then showed a high range of 
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methylation before TSS and after TES in both methods. The range of GBM levels were different in 

epiGBS libraries (0.9-1) (Figure 6a-b) than in WGBS (0.7-0.9) (Figure 6c). 

The quantile distribution of GBM was different between epiGBS and WGBS. In the epiGBS libraries of 

F0 and F1 controls, the highest quantile is the first one and comprises CpG values of 0.15-0.80 and 

0.47-0.85 (Figure 6d-e). In the WGBS library, the highest quantile is also the first one but comprises 

values of 0.07 to 0.58 (Figure 6f). When all CpG sites covered by WGBS are compared to epiGBS 

libraries, the metagene profiles and the quantiles distribution are, as expected, more marked 

(Supplementary file 2 Figure S6).

FIGURE 6.  CpG methylation ratio profile across the bodies of genes and quantiles distribution of

epiGBS and WGBS libraries.  (a)  Metagene profile  of  CpG methylation ratio of  F0  control  epiGBS

libraries, (b) F1-control epiGBS libraries and (c) WGBS library. −2.0 kb indicates the upstream 2,000

bp of TSS, and 2.0 kb indicates the downstream 2,000 bp of TES. Quantiles (deciles) distribution of

Gene body methylation of (d) F0-control epiGBS (e) F1-control epiGBS and (f) WGBS.

The global distribution of CpG methylation sites displayed a two-peak histogram in all epiGBS 

samples, with most of the CpG sites being either unmethylated or completely methylated. The 
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percentage of CpG sites which displayed no methylation or complete methylation for each sample 

are indicated in Table 4.

In summary, epiGBS mirrors WGBS on a global scale but has necessarily a lower resolution (at our 

sequencing depth about 1% of the CpG sites are captured) and it also has a slight bias towards 

methylated regions of the epigenome.

TABLE 4. Percentage of CpG methylation sites which display an unmethylated or complete 
methylated pattern.

Generation F0 CpG methylation frequency Generation F1 CpG methylation frequency

Samples Unmethylated % Completely methylated % Samples Unmethylated % Completely methylated % 

Control 1 78 9.9 F1-control 1 81.2 13.6

Control 2 77.6 10.4 F1-control 2 78.6 9.7

Control 3 79.7 10.5 F1-control 3 82.4 13.5

Control 4 79.6 12.5 F1-control 4 82.4 13.5

Control 5 77.6 11.7 F1-control 5 81.5 12.5

Control 6 79.2 11 F1-control 6 82.3 12.6

Flv1-1 80.9 9.4 F1-Flv1-1 80.4 10.6

Flv1-2 77.1 8.7 F1-Flv1-2 80.9 10.8

Flv1-3 80.4 11.9 F1-Flv1-3 81 10.6

Flv1-4 82 13.4 F1-Flv1-4 82.9 11.8

Flv1-5 80.9 12.2 F1-Flv1-5 81.2 11.1

Flv1-6 81.9 12.7 F1-Flv1-6 81.7 11.2

epiGBS corroborates multigenerational hypomethylation by Flv1

We considered epiGBS a reliable method that allows for epigenome-wide analysis of DNA 

methylation changes in populations at reasonable costs and we used it to capture regional 

methylation differences in Flv1 -treated samples. The mean percentage of CpG methylation was 15.8 

± 0.8 % in control snails and 13.5 ± 0.6 % in Flv1-exposed snails, 13.5 ± 0.3 % in offspring of control 

snails and 13.1 ± 0.1 % in the offspring of Flv1-exposed snails. There was significant difference in 

global percentage of CpG methylation between control and Flv1-exposed snails (t= 6.0, df= 9.4, p= 

0.0001) and significant difference was also found in their offspring (t= 3.0, df= 6.0, p=0.023). 
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PCA analysis of CpG methylation was performed on controls and Flv1-treated samples (Figure 7). 

Interestingly, Flv1-treated samples clustered tightly, while control samples were spread out (Figure 

7a). PCA analysis of CpG methylation in F1 generation showed the same tendency, F1-Flv1 samples 

were grouped and F1-control samples dispersed (Figure 7b). PCA of both generations displayed the 

same pattern, indicating an impact in the CpG methylation at the genome-wide level and a decrease 

of CpG methylation variability/diversity in both generations. 

FIGURE 7. PCA of CpG methylation of the Flv1-treated and control groups in F0 generation (a) and in 

its offspring (b). The ellipses represent the 95% confidence interval. 
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One out of eight of Flv1-induced hypomethylated DMR is heritable 

Differential Methylated CpG sites (DMCs) were analyzed between control and Flv1-treatment in both 

generations. We found multiple DMCs concentrated in DMRs, one DMR consists in 2 or more DMCs 

found in the same genomic region (within 3.5 Kb). We found 25 DMCs in the F0 generation between 

control and Flv1-exposed samples, comprising 23 hypomethylated CpG sites and two 

hypermethylated CpG sites (Table 5). The higher content in hypomethylated CpG sites further 

confirmed the genome-wide effect of the Flv1 inhibitor. Interestingly, these DMCs are not isolated 

and rather concentrated in some closed regions: the 25 DMCs comprise eight DMRs (Supplementary 

file 1, Table S2). 

Table 5. DMCs in Flv1-treated and control group for each generation. The parameters to calculate 

the DMCs were q-value < 0.01 and > 15% methylation difference.

Treatmen
t Generation

Total
DMCs

Total
DMRs

Hypomethylate
d DMCs

Hypomethylated
DMRs

Hypermethylated
DMCs

Hypermethylated
DMRs

Flv1 F0 25 8 23 6 2 1

Flv1 F1 325 51 203 38 120 13

Flv1 F0 and F1 6 1 6 1 0 0

In the generation F1, 323 DMCs were found between F1-control and F1-Flv1 samples, 203 

hypomethylated and 120 hypermethylated (Table 5). The majority of hypomethylated DMCs 

demonstrates a hypomethylated genome wide effect. 325 DMCs represent a considerably higher 

amount of DMCs than in the generation F0. The context of each DMC was examined, the majority of 

hypomethylated DMCs were found in the intergenic region (42.8%), 19.7% in the promoter region, 

28.1% in introns and 9.4% in exons. In the case of hypermethylated DMCs, 32.5% were found in the 

intergenic region, 11.7% in the promoter region, 30% in introns and 25.8% in exons (Supplementary 

file 1, Table S3). The 203 hypomethylated DMCs are concentrated in 38 DMRs and the 120 

hypermethylated DMCs are concentrated in 13 DMRs. 
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Six DMCs were common between both generations, being hypomethylated, five of these DMCs were 

found in one DMR, which was visualized in the Integrative Genomics Viewer (IGV) using the B. 

glabrata genome (Assembly GCA_000457365.1) and the reference transcriptome for annotation 

(Figure 8). The DMR is close to transcript BGLTMP010125.
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Figure 8. IGV screenshot of the LGUN_random_scaffold4962:16175-16266 of B. glabrata genome 

assembly (GCA_000457365.1). Each bar indicates the position of a methylated CpG site for the 

different samples: F0-control F0 (black), F1-control (gray), Flv1-treated samples (light blue) and its 

offspring (dark blue). Hypomethylated DMCs have been detected in this region and are in common 

between F0 and F1 generation.
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Gene BGLTMP010125 that is hypomethylated by Flv1 shows decreased transcription 

One of the identified DMR was particularly intriguing. This DMR that was hypomethylated in Flv1-

treated snails and in their offspring and was close to BGLTMP010125. However, no epiGBS sites were

located within the BGLTMP010125 so that we could not evaluate gene body methylation (GBM) by 

this method. We therefore decided to resort to targeted bisulfite sequencing (TBS). We chose a 

region in the first intron of the transcript, roughly 2kb upstream of the DMR and spanning 9 CpG to 

further explore the relationship between GBM and gene expression. Our TBS results showed that 

control snails had five methylated CpG sites in the targeted region of the transcript BGLTMP010125-

RA and that the Flv1-treated snails showed a decrease of the 5mC level in three of the five CpG sites 

(Table 6), in the CpG 4 of the control snail 6, the decreased of CpG methylation percentage was from 

83.2 to 0%. GBM was significantly lower in Flv1-treated snails (t= 10.58, df= 8.18, p= 4.673e-06) than 

in controls (Figure 9a) and the transcript was significantly lower in Flv1-treated samples compared to 

controls (t= 6.53, df= 10.02, p=6.477e-05) (Figure 9b). 
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TABLE 6. 5mC % per CpG sites in the bisulfite converted sequence of the transcript BGLTMP010125.

CpG sites CpG 1 CpG 2 CpG 3 CpG 4 CpG 5 CpG 6 CpG 7 CpG 8 CpG 9

Position on Contig 
LGUN_random_Scaffold4692

13866 13976 14024 14042 14059 14061 14317 14331 14343

Control 1 100 0 100 100 0 63.4 0 100 0

Control 2 88.4 0 94.2 83.3 0 62.9 0 95.2 0

Control 3 100 0 97.8 100 0 87.8 0 100 0

Control 4 100 0 100 100 0 40 0 100 0

Control 5 100 0 100 83.1 0 73.4 0 100 0

Control 6 100 0 100 100 0 60 0 100 0

Control 7 89.5 0 95.3 100 0 81.1 0 100 0

Control 8 100 0 100 83.2 0 63.0 0 100 0

Flavanone 1 0 0 0 0 0 79.6 0 76.0 0

Flavanone 2 0 0 0 804 100

Flavanone 3 0 0 0 0 0 54.3 0 93.7 0

Flavanone 4 0 0 0 59.4 0 100 0

Flavanone 5 0 0 0 0 0 60. 0 100 0

Flavanone 6 0 0 0 0 0 71.9 0 100 0

Flavanone 7 0 0 0 0 0 60 0 100 0

Flavanone 8 0 0 0 0 0 68.4 0 100 0

Control mean 97.2 0 98.4 93.7 0 66.4 0 99.4 0

Flavanone mean 0 0 00 0 0 66.7 0 96.2 0
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Figure 9. (a)Position and level of methylation of the five CpG positions, which has been studied by 

TBS within the first intron of the transcript BGLTMP010125-RA. (b) Relative expression of the 

transcript BGLTMP010125-RA compared to two housekeeping genes (28S and α-Tubulin), the 

ordinate show the logarithm of the values obtained with the 2 -ΔΔCT method. 

Flv1 reduces global 5mC in other mollusks

Since Flv1 showed efficiency as DNMTi in B. glabrata we wondered if it would be active also in other 

mollusk species and used P. acuta and C. gigas. The dot blot results (Figure 10a) displayed that Flv1 

exposed P. acuta snails have a significantly decreased of the 5mC (ng) concentration compared to 

controls (t = 5.90, df = 52.23, p = 2.76 e-07). For C. gigas the decreased in 5mC (ng) by the Flv1 

treatment was also significantly different compared to control (t = 2.18, df = 47.946, p = 0.0342). The 

ELISA results (Figure 10b) showed that the Flv1 compound decreased significantly the 5mC 

concentration (ng) in P. acuta snails compared to controls (t = 4.80, df = 12.33, p = 0.0004), for C. 
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gigas we did not find a significantly decrease of the 5mC (ng) (t = 1.48, df = 12.11, p = 0.16) in ELISA-

based results but we found a tendency to decrease. The reason for this is probably the lower stability

of Flv1 in sea water (Supplementary file 2, Figure S7).

P. acuta C. gigas
0
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0.5

(a). Dot blot assay results

Control Flv1-exposed
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0.6

(b). ELISA-based assay results
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5 

m
C

 (
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)

 

FIGURE 10. (a) 5mC % measures obtained by the dot blot method for P. acuta and C. gigas. (b) 5mC 

% measures obtained by the ELISA-based assay. The bars represent the 5mC (ng) mean, the error 

bars represent the standard deviation (SD), n = 30 per group per specie for dot blot and n = 10 for 

ELISA. Significant differences between treatment and control are marked as * for p<0. 05.

Discussion

An extension of the concept of inheritance system includes the genotype, the epigenotype, the 

heritable cytoplasmic elements and the microbiome that interacts with the environment to shape 

and transmit the phenotype (Cosseau et al. 2017). The epigenotype and the microbiome can be 

altered by environmental factors and these modifications can be inherited, at least in some systems, 

to later generations, potentially facilitating genetic adaptation. One of the most-studied epigenetic 

mark is DNA methylation. It has been widely studied in vertebrates and plants but remains poorly 

understood in invertebrates, one of the largest phyla of invertebrates are mollusks, that include 

several species that are commercially, ecologically and medically important. It was hypothesized that 

DNA methylation in mollusk can be a mechanism to produce phenotypic variation and potentially 
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adaptation to new environments (Roberts and Gavery 2012a), but experimental proof is lacking. DNA

methylation in mollusks is likely to be an important element of the inheritance system. One way to 

analyze its role is to expose the inheritance system to external perturbations that target specifically 

the DNA methylation, e.g. by using DNMTi. Such specific inhibitors were synthetized to be used in 

human cell lines and they were applied to invertebrates assuming they would have the same effect. 

This strategy already led to important advances in other invertebrate species where treatments with 

the most used DNMTi, 5-AzaC, were correlated with demethylation and phenotypic changes 

(Athanasio et al. 2018, Maharajan et al. 1986, Geyer et al. 2018). Nevertheless, this drug has shown 

low response rates, low stability in aqueous solutions and a high toxicity. New DNMTi have been 

developed to overcome the weaknesses mentioned above. The aim of this work was to find an 

efficient DNMTi for mollusks that (i) provoked minimal side-effects and (ii) allowed the study of the 

DNA methylation contribution to phenotypic variability and the heritability of environmental DNA 

methylation changes. We tested new generation DNMTi in the snail B. glabrata to evaluate their 

inhibition potency in a mollusk-like DNA methylation. 

We used here an antibody-based assay as a screening method of global 5mC % modifications. We 

determined a linear correlation between DNA amount and mean spot density in the dot blot assay, 

and we demonstrated that it showed comparable results to ELISA-based commercial kit but allowing 

the screening of a larger number of samples at a lower price (Supplementary file 2, Figure S5). 

Furthermore, we used the epiGBS method for the first time in a mollusk species, providing evidence 

that this method can be used to analyze environmental DNA methylation changes genome-wide. This

method allowed the analysis of DNA methylation changes at the nucleotide level of numerous 

replicates, that is a prerequisite for ecological studies, at an affordable price and giving results that 

represent the same global pattern as WGBS, as shown by the high correlation found between the 

methylation ratios of the CpG positions covered by both methods (Spearman correlation, R=0.74, 
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p<2.2e-16). Besides, epiGBS laboratory protocol and bioinformatics analysis are very flexible and can 

be further improved to obtain higher coverage.

Zebularine is not suitable for DNA methylation modification in B. glabrata 

Zebularine has been reported as an efficient DNMT inhibitor in vertebrates, especially in human 

cancer cell lines (Tan et al. 2013). In this work we set out to evaluate its effect on the DNA 

methylation and phenotypic variation on the snail B. glabrata. We decided to use this drug as it is 

associated with lower cytotoxicity than the nucleoside analogs (5-AzaC and 5-Aza-deoxycytidine) due 

to a different mechanism of action and higher stability in aqueous media (Flotho et al. 2009, 

Champion et al. 2015). Nevertheless, the decrease of DNA methylation was not significant following 

zebularine treatment. Moreover, we observed an increase in the oviposition of snails treated with 

Zebularine (Table 2). This phenomenon was also observed in snails exposed to the parasite S. 

mansoni (Thornhill, Jones, and Kusel 1986), where oviposition is increased during the first days of 

parasite exposure. This response may be a fecundity compensatory strategy for expected future 

suppression of egg-laying and it is caused by environmental stress and the toxicity of zebularine 

possibly triggered this response. Zebularine has demonstrated a transient hypomethylation effect in 

plants (Baubec et al. 2009), we cannot exclude that the same could happen in B. glabrata, since we 

observed some phenotypic effects, especially in the fecundity, presenting the lowest percentage of 

hatching rate and a tendency to decrease in the global methylation level. Moreover, zebularine is not

a specific inhibitor of DNMTs, it also inhibits cytidine deaminase, an important enzyme in the 

biosynthesis of nucleotides, and most of the compound can be sequestered by this enzyme and 

therefore lowering its effective concentration. This is concordant with other studies showing that, in 

order to have an effective inhibition of DNMTs, a high concentration of this compound was required 

(≥100 µM) (Cheng et al. 2004).
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As a nucleoside analogue, the mechanism of action of zebularine requires its incorporation into DNA 

after phosphorylation and its conversion to the deoxy-zebularine triphosphate. The new DNMTi 

tested in this work are non-nucleoside analogues that do not incorporate into DNA being potentially 

more specific to DNMTs (Gros et al. 2012). 

Flavanone-type inhibitor has no toxic effects and reduces 5mC level in two subsequent generations

associated with variation in morphometric traits 

No significant differences were found in the survival and fecundity between Flv1 and its negative 

analogue (Flv-neg) against control group. Flv1 triggered a significant decrease on 5mC % in F0 

generation and in the F1 generation. Since we found an inhibitory efficiency of the Flv1 in the 

mollusks B. glabrata, P. acuta and C. gigas, we decided to test the stability of the flavanone 

compounds (3-halo-3-nitroflavanones) in freshwater and in sea saltwater that was used to raise our 

mollusks models. We found differences in the chemical stability of Flv1 between freshwater and sea 

salt water, the compound was ~3 times more stable in freshwater than it was in sea-salt water 

(Supplementary file 2, Figure S7), this can explain the results for C. gigas (raised in seawater) were 

diminution of global DNA methylation was lower than in the freshwater snails P. acuta and B. 

glabrata. Furthermore, we demonstrated an in vitro DNMT inhibition activity of the Flv1 compound 

in a nuclear extract from Bge cells. We concluded that for Flv1, 5mC modulation was most likely due 

to direct inhibition of DNMT activity.

We corroborated hypomethylation effect in B. glabrata by high-throughput bisulfite sequencing with 

the epiGBS method, confirming that the average of overall percentage of CpG methylation was 

significantly lower in Flv1-exposed snails compared to control and the same trend was found in its 

offspring. 

A total of 26 DMCs (25 hypomethylated and 1 hypermethylated) were found in the Flv1-exposed 

snails compared to controls, and its progeny showed 325 DMCs (203 hypomethylated and 120 
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hypermethylated) compared to F1-controls. The higher number of DMCs in the F1 generation, might 

be due to an indirect exposure of the germline to the inhibitor. In mollusks, germ cells appear early in

the embryonic development (Luchtel 1972). It has been demonstrated that exposure of the germline 

to DNMTi affects epigenetic programming in sperm and oocytes and are likely to affect outcomes and

offspring development principally in vertebrates (Western 2018, Prokopuk, Hogg, and Western 

2018). Additionally, the morphometric traits variation was higher in the Flv1-exposed snails and its 

offspring. These results are similar to those published in S. mansoni (Cosseau et al. 2010), where we 

found significant differences in the body length of the parasite larvae between control group and 

group treated with the epimutagenic TSA, a histone deacetylase inhibitor. Both results showed that 

modification of epigenetic marks by specific drugs can have effects on the phenotype variability of 

organisms. Indeed, our results in B. glabrata goes in line with the idea that the absence of DNA 

methylation could contribute to stochastic transcriptional opportunities and thus be a way to 

produce (heritable) phenotypic variability/diversity in mollusks (Roberts and Gavery 2012a). 

Nevertheless, more work is needed to verify if epimutations at multiple loci are causing the observed

phenotypic variability through post-transcriptional or gene expression changes or if phenotypic 

variability is independent of these induced epimutations. Morphometric traits variation is indicative 

of growth in mollusks and the heterogeneity of these traits in Flv1-exposed snail’s offspring is 

coherent with our hypothesis that the germline was indirectly exposed to Flv1.

Furthermore, one DMR was observed in Flv1 exposed snails and in its progeny, demonstrating a 

multigenerational effect, resulting from a direct exposure of the germline to the inhibitor. Few 

examples of multigenerational effect have been reported in mollusks (Fallet et al. 2020), one is our 

previous study in C. gigas showing that a parental herbicide exposure strongly affected the offspring 

DNA methylation pattern (Rondon et al. 2017). Another example was found in P. acuta, where 

exposure to prednisolone, a steroid hormone evacuated from hospital wastewater, negatively 
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affected the phenotypic traits of the snail, exhibited multigenerational toxicity and affected global 

DNA methylation of adult progeny (Bal, Kumar, and Nugegoda 2017). 

The DMR found in both B. glabrata generations mapped to the putative promoter region of 

transcript BGLTMP010125 coding for a thump domain-containing protein 3-like. A protein BLAST 

(blastp) with the amino acids sequence of this protein showed 66.4% of identity with the THUMP 

domain containing protein 3-like of Aplysia californica (NCBI reference sequence XP_012941090) and

52.8% of identity with the THUMP domain protein 3 of the brachiopod Lingula anatina 

(XP_013378720.1), these proteins are part of AdoMet_MTases superfamily, enzymes that use S-

adenosyl-L-methionine (SAM or Adomet) as a substrate for methyltransfer, creating the product S-

adenosyl-L-homocysteine. TBS in the first intron showed that the Flv1 inhibitor treatment decreased 

significantly the GBM level in this transcript. qPCR indicted reduced gene expression in Flv1 treated 

F0. Our results are in agreement with earlier results in the invertebrates Nematostella vectensis and 

Bombyx mori (Xiang et al. 2010, Zemach et al. 2010), where a positive linear correlation was found 

between GBM and mRNA levels.

Interestingly, the gene impacted by the inhibitor is coding for a SAM-dependent methyltransferase 

whose decreased expression could have leverage effects on 5mC level at multiple loci by influencing 

SAM homeostasis. 

In conclusion, Flv1 is a good candidate to perform multigenerational DNMTi experiments: it did not 

impact fecundity neither survival and it induce a DMR found in two consecutive generations. Since 

DNMTs are a conserved family of cytosine methyltransferases and since we showed that Flv1 

inhibitor is efficient in another two mollusk species P. acuta and C. gigas, we conclude that this new 

DNMTi can be used to pharmacologically modify 5mC level in mollusks species and possibly other 

invertebrates, providing a tool to study the inheritance of 5mC environmental modifications. 
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In neo-Darwinian theory, genetic variation is considered a pre-requisite for hereditary phenotypic 

variation and as the primary material of adaptation by natural selection. Nevertheless, it has been 

demonstrated that the epigenetic inheritance system allows the environmentally induced 

phenotypes to be transmitted between generations, which can constitute the basis of adaptative 

phenotypic plasticity (Jablonka and Lamb 1999, Jablonka and Lamb 1998). Moreover, epigenetic 

changes can be behind rapid adaptive changes observed in scenarios such as climate change, 

biological invasions and coevolutionary interactions. However, we need to disentangle the epigenetic

variation from the genetic one and for that we need approaches that allow us to decrease genetic 

background and introduce epigenetic changes. 

Our results hint at epimutations being a source of phenotypic variance that can be induced by 

chemicals that disrupt normal mechanisms of methylation control. And this disruption may act on 

the germline, with phenotypic expression in the form of heightened phenotypic and epigenetic 

variance in the next generation. But we have no proof that variation in methylation patterns are the 

only source of the variance in the phenotype found in F0 and F1 generations and we cannot formally 

exclude concomitant genetic variation. However, it can now be envisaged to use our new Flv1 DNMTi

to induce epimutations in inbred self-fertilization lines and cross epimutant snails with contrasting 

epigenomes (e.g. hypomethylated vs hypermethylated snails) allowing to create epigenetic 

recombinant inbred lines (epiRILs). In this way one can evaluate if, in the absence of genetic 

variation, epimutations and phenotypic variation induced in the exposed generations are transmitted

across multiple generations and produce phenotypes having a selective advantage. 
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Figure and table legends.

FIGURE 1. 5mC % of B. glabrata snails upon DNMTi treatments at a concentration of 10 µM, error 
bars represent SD, n=30 per treatment.

FIGURE 2. Kaplan-Meier survival curves upon treatment with the two types of DNMTi.

FIGURE 3. PCA of morphometric traits of all treatments of F0 (a) and F1 generation (b).

FIGURE 4. Histograms of CpG methylation distribution, (a) histogram of F0-control epiGBS libraries 
(b) histogram of F1-control epiGBS libraries and (c) histogram of WGBS library.

FIGURE 5. Screenshot of IGV of the region LGUN_random_Scaffold28: 1-800 Kb, that showed the 
regions covered by epiGBS libraries (in yellow) versus the regions covered by WGBS library (blue). 
FIGURE 6. CpG methylation ratio profile across the bodies of genes and quantiles distribution of 
epiGBS and WGBS libraries

FIGURE 7. PCA of CpG methylation of the Flv1-treated and control groups in F0 generation (a) and in 
its offspring (b).

Figure 8. IGV screenshot of the LGUN_random_scaffold4962:16175-16266 of B. glabrata genome 
assembly (GCA_000457365.1).

Figure 9. (a)Position and level of methylation of the five CpG positions, which has been studied by 
TBS within the first intron of the transcript BGLTMP010125-RA. (b) Relative expression of the 
transcript BGLTMP010125-RA compared to two housekeeping genes (28S and α-Tubulin), the 
ordinate show the logarithm of the values obtained with the 2 -ΔΔCT method. 

FIGURE 10. (a) 5mC % measures obtained by the dot blot method for P. acuta and C. gigas. (b) 5mC 
% measures obtained by the ELISA-based assay.

TABLE 1. Biomphalaria glabarata gene-specific primers used to amplified gene fragments used in the 
RT-qPCR.

TABLE 2. Contingency table of fecundity of the snails exposed to different DNMTi.

TABLE 3. Mapping efficiencies, CpG coverage and average genome-wide methylation levels resulting 
from epiGBS and WGBS libraries.

TABLE 4. Percentage of CpG methylation sites which display an unmethylated or complete 
methylated pattern.

Table 5. DMCs in Flv1-treated and control group for each generation.

TABLE6. 5mC % per CpG sites in the bisulfite converted sequence of the transcript BGLTMP010125.

Abbreviations

6-FAM: 6-Carboxyfluorescein

THUMP: THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases
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AdoMeth or SAM: S-adenosyl-L-methionine

5mC: 5-methylcytosine

DNMTs: DNA methyltransferases

DNMTi: DNA methyltransferase inhibitors

5-AzaC: 5-azacytidine

BgBRE: Biomphalaria glabrata strain Brazil BRE

Bge: Biomphalaria glabrata embryonic 
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