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ABSTRACT Cryptococcosis is a multifaceted fungal infection with variable clinical presentation and outcome. As in many infec-
tious diseases, this variability is commonly assigned to host factors. To investigate whether the diversity of Cryptococcus neofor-
mans clinical (ClinCn) isolates influences the interaction with host cells and the clinical outcome, we developed and validated
new quantitative assays using flow cytometry and J774 macrophages. The phenotype of ClinCn-macrophage interactions was
determined for 54 ClinCn isolates recovered from cerebrospinal fluids (CSF) from 54 unrelated patients, based on phagocytic
index (PI) and 2-h and 48-h intracellular proliferation indexes (IPH2 and IPH48, respectively). Their phenotypes were highly
variable. Isolates harboring low PI/low IPH2 and high PI/high IPH2 values were associated with nonsterilization of CSF at week
2 and death at month 3, respectively. A subset of 9 ClinCn isolates with different phenotypes exhibited variable virulence in mice
and displayed intramacrophagic expression levels of the LAC1, APP1, VAD1, IPC1, PLB1, and COX1 genes that were highly vari-
able among the isolates and correlated with IPH48. Variation in the expression of virulence factors is thus shown here to depend
on not only experimental conditions but also fungal background. These results suggest that, in addition to host factors, the pa-
tient’s outcome can be related to fungal determinants. Deciphering the molecular events involved in C. neoformans fate inside
host cells is crucial for our understanding of cryptococcosis pathogenesis.

IMPORTANCE Cryptococcus neoformans is a life-threatening human fungal pathogen that is responsible for an estimated 1 million
cases of meningitis/year, predominantly in HIV-infected patients. The diversity of infecting isolates is well established, as is the
importance of the host factors. Interaction with macrophages is a major step in cryptococcosis pathogenesis. How the diversity
of clinical isolates influences macrophages’ interactions and impacts cryptococcosis outcome in humans remains to be eluci-
dated. Using new assays, we uncovered how yeast-macrophage interactions were highly variable among clinical isolates and
found an association between specific behaviors and cryptococcosis outcome. In addition, gene expression of some virulence
factors and intracellular proliferation were correlated. While many studies have established that virulence factors can be differ-
entially expressed as a function of experimental conditions, our study demonstrates that, under the same experimental condi-
tions, clinical isolates behaved differently, a diversity that could participate in the variable outcome of infection in humans.
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With 1 million cases per year and 700,000 annual deaths, cryp-
tococcosis is one of the most frequent invasive fungal infec-

tions worldwide (1). It occurs mostly in patients with immune
defects, especially those with AIDS, but also non-HIV immuno-
compromised patients (e.g., patients with sarcoidosis, solid organ
transplant patients, and patients under steroid or other immuno-
suppressive therapy) (2). Cryptococcosis is a multifaceted pathol-
ogy in terms of clinical presentation and outcome, with meningo-
encephalitis being the most frequent and severe presentation.
Despite undergoing 3 months of adequate antifungal treatment,
15 to 20% patients will die from cryptococcosis (3). This infection
is due to the haploid yeasts Cryptococcus neoformans, including
varieties grubii (serotype A) and neoformans (serotype D), and
Cryptococcus gattii. C. neoformans propagates by budding and is

also capable of sexual multiplication and same-sex mating, which
contributes to the high diversity of the overall population, even if
asexual expansion is the predominant feature (4). The isolates
responsible for infections are serotype A or D, haploid or diploid,
and mating type alpha (MAT�) or a (5). Single (one strain) or
mixed (mixture of isolates belonging to various serotypes, mating
types, genotypes, and/or ploidies) infections are possible, as evi-
denced in unpurified clinical cultures (6). Overall, haploid C. neo-
formans serotype A MAT� isolates represent the most prevalent
clinical isolates worldwide (5).

C. neoformans is a facultative intracellular pathogen (7–9). In-
teraction of C. neoformans with host cells can lead to phagocytosis,
with occasional escape to the extracellular space (vomocytosis),
and possible transfer of yeast cells between phagocytic cells (10).
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C. neoformans is capable of replication within the phagolysosome,
sometimes associated with host cell lysis (10). These interactions
are thought to be involved in different steps of pathogenesis, such
as dormancy (11), dissemination (8, 12), and blood-brain barrier
crossing (8). Ma and colleagues reported that C. gattii genotype
VGII (responsible for the Vancouver Island outbreak) was associ-
ated with increased intramacrophagic yeast proliferation and vir-
ulence in mice compared to other genotypes (13). For C. neofor-
mans, the influence of genotypic/phenotypic diversity on
pathogenesis and clinical outcome has not yet been established.

Our hypothesis is that the clinical outcome of cryptococcal

meningoencephalitis in humans is related to fungal determinants
and not only to the individual’s immune status and/or genetic
susceptibility to infection. We took advantage of a large prospec-
tive multicenter study on cryptococcosis (3) that collected clinical
information and isolates to test this hypothesis. We thus devel-
oped a standardized model of yeast-macrophage (murine cell line
J774) interactions to study C. neoformans clinical (ClinCn) iso-
lates and assessed the correlation between the in vitro parameters
characterizing the isolates and the outcome of infection in the
corresponding patients.

RESULTS
New flow cytometry assays are implemented to assess the dy-
namics of C. neoformans-macrophage interactions. To estimate
whether the interaction between ClinCn isolates and host cells was
variable, we developed original quantitative flow cytometry assays
using the J774 murine macrophage cell line. Calcofluor (Calco) is
a basic fluorescent dye used to stain fungal cell wall. Preliminary
studies using Calco staining revealed that fluorescence is transmit-
ted from mother to daughter cells during multiplication (Fig. 1A).
Immediately after staining, mean fluorescence intensity (MFI)
was high for all cells. After 3 h of culture, an emerging population
with a decreased MFI was detected, while budding cells harboring
decreased fluorescence were seen by fluorescence microscopy.
This suggested that Calco-labeled chitin was transferred from

TABLE 1 Characteristics of the 54 patients corresponding to the 54
clinical isolates of Cryptococcus neoformans studied

Parameter n (%)

Male/female ratio 4.4:1
Born in Africa 12/54 (22.2)
HIV infected 45/54 (83.3)
Non-HIV infected 9/54 (16.7)
Abnormal neurology 24/54 (44.4)
Abnormal brain imaging 18/51 (35.3)
Disseminated infection 35/54 (64.8)
Capsular polysaccharide titer of �512 in CSF 27/49 (55.1)
Nonsterilization of CSF at wk 2 24/45 (53.3)
Death at mo 3 11/53 (20.8)

FIG 1 Decrease in fluorescence in calcofluor-labeled C. neoformans (reference strain H99) during multiplication. (A) C. neoformans multiplication in vitro was
evaluated after staining of yeast cells with calcofluor prior to incubation at 30°C in liquid YPD for up to 24 h. Aliquots of the culture were harvested at various
times (starting at 0 h of incubation [H0]), and fluorescence was assessed in parallel by microscopic observation and flow cytometry. Decreasing numbers of
brightly fluorescent cells were observed from H3 to H24 after incubation, and flow cytometry revealed the appearance of cells of intermediate fluorescence
intensity (daughter cells; medium blue) compared to the negative control (light blue) and the initial population (mother cells, dark blue). (B to D) Visualization
of H99 multiplication inside macrophages assessed by dynamic imaging. Yeast cells were stained with calcofluor prior to incubation with the J774 cell line at a
2.5:1 ratio in the presence of E1 anticapsular polysaccharide monoclonal antibody (E1 MAb) (106 yeast cells/1 �g E1 MAb). Dynamic imaging using the Nikon
Biostation was performed starting after 1 h of coincubation (images obtained at 16 h 45 min are shown). (B) DAPI fluorescence filter. (C) Transmitted light. (D)
Decreased fluorescence of daughter cells assessed after image treatment using ImageJ software (merging panels B and C and inverting the look-up table [LUT].
Mother C. neoformans cells appear black, whereas daughter cells look medium to light gray. Original magnification, �40.
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mother to daughter cells during budding. During protracted in-
cubation, several populations with decreased MFI progressively
appeared, while the high-Calco-fluorescent initial population
progressively disappeared over 24 h. This phenomenon was con-
firmed using dynamic imaging of yeast cells proliferating inside
J774 cells (Fig. 1B to 1D; see Fig. S1 and Movie S1 in the supple-
mental material). Of note, macrophages containing yeast cells
were capable of mitosis (Fig. S1B and S1C) and subsequent fusion
(Fig. S1D and S1E) (14).

Based on these observations, we decided to assess the dynamics
of yeast-macrophage interactions (YMI) by flow cytometry assays
(using a fluorescence-activated cell sorter) using the MacsQuant
analyzer (FACS-YMI, Fig. 2). Preliminary experiments using the
C. neoformans reference strain H99 helped us define optimal op-
sonin quantity (monoclonal antibody [MAb] E1) and a yeast/
macrophage ratio in comparison with microscopic results (see
Fig. S2A in the supplemental material). In the phagocytosis assay,
three distinct populations were observed on the Calco-fluorescein
isothiocyanate (FITC) dot plot: the intracellular C. neoformans
population, which was high for Calco fluorescence and FITC neg-
ative (Calcohigh FITCneg); the extracellular C. neoformans popula-
tion, which was Calcohigh and FITC positive (Calcohigh FITCpos);
and cell debris, which was Calconeg FITCneg (Fig. 3A). This allowed
us to define a phagocytic index (PI) (103 �7 for H99). In the
proliferation assay, three distinct intracellular C. neoformans pop-
ulations (allophycocyanin-positive [APCpos] FITCneg gate) were
observed: the mother C. neoformans cell population, which was
Calcohigh, and two populations of daughter cells that were
Calcomedium and Calcolow (Fig. 3B), the cells with the lowest fluo-
rescence being the smallest cells (Fig. S2B). Intracellular prolifer-
ation indexes were then calculated based on the number of
Calcohigh, Calcomedium, and Calcolow populations after 2 h (IPH2)
and 48 h (IPH48) of incubation (1.0 �0.2 and 1.2 �0.2, respec-
tively, for H99).

Results obtained with H99 mutants validate the FACS-YMI
assays. To validate the assays, mutant strains derived from H99
and known for increased phagocytosis (app1� and lac1�) and
decreased proliferation (vad1�, vps34�, ipc1�, and lac1�) were
screened in comparison to H99. The FACS-YMI assays allowed
discrimination between mutant strains based on PI, IPH2, and
IPH48 (P � 0.0001 each) (Fig. 4). For the mutants, the PIs were
categorized into two groups (similar to H99 [ranging from 0.8 to
1.2] for vps34�, ipc1�, and vad1� or higher [from 1.5 to 1.9] for
app1� and lac1�). Three categories were also delineated for IPH2
(very low [0.02 to 0.04] for vad1� and vps34�, intermediate low
[0.35] for lac1�, and low [0.7] for app1� and ipc1�) and for
IPH48 (very low [0.02 to 0.2] for vps34� and vad1�, low [0.8] for
lac1�, and high [2.9 to 3.1] for app1� and ipc1�).

Interactions of C. neoformans clinical isolates with J774
macrophages are highly diverse. Based on these validated FACS-
YMI assays, we then studied 54 ClinCn isolates recovered from the
cerebrospinal fluid (CSF) of HIV-positive or -negative unrelated
patients (Table 1). An important diversity in terms of genotypes
(11 multilocus sequence types) and baseline phenotype character-
istics (colony morphology, cell and capsule sizes, growth rate, E1
MAb binding level, chitin content, and urease and laccase activi-
ties) was observed (see Fig. S3 in the supplemental material). We
then established the diversity of the ClinCn-macrophage interac-
tions. A 30-fold variation in PI (Fig. 5A; Fig. S4 in the supplemen-
tal material), 50-fold variation in IPH2, and 16-fold variation in
IPH48 (Fig. 5A; Fig. S5 in the supplemental material) were found.
The ClinCn isolates exhibiting high (�0.5) PI and low (�1.0) E1
MAb binding level were mostly smooth (26/30 [86.7%]), com-
pared to those exhibiting low PI and high E1 binding, which were
mostly mucous (9/10 [90%]; P � 0.0001) (Fig. S6 in the supple-
mental material). There was no significant association between
genotypes and baseline phenotypes or phenotypes of ClinCn-
macrophage interaction (Fig. S7 in the supplemental material).

FIG 2 Schematic representation of Cryptococcus neoformans (Cn) labeling steps for flow cytometry analysis of yeast-macrophage interaction (FACS-YMI).
Yeasts were first stained with calcofluor and then incubated with J774 cells at 37°C in the presence of E1 MAb (opsonin). After careful PBS washings, the
incubation was stopped after 2 h of incubation (phagocytosis assay) (A) or prolonged incubation up to 48 h in fresh medium (proliferation assay) (B). In both
assays, the remaining extracellular yeast cells were then stained with anti-IgG–FITC antibody and washed, and J774 cells were lysed using H2O. An additional
labeling step was performed in the proliferation assay with E1 MAb and anti-IgG–APC added to stain daughter yeast cells. Samples were analyzed using the
MacsQuant analyzer.

C. neoformans-Macrophage Interactions

July/August 2011 Volume 2 Issue 4 e00158-11 ® mbio.asm.org 3

 
m

bio.asm
.org

 on D
ecem

ber 7, 2016 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00158-11/-/DCSupplemental
mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


ClinCn-macrophage interaction phenotypes are associated
with variable outcome of cryptococcal meningoencephalitis in
humans. Given the high variability of ClinCn-macrophage inter-
action phenotypes, we then wondered if these parameters (PI,

IPH2, and IPH48) correlated with outcome of infection in the
corresponding patients. Four categories of isolates were defined
according to PI (�0.5 and �0.5) and IPH2 (�1 and �1). Based
on univariate analysis, nonsterilization of CSF despite 2 weeks of
antifungal therapy was associated with a population of isolates
harboring decreased PI and IPH2 (Fig. 5B; Table 2). The propor-
tions of parameters previously (3) associated with nonsterilization
of CSF (gender, dissemination, or high CSF antigen titer) did not
significantly differ among the four categories of isolates. Death at
months 3 was significantly associated with a population of isolates
harboring high PI and IPH2 (Fig. 5B). Parameters previously (3)
associated with death at month 3 (abnormal neurology or brain
imaging) did not significantly differ among the four categories. In
the multivariate analysis, the risk of nonsterilization of the CSF at
week 2 was independently associated with low PI and IPH2 (odds
ratio [OR], 15.5; 95% confidence interval [95% CI], 1.3 to 184.4; P
� 0.030) and with HIV infection (OR, 25.2; 95% CI, 1.8 to 348.6;
P � 0.016) (Table 2).

Expression of some virulence factors correlates with ClinCn-
macrophage interaction phenotypes. Considering that in a stan-
dardized in vitro model, variations in ClinCn-macrophage inter-
action phenotypes were associated with different outcomes in
humans, we further explored known virulence factors in relation
to these phenotypes. We selected nine ClinCn isolates (s9-ClinCn)
based on various combinations of their ClinCn-macrophage in-
teraction phenotypes (Fig. 6A), genotypes, and related patient
outcomes. All s9-ClinCn isolates were fertile (data not shown),
with variable virulence in mice, as shown by median survival rates

FIG 3 The FACS-YMI allowed assessment of the dynamics of yeast-macrophage interactions. (A) Determination of C. neoformans phagocytosis. Intracellular
C. neoformans cells (Calcohigh FITCneg) were easily discriminated from extracellular C. neoformans cells (Calcohigh FITCpos) and macrophage debris (Calconeg

FITCneg). (B) Determination of C. neoformans intracellular proliferation. After selection of the APCpos (excluding cell debris, upper left graphs) and FITCneg

populations (intracellular C. neoformans, lower left panels), different subsets of intracellular C. neoformans cells corresponding to mother (Calcohigh) and
daughter (Calcomedium and Calcolow) C. neoformans cells were observed (right panels). A decrease of mother cells in parallel to an increase in the daughter cell
population was observed between 2 h (H2) and 48 h (H48) of coincubation, asserting intracellular proliferation. (The number of events is reported above each
subset.)

FIG 4 Screening of well-characterized mutant strains compared to H99 using
the FACS-YMI assay. Dot plots presenting the corresponding values for
phagocytosis (PI) and intramacrophagic proliferation at H2 (IPH2) and H48
(IPH48) for each mutant linked by a solid line (log10 scale). PIs were catego-
rized in two groups: similar to H99 (vps34�, ipc1�, and vad1� mutants) and
higher than H99 (app1� and lac1� mutants). Three categories were also de-
lineated for IPH2 (very low for vad1� and vps34�, intermediate low for lac1�,
and low for app1� and ipc1�), and for IPH48 (very low for vps34� and vad1�,
low for lac1�, and high for app1� and ipc1�).
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(expressed as a ratio for each s9-ClinCn isolate to H99) ranging
from 0.57 (AD2-82a) to 3.3 (AD1-07a) (Fig. 6B; P � 0.0001). The
2-h intracellular (iH2) and baseline (BsH2) relative expressions of
six virulence factors (LAC1, URE1, APP1, VAD1, IPC1, and PLB1
genes) (15–20) and one mitochondrial gene (COX1, coding for
cytochrome oxidase 1) (13, 21) were quantified with GAPDH
(coding for glyceraldehyde-3-phosphate dehydrogenase) as the
reference gene and H99 as the control. High BsH2 APP1 expres-
sion (�5-fold) was significantly associated with low PI (P �
0.028). IPH48 expression and iH2 expression were significantly
correlated for IPC1 (R2 � 0.73, P � 0.003), APP1 (R2 � 0.66, P �
0.008), COX1 (R2 � 0.66, P � 0.008), VAD1 (R2 � 0.65, P �
0.009) (Fig. 6C), and PLB1 (R2 � 0.55, P � 0.021). Levels of PI and
iH2 expression of LAC1 (R2 � 0.59, P � 0.016) were also corre-
lated. Hierarchical clustering of iH2 and BsH2 expression levels

for the six genes together with PI, IPH2, and IPH48 generated four
clusters, confirming the previous correlations (see Fig. S8 in the
supplemental material). No correlation was found for URE1 gene
expression.

DISCUSSION

In order to assess the correlation between C. neoformans-
macrophage interactions and clinical parameters, we designed
new standardized assays. Since C. neoformans strains have been
shown to behave similarly in various host cells (murine and hu-
man macrophages or amoeba) (22–24), we chose J774 cells for the
assays. The use of this cell line and flow cytometry allowed quan-
tification of large samples (more than 106 yeast cells and 105 mac-
rophages) and accurate discrimination of intra- versus extracellu-
lar and mother versus daughter yeast cells. The FACS-YMI assays

FIG 5 The 54 C. neoformans clinical isolates (ClinCn) (serotype A, MAT�, haploid) harbored variable interactions with macrophages (phagocytosis and
intracellular proliferation). (A) Compared to H99, the distribution of phagocytic (PI), 2-h proliferation (IPH2), and 48-h proliferation (IPH48) indexes showed
30-fold, 50-fold, and 16-fold variations, respectively (log10 scale). Each circle represents the mean of duplicates for a given ClinCn isolate obtained from two
independent experiments. Bars represent means � standard deviations (SD) for the 54 ClinCn isolates. (B) Scatter plots presenting PI versus IPH2. Four
categories of isolates were defined according to PI (�0.5 and �0.5) and IPH2 (�1 and �1). The population of isolates harboring a PI of �0.5 and an IPH2 of
�1 was significantly associated with nonsterilization of CSF at week 2 (P � 0.03), and that harboring a PI of �0.5 and an IPH2 of �1 was significantly associated
with death at month 3 (P � 0.05).

TABLE 2 Patients’ outcomes are significantly associated with the phenotypes of interaction with J774 macrophages of the clinical isolates for which
the corresponding outcome was availablea

Outcomea Parameter

No. (%) of patients with: Univariate analysis Multivariate analysis

Failure (n � 24)
or death (n � 11)

Success (n � 21)
or survival (n � 42) OR 95% CI P OR 95% CI P

Yeast eradication
from CSF at wk 2

PI � 0.5, IPH2 � 1 7 (36.8) 12 (63.2) Reference

PI � 0.5, IPH2 � 1 4 (80.0) 1 (20.0) 6.86 0.63–74.19 0.113 5.79 0.53–63.37 0.150
PI � 0.5, IPH2 � 1 6 (50.0) 6 (50.0) 1.71 0.40–7.43 0.471 3.48 0.61–19.78 0.159
PI < 0.5, IPH2 < 1c 7 (77.8) 2 (22.2) 6.00 0.97–37.30 0.055 15.51 1.30–184.43 0.030
HIV positiveb 23 (95.8) 14 (66.7) 1.64 0.85–3.19 0.012 25.16 1.84–348.63 0.016
HIV negative 1 (4.2) 7 (33.3) 0.14 0.02–1.16

Death at mo 3 PI � 0.5, IPH2 � 1 3 (13.0) 20 (87.0) Reference
PI � 0.5, IPH2 � 1 1 (16.7) 5 (83.3) 1.34 0.11–15.70 0.819
PI > 0.5, IPH2 > 1 6 (42.9) 8 (57.1) 5 1.00–25.02 0.050
PI � 0.5, IPH2 � 1 1 (10.0) 9 (90.0) 0.74 0.07–8.13 0.806

a Patients’ outcomes are represented by nonsterilization of CSF at week 2 (i.e., failure or success at yeast eradication from CSF) and death at month 3 (i.e., death or survival).
b Only two variables were added to the model due to the small number of events recorded (n � 24).
c Parameters appearing in bold are statistically significant.
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were based on Calco staining and its ability to be sparsely trans-
mitted to daughter cells during budding. Indeed, bud formation
in basidiomycetous yeasts is enteroblastic (25). The inner layer of
the parental multilamellar cell wall is in direct continuation with
the outer layer of the bud (26). Given that chitin (~9% of the cell
wall) is distributed throughout the cell wall (27, 28), the Calco-
labeled chitin of the mother cell wall could contribute to the flu-
orescence of the daughter cells. The FACS-YMI assays represent a
promising alternative to current studies dealing with microscopic
or colony-forming unit enumeration and have potential wide ap-
plications. The FACS-YMI assay could become, like the carboxy-
fluorescein diacetate succinimidyl ester (CFSE) assay in immu-
nology (29), an easy and reliable test to study dynamics of fungal
cell proliferation.

Up to now, C. neoformans-host cell interactions have mostly
been studied using reference or mutant strains. Few reports dis-
cuss the variability of C. neoformans clinical isolates (30), and only
a few dealt with parasites (31–34) and other fungal species (13,
35), and none have analyzed correlation with clinical outcome.
Using a large collection of ClinCn isolates, we uncovered highly
variable phenotypes of C. neoformans-macrophage interaction
without correlation with genotypes, in contrast with what was
demonstrated for the clonal hypervirulent VGII C. gattii isolates
(13). This could be explained by differences in the pathophysiol-
ogy of infections due to C. gattii and C. neoformans, the first being
more frequently responsible for primary infection rather than re-
activation, in contrast to C. neoformans-related diseases (36). As a
consequence, the virulence of these two pathogenic fungi in hu-
mans could be different in terms of host adaptation and immuno-

logical escape mechanisms. One may also wonder if the pheno-
typic intraspecies diversity reported for eukaryotes, as opposed to
prokaryotes, could be explained by their complex genomes and
potential recombination events during mating. This is especially
true for C. neoformans, known for its complex sexual reproduc-
tion (4).

Since yeast-macrophage interactions are involved in the patho-
genesis, we assessed whether the phenotypes determined in vitro
were associated with a specific outcome in humans. We found that
isolates harboring low PI and low IPH2 were significantly associ-
ated with nonsterilization of CSF at weeks 2, whereas those har-
boring high PI and high IPH2 were associated with death at month
3. Our results suggest that fungal determinants are involved, as are
host factors (genetic background and type of immunosuppres-
sion) in the outcome of cryptococcal meningoencephalitis. These
results highlight the monocyte/macrophage lineage as a major key
player in the pathophysiology of the infection in humans, as al-
ready suggested by studies on blood-brain barrier crossing and
dissemination in mice (8, 37, 38). Additional experiments are
needed to assess the relevance of these data in different clinical
settings, such as infections with other serotypes, mixed infections,
and extrameningeal cryptococcosis.

The fate of C. neoformans cells in contact with host cells is
dependent on multiple and yet partially unknown factors. The
first one is phagocytosis. Unexpectedly, E1 binding level inversely
correlated with PI. This suggests that, in addition to Fc� and com-
plement receptors (39), other receptors involved in innate immu-
nity, such as mannose receptors, CD14, and Toll-like receptor 4
(TLR-4) (40), or factors modulating phagocytosis, such as the

FIG 6 The in vivo behavior (virulence in mice) of the s9-ClinCn isolates is heterogeneous and the intracellular (J774 cells) expression levels of known virulence
factors correlate with the 48-h proliferation index. (A) Dot plots presenting the corresponding PI, IPH2, and IPH48 values for each of the s9-ClinCn isolates. The
values corresponding to a given isolate are linked by a solid line (log10 scale). (B) Outbred male mice were intravenously inoculated with 105 yeast cells, and death
was recorded over 60 days. Compared to H99 (black circle, thick line), AD2-82a (open red circle, red dotted line) is more virulent (median survival ratio of 0.57),
whereas AD1-95a (blue triangle, blue dotted line) and AD1-7a (blue square, blue dotted line) are less virulent (median survival ratios of 2.1 and 3.3, respectively).
(C) Compared to H99, IPH48 of the s9-ClinCn isolates correlated with the intracellular expression of the IPC1, VAD1, APP1, and COX1 genes. Bars represent
means � standard deviations (SD) of duplicates from 2 independent experiments for each s9-ClinCn isolate. The linear regression curve is shown.
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secreted protein App1p (20), the pleiotropic transcription factor
Gat201p, or the Gat201-bound gene product Gat204p (41), play a
role in the phagocytosis process. After phagocytosis, C. neofor-
mans intracellular persistence and proliferation are key steps of
the pathogenesis process. We found a relationship between intra-
macrophagic COX1, as shown in C. gattii (13), but also IPC1,
VAD1, APP1, and PLB1 gene expression and ClinCn intracellular
proliferation. This validates the FACS-YMI assays as innovative
means to study virulence factors and potentially decipher the
mechanisms by which C. neoformans cells escape or survive
phagocytosis. Dissociation between early (IPH2) and late (IPH48)
intracellular proliferation indexes was observed for some ClinCn
isolates as well as for the lac1� mutant. We also found that a
variable proportion of the intracellular yeast cells were still Calco-
high after 48 h of incubation, suggesting that they could either be
dead or in a low replicative stage or dormancy. Altogether, this
suggests that adaptation inside macrophage occurs. Some strains
may have “ready-made” virulence (42) (high IPH2 and high
IPH48), whereas, for others (low IPH2 and high IPH48), a longer
period of metabolic adaptation to hypoxia or starvation inside
macrophages could be needed to express virulence factors as de-
scribed in vivo (43). Overall, these various phenotypes could re-
flect different patterns of pathogenicity. Given the complex bio-
logical processes that lead to survival or multiplication inside the
phagolysosome, other studies are needed to decipher the precise
mechanisms and molecular events involved.

In conclusion, while many studies established that host suscep-
tibility to infection is crucial and that virulence factors of the
pathogens can be differentially expressed as a function of environ-
mental conditions (medium, intracellular versus free yeasts, etc.),
our study demonstrates that, under the same experimental condi-
tions, clinical isolates of C. neoformans behaved differently, a di-
versity that could participate in the variable outcome of meningo-
encephalitis in humans.

MATERIALS AND METHODS
Cell line. The J774.16 cell line (hereafter J774) was purchased from the
American Type Culture Collection (ATCC) to study the interaction of C.
neoformans clinical isolates with macrophages. J774 is a murine
macrophage-like cell line derived from a reticulum sarcoma. Cells were
maintained at 37°C in the presence of 5% CO2 in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal
calf serum (FCS) and 1% penicillin–streptomycin (fresh medium) (all
from Invitrogen). Cells were used between 10 and 35 passages.

C. neoformans strains. A panel of 54 C. neoformans clinical isolates
was selected. All isolates were recovered from cerebrospinal fluids and
responsible for single infections (one isolate/one genotype/one infection),
as opposed to mixed infections (6). All isolates were collected during the
CryptoA/D prospective study (3). This study was approved and reported
to the French Ministry of Health (registration no. DGS970089). For each
isolate, the patient’s background, clinical presentation, outcome of infec-
tion, and various biological parameters were available (Table 1). Single
colonies (ClinCn) from each clinical isolate were frozen in 40% glycerol at
�80°C and used thereafter. All ClinCn isolates were characterized as hap-
loid, serotype A, MAT� using previously described methods (6). Before
each experiment, yeasts were first cultured on Sabouraud agar (SA) me-
dium and then subcultured in liquid yeast extract-peptone-glucose me-
dium (YPD) at 30°C at 150 rpm for 22 h (standard YPD culture). All
isolates were tested blind to the clinical parameters.

Mutant strains (all derived from H99) with the genotypes lac1� (lack-
ing laccase 1 [Lac1p]) (44), vps34� (lacking the phosphatidylinositol
3-kinase [PI3-kinase] Vps34p) (45), vad1� (lacking the DEAD-box RNA

helicase Vad1p) (18) (kindly donated by P. Williamson, NIH, Bethesda,
MD), app1� (lacking the antiphagocytic protein App1p [20], which binds
the CR3 and CR2 receptors on phagocytic cells) (46), and ipc1� (in which
inositol-phosphoryl ceramide synthase, Ipc1p, is downregulated) (19)
(kindly donated by M. Del Poeta, Charleston, SC), were also used. Strain
H99 (serotype A, MAT�, haploid) (kindly donated by J. Heitman, Duke
University, NC) was used as the reference strain in all experiments.

Reagents and C. neoformans labeling. Calcofluor white dye (Calco)
(fluorescent brightener 28; Sigma) specifically stains chitin contained in
the cell wall of some eukaryote microorganisms and was used to label C.
neoformans. Yeast cells were collected from standard YPD culture, washed
twice, and resuspended in phosphate-buffered saline (PBS) (Invitrogen)
at 5 � 106 to 2 � 107/ml. The cells were then incubated with Calco at
10 �g/ml in PBS for 10 min in the dark at room temperature and then
washed twice in PBS. In preliminary experiments, we checked that the in
vitro growth curves of strains were similar (identical slopes) for Calco-
stained and unstained C. neoformans strains, except for the lac1� mutant,
for which growth decreased after Calco staining (data not shown). To
assess the evolution of Calco fluorescence during multiplication, Calco-
stained C. neoformans cells (106/ml) cultured in standard YPD were ana-
lyzed using fluorescence microscopy (Zeiss Axioscope A1 with a 4=,6-
diamidino-2-phenylindole [DAPI] filter) and flow cytometry at various
incubation times. E1, a murine IgG1 monoclonal anticapsular polysac-
charide antibody (E1 MAb) was used as an opsonin (47). Fluorescein
isothiocyanate-labeled horse anti-mouse IgG (anti-IgG–FITC) (Vector
Laboratories) and allophycocyanin-labeled goat anti-mouse IgG (anti-
IgG–APC) (BD Pharmingen) were used at 1:100 for a 20-min incubation.

Baseline genotypes and phenotypes characterization of the ClinCn
isolates. The genotype of each ClinCn isolate was determined by multilo-
cus sequence typing (MLST) of seven loci, as previously described (48).
The morphological aspect (smooth or mucous) was assessed after 72 h of
culture on SA at 30°C. Growth curves were determined in 96-well plates
starting at 106/ml without agitation in liquid YPD at 30°C (triplicate
wells). The optical density at 600 nm (OD600) was recorded up to 140 h of
incubation (Labsystems Multiskan). The regression line (y � ax � b) was
determined, and the results were expressed as the ratio between the slopes
(“a” value) for the ClinCn isolates compared to that for H99. Cell and
capsule sizes were determined after standard YPD culture. Cell suspen-
sions were made at 106/ml in PBS. An aliquot was observed in India ink
suspension, using an Axioscan microscope (Carl Zeiss, Germany) and the
AxioCam ICc1 camera (Carl Zeiss, Germany). Cell size, delineated by the
cell wall, and capsulated cell size, delineated by the white exclusion zone
around the cells, were measured for 10 cells randomly selected from each
ClinCn isolate and H99 using the Zeiss AxioVision software (Carl Zeiss,
Germany). Results were expressed as the average size ratio for ClinCn
versus H99 cells. The binding of E1 MAb to the capsule surface was deter-
mined. Yeast cells were cultured on SA for 24 h at 30°C for each ClinCn
isolate, washed in PBS, and suspended at a concentration equivalent to an
OD600 of 0.1. Then, 300 �l of the suspension was centrifuged and pellets
were resuspended in 100 �l of PBS containing E1 MAb (0.5 �g/ml) and
FITC-labeled anti-IgG for 20 min in the dark at room temperature. Then,
400 �l of PBS–1% paraformaldehyde (PFA) was added to fix cells before
cytometry analysis. The results were expressed as the ratio between the
geometric mean of the FITC fluorescence intensity for the ClinCn isolates
and H99. The chitin content was determined after standard YPD culture
and standard calcofluor staining by quantification of the geometric mean
of the calcofluor fluorescence intensity for the ClinCn isolates and H99
using flow cytometry (see below).

To study the variability of the s9-ClinCn, urease and laccase activities
were quantified using urea agar base medium (49) and asparagine agar
containing 1 mM L-3,4-dihydroxyphenylalanine (L-Dopa) (50). Urease
and laccase activities of 105 to 107 C. neoformans cells after 24 h of incu-
bation at 37°C and 72 h of culture at 30°C, respectively, were quantified by
measuring the diameter of the pink halo (urease), and the RGB content of
colonies (laccase), using ImageJ software. The mating assay used
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Murashige and Skoog medium (51), and fertility was assessed after 7 days
of incubation at room temperature in the dark with KN99a (serotype A,
mating type a), KN99� (serotype A, mating type �), and JEC20 (serotype
D, mating type a).

Interaction with macrophages. J774 cell suspensions (105 in fresh
medium per well of a 24-well culture plate) were incubated at 37°C in 5%
CO2 for 48 h. The day of the experiment, E1 MAb (250 �l) and Calco-
stained C. neoformans suspension (250 �l), both in fresh medium at the
desired concentrations, were added to the J774 cell monolayer and incu-
bated at 37°C and 5% CO2 for 2 h (phagocytosis assay, C. neoformans/J774
ratio, 5:1). Nonadherent extracellular yeast cells were then removed by
PBS washings, and incubation was stopped to assess phagocytosis or ex-
tended to determine intracellular proliferation. Phagocytosis was deter-
mined after staining residual extracellular yeasts using anti-IgG–FITC,
additional PBS washings, and macrophage lysis with distilled water
(Fig. 2A). The samples were then centrifuged, resuspended in 1% para-
formaldehyde in PBS (PFA-PBS), vortexed, and sonicated for 3 min be-
fore analysis.

To assess intracellular proliferation of ClinCn using flow cytometry
(proliferation assay, C. neoformans/J774 ratio, 2.5:1), the incubation was
protracted in fresh medium for 48 h. Residual extracellular yeast cells were
stained by addition of E1 MAb (0.5 �g/ml) and anti-IgG–FITC and
washed in PBS, and J774 cells were lysed by water (Fig. 2B). In order to
differentiate potentially unstained C. neoformans cells from cell debris, an
additional step was done using E1 MAb and APC–anti-IgG. All yeast cells
were APCpos, while only extracellular yeast cells were APCpos FITCpos.

Intracellular proliferation was determined for each ClinCn isolate at
the end of the phagocytosis step (H2) and at 48 h (H48). Phagocytosis and
proliferation were analyzed in two independent experiments.

Flow cytometry analysis of yeast-macrophage interaction (FACS-
YMI). Flow cytometry analyses were performed using MacsQuant ana-
lyzer and MacsQuantify software 2.0 (Milteniy BioTeC) to provide abso-
lute quantification. Samples were analyzed using FlowJo 8.7 software
(Tree Star, Inc.). Aggregates were excluded by gating relevant events in the
forward scatter/side scatter (FSC/SSC) contour plot. Three parameters
were calculated: (i) the phagocytic index (PI) as the number of events in
the Calcohigh FITCneg gate at H2, (ii) intracellular proliferation at H2
(IPH2) as the ratio between daughter cells (Calcolow � Calcomedium) and
mother cells (Calcohigh) at H2, and (iii) intracellular proliferation at H48
(IPH48) as the ratio between daughter cells (Calcolow � Calcomedium) at
H48 and mother cells (Calcohigh) at H2.

Results were expressed as the ratio of the given parameter for the
ClinCn/mutant strains compared to the H99 parameter determined in the
same run. We assessed that results obtained during the two independent
experiments were reproducible for PI, IPH2, and IPH48 (P � 0.0001 for
each parameter), and means of replicates were then used for subsequent
analyses.

Dynamic imaging. The evolution of fluorescence intensity from
mother to daughter intracellular yeasts was assessed by dynamic imaging
(Nikon Biostation). J774 cells were cultured and incubated with Calco-
stained C. neoformans cells (2.5:1) in dishes (Hi-Q4 35-mm diameter;
Nikon) at 37°C and 5% CO2. Series of images were taken by phase-
contrast and fluorescence microscopy (DAPI filter) every 5 min for 24 h at
�40 magnification. Merging and inverting the look-up table (LUT) were
done using ImageJ software (http://rsb.info.nih.gov/ij/). The movie was
generated from the 289 modified pictures using iMovie software v8.0.6
(Apple, Inc.).

Virulence in mice. Outbred OF1 male mice (ages 6 to 8 weeks)
(Charles Rivers Laboratories) were housed 7 per cage in our animal facil-
ities and received food and water ad libitum. The inoculum was prepared
in sterile saline from standard YPD culture. The C. neoformans cell sus-
pension (105/mouse) was inoculated intravenously into 7 mice. Survival
was recorded once daily until day 60 after inoculation. Animals about to
die (unable to reach their food) were systematically euthanized by CO2

inhalation. Animal studies were approved by the Institut Pasteur Animal
Care Committee (03/144).

Real-time PCR. RNA extraction was performed on the s9-ClinCn iso-
lates and H99 cells coincubated with J774 cells (intracellular condition
[iH2]) or in fresh medium (baseline condition [BsH2]) for 2 h at 37°C in
5% CO2. For iH2, J774 cells were washed twice with PBS, scraped, lysed in
2 ml 0.05% SDS–ice-cold water, and vortexed, and the pellet was collected
after 3 min of centrifugation at 2,000 relative centrifugal force (RCF). RTL
lysis buffer (500 �l; Qiagen) and 1:100 �-mercaptoethanol (Sigma) were
added to the C. neoformans pellets. The suspensions were transferred to
Ceramique Magna Lyser green bead tubes (Roche Diagnostics), homog-
enized three times with the Magna Lyser instrument (30 s at 7,000 rpm),
and centrifuged (3 min at 10,000 RCF). RNA extraction was performed on
350 �l supernatant using the RNeasy minikit (Qiagen). RNAs were quan-
tified and qualified using the Nanodrop spectrometer (ThermoFisher Sci-
entific, Inc.).

cDNA was generated from Turbo DNase (Ambion)-treated RNA us-
ing the Transcriptor first-strand cDNA synthesis kit (Roche Diagnostics).
Quantitative reverse transcription-PCR (RT-PCR) using 10 �l of Light-
Cycler 480 SYBR green I master, 2 �l of cDNA, and specific primers (see
Table S1 in the supplemental material) in a LightCycler 480 (Roche Diag-
nostics) consisted of a denaturation step at 95°C, 45 cycles of amplifica-
tion (95°C for 5 s, 60°C for 5 s, and 72°C for 5 s). Each cDNA was analyzed
in duplicate and normalized with the corresponding GAPDH gene expres-
sion (52) and was variable in different experimental conditions. Fold
changes for each s9-ClinCn isolate (iH2 and BsH2 conditions) were as-
sessed compared to H99 under the same conditions, according to Pfaffl
(53). Two independent RNA extractions for each condition were analyzed
blindly, and an internal calibrator consisting of an iH2 cDNA of H99 was
used in each RT-PCR run as recommended (54).

Statistical analysis. Graph and Pearson’s index (R2) calculation, exact
Fisher’s test, and one-way analysis of variance (ANOVA) were performed
using Prism 4.0 (GraphPad Software). Stata 10.0 software (Stata Corpo-
ration) was used to compare the ClinCn-macrophage interaction pheno-
types with clinical outcome for the corresponding patients. For the mul-
tivariate analysis, logistic regression was used to determine factors
independently associated with nonsterilization of CSF at week 2 (45 pa-
tients with available information). Only two variables were entered in the
model because of the limited number of events (n � 24). Odds ratios
(ORs) and their 95% confidence intervals (95% CIs) were determined.

Schematic representation of fold changes was performed using the
open-source genomic analysis software MeV v4.6.1 (The TM4 Develop-
ment Group) obtained from http://mev.tm4.org (55). Complete linkage
clustering and Pearson’s correlation were chosen to perform hierarchical
clustering. The principal component analysis (PCA) was performed based
on three interaction parameters (PI, IPH2, and IPH48) and five mycolog-
ical parameters (cell and capsule size, E1 binding, growth, and chitin con-
tent) using MeV v4.6.1 (Manhattan distance, mean centering mode, and
10 neighbors for KNN imputation). Variables were compared using the
Student t test. P values of �0.05 were considered significant.
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