
HAL Id: pasteur-02408362
https://pasteur.hal.science/pasteur-02408362

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping spatio-temporal dynamics of single
biomolecules in living cells

François Laurent, Charlotte Floderer, Cyril Favard, Delphine Muriaux,
Jean-Baptiste Masson, Christian L. Vestergaard

To cite this version:
François Laurent, Charlotte Floderer, Cyril Favard, Delphine Muriaux, Jean-Baptiste Masson, et al..
Mapping spatio-temporal dynamics of single biomolecules in living cells. Physical Biology, 2020, 17
(1), pp.015003. �10.1088/1478-3975/ab5167�. �pasteur-02408362�

https://pasteur.hal.science/pasteur-02408362
https://hal.archives-ouvertes.fr


Mapping spatio-temporal dynamics of single biomolecules in living cells

François Laurent,1, ∗ Charlotte Floderer,2 Cyril Favard,2 Delphine

Muriaux,2 Jean-Baptiste Masson∗∗,1, † and Christian L. Vestergaard∗∗1, ‡

1Decision and Bayesian Computation, Department of Computational Biology, Department of Neuroscience,
CNRS USR 3756, CNRS UMR 3571, Institut Pasteur, 25 rue du Docteur Roux, Paris, 75015, France

2Infectious Disease Research Institute of Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
(Dated: January 7, 2020)

We present a Bayesian framework for inferring spatio-temporal maps of diffusivity and potential
fields from recorded trajectories of single molecules inside living cells. The framework naturally
lets us regularise the high-dimensional inference problem using prior distributions in order to obtain
robust results. To overcome the computational complexity of inferring thousands of map parameters
from large single particle tracking datasets, we developed a stochastic optimisation method based
on local mini-batches and parsimonious gradient calculation. We quantified the gain in convergence
speed on numerical simulations, and we demonstrated for the first time temporal regularisation and
aligned values of the inferred potential fields across multiple time segments. As a proof-of-concept,
we mapped the dynamics of HIV-1 Gag proteins involved in the formation of virus-like particles
(VLPs) on the plasma membrane of live T cells at high spatial and temporal resolutions. We focused
on transient aggregation events lasting only on tenth of the time required for full VLP formation.
The framework and optimisation methods are implemented in the TRamWAy open-source software
platform for analysing single biomolecule dynamics.

INTRODUCTION

Photoactivation fluorescence microscopy makes it pos-
sible to track and study the dynamics of single
biomolecules in living cells and at the whole cell scale [1,
2]. Such single molecule tracking approaches have re-
vealed rich intracellular transport dynamics [3–21]. In
many cellular systems the molecules’ dynamics show spa-
tial heterogeneities which have been linked to biological
function. Recent examples include neuroreceptors bind-
ing in the postsynaptic membrane [9–11, 13, 16], signal-
ing molecules involved in the initiation of lamellopodium
formation in motile cells [18], protein transport in the
endoplasmic reticulum [19], and recruitment of polypro-
teins in the plasma membrane to form HIV-1 virus-like
particles [20]. A successful approach to analyse single
molecule tracking data from such systems is to assume
that each tracer, of the same molecular species, experi-
ences the same spatially dependent force/drift and diffu-
sivity fields. This hypothesis makes it possible to infer
spatial maps of the tracers’ dynamics from many, typi-
cally short, recorded trajectories [7, 22–26]. Recent ex-
perimental modalities can produce datasets consisting of
up to tens of millions single molecule localisations. This
opens up the possibility to map not only the spatial vari-
ation of biomolecular dynamics but also study how these
maps evolve in time [20].
When inferring such maps, a fundamental trade-off be-

tween spatial (and temporal) resolution and statistical
precision results from the limited amount data. On the
one hand, the spatial and temporal resolutions should be
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as high as possible in order to capture the spatial and
temporal phenomena of interest. On the other hand, the
effective number of parameters should be kept as low as
possible in order to be able to reliably infer them from
the available data.

The spatio-temporal scale of mapping is typically set
by binning the recorded localisations. To apply the map-
ping approach to processes of a priori unknown spatial
and temporal scales and mitigate the impact of arbitrar-
ily choosing such a scale, we propose to regularise the
inferred maps. This can be done in a Bayesian setting
using field regularising priors [13, 24]. It increases the
precision and robustness of inferred parameter maps by
imposing that they must vary smoothly, and makes it
possible to infer high resolution maps even from sparse
data.

We here extend the Bayesian mapping framework
of [7, 13, 24] to include both spatial and temporal reg-
ularisation for robust and statistically principled infer-
ence of time-varying large-scale spatial maps of the dif-
fusivity and potential fields governing single biomolecule
motion. The price to pay for the increased precision of-
fered by regularisation is a drastic increase in the com-
putational complexity as it couples the parameters of
the map. This transforms a collection of independent
low-dimensional inferences of individual map parameters
into a global high-dimensional inference problem. The
classic approach for parameter inference such as direct
gradient based algorithms or Markov chain Monte Carlo
(MCMC) are ill suited for high dimensional inferences
from large datasets since they scale poorly with the size
of the dataset and the number of parameters to infer.

To tackle the computational complexity of inferring
large spatio-temporal maps, we instead make use of
stochastic optimization [27, 28], a general yet power-
ful method for addressing high-dimensional optimization
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problems on large datasets. Stochastic optimisation can
be traced back to 1951 [27], but has more recently seen
widespread application to handle the massive datasets
found in modern statistical and machine learning prob-
lems [29].
In this article, we describe a stochastic optimisation

procedure tailored to the mapping problem, which uses
spatio-temporally local mini-batches to increase the effi-
ciency of updates and enable multiprocessing. We val-
idate the approach on numerical data and demonstrate
the advantage of stochastic optimisation over direct op-
timisation of the global posterior.
Although we focus on maximum a posteriori (MAP) in-

ference of map parameters, we also provide a procedure
for sampling the posterior distribution based on stochas-
tic gradient Langevin dynamics [30] in the Supplemen-
tary Information.
We apply the framework to infer spatio-temporal maps

of the intracellular dynamics of Gag proteins, which
are involved in the formation the HIV-1 capsids at the
plasma membrane of T cells. In this article, we show
transient aggregation events that aborted before they led
to fully-formed virus-like particles (VLP).
The Bayesian framework for spatio-temporally reg-

ularised mapping of single-molecule dynamics devel-
oped here is implemented in the open-source and freely
available TRamWAy project (github.com/DecBayComp/
TRamWAy).

METHODS

Model

We model the single molecule dynamics using the hetero-
geneous overdamped Langevin equation (OLE):

dr(t)

dt
= a(r, t) +


2D(r, t) ξ(t) . (1)

Here a(r, t) and D(r, t) are the (spatially and tempo-
rally varying) deterministic drift and diffusivity of the
molecules in the point r at time t, respectively, and ξ(t)
is a continuous-time white noise process, defined as the
derivative of the Wiener process.
In the applications presented here, we will assume that

the dynamics are effectively potential-driven and that
the fluctuation-dissipation relation is respected locally.
The first assumption imposes that the drift should be
proportional to the gradient of a scalar potential field,
a(r, t) = −∇V (r, t)/γ(r, t). The second assumption
links the proportionality constant, the drag coefficient
γ(r, t), to the diffusivity through the Einstein relation
γ(r, t) = kBT/D(r, t).
These assumptions are typically employed to interpret

the inferred drift fields as stemming from effective poten-
tial energy landscapes [7, 9, 13, 16, 20, 26, 31, 32]. Note
however that since equilibrium conditions are not guaran-
teed in biological systems, inferred potential maps cannot

generally be interpreted as potential energies in a strict
sense as they may include terms of unknown amplitude
due to spatial variations in the diffusivity [33] and terms
induced by non-equilibrium energy fluxes. Notwithstand-
ing, the inferred maps may capture biologically relevant
information regardless of whether the equilibrium as-
sumption is satisfied or not [9, 13, 16, 20]. As a statistical
description, a model that only assumes potential-driven
dynamics, and not equilibrium, is equivalent to the equi-
librium model. Note also that assumptions about equilib-
rium can be relaxed significantly by using the approach
developed in [33] for non-regularised maps.

Bayesian inference and regularisation

Bayesian inference deals with estimating the posterior
probability p(θ|x) of model parameters θ conditioned on
data x. Here, the data is a set of M single molecule
trajectories, x ≡ r = {{rmn }Nm

n=1}Mm=1, where rmn denotes
the nth recorded position in the mth trajectory, and Nm

the trajectory’s length.
The posterior is related to the model likelihood p(x|θ)

through Bayes’ theorem,

p(θ|x) = p(x|θ)π(θ)
p(x)

, (2)

where π(θ) is the prior probability for the parameters θ in
absence of data and p(x) =


p(x,θ)dθ is a normalising

constant, termed the evidence. The evidence p(x) can be
ignored for parameter inference but is central to Bayesian
model selection [34].
Equation (2) provides a probabilistic framework for

regularisation by employing smoothing priors instead of
conjugate or noninformative priors (see below).
Maximising p(θ|x) w.r.t. θ leads to maximum a pos-

teriori (MAP) estimation. In this article, we will focus
on MAP estimation, but we also provide a procedure for
sampling the posterior around the MAP in the Supple-
mentary Information.

Spatio-temporal meshing and approximate likelihood

The likelihood for our model can be obtained as the fun-
damental solution (the Green’s function) of the Fokker-
Planck equation corresponding to Eq. (1). However, in
general such a solution is analytically intractable and nu-
merically too time-consuming to be considered for infer-
ence.
Instead, we follow and extend the approach developed

in [7, 24] and approximate the fields V (r, t) and D(r, t)
as piecewise constant in both t and r. In practice, we
tessellate/segment space and time into spatio-temporal
domains and consider instead the sets of average values of
V (r, t) and D(r, t) in each domain, V = {Vα,τ} and D =
{Dα,τ}, where τ = 1, 2, . . . , T indexes the time segments,
and α = 1, 2, . . . ,Ω identifies the space domains.
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FIG. 1. Illustration of the spatio-temporal tessellation. We
used regular meshes consisting of equal-sized hexagons in
space and equal-length time segments. The highlighted do-
mains (mesh domains with thick black edges) show the spatio-
temporal neighbourhood Bα,τ of the central domain (α, τ),
with (α, τ) itself included. We refer to the spatial neighbour-
hood of a spatial domain α (disregarding time) as Rα, and
to the temporal neighbourhood of a temporal segment τ as
Tτ = {τ − 1, τ, τ + 1}. Temporal neighbours share the same
spatial position and spatial neighbours are considered at fixed
time.

Figure 1 illustrates the spatio-temporal tessellation we
employ here, which consists in a regular hexagonal tes-
sellation combined with a sliding time window. It also
illustrates the important concepts of the spatial neigh-
bourhood Rα of a space domain α, containing α itself
and the space domains in contact with α, the tempo-
ral neighbourhood Tτ = {τ − 1, τ, τ + 1} of a time seg-
ment τ , and the spatio-temporal neighbourhood Bα,τ =
{(α′, τ)}α′∈Rα

∪{(α, τ ′)}τ ′∈Tτ
of spatio-temporal domain

(α, τ). Note that the domains can overlap in space and
time (see Data sampling below).

Many other geometries are possible for the domains,
which need not be regular and can be adapted to the
density of localisations. We here consider only regu-
lar hexagonal tessellations, which have several attractive
properties for spatio-temporal mapping. Using a mesh
that is constant over time makes it straightforward to
implement temporal regularisation as one does not have
to deal with partially overlapping domains (Fig. 1). Sim-
ilarly, the hexagonal spatial meshing avoids having to ar-
bitrarily choose how to make regularisation of a domain
depend on the distances to the centers of neighbouring
domains and on their shared perimeters since these are
all equal. In the case of a square meshing this problem
is especially egregious as neighbours along the diagonal
meet in a single point only. Instead of using an adaptive
tessellation, we rely on regularisation to handle the do-
mains with little data. Indeed, regularising makes the in-
ference more robust to noisy data and allows to consider

higher resolutions for the entire maps without having to
sacrifice either statistical precision in low density regions
or spatio-temporal resolution in high density regions.
Under the piecewise constant approximation, the fun-

damental solution to the Fokker-Planck equation is a
Gaussian distribution, and the probability for a tracer
located in the spatio-temporal domain (α, τ) to perform
a displacement of ∆ri is then [7, 24]:

p(∆ri|θRα,τ ) =
1

4πDα,τ∆ti
exp



−

|∆ri +
Dα,τ∆ti

kBT ∇Vα,τ

 |2

4Dα,τ∆ti



 .

(3)
Here, the potential gradient ∇Vα,τ is evaluated numer-
ically, in practice using a finite differences scheme. It
thus depends not only on the local parameters θα,τ =
(Dα,τ , Vα,τ ) in the domain, but on the values of V in
the whole spatial neighbourhood of (α, τ): θRα,τ =
{θα′,τ}α′∈Rα .
The total likelihood of all recorded trajectories can

be written in a factorised form as a product of local
likelihoods [Eq. (3)]. If we let ∆rα,τ = {∆rα,τ,i}i de-
note the set of all displacements recorded inside the do-
main {α, τ}, we can write the total likelihood for all the
recorded data as:

p(∆r|θ) =


α,τ

p(∆rα,τ |θRα,τ ) , (4)

where θ = {θα,τ} is the set of all local map parameters
and ∆r = {∆rα,τ} is the set of all recorded displace-
ments, with α = 1, 2, . . . ,Ω and τ = 1, 2, . . . , T . Note
that for the factorised likelihood [Eq. (4)], ∆r is equiva-

lent to the set of trajectories r = {{rmn }Nm
n=1}Mm=1.

Spatio-temporal regularisation

To regularise the inferred maps, we impose a field regu-
larising (Sobolev) prior π(D,V ) that penalizes variations
in D and V between neighbouring domains in space and
time [35, 36]. This prevents physically-unrealistic pat-
terns of field parameters such as spurious minima or max-
ima. The regularisation prior factorizes as π(D,V ) =
π(D)π(V ), with

π(D) ∝ e−

(µr||∇D||2+µtḊ

2)dt dr , (5)

π(V ) ∝ e−

(λr||∇V ||2+λtV̇

2)dt dr . (6)

In practice, since the maps are modeled as being piece-
wise constant, the integrals above reduce to sums:

π(D) ∝ e−


α,τ δτAα(µr||∇Dα,τ ||2+µtḊ
2
α,τ) , (7)

π(V) ∝ e−


α,τ δτAα(µr||∇Vα,τ ||2+µtV̇
2
α,τ) . (8)
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where δτ is the temporal duration and Aα is the area
(in 2D) or volume (in 3D) of domain (α, τ). For regular
maps, δτ = δ and Aα = A are constant, but we allow
them to vary in general for applications with non-regular
meshing.
In π(D) and π(V), the differential operators ∇ and ˙

involve calculating finite differences [see Stochastic opti-
misation, Eqs. (12) and (13), below].
Including the regularising priors, the posterior reads:

p(θ|∆r) ∝ p(∆r|θ)π(D)π(V) . (9)

As seen from Eq. (4), (7), and (8) neither the likelihood
nor the priors factorise into independent local likelihoods.
This couples the inferences of map parameters of the dif-
ferent domains, both spatially and temporally, which in
turn renders the optimisation of the posterior computa-
tionally hard. Indeed, we cannot simply optimise the
posterior p(θ|∆r) w.r.t. the parameters in each map do-
main independently, but instead need to optimise w.r.t.
all parameters simultaneously.

Stochastic optimisation

Here, we propose to rely on stochastic optimisation [27,
28] to solve our inference problem. In stochastic optimi-
sation, the cost function—here the negative log posterior
f(θ) = − log p(θ|∆r)—is optimised by following a set of
noisy estimates of its gradient based on minibatches of
data.
In its general form, stochastic optimisation randomly

selects a subset of n ≪ N points, out of the total dataset
of N points, to calculate the gradient of the cost func-
tion at each optimisation step. This can dramatically
decrease the computational burden of high dimensional
inferences from massive datasets.
We here describe our algorithm briefly and refer to the

Supplementary Information for technical details and im-
plementation procedures. We devised a stochastic opti-
misation scheme to take advantage of the fact that the pa-
rameters of each domain only couple to spatio-temporally
neighbouring domains. This lets us decompose the cost
function f as a sum of local terms,

f(θ) =


α,τ

fα,τ (θBα,τ
) , (10)

where each local term depends on the neighbourhood
Bα,τ = {(α′, τ)}α′∈Rα ∪ {(α, τ ′)}τ ′∈Tτ , comprising (α, τ)
as well as spatio-temporally neighbouring domains (see
Figure 1). Each local cost term is given by:

fα,τ (θBα,τ ) = − log p(∆rα,τ |θRα,τ ) (11)

+µr qα(DRα,τ ) + µt qτ (Dα,Tτ )

+λr qα(VRα,τ ) + λt qτ (Vα,Tτ ) .

Here, the local regularisation terms qα and qτ are given

by:

qα(φRα,τ ) =
1

2

δτAα

|Rα|− 1



α′∈Rα{α}

(φα,τ − φα′,τ )
2

||rα − r′α||2
,

(12)
where φ is a placeholder for either D or V and rα and
r′α are the centers of the space domains α and α′, respec-
tively, and

qτ (φα,Tτ ) =
1

2

δτAα

|Tτ |− 1



τ ′∈Tτ{τ}

(φα,τ − φα,τ ′)2

∆T 2
. (13)

The factor 1/2 in Eqs. (12) and (13) accounts for the fact
that each individual penalty term is counted twice [e.g.
(φα,τ − φα,τ ′)2/∆T 2 is counted in both fα,τ and fα,τ ′ ].
The local cost functions fα,τ are not independent, but

the decomposition [Eq. (10)] enables partial evaluation
of f for gradient calculation and line search in parame-
ter subspaces. We devised a stochastic algorithm, based
on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) op-
timization method [37], that only requires such partial
evaluations of f .
This algorithm updates a subset of the parameters

based on a local minibatch of data at each iteration.
Rather than randomly sampling data minibatches, the
algorithm selects data that are directly related to a set
of local physical parameters. This selection is thus only
local and directly maps onto the mesh domains associated
with the parameters. The locality of the minibatches also
makes the algorithm amenable to parallelisation and mul-
tiprocessing (see Supplementary Information for details
on multi-process implementation).
The optimisation algorithm repeats the following steps

until convergence: For each iteration k,

1. select a local domain (α, τ) to update;

2. sample a minibatch ∆rBα,τ = ∪(α′,τ ′)∈Bα,τ
∆rα′,τ ′

of displacements in (α, τ)’s neighbourhood;

3. update the local parameters following θ
(k)
α,τ =

θ
(k−1)
α,τ + ∆θ(∆rBα,τ ,θ

(k−1)
Sα,τ

), where ∆θ is an im-

plicit function of the local data ∆rBα,τ and the pa-
rameters in the extended neighbourhood Sα,τ =
∪α′,τ ′∈Bα,τ

Bα′,τ ′ (see Gradient descent in a sub-
space below).

The order in which the domains are updated in (1) should
be randomised in order to avoid artefacts in the inferred
maps. We do so by looping over all domains in an order
that is randomised in each epoch. This ensures that all
domains are updated while avoiding an arbitrary order-
ing of the updates. We here select the whole set ∆rBα,τ

as minibatch in (2), but it is possible to subsample it in-
stead for large datasets. The update ∆θ of θα,τ in (3)
only depends on the local cost terms fα,τ in the neigh-
bourhood Bα,τ . Since each local cost function fα′,τ ′ de-
pends on parameters of the domains in its neighbourhood



5

Bα′,τ ′ , the update ∆θ ultimately depends on the parame-
ters of the extended neighbourhood Sα,τ that includes all
neighbours of the domains in Bα,τ , but not any domains
further away.

Gradient descent in a subspace

A detailed description of how ∆θ is calculated is given
in the Supplementary Information. Briefly, for each
iteration k we obtain ∆θ from the implicit relation

∆θ(∆rBα,τ
,θ

(k−1)
Sα,τ

) = s(k)p(k). Here s(k) is the step size

and p(k) = −H(k−1)∇α,τf(θ
(k−1)) is the descent direc-

tion, with ∇α,τf the gradient of f w.r.t the local parame-
ters θα,τ and H an approximation to the inverse Hessian
matrix. We relied on approximate line search [37] to es-
timate s(k). Interestingly, the same partial evaluation as
for gradient calculation stands, which makes line search
operate fast, in a 2-dimensional parameter subspace.

Data sampling

This study showcases three datasets of simulated trajec-
tories and one experimental dataset consisting of trajec-
tories of wild-type Gag proteins (WT Gag) recorded in
the plasma membrane using sptPALM. In this section, we
briefly describe how these datasets were binned and how
molecule locations were assigned to the resulting spatio-
temporal domains.
For each dataset, a regular grid of non-overlapping

hexagons was adjusted to the bounding box of all the
molecule locations. The minimal diameter (the diameter
of the inscribed circle) of the hexagons was set to 100 nm
for the first two simulations, 68.5 nm for the third simula-
tion, and 20 nm for the WT Gag dataset. This diameter
defines the spatial resolution of the analysis.
Similarly, the total recording (or simulation) time was

divided into regular intervals. The first simulated dataset
did not feature time-evolving dynamics, so only a sin-
gle time-slice was used. The second and third simulated
datasets feature 18 time segments of 1 s and 5 s respec-
tively, while the experimental WT Gag dataset features
12 1-min time segments. The experimental modalities
of the WT Gag dataset and statistical analysis is de-
scribed in more detail in the following section (Experi-
mental data).
To further ensure the reliability of the inference pro-

cedure for sparse data, we incorporated different over-
sampling modalities that consider overlapping domains
and may consequently assign localisations to multiple do-
mains. Namely, (i) considering any initial tessellation,
the spatial domains were enlarged as overlapping circu-
lar regions of constant radius; (ii) the temporal extent
of the domains was defined using a sliding time window
that introduced some constant overlap between succes-
sive time segments; and (iii) the domains that did not

include a given minimum number of localisations were in-
dividually and symmetrically enlarged in time until this
minimum number was reached. While the oversampling
has a smoothing effect, the main purpose is to ensure the
reliability of the optimisation and inference procedures.
For visualisation, the non-overlapping shapes from the
original tessellation were shown. In all three oversam-
pling modalities, the spatial and temporal integration in
qα and qτ (respectively) considered the non-overlapping
extent of the domains, e.g. for qα in modality (i) the
original non-overlapping shapes of the spatial domains.
No oversampling was performed for the first simulated

dataset. For the second simulated dataset, following
modality (iii) spatio-temporal domains with less than 20
molecule locations were individually enlarged in time un-
til 20 locations could be assigned to the domain. No over-
sampling was performed for the third simulated dataset
in order to isolate the effect of the smoothing priors. For
the experimental dataset, regular spatial (i) and tempo-
ral (ii) windowing were applied. Since the dataset is very
sparse and our focus is to detect short-lived events, we
used relatively large spatial overlap (130 nm for 20 nm
spatial resolution) and little temporal overlap (2 min slid-
ing windows for a 1 min temporal resolution), and we did
not apply adaptive temporal windowing.
Note that while the regularizing priors in principle suf-

fice to handle domains with few datapoints, it is in prac-
tice preferable to exclude domains not containing a mini-
mal number of localisations and/or artificially increasing
the number of points by oversampling in order to ensure
that inferences are stable and the posterior is integrable.
This is because each spatio-temporal domain contributes
equally to the regularisation term in the posterior prob-
ability no matter how many points it contains. Thus, if
many domains contain few or no points (as is the case
in the experimental dataset), these will contribute dis-
proportionally to the posterior, and in a manner that is
overly sensitive to initialisation, possibly rendering the
inference procedure unstable.

Experimental data

We analyse a previously unpublished set of trajectories
of wild-type (WT) mEOS2-tagged HIV-1 Gag proteins
recorded at 50 Hz in the plasma membrane of a single
CD4+ T cell for a previous study [20]. The experimen-
tal procedure, from protein production (using the pGag-
(i)mEOS2 WT plasmid) to imaging and tracking, is de-
scribed in [20] (condition: WT Gag).
To map the single Gag dynamics, here the spatial 2D

domains were regularly laid across a 3 µm × 3 µm area,
with centers arranged along a hexagonal grid, spaced
by 20 nm and sized as 130 nm-radius discs. This large
radius—as large as observed virus-like particles (VLPs)
[20]—was necessary to collect enough molecule locations
so that the diffusivity and potential energy could be esti-
mated over dense and large spatio-temporal patches that
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FIG. 2. Inferred potential energy and diffusivity landscapes in
the static, low-dimensional example (558 parameters in total).

cover not only patterns of interest, but also the close en-
vironment of these patterns. To emphasize the benefit
of temporal regularisation, we used a 2 min sliding tem-
poral windows and limited the overlap between succes-
sive time segments to 50%, resulting in one time segment
every minute. Spatio-temporal domains containing no
localisations were excluded from the analysis.
The effects of localization uncertainty and motion

blur (also known as static and dynamic errors, respec-
tively [38]) were accounted for by replacing D(r, t) by
Deff(r, t) = (1−2R)D(r, t)+σ2/∆t in Eq. (3) [39]. Here
σ2 is the variance of the localization uncertainty, assumed
zero mean and time-uncorrelated, and R is a coefficient
quantifying the motion blur [40, 41], where R = 1/6 cor-
responds to continuously open camera shutter and R = 0
may be obtained by leaving the camera shutter open for
only a vanishing part of the time-lapse between measure-
ments. For the present measurements, the localisation
uncertainty was estimated to be σ = 30 nm and the mo-
tion blur coefficient was R = 1/6.

RESULTS

Stochastic optimisation accelerates inference of
spatio-temporal maps

We first demonstrate the stochastic optimisation ap-
proach on simulated single particle tracking data, and we
compare it to the deterministic global optimisation. We
namely consider a low-dimensional example of inference
of a static, spatially varying potential field (558 parame-
ters to infer and 2 682 particle localisations) and a higher-
dimensional intermediary example of a spatio-temporally
varying field (4 648 parameters, 22 589 particle localisa-
tions). Both datasets exhibit constant diffusivity and a
potential energy sink in space, which is constant in time
for the first dataset (Fig. 2) and varies over time for the
second (Fig. 3). The first dataset was introduced to quan-
tify the convergence of several optimisation methods and
does not involve time windowing. The second dataset
introduces time regularisation and emphasizes the addi-
tional benefit of stochastic optimization in this context.
It is divided into 18 non-overlapping time segments as
illustrated in Fig. 3.

Convergence is measured by the correlation of the par-
tial estimates φ(k) (where φ ∈ {D,V}) of each method
with the final estimate φ∗ obtained using the global de-
terministic optimisation of the full cost function. This
way we compare not only the speed of convergence of the
methods, but also that they converge towards the same
optimum.
Fitting V took more local cost function calls than fit-

ting D did (Figs. 4 and 5). This is generally the case even
when D exhibits equivalent patterns. We will therefore
focus on convergence for V.

Spatial map

The lower computational complexity of all the improved
methods compared to the naive gradient calculation is il-
lustrated in Figure 4. Direct gradient descent converges
much slower than its quasi-Newton counterpart, although
this variant can also run in multi-processing mode and
consequently be faster (in absolute processing time) than
the non-stochastic variant. This validates the approxima-
tion made in estimating the inverse Hessian matrix as a
diagonal 2x2-block matrix (see Supplementary Informa-
tion).
All optimisation methods converge relatively fast for

the inference of the low-dimensional spatial map. The
stochastic variant initially converges fastest until some
precision is reached (for the potential energy V at a cor-
relation of 0.9997 with the optimal parameter values).
Above this level, the non-stochastic variant converges
at a constant pace whereas the stochastic variant slows
down, perhaps due to many local updates being redun-
dant when most parameters are close to their optimal val-
ues. This is mitigated by the parallelisability of stochas-
tic optimisation. Since multiprocessing does not increase
the number of local cost function calls (Figure 4), this
allows to divide the elapsed time for optimisation by the
number of workers (about 20 on modern computers) us-
ing multi processing as compared to single processing.

Spatio-temporal map

The second dataset involves a transient potential energy
sink as illustrated in Figure 3. The spatial-temporal map
we aim to infer contains 18 individual time slices, so the
number of parameters is 18 times higher than for the
static map in the low-dimensional example above.
We compared stochastic and non-stochastic quasi-

Newton optimisation (Figure 5). For the regularised
spatio-temporal inference, the stochastic algorithm con-
verges much faster than the non-stochastic one—about
an order of magnitude for the present example—and the
parallelisability of the stochastic algorithm compounds
this gap by another order of magnitude.
Note that the number of parameters inferred in this

example (4 648) is much smaller than the number of
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FIG. 3. Inferred potential energy landscapes at successive time segments in the intermediary spatio-temporally varying example
(4 648 parameters in total).

FIG. 4. Convergence as function of the number of calls to local cost functions fα,τ for the low-dimensional spatial inference (558
parameters to infer). n.s. naive stands for non-stochastic with naive gradient calculation. H = I means that the inverse Hessian
matrix is not approximated using the BFGS update rule, but set to the identity matrix instead; this is the direct gradient
descent, in contrast to the quasi-Newton approach. s.p. and m.p. stand for single-process and multi-process, respectively.

FIG. 5. Convergence as a function of the number of calls
to local cost functions fα,τ for the spatio-temporal inference
(4 648 parameters to infer). m.p. stand for multi-process.

parameters one may meet in empirical examples. The
map inferred in the experimental example presented
below for example contains 127 578 parameters. For
such high-dimensional inferences, the non-stochastic al-
gorithm does not converge.

Computational complexity

We let P denote the number of parameters. P is propor-
tional to the number of different domains (α, τ) in the
mesh, so the full gradient calculation of non-stochastic
algorithms has a computational complexity of O(P 2) per

iteration. In comparison the partial gradient evaluation
of our stochastic algorithm has a complexity of O(P B),
where B = |Bα,τ | is the size of a local neighbourhood.
In terms of the size of the parameter space, P , this re-
duces to O(P ) since B is always bounded by a low value
in practice: here B = 9 and typical values in 2D are
B < 10. For reference, P = 127 578 in the experimental
example below.

Strategies for choosing regularisation
hyperparameters

Figure 6 illustrates how the value of the hyperparam-
eter λτ controlling the strength of temporal regularisa-
tion of the potential field V influences the inferred field.
The dataset involved is slightly larger then the previous
one. It features 9 992 parameters and 126 022 localisa-
tions, and it displays three potential wells (Fig. 6, top
rows).
The optimal choice of regularisation hyperparameters

µr, µt, λr and λt depends on the overall study, and
there is no general be-all and end-ell strategy for choos-
ing them. The application of mapping to biomolecule
dynamics in living cells may involve the characterisation
of specific features of the inferred maps, such as the size,
depth and duration of potential wells. Some studies then
focus on differences between various biological conditions
rather than on absolute measurements. More generally,
inferring maps is often a preliminary analysis step, and
the further analysis steps may all bring their specific re-
quirements, which can guide the selection of regularising
hyperparameters.
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FIG. 6. Effects of temporal regularisation on inferred maps for an example consisting in two static and one temporally varying
potential wells. The centers of the wells are all placed on the central horizontal line of the maps, with the temporally varying
well in the center and the static wells to each side (see top rows). (Top rows) Two examples of inferred spatio-temporal maps for
different strengths of the temporal regularisation (log10 λt = −2 and log10 λt = +1, respectively). (Bottom row) Temporal (left)
and spatial (right) profiles of the inferred potential V for a selection of different values of the hyperparameter λt controlling
temporal regularisation (logarithmic scale). (Bottom, left) The temporal profile shows the value in the central space domain
(see top rows) as function of time. (Bottom, right) The spatial profile shows the values in the spatial domains lying on the
horizontal line going through the central domain at the time when the depth of the potential well is maximal.

A common criterion is to avoid false detections of dif-
ferences between the feature values corresponding to dif-
ferent biological conditions. False positives may notably
be caused by unphysical outliers in the distributions of
values of map features as statistical tests used for com-
parison often are sensitive to outliers. A simple approach
to correct this consists in tuning the hyperparameters
to ensure that the resulting distributions do not exhibit
long tails, as measured for example using a Kolomogorov-
Smirnov test to compare the empirical distribution with
a Gaussian fit [20]. As an undesired consequence of us-
ing smoothing priors, the inferred parameter maps may
exhibit biased (flattened) values.

Conversely, if we want to detect sharp patterns or ex-
treme values, the hyperparameters should be tuned to
the smallest values that still let the inference converge
and make the inferred maps exhibit as few holes (unde-
fined parameter values) as possible within the regions of
interest.

Another approach, applied in [13] (Supplementary In-
formation), tunes the spatial regularisation hyperparam-
eters using large-scale numerical simulations based on re-
alistic parameter landscapes. Numerical trajectories are
generated so that they mimick experimental trajectories,
and a grid search is performed to find the hyperparame-
ter values that minimise the discrepancy (reconstruction
error) between the inferred and expected maps.

Multiple procedures for tuning hyper-parameters can
be envisioned depending on the nature of the experi-
ments and the expected results. While we recommend

simulation-based exploration of the effects of hyperpa-
rameters, increasing the robustness of statistical tests
is often taken as a priority in the analysis of biologi-
cal data. Generally the two procedures are not mutually
exclusive, but simulation-based tuning can be computer-
intensive. Furthermore, if the regions of biological inter-
est are highly local in space and/or time, minimising the
reconstruction error will tend to put most weight on do-
mains that are of lesser interest because there are more
of these.
The experimental dataset introduced in this article is

an example of such a complex inference with sparse re-
gions of interest. The hyperparameters were set to the
following values: µr = 1, µt = 10, λr = 0.1 and λt = 1.

Spatio-temporal mapping of Gag protein dynamics

We illustrate our inference framework by inferring a
spatio-temporal map of the dynamics wild-type mEOS2-
tagged HIV-1 Gag proteins in a single CD4+ T cell. The
Gag protein is involved in the budding of HIV-1 virus
particles at the plasma membrane and, when expressed
alone, is sufficient to form inactive virus-like particles
(VLPs) [20].
We mapped the dynamics in a 3 µm × 3 µm square

of the plasma membrane over 15 min at spatial and tem-
poral resolutions of 20 nm and 1 min (see Methods for
a detailed description of the dataset and analysis). To
observe transient interactions with possibly shorter du-
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FIG. 7. Potential energy maps of Gag proteins in part of a T cell (127 578 parameters in total and 126 022 recorded localisations).
The second row shows the full inferred map. The rows above and below show magnifications of spatial regions of interest. White
domains were not visited by any molecule and not represented (no associated parameter).

rations than the classically observed 20-minute particle
budding, we segmented time using a 2-minute sliding
time window and a 1-minute resolution. This is to be
compared to previous analyses that ran a 4-minute time
window [20].
The dataset exhibited low density—white areas in

Fig. 7 were not visited by any molecule during the cor-
responding time segment. Clear patterns could still be
identified, such as the ∼ 100 nm energy trap illustrated
on the top row. This trap lasted less than 2 minutes,
which is indicative of transient assembly that did not
lead to a fully assembled VLP [20]. It is worth noting
that these short events cannot be detected based on the
local density of Gag and that information still lacks on
VLP that did not assemble. Other weaker traps were
also identified, such the ones illustrated on the third and
fourth rows.
A key benefit of regularising in time is the homogeneity

of inferred potential energies between distant locations
and distinct time segments. This is not the case when
individually inferring spatial maps for different time seg-
ments since potential energies are only determined up to
an additive constant. The temporal regularisation made
these estimated energies directly comparable between one
another.
In spite of the 127 578 parameters, the inference took

less than 24 hours on a desktop computer with an Intel c©

Xeon c© E5-2687W central processing unit.

CONCLUSIONS

Here, we introduced a Bayesian framework for fully reg-
ularised inference of spatio-temporal maps of intracellu-
lar biomolecule dynamics from their recorded trajecto-
ries. To solve the computational optimisation problem
of inferring the most probable (maximum a posteriori
– MAP) values of the thousands of map parameters we
relied on stochastic optimisation – a general class of op-
timisation methods well suited to high-dimensional in-
ferences and large datasets. We exploited the particu-
lar physical structure of the mapping problem by adapt-
ing the quasi-Newton BFGS algorithm to make use of
spatio-temporally local minibatches, which provide par-
ticularly efficient updates as they involve only small pa-
rameter subspaces while separating experimental local-
isations that are linked to a limited set of parameters.
While our focus was on MAP estimation, we additionally
provided a complementary procedure based on a modern
technique from Bayesian statistics and machine learn-
ing to access the full posterior distribution: sampling of
the posterior around the MAP using stochastic Gradi-
ent Langevin dynamics. We demonstrated the advan-
tage of stochastic optimisation over direct optimisation
of the full posterior, and, for the first time, we mapped
the spatio-temporal dynamics of HIV-1 Gag proteins on
large areas with temporal regularisation.

[1] S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff,
H. F. Hess, E. Betzig, and J. Lippincott-Schwartz, Na-
ture Methods 5, 155 (2008).

[2] G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze,
A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tamp,
D. Choquet, and L. Cognet, Biophysical Journal 99,

1303 (2010).
[3] J. Meier, C. Vannier, A. Serg, A. Triller, and D. Choquet,

Nature Neuroscience 4, 253 (2001).
[4] J. Elf, G.-W. Li, and X. S. Xie, Science 316, 1191 (2007).
[5] R. Das, C. W. Cairo, and D. Coombs, PLoS Computa-

tional Biology 5, e1000556 (2009).



[6] P. Pierobon, S. Achouri, S. Courty, A. R. Dunn, J. A.
Spudich, M. Dahan, and G. Cappello, Biophysical Jour-
nal 96, 4268 (2009).

[7] J.-B. Masson, D. Casanova, S. Türkcan, G. Voisinne, M.-
R. Popoff, M. Vergassola, and A. Alexandrou, Physical
Review Letters 102, 048103 (2009).

[8] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf,
Proceedings of the National Academy of Sciences of the
United States of America 108, 6438 (2011).

[9] N. Hoze, D. Nair, E. Hosy, C. Sieben, S. Manley, A. Her-
rmann, J.-B. Sibarita, D. Choquet, and D. Holcman,
Proceedings of the National Academy of Sciences of the
United States of America 109, 17052 (2012).

[10] D. Nair, E. Hosy, J. D. Petersen, A. Constals, G. Gian-
none, D. Choquet, and J.-B. Sibarita, The Journal of
Neuroscience 33, 13204 (2013).

[11] C. G. Specht, I. Izeddin, P. C. Rodriguez, M. El Beheiry,
P. Rostaing, X. Darzacq, M. Dahan, and A. Triller, Neu-
ron 79, 308 (2013).

[12] F. Persson, M. Lindén, C. Unoson, and J. Elf, Nature
Methods 10, 265 (2013).

[13] J.-B. Masson, P. Dionne, C. Salvatico, M. Renner, C. G.
Specht, A. Triller, and M. Dahan, Biophysical Journal
106, 74 (2014).

[14] C. Manzo and M. F. Garcia-Parajo, Reports on Progress
in Physics 78, 124601 (2015).

[15] N. Monnier, Z. Barry, H. Y. Park, K.-C. Su, Z. Katz,
B. P. English, A. Dey, K. Pan, I. M. Cheeseman, R. H.
Singer, et al., Nature Methods 12, 838 (2015).
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SUPPLEMENTARY INFORMATION

SAMPLING THE POSTERIOR DISTRIBUTION

Here, we relied on stochastic optimisation to access the
maximum a posteriori (MAP) values of the map param-
eters. Sampling of the posterior distribution around the
MAP can be performed using a similar procedure, i.e.
stochastic gradient Langevin dynamics [30]. It uses the
following update rule:

θ(k) = θ(k−1) +


2
∇P (θ|{∆r}) +

√
ηk , (14)

where ηk follows a standard Gaussian distribution, ηk ∼
N (0, 1). Equation (14) can be recognised as the Euler ap-
proximation to an overdamped Langevin equation with
the posterior distribution acting as an effective potential
and  as a diffusivity. This procedure was shown to al-
low efficient sampling of the posterior distribution, and
it converges quickly when initialised at the MAP values
of the parameters. Note that since we here initialise the
procedure at the MAP values for θ, we do not need to
make  vary with time as in the original publication [30]
where the scheme was also used to optimise the posterior
before sampling around the MAP.

STOCHASTIC OPTIMISATION

We here give a detailed description of the proposed
stochastic optimisation algorithm.
Each physical parameter φ (indexed by ℓ) in the set

of model parameters θ, namely the diffusivity D and
the potential energy V , is represented by as many model
parameters as spatial subdomains (indexed by α) times
temporal segments (indexed by τ). We may write the set
of parameters formally as: θ = ∪ℓθℓ = ∪α,τ ∪ℓ {θℓ,α,τ} =
∪α,τ{Dα,τ , Vα,τ}.
To show the generality of the stochastic approach, we

here consider a more general formulation that in the main
text by letting Bα,τ be any neighbourhood of (α, τ), in-
stead of just being comprised of nearest neighbours, and
by letting θα,τ be any collection of local parameters, e.g.
mobility and drift θα,τ = (ψα,τ ,aα,τ ) or drag and force
θα,τ = (γα,τ , fα,τ ). In this more general case, the local
cost can be written as

fα,τ (θBα,τ ) = − log(P (θRα,τ |{∆r}α,τ )) (15)

+


ℓ

[µℓ,rqα(θℓ,Rα,τ ) + µℓ,tqτ (θℓ,α,Tτ )] .

Parsimonious gradient calculation

The cost function f being a sum of local components
makes partial evaluations of the gradient possible. For
example, considering any increment  > 0 along a single

scalar parameter θ+ = θ+  1ℓ,α,τ and θ− = θ−  1ℓ,α,τ ,
we have:

f(θ+)− f(θ−) =


α′∈Rα


fα′,τ


θ+
Bα′,τ


− fα′,τ


θ−
Bα′,τ



+


τ ′∈Tτ


fα,τ ′


θ+
Bα,τ′


− fα,τ ′


θ−
Bα,τ′


.

(16)

Only a few local functions {fα,τ} are evaluated above.
The above calculus is the basis for gradient calcula-

tion. Indeed, the component (ℓ,α, τ) of the gradient ∇f

is calculated as: ∇fℓ,α,τ (θ) =
f(θ+)−f(θ−)

 1ℓ,α,τ for given
, chosen as described in [37]. In comparison, a default
implementation would evaluate the full cost function for
each component of the gradient.

From decomposability to stochasticity

At each iteration k of the optimisation algorithm, the pa-
rameters are updated in an approximate fashion: θ(k) =
θ(k−1) + ∆θ({∆r},θ(k−1)). The decomposition of f
makes it possible minimize the cost function w.r.t. lo-
cal parameters θα,τ only at each iteration, and visit the
parameters sequentially instead of jointly according to

θ
(k)
α,τ = θ

(k−1)
α,τ +∆θ(∆rBα,τ

,θ
(k−1)
Sα,τ

). Calculating the up-

date ∆θ requires only subsets Bα,τ and Sα,τ of the full
data and parameter sets, respectively.
If only gradient calculation and approximate line

search are required, the smallest possible minibatch of
data ∆rBα,τ

= {∆rα′,τ ′}(α′,τ ′)∈Bα,τ
is such that: Bα,τ =

(Rα×{τ})∪({α}×Tτ ), which is what we used in the main
text. Here the notations {k} and {t} represent singletons
and × the Cartesian (outer) product.
Similarly, the smallest possible subset of the parame-

ters (subspace) that is accessed due to the regularizing
priors is Sα,τ = ∪α′,τ ′∈Bα,τ

Bα′,τ ′ .
Altogether, we consider a minibatch sampling function:

B : k −→ (α, τ) −→ {∆rα′,τ ′}(α′,τ ′)∈Bα,τ

This implies several possible optimization paths. If either
the k −→ (α, τ) or the (α, τ) −→ {∆rα′,τ ′}(α′,τ ′)∈Bα,τ

parts acts randomly, we thus define a stochastic ap-
proach.

Line search for descending the gradient in a subspace

As described in the Methods section, the update at iter-

ation k takes the following form: ∆θ(∆rBα,τ
,θ

(k−1)
Sα,τ

) =

s(k)p(k), with descent direction given by p(k) =
−H(k−1)∇fα,τ (θ

(k−1)).
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The step size s(k) can be estimated in various ways.
Here, in the context of minimizing f only w.r.t. the pa-
rameters θα,τ (i.e. in the subspace Dα,τ = Φ×{α}×{τ},
where Φ = {D,V }), s(k) is best estimated using an ap-
proximate line search. Indeed, for each cell (α, τ), a line
search operates in a subspace of small dimensionality,
|Dα,τ | (here two), and interestingly the same partial eval-
uation as for gradient calculation stands. This simplifica-
tion comes from the fact that an approximate line search
selects a step on basis of differences in f along the descent
direction (Armijo’s rule), i.e. with only the parameters in
D that vary, and optionally of differences in ∇f (Wolfe’s
rule) in D as well.
Consequently, such an approximate line search is ef-

ficient and there is no need to determine s(k) using an
adaptive rule, which is another departure of our algo-
rithm from most of the other stochastic optimization pro-
cedures.

Inverse Hessian approximation

The inverse Hessian H was updated using the BFGS rule
[37]. Estimating the gradient and expressing the updates
in small subspaces D. makes the updates to the inverse
Hessian matrix similarly small (D. × D.). This leads to
the approximation for almost all parameter pairs that

∂f
∂θi∂θj

(θ) ≈ 0. In our system this approximation is sup-

ported by the fact that separated regions in space and
time have limited interactions regarding their parame-
ters.
For example, the inference showcased in this article ex-

hibits a block diagonal inverse Hessian matrix composed
of 2×2 blocks in its stochastic version. We observed that
the BFGS update rule for such a sparse inverse Hessian
allowed faster convergence than a basic gradient descent
approach, which corresponds to having the identity ma-
trix replace H. This is illustrated Figure 4.
In complex cases, or when some domains contain lim-

ited numbers of points, H may not be definite positive.
In this case we replace it by the identity matrix.

Correcting spatial oscillations in V

As Figure S4 in [13] shows, direct optimisation of the
posterior distribution can lead to a potential energy
landscape exhibiting spatial oscillations (of amplitude
≈ 0.15 kBT for a diffusivity of D ≈ 0.1µm2s−1) even
in the absence of forces.
The posterior probability [Eq. (9)] only depends on the

potential energy V through its spatial gradient ∇V . A
gradient is insensitive to spatial oscillations on a regular
mesh at the Nyquist frequency – ∇V is always evaluated
on top of a hill or at the bottom of a trough and the vari-
ation in-between is just not sampled. This undesirable
phenomenon, limited in full optimization, was amplified
when locally and sequentially updating the parameters

since the approximate line search generates noisy updates
that are even noisier when the step sizes are driven by
fewer parameters.

Regularising priors lessen the problem as they add a
damping factor. However, when attempting to detect
subtle effects and features in the map, it is not desir-
able to increase regularisation beyond what is needed to
attenuate statistical errors. We instead introduced two
modifications of the approximate line search, which also
make the algorithm more robust in general:

• setting an upper bound on individual updates,

• adapting Wolfe’s rule in the approximate line
search to prevent gradient reversal.

An upper bound on the infinite-norm of the update
allows to scale the initial update considered in the line
search (for our stochastic algorithm, the infinite norm is
equal to the maximum of the absolute values of Dα,τ and
Vα,τ ). This mostly makes the search faster and better
uses a limited number of iterations (default is 10), but
can also prevent large updates. We set this upper bound
equal to 2kBT for V and 2µm2s−1 forD based on physical
considerations, though the precise value of the bound is
not important as its main purpose is to avoid diverging
updates.

The standard strong Wolfe’s rule [37] aims at making
the norm of the projected gradient decrease (with itera-
tion index k shown as subscript for convenience):

cpT
k∇f(θk−1) ≤ −pT

k∇f(θk−1+skpk) ≤ −cpT
k∇f(θk−1) ,

(17)
with c = 0.9. We propose instead:

cpT
k∇f(θk−1) ≤ −pT

k∇f(θk−1 + skpk) , (18)

with c = 0.5 (or lower).

Our first motivation here is to bound more tightly the
projected gradient pT

k∇f(θk−1 + skpk) when it points
opposite to pT

k∇f(θk−1). Indeed, a gradient reversal may
be the signature of a large step and cause oscillations
around the optimal parameter value, especially with local
updates. With c = 0.5, a reversed gradient is admitted
only if it is half the size of the initial gradient, along the
descent direction.

A second motivation in dropping the weak part of
Wolfe’s rule deals with non-monotonic properties in the
descent subspaces. Empirically, situations revealed cases
where the projected gradient was only increasing along
the descent direction, while the candidate updates com-
plied with the Armijo rule [37] (decrease in f). As long
as the Armijo rule is ensured, if the gradient keeps on
pointing in the same direction, we only need to carry out
more steps. Especially, if the projected gradient increases
in absolute value, then a small step is preferable in order
to stay in smooth conditions, so that the inverse Hessian
matrix can be properly updated.



Parallelisation of the optimisation

The main constraint in parallelising the computation per-
formed on minibatches is to ensure non-conflicting access
to resources during execution of the various tasks. We
implemented the parallel procedure the following way.

A scheduler process operates the k −→ (α, τ) sam-
pling function and dispatches single iterations (tasks) to
a pool of workers. Each worker will process an itera-
tion and consequently update the parameters of a given
spatio-temporal domain, while another worker will simul-
taneously process another iteration. Parameters involved
in the computations run by a worker are not modified
during computation by any other workers.

The parameters involved at iteration k are identified
by the following function: S : k −→ (α, τ) −→ θSα,τ ,
where θSα,τ = {θα′,τ ′}(α′,τ ′)∈Sα,τ

. Each time the sched-
uler assigns an iteration to a domain (α, τ), it can lock
the corresponding Sα,τ parameters. The later iterations
that require access to locked parameters will be post-
poned until the locked parameters are released. Finally,
note that to allow for more parallelisation on small maps,
we locked Bα,τ instead of Sα,τ .

More precisely, each worker maintains its own copy
of the parameter vector θ. The workers synchronise to-

gether, exchanging local parameter updates θ
(k)
α,τ and lo-

cal blocksH(k)
α,τ of the inverse Hessian matrix. All workers

send status information to the scheduler, this merely in-
cludes the decrease in f : ∆f (k) = f


θ(k−1)


− f


θ(k)


.

Convergence is stated once ∆f drops below some small
tolerance for 90% of the iterations in an epoch of ΩT
iterations, where ΩT is the number of domains in the
map.
To ensure that all domains are updated, they are each

sampled once, in random order, during each epoch. To
avoid potential latencies between epochs, the next epoch
begins as soon as all domains have been sampled; the
scheduler does not wait for the workers to complete the
corresponding updates.

TIME REGULARISATION AND INITIAL
VALUES FOR V

In the context of inference of a potential energy field,
time regularization is especially useful in making po-
tential energies comparable between different time seg-
ments. Nothing in the underlying physics fixes the aver-
age value of the effective potential, creating complexities
when evaluating the effective potential at different time
points.
In InferenceMAP [24], the potential fields were initial-

ized to match the corresponding equilibrium distribution
to the recorded point density. When temporal regulari-
sation is imposed, direct optimisation does not necessar-
ily constrain the effective potential (in non interacting
space domains) for small values of λt. To make temporal
smoothing less sensitive to the value of λt and to ensure
similar levels between time segments, we initialised V to
0 instead, for inferences with temporal regularisation.


