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ABSTRACT  1 

The large variation in individual response to infection with Rift Valley fever virus 2 

(RVFV) suggests that host genetic determinants play a role in determining virus-3 

induced disease outcomes. These genetic factors are still unknown. The systemic 4 

inoculation of mice with RVFV reproduces major pathological features of severe 5 

human disease, notably the hepatitis and encephalitis. A genome scan performed 6 

on 546 (BALB/c  MBT) F2 progeny identified three quantitative trait loci (QTLs), 7 

denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in 8 

MBT/Pas mice. Non parametric interval-mapping revealed one significant and two 9 

suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3), and 10 

11 (Rvfs-2) with respective LOD scores of 4.58, 2.95 and 2.99. The two-part model, 11 

combining survival time and survival/death, identified one significant linkage to 12 

Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 13 

4.55. Under a multiple model, with additive effects and sex as a covariate, the three 14 

QTLs explained 8.3 % of the phenotypic variance. Sex had the strongest influence 15 

on susceptibility. The contribution of Rvfs-1, Rvfs-2, and Rvfs-3 to survival time of 16 

RVFV-infected mice was further confirmed in congenic mice. 17 

18 
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INTRODUCTION 1 

Rift Valley fever (RVF) is a serious emerging viral zoonosis that primarily affects 2 

ruminants and humans. Recurrent outbreaks have been documented in sub-3 

Saharan Africa and have spread outside continental Africa to Madagascar, and the 4 

Arabian Peninsula, killing hundreds of thousands of animals and more than a 5 

thousand humans.1,2  The RVF virus (RVFV), a member of the Bunyaviridae family, 6 

genus Phlebovirus, is mainly transmitted by mosquitos and causes necrotic 7 

hepatitis, hemorrhage and abortions with high mortality among newborn and 8 

young animals.3  Humans can also be infected through aerosols or by physical 9 

contact with body fluids, and organs of infected animals.4,5  Some reports indicated 10 

that the disease predominantly affects male patients,6  which could result from 11 

increased occupational and professional contacts with animals. Most patients 12 

suffer a self-limiting, febrile illness. However, a subset of patients develop severe 13 

forms characterized by hepatitis with fatal hemorrhagic fever or neurological 14 

disorders. The mortality rate has been reported to vary from 1 to 14%.7,8  Due to 15 

the possibility of acute disease and the ease of aerosolization of infectious viral 16 

particles, RVFV outbreaks and research are carefully monitored by government 17 

agencies to prevent its potential use in bioterrorism.9   18 

Progress in molecular biology of RVFV has been made during the last 19 

decade.10,11  The genome of RVFV consists of a single-stranded tripartite RNA (L, M, 20 

and S segments) of negative-sense or ambisense polarity. The L segment encodes 21 

the RNA-dependent RNA polymerase, while the M segment encodes the envelope 22 

glycoproteins (Gn/Gc) and the non-structural NSm protein. The S segment encodes 23 

the N nucleocapsid and the NSs nonstructural protein. The NSs protein is the major 24 

virulence factor counteracting both the antiviral interferon (IFN)-β response and 25 

the double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activity.12-26 

14  Little is known about the natural host factors that influence the progression and 27 

severity of RVF disease in humans and animals. The large variation in individual 28 

response to the infectious agent suggests the existence of host genetic factors 29 

influencing susceptibility to RVF disease.1,2  At present, it is impossible to dissect 30 

host genetic determinants of RVF severity in humans, or livestock, as no one has 31 

access to the large number of cases required for a genome-wide association study 32 
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(GWAS). Animal models of RVF disease are needed to perform functional studies in 1 

a controlled setting,15  and to better define genetic susceptibility factors. The 2 

susceptibility of rats to RVFV differs among strains.16-18  Previous experiments with 3 

the rat model indicated a single Mendelian gene with dominant inheritance in the 4 

resistance phenotype of WF/mol rats although the underlying polymorphism has 5 

not yet been identified.19,20   6 

Mouse models have provided key insights into the biology of human diseases and 7 

paved the way for the development of novel therapeutic approaches.21  We have 8 

previously shown that wild-derived inbred MBT/Pas (MBT) mice are the most 9 

susceptible to infection with RVFV virulent strains, while BALB/cByJ (BALB/c) 10 

mice show the highest resistance among the tested strains.22  Following infection 11 

with the wild-type virus strain ZH548, MBT mice exhibited earlier and higher 12 

viremia compared to BALB/c mice. Interestingly, the susceptibility of MBT mice to 13 

RVF disease seems to be selective since these mice survived an infection with 14 

either influenza A virus or West Nile virus in conditions where BALB/c mice 15 

died.22  16 

To investigate the inheritance of susceptibility to RVF disease, we used a genome-17 

wide quantitative trait locus (QTL) search strategy. This method does not require 18 

prior hypotheses regarding the pathogenesis of the disease. The analysis of 19 

survival time identified three QTLs on chromosomes (Chr) 2, 5 and 11, designated 20 

Rift Valley fever virus susceptible locus (Rvfs)-1, -3 and -2 respectively. 21 

Chromosomal regions spanning the QTLs from the susceptible strain (MBT) were 22 

transferred into the resistant recipient (BALB/c) background. Each congenic strain 23 

(denoted C.MBT-Rvfs) carries a BALB/c genetic background with only the 24 

chromosomal segment encompassing the corresponding Rvfs locus from MBT. 25 

Phenotypic differences in the C.MBT-Rvfs-1, -2 and -3 congenic strains relative to 26 

BALB/c mice confirmed the effects of the three QTLs. Our data also support the 27 

existence of sex-specific genetic variants governing susceptibility to RVFV-induced 28 

disease. 29 

30 
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RESULTS 1 

Segregation analysis of the RVFV susceptible phenotype in BALB/c and MBT 2 

F2 cross 3 

In a previous study, we identified the MBT inbred strain, an inbred derivative of 4 

wild caught animals, as highly susceptible to infections with virulent strains of 5 

RVFV. When infected intraperitoneally with 100 PFU of RVFV ZH548 strain, most 6 

MBT mice died within 3 days while BALB/c animals survived longer.22  The 7 

difference of susceptibility between MBT and BALB/c mice indicates that host 8 

genetic factors control outcomes following infection with RVFV. In our 9 

experiments, MBT and BALB/c were considered as the susceptible and resistant 10 

strain, respectively. To investigate the mode of inheritance of MBT susceptibility to 11 

RVFV infection, we examined the mortality of 116 (BALB/c  MBT) F1 hybrids 12 

after RVFV infection (Figure 1A). Significant differences in sex-specific 13 

susceptibility were seen in F1 mice, as well as in parental BALB/c and MBT mice, 14 

the males were more susceptible than the females (log-rank test; P<0.0001 for 15 

BALB/c and F1; P<0.001 for MBT). The F1 population displayed similar survival 16 

curves as the BALB/c strain (log-rank test; P=0.1490 and 0.1381 for female and 17 

male mice, respectively),  while they were significantly different from the MBT 18 

strain (log-lank test; P<0.05 for both female and male mice). The mean time-to-19 

death in the F1 population (6.20±0.25 and 6.00±0.20 days for females and males) 20 

was significantly lower than that of BALB/c mice in both sexes (8.17±0.24 and 21 

6.70±0.21 days for females and males, respectively; surviving animals were not 22 

included; one-way ANOVA with Tukey’s post hoc test).  23 

F2 progeny were produced, infected with the RVFV and monitored. The F2 24 

population showed intermediate survival curves, significantly different from both 25 

parental strains (Figure 1A). Furthermore, the mean time to death of the F2 26 

population showed a continuous distribution within the range of parental 27 

phenotypes, suggesting a multigenic control (Figure 1B). Male mice presented a 28 

shorter time to death and a higher mortality rate than females in F2 populations 29 

(log-rank test; P<0.0001). 30 

 31 
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Genetic dissection of the susceptible phenotype in BALB/c and MBT F2 1 

intercross 2 

To identify genetic components underlying the susceptibility to RVFV infection in 3 

the MBT mice, a whole genome scan was performed to evaluate 546 (BALB/c  4 

MBT) F2 progeny. A total of 259 polymorphic markers located on all autosomal 5 

chromosomes and on the X chromosome were assayed. Out of 546 RVFV-infected 6 

mice, 41 individuals (7.5%) survived more than 9 days post-infection (p.i.). To map 7 

the QTLs, we applied methods developed by Broman which account for spikes in 8 

the phenotype distribution.23  A binary analysis of survival/death with sex as a 9 

covariate failed to reveal any significant QTLs, probably due to the small number of 10 

surviving mice. We performed nonparametric interval-mapping with the time to 11 

death after infection as a trait. Surviving mice were excluded, leaving 505 non-12 

surviving animals for analysis. One significant QTL was detected on Chr 2 with the 13 

peak LOD score reaching 4.58 at genomic position 168.2 Mb (P=0.005). Two 14 

suggestive QTLs were also found on Chr 5 (LOD=2.95; P=0.160 at genomic position 15 

61.6 Mb) and Chr 11 (LOD=2.99; P=0.154 at genomic position 113.9 Mb) (Figure 16 

2A). We also applied a two-part model, combining the binary trait 17 

(survival/death), and the quantitative trait (survival time)23 . One significant and 18 

one suggestive QTLs were detected on Chr 11 (LOD=5.12; P=0.022 at genomic 19 

position 112.8 Mb) and Chr 2 (LOD=4.55; P=0.075 at genomic position 168.2 Mb), 20 

respectively (Figure 2B). No significant QTLs were detected when these QTL tests 21 

were performed on females and males separately. Of note, the loci on Chr 2 and 11 22 

achieved the 5% genome-wide significance level only with the nonparametric 23 

interval-mapping and the two-part model, respectively. No QTLs were found on X 24 

chromosome which could have contributed to the sex difference in susceptibility. 25 

We then investigated the genetic interactions (additive or epistatic) between the 26 

three QTLs, using the scantwo command of R/qtl (Figure 3). This analysis provided 27 

evidence for significant additive effects between Chr 2 and 11 (LOD=6.86; 28 

P=0.014), and between Chr 2 and 5 (LOD=6.73; P=0.016). A suggestive additive 29 

effect was also detected between Chr 5 and 11 (LOD=5.85; P=0.089). There was no 30 

evidence for epistatic interactions. To estimate the effect of each QTL on the 31 

phenotype, we fitted a multiple-QTL model under the hypothesis that the three 32 
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QTLs on Chr 2, 5, and 11 contribute additively to the susceptibility to RVFV 1 

infection (as measured as the time to death) using sex as a covariate. As a result, 2 

we found that the QTLs collectively explain 8.3% of the phenotypic variance in the 3 

F2 population whereas sex had the strongest effect on the phenotype, explaining 4 

10.1% of the variance (Table 1). The three QTLs will be referred to as Rift Valley 5 

fever susceptible locus-1 (Rvfs1) on Chr 2, Rvfs2 on Chr 11 and Rvfs3 on Chr 5. The 6 

confidence intervals, based on two-LOD units drop-off from the QTL peaks, were 7 

determined by the markers D2Mit306 and rs3664044 for Rvfs1, rs13481186 and 8 

D11Mit69 for Rvfs2, and D5Mit125 and rs4225536 for Rvfs3 (Table 1).  9 

Derivation and susceptibility of congenic strains  10 

Congenic strains were generated in order to confirm the individual effects of Rvfs1, 11 

Rvfs2 and Rvfs3 on the susceptibility to the RVFV infection. The critical interval for 12 

each of the QTLs was transferred from the MBT genome onto a BALB/c genetic 13 

background by at least ten cycles of backcrossing using marker-assisted 14 

introgression. Two heterozygotes were then intercrossed and two homozygous 15 

offspring were bred to fix the MBT haplotype of Rvfs1, Rvfs2 and Rvfs3 on the 16 

BALB/c background, resulting in the C.MBT-Rvfs1, C.MBT-Rvfs2 and C.MBT-Rvfs3 17 

congenic strains. To characterize precisely the introgressed segments, congenic 18 

mice were analyzed using the MegaMUGA platform that includes 77.8K 19 

markers.24  The analysis revealed that the MBT segment on Chr 2 in C.MBT-Rvfs1 20 

spans from a point between 2:164,791,844 and 2:164,836,539 to the end of 21 

chromosome. Similarly, the MBT segment on Chr 11 in C.MBT-Rvfs2 spans from a 22 

point between 11:104,823,629 and 11:104,845,860 to the end of chromosome, and 23 

on Chr 5 in C.MBT-Rvfs3 spans from a point between 5:53,334,387 and 24 

5:53,365,815 to a point between 5:120,706,275 and 5:120,737,326 (Figure 4). No 25 

unlinked MBT markers were found in the congenic genomes, confirming that only 26 

the Rvfs chromosomal segments were introgressed onto the BALB/c genetic 27 

background. 28 

The three congenic strains were challenged with 100 PFU of RVFV ZH548 strain. In 29 

the C.MBT-Rvfs2 and C.MBT-Rvfs3 strains, the males were more susceptible than 30 

the females (log-rank test; P<0.001 and P<0.0001 respectively). Difference in sex-31 

specificity was not significant in C.MBT-Rvfs1 mice using cohort sizes of 16 females 32 
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and 20 males. C.MBT-Rvfs1 females died significantly earlier than BALB/c females, 1 

while no significant difference was observed between C.MBT-Rvfs1 and BALB/c 2 

males (Figure 4A). C.MBT-Rvfs2 mice of both genders died significantly earlier than 3 

BALB/c mice (Figure 4B). Finally, C.MBT-Rvfs3 males died significantly earlier than 4 

BALB/c males. These results confirmed the effects of the three QTLs on the 5 

susceptible phenotype. Unexpectedly, however, C.MBT-Rvfs3 females survived 6 

significantly longer than BALB/c females, an unexpected result which would 7 

require confirmation on a larger cohort (Figure 4C). No significant differences 8 

were observed between BALB/c mice and animals heterozygous for the 9 

haplotypes of Rvfs1, Rvfs2 or Rvfs3. This indicates that these QTLs have recessive 10 

effects while on the BALB/c genetic background. 11 

DISCUSSION 12 

Host genetic control of RVF disease in mice 13 

Susceptibility to infectious disease is difficult to assay in humans, and human 14 

GWAS would require tens or hundreds of thousands samples of RVFV-infected 15 

patients. Mice provide an alternative means of studying RVF disease since they 16 

recapitulate the acute-onset hepatitis and delayed-onset encephalitis seen in 17 

severe human RVF.25  The current study was designed to assess the effect of 18 

polymorphisms in the mouse genome on survival after infection with a virulent 19 

strain of the RVFV. Since previous attempts to identify an influence of genetic 20 

factors in classical laboratory strains have failed,20  we tested the susceptibility of 21 

inbred strains derived from progenitors of various Mus subspecies, and found that 22 

mice of the Mus m. musculus derived MBT strain exhibited an extreme 23 

susceptibility to RVFV infection.22  We show here that the susceptibility of MBT 24 

mice to RVFV infection is a complex trait that is inherited in a multifactorial 25 

fashion with sex influencing the severity of infection. We identified three host 26 

genome regions associated with severity of RVF disease in inbred mice. Each of 27 

these QTLs explains between 1.78% and 3.17% of the phenotypic variance. These 28 

results are consistent with data from a comprehensive analysis of the genetic 29 

architecture of behavioral and physiological phenotypes in the mouse which 30 

indicate that most QTLs explain between 1% and 5% of the genetic variance, and 31 

only 1% of the QTLs have an effect greater than 5%.26  QTLs with larger effect sizes 32 



 

 

 

 

9 

on survival time following infection were occasionally identified.27,28  Altogether, 1 

only 8.3% of the phenotypic variance in the (BALB/c  MBT)F2 could be ascribed 2 

to genetic determinants meaning that there must be many undetected loci. This 3 

suggests that susceptibility to RVFV infection is controlled by many variants of 4 

modest effect.  5 

We have previously shown that mouse embryonic fibroblasts derived from MBT 6 

mice lacked a complete type I IFN response, suggesting that inappropriate innate 7 

immune response could account for the susceptibility of MBT mice.22  A search for 8 

candidate genes using PosMed program29  with “innate immune response” as a 9 

keyword gave a list of 69, 105, and 180 genes for the critical interval as defined by 10 

C.MBT-Rvfs1, -Rvfs2 and -Rvfs3 congenic strains respectively. This high number of 11 

candidate genes was expected given the large size of the critical regions, 16.9 Mb, 12 

16.9 Mb, and 67.4 Mb, respectively. Therefore, the identification of the genes 13 

underlying the QTLs will first require the production of subcongenic strains for 14 

fine mapping to reach manageable numbers of candidate genes. Analysis of 15 

sequence variation between MBT and BALB/c genomes will also be performed. A 16 

drawback of using a wild-derived inbred strain is that the average divergence of 17 

approximately 1 SNP per 120 bp between M. m. musculus derived and laboratory 18 

genomes is higher than that observed between pairs of laboratory strains (1 SNP 19 

per 700 bp).30  This higher number of naturally occurring but functionally neutral 20 

polymorphic variants will complicate the identification of the causal mutation. 21 

Gene expression profiling in the target tissues of RVF disease from RVFV-infected 22 

C.MBT-Rvfs congenic and BALB/c control mice will also be of great utility. This 23 

combined effort will help narrow Rvfs QTLs to testable lists of candidate genes.  24 

Although this study is the first of its kind in the mouse, detailed analyses of RVFV-25 

infected inbred rats also demonstrated that the host genotype determines the 26 

outcome of RVF disease. First evidence suggesting variation among rodent inbred 27 

lines came from Peters and co-workers who showed that Wistar-Furth (WF) 28 

inbred rats are highly susceptible to liver necrosis induced by subcutaneous 29 

infection with RVFV, while Lewis (LEW) rats are largely resistant.17  Resistance to 30 

hepatitis in LEW rats was shown to be inherited as a simple Mendelian dominant 31 

trait,20  and derivation of a congenic line confirmed that a single chromosomal 32 
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region was able to confer the resistance of LEW rats to the hepatic disease induced 1 

by infection with RVFV in susceptible WF rats.19  The locus involved has not been 2 

further defined or mapped and thus its relationship to the QTLs defined in our 3 

study is unknown. Altogether, experiments in rodent models of RVFV infection 4 

support the hypothesis that the differences in pathogenesis between breeds of 5 

ruminants,31 ,32 ,33  and among human patients1  are in part the result of genetic 6 

factors that influence susceptibility to RVFV infection. 7 

Effect of sex in susceptibility to RVF disease in mice 8 

A variety of other factors can potentially influence the severity of RVF disease, e.g. 9 

the inoculation dose and virulence of the virus, the sex, and the immune status of 10 

the host. We observed a significant sex effect in mice, not only in the BALB/c and 11 

MBT parental strains, but also in the F1 and F2 populations, with enhanced 12 

susceptibility in males compared to females. In fact, sex was the main factor 13 

explaining variance in the F2, higher than all three QTLs together (Table 1). RVFV 14 

infection in mice demonstrated tropism for a variety of organs, including the 15 

ovaries.25  Consistent with this, the ovaries and uterus in females, the seminal 16 

vesicles, preputial glands, epididymis and testis in males were identified as a site of 17 

viral replication in mice infected with a recombinant RVFV expressing the Renilla 18 

reniformis luciferase.34  In rats, males were reported to be somewhat more 19 

susceptible than females, and castrated males were more resistant than intact 20 

rats.20  This suggests the implication of sex hormones on the regulation of genes 21 

that underlie resistance to RVF disease in rodents. This is in line with our finding 22 

that two of the three Rvfs QTLs have stronger effect in one of the sexes, in females 23 

for Rvfs1, and in males for Rvfs3.  24 

In humans, reduced susceptibility to viral infections among females have been 25 

reported, presumably because females mount higher immune responses than 26 

males.35  However, lower female mortality due to infectious diseases is not 27 

universal, and a reverse pattern of excess female mortality has been observed for 28 

measles and influenza.36,37  With regard to RVF disease, epidemiological studies in 29 

Saudi Arabia, Kenya, South Africa, Sudan, and Gabon indicate that men are more 30 

frequently infected by RVFV than women.6,8,38-42  Direct contact with animal 31 

tissues, blood or other body fluids was reported to be the most common risk factor 32 
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and route of transmission of RVFV to humans in South Africa and 1 

Kenya.38,39  Therefore enhanced male morbidity in these regions of Africa may be 2 

explained by the occupation of herding, which implies slaughtering and milking, 3 

predominantly performed by men.43  Infected men were also reported to be at 4 

higher risk than women to develop severe RVF disease and eventually 5 

die.38,43  Again, this may be the result of more frequent exposures to infected 6 

animals and their body fluids which provide opportunities for infection with large 7 

inocula of RVFV compared to the low number of infectious viral particles 8 

transmitted by bites from infected mosquitoes.44  It is however not excluded that 9 

the higher fatality ratio measured in male human patients has also a biological 10 

basis as seen in rodents. Further clinical and epidemiological investigations in 11 

humans and genetic studies in rodents are needed to understand these sex and/or 12 

gender differences. 13 

MATERIALS AND METHODS 14 

Mice and crosses  15 

BALB/cByJ (BALB/c) mice were purchased from Charles River Laboratories. The 16 

MBT/Pas (MBT) strain, derived from M. m. musculus progenitors trapped in 17 

Bulgaria in 1980,45  is maintained at the Institut Pasteur. Female BALB/c mice 18 

were mated with male MBT mice to produce F1 hybrids. (BALB/c × MBT) F1 mice 19 

were intercrossed to produce F2 progeny (n=546) for the genome scan. To develop 20 

congenic strains, female BALB/c mice were crossed with MBT male mice. F1 21 

females were backcrossed to BALB/c males and the BC1 progeny were genotyped 22 

for several polymorphic microsatellite markers within the QTL regions on Chr 2, 5 23 

or 11. Males that carried heterozygous alleles for one of the QTLs but not for the 24 

other two QTLs were selected as breeders for the next generation. By the fifth 25 

generation, all breeders were heterozygous for the MBT alleles in the targeted 26 

region but homozygous for the BALB/c alleles in the other two QTL chromosomal 27 

segments. After reaching the tenth generation, mice were intercrossed to obtain 28 

homozygous animals. All F2 and congenic mice carried mitochondria and Y 29 

chromosome from BALB/c and MBT inbred strain respectively. Experiments on 30 

live mice were conducted according to the French and European regulations on 31 

care and protection of laboratory animals (EC Directive 86/609, French Law 2001-32 
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486 issued on June 6, 2001) and the National Institutes of Health Animal Welfare 1 

(Insurance #A5476-01 issued on July 2, 2007). Experimental protocols were 2 

approved by the Animal Ethics Committee #1 of the Comité Régional d’Ethique 3 

pour l’Expérimentation Animale (CREEA), Ile de France (N°2012-0025), and carried 4 

out in compliance with Institut Pasteur Biosafety Committee. 5 

Virus production and mouse infection  6 

The RVFV strain ZH548, isolated from a male patient with the acute febrile illness 7 

at Zagazig fever hospital, Egypt (obtained from Centre National de Référence des 8 

Fièvres Hémorragiques Virales, Institut Pasteur, Lyon, France),46,47  was used for all 9 

infection studies. Virus was titrated by plaque assay on monolayers of Vero E6 10 

cells.48  Mice were bred under specific pathogen free conditions and were 11 

transferred one week before infection into a BSL-3 isolator to allow 12 

acclimatization. Groups of 9- to 13-week-old animals were infected 13 

intraperitoneally with 100 PFU of RVFV strain ZH548. Morbidity, mortality and 14 

clinical disease scores were monitored daily for 14 days following infection. 15 

Animals that survived were euthanized on the last day of the monitoring period. 16 

Survival curves of congenic animals represent the pooled data from four to twelve 17 

experiments. 18 

Genotyping and QTL mapping  19 

Tail biopsies were collected at weaning from F2 progeny and high-quality DNA 20 

was prepared by standard phenol-chloroform extraction. Genotyping of F2 mice 21 

was performed using the GoldenGate platform (Illumina Inc.). A total of 484 SNPs 22 

were genotyped. Out of them, 244 markers were polymorphic and gave reliable 23 

genotypes, covering the entire mouse genome. After the first analysis, 15 24 

polymorphic microsatellite markers in the QTL regions were added to better 25 

define those regions. An interval mapping for the survival phenotype was 26 

performed with the R/qtl software (version 2.15.1) for mapping quantitative trait 27 

loci under a non-parametric model (death/survival) or under the two-part model 28 

(death/survival, and survival time).23,27,49  Genome-wide thresholds for 29 

significance were determined by a 1,000-permutation test. QTL were considered 30 

to be significant when the LOD scores exceeded the 5% genome-wide threshold 31 

and suggestive when the LOD scores exceeded the 20% genome-wide threshold. 32 
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All significant and suggestive QTLs were assessed in a multiple-QTL model with 1 

sex as a covariate (formula=y~sex+Q1+Q2+Q3), using makeqtl and fitqtl functions 2 

in R/qtl, and the percentage of phenotypic variance was estimated. The 2-LOD 3 

units drop-off was used to estimate the 95% confidence interval of each QTL. Tail 4 

DNAs of congenic strains were collected and analyzed with the MegaMUGA 5 

genotyping microarray (Neogen/Geneseek, Lincoln, NE), a new 78,000-probe 6 

array based on the Illumina® Infinium platform.24  Markers on the MegaMUGA are 7 

distributed genome-wide with an average spacing of 33 kb. 8 

Statistical analysis  9 

Statistical analysis was performed using GraphPad Prism 5.0 software (GraphPad). 10 

Survival curves were compared by log-rank test.  11 

ACKNOWLEDGMENTS 12 

The authors thank Rashida Lathan for reading the manuscript and editorial 13 

suggestions. We are grateful to all members of the laboratory for technical advice 14 

and helpful discussion. Genotyping of F2 mice was performed by the Centre 15 

National de Génotypage (Evry, France). This work was supported by the Agence 16 

Nationale de la Recherche (grant n° 11-BSV3-007 01, ‘GenRift’) and the French 17 

Government's Investissement d'Avenir program, Laboratoire d'Excellence 18 

Integrative Biology of Emerging Infectious Diseases (grant n°ANR-10-LABX-62-19 

IBEID). The Mouse functional Genetics unit at the Institut Pasteur was funded by 20 

Merck-Serono. ST was awarded postdoctoral fellowships from the Pasteur Japan 21 

association, and the Region Ile-de-France (DIM Malinf 2010). We thank Direction 22 

Générale de l'Armement (DGA) (representative: Emmanuelle Guillot-Combe) for a 23 

financial support to LB.  24 

CONFLICT OF INTEREST 25 

The authors declare no conflict of interest. 26 

 27 

28 



 

 

 

 

14 

References 1 

1. Ikegami T, Makino S. The pathogenesis of Rift Valley fever. Viruses 2011; 2 

3(5): 493-519. 3 

2. Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever 4 

virus(Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular 5 

epidemiology, vectors, diagnostics and prevention. Vet. Res. 2010; 41(6): 61. 6 

3. Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ. Rift Valley fever virus. J. Am. 7 

Vet. Med. Assoc. 2009; 234(7): 883-93. 8 

4. Brown JL, Dominik JW, Morrissey RL. Respiratory infectivity of a recently 9 

isolated Egyptian strain of Rift Valley fever virus. Infect. Immun. 1981; 33(3): 10 

848-53. 11 

5. Chambers PG, Swanepoel R. Rift valley fever in abattoir workers. Cent. Afr. J. 12 

Med. 1980; 26(6): 122-6. 13 

6. Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, 14 

Turkistani AM et al. Rift Valley fever epidemic in Saudi Arabia: 15 

epidemiological, clinical, and laboratory characteristics. Clin. Infect. Dis. 2003; 16 

37(8): 1084-92. 17 

7. Balkhy HH, Memish ZA. Rift Valley fever: an uninvited zoonosis in the 18 

Arabian peninsula. Int. J. Antimicrob. Agents 2003; 21(2): 153-7. 19 

8. LaBeaud AD, Muchiri EM, Ndzovu M, Mwanje MT, Muiruri S, Peters CJ et al. 20 

Interepidemic Rift Valley fever virus seropositivity, northeastern Kenya. 21 

Emerg. Infect. Dis. 2008; 14(8): 1240-6. 22 

9. Sidwell RW, Smee DF. Viruses of the Bunya- and Togaviridae families: 23 

potential as bioterrorism agents and means of control. Antiviral Res. 2003; 24 

57(1-2): 101-11. 25 

10. Bouloy M, Weber F. Molecular biology of rift valley Fever virus. Open Virol. J. 26 

2010; 4: 8-14. 27 

11. Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. 28 

Antiviral Res. 2012; 95(3): 293-310. 29 

12. Vialat P, Billecocq A, Kohl A, Bouloy M. The S segment of rift valley fever 30 

phlebovirus (Bunyaviridae) carries determinants for attenuation and 31 

virulence in mice. J. Virol. 2000; 74(3): 1538-43. 32 

13. Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M et al. Genetic 33 

evidence for an interferon-antagonistic function of rift valley fever virus 34 

nonstructural protein NSs. J. Virol. 2001; 75(3): 1371-7. 35 

14. Habjan M, Pichlmair A, Elliott RM, Overby AK, Glatter T, Gstaiger M et al. NSs 36 

protein of rift valley fever virus induces the specific degradation of the 37 

double-stranded RNA-dependent protein kinase. J. Virol. 2009; 83(9): 4365-38 

75. 39 

15. Ross TM, Bhardwaj N, Bissel SJ, Hartman AL, Smith DR. Animal models of Rift 40 

Valley fever virus infection. Virus Res. 2012; 163(2): 417-23. 41 



 

 

 

 

15 

16. Anderson GW, Jr., Slone TW, Jr., Peters CJ. Pathogenesis of Rift Valley fever 1 

virus (RVFV) in inbred rats. Microb. Pathog. 1987; 2(4): 283-93. 2 

17. Peters CJ, Slone TW. Inbred rat strains mimic the disparate human response 3 

to Rift Valley fever virus infection. J. Med. Virol. 1982; 10(1): 45-54. 4 

18. Ritter M, Bouloy M, Vialat P, Janzen C, Haller O, Frese M. Resistance to Rift 5 

Valley fever virus in Rattus norvegicus: genetic variability within certain 6 

'inbred' strains. J. Gen. Virol. 2000; 81(Pt 11): 2683-8. 7 

19. Anderson GW, Jr., Rosebrock JA, Johnson AJ, Jennings GB, Peters CJ. Infection 8 

of inbred rat strains with Rift Valley fever virus: development of a congenic 9 

resistant strain and observations on age-dependence of resistance. Am. J. 10 

Trop. Med. Hyg. 1991; 44(5): 475-80. 11 

20. Peters CJ, Andeson, J. Pathogenesis of Rift Valley Fever. Contrib. Epidemiol. 12 

Biostat. 1981; 3: 21-41. 13 

21. Schughart K, Libert C, consortium S, Kas MJ. Controlling complexity: the 14 

clinical relevance of mouse complex genetics. Eur. J. Hum. Genet. 2013; 15 

21(11): 1191-6. 16 

22. do Valle TZ, Billecocq A, Guillemot L, Alberts R, Gommet C, Geffers R et al. A 17 

new mouse model reveals a critical role for host innate immunity in 18 

resistance to Rift Valley fever. J. Immunol. 2010; 185(10): 6146-56. 19 

23. Broman KW. Mapping quantitative trait loci in the case of a spike in the 20 

phenotype distribution. Genetics 2003; 163(3): 1169-75. 21 

24. Rogala AR, Morgan AP, Christensen AM, Gooch TJ, Bell TA, Miller DR et al. The 22 

Collaborative Cross as a Resource for Modeling Human Disease: CC011/Unc, 23 

a New Mouse Model for Spontaneous Colitis. Mamm. Genome 2014. 24 

25. Smith DR, Steele KE, Shamblin J, Honko A, Johnson J, Reed C et al. The 25 

pathogenesis of Rift Valley fever virus in the mouse model. Virology 2010; 26 

407(2): 256-67. 27 

26. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO et al. 28 

Genome-wide genetic association of complex traits in heterogeneous stock 29 

mice. Nat. Genet. 2006; 38(8): 879-87. 30 

27. Roy MF, Riendeau N, Loredo-Osti JC, Malo D. Complexity in the host response 31 

to Salmonella Typhimurium infection in AcB and BcA recombinant congenic 32 

strains. Genes Immun. 2006; 7(8): 655-66. 33 

28. Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P et al. Mapping 34 

of genetic modulators of natural resistance to infection with Salmonella 35 

typhimurium in wild-derived mice. Genomics 1998; 47(2): 180-6. 36 

29. Makita Y, Kobayashi N, Yoshida Y, Doi K, Mochizuki Y, Nishikata K et al. 37 

PosMed: Ranking genes and bioresources based on Semantic Web 38 

Association Study. Nucleic Acids Res. 2013; 41(Web Server issue): W109-14. 39 

30. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B et al. Mouse 40 

genomic variation and its effect on phenotypes and gene regulation. Nature 41 

2011; 477(7364): 289-94. 42 



 

 

 

 

16 

31. Swanepoel R, Struthers JK, Erasmus MJ, Shepherd SP, McGillivray GM, 1 

Shepherd AJ et al. Comparative pathogenicity and antigenic cross-reactivity 2 

of Rift Valley fever and other African phleboviruses in sheep. J. Hyg. (Lond.) 3 

1986; 97(2): 331-46. 4 

32. Olaleye OD, Tomori O, Fajimi JL, Schmitz H. Experimental infection of three 5 

Nigerian breeds of sheep with the Zinga strain of the Rift Valley Fever virus. 6 

Rev. Elev. Med. Vet. Pays Trop. 1996; 49(1): 6-16. 7 

33. Busquets N, Xavier F, Martin-Folgar R, Lorenzo G, Galindo-Cardiel I, del Val 8 

BP et al. Experimental infection of young adult European breed sheep with 9 

Rift Valley fever virus field isolates. Vector Borne Zoonotic Dis. 2010; 10(7): 10 

689-96. 11 

34. Gommet C, Billecocq A, Jouvion G, Hasan M, Zaverucha do Valle T, Guillemot L 12 

et al. Tissue tropism and target cells of NSs-deleted rift valley fever virus in 13 

live immunodeficient mice. PLoS Negl. Trop. Dis. 2011; 5(12): e1421. 14 

35. Klein SL, Huber, S. Sex differences in susceptibility to viral infection. In: Klein 15 

SL, Roberts, C.W. (ed) Sex hormones and immunity to infection. Springer-16 

Verlag: Berlin Heideberg, 2010, pp 93-122. 17 

36. Garenne M. Sex differences in measles mortality: a world review. Int. J. 18 

Epidemiol. 1994; 23(3): 632-42. 19 

37. Klein SL, Hodgson A, Robinson DP. Mechanisms of sex disparities in influenza 20 

pathogenesis. J. Leukoc. Biol. 2012; 92(1): 67-73. 21 

38. Anyangu AS, Gould LH, Sharif SK, Nguku PM, Omolo JO, Mutonga D et al. Risk 22 

factors for severe Rift Valley fever infection in Kenya, 2007. Am. J. Trop. Med. 23 

Hyg. 2010; 83(2 Suppl): 14-21. 24 

39. Archer BN, Thomas J, Weyer J, Cengimbo A, Landoh DE, Jacobs C et al. 25 

Epidemiologic investigations into outbreaks of rift valley Fever in humans, 26 

South Africa, 2008-2011. Emerg. Infect. Dis. 2013; 19(12). 27 

40. Hassanain AM, Noureldien W, Karsany MS, Saeed el NS, Aradaib IE, Adam I. 28 

Rift Valley Fever among febrile patients at New Halfa hospital, eastern Sudan. 29 

Virol J. 2010; 7: 97. 30 

41. LaBeaud AD, Muiruri S, Sutherland LJ, Dahir S, Gildengorin G, Morrill J et al. 31 

Postepidemic analysis of Rift Valley fever virus transmission in northeastern 32 

kenya: a village cohort study. PLoS Negl. Trop. Dis. 2011; 5(8): e1265. 33 

42. Pourrut X, Nkoghe D, Souris M, Paupy C, Paweska J, Padilla C et al. Rift Valley 34 

fever virus seroprevalence in human rural populations of Gabon. PLoS Negl. 35 

Trop. Dis. 2010; 4(7): e763. 36 

43. Nguku PM, Sharif SK, Mutonga D, Amwayi S, Omolo J, Mohammed O et al. An 37 

investigation of a major outbreak of Rift Valley fever in Kenya: 2006-2007. 38 

Am. J. Trop. Med. Hyg. 2010; 83(2 Suppl): 5-13. 39 

44. Amraoui F, Krida G, Bouattour A, Rhim A, Daaboub J, Harrat Z et al. Culex 40 

pipiens, an experimental efficient vector of West Nile and Rift Valley fever 41 

viruses in the Maghreb region. PLoS One 2012; 7(5): e36757. 42 



 

 

 

 

17 

45. Orth A, Lyapunova E, Kandaurov A, Boissinot S, Boursot P, Vorontsov N et al. 1 

[Polytypic species Mus musculus in Transcaucasia]. C. R. Acad. Sci. III 1996; 2 

319(5): 435-41. 3 

46. El-Akkad AM. Rift Valley fever outbreak in Egypt. October--December 1977. J. 4 

Egypt. Public Health Assoc. 1978; 53(3-4): 123-8. 5 

47. Meegan JM. The Rift Valley fever epizootic in Egypt 1977-78. 1. Description of 6 

the epizzotic and virological studies. Trans. R. Soc. Trop. Med. Hyg. 1979; 7 

73(6): 618-23. 8 

48. Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M. RNA 9 

polymerase I-mediated expression of viral RNA for the rescue of infectious 10 

virulent and avirulent Rift Valley fever viruses. Virology 2008; 378(2): 377-11 

84. 12 

49. Broman KW, Sen S. A guide to QTL mapping with R/qtl,  Springer: Dordrecht, 13 

2009. 14 

15 



 

 

 

 

18 

Table 1. Analysis in a multiple QTL model with sex as a covariate 1 

 2 

 3 

 Position 

(Mb) 

Nearest 

marker 

LOD % 

variance 

explained 

P-value 2-LOD 
support 

interval 

Locus 

Sex   12.8 10.10 2.41e-

14 

  

Chr 

2 

168.2 rs27311433 4.2 3.17 7.32e-

05 

D2Mit306 -

rs3664044 

Rvfs1 

Chr 

11 

113.9 D11Mit214 3.8 2.88 0.00017 rs13481186 

– D11Mit69 

Rvfs2 

Chr 

5 

61.6 rs13478310 2.3 1.78 0.00452 D5Mit125 – 

rs4225536 

Rvfs3 
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 7 
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FIGURE LEGENDS 1 

Figure 1. Survival time of BALB/c, MBT, F1, and F2 mice after infection with RVFV 2 

ZH548 strain. (A) Nine- to twelve-week-old BALB/c, MBT, F1, and F2 female and 3 

male mice were infected intraperitoneally with 100 PFU of the RVFV ZH548. The 4 

survival of individual female (top) and male (bottom) mice was monitored until 5 

day 10 post-infection. Kaplan-Meier survival plots were recorded (log-rank test; 6 

the number of animals per genotype is given within brackets; *, P<0.05; **, P<0.01; 7 

****, P<0.0001). (B) The distribution of F2 population and parental strains after 8 

infection with RVFV ZH548. Circles and triangles represent individual female and 9 

male mice, respectively. Depicted are the means and SD of female (n=43) and male 10 

(n=46) MBT mice, female (n=211) and male (n=360) F2 mice, and female (n=34) 11 

and male (n=40) BALB/c mice. Animals that survived more than 10 days post-12 

infection were not included. 13 

Figure 2. Genome-wide QTL scans for the outcome of RVFV infection in (BALB/c  14 

MBT) F2 mice. A total of 546 F2 animals were genotyped with 259 polymorphic 15 

markers, and infected with RVFV ZH548 intraperitoneally. The survival of 16 

individual mice was monitored daily for a period of 14 days. (A) Nonparametric 17 

interval-mapping with the time to death as a trait, includes the 505 mice that died. 18 

LOD score is plotted as a function of genomic position. One significant locus on 19 

chromosome 2 and two suggestive loci on chromosomes 5 and 11 are revealed. (B) 20 

Two-part model combining the time to death and the binary trait (survived/died) 21 

of all 546 F2 animals. The large red dotted line represents the LOD trace for the 22 

nonparametric analysis, the small blue dashed line represents the LOD trace for 23 

the analysis of the binary trait (survive versus death), and the continuous black 24 

line is the sum of the two separate analyses. One significant locus on chromosome 25 

11 and one suggestive locus on chromosome 2 are found. The horizontal lines 26 

represent the genome wide significance thresholds after 1,000 permutations 27 

(full
line, P=0.05; long dash, P=0.1; small dash, P=0.2).  28 

Figure 3. Close-up of two-dimensional genome scan on chromosomes 2, 5, and 11. 29 

The two-dimensional genome scan performed for the whole genome revealed 30 

additive effects between loci on chromosomes 2, 5, and 11. A close-up of the two-31 
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dimension scan on chromosomes 2, 5 and 11 is displayed with epistatic interaction 1 

in the lower right triangle, and additive effects in the upper left triangle. The color 2 

scale (right) indicates the additive LOD scores on the left and the interaction LOD 3 

scores on the right. The additive thresholds for significance levels 20% and 5% 4 

were calculated to be 5.25 and 6.15. The epistasis thresholds for the identification 5 

of novel interactions for significance levels 20% and 5% were 5.61 and 6.31. There 6 

is significant evidence in the upper left triangle for additive effects between loci on 7 

chromosomes 2 and 11, and between chromosomes 2 and 5, and suggestive 8 

evidence for additive effects between chromosomes 5 and 11. The results in the 9 

lower triangle indicate no significant evidence for epistatic interaction between 10 

chromosomes 2, 5, and 11. 11 

Figure 4. Schematic representation of the MBT genomic regions fixed in the 12 

congenic strains and the congenic strain survival curves. (A) Haplotype structure 13 

of the congenic segment of chromosome 2 in C.MBT-Rvfs1 (Rvfs1) congenic strain 14 

(left). The position of the MBT-derived chromosome 2 (grey) is shown on the 15 

BALB/c chromosome 2 background (black). Regions of unknown genotype are 16 

represented in white. Markers are identified along with their positions on the 17 

physical map (in bp). Kaplan-Meier survival plots of female and male Rvfs1 mice 18 

(right). The number of animals per genotype and gender is given within brackets. 19 

(B) Haplotype of the congenic segment of chromosome 11 in C.MBT-Rvfs2 (Rvfs2) 20 

(left) and Kaplan-Meier survival plots of female and male Rvfs2 mice (right). (C) 21 

Haplotype of the congenic segment of chromosome 5 in C.MBT-Rvfs3 (Rvfs3) mice 22 

(left) and Kaplan-Meier survival plots of female and male Rvfs3 mice (right). (log-23 

rank test; *, P<0.05, ***, P<0.001). 24 
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