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High-throughput screening identifies suppressors
of mitochondrial fragmentation in OPA1 fibroblasts
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Abstract

Mutations in OPA1 cause autosomal dominant optic atrophy (DOA)
as well as DOA+, a phenotype characterized by more severe neuro-
logical deficits. OPA1 deficiency causes mitochondrial fragmenta-
tion and also disrupts cristae, respiration, mitochondrial DNA
(mtDNA) maintenance, and cell viability. It has not yet been estab-
lished whether phenotypic severity can be modulated by genetic
modifiers of OPA1. We screened the entire known mitochondrial
proteome (1,531 genes) to identify genes that control mitochon-
drial morphology using a first-in-kind imaging pipeline. We identi-
fied 145 known and novel candidate genes whose depletion
promoted elongation or fragmentation of the mitochondrial
network in control fibroblasts and 91 in DOA+ patient fibroblasts
that prevented mitochondrial fragmentation, including phos-
phatidyl glycerophosphate synthase (PGS1). PGS1 depletion
reduces CL content in mitochondria and rebalances mitochondrial
dynamics in OPA1-deficient fibroblasts by inhibiting mitochondrial
fission, which improves defective respiration, but does not rescue
mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity.
Our data reveal that the multifaceted roles of OPA1 in mitochon-
dria can be functionally uncoupled by modulating mitochondrial
lipid metabolism, providing novel insights into the cellular rele-
vance of mitochondrial fragmentation.
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Introduction

The morphology that mitochondria adapt within a cell is shaped by

opposing events of membrane fusion and fission executed by

dynamin-like GTPases (Giacomello et al, 2020). Fission is performed

upon recruitment of dynamin-related protein 1 (DRP1, encoded by

DNM1L) to the outer membrane (OMM) via its receptors mitochon-

drial fission factor (MFF) and mitochondrial division (MiD) 49 and

51, which coalesce at sites of contact with the endoplasmic reticu-

lum (ER)(Friedman et al, 2011) in a manner that depends on the

lipid composition of the OMM (Choi et al, 2006; Khacho et al,

2014). Mitochondrial fusion is controlled by Mitofusins (MFN) 1

and 2 at the outer membrane and optic atrophy protein 1 (OPA1) in

the inner membrane (IMM) (Chen et al, 2003; Olichon et al, 2003;

Cipolat et al, 2004). Post-translational modifications (PTM) of these

proteins can regulate mitochondrial dynamics: DRP1 phosphoryla-

tion can alter the recruitment to future sites of mitochondrial divi-

sion on OMM while at the IMM, proteolytic cleavage of OPA1 from

L-OPA1 to S-OPA1 by the mitochondrial proteases OMA1 and the i-

AAA protease YME1L balances the rates of fusion and fission in

response to stress conditions and metabolic stimulation (MacVicar

& Langer, 2016).

Mitochondrial shape can shift in response to cellular and extra-

cellular cues both in vitro and in vivo (Twig et al, 2008; Gomes

et al, 2011; Arruda et al, 2014; Khacho et al, 2014; Jacobi et al,

2015). Mitochondrial fusion has been proposed to preserve cellular

integrity, increase ATP production, and maintain mitochondrial

DNA levels (mtDNA) (Chen et al, 2010; Elachouri et al, 2011).

Stress-induced mitochondrial hyperfusion (SiMH) is a cytoprotective

response that occurs in response to exogeneous cellular insults

including protein synthesis inhibition and nutrient and oxygen

deprivation (Tondera et al, 2009; Gomes et al, 2011; Rambold et al,
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2011; Khacho et al, 2014) characterized by an elongation of the

mitochondrial network resulting from unopposed fusion that

requires OPA1 and MFN1 (but not MFN2) and the IMM proteolytic

scaffold protein stomatin-like protein 2 (SLP2) (Tondera et al, 2009;

Wai et al, 2016). SLP2 is a cardiolipin (CL)-binding protein that

defines CL-rich membrane domains of the IMM. CL is a

mitochondrial-specific non-bilayer-forming phospholipid that is

implicated in a wide array of mitochondrial processes including

apoptosis, respiratory chain assembly, protein import, inflamma-

tion, and mitochondrial dynamics (Claypool, 2009). The association

between mitochondrial dynamics and lipids in mitochondrial and

cellular homeostasis is well established, although the nature of this

interdependence is less clear.

Unopposed fission causes mitochondrial fragmentation, which is

associated with cellular dysfunction and has been observed in a

variety of acquired and inborn disorders, in particular mitochondrial

genetic diseases (MD) (Giacomello et al, 2020). Mutations in OPA1,

which encodes for a dynamin-like GTPase protein, cause autosomal

dominant optic atrophy (DOA). The majority of patients manifest

isolated optic atrophy (DOA, MIM#165500), but a subgroup develop

a more severe disseminated neurological phenotype as part of a

DOA “plus” phenotype (DOA+, MIM#125250), including an early-

onset Behr-like syndrome (MIM#210000) or encephalomyopathy

(MIM# 616896) in a few reported patients with recessive OPA1

mutations (Carelli et al, 2015; Spiegel et al, 2016). OPA1-deficient

cells exhibit a fragmented mitochondrial network due to unopposed

fission (Olichon et al, 2003; Cipolat et al, 2004). Beyond mitochon-

drial fusion, OPA1 plays essential roles in the maintenance of cristae

shape, mtDNA levels, OXPHOS complex assembly, cellular prolifera-

tion, and apoptotic sensitivity (Giacomello et al, 2020). Over-

expression of OPA1 can confer protection against apoptotic cell

death (Varanita et al, 2015) without necessarily altering mitochon-

drial morphology (Frezza et al, 2006), leading to the notion that

non-fusion roles of OPA1 (e.g., cristae maintenance) are function-

ally separable from IMM fusion but this hypothesis has never been

put to the test in OPA1 deficiency (Patten et al, 2014). Indeed, how

OPA1 is capable of regulating different processes within mitochon-

dria is unclear as is the cellular relevance of mitochondrial fragmen-

tation in OPA1-deficient cells.

Mitochondrial morphology exists on a dynamic spectrum, with

fragmented and hypertubulated (or hyperfused) referring to the char-

acteristic network morphologies adopted by mitochondria in cells

when fusion and fission are inhibited, respectively (Giacomello

et al, 2020). Quantification of mitochondrial morphology performed

by subjective, user-defined manual classification cells with aberrant

mitochondrial networks caused by inhibited fusion (Ishihara et al,

2006) or fission (Osellame et al, 2016) as well as enhanced fusion

(Tondera et al, 2009; Wai et al, 2016) or fission (Anand et al, 2014)

has been successfully applied for the over two decades. More

recently, the use of computer-assisted segmentation measurement of

mitochondrial features (Kane et al, 2017), such as the length, width,

or aspect ratio of mitochondria has gained traction (Iannetti et al,

2016). However, major drawbacks to these approaches remain the

manual collection of images, the possibility of user bias, and the

laborious segmentation of mitochondria needed to ascribe morpho-

logical traits. The latter also requires spatial resolution at the physi-

cal limits of light microscopy in order to accurately and

unequivocally separate one mitochondrion from the next. While

recent advances in super-resolution nanoscopy of mitochondria may

soon render this concern moot (Jakobs et al, 2020), only a handful

of laboratories have successfully applied this technology for high-

resolution mitochondrial imaging and its application to high-

throughput imaging has yet to be established.

In this study, we developed a first-in-kind, high-throughput

imaging screening pipeline and identified known and novel mito-

chondrial genes that can modulate mitochondrial morphology in

healthy human fibroblasts and prevent mitochondrial fragmentation

in OPA1 patient fibroblasts, most of which have never previously

been linked to mitochondrial dynamics. Among the 91 candidate

genes found to suppress mitochondrial fragmentation, we discov-

ered that depletion of PGS1, the mitochondrial phosphatidyl glyc-

erophosphate (PGP) synthase, lowers cardiolipin levels, inhibits

mitochondrial fission and rescues mitochondrial fragmentation and

respiration in OPA1-deficient mouse embryonic fibroblasts. Our data

unravel an unexpected role of PGS1 in the regulation of mitochon-

drial form and function.

Results

Inhibiting fission rescues mitochondrial fragmentation in OPA1
patient fibroblasts

To overcome limitations of conventional approaches for imaging

and quantification of mitochondria in cells, we developed a high-

content imaging pipeline using confocal spinning disk fluorescence

microscopy compatible with multi-well, high-throughput automated

imaging of live or fixed cells (Fig EV1). We adopted an image analy-

sis pipeline (Dataset EV1) that automatically executes cell segmenta-

tion enabling the single-cell classification of mitochondrial

morphology using supervised machine learning (ML) algorithms

trained on defined classes of mitochondrial morphologies, which do

not rely on measuring the absolute length or width of a mitochon-

drion. Instead, training sets (ground truths) were empirically gener-

ated by knocking down genes whose depletion is known to provoke

either increased or decreased mitochondrial network lengths. To

promote mitochondrial fragmentation, we depleted control fibrob-

lasts of OPA1, and to define hypertubulated mitochondria, we inhib-

ited mitochondrial fission by downregulation of DNM1L. To define

normal, tubular mitochondrial morphology, we treated control cells

with non-targeting (NT) siRNAs. Confocal images of hundreds of

cells (315–586 cells/training condition) acquired from these training

sets were used as ground truths to train the supervised ML algo-

rithm to classify cells as either fragmented, normal, or hypertubu-

lated (Fig 1A) during each imaging experiment. This approach

proved tremendously robust: siRNA-mediated induction of fragmen-

tation of either YME1L or MFN1/2 was accurately recognized as

such by supervised ML training of mitochondrial fragmentation

using OPA1 siRNAs (Appendix Fig S1A) and chemical induction of

fission with the protonophore carbonyl cyanide m-chlorophenyl

hydrazone (CCCP) or hyperfusion with the cytosolic protein synthe-

sis inhibitor cycloheximide (CHX) could be used to accurately quan-

tify mitochondrial fragmentation in OPA1-depleted fibroblasts

(Appendix Fig S1B). Together, these data validate the supervised

ML approach to mitochondrial morphology quantification as a

rapid, robust, and unbiased approach for the quantitative
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assessment of mitochondrial shape in fibroblasts using a variety of

genetic or chemical training sets as ground truths.

Genetic knockouts, siRNA depletion, and chemical modulation

experiments induce drastic alterations in mitochondrial shape that

are easily recognizable but do not necessarily reflect the phenotypic

severity observed in patient cells or disease models, which are often

hypomorphic, yielding more subtle biochemical and cell biological

alterations. To determine whether our supervised ML approach to

mitochondrial morphology quantification was compatible with the

high-throughput interrogation of patient cells, we imaged and

analyzed control and DOA+ patient-derived skin fibroblasts carrying

pathogenic, mono-allelic variants in OPA1 known to cause mito-

chondrial fragmentation including p.Arg445His (OPA1R445H) and

p.Ser545Arg (OPA1S545R) (Amati-Bonneau et al, 2005; Yu-Wai-Man

et al, 2010) and pathogenic variants whose effects on mitochondrial

morphology have not yet been reported such as p.Ile432Val

(OPA1I432V), c.2356G>T (OPA1c.2356G>T), and p.Gln297*(OPA1Q297X)
(Yu-Wai-Man et al, 2010) (Fig 1B and Table 1). Our analyses

revealed both OPA1S545R and, to a lesser extent, OPA1R445H patient

fibroblasts exhibited significant increases in the proportion of cells

with a fragmented mitochondrial phenotype: 45.2 � 5.3% of

OPA1S545R fibroblasts (2,282 cells analyzed) and 16.8 � 9.2% of

OPA1R445H fibroblasts (2,683 cells analyzed) were fragmented

compared with 4.5–11.1% of control fibroblasts from three healthy,

unrelated individuals (CTL-1; 11.1 � 7.1%, CTL-2; 6.1 � 3.2%,

CTL-3; 4.5 � 5.2%, 879–3,823 cells analyzed; Fig 1B and C). These

data are in accordance with previous measurements made in these

cells using manual, lower-throughput imaging and quantification

methods (Amati-Bonneau et al, 2005; Kane et al, 2017). Curiously,

we did not detect significant mitochondrial morphology defects in

OPA1I432V, OPA1c.2356-1G>T nor OPA1Q297X patient fibroblasts even

though they were derived from patients also suffering from the same

pathology: DOA+. Western blot analyses revealed a reduction in

OPA1 protein of 58.2% � 9.2 in OPA1Q297X lysates (Appendix Fig

S1C) relative to control fibroblasts and no significant differences in

other patient-derived fibroblasts. Aberrant mitochondrial morphol-

ogy measured in patient-derived fibroblasts did not correlate with

the steady-state levels of OPA1 nor with the reported clinical symp-

toms (Table 1), suggesting that additional factors beyond patho-

genic mutations in OPA1 may be capable of modulating

mitochondrial morphology.

In animal models of MD, mitochondrial fragmentation can be rebal-

anced by additional inhibition of mitochondrial fission (Wai et al,

2015; Yamada et al, 2018), but this approach has not been tested in

humans. To test whether decreasing mitochondrial fission is capable

of rebalancing mitochondrial morphology in OPA1 mutant patient

fibroblasts, we knocked down DNM1L by siRNA (Fig 1D). DRP1 deple-

tion in OPA1S545R fibroblasts led to an increased proportion of cells

with normal and hypertubular mitochondria while reducing those with

fragmented mitochondria (Fig 1E), reaching proportions similar to

those observed in control fibroblasts (13.4% � 11.0 in CTL-1 vs.

18.5% � 13.9 in OPA1S545R). These data indicate that inhibiting fission

can restore mitochondrial morphology in OPA1 mutant fibroblasts

exhibiting mitochondrial fragmentation. In addition, depletion of

OPA1 by siRNA treatment in OPA1S545R patient fibroblasts further

increased mitochondrial fragmentation by 34.5% (1.34-fold change),

implying partial functionality of OPA1 protein present in OPA1S545R

patient fibroblasts. Indeed, treatment of OPA1S545R patient fibroblasts

with CHX led to an elongation of the mitochondrial network (Fig 1F)

characterized by reduced mitochondrial fragmentation (Fig 1G), indi-

cating that OPA1S545R cells are capable of performing SiMH and there-

fore retain some functional OPA1 (Tondera et al, 2009). These data

lend experimental support to a previously proposed genetic haploin-

sufficiency in DOA (Pesch et al, 2001) caused by mono-allelic patho-

genic variants. Taken together, these data outline a straightforward

and unbiased manner to identify and correct mitochondrial fragmenta-

tion in patient-derived fibroblasts.

High-throughput screening identifies known and novel modifiers
of mitochondrial morphology in control fibroblasts

In an effort to identify mitochondrial proteins that regulate OPA1

dynamics, we established an imaging-based screening pipeline to

quantitatively assess the impact of all mitochondrial genes on mito-

chondrial morphology. To do this, we coupled automated imaging

and supervised ML mitochondrial morphology quantification work-

flow (Fig 1A) with a bespoke siRNA library targeting 1,531 known

and putative nuclear-encoded mitochondrial genes (henceforth

termed the Mitome siRNA library) generated based on publicly

accessible databases of mitochondrial genes (Smith & Robinson,

2019; Rath et al, 2021) (see Dataset EV2 for gene list and plate distri-

bution). This list is more extensive than MitoCarta 3.0 and also

◀ Figure 1. Inhibition of mitochondrial division prevents mitochondrial fragmentation caused by OPA1 deficiency in DOA+ patient-derived fibroblasts.

A Schematic of supervised machine learning (ML) mitochondrial morphology imaging and quantification pipeline. Fibroblasts plated in 384-well plates are stained for
mitochondria (anti-TOMM40, green), nuclei (DAPI, blue), and cell body (CellMask, blue). Supervised ML training performed on cells with fragmented (OPA1 or YME1L
siRNA), normal (non-targeting NT siRNA), and hypertubular (DNM1L siRNA) mitochondria. Automatic single-cell trinary classification of control (CTL-1, 2, 3) and
OPA1S545R patient fibroblasts by supervised ML.

B Representative confocal images of control (CTL-1, 2, 3) and DOA+ patient fibroblasts carrying indicated mono-allelic mutations imaged as described in (A). Scale
bar = 20 μm. Passage number between P12–15.

C Mitochondrial morphology quantification of (B). Data represent mean � SD of two independent experiments, (195–2,496 cells per cell line), One-way ANOVA;
**P < 0.01, ****P < 0.0001, ns; not significant.

D Representative confocal images of control (CTL-1) and OPA1S545R patient fibroblasts treated with OPA1, DNM1L, or non-targeting (NT) siRNAs for 72 h and imaged as
described in (A). Scale bar = 20 μm. Passage number between P12–14.

E Mitochondrial morphology quantification of (D). Data represent mean � SD of three independent experiments (3,219–5,857 cells per cell line), One-way ANOVA;
****P < 0.0001, ns; not significant.

F Representative confocal images of control (CTL-1) and OPA1S545R patient fibroblasts treated with 50 μM cycloheximide (CHX) where indicated for 6 h. Imaging as
described in (A). Scale bar = 20 μm. Passage number between P14–P15.

G Mitochondrial morphology quantification of (F). Data represent mean � SD of two independent experiments (879–4,154 cells per cell line), One-way ANOVA;
****P < 0.0001, ns; not significant.

Source data are available online for this figure.
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includes targets gene products whose function and localization have

not yet been experimentally defined. SmartPool siRNAs (4 siRNAs

per gene per pool) were spotted individually across six 384-well

plates, which also contained siRNAs for DNM1L, OPA1, and YME1L

that could serve as read-outs for downregulation efficiency within

and between plates as well as ground truths for supervised ML

(Fig EV2A–C, (Z-score = 0.72875 � 0.1106). We began by Mitome

screening in healthy control fibroblasts (CTL-1 and CTL-2) and iden-

tified 22 genes whose downregulation led to the fragmentation of

the mitochondrial network and 145 genes that lead to hypertubula-

tion above thresholds that were defined post hoc using a univariate

3-component statistical model we developed in R (Dataset EV3).

Among the genes whose ablation induced mitochondrial fragmenta-

tion, we identified established components required for the mainte-

nance of tubular mitochondria including YME1L, OPA1, and MFN1

(Fig 2B, Dataset EV3). We also identified factors already described

to modify mitochondrial morphology including AMBRA1, GOLPH3,

and PPTC7. AMBRA1, which stands for activating molecule in

Beclin-1-regulated autophagy, is an autophagy adapter protein regu-

lated by mTORC1 that has been linked to mitophagy and

programmed cell death, all of which are associated with fragmenta-

tion of the mitochondrial network. Golgi phosphoprotein 3

(GOLPH3) regulates Golgi morphology and mitochondrial mass and

cardiolipin content through undefined mechanisms (Sechi et al,

2015). PPTC7 encodes a mitochondrial phosphatase shown to be

essential for post-natal viability in mice. EM analyses in heart and

liver sections of Pptc7−/− mice revealed smaller, fragmented mito-

chondria (Niemi et al, 2019), consistent with our findings in human

fibroblasts (Appendix Fig S2A).

Among the genes whose ablation induced mitochondrial hyper-

tubulation (Fig 2C), we identified DNM1L, its receptors MIEF1 and

MFF, as well as USP30 and SLC25A46. USP30 encodes a deubiquiti-

nase that is anchored to the OMM where it contributes to mitochon-

drial fission in a DRP1-dependent fashion (Bingol et al, 2014).

Depletion of USP30 has been shown to promote mitochondrial elonga-

tion and mitophagy (Nakamura & Hirose, 2008). SLC25A46, which

encodes for an outer membrane protein with sequence homology to

the yeast mitochondrial dynamics regulator Ugo1, is required for

mitochondrial fission. In human fibroblasts, depletion by siRNA or

pathogenic loss-of-function variants leads to hypertubulation of the

mitochondrial network (Abrams et al, 2015; Janer et al, 2016). Simi-

larly, depletion of MFF and/or MiD51 in fibroblasts inhibits DRP1-

dependent mitochondrial fission and results in mitochondrial hyper-

tubulation (Osellame et al, 2016). Pathogenic variants in MFF cause

optic and peripheral neuropathy and fibroblasts from these patients

exhibit mitochondrial elongation (Koch et al, 2016). In addition to

known regulators of mitochondria morphology, we also discovered a

number of known mitochondrial genes whose functions have not

previously associated with mitochondrial dynamics, including LIPT1,

LIPT2, and BCKDHA. LIPT1 and LIPT2 encode mitochondrial lipoyl-

transferases, which are involved in the activation of TCA cycle

enzyme complexes and branched-chain ketoacid dehydrogenase

(BCKD) complex. BCKDHA the E1-alpha subunit of the BCKD that is

involved in the catabolism of amino acids isoleucine, leucine, and

valine. Mutations in either LIPT1 (Soreze et al, 2013, 1), LIPT2

(Habarou et al, 2017, 2), or BCKDHA (Flaschker et al, 2007) causes

inborn errors of metabolism, although the effects on mitochondrial

morphology have never been investigated. Finally, we also discovered

Table 1. Clinical features of patients from which fibroblasts were derived.

Patients
(gender,
age)

Age of
onset

Optic
atrophy CPEO Ataxia Spasticity

Peripheral
neuropathy Deafness

OPA1 variant
and effect on
protein:
variant 1
RefSeq
NM_015560.2

OPA1 variant
and effect on
protein:
variant 8
RefSeq
NM_130837.2

OPA1
domain Ref.

OPA1S545R

(M, 30 years)
Childhood + − + − + + c.1635C>G

p.(Ser545Arg)
c.1800C>G
p.(Ser600Arg)

Dynamin Patient
FR-1 (Yu-
Wai-Man
et al, 2016)

OPA1R445H

(F, 37 years)
6 years + − + − − + c.1334G>A

p.(Arg445His)
c.1499G>A
p.(Arg500His)

GTPase Patient 1
(Amati-
Bonneau
et al,
2005)

OPA1c2356-1G>T

(F, 60 years)
50 years + − + + − − c.2356-1G>T

r.spl?
c.2521-1G>T
r.spl

Dynamin Patient A
(Yu-Wai-
Man et al,
2016)

OPA1I432V

(M, 43 years)
Childhood + + + + − − c.1294A>G

p.(Ile432Val)
c.1459A>G
p.(Ile487Val)

GTPase Patient
UK-12 (Yu-
Wai-Man
et al, 2010)

OPA1G297X

(F, 48 years)
< 5 years + − − + + − c.899C>T

p.(Gln297*)
c.1054C>T
p.(Gln352*)

GTPase Patient
UK-5 (Yu-
Wai-Man
et al, 2010)

Mutational data are described using the nomenclature of the Human Genome Variation Society (http://www.hgvs.org/mutnomen). Nucleotide numbering reflects
cDNA numbering with “+1” corresponding to the A of the ATG translation initiation codon. The initiation codon is codon 1.
CPEO, chronic progressive external ophthalmoplegia; F, female; M, male.
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a cluster of genes (Appendix Fig S2B) encoding proteins required for

ribosome assembly and cytosolic translation (RPL10, RPL10A, RPL8,

RPL36AL, RPS18). To our knowledge, depletion of cytosolic ribosomal

genes has never been associated with mitochondrial hyperfusion,

although chemical inhibition of proteins synthesis is the most

commonly used trigger for SiMH (Tondera, 2005). These data are

consistent with the mitochondrial elongation induced by treatment of

control fibroblasts (Fig 1G and H) with CHX, which inhibits cytosolic

translation. Altogether, our data demonstrate the robustness of our

imaging-based phenotypic screening and mitochondrial morphology

quantification approach for the identification of both known and

novel genes controlling mitochondrial morphology and provide a

valuable resource for the investigation of mitochondrial dynamics.

High-throughput screening in patient-derived OPA1 mutant
fibroblasts identifies suppressors of mitochondrial fragmentation

We sought to apply the Mitome screening approach to identify

novel regulators of OPA1 acting as genetic suppressors of mito-

chondrial fragmentation in OPA1S545R fibroblasts. After 72 h of

siRNA treatment, we acquired images of hundreds of cells per well

(257–1,606) and then classified mitochondrial morphology by

applying a training sets comprised of OPA1S545R fibroblasts trans-

fected with NT siRNAs (fragmented), OPA1 siRNAs (hyperfrag-

mented), or DNM1L siRNAs (rescued). Application of our imaging

and quantification pipeline identified 91 candidate genes whose

downregulation rescued mitochondrial fragmentation (Figs 2D and

EV2C, Dataset EV4) as well as 27 genes that further fragmented the

mitochondrial network (Fig EV2D and E, Dataset EV4) such as

OPA1, YME1L, and SURF1. As expected, among the 91 candidates,

39 of these genes were also discovered to hypertubulate mitochon-

dria in control fibroblasts upon downregulation (Fig 2C and F),

including regulators of mitochondrial fission such as SLC25A46

(Janer et al, 2016), MFF (Gandre-Babbe & van der Bliek, 2008),

MIEF1 (Osellame et al, 2016, 49), and DNM1L (Smirnova et al,

2001). We also discovered factors interacting with the MICOS

complex (DNAJC4, DNAJC11), which was unexpected given that

disruption of the MICOS and respiratory chain complexes is usually

associated with fragmentation rather than elongation of the mito-

chondrial network (Stephan et al, 2020). Nevertheless, validation

studies revealed that depletion of DNAJC4 or 11 could rescue mito-

chondrial fragmentation caused by OPA1 deficiency (Fig EV2F and

G). Like in control fibroblasts, our data revealed a cluster of riboso-

mal genes bioinformatically predicted to be targeted to mitochon-

dria according to the Integrated Mitochondrial Protein Index

(IMPI) score of the Mitominer 4.0 database including RPL15,

RPS15A, RPLP2, RPL36AL, RPL5, and RPS18, essential for cytosolic

translation, implying that inhibition of protein synthesis can

suppress mitochondrial fragmentation in OPA1S545R patient fibrob-

lasts. These data are concordant with the discovery that OPA1S545R

patient fibroblasts can perform SiMH in the presence of the cytoso-

lic protein inhibitor CHX (Fig 1F and G). The Mitome siRNA screen

of OPA1S545R fibroblasts identified a wide array of well-

characterized genes not previously linked to mitochondrial dynam-

ics including some required for mitochondrial gene expression and

maintenance (TFB1M, MTERF4, MRPL53, GFM2, MRPS18A), oxida-

tive phosphorylation (NDUFAF1, COX6A2, ETHE1, COX20,

ETFDH), amino acid metabolism (BCKDHA, GLUD2, DAOA,

MCCC1, GLYAT), one-carbon and serine metabolism (MMAA,

SHMT2, MTHFD1L, MTHFD2L), and lipid biosynthesis (PGS1,

PISD, BZRAP1) as well as orphan genes (C15orf62, C15orf61,

C3orf33; Fig 2E, Dataset EV4). In conclusion, we successfully

applied an unbiased, high-throughput imaging approach and iden-

tified a large number of candidate suppressors of mitochondrial

dysfunction in MD patient-derived fibroblasts, none of which are

known to be implicated in the modulation of clinical or biochemi-

cal severity caused by OPA1 mutations.

PGS1 depletion rescues mitochondrial fragmentation in OPA1-
deficient fibroblasts

One of the top hits from the Mitome siRNA screen able to rescue

aberrant mitochondrial morphology in OPA1S545R patient fibroblasts

or promote mitochondrial hypertubulation in control fibroblasts,

▸Figure 2. High-throughput screening identifies known and novel genetic modifiers of mitochondrial morphology in control and DOA+ patient-derived
fibroblasts.

A Schematic of Mitome siRNA imaging screen for mitochondrial morphology in control human fibroblasts. Fibroblasts were reverse-transfected with siRNAs directed
against 1,531 nuclear-encoded mitochondrial genes in 384-well plates and stained for mitochondria (anti-TOMM40, green), nuclei (DAPI, blue), and cytoplasm
(CellMask, blue). Supervised ML training performed on control fibroblasts treated with siRNAs for OPA1 or YME1L (fragmented) NT control (normal), and DNM1L
(hypertubular) were applied to single-cell trinary classification of Mitome siRNA-treated fibroblasts. Passage number P14.

B Candidate siRNAs (purple) causing mitochondrial fragmentation relative to grounds truths for fragmentation (OPA1 siRNA). Violin plot representing % fragmented
morphology of Mitome siRNAs (purple). Hits were selected with a univariate three-components statistical model programmed in R using ground truths (n = 30) for
morphology shown in (A). The defined threshold for positive hits (thick dotted line inset) was 68.9% (solid dash on the y-axis and thin dotted line in the inset) and
identified 22 candidate genes, including OPA1, YME1L, and AMBRA1 from two independent experiments.

C Candidate siRNAs (purple) causing mitochondrial hypertubulation relative to grounds truths for hypertubulation (DNM1L siRNA). Violin plot representing %
hypertubulated morphology of Mitome siRNAs (purple). Hits were selected with a univariate 3-components statistical model programmed in R using ground truths
(n = 30) for morphology shown in (A). The defined threshold for positive hits (thick dotted line inset) was 69.2% (solid dash on the y-axis and thin dotted line in the
inset) and identified 145 candidate genes, including DNM1L, MIEF1, and PGS1 from two independent experiments.

D Schematic of Mitome siRNA imaging screen in OPA1S545R patient fibroblasts. Fibroblasts transfection and imaging as described in A. Supervised ML training performed
on OPA1S545R fibroblasts treated with siRNA for OPA1 (hyperfragmented) NT control (normal), and DNM1L (rescued) were applied to single-cell trinary classification of
OPA1S545R patient fibroblasts. Passages number P12.

E Violin plot representing % rescued morphology of Mitome siRNAs. The siRNA able to rescue mitochondrial fragmentation were selected with a univariate 3-
components statistical model programmed in R using the following ground truths for morphology: fragmented (NT siRNA, n = 30), rescued (DNM1L siRNA, n = 30),
and hyperfragmented (OPA1 siRNA, n = 30). The defined threshold for positive rescued hits (thick dotted line inset) was 49.81% (solid dash on the y-axis and thin
dotted line in the inset) and identified 91 candidate genes from one experiment.

F Overlap between 91 candidates identified in (E) and (C) identify 38 overlapping genes leading to mitochondrial elongation (hypertubulation in CTL-1, CTL-2, and
rescued in OPA1S545R fibroblasts) and 53 genes that specifically rescue mitochondrial fragmentation in OPA1S545R fibroblasts.
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PGS1, encodes a CDP-diacylglycerol-glycerol-3-phosphate 3-

phosphatidyltransferase (Chang et al, 1998) that catalyzes the

synthesis of phosphatidylglycerol phosphate (PGP), the rate-limiting

step in the synthesis of cardiolipin (CL; Fig 5A) (Tamura et al,

2020). CL is a mitochondria-specific phospholipid synthesized and

primarily located in the IMM and is important for various mitochon-

drial functions including protein and metabolite import, cristae

maintenance, programmed cell death regulation, and oxidative

phosphorylation (Dudek, 2017). Recent work from the Ishihara

laboratory reported CL to be important for membrane fusion by

OPA1, implying that CL deficiency would impair mitochondrial

fusion and drive fragmentation (Ban et al, 2017).

We sought to confirm that PGS1 depletion indeed inhibits mito-

chondrial fragmentation by treating OPA1S545R fibroblasts with

siRNAs directed against it. PGS1 depletion significantly reduced the

proportion of cells with fragmented mitochondria, and we discov-

ered it could only do so if OPA1 was not totally depleted (Fig 3A

and B). OPA1S545R patient fibroblasts and OPA1 siRNA-treated CTL-

1 fibroblasts were resistant to mitochondrial elongation by PGS1

depletion, although DNM1L ablation could still rescue mitochondrial

fragmentation in these cells. These data argue that PGS1 depletion is

effective in rebalancing mitochondrial dynamics in the context of a

hypomorphic OPA1 mutations (Del Dotto et al, 2018) and not when

OPA1 is completely absent.

Functional exploration of mitochondrial biology in primary

human fibroblasts is challenging due to the slow proliferation rates,

low metabolic activity, poor transfection efficiency, genetic hetero-

geneity, and cellular senescence. To circumvent these limitations,

we pursued further studies in mouse embryonic fibroblasts (MEFs)

in which we partially (Opa1Crispr) or completely (Opa1KO) ablated

OPA1 (Fig EV3A and B). To generate hypomorphic Opa1 mutant

MEFs (Opa1Crispr), we employed Crispr/Cas9 to initiate a targeted

disruption of Exon 4, which is in the most highly expressed func-

tional splice isoforms of the eight isoforms of Opa1 in mice (Song

et al, 2007; Akepati et al, 2008) (Fig EV3A). We sorted individual

Opa1Crispr MEF clones by flow cytometry and screened for positive

clones using mitochondrial fragmentation as an initial readout. DNA

sequencing of Opa1 in positive clones was performed by Illumina

HighSeq Deep Sequencing of PCR amplicons covering the targeted

region. Opa1Crispr MEFs harbored a c.5013delA mutation, predicted

to prematurely truncate OPA1 at position 178, and a 107 bp deletion

at c.503 extending through the end of Exon 4 and into Intron 4,

predicted to prematurely truncate OPA1 at position 182 in Exon 5.

These deletions yielded frameshift and missense mutations causing

a ~ 80% reduction in steady-state protein levels in Opa1Crispr MEFs

(Fig 3G and H) and a ~ 50% reduction in Opa1 mRNA levels (Fig

EV3C), which could also be effectively achieved by siRNA-mediated

downregulation (Fig EV3D). Opa1Crispr MEFs exhibited mitochon-

drial fragmentation (Fig 3C and D) that could be rescued by stable

re-expression of OPA1 isoform 1 with (Fig EV3D–F) or without a C-

terminal 9xMyc tag construct (Mishra et al, 2014) (Fig 3E and F),

validating the targeted disruption of Opa1. Similarly to hypomorphic

OPA1S545R patient-derived fibroblasts, Opa1Crispr MEFs exhibited

hypomorphy, as evidenced by the ability of Opa1 siRNA treatment

to further increase mitochondrial fragmentation (Appendix Fig S4A

and B) to levels observed in Opa1KO MEFs (Appendix Fig S4E and

F) and the ability of Opa1Crispr MEFs to undergo SiMH

(Appendix Fig S4C and D), which was not possible in Opa1KO MEFs

(Appendix Fig S4E and F).

Next, we tested whether PGS1 depletion could rescue mitochon-

drial fragmentation in Opa1Crispr MEFs. PGS1 ablation, either by

siRNA (Fig 3C and D) or Crispr/Cas9-mediated NHEJ (Fig 3E and F)

prevented mitochondrial fragmentation, leading to the re-

establishment of wild-type mitochondrial network morphology.

qRT–PCR measurement of Pgs1 mRNA levels showed a 25 � 8.3%

reduction in Pgs1 mRNA in Opa1CrisprPgs1Crispr MEFs (Fig EV3C)

and a 71.9 � 8.4% percent reduction in Pgs1 siRNA-treated

Opa1Crispr MEFs (Fig 5D). To confirm that mitochondrial morphol-

ogy rescue in Opa1CrisprPgs1Crispr MEFs did not arise from unlikely

and unintended reversions of mutant Opa1, we performed DNA

sequence analyses by Illumina HighSeq Deep Sequencing of

Opa1CrisprPgs1Crispr MEF PCR amplicons from the targeted locus.

Opa1CrisprPgs1Crispr MEFs carried the same Opa1 loss-of-function

mutations as the parental Opa1Crispr MEFs as well as an additional

mutation in Pgs1 (c.218delGTGTA), predicted to result in a frame-

shift at Gly73. Stable re-expression of PGS1 restored Pgs1 mRNA

levels in Pgs1Crispr MEFs (Fig EV3C) and resulted in fragmentation

of the (rescued) mitochondrial network in Opa1CrisprPgs1Crispr MEFs

◀ Figure 3. PGS1 depletion rescues mitochondrial fragmentation in OPA1-deficient human and mouse fibroblasts.

A Representative confocal images of control (CTL-1) and OPA1S545R patient fibroblasts treated with OPA1, DNM1L, PGS1, and non-targeting (NT) siRNAs or indicated
combinations for 72 h. Mitochondria (anti-TOMM40, green) and nuclei (DAPI, blue). Scale bar = 20 μm. Passages number between P10–15.

B Mitochondrial morphology quantification of (A) using control fibroblasts with fragmented (OPA1 siRNA), normal (non-targeting NT siRNA), and hypertubulated
(DNM1L siRNA) mitochondria. Data represent mean � SD of three independent experiments, One-way ANOVA (905–3,695 cells per cell line), (% fragmented);
****P < 0.0001, ns; not significant.

C Representative confocal images of wild-type (WT) and Opa1Crispr MEFs treated with NT or Pgs1 siRNA for 72 h. Live imaging of mitochondria (mitoYFP, green) and
nuclei (NucBlue, blue). Scale bar = 10 μm.

D Mitochondrial morphology quantification of (C) using WT MEFs treated with Opa1 siRNA (fragmented), NT siRNA (normal), or Dnm1l siRNA (hypertubulated)
ground truth training sets. Data represent mean � SD of three independent experiments, One-way ANOVA (6,613–8,758 cells per cell line), (% fragmented);
****P < 0.0001, ns; not significant.

E Representative confocal images of WT, Opa1Crispr MEFs complemented with pLenti-Opa1, Opa1CrisprPgs1Crispr MEFs, and Pgs1Crispr MEFs complemented with pLenti-
Pgs1 by lentiviral delivery. Live imaging of mitochondria (mitoYFP, green) and nuclei (NucBlue, blue). Scale bar = 10 μm.

F Supervised ML mitochondrial morphology quantification of (E) using WT MEFs treated with Opa1 siRNA (fragmented), NT siRNA (normal), or Dnm1l siRNA
(hypertubulated) training sets. Data represent mean � SD of three independent experiments, One-way ANOVA (691–3,990 cells per cell line), (% fragmented);
****P < 0.0001, ns; not significant.

G, H (G) Equal amounts of protein extracted from MEFs were separated by SDS–PAGE, immunoblotted with anti-OPA1 antibody, and quantified (H) by densitometry
relative to Stain-Free. Data represent mean � SD of three independent experiments, One-way ANOVA; *P < 0.05, ***P < 0.001, ****P < 0.0001, ns; not significant.

Source data are available online for this figure.
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(Fig 3E and F) back to WT levels. To exclude the possibility that

PGS1 depletion rescues mitochondrial morphology of Opa1Crisprr

MEFs by indirectly elevating OPA1 expression, we assessed OPA1

protein levels by Western blot. Opa1CrisprPgs1Crispr MEFs exhibited

levels of total OPA1 levels and L-OPA1/S-OPA1 ratios (Fig 3G and

H) similar to the parental Opa1Crispr cells, indicating that restored

mitochondrial morphology in Opa1CrisprPgs1Crispr MEFs is not the

result of rescued OPA1 expression. Taken together, our results

demonstrate that PGS1 depletion can rescue mitochondrial fragmen-

tation caused by OPA1 deficiency in both mouse and human fibrob-

lasts.

PGS1 depletion rescues mitochondrial fragmentation by
inhibiting mitochondrial fission

We sought to understand whether PGS1 depletion restores normal

mitochondrial morphology by increasing mitochondrial fusion or

reducing mitochondrial fission. We examined the levels of proteins

involved in mitochondrial dynamics by Western blot (Fig EV4A and

B), and we observed no significant alterations in the steady-state

levels of known fusion (MFN1, MFN2) and fission (MFF, MiD49,

MiD51, FIS1) regulators in Opa1CrisprPgs1Crispr MEFs, yet we did

observe elevated DRP1 levels in Opa1Crispr MEFs, which returned to

WT levels in Opa1CrisprPgs1Crispr MEFs. To test whether increased

levels of DRP1 promoted its recruitment to mitochondria, we stably

expressed mitoTag constructs (3XHA-EGFP-OMP25 or 3XMyc-EGFP-

OMP25) in MEFs in order to perform affinity purification and parti-

tioning of mitochondria from cytosolic contents (Chen et al, 2016).

Immunoblot analyses demonstrated an increase in total DRP1 levels

in Opa1Crispr mitoTag MEFs compared with other genotypes but did

not show an increase in the partitioning of mitochondrial and non-

mitochondrial (cytosolic) DRP1 at steady state (Fig 4A). We further

corroborated these findings by examining the subcellular distribu-

tion of DRP1 by indirect immunochemistry studies, which also

revealed no differences in DRP1 colocalization Opa1Crispr,

Opa1CrisprPgs1Crispr, and Pgs1Crispr MEFs relative to WT (Fig 4B).

MEFs deleted of all three essential DRP1 receptors, Mid51/Mid49/

Mff, exhibited markedly less DRP1 recruitment as previously

demonstrated and were used as a negative control (Osellame et al,

2016). Live confocal imaging of endogenously, fluorescently tagged

DRP1 in WT and Opa1Crispr MEF (WTDrp1KI and Opa1Crispr-Drp1KI

MEFs, respectively) showed no differences in the degree of subcellu-

lar distribution of DRP1 in the presence or absence of PGS1 (Fig

EV4D and E). We also assessed the phosphorylation status of DRP1

by immunoblot analysis using site-specific antibodies for mouse

serine 579 (S579, which is equivalent to S600 for human DRP1) and

mouse serine 600 (S600, which is equivalent to S637 for human

DRP1; Appendix Fig S5A and B). Opa1Crispr MEFs showed increased

S579 phosphorylation of DRP1, consistent with the pro-fission role

of this post-translational modification, which was lowered to wild-

type levels in Opa1CrisprPgs1Crispr MEFs. Consistent with these obser-

vations, DRP1 oligomerization assessed by chemical cross-linking

(Karbowski et al, 2007; Prudent et al, 2015) did not reveal

genotype-specific differences (Appendix Fig S5C). Altogether, these

data indicate the altered DRP1 recruitment to mitochondria does not

explain the restoration of mitochondrial morphology caused by the

depletion of PGS1 in Opa1Crispr MEFs.

To assess mitochondrial division in living Opa1CrisprPgs1Crispr

MEFs, we performed quantitative kinetic measurements of mito-

chondrial morphology in the presence of established pharmacologi-

cal inducers of mitochondrial fragmentation: CCCP and the Ca2+

ionophore 4Br-A23187. Both chemicals cause DRP1-dependent mito-

chondrial fragmentation but CCCP triggers OMA1-dependent OPA1

processing (MacVicar & Langer, 2016) that both accelerates fission

and inhibits fusion while 4Br-A23187 treatment induces Ca2+-

dependent fragmentation without stress-induced OPA1 processing

(Adachi et al, 2016) (Fig EV4C). Treatment of Opa1CrisprPgs1Crispr

MEFs with CCCP (Fig 4C) or 4Br-A23187 (Appendix Fig S6A and B)

induced a progressive fragmentation of the mitochondrial network

over several hours with kinetics similar to that of WT MEFs, imply-

ing that rescued mitochondrial morphology conferred to Opa1Crispr

MEFs depleted (Fig 3C) or deleted (Fig 3E) was not caused by an

inhibition of DRP1. We discovered PGS1-depleted MEFs to be

largely resistant to CCCP-induced fragmentation for the duration of

the experiment: incubation with 5 μM CCCP for 10 h led to a 1.70

rate of fragmentation in WT MEFs and only 0.06 rate of

◀ Figure 4. PGS1 depletion rescues mitochondrial fragmentation by inhibiting mitochondrial fission.

A Equal amounts of protein extracted from total (T), cytosolic flow-through (C), and mitochondrial eluate (M) from MEFs of the indicated genotypes stably expressing
MitoTag (pMXs-3XHA-EGFP-OMP25) obtained following mitochondrial immunocapture were separated by SDS–PAGE, immunoblotted with indicated antibody, and
quantified by densitometry. Data represent mean � SD of three independent experiments, One-way ANOVA.

B Representative confocal images of MEFs of the indicated genotypes showing subcellular DRP1 distribution. Mitochondria (TOMM40, green), DRP1 labeled with anti-
DRP1 antibody (red) and nuclei (NucBlue, blue). Scale bar = 10 μm. MiD49/51/Mff KO MEFs lack all 3 DRP1 receptors (MiD49, MiD51, and MFF). Bar graph
representation of DRP1 localized to mitochondria (green) vs cytosol (blue). Data represent mean � SD of three independent experiments (884–3,116 cells per cell
line), unpaired t-test; *P < 0.05.

C Representative confocal images of live cell imaging of MEFs of the indicated genotypes subjected fragmentation with 5 μM carbonyl cyanide m-chlorophenyl
hydrazine (CCCP) for the indicated time points. Images were captured every hour for 18 h. Scale bar = 10 μm.

D Supervised ML mitochondrial morphology quantification using WT MEFs treated with 5 μM CCCP for 18 h (fragmented), untreated (normal), or treated with 10 μM
CHX for 9 h (hypertubular) training sets. Data represent mean � SD of three independent experiments (131–426 cells per cell line), One-way ANOVA; *P < 0.05,
**P < 0.01, ****P < 0.0001, ns; not significant.

E FRAP fusion assay in MEFs of the indicated genotype (see Movies EV1–EV3). Scale bar = 10 μm. Quantification of mitoYFP signal intensity measured at 200 ms
intervals in the photobleached area (green box) for the indicated time (seconds), represented as relative fold recovery post-bleach. Data represent mean � SEM of
two independent experiments (n = 18–52 cells per genotype), One-way ANOVA.

F Representative confocal images of live cell imaging of MEFs of the indicated genotypes subjected hyperfusion (SiMH) with 10 μM cycloheximide (CHX) for the
indicated time points. Images were captured every hour for 9 h.

G Mitochondrial morphology quantification of using WT MEFs treated with 5 μM CCCP for 18 h (fragmented), untreated (normal), or treated with 10 μM CHX for 9 h
(hypertubular) training sets. Data represent mean � SD of four independent experiments, (155–745 cells per cell line), One-way ANOVA.

Source data are available online for this figure.
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fragmentation in Pgs1Crispr MEFs (Fig 4C and D). Similarly, induc-

tion of mitochondrial fission with 4Br-A23187 did not promote mito-

chondrial fragmentation rates observed in WT MEFs (Appendix Fig

S6A and B). Given the resistance to uncoupler-induced mitochon-

drial fragmentation, we determined the mitochondrial membrane

potential of Pgs1Crispr MEFs by labeling MEFs with the potentiomet-

ric membrane marker TMRE, which we normalized to genetically

encoded mitoYFP. We observed a significant increase in membrane

potential in Pgs1Crispr MEFs (Appendix Fig S6C), which was reduced

upon stable re-expression of Pgs1, which also re-sensitized cells to

CCCP (Fig 4C and D) and 4Br-A23187-induced fragmentation

(Appendix Fig S6A and B). Despite the increase in basal membrane

potential, we observed no difference in the proclivity of Pgs1Crispr

MEFs to undergo proteolytic cleavage of OPA1 in response to CCCP-

induced OMA1 activation (Appendix Fig S6D), indicating that the

proteolytic activity of OMA1 is functional in PGS1-depleted cells.

Taken together, we conclude that PGS1 depletion can inhibit mito-

chondrial fragmentation by slowing mitochondrial fission in a

manner that is independent of OPA1 processing by OMA1.

PGS1 depletion improves SiMH without restoring basal fusion to
OPA1-deficient cells

To test whether PGS1 depletion also affected mitochondrial fusion

in Opa1Crispr MEFs, we assessed IMM fusion kinetics using a fluores-

cence recovery after photobleaching (FRAP) assay (Mitra &

Lippincott-Schwartz, 2010). Genetically encoded matrix-localized

YFP (mitoYFP) was photobleached in a subsection of mitochondria

and imaged 200 ms intervals (Fig 4F). In WT MEFs, mitoYFP single

increased ~ 2.5-fold in the photobleached region of the network

within a few seconds, demonstrating active mitochondrial fusion in

these cells. As expected, FRAP experiments performed under the

same conditions in Opa1Crispr MEFs revealed no significant recovery

of mitoYFP signal, indicating a block in mitochondrial fusion, which

was not improved upon additional deletion of Pgs1 (in Opa1CrisprPg-

s1Crispr MEFs) despite the appearance of a normal, tubular network

in these cells (Movies EV1–EV3). These results indicate PGS1

depletion does not restore basal mitochondrial fusion function to

Opa1Crispr MEFs.

Next, we sought to determine Opa1CrisprPgs1Crispr cells could

undergo mitochondrial elongation induced by SiMH, despite an inhi-

bition of IMM fusion. Live imaging of cells stimulated with CHX

(Fig 4F and G) or the transcriptional inhibitor Actinomycin D (ActD)

(Appendix Fig S6E and F) induced progressive mitochondrial hyper-

tubulation in both WT and Opa1CrisprPgs1Crispr MEFs, implying

normal hyperfusion capacity. These responses could be blunted in

Opa1CrisprPgs1Crispr MEFs by re-expression of PGS1 (Fig 4F and G,

Appendix Fig S6E and F), indicating that PGS1 activity inhibits SiMH

in OPA1-deficient cells. In Pgs1Crispr cells, we observed a more rapid

hypertubulation in response to SiMH than in WT MEFs

(Appendix Fig S6E and F). In hypomorphic Opa1Crispr MEFs, we also

observed a very modest but significant SiMH response, character-

ized by mitochondrial aggregation in Opa1Crispr MEFs in the pres-

ence of CHX (Fig 4F and G) or ActD (Appendix Fig S6E and F) and

stable re-expression of OPA1 fully rescued mitochondrial morphol-

ogy and SiMH response. MEFs devoid of any detectable OPA1

protein were unable to perform SiMH (Appendix Fig S4E and F)

consistent with previous reports (Tondera et al, 2009). Notably,

PGS1 depletion also failed to restore normal mitochondrial morphol-

ogy in Opa1KO MEFs (Fig EV5A and B) or Yme1lKO MEFs

(Fig EV5C–E), implying that the functional suppression of mito-

chondrial fragmentation by PGS1 depletion depends on the func-

tional severity. Thus, we conclude that PGS1 depletion can re-

establish SiMH response to Opa1Crispr MEFs without improving

mitochondrial fusion under basal condition. Altogether, our data

demonstrate that PGS1 depletion inhibits mitochondrial fragmenta-

tion in hypomorphic OPA1 mutant fibroblasts by inhibiting mito-

chondrial fission and not be increasing mitochondrial fusion.

Downregulation of cardiolipin synthesis pathway enzymes can
prevent mitochondrial fragmentation in OPA1-deficient cells

PGS1 synthetizes PGP from CDP-diacylglycerol (CDP-DAG) and

glycerol 3-phosphate (G3P) (Chang et al, 1998) (Fig 5A). PGP is

▸Figure 5. Interfering with the cardiolipin synthesis pathway can prevent mitochondrial fragmentation in OPA1-deficient fibroblasts.

A Schematic of cardiolipin (CL) biosynthesis pathway in mitochondria. Phosphatidic acid (PA) is transported to the inner membrane by PRELID1 where it is converted to
CDP-diacylglycerol (CDP-DAG) and glycerol 3-phosphate (G3P) by TAMM41. Phosphatidylglycerol phosphate (PGP) is dephosphorylated to phosphatidylglycerol (PG) by
PTPMT1. PG is either degraded to DAG or reacts with CDP-DAG to form CL in a reaction catalyzed by cardiolipin synthase (CLS1). Tafazzin (TAZ) catalyzes the
remodeling of monolysocardiolipin (MLCL) to mature CL. CL is transported to the outer membrane and converted to PA by mitoPLD. PA is converted to DAG by LIPIN1.
PA can be supplied to the inner membrane from DAG conversion by Acylglycerol Kinase (AGK).

B Representative confocal micrographs of MEFs WT and Opa1Crispr MEFs treated with indicated siRNAs for 72 h. Mitochondria (anti-TOMM40, green) and nuclei (DAPI,
blue). Scale bar = 10 μm.

C Supervised ML mitochondrial morphology quantification of (B) using WT MEFs with fragmented (Opa1 siRNA), normal (non-targeting NT siRNA), and hypertubular
(Dnm1l siRNA) mitochondria. Data represent mean � SD of three independent experiments, One-way ANOVA (726–4,236 cells per cell line), (% fragmented);
***P < 0.001, ****P < 0.0001, ns; not significant.

D Quantitative RT–PCR (qRT–PCR) measurement of Prelid1, Tamm41, Pgs1, Ptpmt1, and Cls1 expression in Opa1Crispr and WT MEFs. Fold change is indicated relative to
WT control. Data represent mean � SD of three independent experiments, One-way ANOVA.

E Whole cell phospholipidome of WT and Opa1Crispr MEFs treated with NT (non-targeting), Tamm41 or Pgs1 siRNAs. Data represent mean � SD of five independent
experiments; *P < 0.05, ***P < 0.001, ****P < 0.0001, ns; not significant.

F Representative confocal micrographs of MEFs WT, Pgs1Crispr, and Dnm1lCrispr MEFs treated with indicated siRNAs for 72 h. Mitochondria (anti-TOMM40, green) and
nuclei (DAPI, blue). Scale bar = 10 μm.

G Supervised ML mitochondrial morphology quantification of (G) using WT MEFs with fragmented (Opa1 siRNA), normal (non-targeting NT siRNA), and hypertubulated
(Dnm1l siRNA) mitochondria. Data represent mean � SD of >3 independent experiments (3,096–7,238 cells per cell line), One-way ANOVA (% fragmented); *P < 0.05,
**P < 0.01, ****P < 0.0001, ns; not significant.

Source data are available online for this figure.
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dephosphorylated to phosphatidylglycerol (PG) by PTPMT1 (Zhang

et al, 2011), which is either degraded to DAG or reacts with CDP-

DAG to form CL in a reaction catalyzed by cardiolipin synthase,

encoded by Cls1 (Chen et al, 2006). Export of mature CL to the

OMM is subsequently converted by mitoPLD to phosphatidic acid

(PA), which inhibits fission by reducing DRP1 recruitment. PA can

also be converted to DAG by LIPIN1B to promote DRP1 recruitment

and mitochondrial fragmentation (Choi et al, 2006; Huang et al,

2011; Watanabe et al, 2011; Adachi et al, 2016). Since we observed

no alterations in DRP1 recruitment in PGS1-depleted cells (Fig 4A

and B) and PGS1 itself is an IMM enzyme, we decided to test

whether interfering with CL biosynthesis enzymes localized in the

IMM (Fig 5A) could reverse mitochondrial fragmentation of OPA1-

deficient fibroblasts. We performed a series of knockdown experi-

ments in WT and Opa1Crispr MEFs using siRNAs targeting genes

encoding enzymes both upstream (Prelid1, Tamm41) and down-

stream (Ptpmt1, Cls1) of Pgs1 and analyzed mitochondrial morphol-

ogy after 72 h (Fig 5B). Like the downregulation of Pgs1, we

discovered that acute, single depletion of Tamm41, Ptpmt1, or Cls1

could prevent mitochondrial fragmentation in Opa1Crispr MEFs

(Fig 5B and C). Opa1KO MEFs did not respond to Pgs1 or Tamm41

depletion: Mitochondrial morphology still remains fragmented upon

siRNA treatment (Fig EV5A and B). Prelid1 depletion lead to

increased mitochondrial fragmentation in both Opa1Crispr and WT

MEFs, confirming previous observations in HeLa cells (Potting et al,

2013). qRT–PCR analyses revealed significant transcriptional remod-

eling of CL enzymes in Opa1Crispr and WT MEFs (Fig 5D). Opa1Crispr

MEFs showed an upregulation of Prelid1, Tamm41, Pgs1, Ptpmt1,

and, to a greater extent, Cls1. Prelid1 depletion led to an upregula-

tion of Tamm41, Ptpmt1, and Cls1 concomitant with a reduction in

Pgs1 mRNA levels in both Opa1Crispr and WT MEFs. Tamm41 deple-

tion had more modest effects on the upregulation of Prelid1 and

Ptpmt1. Of note, Pgs1 depletion led to threefold to fivefold increases

in the levels of Tamm41, Ptpmt1, and Cls1 in WT MEFs but not in

Opa1Crispr MEFs. Similarly, Cls1 depletion led to similarly large

increases the levels of Prelid1, Tamm41, and Ptpmt1 mRNA in WT

MEFs but not in Opa1Crispr MEFs (Fig 5D), suggesting that there

may be underlying defects in CL responses in Opa1Crispr MEFs.

Depletion of either OPA1 or PGS1 reduces cardiolipin levels

We sought to determine the impact of OPA1 and PGS1 depletion on

the levels of CL. Quantitative phospholipidomic analyses of

Opa1Crispr MEFS revealed a reduction in CL content to 70.1 � 11.0%

of WT levels (Fig 5E). In addition, CL acyl chain composition analy-

ses showed an increase in double bonds (Appendix Fig S7A) and

altered acyl chain lengths (Appendix Fig S7B). Depletion via siRNA

treatment of WT MEFs for Pgs1 or, to a lesser degree, Tamm41

(Fig 5E) reduced the steady-state levels of CL to levels similar to

those of Opa1Crispr MEFs. Depletion of either Pgs1 or Tamm41 in

Opa1Crispr MEFs lead to a further depletion of CL levels but not

further alteration in acyl chain composition of CL. Overall, we found

no correlation between the levels or saturation state of CL and mito-

chondrial morphology, prompting us to consider the possibility that

suppression of PGS1 or TAMM41 in Opa1Crispr MEFs restores mito-

chondrial morphology not via a reduction in CL production but

rather through the accumulation of its precursor(s). The CL precur-

sor common to cells depleted of Tamm41, Pgs1, and Cls1 is PA,

which is first synthesized in the ER and shuttled from the OMM to

the IMM by the lipid transfer protein PRELID1 (Potting et al, 2013).

Suppression of PA delivery to the IMM via PRELID1 ablation causes

mitochondrial fragmentation. PA accumulation in the IMM affects

mitochondrial structure in yeast (Connerth et al, 2012), but its role

in mammalian mitochondria has not been defined. To test whether

local accumulation of PA in the IMM is responsible for the anti-

fragmentation effect of PGS1 depletion on mitochondrial morphol-

ogy, we pursued a genetic approach since lipid analyses of whole

mitochondria cannot be used to define the submitochondrial local-

ization of PA. We depleted Prelid1 in WT and Pgs1Crispr MEFs and

assessed mitochondrial morphology after 72 h (Fig 5F). Prelid1

depletion was able to fragment mitochondria in PGS1-deficient cells,

arguing that the IMM accumulation of PA resulting from a block in

the biosynthesis of CL (via PGS1 depletion) impedes mitochondrial

fission (Fig 5G). PRELID1 depletion did not fragment mitochondria

in DRP1-deficient (Dnm1lCrispr) MEFs, demonstrating that PA deple-

tion at the IMM promotes mitochondrial fragmentation in a DRP1-

dependent fashion, perhaps by increasing the accumulation of PA at

the OMM (Adachi et al, 2016). Taken together, these data argue that

IMM accumulation of the CL precursor PA but not CL itself is

responsible for the inhibition of mitochondrial fragmentation in a

DRP1-dependent manner.

PGS1 depletion does not alter apoptotic sensitivity nor cristae
dysmorphology caused by OPA1 depletion

OPA1 regulates cristae morphology and apoptosis in cultured cells

(Giacomello et al, 2020). To test whether restoration of mitochon-

drial morphology in Opa1Crispr Pgs1Crispr MEFs affects programmed

cell death, we stimulated MEFs with apoptosis-inducing compounds

and followed the evolution of cell death by live cell imaging (Figs

6A and B, and EV6A, Appendix Fig S8A and B). We kinetically

imaged thousands of cells (2,000–12,000) every hour over 24 h and

tracked NucBlue and propidium iodide (PI) as markers of total and

dead cells, respectively. In the presence of ABT-737 and Actino-

mycin D (ActD) cell death was triggered more rapidly in Opa1Crispr

cells compared with WT, which could be inhibited by the pan-

caspase inhibitor qVD. Opa1Crispr Pgs1Crispr MEFs exhibited cell

death profiles indistinguishable from Opa1Crispr MEFs, indicating

that rescued mitochondrial morphology does not protect against

apoptotic sensitivity caused by OPA1 depletion. In the presence of

staurosporine (Fig EV6A and B) or etoposide (Appendix Fig S8A and

B), Opa1Crispr Pgs1Crispr cell death sensitivity also did not return to

WT levels. Opa1Crispr cells exhibited reduced caspase-dependent cell

death in the presence of staurosporine or etoposide, confirming

previous observations of the stimuli-dependent apoptotic outcomes

of haploinsufficient OPA1-deficient MEFs (Kushnareva et al, 2016).

Notably, Pgs1Crispr cells exhibited increased apoptotic resistance

relative to WT cells when challenged with staurosporine, etoposide,

or ABT-737 and ActD.

To assess the impacts on mitochondrial ultrastructure, we

performed transmission electron microscopy on WT, Opa1Crispr

Pgs1Crispr, Opa1Crispr and Pgs1Crispr MEFs. WT cells exhibited IMMs

organized as lamellar cristae, which were disrupted as expected in

Opa1Crispr cells, which also had more rounded mitochondria consis-

tent with the fragmented network morphology previously described

(Fig 6C and D). However, IMM structure in Opa1Crispr Pgs1Crispr was
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not restored to WT morphology, despite a modest increase in cristae

number and OMM/IMM ratios, indicating that mitochondrial

morphology and cristae organization are largely uncoupled in these

cells. We did not detect cristae defects in Pgs1Crispr cells, implying

that CL reduction per se (Fig 5E) does cause defective mitochondrial

ultrastructure in mammalian cells. Taken together, our data demon-

strate that the role of OPA1 in balancing mitochondrial dynamics

can be uncoupled from its role as an organizer of IMM structure and

programmed cell death.

Rebalancing mitochondrial dynamics OPA1-deficient fibroblasts
through PGS1 improves bioenergetics but not mtDNA depletion

In order to analyze the functional impact of re-establishing a tubular

network on respiration and the oxidative phosphorylation

(OXPHOS) system, we measured oxygen consumption rates using

Seahorse FluxAnalyzer oxygraphy in intact MEFs depleted of OPA1

and/or PGS1 (Fig 7A). Opa1Crispr MEFs exhibited a modest reduction

in basal (Fig 7B) and maximal oxygen consumption rates (Fig 7C)

which could be improved upon deletion of PGS1 in Opa1CrisprPgs1Crispr

MEFs, implying that rebalancing mitochondrial dynamics posi-

tively impacts mitochondrial respiration. Oxygen consumption rate

(OCR) measurements performed using Seahorse FluxAnalyzer

requires that plated adherent cells be submitted to a brief period of

nutrient (glucose, CO2) deprivation, which has previously been

shown to induce mitochondrial hyperfusion (Gomes et al, 2011;

Khacho et al, 2014). To exclude the possibility that nutrient starva-

tion might confound bioenergetic measurements, we performed

high-resolution respirometry (O2k, Oroboros) on intact, nutrient-

replete MEFs in suspension (Fig EV7A). Opa1Crispr MEFs exhibited

reduced oxygen consumption, which was rescued either by func-

tional complementation with untagged OPA1 or depletion of PGS1.

Interestingly, functional complementation of oxygen consumption

and membrane potential defects present in Opa1Crispr MEFs was

possible only with untagged OPA1 (Figs 7A–C, and EV7A) and not

OPA1-Myc (Figs EV3G and H, and EV7B and C) even though both

tagged and untagged OPA1 constructs were able to restore mito-

chondrial morphology (Figs 3E and F, and EV3E and F). These data

further demonstrate that OPA1-dependent bioenergetic functions

can be uncoupled from mitochondrial dynamics, in this case using

a disruptive C-terminal epitope by the GED domain of the protein

(Mishra et al, 2014).

Importantly, Opa1CrisprPgs1Crispr MEFs exhibited increased basal

and maximal oxygen consumption rates relative to the parental

Opa1Crispr MEFs, which could be lowered back to levels similar to

Opa1Crispr MEFs by stable re-expression of PGS1 in Opa1Crispr

Pgs1Crispr MEFs. Pgs1-deficient cells exhibited increased respiration

using both Seahorse and Oroboros oxygen consumption assays

and were reduced upon re-expression of PGS1 (Figs 6A–C, and

EV7A–C).
Next, we sought to determine the effects of restored mitochon-

drial morphology in Opa1CrisprPgs1Crispr MEFs on mitochondrial

membrane potential. Cells were incubated with the potentiometric

dye tetramethylrhodamine ethyl ester (TMRE) to label actively

respiring mitochondria. TMRE signal intensity normalized to mito-

chondrial content (mitoYFP) and was recorded at the single-cell

◀ Figure 6. PGS1 depletion does not rescue apoptotic sensitivity nor cristae structure in OPA1-deficient MEFs.

A, B (A) MEFs of the indicated genotypes were subjected to 4 μM Actinomycin D and 10 μM ABT-737 in the presence or absence of the pan-caspase inhibitor qVD. Dead
cells (PI+ nuclei, orange) and total cells (NucBlue, blue) were imaged every hour for 25 h. PI+ nuclei number divided by the total nuclei number was then quantified
over time. (B) Representative confocal images of (A). Scale bar = 100 μm. Data represent mean � SD of three independent experiments (1,380–2,157 cells per cell
line), One-way ANOVA; ****P < 0.0001, ns; not significant.

C Representative transmission electron micrographs of MEFs of the indicated genotypes showing loss of lamellar cristae in Opa1Crispr and Opa1CrisprPgs1Crispr MEFs.
Scale bar = 200 nm.

D Quantification of (C) of mitochondrial ultrastructure; outer membrane/inner membrane ration (IMM/OMM) and cristae number per mitochondrion. Violin plot of
> 50 mitochondria per cell line, One-way ANOVA; *P < 0.05, ****P < 0.0001, ns; not significant.

Source data are available online for this figure.

▸Figure 7. PGS1 depletion enhances respiration in wild-type and OPA1-deficient MEFs.

A–C (A) Mitochondrial respiration measured in adherent MEFs of the indicated genotypes using Seahorse FluxAnalyzer. Oxygen consumption rate (OCR) normalized to
protein concentration. Following basal respiration, cells were treated sequentially with 1 μM Oligomycin (Omy), 2 μM CCCP, Antimycin A 1 μM + 1 μM Rotenone.
Bar graphs of (A) representing basal (B) and maximum (C) respiration. Data represent mean � SEM of 7–12 independent OCR measurements, One-way ANOVA;
*P < 0.05, **P < 0.01, ***P < 0.001, ns; not significant.

D Mitochondrial membrane potential measured by fluorescence microscopy in WT, Opa1Crispr, Opa1Crispr + pLenti-Opa1, Opa1CrisprPgs1Crispr,
Opa1CrisprPgs1Crispr + pLenti-Pgs1, Pgs1Crispr, and Pgs1Crispr MEFs + pLenti-Pgs1. Membrane potential is represented as the ratio between TMRE/mitoYFP. WT MEFs
treated with 20 μM CCCP serve as a negative control for TMRE. Data represent mean � SD of three independent experiments, number of analyzed cells indicated
in inset, One-way ANOVA; **P < 0.01, ***P < 0.001, ****P < 0.0001, ns; not significant.

E mtDNA content in MEFs from (F) was quantified by amplification of Mtll1, 16s, and Mt-nd1 genes relative to the Gapdh nuclear gene in MEFs. Data represent
mean � SD of three independent experiments, One-way ANOVA; ****P < 0.0001, ns; not significant.

F mtDNA content in WT and mutant MEFs treated with indicated siRNAs for 72 h was quantified by amplification of Mttl1, 16s, and Mt-nd1 genes relative to the
GapdhH nuclear gene in MEFs. Data represent mean � SD of three independent experiments, One-way ANOVA; **P < 0.01, ****P < 0.0001, ns; not significant.

G, H (G) Equal amounts of protein extracted from WT and mutant MEFs were separated by SDS–PAGE (horizontal line denotes separate membranes), immunoblotted
with indicated antibodies, and quantified by densitometry (H). Data represent mean � SD of three independent experiments, One-way ANOVA; **P < 0.01,
***P < 0.001, ****P < 0.0001, ns; not significant.

Source data are available online for this figure.
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level using confocal fluorescence microscopy (Fig 7D). We observed

a reduction in membrane potential in Opa1Crispr MEFs that was

rescued upon stable re-expression of untagged OPA1 (Fig 7D).

Opa1CrisprPgs1Crispr MEFs exhibited a higher media membrane poten-

tial than Opa1Crispr MEFs but lower than that of WT cells measured

by microscopy (Fig 7D). Thus, rescuing mitochondrial morphology

of Opa1Crispr MEFs via PGS1 depletion improves mitochondrial

respiration and membrane potential.

qPCR measurement of mitochondrial DNA (mtDNA) content

using primer pairs targeting different regions of mtDNA revealed a

depletion of mtDNA in Opa1Crispr MEFs, which was not rescued by

PGS1 depletion by Crispr/Cas9-mediated ablation (Opa1CrisprPg-

s1Crispr MEFs) or siRNA depletion (Fig 7E and F). These data demon-

strate that mitochondrial fragmentation and mtDNA maintenance

defects in OPA1-deficient cells can be uncoupled.

To assess the impact of rebalancing mitochondrial dynamics on

the oxidative phosphorylation (OXPHOS) complexes, we measured

the levels of structural subunits by Western blot analyses (Fig 7G).

Opa1Crispr MEFs showed reduced levels of NDUFA9 (Complex I),

SDHA (Complex II), UQCRC2 (Complex III), MT-CO2 (Complex IV),

and ATP5B (Complex V). Additional depletion of Pgs1 in Opa1Crispr

Pgs1Crispr MEFs could rescue the levels of SDHA, UQCRC2, and

ATP5B, but not of NDUFA9 nor MT-CO2, which belong to the two

respiratory complexes that derive the most structural subunits from

mtDNA (Fig 7H). Consistent with elevated membrane potential

measured (Fig EV4F) and mtDNA content (Fig 7E) in Pgs1Crispr cells,

we observed an increase in oxygen consumption rates relative to

WT MEFs, which could be lowered by functional complementation

with re-expression of PGS1. Altogether, our data demonstrate func-

tional amelioration of OXPHOS and bioenergetic defects in OPA1-

deficient cells by depleting PGS1.

Discussion

In this study, we present a new imaging approach using supervised

machine learning to classify mitochondrial morphology of human

and mouse fibroblasts according to pre-defined categories represent-

ing unopposed fusion and fission. This classification strategy is

robust and can reproducibly recognize mitochondrial fragmentation

induced either by accelerated fission or blocked fusion resulting

from genetic or chemical manipulation without introducing user

bias (Fig EV1, Appendix Fig S1A and B). Importantly, this workflow

is highly scalable and robust at all levels, as evidenced by its appli-

cation to automated, high-throughput phenotypic screens performed

in human fibroblasts using the Mitome siRNA library (Fig 2A and

D). This classification approach is relative and based on ground

truths for mitochondrial morphologies generated by siRNA-

mediated depletion of known fission or fusion genes, which are

measured and applied at each image acquisition experiment. This

compensates for the variability in mitochondrial morphologies

generated due to experimental reasons (e.g., cell culture conditions,

cell density, gas levels) and intrinsic population heterogeneity. We

applied this unbiased strategy to classify mitochondrial morphology

in an array of skin fibroblasts derived from patients suffering from

Dominant Optic Atrophy plus (DOA+) and discovered that not all

pathogenic variants in OPA1 trigger mitochondrial fragmentation,

despite patients belonging to the same clinical grouping (Table 1).

Neither the steady-state levels of OPA1 protein in fibroblasts

(Appendix Fig S2D) nor the clinical manifestation could predict the

p.Ser545Arg and p.Arg445His GTPase domain missense variants to

be most phenotypically severe with respect to mitochondrial

morphology (Fig 1B and C). While the molecular explanation for

this discordance remains unexplained, we posit that additional

factors may modulate mitochondrial morphology in patient fibrob-

lasts. Yet to our knowledge no known genetic modifiers of disease

genes involved in mitochondrial dynamics, including OPA1-related

diseases have yet been identified. Within OPA1, genotype-

phenotype relationships can be loosely established but it is not

possible to fully predict clinical outcome for DOA and DOA+
patients solely based on the location and nature of pathogenic,

mono-allelic variants in OPA1. Recently, intra-allelic variants of

OPA1 have been documented to modify clinical and biochemical

phenotypes in DOA+ (Bonifert et al, 2014), indicating that genetic

modulation of OPA1 and its function(s) is formally possible. More-

over, chemically induced mitochondrial dysfunction in epithelial

cells can be buffered by loss of function of other metabolic genes

(To et al, 2019), arguing for the existence of genetic modifiers of

MD beyond OPA1. To seek out genetic modifiers of mitochondrial

morphology, we coupled our mitochondrial morphology imaging

and quantification workflow to a bespoke siRNA library targeting

the entire mitochondrial proteome (Mitome) and identified known

and novel genes whose depletion promoted mitochondrial fragmen-

tation (Fig 2B) or hypertubulation (Fig 2C) in control fibroblasts as

well as 91 genes whose depletion could rescue mitochondrial frag-

mentation in OPA1 mutant patient-derived fibroblasts. As such,

these data provide a valuable resource for further investigation of

the genetic regulation of mitochondrial dynamics. We discovered

that several of the genes capable of reversing mitochondrial frag-

mentation in OPA1 mutant cells with the most severely fragmented

mitochondrial network (Fig 2D) also led to hypertubulation in

control fibroblasts (Fig 2F), including known components of the

mitochondrial fission apparatus (DNM1L, MIEF1, MFF, SLC25A46),

which demonstrates in patient fibroblasts that imbalanced mito-

chondrial dynamics can be genetically re-equilibrated, as previously

documented in animal models of MD (Chen et al, 2015; Wai et al,

2015; Yamada et al, 2018). Mitome screening also identified a clus-

ter of ribosomal genes, whose individual depletion would be

predicted to impair protein synthesis. Indeed, we can show that

treating human OPA1S545R or mouse Opa1Crispr fibroblasts with CHX

can promote stress-induced mitochondrial hyperfusion (SiMH).

SiMH can be promoted by inhibition of transcription (Appendix Fig

S6E), translation (Fig 4F), as well as the induction of ER stress (Ton-

dera et al, 2009; Morita et al, 2017; Lebeau et al, 2018). We discov-

ered CALR, which encodes a highly conserved chaperone protein

that resides primarily in the ER involved in ER stress responses to

be a suppressor of mitochondrial fragmentation (Dataset EV4, Fig 2

F). Finally, we also discovered an array of nuclear-encoded mito-

chondrial genes that rescued mitochondrial fragmentation but that

had not previously associated with mitochondrial dynamics. These

genes cover various classes of mitochondrial functions including

mitochondrial gene expression, oxidative phosphorylation, and

amino acid metabolism yet how these genes (Dataset EV4) or

processes (Fig EV2H, Appendix Fig S3A) influence mitochondrial

dynamics is unclear and warrants further investigation. Intriguingly,

a substantial proportion of these genes are found to be mutated in
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inborn errors of metabolism (Dataset EV4), yet the effects on mito-

chondrial morphology have not yet been explored. Altogether, our

results demonstrate that it is possible to apply an unbiased, high-

throughput imaging approach to identify candidate suppressors of

mitochondrial dysfunction in MD patient fibroblasts.

We discovered PGS1 depletion could restore mitochondrial

morphology to hypomorphic OPA1 patient-derived fibroblasts and

mouse embryonic fibroblasts (MEFs) mutated for Opa1 as well as

OPA1-deficient HeLa cells (Appendix Fig S3A–C). This occurred via a

reduction in mitochondrial fission that was independent of both the

recruitment of DRP1 to mitochondria (Fig 4A and B) and OMA1-

dependent proteolytic processing of OPA1, which are key steps in

pathological and physiological fission (Giacomello et al, 2020). Simi-

lar to DRP1 or OMA1 ablation, PGS1 depletion can protect from induc-

tion of stress-induced fission and fragmentation triggered by chemical

agents known to promote OMA1-dependent OPA1 processing and/or

DRP1 recruitment, thereby implicating PGS1 in mitochondrial fission.

The notion that impairing PGS1 and thus CL biogenesis might

rescue mitochondrial morphology defects caused by OPA1 defects

seem counterintuitive at first, given existing reports of a require-

ment of CL on opposing membranes for OPA1-mediated fusion (Ban

et al, 2017). Opa1CrisprPgs1Crispr MEFs exhibit a similar block of IMM

fusion as Opa1Crispr MEFs and it is therefore not possible to assess

the contribution of CL for mitochondrial fusion. Nevertheless,

several observations exclude CL depletion as a mechanism for

restored mitochondrial morphology in hypomorphic OPA1-deficient

cells. First, lipidomic analyses of Opa1Crispr MEFs revealed a deple-

tion and alteration of CL acyl chain composition, neither of which

was restored by additional depletion of either Pgs1 or Tamm41

(Fig 5E) even though mitochondrial morphology was restored in

these cells. In fact, TAMM41 or PGS1-depleted Opa1Crispr MEFs

exhibit even lower steady-state CL levels than Opa1Crispr MEFs

(Fig 5E) and unaltered CL saturation states (Appendix Fig S7A).

Second, WT MEFs depleted of either PGS1 or TAMM41 show

reduced CL levels similar to Opa1Crispr MEFs but without an induc-

tion of mitochondrial fragmentation (Fig 5B and C). Third, inhibi-

tion of cardiolipin synthase (CLS1) does not cause mitochondrial

fragmentation but rather promotes mitochondrial elongation (Fig 5

B) (Matsumura et al, 2018). Fourth, depletion of the CL remodeling

enzyme Tafazzin (TAZ1), does not impair mitochondrial fusion nor

trigger mitochondrial fragmentation (Ban et al, 2018). Finally, the

inhibition of fission mediated by PGS1 depletion can be reversed by

additional suppression of PRELID1, which is upstream in the CL

biosynthesis pathway (Fig 5A) and is needed to deliver PA to the

IMM. PRELID1 inhibition prevents the delivery of PA to the IMM

(Connerth et al, 2012), which is normally converted to CDP-DAG

and PGP by TAMM41 and PGS1, respectively (Tamura et al, 2020).

In yeast, the deleterious effect of PA accumulation in the IMM is

supported by observations that altered mitochondrial structure in

pgs1 mutant cells, which accumulate PA in the IMM, can be rescued

by additional deletion of the Prelid1 orthologue Ups1(Connerth

et al, 2012). We therefore propose that the accumulation of PA

rather the depletion of CL drives the suppression of mitochondrial

morphology defects caused by OPA1 dysfunction.

From a functional perspective, restoration of mitochondrial

morphology in OPA1-deficient MEFs rescued respiration but not

cristae dysmorphology, apoptotic sensitivity, CL dysregulation nor

mtDNA depletion observed in Opa1Crispr MEFs. The programmed

cell death response manifested by Opa1CrisprPgs1Crispr MEFs was

similar to that of Opa1Crispr MEFs when treated with apoptotic

inducers, indicating the mitochondrial morphology alone does not

dictate cell death sensitivity. Disruption of IMM architecture in

OPA1 deficiency has recently been linked to the stability of the

MICOS complex (Stephan et al, 2020) but whether CL deficiency

contributes to cristae dysmorphology in these cells is unclear. Inter-

estingly, the Mitome screen in OPA1S545R fibroblasts identified

DNAJC4, DNACJ11, and MTX1; interactors of the MICOS complex,

which is known to facilitate intramitochondrial lipid transport (Aal-

tonen et al, 2016, 35). In yeast, mitochondria lacking pgs1 exhibit

altered cristae structure, characterized by extremely elongated

cristae sheets resembling onion-like structures (Connerth et al,

2012). However, in MEFs, depletion of Pgs1Crispr reduces CL levels

without an observable impact on cristae, arguing that CL depletion

alone is not sufficient to cause cristae loss in mammalian cells.

The notion that balanced mitochondrial dynamics is critical for

cellular health arises from the observations that dampening of mito-

chondrial fission confers physiological benefits in animal models of

mitochondrial dysfunction characterized by mitochondrial fragmen-

tation (Xiao et al, 2014; Wai et al, 2015; Xie et al, 2015; Acin-Perez

et al, 2018; Yamada et al, 2018) but whether this paradigm is appli-

cable to human disease has never been investigated. However, the

relevance of existing genetic targets of mitochondrial fission is

limited due to the essential nature of these genes. For DRP1, whole-

body ablation of Dnm1l in mice causes embryonic lethality and

tissue-specific deletion in organs most critically affected in MD is

crippling. Moreover, loss-of-function variants in DNM1L or genes

involved in DRP1-dependent fission including MIEF1 (Charif et al,

2021), SLC25A46 (Abrams et al, 2015, 46), MFF (Koch et al, 2016),

GDAP1 (Baxter et al, 2002), and INF2 (Boyer et al, 2011) all-cause

severe neurodegenerative diseases, making them unlikely therapeu-

tic targets. The Mitome screen in OPA1S545R fibroblasts identified a

cluster of cytosolic ribosomal genes, whose individual depletion

would be predicted to impair protein synthesis. These findings are

consistent with the observation that treatment of OPA1S545R patient

fibroblasts with the cytosolic protein synthesis inhibitor CHX can

suppress mitochondrial fragmentation in both OPA1S545R patient-

derived fibroblasts (Fig 1F) and hypomorphic Opa1Crispr MEFs

(Appendix Fig S4C and D), although pharmacological inhibition of

global protein synthesis does not represent a viable therapeutic

strategy to rescue defects in mitochondrial form and function. PGS1

depletion does not appear to incur cellular dysfunction in vitro, yet

future studies are needed to determine the physiological relevance

of this gene and whether it will serve as a useful modulator of mito-

chondrial function in vivo. In the meantime, we believe it worth-

while to consider PGS1 and other genetic modifiers that we have

identified using our Mitome screening approach when evaluating

the genetic and phenotypic landscape of OPA1-related diseases.

Materials and Methods

Human skin fibroblasts

Primary fibroblast cultures obtained from patients suffering from

DOA+ carrying mono-allelic pathogenic variants in OPA1

(OPA1S545R, OPA1R445H, OPA1Q297X, OPA1I432V, OPA1c.2356-1G>T) and
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healthy individuals with no signs of optic atrophy (CTL-1, CTL-2,

CTL-3), which served as controls, were established as previously

described (Amati-Bonneau et al, 2005; Kane et al, 2017) and

described in Table 1. Written, informed consent was obtained from

all human subjects. The experiments conformed to the principles set

out in the WMA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report. Approval for research

was granted by the Ethics Committee of the University Hospital of

Angers (Comit�e de Protection des Personnes CPP Ouest II—Angers,

France; Identification number CPP CB 2014/02; Declaration number

DC-2011-1467 and Authorization number AC-2012-1507); and the

Yorkshire and the Humber—Bradford Leeds Research Ethics

Committee (REC reference: 13/YH/0310). OPA1 variants are

described according to the OPA1 transcript variant 1 (RefSeq:

NM_015560.2) and variant 8 (RefSeq: NM_130837.2) in Table 1.

Compared with transcript variant 1 (RefSeq: NM_015560.2), the

original transcript identified, transcript variant 8, based on an alter-

nate splice pattern that contains two additional exons, 4b and 5b

(Delettre et al, 2001). However, it maintains the same reading frame

encoding an isoform (8) of 1,015 amino acids (aa). To maintain

historical compatibility, variants are also described in the article

according to transcript variant 1. The numbering of the nucleotides

reflects that of the cDNA, with “+1” corresponding to the “A” of the

ATG translation initiation codon in the reference sequence, accord-

ing to which the initiation codon is codon 1, as recommended by

the version 2.0 nomenclature of the Human Genome Variation Soci-

ety (HGVS; http://varnomen.hgvs.org) (Dunnen et al, 2016).

Following the HGVS guidelines, deduced changes are indicated

between brackets.

Mouse embryonic fibroblasts

Mouse embryonic fibroblasts (MEF) expressing mitochondrially

targeted YFP (mitoYFP MEF) were isolated from Gt(ROSA26)Sormi-

toYFP/+ embryos on a C57Bl6/N genetic background at E13.5 and

immortalized using a plasmid encoding SV40 large T antigen as

previously described (Anand et al, 2014). Wild-type and Yme1l−/−

(YKO) MEFs lacking mitoYFP (MEF1 WT) expression were gener-

ated from Yme1lLoxp/LoxP embryos on a C57Bl6/N genetic as previ-

ously described (Anand et al, 2014). MEFs lacking MiD49/MiD51/

Mff generated as previously described (Osellame et al, 2016) were a

gift from Dr. Michael Ryan.

Plasmids

Complementary DNA (cDNA) encoding mouse Pgs1 with a C-

terminal Myc tag and Opa1 with a C-terminal 9X Myc tag (pclbw-

opa1(isoform 1)-myc; a gift from David Chan [Addgene plasmid #

62845]) (Mishra et al, 2014) were cloned into pDONR-221 and then

pLenti6/Ubc (Invitrogen) using Gateway Technology (Invitrogen).

Generation of an Opa1 isoform 1 construct lacking the C-terminal

Myc tag was achieved by site-directed mutagenesis. MitoTAG

constructs pMXs-3XHA-EGFP-OMP25 (a gift from David Sabatini

[Addgene plasmid # 83356]) and pMXs-3XMyc-EGFP-OMP25 (a gift

from David Sabatini [Addgene plasmid # 83355]) were used for

mitochondrial immunocapture studies. pCMV-mRFP-PASS and

pCMV-mRFP-PASS-4E plasmids (Zhang et al, 2014) used for PA

localization studies were a kind gift from Dr. Guangwei Du.

Cell culture conditions

Primary human fibroblasts were cultured in growth media:

Dulbecco’s modified Eagle’s medium (DMEM) containing 4.5 g/l D-

Glucose, GlutaMAX™ and pyruvate supplemented with 10% Fetal

Bovine Serum (FBS) and 50 μg/ml penicillin/streptomycin (P/S) in

a 5% CO2 atmosphere at 37°C and used at passages between 10 and

15. MEFs were cultured in growth media: DMEM containing 4.5 g/l

D-Glucose, GlutaMAX™ and pyruvate supplemented with 5% FBS

and 50 μg/ml P/S in a 5% CO2 atmosphere at 37°C. Cells were routi-

nely tested for Mycoplasma by PCR.

Generation of OPA1-, PGS1-, and DRP1-deficient and DRP1 KI
cell lines

Genetic disruption of Opa1, Pgs1, and Dnm1l (Drp1) in MEFs was

performed via CRISPR-Cas9 gene editing. The single-guide RNAs

(sgRNAs) were designed using the CRISPR-Cas9 design tool from

Benchling (https://www.benchling.com/crispr/) and for Exon 4 of

Opa1 (sgRNA: forward: 50-caccgTGCCAGTTTAGCTCCCGACC-30 and
reverse: 50-aaacGGTCGGGAGCTAAACTGGCAc-30) and Exon 2 of

Pgs1 (sgRNA: forward: 50-caccgTATGTCCCGAGGGTGTACAC-30 and
reverse 50-aaacGTGTACACCCTCGGGACATAc-30), and Exon 1 of

Dnm1l (sgRNA: forward: 50 caccgGCAGGACGTCTTCAACACAG-30

and reverse 50-aaacCTGTGTTGAAGACGTCCTGCc-30). sgDNA

oligonucleotides were annealed and cloned into the BbsI digested

pSpCas9(BB)-2A-GFP vector (SpCas9(BB)-2A-GFP (PX458) was a

gift from Feng Zhang (Addgene plasmid # 48138). MEFs were trans-

fected with 5 μg of pSpCas9(BB)-2A-GFP plasmid containing the

respective sgRNA using Lipofectamine 3000 (Life Technologies,

L3000008). After 24 h incubation, GFP-positive cells were individu-

ally isolated by fluorescence-activated cell sorting. Clones were

expanded and were validated by Western blotting, Sanger sequenc-

ing, Illumina MiSeq PE300 deep sequencing of PCR amplicons

generated using primers in Dataset EV5. Crispr/Cas9-mediated

knock-in of mTurquoise2 into the Dnm1l locus directly downstream

of the start codon was performed using a plasmid encoding mTur-

quoise 2 flanked by 723 bp of upstream and 696 bp of downstream

homologous DNA sequence cloned into pEX-A258 to create plasmid

pTW306 (pEX-A258-Turq2_mDNM1L_mut). Two pairs of sgDNA

targeting Dnm1l (sgDNA1: forward 50-caccgCCGGGATCAGCGCC
TCCATGACC-30 and reverse 50-GGTCATGGAGGCGCTGATCCCGGc-
30, sgDNA2: forward 50-caccgAGCAGGCCACTGCAATGAATGGG and

reverse 50-CCCATTCATTGCAGTGGCCTGCTc-30) were cloned into

pSpCas9n(BB)-2A-Puro (PX462) V2.0 (a gift from Feng Zhang

(Addgene plasmid # 62987) to generated plasmids pTW305

(pSpCas9n(BB)-DNM1L sgDNA 1_TW662_663_2A-Puro (PX462)

V2.0) and pTW307 (pSpCas9n(BB)-DNM1L sgDNA 2_TW664_665_2A-

Puro (PX462) V2.0), respectively. MitoYFP WT and Opa1Crispr MEFs

were transfected with 4 μg of plasmids (1 μg each of pTW305 and

pTW307 and 2 μg of pTW306 linearized with EcoRV) using

Lipofectamine 3000 (Life Technologies, L3000008). After 24 h incu-

bation, mTurquoise-positive, YFP-positive cells were individu-

ally isolated by fluorescence-activated cell sorting. Clones were

expanded and were validated by PCR genotyping of genomic DNA

using primers in Dataset EV5 and confocal imaging.

Genetic disruption of OPA1 in HeLa cells was performed via

CRISPR-Cas9 gene editing targeting Exon 17 of OPA1 (sgRNA:
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forward: 50-caccgAAAAGCAGTCTGATACTGCA-30 and reverse: 50-
aaacTGCAGTATCAGACTGCTTTTc-30). sgDNA oligonucleotides

were annealed and cloned into the BbsI digested pLentiCRISPRv2

(Addgene plasmid # 52961). HeLa cells were transfected with 5 μg
of pLentiCRISPRv2 (Addgene plasmid # 52961) plasmid containing

the respective sgRNA using Lipofectamine 3000 (Life Technologies,

L3000008). After 24 h incubation in puromycin, cells were individu-

ally isolated by cytometry. Clones were expanded and were vali-

dated by western blotting, Sanger sequencing. OPA1CRISPR HeLa

cells carry a heterozygous 19bp deletion causing a nonsense muta-

tion (c.1763delTGCTTTTGGAAAATGGTAC, p.Glu637* mutation).

Lentiviral and retroviral transductions

Lentiviral particles were generated from the following plasmids:

pLenti6/Ubc-Opa1-9xMyc, pLenti6/Ubc-Opa1, pLenti6/Ubc-Pgs1,

pMXs-3XHA-EGFP-OMP25, and pMXs-3XMyc-EGFP-OMP25. VSV-G-

pseudotyped vectors were produced by transient transfection of

293T cells with a packaging construct, a plasmid producing the

VSV-G envelope (pMD.G) and pBA-rev and pHDMH-gpM2 plasmids.

Culture medium was collected at 24, 48, and 72 h, pooled, concen-

trated approximately 1,000-fold by ultracentrifugation, aliquoted,

and stored at −80°C until used. Vector titers were determined by

FACS cell Sorting on infected HCT116 cells infected with serial dilu-

tions of vector stock. Transduction of MEFs was performed as previ-

ously described (Wai et al, 2016).

Mitochondrial morphology imaging

Human Fibroblasts Cells were seeded on CellCarrier-384 or 96well

Ultra microplate (PerkinElmer) and incubated for at least 24 h in

growth media. Fibroblasts were fixed with 4% PFA-PBS (w/v) for

15 min, permeabilized in 0.1% (v/v) Triton X-100-PBS for 10 min,

and blocked in 10% FBS-PBS overnight at 4°C. The following day,

permeabilized cells were first stained with the primary antibody

anti-TOM40 (diluted 1:1,000 in 5% FBS-PBS), washed three times

with PBS, and then incubated with fluorescently coupled secondary

antibody Alexa Fluor 488. Nuclei were finally marked with DAPI

(1:10,000 in PBS). Images were acquired using the Operetta CLS

High-Content Analysis System (PerkinElmer), with 40× Air/0.6 NA

or 63× Water/1.15 NA. Alexa Fluor 488 and DAPI were excited with

the 460–490 and 355–385 nm LEDs, respectively.

MEFs Cells were seeded on 96well CellCarrier Ultra imaging

plates (PerkinElmer) 24 h before imaging. Nuclei were labeled with

NucBlue™ Live ReadyProbes™ Reagent (Thermo Fisher Scientific).

Fluorescent labeling of mitochondria was achieved using Tetram-

ethylrhodamine Ethyl Ester Perchlorate (TMRE) and/or MitoTracker

Deep Red at 100 nM for 30 min at 37°C, 5% CO2 and/or with geneti-

cally encoded mitochondrially targeted YFP (mitoYFP). Spinning

disk confocal images were acquired using the Operetta CLS or Opera

Phenix High-Content Analysis systems (PerkinElmer), with 20×
Water/1.0 NA, 40× Air/0.6 NA, 40× Water/1.1 NA or 63× Water/

1.15 NA. YFP (460–490 nm), TMRE (530–560 nm), MitoTracker

Deep Red (615–645 nm), mTurquoise2 (435–460 nm), and DAPI

(355–385 nm) were excited the appropriate LEDs (Operetta CLS) or

lasers (Operetta Phenix). FRAP experiments were performed with a

Nikon Ti2E spinning disk microscope 60× Oil objective/NA1.4

equipped with a Photometrics Prime 95b cMOS camera (pixel

11um). Photobleaching was performed with a 405 laser at (35%

power, 400 ms dwell time) and image collection proceeded immedi-

ately thereafter at 200 ms intervals. Quantification FRAP studies

was performed using Fiji (ImageJ).

SDS–PAGE immunoblot analysis

Cells were lysed in ice-cold RIPA buffer (50 mM Tris–HCl, pH 7.4,

150 mM NaCl, 1%(v/v) Triton X-100, 0.1% SDS, 0.05% sodium

deoxycholate, 1 mM EDTA, and complete protease inhibitor cocktail

mix (Roche)). After 30 min of incubation on ice, lysates were centri-

fuged at 16,000 g for 10 min at 4°C. Protein quantification of the

cleared lysates was performed by Bradford colorimetric assay

(Sigma) using a BSA standard curve. Absorption was measurement

at 595 nm by the microplate reader Infinite M2000 (TECAN). 15 μg
of each sample was reduced and negatively charged with 4X

Laemmli Buffer (355 mM 2-mercaptoethanol, 62.5 mM Tris–HCl pH
6.8, 10% (v/v) glycerol, 1% (w/v) SDS, 0.005% (v/v) Bromophenol

Blue). Samples were heated 5 min at 95°C and separated on 4–20%
Mini-PROTEAN® TGX Stain-Free™ Precast gels (Bio-Rad) or on

home-made 7% polyacrylamide gel for OPA1 immunodetection.

Gels were then transferred to nitrocellulose membranes with Trans-

Blot® Turbo™ Transfer system (Bio-Rad). Equal protein amount

across membrane lanes was checked by Ponceau S staining or Stain-

free detection. Membranes were blocked for 1 h with 5% (w/v)

semi-skimmed dry milk dissolved in Tris-buffered saline Tween

0.1% (TBST), incubated overnight at 4°C with primary antibodies

dissolved 1:1,000 in 2% (w/v) Bovine Serum Albumin (BSA), 0.1%

TBST. The next day membranes were incubated at least 1 h in

secondary antibodies conjugated to horseradish peroxidase (HRP) at

room temperature (diluted 1:10,000 in 5% milk). Finally,

membranes were incubated in Clarity™ Western ECL Substrate (Bio-

Rad) for 2 min and luminescence was detected using the

ChemiDoc® Gel Imaging System. Densitometric analysis of the

immunoblots was performed using Image Lab Software (Bio-Rad).

siRNA transfection

Silencing of the indicated genes was performed using forward trans-

fection: 20 nM of the specific siRNA was mixed with Lipofectamine

RNAiMax (Invitrogen), added on top of seeded cells, and left at 37°C
in a CO2 incubator for 72 h. Specific and non-targeting siRNAs were

obtained from Dharmacon. For mouse siRNA: Negative control NT:

D-001210-04-05; Opa1 siRNA: L-054815-01-0005, Drp1 siRNA: L-05

4815-01-0005, Pgs1 siRNA: L-064480-01-0005, Tamm41 siRNA: M-

056928-01-0005, Ptpmt1 siRNA: M-047887-01-0005, Cls1 siRNA: M-

055736-01-0005, Prelid1 siRNA: M-065330-01-0005. For human

siRNA: Negative control NT: D-001210-04-05, PGS1 siRNA: D-009

483-02-0002 + D-009483-13-0002 + D-009483-01-0002 + D-009483-

04-0002; TAMM41 siRNA: L-016534-02-0005; DNM1L siRNA: M-

012092-01- 0005; OPA1 siRNA: M-005273-00- 0005; DNAJC11 siRNA:

D-021205-03-0002; DNAJC4 siRNA: D-020055-17-0002.

RT–qPCR

Total RNA was extracted using TRIzol™ Reagent and chloroform,

purified, and subjected to DNA digestion using the NucleoSpin RNA

kit (MACHEREY-NAGEL). RNA concentration was measured using
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NanoQuant Plate™ (Infinite M200, TECAN), and 1 μg of total RNA

was converted into cDNA using the iScript Reverse Transcription

Supermix (Bio-Rad). RT–qPCR was performed using the CFX384

Touch Real-Time PCR Detection System (Bio-Rad) and SYBR® Green

Master Mix (Bio-Rad) using the primers listed in Table 3. Actin or

APP were amplified as internal standards. Data were analyzed

according to the 2�ΔΔCT method (Livak & Schmittgen, 2001).

Analysis of oxygen consumption rates

Oxygen consumption was measured with the XFe96 Analyzer (Sea-

horse Biosciences) and High-Resolution Respirometry (O2k-

Fluorespirometer, Oroboros, AT). For Seahorse experiments, cells

(30,000 MEFs or 20,000 human fibroblasts experimentally optimized)

were seeded onto 96-well XFe96 cell culture plates. On the following

day, cells were washed and incubated with Seahorse XF Base Medium

completed on the day of the experiment with 1 mM Pyruvate, 2 mM

Glutamine, and 10 mM Glucose. Cells were washed with the Seahorse

XF Base Medium and incubated for 45 min in a 37°C non-CO2 incuba-

tor before starting the assay. Following basal respiration, cells were

treated sequentially with: oligomycin 1 µM, CCCP 2 µM and Anti-

mycin A 1 µM + 1 µM Rotenone (Sigma). Measurements were taken

over 2-min intervals, proceeded by a 1-min mixing and a 30 s incuba-

tion. Three measurements were taken for the resting OCR, three for

the non-phosphorylating OCR, three for the maximal OCR, and three

for the extramitochondrial OCR. After measurement, the XFe96 plate

was washed with Phosphate-Buffered Saline (PBS) and protein was

extracted with RIPA for 10 min at room temperature. Protein quantity

in each well was then quantified by Bicinchoninic acid assay (BCA).

Absorption was measurement at 562 nm by the microplate reader

(Infinite M200, TECAN) and used to normalize OCR data.

For O2k respirometry, 2 million intact MEFs were transferred to

the 37°C-heated oxygraph chambers containing MiRO5 buffer. Basal

respiration was measured first. Then, 10 nM oligomycin, 2 µM
CCCP, and 25 µM AntimycinA + 5 µM Rotenone were sequentially

injected, and non-phosphorylating OCR, maximal OCR, and extrami-

tochondrial OCR were measured, respectively. Finally, cells were

recovered and washed once with PBS. Protein was extracted with

RIPA Buffer for 30 min at 4°C and quantified using Bradford assay.

Absorption was measurement at 595 nm by the microplate reader

(Infinite M200, TECAN) and used to normalize O2 flux.

mtDNA content quantification

Genomic DNA was extracted using the NucleoSpin Tissue

(MACHEREY-NAGEL) and quantified with NanoQuant Plate™ (Infinite

M200, TECAN). RT–qPCR was performed using the CFX384 Touch

Real-Time PCR Detection System (Bio-Rad), 25 ng of total DNA, and

the SYBR® Green Master Mix (Bio-Rad). Actin or APP was amplified as

internal standards. Primers sequence are listed in Table 3. Data were

analyzed according to the method (Livak & Schmittgen, 2001).

Mitochondrial morphology quantification

Harmony Analysis Software (PerkinElmer) was used for automated

image analysis as described in detail in Table 3 PhenoLOGIC

sequence. Z-projected images first undergo brightfield correction.

Nuclei and cellular segmentation were defined using the “Find

Nuclei” building block with the HOECHST 33342 channel and the

“Find Cytoplasm” building block with the Alexa 488 or TMRE (mito-

chondria) channel. Mitochondrial network was analyzed using SER

Texture properties (Ridge, Bright, Edge, Dark, Valley, Spot), and the

PhenoLOGIC supervised machine learning algorithm was used to

identify the best properties able to segregate the three populations:

“Normal”, “Fragmented” and “Hypertubulated” network. ~ 200–400
cells of each control (Normal: WT + DMSO or WT + NT siRNA,

Fragmented: WT + CCCP or WT + OPA1 or Opa1 siRNA, Hyper-

tubulated: WT + CHX or WT + DNM1L or Dnm1l siRNA) were

selected to feed the algorithm for training. Automatic single-cell

classification of non-training samples (i.e., unknowns) was carried

out by the supervised machine learning module.

High-content screening

The siRNA library (Mitome; 1,531 siRNAs) consists of a Cherrypick

SmartPool siRNA library targeting all known and predicted mito-

chondrial genes based on Mitominer V4 and Mitocarta. 500 nl of

2 µM siRNAs (20 nM final concentration) were distributed on 6 dif-

ferent 384-well imaging plates (CellCarrier Ultra, PerkinElmer), as

described in Table 3, using Echo 550 (Labcyte Inc.) and were left to

dry under a sterile hood at least for 24 h. For each well, 10 µl of PBS
containing 0.1 µl of Lipofectamine RNAiMax was automatically

added using the pipetting robot VIAFLO 384 (Integra). After 1 h

incubation at room temperature (RT), 2,000 OPA1S545R patient

fibroblasts (in 40 µl) were added to each well for reverse transfec-

tion using the VIAFLO 384 (Integra). Cells were incubated at 37°C,
5% CO2 for 72 h and finally immunostained using the automatic

pipette VIAFLO 384 (Integra) as described below.

Step Solution
Incubation time and
temperature

1-Wash 1× PBS No incubation/37°C

2-Fixation PFA 4% 15 min/37°C

3-Wash 3× PBS No incubation/RT

4-
Permeabilization

0.2% Triton 10 min/RT

5-Wash 3× PBS No incubation/RT

6-Saturation 10% FBS Overnight/4°C

7-Primary
antibody

anti-TOMM40 (rabbit) 1:1,000
in 5% FBS-PBS

Overnight/4°C

8-Wash 3× PBS No incubation/RT

9-Secondary
antibody

anti-rabbit-Alexa488 1:1,000
in 5% FBS-PBS

2 h/RT

10-Wash 3× PBS No incubation/RT

11-Nuclei
staining

DAPI 1:10,000 in PBS 30 min/RT

12-Wash 3× PBS No incubation/RT

Images were acquired using the Operetta CLS High-Content Anal-

ysis system (PerkinElmer), with 40× Air/0.6 NA. 9 fields of view

with 2 slices (z =− 6.5 and −7.5) were captured per well. Alexa 488

and DAPI were excited with the 460–490 and 355–385 nm LED,

respectively.
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Mitochondrial morphology was automatically quantified using the

Harmony Analysis Software (PerkinElmer) as described in details in

Table 3 PhenoLOGIC sequence. A brightfield correction (fixed, string)

was applied to all Z-projected images. Nuclei and cells were first

segmented using the “Find Nuclei” building block on the DAPI chan-

nel and the “Find Cytoplasm” building block on the Alexa 488 chan-

nel. SER Texture analysis (Ridge, Bright, Edge, Dark, Valley, Spot) of

the mitochondrial network was then calculated. The PhenoLOGIC

supervised machine learning module of Harmony (available through

the “Select Population-Linear Classifier” building block) was used to

identify the most relevant SER textures able to segregate the three

populations (fragmented: OPA1S545R + NT siRNA, hyperfragmented:

OPA1S545R + OPA1 siRNA and rescued: OPA1S545R + DNM1L siRNA

mitochondrial morphologies). For training, ~ 800 cells per training

class (ground truth) of mitochondrial morphologies were manually

selected in each control well of each plate. The supervised machine

learning algorithm is then able to classify mitochondrial morphology

of each well into those three categories. To evaluate the quality of the

screening, we calculated the Z-score of each plate using the following

formula: Z� score¼ 1�3ðσpþσnÞ= μp�
�
� μnj where μp and σp are the

mean and standard deviation values of the positive control p (rescued

morphology: OPA1S545R patient fibroblasts + DNM1L siRNA) and μn
and σn those of the negative control n (fragmented morphology:

OPA1S545R patient fibroblasts + NT siRNA). The Z-score of all plates

were above 0.5 reflecting the robustness of the screening (Plate1 =
0.82, Plate2 = 0.55, Plate3 = 0.80, Plate4 = 0.79, Plate5 = 0.80,

Plate6 = 0.70).

In order to define a threshold of phenotypic rescue of mitochon-

drial morphology, we designed and deployed a univariate three-

components statistical model using R (https://www.R-project.org)

to define the siRNAs able to re-establish mitochondrial morphology

to same extent as with DNM1L siRNA. We used two models, one

designed to identify hypertubular hits data and another to identify

hyperfragmented hits among the Mitome library siRNA pools. Each

model has three components. For the rescued threshold in OPA1S545R

siRNA Mitome screen, these are the OPA1S545R NT siRNA (negative

control), the OPA1S545R DNM1L siRNA (positive control for rescued

morphology), and the OPA1S545R cells transfected with the 1,531

siRNAs of the Mitome library. For the hyperfragmented threshold in

OPA1S545R siRNA Mitome screen, these are the OPA1S545R NT siRNA

(negative control), the OPA1S545R OPA1 siRNA (positive control for

hyperfragmented morphology), and the OPA1S545R cells transfected

with the 1,531 siRNAs of the Mitome library.

Membrane potential measurement

Membrane potential was determined by FACS and live confocal

microscopy. For FACS analyses, 1 × 106 MEFs or human fibroblasts

were plated in 10 cm2 dishes and incubated 24 h with growth

media. The next day, cells were treated with 100 nM TMRE for

20 min at 37°C, 5% CO2 or with 20 µM Carbonyl Cyanide m-

chlorophenyl hydrazine (CCCP) for 30 min followed by 30-min

incubation with 100 nM TMRE + 20 µM CCCP for 20 min at 37°C,
5% CO2. Cells were washed with PBS, dissociated from the dish

with 0.05% Trypsin (Thermo Fisher Scientific), and centrifuged

5 min at 2,000 g. The cell pellet was then suspended in PBS contain-

ing SYTOX™ Blue Dead Cell Stain (diluted 1:5,000). The single-cell

fluorescence was measured using the CytoFLEX flow cytometer

(Beckman Coulter). Dead cells (SYTOX™ Blue positive cells) were

detected with the channel PB450 (450/45 BP) and discarded from

analysis. TMRE-positive cells were detected with the PE channel

(585/42 BP), and the median of TMRE intensity was used for analy-

sis. For MEFs expressing mitoYFP, YFP signal was detected using

the channel FITC (525/40 BP) and compensation between FITC and

PE channels was manually calculated.

For confocal microscopy, the genetically encoded mitochondri-

ally targeted YFP MEFs were seeded in 96well CellCarrier Ultra

imaging plates (PerkinElmer) 1 day before the measurement. The

next day, nuclei were labeled with NucBlue™ Live ReadyProbes™

Reagent (Thermo Fisher Scientific) and cells were treated with

100 nM TMRE for 20 min at 37°C, 5% CO2 or with 20 µM Carbonyl

Cyanide m-chlorophenyl hydrazine (CCCP) for 30 min followed by

30-min incubation with 100 nM TMRE + 20 µM CCCP for 20 min at

37°C, 5% CO2. Spinning disk confocal images were acquired using

the Operetta CLS High-Content microscope (PerkinElmer) with 40×
Air/0.6 NA. YFP, TMRE, and NucBlue were excited with the

460–490, 530–560, and 355–385 nm LEDs, respectively. TMRE and

YFP signal per cell were quantified using the Harmony Analysis

Software (PerkinElmer).

Cell death assay

MEFs were plated in 96- or 384-well imaging plates (CellCarrier

Ultra, PerkinElmer) and incubated at least 1 day at 37°C, 5% CO2.

The day of experiment, cells were incubated with NucBlue™ Live

ReadyProbes™ Reagent (Thermo Fisher Scientific) and Propidium

Iodide (PI, Sigma) and treated either with 4 μM Actinomycin

D + 10 µM ABT-737 � 20 μM qVD or 0.5 μM Staurosporine �
20 μM or 16 µM etoposide � 20 μM qVD for the indicated time.

Total cells (stained by NucBlue) and dead cells (stained by PI+)

were imaged every hour for the indicated time with the Operetta

CLS High-Content microscope (PerkinElmer) at 40× Air/0.6 NA. PI

and NucBlue were excited with the 530–560 and 355–385 nm LEDs,

respectively. PI+/total cells over time were quantified using the

Harmony Analysis Software (PerkinElmer).

Stress-induced mitochondrial fission and fusion imaging

2,000 MEFs expressing mitoYFP were plated in 384-well and incu-

bated 24 h at 37°C, 5% CO2. The day of experiment, nuclei were

labeled with NucBlue™ Live ReadyProbes™ Reagent (Thermo Fisher

Scientific) for 30 min at 37°C, 5% CO2. For stress-induced fission

imaging, cells were treated with 5 μM CCCP or 16 μM 4Br-A23187

for the indicated time. For stress-induced hyperfusion imaging, cells

were treated with 10 μM CHX or 0.5 μM ActD. Nuclei (NucBlue)

and mitochondria (YFP) were imaged every hour for the indicated

time using the Operetta CLS High-Content microscope (PerkinElmer)

at 40× Air/0.6 NA. YFP and NucBlue were excited with the 460–490
and 355–385 nm LEDs, respectively. Finally, mitochondrial

morphology was quantified as described in the “Mitochondrial

morphology quantification” section.

DRP1 mitochondrial recruitment assay

2,000 MEFs expressing mitoYFP were plated in 384 well and incu-

bated 24 h at 37°C, 5% CO2.
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Cells were then fixed for 10 min with 37°C -prewarmed 4%

paraformaldehyde in PHEM Buffer (60 mM PIPES, 25 mM HEPES,

10 mM EGTA, 2 mM MgCl2, pH 7.3), permeabilized for 10 min with

0.1% Triton X-100 in PBS, and blocked overnight at 4°C with 10%

FBS in PBS. Mitochondria were stained overnight at 4°C with anti-

TOMM40 (diluted 1:1,000; ProteinTech #18409-1-AP) primary anti-

body and DRP1 with α-DLP1 primary antibody (diluted 1:1,000, BD

# 611112). Cells were incubated with anti-rabbit Alexa 568 (1:1,000;

goat anti-rabbit IgG Alexa Fluor 568; Invitrogen #A11011) and anti-

mouse Alexa A647 (1:1,000; goat anti-mouse IgG Alexa Fluor 647;

Invitrogen #A21236) for 2 h at RT. Finally, nuclei were stained for

30 min at RT with Hoechst 33342 diluted 1:10,000 in PBS. Images

were acquired using the Operetta CLS High-Content Analysis system

(PerkinElmer), with 63× Water/1.15 NA. Five fields of view with

three slices (z = 0, 0.5 and 1) were captured per well. Alexa 647,

Alexa 568, and Hoechst were excited with the 615–645, 530–560,
and 355–385 LED, respectively. Colocalization of DRP1 and

TOMM40 was evaluated using the Harmony Analysis Software

(PerkinElmer) as described in detail in Dataset EV1.

For DRP1KI MEFs, 2,000 cells were plated in 384 well, incubated

24 h at 37°C, 5% CO2 and imaged in live using the Opera Phenix

High-Content Screening system (PerkinElmer), with 63× Water/1.15

NA. 42 fields of view with three slices (z = −1, 0.5 and 0) were

captured per well. YFP (mitochondrial network) and mTurquoise2

(Drp1-mTurquoise2 tagged) were excited with the 490–515 and

435–460 lasers, respectively. Colocalization of Drp1-mTurquoise2

and YFP was evaluated using the Harmony Analysis Software

(PerkinElmer) as described in detail in Dataset EV1.

DRP1 cross-linking assay

Cells were harvested in PBS and mechanically disrupted in an ice-

cold buffer medium (containing 220 mM Mannitol, 70 mM Sucrose,

10 mM Tris-KOH, and 1 mM EDTA, pH=7,4 supplemented with

complete protease inhibitor cocktail mix [Roche]) by passing

through a 25-gage syringe (20 strokes). Nuclei and unbroken cells

were discarded by centrifugation at 700 g for 10 min at 4°C. The

post-nuclear supernatants were incubated with 10 mM 1,6-

bismaleimideohexane (BMH) or DMSO for 2 h at 4°C, and the cross-

linking reactions were stopped by the addition of 50 mM dithiothre-

itol (DTT). Proteins were quantified as described previously and

15 μg of each post-nuclear supernatants was reduced and negatively

charged with 4X Laemmli Buffer (355 mM 2-mercaptoethanol,

62.5 mM Tris–HCl pH 6.8, 10% (v/v) glycerol, 1% (w/v) SDS,

0.005% (v/v) Bromophenol Blue), were heated 5 min at 95°C, and
separated on 4–20% Mini-PROTEAN® TGX Stain-Free™ Precast gels

(Bio-Rad). Gels were then transferred to nitrocellulose membranes

with Trans-Blot® Turbo™ Transfer system (Bio-Rad). Equal protein

amount across membrane lanes was checked by Stain-free detec-

tion. Membranes were blocked for 1 h with 5% (w/v) semi-

skimmed dry milk dissolved in Tris-buffered saline Tween 0.1%

(TBST), incubated overnight at 4°C with DRP1 antibody (26187-1-

AP, ProteinTech) dissolved 1:1,000 in 2% (w/v) Bovine Serum

Albumin (BSA), 0.1% TBST. The next day membranes were incu-

bated at least 1 h in secondary antibodies conjugated to horseradish

peroxidase (HRP) at room temperature (diluted 1:10,000 in 5%

milk). Finally, membranes were incubated in Clarity™ Western ECL

Substrate (Bio-Rad) for 2 min and luminescence was detected using

the ChemiDoc® Gel Imaging System. Densitometric analysis of the

immunoblots was performed using Image Lab Software (Bio-Rad).

Mitochondrial isolation

Mitochondria were isolated as previously published (Chen et al,

2017). In brief, MEFs were infected with retroviral particles contain-

ing pMXs-3XHA-EGFP-OMP25, selected with 10 μg/ml Blasticidin

and the expression of HA-tag was verified by SDS–PAGE. The day of

experiment, ~ 30 million MEFs were collected, washed with KPBS

buffer (136 mM KCl and 10 mM KH2PO4, pH 7.25), and homoge-

nized with 25 stokes of the plunger at 1000 rpm at 4°C. Nuclei and
debris were discarded by centrifugation at 1,000 g for 2 min at 4°C.
The supernatant was collected and subjected to immunocapture

with prewashed anti-HA magnetic beads for 30 min on end-over-

end rotator 4°C. The beads were then washed three times and resus-

pended in 500 μl KPBS. 30% of the suspension beads was set aside

and used for immunoblotting. The remaining beads were store at

−150°C for the indicated analysis.

Transmission electron microscopy

Cells were grown on sapphire disks of 3 mm diameter (Engineer-

ing Office M. Wohlwend GmbH, Switzerland) previously coated

with a carbon film (McDonald et al, 2010) and frozen with a Leica

ICE high-pressure freezer machine (Leica microsystems, Austria)

with fetal calf serum as cryoprotectant. The freeze-substitution

was done in a Leica AFS2 machine in dry acetone containing 1%

osmium tetroxide, 0.1% uranyl acetate, and 5% water as previ-

ously published (Walther & Ziegler, 2002). Samples were gradually

infiltrated at RT with epoxy resin and after heat polymerization

the sapphire discs were removed from the plastic block. Sections

with a thickness of 70 nm were cut with a Leica UCT microtome

and collected on carbon, formvar-coated copper grids. Sections

were contrasted with 4% aqueous uranyl acetate and Reynolds

lead citrate. Generation of ultra-large high-resolution electron

microscopy maps was acquired using a TECNAI F20 transmission

electron microscope (FEI) with a field emission gun (FEG) as an

electron source, operated at 200 kV, and equipped with a GATAN

Ultrascan US4000 CCD camera. The SerialEM software (Mas-

tronarde, 2005; Schorb et al, 2019) was used for multi-scale

mapping as follows: Initially, a full grid map was acquired at 190×
magnification (pixel size = 551.75 nm). Middle magnification maps

at 2,500× (pixel size = 35.98 nm) were acquired in areas with

cells. Finally, high magnification maps (14,500×, pixel size =
6.194 nm) were collected at areas of interest, usually covering

large part of the cellular cytoplasm (maps consisted of 100–-
300 micrographs/pieces) where many mitochondria were

observed. Stacks of montages were displayed using the 3dmod

interface of IMOD (Kremer et al, 1996). The initial piece coordi-

nates for each micrograph are either saved at the header of the

mrc stack file by SerialEM, or in case of very large montages, at

the additional metadata file mdoc. The “Align Serial Sections/

Blend Montages” interface of IMOD (Mastronarde & Held, 2017)

was used for blending the stack of micrographs to a single large

image by calling the blendmont function of IMOD. Quantification

of cristae number and OMM/IMM perimeter was performed using

ImageJ (Rueden et al, 2017).
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Quantitative mass spectrometry of lipids

Mass spectrometric analysis was performed essentially as described

(Özbalci et al, 2013; Tatsuta, 2017). All internal standards were

purchased from Avanti Polar lipid. Lipids were extracted from

isolated pure mitochondria or whole cell pellet in the presence of

internal standards of major phospholipids (PC 17:0-20:4, PE 17:0-

20:4, PI 17:0-20:4, PS 17:0-20:4, PG 17:0-20:4, PA 15:0-18:1-d7 and

CL mix I), cholesterol (cholesterol-d7), cholesteryl esters (19:0

cholesterol ester), and TAG (D5 TAG mix I). Extraction was

performed using automated liquid handling robot (CyBio FeliX,

Analytik Jena) according to Bligh and Dyer with modifications.

Briefly, 7.5 µg mitochondria or 1 × 105 cells in 80 µl water and

internal standards (22, 17, 8.8, 6.5, 2.5, 3.0, 8, 10, 8.5, and 4 pmole

of PC 17:0-20:4, PE 17:0-20:4, PI 17:0-20:4, PS 17:0-20:4, PG 17:0-

20:4, PA 15:0-18:1-d7, CLs, cholesterol-d7, 19:0 cholesterol ester,

and TAGs, respectively) mixed with 0.3 ml of chloroform/methanol

(1:2 (v/v)) for 10 min. After addition of 0.1 ml chloroform and of

0.1 ml H2O, the sample was mixed again for 10 min, and phase

separation was induced by centrifugation (800 g, 2 min). The lower

chloroform phase was carefully transferred to a clean glass vial.

20 µl of the neutral lipid extract was taken to a glass vial, dried and

incubated in acetyl chloride/chloroform (1:5) for 2 h at 25°C under

hume hood for chemical derivatization. The upper water phase was

mixed with 20 µl 165 mM HCl and 100 µl chloroform for 10 min.

After phase separation, the lower chloroform phase was carefully

transferred to the glass vial with the rest of chloroform phase from

the first extraction. The solvent was evaporated by a gentle stream

of argon at 37°C. Lipids were dissolved in 10 mM ammonium

acetate in methanol, transferred to Twin.tec PCR plate sealed with

Thermowell sealing tape and analyzed on a QTRAP 6500 triple

quadrupole mass spectrometer (SCIEX) equipped with nano-

infusion splay device (TriVersa NanoMate with ESI-Chip type A,

Advion).

Statistical analysis

Experiments were repeated at least three times except for the follow-

ing, which were repeated two times: Fig 1C (195–2,496 cells per cell

line were analyzed per experiment), Fig 1G (879–4,154 cells per cell

line were analyzed per experiment), and Fig 4E (two independent

experiments with 18 to 52 cells analyzed per genotype). Quantita-

tive analyses were conducted blindly. Randomization of groups

(e.g., different genotypes) was performed when simultaneous, paral-

lel measurements were not performed (e.g., Oroboros, flow cytome-

try). For high-throughput measurements (e.g., mitochondrial

morphology, cell death), all groups were measured in parallel to

reduce experimental bias. Statistical analyses were performed using

GraphPad Prism 9 software. Data are presented as mean � SD or

SEM where indicated. The statistical tests used, and value of experi-

ment replicates are described in the figure legends. Tests were

considered significant at P-value < 0.05 (*P < 0.05; **P < 0.01;

***P < 0.0001; ****P < 0.0001).

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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The paper explained

Problem

Genetic mutations in the gene Optic Atrophy 1 (OPA1) cause autoso-
mal dominant optic atrophy (DOA)—one of the most common forms
of mitochondrial disease. The majority of patients develop isolated
optic atrophy, which is a deterioration of the optic nerve, yet about
20% of patients develop more severe neurological disease (DOA+) that
cannot be fully explained by the location or nature of the disease-
causing mutation in OPA1. It has not yet been established whether
phenotypic severity can be modulated by genetic modifiers of OPA1.

Results
We developed a mitochondrial imaging and analysis pipeline that
allowed us to perform high-throughput phenotypic screening of
primary fibroblast from patients suffering from DOA+. We screened
1,531 nuclear-encoded mitochondrial genes with a bespoke siRNA
library and identified 91 genes whose depletion could suppress mito-
chondrial fragmentation in OPA1 mutant fibroblasts, including PGS1.

Impact
Our study demonstrates that mitochondrial defects cause by OPA1
deficiency are variable and can be influenced by the action of other
mitochondrial genes. The Mitome screening approach we developed
may pave the way for the functional screening of genetic modifiers
directly in the cells of patients that suffer from DOA, which could be
coupled with diagnostic applications of omics technologies already in
routine clinical use to gain insights into the variable penetrance and
expressivity of this disorder and other types of mitochondrial disease.
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