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Abstract: Controlling dengue virus transmission mainly involves integrated vector
management. Risk maps at appropriate scales can provide valuable information for
assessing entomological risk levels. Here, results from a spatio-temporal model of
dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane
(Martinique, French Antilles) using high spatial resolution remote-sensing environmental
data and field entomological and meteorological information are presented. This
tele-epidemiology methodology allows monitoring the dynamics of diseases closely related
to weather/climate and environment variability. A Geoeye-1 image was processed to
extract landscape elements that could surrogate societal or biological information related to
the life cycle of Aedes vectors. These elements were subsequently included into statistical
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models with random effect. Various environmental and meteorological conditions have
indeed been identified as risk/protective factors for the presence of Aedes aegypti immature
stages in dwellings at a given date. These conditions were used to produce dynamic high
spatio-temporal resolution maps from the presence of most containers harboring larvae.
The produced risk maps are examples of modeled entomological maps at the housing level
with daily temporal resolution. This finding is an important contribution to the development
of targeted operational control systems for dengue and other vector-borne diseases, such as
chikungunya, which is also present in Martinique.

Keywords: dengue; remote-sensing; risk mapping; Aedes aegypti; medical entomology

1. Introduction

Dengue is an infectious disease caused by one of the four serotypes (DEN-1 to DEN-4) of the
dengue virus. It is transmitted by the bite of infected Aedes female mosquitoes and primarily occurs in
urban areas. Even if the mortality rate is low among human populations, dengue is considered as one
of the most important mosquito-borne viral disease due to its extensive geographic spread (125 endemic
countries) with 50 to 200 million annual infections [1].

In Martinique (French Antilles), six dengue epidemic waves occurred during the last 20 years.
More than 41,000 clinical cases were reported during the penultimate epidemic in 2010, accounting for
approximately 10% of the island population. In this region, the Aedes aegypti mosquito is the single
identified vector for the transmission of dengue virus to date. This mosquito breeds mostly in artificial
domestic or peridomestic containers filled with clean water with little organic debris and low
concentrations of inorganic nutrients [2,3]. In Martinique, potential breeding sites include (i) flower
pots with saucers, detritus, and debris, abandoned cars and tires, badly maintained gutters, discarded
old domestic appliances or pools that may be all filled-up naturally with rainfall; (ii) containers such as
drum barrels that may be deliberately placed under gutters or in yards to collect rain water for
watering/cleaning purposes; (iii) rarely, containers that can be artificially filled-up when watering.
Antivectorial and mosquito nuisance control are managed by a public organization (Service de
Démoustication et de Lutte Antivectorielle, SD-LAV). Since 1991, the SD-LAV has collected
information on dengue vectors with an additional effort during outbreaks.

No specific treatment is available for dengue, and no operational vaccine is currently available [4].
Controlling virus transmission thus mainly consists of integrated vector management: (i) information is
provided to the inhabitants to avoid the creation of potential larval habitats; (ii) source reduction occurs
via the physical destruction of the potential/positive breeding sites; and (iii) insecticide spraying
mainly occurs during epidemics. It is also important to note that it has been shown that for dengue
vectors, “targeting only the most productive water container types (roughly half of all water holding
container types) was as effective in lowering entomological indices as targeting all water holding
containers at lower implementation costs” [5]. In this context, good knowledge of the entomological
conditions in a given area and during a given period of time is a prerequisite for implementing efficient
control. Unfortunately, entomological data are seldom collected longitudinally, and available data often
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provide only a snapshot of a rather continuous phenomenon. Risk maps at appropriate scales can provide
surrogate data and valuable information regarding a spatio-temporal evaluation of entomological risk.
Mapping at global scales may co-exist with fine scale or local mapping to establish local control strategies.

From global/regional to local scales, the heterogeneity of spatial and temporal distributions of
dengue vectors/cases is partly led by weather/climate conditions (e.g., rainfall amount, relative
humidity, and temperature), environment/landscape (e.g., vegetation and soil types) or human
activities (e.g., transportation, urbanization, and waste management). Subsequent modeling of
entomological/epidemiological dengue risk may benefit from the use of remote-sensing (RS)
information that may provide appropriate ecological, meteorological, and geographic outputs. Choices
may be made among available satellite products at various temporal, spectral, and spatial scales.
In recent years, satellite products have been used to map numerous vector-borne diseases [6—10], and
these products were recently proven to provide useful information for modeling Aedes aegypti or
Aedes albopictus distribution [11-19], human dengue cases distribution [20,21] or the potential for
future dengue vector or disease expansion [22-24].

The present study involves mapping the risk of the presence of Aedes aegypti immature stages
around houses. This condition is necessary but not sufficient for dengue fever emergence given the
numerous factors interplaying between the presence of Aedes larvae and dengue cases (rate of adult
mosquito emergence, human-vector contact, human population movements, and acquired immunity to
circulating serotype). Indeed, it has been argued that “mapping and spatial modeling based on mosquito
presence or abundance data should be viewed as only representing potential dengue risk” [25].
Therefore, the larval maps of the present study will be referred to as “entomological dengue risk
maps”. Recipients of such maps should include the vector managing units that subsequently focus
control interventions in places and times where/when the risk of vector presence is highest.

The practical and conceptual approach of tele-epidemiology could then be applied to the
spatio-temporal mapping of entomological dengue risk in urban settings in Martinique. It has been
developed and patented by the French Spatial Agency (CNES) and its partners [26,27]. The approach
involves monitoring and studying the spatio-temporal dynamics of human and animal diseases that are
closely related to weather/climate and environment variability. It relies on the identification of an
experimental unit, which serves as the “object” that must be identified/characterized to properly assess
the levels of risk. This unit is based on the sound knowledge of the biological and physical processes
that underline the presence/densities of immature and adult vectors. It is thus widely dependent upon
the disease being investigated. For example, this experimental unit is a pond (~1 ha) when studying
Rift Valley Fever entomological risk [28] and a water body or aggregates of small water bodies
(~0.1 ha) when studying urban malaria entomological risk [29]. Then, appropriate choices of satellite
data and dynamic models must be assessed along with extensive use of in sifu measurements.

Three observations underpinned the present study. Firstly, if the potential Aedes aegypti breeding
habitats could not be directly detected using satellite images even at very high spatial resolution, their
specific environment could be mapped. Indeed, the dwelling and yard conditions may reflect local
habits regarding the maintenance of private yards/gardens and their close surroundings that may be
associated with the presence of containers that retain water. Secondly, estate characteristics (i.e., shading
and tidiness of a house and its yard) have been identified as determinants of the presence/abundance of
Aedes aegypti immature stages and eggs [18,30-32]. Thus, the characterization of fine-scale
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environments could provide information on the risk factors for the presence of dengue vector immature
stages in areas where containers are present. Thirdly, meteorological conditions mainly drive the
temporal dynamics for container filling as well as entomological dynamics (e.g., eggs hatching and
larvae development). Consequently, the experimental unit here has been defined as the house with its
nearby environment studied on one specific date. The state of such units was then described with
details at the field level (i.e., ground entomological investigations), meteorological level (high
temporal resolution ground observation station), and environmental level (i.e., high spatial resolution
RS data). The main objective here was to model in space and time the houses considered to be
so-called “positive” for Aedes aegypti immature stages from 2009 to 2011 in Tartane (Martinique,
French Antilles) by using RS environmental data and field meteorological information. This modeling
was performed to produce high spatio-temporal resolution dengue entomological risk maps.

2. Multi-Disciplinary Data and Methods
2.1. Studied Site and Period

The city of Tartane (14°4529.24"N, 60°55'10.56"W) belongs to the Caravelle Peninsula, which is
located northeast of Martinique. This area has historically served as a fishing cove with small and
low-rise dwellings surrounded by small gardens or yards. The city center is near the seaside, whereas
other sections are located uphill. The population is made up of ~3000 inhabitants. The area is a tourist
attraction and includes many vacation accommodations. The studied site is approximately 8 km?
(Figure 1). Several dengue outbreaks, including one that occurred in 2010, have started in Tartane,
possibly due to favorable entomological conditions [33]. Although dengue epidemics “typically” last
from July to December, viral circulation in 2010 was noted in early February, peaked in June and
lasted until the end of the year. The studied period thus included this epidemic and ran from June 2009
to August 2011.

Figure 1. The Martinique Island, the studied area, and the six studied sections (black
rectangles numbered 1 to 6) on the Tartane Peninsula.
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2.2. Entomological Data

The SD-LAV conducts entomological surveillance in Martinique and thus regularly records
mosquito information in the houses of the island municipalities [34]. All of the available records were
selected from the SD-LAV databases for the studied period and area. Each record was associated with
a given inhabited house visited on one of the following dates: 19/06/2009, 01/10/2009, 22/10/2009,
09/11/2009, 22/02/2010, 23/02/2010, 05/03/2010, 23/08/2011, 29/09/2010, and 02/12/2012. The records
contained information regarding the number and type of domestic and peridomestic containers as well
as the presence of Aedes aegypti immature stages (i.e., all larvae stages and pupae). As the records did
not contain geographic coordinates, only the records that could have been retrospectively plotted with
a global positioning system (GPS) were maintained in the final database. Plotting was performed
during July 2012 by the operators who conducted the 2009-2011 ground surveys and was based on the
recorded name of the inhabitant and a deep knowledge of the area. Types of domestic or peridomestic
containers include drum barrels, tanks, waste-bins, flower pots and saucers, gutters, tires, discarded
appliances, and pools. Sampled houses are positioned in Figure 2. From their spatial distribution, six
sections were identified as shown in Figure 1.

Figure 2. Map of the sampled houses.
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The ten different dates covered different seasons of the year. A total of 117 houses were visited
(i.e., 88 houses visited once, 18 twice, 10 thrice and one visited four times), representing
approximately 12% of the total number of houses in the studied area. Thus, the number of
observations, i.e., experimental units, was 158. A total of 88 out of those 158 experimental units were
positive for the presence of peridomestic water-filled containers (from one to 11 containers per house
at a given date). Thirty experimental units were Aedes larvae-positive (19% of all experimental units
and 34% of all water-positive experimental units). Among all types of water-filled containers, large
containers and drum barrels were most frequently identified as Aedes larvae positive with 57% and
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51% positive observations, respectively. These containers were noted at 82% of the total number of
positive breeding sites.

2.3. Meteorological Data

In Martinique, the summer rainy season (July to November) is characterized by frequent and heavy
rainfall and maximum temperatures of approximately 32 °C, whereas the dry season (February to April)
exhibits maximum temperatures of approximately 30 °C. These seasons are separated by two intermediate
seasons. Rainfall amounts are heterogeneous on the island, ranging from approximately 1500 mm to
greater than 4000 mm in the mountainous area. The year 2009 was exceptionally hot with minimal
rainfall except on the Atlantic coastline. In 2010, temperatures were also high particularly during
February and March. February was almost completely dry. Heavy precipitation started in early June
followed by a very dry period. Again, the year 2011 experienced hot temperatures. However, 2011 was
the wettest year of the 2009-2011 period with basically no dry season.

Daily temperature and humidity (minimum, maximum, and mean values) as well as precipitation
amounts were provided for the present study by Météo-France. They were recorded at the observing
station located in the Caravelle Peninsula. Yearly precipitation levels recorded during 2009, 2010, and
2011, were 948 mm, 1408 mm, and 1823 mm, respectively. Several variables were calculated from the
raw data, added to the entomological database, and matched according to the date of the ground
surveys as follows:

- total rainfall amount for the 2-, 3-, 4-, ..., to 30-day period before each entomological ground
investigation date;

- average of temperature and relative humidity for the 2-, 3-, 4-, ..., to 15-day period before each
entomological ground investigation date.

2.4. Satellite Images and Environmental Data

A Geoeye-1 optical image with clear sky was acquired on 13/03/2011. Data included four spectral
bands at a 0.41-m spatial resolution (blue, green, red, and near infrared). The image was projected in
WGS 84, UTM Zone 20 N and geometrically corrected using the 50-m spatial resolution elevation
map (IGN BD ALTI®) from the French National Geographic Institute IGN (Institut National de
I’Information Géographique et Forestiere). Image processing was performed using ENVI 4.8 and
ENVI EX (Exelis Visual Information Solutions). Other available geographic data included IGN
topographic map (IGN BD TOPO®) and cadastral map (IGN BD ADRESSE®). Slope and
objects height maps at 1-m spatial resolution were available through Litto3D® (IGN, Service
Hydrographique et Océanographique de la Marine, Direction de I’Environnement, de |’Aménagement
et du Logement—Martinique, Agence des Aires Marines Protégées), which was produced from
airborne LIDAR measurements.

Three vegetation and soil indicators were derived from the Geoeye-1 image (Table 1).
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Table 1. Environmental indicators calculated from the Geoeye-1 image at 0.41-m
spatial resolution.

Environmental Indicator Spectral Bands Combination * Description

Values increase with the presence and

. density of vegetation. A value superior to
NDVI (Normalized

Difference Vegetation
Index) [35,36]

NIR —red 0.2 typically corresponds to a vegetated area.
NIR +red Negative values indicate non-vegetated
features, such as barren surfaces (rocks and

soils), water, built-up areas or asphalt.

It delineates open water features while

NDWI Mac Feeters green— NIR eliminating the presence of soil and terrestrial

(Normalized Difference m vegetation features. Values increase with the

Water Index) [37] presence of water and decrease with the
presence of vegetation.

ANDWI (Adapted NDWI blue— NIR Using the blue band, this adapted NDWI Mac

Mac Feeters Index) blue+ NIR Feeters maximizes the detection of water.

* NIR: Near infrared; SWIR: Short wave infrared.

A three-step classification procedure was applied to produce the Land Use and Land Cover (LULC)
map of the studied area. Firstly, a supervised maximum likelihood pixel-based classification was
performed in ENVI 4.8 based on a set of training areas covering 5.4% of the total surface of the image.
For each identified LULC class, a set of training polygons were digitized by an operator who
photo-interpreted the Geoeye-1 image. The spectral signature of each class was then built by the
software. Each pixel was assigned to the class having the highest probability to be the correct one
based on those spectral signatures. No exclusion threshold was defined, so every pixel of the studied
zone was classified. Some validation regions were also digitized, and they covered 4.7% of the image
total areca. They were used to calculate the kappa coefficient, which provides a measurement of the
classification accuracy. This coefficient was 0.91, indicating a good agreement between the resulting
LULC classes and the validation areas. Secondly, as improvements could be expected in the classification
accuracy of some elements of the landscape, an object-oriented classification was performed.
Segmentation, merging objects, and implementation of rules (area, convexity, average values of bands...)
were undertaken in the ENVI EX Feature Extraction module. The quality of this classification was
assessed by photo-interpretation, and it was thus concluded that the roofs and the swimming pools
were accurately classified. Thirdly, a final classification was produced by merging both pixel and
object classifications using a decision tree. It included fourteen land-cover classes: i.e., five for

2 (13

vegetation, including “trees”, “sugar cane”, “stubbles”, “lawn”, “sparsely vegetated soil”, five different

2% ¢¢

types of roofs, “sand”, “asphalt”, “swimming pools”, and “sea/ocean”. A merged class for all roof types
was also created.
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2.5. Geographic Information System (GIS)

A GIS was built using ArcGIS 10.0 (Environmental Research Systems Institute, Redlands, CA, USA)
to characterize the experimental units defined in the Introduction. All 117 surveyed houses were
plotted, and environmental indices, LULC map, and elevation data were added as geo-referenced
layers. Each single house of the Caravelle Peninsula was isolated as an object based on the LULC map.
The plot around each house was identified using the IGN cadastral map.

Environmental variables, i.e., the minimum/maximum/mean for the three indices, the slope and the
object height and the areas of each LULC class, were computed for each surveyed house. This was
accomplished for each plot and for the 50-m and 100-m radius buffer zones around the individual
houses. The Euclidian distance from the house to the first patch of each LULC class as well as the area
of houses (assumed equal to the area of their roofs) and plots were calculated. These data were merged
with the entomological database for each house.

2.6. Modeling Strategy

The overall database included the entomological, environmental, and meteorological variables
described above. Each record was associated with one house visited on one date, i.e., with one
experimental unit. The chosen scenario (Figure 3) included the following two steps that involved the
investigation of driving environmental and meteorological factors:

- Step 1: the presence of one or several water-filled container(s) in the vicinity of a house at a
given date, independently of the presence or not of Aedes aegypti immature stages. This
involved the detection of the water-positive experimental units;

- Step 2: the presence of Aedes aegypti immature stages exclusively in the experimental units
that held one or several water-filled container(s). This involved the detection of the Aedes
larvae-positive experimental units. No reference to the larval density was included.

Given that the number of domestic water containers was very low in the area, only the peridomestic
containers were considered.

Figure 3. Scenario retained for dengue entomological risk mapping.

Water-filled container(s) ?
(158 experimental units)

~
&

Yes No

t\,
¢,Q Aedes larvae-positive container(s) ?
4 (88 experimental units)

Yes No
No Aedes larvae- No water-filled
positive containers containers
No water-filled containers
One or several Aedes larvae- or

positive container(s) One or several water-filled container(s) without
Aedes larvae
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2.7. Statistical Analysis and Risk Mapping

Statistical analyses were performed using Stata 11 (Stata Corporation, College Station, TX, USA).
Logistic regression analyses to explain the outcomes from both steps above were fitted at the
experimental unit level using environmental and meteorological indicators as possible explanatory
variables. For each model, uncorrelated variables with p-values < 0.25 from univariate analyses were
candidates for multivariate analyses. Selection among the high number of co-linear variables, i.e.,
meteorological and environmental variables that were created at several time and space scales, was
performed by minimizing the AIC (the Akaike Information Criterion) in univariate analysis as well as
by choosing variables with the best biological input. A manual backward stepwise selection procedure
was applied in the final model to select variables with p-values < 0.05. The sampling scheme implied
that some autocorrelations could exist between observations given that nearby observations could be
more similar than distant ones due to the presence of more similar surroundings. In the case that the
local environment was not fully considered by the explanatory variables, a random effect was added to
the models at the level of the section. Model validity was assessed using the full sample and Receiver
Operating Characteristic (ROC) curve (i.e., representation of sensitivity against 1-specificity or true
positive rate versus false positive rate, thereby providing the discriminative value of a test). It should
be noted that the small amount of observations did not allow validity assessment of the models with a
subset of observations. The cut-off value was chosen to maximize sensitivity and specificity.
Robustness was assessed using six sub-models of each final model fitted by separately omitting the
experimental units of each section.

The linear equations derived from the final models allowed for the prediction of outcomes at the
non-surveyed experimental units, i.e., other Tartane houses and dates other than the dates of the
surveys. We have chosen to undertake mapping for each day of the 2010 year to visualize the seasonal
variability. The explanatory variables of the final models (Steps 1 and 2) were extracted from the GIS
for every single building of the area. Meteorological independent variables that were significantly
associated with the outcomes were calculated for each day of 2010. Then, the equation of Step 2 was
applied to the buildings that were predicted as water positive in Step 1. The results were daily maps of
the houses harboring Aedes larvae-positive container(s). These maps were merged into composite
monthly maps that included the number of days for which each house was predicted to be Aedes
larvae positive.

3. Results and Discussion
3.1. Results
3.1.1. Step 1. Modeling the Water-Positive Experimental Units

In univariate analysis, several environmental and meteorological variables were significantly
associated with the presence of water-filled container(s) in the experimental units. These environmental
parameters included the area of the class “sparsely vegetated soil” in the plot, area of the class “tiled
roof” in the plot, area of the class “swimming pool” within a 50-m buffer, slope of the plot, mean
object height in the 100-m buffer (with positive sign), as well as area of the class “lawn” within the
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50-m buffer, area of the class “sand” within the 50-m buffer and distance to the class “sparsely
vegetated soil” (with negative sign). Some rainfall, temperature, and humidity variables were also
positively or negatively associated with the presence of one or several water-filled container(s) in an
experimental unit.

In multivariate analysis, the area of the class “sparsely vegetated soil” in the plot and the total
rainfall during the 4-day period before the day of the field visit were positively associated with the
outcome, whereas the area of the class “lawn” within the 50-m buffer around the house was negatively
associated with the outcome (Table 2). The section random effect was not statistically significant in the
final model. In addition, the six sub-models fitted by separately omitting the experimental units of each
section provided similar coefficients compared with the final model. The area under the ROC curve
was 0.72 (95% confidence interval: 0.64-0.80). A total of 103 experimental units out of 158 were
correctly predicted (65%). The sensitivity was 63%, and the specificity was 69%. The positive
predictive value was 71%, and the negative predictive value was 59%.

Table 2. Remote-sensing environmental and ground meteorological variables significantly
associated with water-positive experimental units. Multivariate logistic regression analyses
with section random effects are provided (Step 1).

Explanatory Variables Coefficient  95% Confidence Interval  p-Value

158 Experimental Units, 6 Sections

Surface of the class “sparsely vegetated soil”

0.10 0.02; 0.19 0.017
in the house plot (per 10 m?) [ ]
Surface of the class “lawn” within the 50-m

-0.10 —-0.17; -0.03 0.007
buffer around the house (per 100 m?) [ ]
Total r'ai.nfall during the 4-day period before 0.6 [0.07: 0.46] 0.007
field visit (per 10 mm)
section random effect 0.498

3.1.2. Step 2. Modeling the Aedes Larvae-Positive Experimental Units

In univariate analysis, several environmental and meteorological variables were associated with
the presence of Aedes larvae-positive container(s) in the experimental units that held water-filled
container(s). Those environmental variables included area of the class “tree” within the 50-m buffer,
mean height of the houses within the 50-m buffer, mean NDVI within the 50-m buffer (with positive
sign), as well as area of the class “asphalt” within the 50-m buffer, area of the class “swimming pool”
within the 50-m buffer, and area of the class “tiled roof” within the 50-m buffer (with negative sign).
Some rainfall, temperature, and humidity factors were also positively or negatively associated.

In multivariate analysis, the mean of the maximum humidity recorded during the 5-day period
before the day of the ground investigation was positively associated with the outcome, whereas the
area of the class “asphalt” within the 50-m buffer around the house was negatively associated (Table 3).
The section random effect was not statistically significant in the final model. In addition, the six
sub-models fitted by separately omitting the experimental units of each section provided very similar
coefficients compared with the final model. The area under the ROC curve was 0.74 (95% confidence
interval, 0.63-0.86). A total of 64 experimental units out of 88 were correctly predicted (73%).
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The sensitivity was 70%, and the specificity was 74%. The positive predictive value was 58%, and the
negative predictive value was 83%.

Table 3. Remote-sensing environmental and ground meteorological variables significantly
associated with Aedes larvae-positive experimental units among units that hold water-filled
container(s). Multivariate logistic regression analyses with section random effects are
provided (Step 2).

Explanatory Variables Coefficient 95% Confidence Interval  p-Value

88 Experimental Units, 6 Sections

Surface of the class “asphalt” within the 50-m

—-0.10 —0.17; —0.04 0.003
buffer around the house (per 100 m?) [ ’ ]
Mean of maximum humidity during the 5-day

0.27 0.07; 0.48 0.008
period before field visit (per 1%) [ ’ ]
section random effect 0.209

3.1.3. Application of the Scenario (Step 1 + Step 2)

Final predictions from the chosen scenario are displayed in Table 4. A total of 132 experimental
units out of 158 were correctly predicted (84%). The sensitivity was 57%, and the specificity was 90%.
The percentage of correctly classified predictions ranged from 67% to 92% depending on sections.
The positive predictive value was 57%, and the negative predictive value was 90% (false positive
rate = 43%; false negative rate = 10%).

Table 4. Final predictions of the scenario versus field data: number of Aedes larvae-positive
experimental units versus number of Aedes larvae-negative experimental units.

Prediction from Scenario

Number of Aedes Number of Aedes
Larvae-Negative Larvae-Positive Total
Experimental Units Experimental Units
N fA 1 -negati
urnt.)er 0 ede.s arvae-negative 115 13 128
experimental units
Field Data  Number of Aedes | -positi
ield Data um .ero e e.s arvae-positive 13 17 30
experimental units
Total 128 30 158

3.1.4. Predictive Entomological Risk Map