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Abstract

Complex and highly coupled dynamics, time-variance, unpredictable distur-
bances and lack of knowledge of hydrodynamic parameters, complicate the
control of underwater vehicles. This paper deals with the adaptive distur-
bance observer design for the robust trajectory tracking problem for under-
water vehicles in presence of unknown external disturbances and parametric
uncertainties. First, the dynamics of the vehicle is transformed into the so-
called regular form. Then, based on the Extended State Observer technique
and High Order Sliding Modes Control, a disturbance observer is proposed.
Furthermore, the gains of the observer are automatically adjusted by the in-
troduction of an adaption law. The stability of the whole controller/observer
scheme is proven using Lyapunov’s arguments. The adaptive disturbance
observer aims to improve the Backstepping and nonlinear PD controllers.
Real-Time experiments demonstrate the effectiveness of the proposed algo-
rithm for the trajectory tracking task under several scenarios.

Keywords: Sliding Mode Control, Backstepping, PD, Autonomous
Underwater Vehicles, Adaptive Control

1. Introduction1

The Remotely Operated Vehicles (ROVs) and Autonomous Underwaters2

Vehicles (AUVs) have been an invaluable tool for research marine environ-3

ment. These two classes of underwater vehicles has proven their value in4

a wide range of applications, such as inspection, exploration, oceanography,5
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biology, and so on. In some applications, the vehicle’s autonomy plays a6

fundamental role in the success of the mission. Thus, to provide autonomy7

to underwater vehicles, there are three main tasks to perform, namely: 1)8

Station keeping, which refers to maintaining the vehicle to constant position9

and attitude; 2) Path following which is the task where the vehicle follows a10

spatial reference; and 3) Trajectory tracking, which means that the vehicle11

follows a time varying trajectory. In this paper, we focus on the first and12

third cases.13

The design of a trajectory tracking controller for an underwater vehicle14

is not trivial. The control of underwater vehicles is challenging due to the15

non-linearity, time-variance, random external disturbances, such as the envi-16

ronmental force generated by the sea current fluctuation, and the difficulty17

in accurately modeling hydrodynamic effects [1].18

Several strategies have been proposed to control underwater vehicles, such19

as Proportional-Derivative (PD) control [2, 3], Proportional Integral Deriva-20

tive (PID) control [4, 5], H2 and H∞ control [6], Optimal Control [7], to name21

a few. Moreover, many controllers were designed employing the linearized22

model of underwater vehicles, considering strong restrictive assumptions to23

simplify the mathematical description, resulting sometimes in low robustness24

to both external disturbances and model uncertainties. This is the reason25

why many researchers concentrated their interests in developing robust con-26

trollers for underwater vehicles.27

The Sliding Mode Control (SMC) is a robust technique, which allows28

controlling the vehicle despite external disturbances and parameters uncer-29

tainties. For example, a second order sliding mode controller for trajectory30

tracking task for an underwater vehicle is proposed in [8]. In order to mini-31

mize the energy consumption of the controller, a Super-Twisting SMC with32

region concept is proposed in [9]. However, the main drawback of the SMC is33

the chattering effect induced by the signum function. Although other func-34

tions can replace the signum function [10], it constrains the sliding systems35

trajectories, not to the sliding surface but to its vicinity, thus partly losing36

the robustness to the disturbances [11].37

Backstepping Control (BSC) is another popular technique, sometimes38

used to control underwater vehicles. The BSC technique offers a system-39

atic procedure to construct the Lyapunov functions and related stabilizing40

feedback control laws recursively [12]. For example, a bioinspired filtered41

Backstepping tracking control for the kinematic model of an underwater ve-42

hicle is proposed in [13]. In [14] an error-based block BSC for the trajectory43
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tracking of a submarine is proposed. However, the drawback of the BSC is44

that it requires perfect cancellation of the robot’s nonlinear dynamics, which45

means that the exact knowledge of this latter is needed.46

PD and PID controllers are popular techniques used to control the posi-47

tion and attitude if underwater vehicles due to their simple design and good48

performance. However, it is well-known that the performance of the PD/PID49

controller is degraded when the plant is highly nonlinear or time-varying. To50

overcome these drawbacks, the PD/PID controllers are improved adopting51

strategies based on auto-adjustable [15], saturated [16], adaptive [17], or52

nonlinear functions [18, 19]. For instance, a nonlinear PID for the trajec-53

tory tracking of an AUV is proposed in Guerrero et al. [19]. In this work, a54

PID was saturated by a whole set of nonlinear functions in order to provide55

robustness towards external disturbances and parametric uncertainties. In56

general, PD and PID improved controllers can preserve easy design and gain57

robustness towards external disturbance, as one can see on the results of the58

above cited papers.59

The disturbance observation focuses on controller improvement through60

counteracting of the disturbances. For example, the Extended State Ob-61

server (ESO) methodology is applied to an AUV trajectory tracking in [20].62

In this work, the authors propose an adaptive ESO algorithm to estimate63

the unknown submarine velocity, parametric uncertainties and external dis-64

turbances for the full six Degrees of Freedom (DoF) of the system. Then,65

an Integral Sliding Mode Control (ISMC) is designed and includes the dis-66

turbance estimation made by the ESO. Based on real-time experiments, the67

authors show the improvement of the ISMC and compare the proposed al-68

gorithm with the classical PD controller. Nonetheless, the proposed control69

scheme needs the adjustment of many controller gains, which can be time-70

consuming. Also, the control law uses the signum function, which causes71

chattering, as can be seen on the reported control input graphs. Finally, al-72

though the algorithm was designed to compensate parametric uncertainties,73

experiments about robustness against parameter changes are not shown.74

In this paper, we develop an adaptive disturbance observer based on75

the Generalized Super-Twisting Algorithm (GSTA) [21] through the ESO76

technique in order to improve robustness to both external disturbances and77

model uncertainties. For example, based on the real-time experiments shown78

in work [14], the proposed BSC shows a constant offset between the vehicle79

and the desired trajectory. Similarly, in the experiments that were carried80

out with a nonlinear PD (NLPD) control law, in the study [18], we can81
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observe a constant error in steady-state behavior in the depth tracking tests82

when parametric uncertainties are considered. In this sense, the developed83

disturbance observer is introduced into BSC and NLPD control laws, in order84

to counteract the effects of the external disturbances and the parametric85

uncertainties.86

The main contributions of this paper are as follows:87

1. An Adaptive disturbance observer based on High Order Sliding Mode88

Controllers and Extended State Observer is developed to estimate and89

compensate the effects of external disturbances and parameters uncer-90

tainties during trajectory tracking for an underwater vehicle. Moreover,91

the stability analysis of the whole scheme observer/controller is proven92

by Lyapunov’s arguments.93

2. The adaptive GSTA-ESO extends our previous results (see Guerrero94

et al. [22]) introducing adaption laws to update the observer’s gains,95

then relaxing the requirement of knowing the upper bound of pertur-96

bations.97

3. The GSTA-ESO improves the BSC and NLPD controllers performances98

shown in [14] and [18], respectively.99

4. The effectiveness of the proposed adaptive observer is validated through100

real-time experiments.101

The rest of the paper is organized as follows: a brief description of the102

dynamics of an underwater vehicle is given in Section 2. BSC and NLPD103

enhancement with the adaptive disturbance observer technique are described104

in Section 3. The real-time experimental results for two DoF trajectory105

tracking are presented and analyzed in Section 4. Finally, some concluding106

remarks are delineated in Section 5.107

2. Dynamic Model108

The mathematical model is described with respect to an earth-fixed frame109

(xI , yI , zI), and a body-fixed reference frame (xb, yb, zb) as shown in Figure 1.110

The matrix of spatial transformation between the inertial frame and the
frame of the rigid body can be defined through the transformation of the
Euler angles, J(η), and the following equation:

η̇ = J(η)ν (1)
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Figure 1: Leonard underwater vehicle reference frames. The earth-fixed frame is denoted
(OI , xI , yI , zI) and the body-fixed frame is denoted (Ob, xb, yb, zb).

where ν = [u, v, w, p, q, r]T is the vector of velocity in the body-fixed frame
and η = [x, y, z, φ, θ, ψ]T represents the vector of position and orientation
in the earth-fixed frame. Moreover, the SNAME notation [23] is usually
employed to describe the mathematical model of the underwater vehicles,
which can be written as follows [4, 24, 5, 25]:

M(ν)ν̇ + C(ν)ν +D(ν)ν + g(η) = τ + we(t) (2)

where M(ν) ∈ R6×6 is the matrix of inertia (including the effects of added111

mass), C(ν) ∈ R6×6 is the Coriolis-centripetal matrix, D(ν) ∈ R6×6 repre-112

sents the hydrodynamic damping matrix, g(η) ∈ R6 is the vector of gravita-113

tional/buoyancy forces and moments. Finally, τ ∈ R6 is the control vector114

acting on the underwater vehicle, and we(t) ∈ R6 represents the vector of115

external disturbances.116

By applying the velocity transformation mapping given by Eq. (1) to Eq.
(2), it is possible to express the dynamics in the earth-fixed frame as follows
(see [14, 22] for more details):

Mη(η)η̈ + Cη(ν, η)η̇ +Dη(ν, η)η̇ + gη(η)︸ ︷︷ ︸
f(η,ν)

= τη + wη(t) (3)

where f(η, ν) is the system dynamics.As highlighted by the work [4, 24], the
elements of the matrices of the dynamic model (3) depend of a large set
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of parameters, difficult to estimate [26]. For this reason, it is common to
introduce assumptions to reduce the number of parameters. From equation
(3), the system dynamics f(η, ν) can be written as the sum of the estimated
dynamics f̂(η, ν) and the unknown dynamics f̃(η, ν), as follows:

f(η, ν) = f̂(η, ν) + f̃(η, ν) (4)

where:

f̂(η, ν) = M̂η(η)η̈ + Ĉη(ν, η)η̇ + D̂η(ν, η)η̇ + ĝη(η) (5)

f̃(η, ν) = M̃η(η)η̈ + C̃η(ν, η)η̇ + D̃η(ν, η)η̇ + g̃η(η) (6)

here the matrices of the unknown dynamics vector f̃(η, ν) are defined as117

M̃η = Mη − M̂η, C̃η = Cη − Ĉη, D̃η = Dη − D̂η and g̃η = gη − ĝη.118

Finally, the mathematical model of the underwater vehicle can be ex-
pressed with respect to known parameters by introducing the relation (4)
into the dynamic system (3), which leads to

M̂η(η)η̈ + Ĉη(ν, η)η̇ + D̂η(ν, η)η̇ + ĝη(η) = τη + d(t) (7)

where the lumped unknown disturbance vector is defined as d(t) = wη(t) −119

f̃(η, ν). It is worth to note that the disturbance vector d(t) contains the120

effects of the external disturbance and the unknown dynamics as well.121

3. Adaptive Disturbance Observer and Trajectory Tracking Con-122

troller Design123

In this section, a new adaptive disturbance observer is introduced. This124

observer is based on the Extended State Observer technique which has been125

proposed originally in [27, 28]. The ESO method is applied to integral chain126

systems. The main idea behind the ESO technique is to design a state ob-127

server for a new augmented system, which considers the external disturbance128

term as an additional state. Then, the estimation made by the observer will129

provide information about the system’s states and the external disturbance130

as well. The main drawback of this technique is that the bound of the ex-131

ternal disturbance needs to be known precisely in order to obtain a proper132

tuning of the observer’s gains. Based on this issue, in the study [29], we pro-133

posed a GSTA-ESO based on High Order Sliding Modes theory. The main134

advantage of the proposed method is that the estimation of the disturbance135
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is made in finite time. The effectiveness of the GSTA-ESO is demonstrated136

through real-time experiments. The experiments show the improvement of137

the NLPD nominal design towards parametric uncertainties and external dis-138

turbances as well. In theory, the observer of the proposed scheme has three139

gains to tune, directly related to the upper bound of the disturbance. In140

this manuscript, we have extended the results shown in our previous work,141

introducing adaption laws to update the observer’s gains depending on the142

disturbance evolution. It means that the controller will be capable of re-143

jecting bounded time-varying disturbances even if the upper bound of the144

perturbation is not known.145

3.1. Adaptive Disturbance Observer Design146

First, from the vehicle’s dynamics described by Eq. (7), we introduce the
following state variables:

ζ1(t) = η(t) ; ζ2(t) = η̇(t) (8)

Then, the mathematical model, (7), can be rewritten into the so-called reg-
ular form as follows:

ζ̇1(t) = ζ2(t)

ζ̇2(t) = F (ζ) +G(ζ)τη + d(t) (9)

where:

F (ζ) = − M̂n(η)−1
[
Ĉn(ν, η)η̇ + D̂η(ν, η)η̇ + ĝη(η)

]
G(ζ) = M̂n(η)−1

d(t) =M̂η(η)−1d(t)

Before proposing the adaptive disturbance observer, we need to introduce147

the following assumptions:148

Assumption 1. The pitch angle is smaller than π/2, i.e., |θ| < π/2.149

Assumption 2. The external disturbance d(t) is a Lipschitz continuous sig-150

nal, but its upper bound is not necessarily known.151

7



According to Assumption 1, the inverse of the matrix J(η) exists. Also,
according to Assumption 2, the time derivative of the lumped external dis-
turbance terms d(t) exists almost everywhere and it is bounded:

|ḋi(t)| ≤ Li, i = 1, 6 (10)

In this work, we assume that the waves and currents fulfill Assumption 2.152

The first step of the design of the adaptive disturbance observer is to
introduce the next auxiliary variable σ(t) defined as:

σ(t) = ζ2(t) + Λζ1(t) (11)

where σ(t) := [σ1, σ2, · · · , σ6]T and Λ = diag(λ1, λ2, · · · , λ6) is a diagonal,153

and positive definite matrix.154

Computing the time derivative of (11) leads to:

σ̇(t) = F (ζ) +G(ζ)τη + d(t) (12)

with F (ζ) = F (ζ) + Λζ̇1(t).155

The second step is to consider the total disturbance d(t) in Eq. (12) as
an extended state χ(t) as follows:

σ̇(t) = F (ζ) +G(ζ)τη + χ(t)

χ̇(t) = h(t) (13)

where h(t) is the time derivative of the total disturbance d(t).156

Remark 1. It is worth to note that the time derivative of the disturbance,157

h(t), is used to design the disturbance observer only. This parameter will be158

estimated by the adaptive algorithm.159

Finally, we propose a new disturbance observer which is constructed as
follows:

σ̃(t) = σ̂(t)− σ(t)

χ̃(t) = χ̂(t)− χ(t)

˙̂σ = F (ζ) +G(ζ)τη −K1Φ1(σ̃) + χ̂(t)

˙̂χ = −K2Φ2(σ̃)

(14)

where σ̃(t) and χ̃(t) are respectively the estimation error of the ESO and
the estimation error of the disturbance χ(t). σ̂(t) and χ̂(t) are the observer
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internal states. ˙̂σ(t) and ˙̂χ(t) are the dynamics of the observer internal states
and the vectors Φ1(σ̃) = [φ11, φ12, · · · , φ16]

T and Φ2(σ̃) = [φ21, φ22, · · · , φ26]
T

and each element of the mentioned vectors is given by:

φ1i(σ̃i) = µ1i|σ̃i|1/2sgn(σ̃i) + µ2iσ̃i

φ2i(σ̃i) =
1

2
µ2
1isgn(σ̃i) +

3

2
µ1iµ2i|σ̃i|1/2sgn(σ̃i) + µ2

2iσ̃i

where µ1i, µ2i ≥ 0 with i = 1, 6, K1 = diag(k11, k12, · · · , k16) and K2 =
diag(k21, k22, · · · , k26) are the observer gains which are definite positive ma-
trices. Moreover, if each element of the observer gain matrices is selected as
follows:

k̇1i(t) =

{
ωi
√

ςi
2

if σ̃ 6= 0
0 if σ̃ = 0

(15)

k2i(t) = 2εik1i(t) + βi + 4ε2i (16)

where ωi, ςi, βi and εi are arbitrary positive constants, with i = 1, 6. Then,160

for any initial condition σ̃i(0) and χ̃i(0), the variables σ̃i and χ̃i will tend to161

zero in a finite time as is stated in the next.162

Theorem 1. Consider the perturbed augmented system (13). The proposed163

AGSTA-ESO (14) ensures that the observer error dynamics converges to zero164

in finite time if the gains K1 and K2 are definite positive matrices according165

to the adaption law given by equations (15) and (16).166

Proof. The observer error dynamics is given by:

˙̃σ = χ̃(t)−K1Φ1(σ̃)

˙̃χ = −K2Φ2(σ̃)− h(t)
(17)

Now, let us rename the error variables σ̃, χ̃ as follows :

s1i = σ̃i

s2i = χ̃i

Then, Eq. (17) can be rewritten in a scalar form (i = 1, 6) as:

ṡ1i = −k1i
[
µ1i|s1i|

1
2 sgn(s1i) + µ2is1i

]
+ s2i

ṡ2i = −k2i
[1

2
µ2
1isgn(s1i) +

3

2
µ1iµ2i|s1i|

1
2 sgn(s1i) + µ2

2is1i

]
+ hi(t)

(18)
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Without loss of generality, we can represent the system (18) with the follow-
ing simplified notation:

ṡ1 = −k1
[
µ1|s1|

1
2 sgn(s1) + µ2s1

]
+ s2

ṡ2 = −k2
[1

2
µ2
1sgn(s1) +

3

2
µ1µ2|s1|

1
2 sgn(s1) + µ2

2s1

]
+ h(t)

(19)

Now, in order to prove the asymptotic stability of the closed-loop system
(19), we propose the following Lyapunov function candidate:

V (s1, s2, k1, k2) = V0(·) +
1

2ς1
(k1 − k∗1)2 +

1

2ς2
(k2 − k∗2)2 (20)

where ς1,ς2,k
∗
1, and k∗2 are positive constants and V0(·) is given by:

V0(s1, s2, k1, k2) = ξTPξ (21)

with:

ξT = [φ1(s1), s2] (22)

and

P = P T =

[
β + 4ε2 −2ε
−2ε 1

]
> 0 (23)

Since β and ε are defined as arbitrary positive constants, P is a positive
definite matrix. Clearly, the quadratic form V0(·) satisfies:

λmin(P )‖ξ‖22 ≤ V0(s, k) ≤ λmax(P )‖ξ‖22 (24)

where λmin(P ) and λmax(P ) respectively are the smallest and greatest eigen-

value of P . ‖ξ‖22 = µ2
1|s1| + 2µ1µ2|s1|

3
2 + µ2

2s
2
1 + s22 is the Euclidean norm of

ξ and the next inequality is satisfied as well:

|φ(s1)| ≤ ‖ξ‖2 ≤
V

1
2 (ξ)

λ
1
2
min(P )

(25)

Finally, it is important to note that the proposed candidate Lyapunov func-167

tion V (s1, s2, k1, k2) is a continuous, positive definite and differentiable func-168

tion.169
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To compute the time derivative of the proposed Lyapunov function can-170

didate (20), the time derivative of V0(·) is found first. Then, the total time171

derivative of V (·) is computed:172

Step 1. Noting that φ2(s1) = φ′1(s1)φ1(s1), where φ′1(s1) =
(
µ1

1
2|s1|1/2

+

µ2

)
, and introducing L = h(t)

φ′1(s1)
. Then, the time derivative of V0(·) is obtained

as:

V̇0 = 2ξTP ξ̇ (26)

= 2ξTP

[
φ′1

[
− k1φ1(s1) + s2

]
−k2φ2(s1) + h(t)

]
(27)

= 2ξTP

φ′1(s1)[− k1φ1(s1) + s2

]
φ′1(s1)φ1(s1)

[
− k2 + L

] (28)

= φ′1(s1)2ξ
TP

[
−k1 s2

−(k2 − L) 0

]
︸ ︷︷ ︸

A(t,χ)

ξ (29)

= φ′1(s1)ξ
T (AT (t, χ)P + PA(t, χ))ξ (30)

= −φ′1(s1)ξTQ(t, χ)ξ (31)

where

Q(t, χ) =

[
2k1(β + 4ε2)− 4ε(k2 − L) ?
k2 − L− 2εk1 − β − 4ε2 2ε

]
(32)

and ? = k2 − L− 2εk1 − β − 4ε2.173

Selecting the gain k2 = 2εk1 + β + 4ε2, we have:

Q− 2εI =

[
2k1β − 4ε(β + 4ε2 − L)− 2ε −L

−L 2ε

]
(33)

The matrix Q will be positive definite with a minimal eigenvalue λmin(Q) ≥ 2ε
if

k1 > δ0 +
α2
2

4εβ
+
ε
[
2(β + 4ε2 + L) + 1

]
2β

(34)

where δ0 is a small positive constant.174
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Then, the time derivative of V0(·) can be rewritten as:

V̇0 = −φ′1(s1)ξTQ(t, x)ξ ≤ −2εφ′1(s1)ξ
T ξ = −2ε

(
µ1

1

2|s1|
1
2

+ µ2

)
ξT ξ (35)

Finally, using Eq. (25), the time derivative of V0(·) is expressed as:

V̇0 ≤−
ελ

1
2
min(P )

λmax(P )
µ1V

1
2
0 (s, k)− 2ε

λmax(P )
µ2V (s, k) (36)

≤− γV
1
2
0 (s, k) (37)

with γ = µ1
ελ

1
2
min(P )

λmax(P )
.175

Step 2. The time derivate of the Lyapunov function candidate (20) is
obtained as follows:

V̇ = V̇0(·) +
1

ς1
(k1 − k∗1)k̇1 +

1

ς2
(k2 − k∗2)k̇2 (38)

≤ −γV
1
2
0 (s, k) +

1

ς1
(k1 − k∗1)k̇1 +

1

ς2
(k2 − k∗2)k̇2 (39)

= −γV
1
2
0 (s, k)− ω1√

2ς1
|k1 − k∗1| −

ω2√
2ς2
|k2 − k∗2|+

1

ς1
(k1 − k∗1)k̇1+ (40)

+
1

ς2
(k2 − k∗2)k̇2 +

ω1√
2ς1
|k1 − k∗1|+

ω2√
2ς2
|k2 − k∗2| (41)

Using the inequality
√
x2 + y2 + z2 ≤ |x|+ |y|+ |z|, the first three terms of

V̇ can be synthesized as follows:

−γV
1
2
0 (s, k)− ω1√

2ς1
|k1 − k∗1| −

ω2√
2ς2
|k2 − k∗2| ≤ −π

√
V (s, k1, k2) (42)

where π = min(γ, ω1, ω2).176

Assuming that there exist positive constants k∗1 and k∗2 such that k1−k∗1 <
0 and k2 − k∗2 < 0 are satisfied ∀t ≥ 0. Then, the time derivative of V can
be rewritten as:

V̇ ≤ −π
√
V (s, k1, k2)− |k1 − k∗1|

(
1

ς1
k̇1 −

ω1√
2ς1

)
− |k2 − k∗2|

(
1

ς2
k̇2 −

ω2√
2ς2

)
= −π

√
V (s, k1, k2) + ϑ (43)
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where:

ϑ = −|k1 − k∗1|
(

1

ς1
k̇1 −

ω1√
2ς1

)
− |k2 − k∗2|

(
1

ς2
k̇2 −

ω2√
2ς2

)
(44)

In order to preserve the finite time convergence, it is necessary to ensure the
condition ϑ = 0, which will be achieved through the following adaption laws:

k̇1 = ω1

√
ς1
2

(45)

k̇2 = ω2

√
ς2
2

(46)

In brief, the adaptive gains k1 and k2 will be increased based on the dy-177

namic and algebraic equations stated in (15)-(16), until the condition (34)178

is reached. Then, the matrix Q will be positive definite and the finite time179

convergence will be assured according to (43). The previous result guaran-180

tees the finite time convergence of σ̃ and χ̃ to zero, and when this happens,181

the adaptive gains k1 and k2 will stop growing by making k̇1 = 0.182

Remark 2. In real applications, an ’ideal’ sliding mode cannot be established183

[30]. Then, it is crucial to introduce the concept of the ’real’ sliding mode.184

Definition 1. Given the sliding variable σ̃(t), the ’real sliding surface’185

associated with (9) is defined as in the sense of [31].186

In this context, the definition of ’real’ sliding mode means that the con-
dition σ̃(t) = 0 is never satisfied. In fact, the variable σ̃(t) is related to the
system state η as stated by Eq. (11). Then, the measurement of η is always
corrupted by noise, which makes impossible the satisfaction of the condition
σ̃(t) = 0. Therefore, the gains k1(t) and k2(t) given by Eqs. (15) and (16)
will increase drastically. To overcome this drawback, the definition of the real
sliding surface is employed, and the adaptive gains (15)-(16) are modified as
follows:

k̇1i(t) =

{
0 if |σ̃| < δi
µ1i

√
ς1i
2

otherwise
(47)

k2i(t) = 2εik1i(t) + βi + 4ε2i (48)

where δi is a small positive parameter.187
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Remark 3. The selection of the parameter δi was chosen by trial and error188

approach. However, there is a trade-off between the parameter value selec-189

tion and the chattering effect in the robot’s actuators caused by the gain190

overestimation. This means that if δi is selected close to zero, the feedback191

controller’s gains will grow up, and if the the parameter is selected too high,192

the convergence time of the robot to the reference trajectory will increase as193

well.194

4. Enhanced Controller design195

In this section, a brief description of the enhanced backstepping and non-196

linear PD controllers is provided. First, The adaptive disturbance observer is197

introduced into the controllers in order to counteract the effects of the exter-198

nal disturbances and parameter uncertainties. Then, Lyapunov’s functions199

are used to prove the stability of the controller/observer scheme.200

4.1. Adaptive Backstepping controller201

The design of a Backstepping controller for trajectory tracking in-depth202

and yaw dynamics was proposed in work [14]. In this study, the authors203

demonstrated the effectiveness of the proposed controller through real-time204

experiments. However, from the depth tracking experimental results, one can205

notice that there is a tracking offset between the controller signal and the206

trajectory reference. This deficiency can be due to a bad tuning or that the207

force of the disturbance is excessive and, therefore, exceeds the capabilities208

of the proposed control. In order to overcome this drawback, in this section,209

the disturbance estimation made by the AGSTA-ESO is inserted into the210

algorithm shown in [14]. As a result of the proposed scheme, the Adaptive211

Backstepping control (ABS) is described in the following theorem:212

Theorem 2. Consider the system (7) transformed into (9). Let e1(t) = ζ1−213

ζd1 and e2(t) = [ex2(t), ey2(t), · · · , e
ψ
2 (t)]T = ė1(t)+Γe1(t) be the tracking errors214

and the gain diagonal and positive definite matrices Γ = diag(γ1, γ2, · · · , γ6)215

and Υ = diag(υ1, υ2, · · · , υ6). If Assumptions 1 and 2 are satisfied and216

proposing the following adaptive backstepping controller:217

τη = G(ζ)−1
[
η̈d − e1 − F (ζ) + Γ (Γe1 − e2)−Υe2 − d̂− K̂Sign(e2)

]
(49)
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where d̂(t) is the estimation of the disturbance made by the AGSTA-ESO
(14), Sign(e2(t)) = [sgn(ex2(t)), sgn(ey2(t)), · · · , sgn(eψ2 (t))]T , and K̂ is a con-
stant gain selected by the following adaption law:

˙̂
K = λ1‖e2(t)‖ (50)

with λ1 is a positive constant. Then, the tracking errors e1(t) and e2(t)218

converge to zero asymptotically.219

Proof. Step 1. Let us consider the following Lyapunov function candidate:

V1(e1) =
1

2
eT1 e1 (51)

The time derivative of V along the trajectories of the system (9) is given by:

V̇ (e1) = eT1 ė1 = eT1 (ζ̇1 − ζ̇d1 ) = eT1 (ζ2 − ζ̇d1 ) (52)

Selecting ζ2 as the virtual control, ζv2 , as follows:

ζv2 = ζ̇d1 − Γe1 (53)

yields to:

V̇1(e1) = −eT1 Γe1 (54)

Moreover, the stabilization of ė1(t) is achieved by choosing Γ > 0.220

Step 2. Introducing the following error e2 = ζ2 − ζv2 , and computing its
time derivative with (53), yields to the following dynamic error system:

ė1 = e2 − Γe1 (55)

ė2 = F (ζ) +G(ζ)u+ d(t)− ζ̈d1 + Γė1 (56)

Proposing the Lyapunov function candidate as:

V2(e1, e2) =
1

2
eT1 e2 +

1

2
eT2 e2 +

1

2λ1
K̃2 (57)

where the parameter estimation error is defined as K̃ = K̂ −K.221
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The time derivative of V2 along the trajectories over the system (55) is
obtained as follows:

V̇2 = eT1 ė1 + eT2 ė2 +
1

λ1
K̃

˙̂
K (58)

= eT1 [e1 − Γe1] + eT2 [F (ζ) +G(ζ)τη + d(t)− ζ̈d1 + Γė1] +
1

λ1
K̃

˙̂
K (59)

= −eT1 Γe1 + eT2 [e1 + F (ζ) +G(ζ)τη + d(t)− ζ̈d1 + Γė1] +
1

λ1
K̃

˙̂
K (60)

Injecting the control law (49) into the time derivative of V2, and assuming
that the AGSTA-ESO estimates the external disturbance in finite time and
fulfills the following constraint ‖d(t)− d̂(t)‖ ≤ K [32], leads to

V̇2 = −eT1 Γe1 − eT2 Υe2 + eT2 [d(t)− d̂(t)− K̂Sgn(e2)] +
1

λ1
K̃

˙̂
K (61)

≤ −λmin(Γ)‖e1‖22 − λmin(Υ)‖e2‖22 + ‖e2‖2K − ‖e2‖2K̂ + K̃‖e2‖2 (62)

= −λmin(Γ)‖e1‖22 − λmin(Υ)‖e2‖22 (63)

Finally, the asymptotic stabilization of the closed loop system is guaranteed222

selecting Γ > 0 and Υ > 0.223

Remark 4. For comparison purpose, the Backstepping control law developed
in work [14] is given by the following:

τη = G(ζ)−1
[
η̈d − e1(t)− F (ζ) + Γ (Γe1(t)− e2(t))−Υe2(t)

]
(64)

4.2. Adaptive Nonlinear PD control224

The NLPD is a robust controller proposed in work [18]. The authors have
proven the robustness of the NLPD to parametric uncertainties. However,
based on the experimental results, due to the extra damping added to the
vehicle, the performance of the depth tracking shows a constant error dur-
ing the steady-state behavior. In order to overcome this drawback, it was
shown in Guerrero et al. [29] that, the addition of a finite-time disturbance
estimator, GSTA-ESO, to the nominal NLPD improves significantly its ef-
fectiveness towards external and parametric disturbances. In this vein, one
step ahead might be the introduction of adaptation laws allowing to update
the observer’s gains depending on the disturbance evolution. The advantage
is that the controller will be able of rejecting bounded time-varying distur-
bances even if the upper bound of the perturbation is not known. Following
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this line of thinking, the disturbance estimation made by the AGSTA-ESO
will be introduced into the NLPD.
For notation consistency, let us now write the UAV’s dynamic system (9) in
terms of the variables ζ1 = η and ζ2 = η̇, namely,

M̂ζ(ζ)ζ̇2 + Ĉζ(ν, ζ1)ζ̇1 + D̂ζ(ν, ζ1)ζ̇1 + ĝζ(ζ1) = τζ + d(t) (65)

225

The following Theorem gives the main result of this Section:226

Theorem 3. Let the vehicle’s mathematical model with external disturbances
be defined by Eq. (7), which can be rewritten into the model (65). Introducing
the disturbance estimation d̂(t) given by equations (14) into the following
adaptive nonlinear PD (ANLPD) controller

τζ = M̂ζ ζ̇
d
2 (t) + Ĉζ(ν, ζ)ζ̇d1 (t) + D̂ζ(ν, η)ζ̇d1 (t) + ĝζ(ζ)− (66)

−Kp(·)e−Kd(·)ė− M̂η(η)d̂− K̂Sign(ė)

where ζ̇d2 (t) = ζ̈d1 (t), e(t) = [e1(t), e2(t), · · · , e6(t)]T= ζ1(t)− ζd1 (t) is the error
signal, ė(t) = [ė1(t), ė2(t), · · · , ė6(t)]T= ζ̇1(t)− ζ̇d1 (t) its time derivative, and
the desired trajectory is defined as ζd1 (t) =[xd(t), yd(t), zd(t), φd(t), θd(t), ψd(t)]

T .
The vector Sign(ė) = [sgn(ė1(t)), sgn(ė2(t)), · · · , sgn(ė6(t))], d(t) = M̂(η)−1d(t),
and K̂ is a constant gain selected by the following adaption law:

˙̂
K = λ2‖e2(t)‖ (67)

where λ2 is a positive constant. The gain matrices Kp(·) and Kd(·) have the
following structure:

Kp(·) =


kp1(·) 0 · · · 0

0 kp2(·) · · · 0
...

...
. . .

...
0 0 · · · kpn(·)

 > 0 (68)

Kd(·) =


kd1(·) 0 · · · 0

0 kd2(·) · · · 0
...

...
. . .

...
0 0 · · · kdn(·)

 > 0 (69)
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and asymptotically stabilize the system (7) if the underwater vehicle is moving
at low speed, and if kpj(·) and kdj(·) are defined as:

kpj(·) =

{
bpj|ej(t)|(µpj−1) if |ej(t)| > dpj

bpjd
(µpj−1)
pj if |ej(t)| ≤ dpj

(70)

kdj(·) =

{
bdj|ėj(t)|(µdj−1) if |ėj(t)| > ddj

bdjd
(µdj−1)
dj if |ėj(t)| ≤ ddj

(71)

∀µpj, µdj ∈ [0, 1].

with the positive constants bpj, bdj, dpj, and ddj.227

Proof. Injecting the control law (66) into the mathematical model of the
underwater vehicle, (9), the closed-loop error system is given by:

d

dt

[
e
ė

]
=

[
ė

−M̂ζ(η)−1
[
[Ĉζ + D̂ζ +Kd(·)]ė+Kp(·)e+ K̂Sgn(ė)

]
− d̂(t) + d(t)

]
(72)

Let us consider the following Lyapunov candidate function as:

V (e, ė) =
1

2
ėTM̂ζ(ζ)ė+

∫ e

0

%TKp(%)d%+
1

2λ2
K̃2 (73)

where∫ e

0

%TKp(%)d% =

∫ e1

0

%TKp(%)d%+

∫ e2

0

%TKp(%)d%+ · · ·+
∫ e6

0

%TKp(%)d%

(74)

and κ is a positive constant.228

This function is positive definite and radially unbounded (see [18] for a
deeper description). Then, the time derivative of the Lyapunov candidate
function is computed as:

V̇ (e, ė) = ėTM̂ζ(ζ)ë+
1

2
ėT

˙̂
Mζ(ζ)ė+ eTKp(·)ė+

1

λ2
K̃

˙̂
K (75)

Considering that the GSTA-ESO converges to the disturbance dynamics in
finite time, it is reasonable to assume that ‖d(t) − d̂(t)‖ ≤ K, with the un-
known constant K > 0. The constant K was obtained through the adaption
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law (67). Then, substituting the error dynamics (72) into the time derivative
of V (·) and considering the Assumption 2 and equation (67), yields to:

V̇ (e, ė) = −ėT
[
D̂ζ(ν, ζ) +Kd(·)

]
ė+ ėT [d(t)− d̂(t)]− K̂ėTSign(ė) +

1

λ2
K̃

˙̂
K

(76)

= −ėT
[
D̂ζ(ν, ζ) +Kd(·)

]
ė+ ėT [d(t)− d̂(t)]− K̂

6∑
i=0

|ėi|+
1

λ2
K̃

˙̂
K

(77)

≤ −λmin(D̂ζ(ν, ζ) +Kd(·))‖ė‖2 +K‖ė‖ − K̂‖ė‖+ K̃‖ė‖ (78)

≤ −λmin(D̂ζ(ν, ζ) +Kd(·))‖ė‖2 (79)

Finally, because the gain matrix is Kd(·) > 0 by design and the damping229

matrix fulfills D̂ζ(ν, ζ) > 0 [4], the function V̇ (·) is negative semi-definite.230

Finally, applying the Krasovskii-Lasalle’s theorem we can conclude that the231

equilibrium point is asymptotically stable [18].232

Remark 5. In the experimental part of this work, the performance of the
developed controller law given by equation (66) is compared to the NLPD
control proposed in [18], namely:

τζ = M̂ζ ζ̇
d
2 (t) + Ĉζ(ν, ζ)ζ̇d1 (t) + D̂ζ(ν, η)ζ̇d1 (t) + ĝζ(ζ)−Kp(·)e−Kd(·)ė

(80)

Remark 6. It is worth to notice that in this manuscript is different from233

the work presented in [19]. On one hand, in study [19], a nonlinear PID was234

proposed while in this work, we propose the improvement of the nonlinear PD235

proposed by [18]. On the other hand, in this manuscript, we use sliding mode236

theory to improve a PD controller while in work [19] is an extension of the237

saturated based-control.238

5. Experimental Results239

Leonard is a tethered underwater vehicle entirely designed and built at240

LIRMM (University of Montpellier / CNRS, France). The vehicle’s size is 75241

cm long, 55 cm width, and 45 cm height and weighs 28 kg. The propulsion242

system of this vehicle consists of six independent thrusters to obtain a fully243

actuated system.244
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The information from the sensors of the underwater vehicle (depth, IMU)245

is sent, through a tether, to a computer located at the surface. Then, the ma-246

chine computes the control laws and sends the control input to each thruster247

of Leonard. The computer machine is a laptop with Intel Core i7-3520M 2.9248

GHz CPU, 8GB of RAM, it runs under Windows 7 operating system, and249

the control software is developed using Visual C++ 2010. More details about250

the Leonard Underwater Vehicle can be found in [22].251

The real-time experiments have been carried out in the 4×4×1.2 m pool of252

the LIRMM. Even though the proposed control laws were given by equations253

(49), (64), (66) and (80) is designed for the whole system (six degrees of254

freedom), the experiments conducted in this study concern only depth and255

yaw trajectory tracking. The primary goal of the proposed controllers is to256

track the desired reference trajectory robustly in depth and yaw even in the257

presence of parameter uncertainties and external disturbances. The whole258

set of real-time experiments is available at:259

https://www.youtube.com/watch?v=aBOvvlsYNQE260

https://www.youtube.com/watch?v=oXPqSLvXobk261

5.1. Proposed Scenarios262

In order to show the improvement of adding the adaptive finite time263

disturbance estimator to the BS and NLPD controllers, we propose three264

main scenarios:265

(i) Scenario 1: Nominal case.266

In this scenario, the robot follows a predefined desired trajectory in267

depth and yaw in the absence of external disturbances. During this268

test, the controller’s gains are adjusted to obtain the best tracking.269

These gains remain unchanged during the rest of the experiments.270

(ii) Scenario 2: Robustness towards parametric uncertainties271

In this test, the buoyancy and damping of the vehicle are increased to272

test the robustness of the proposed methodology towards parametric273

uncertainties, see Figure 2.274

(iii) Scenario 3: External disturbances rejection.275

In this test, the vehicle has the task of loading an object and when276

reaching a certain depth, dropping that object. Moreover, during this277

test, it is possible to see a sudden change in the vehicle’s weight and278

how it affects the controller performance, see Figure 3.279
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5.2. Feedback controller gains tuning280

It is worth to notice that the selection of the tuning gains of the BS and281

NLPD controllers were found following the procedure proposed in [14] and282

[18], respectively.283

For the tuning of the proposed adaptive observer gains given by Eq. (15) ,284

we found the gains by heuristic approach, the steps are shown below:285

286

1. We set the value of ς1i = 1 and µ1i = 0.1. Note that µ1i is the main287

parameter to modify the value of k1i.288

2. The gain k2i is related to the estimation of the disturbance. In this289

vein, we set εi to a small value (εi = 0.1) in order to limit the growth290

of k2i. Also, we use βi to modify the value of k2i.291

3. It is worth to note that the ideal sliding surface does not exist, then, σ̃ =292

0 is never reached and δi is a nonzero constant. Initially, the value of δi293

is set to a small value. This parameter needs to be adjusted depending294

of the behavior of the robot during experiments. For instance, if the295

gains increase fast, this value needs to be increased as well.296

4. Finally, the parameter Λi is used to modify the convergence rate of297

the robot to the reference trajectory. As explained above, this value298

can be set to Λ = 1 and it will be increased to improve the controller299

performance.300

Remark 7. The adaption law of K̂ is obtained through the integration of301

Equations (50) or (67). One can notice that the adaption depends on the302

norm of the time derivative of the tracking error and the gains λ1 or λ2.303

Then, in order to minimize the chattering effect due to the signum function304

into the control law, it is suggested to keep the gains λ1 and λ2 as small as305

possible. In the real-time experiments, the gains were considered as λ1 → 0306

and λ2 → 0, which yields to K̂ → 0. The Tables 1-4 show the gains for the307

proposed observer and controllers.308

Remark 8. Note that at first sight, the proposed controller have several gains309

to tune, however, most of the parameters can be set to zero or to a small value.310

Based on the theoretical results of the main theorem, if the gains are selected311

as in Eq. (15), the robot will converge to the reference trajectory.312
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Depth γ3 = 3.0 υ3 = 1.9
Yaw γ6 = 16.34 υ6 = 36.65

Table 1: BS control gains used in real-time experiments

Depth µ3 = 0.1 ς3 = 1.0 Λ3 = 2.0
ε3 = 0.1 β3 = 0.33 δ3 = 0.01

Yaw µ6 = 0.1 ς6 = 1.0 Λ6 = 3.5
ε6 = 0.1 β6 = 0.01 δ6 = 0.2

Table 2: Adaptive disturbance observer gains for the BS scheme

5.3. Tracking Performance Indexes313

In order to evaluate the tracking performance of the proposed controllers,
let us compute the Root Mean Square Error (RMSE) as follows:

RMS(·(t)) =

√
1

Tf

∫ Tf

0

|·(t)|2dt (81)

In addition, the integral of control inputs (the applied force and torque) are
computed to estimated the energy consumption used in each case, that is:

INT =

∫ t2

t1

|τ(t)|dt (82)

where t1 = 3 s and t2 = 50 s.314

In the rest of the paper, the RMSE for yaw and depth are defined as315

RMSEψ, RMSEz, respectively. The expressions INTψ and INTz are the316

integral control input of yaw and depth, respectively.317

The estimated values for the integral are listed in Tables 7-8.318

5.4. Scenario 1: Nominal Case319

In this test, the submarine Leonard follows a predefined trajectory in320

depth and heading at the same time. For the depth test, the robot goes from321

the surface to a depth of 30 cm. At this point, the vehicle remains stable322

for 20 seconds, and then, it goes to 20 cm, where it remains until the end323

of the test. For the heading task, the vehicle turns from its initial position324

to 60 degrees, where it remains stable for 20 seconds. Then, the submarine325
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Depth bp3 = 20 dp3 = 0.05 µp3 = 0.1
bp3 = 13 dp3 = 0.25 µp3 = 0.2

Yaw bp3 = 4.5 dp3 = 0.015 µp3 = 0.2
bp3 = 0.2 dp3 = 0.15 µp3 = 0.2

Table 3: NLPD control gains used in real-time experiments

Depth µ3 = 0.1 ς3 = 1.0 Λ3 = 2.0
ε3 = 0.1 β3 = 0.33 δ3 = 0.01

Yaw µ6 = 0.1 ς6 = 1.0 Λ6 = 2.0
ε6 = 0.1 β6 = 0.01 δ6 = 0.2

Table 4: Adaptive disturbance observer gains for the NLPD scheme

turns to −60 degrees in only 6 seconds, where the vehicle stays until the326

end of the trial. The top of Fig. 4 shows the trajectory tracking in depth327

and yaw for the nominal case. From the Fig. 4, one can notice that all328

the controllers have a good tracking performance, and this can be confirmed329

through the plot of the tracking errors, which is shown in the middle of the330

Fig. 4 and is numerically expressed for the RMSE measurement in Tables 5331

and 6. In fact, from the RMSE indicator is easy to observe the improvement332

when the adaptive observer is considered. Then, at the bottom of Fig. 4,333

the evolution of the control inputs is shown. Again, the behavior of all the334

proposed controllers remains similar.335

The top of figures 6 and 8 show the evolution of the adaptive gains of336

the proposed disturbance observer. From these figures, we can observe that337

when the vehicle moves from the steady position to another point, the gains338

are automatically adjusted in order to minimize the tracking error.339

In the top of figs. 9-10, the estimation made by the disturbance observer is340

shown. The estimation of the disturbance using the Backstepping controller341

is displayed in the upper part of Fig. 9, while the estimation employing342

the NLPD is shown at the top of Fig. 10. It is worth to note that both343

estimations provided by the observers are not precisely the same, this is344

reasonable because the controllers are different and do not have the same345

gains. Nevertheless, the shape of the estimated disturbance is similar for346

both cases.347

Finally, to compute the energy consumption of each controller and to
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establish a fair comparison, the nominal controller is compared against its
improved version. For example, for the Backstepping controller case:

INTz =
INTz(ABS)

INTz(BS)
= 1.02; INTψ =

INTψ(BS)

INTψ(ABS)
= 1.18

This result means that the energy consumption for the trajectory tracking in
depth is almost similar for both controllers. While the energy consumption
for the tracking in heading for the nominal BS is 1.18 time higher than the
energy consumption using the ABS. The following ratios gives the integral
of control input indicator for the NLPD controller:

INTz =
INTz(NLPD)

INTz(ANLPD)
= 1.02; INTψ =

INTψ(ANLPD)

INTψ(NLPD)
= 1.16

The energy consumption for the tracking test in depth is similar for both con-348

trollers. For the trajectory tracking in yaw, the consumption of the ANLPD349

controller is 1.16 time higher than the energy consumption using the nominal350

design.351

5.5. Scenario 2: Robustness to parametric uncertainties352

In this scenario, to demonstrate the robustness of the proposed adaptive353

disturbance observer, the physical parameters of Leonard have been modified.354

Firstly, two floaters have been attached to both sides of the submarine to355

increase the buoyancy of the vehicle by +100%. Secondly, to increase the356

rotational damping along z by approximately 90%, a large rigid sheet of357

plastic that has a dimension of 45× 10 cm has been attached on one side of358

the submarine (see Fig. 2).359

In the top of Fig. 5, one can observe the behavior of the proposed con-
trollers. From the Figure, it is possible to note that the nominal design of
the BS and NLPD shows an offset between the trajectory of the submarine
and the reference signal. The results shown in this work coincide with the
ones presented in [14] and [18]. In contrast with these previous results, the
introduction of the adaptive observer allows improving the performance of
the nominal control design by suppressing the signal offset. The improved
controllers are capable of following the reference trajectory despite the un-
certainties in the parameters. The plot of the tracking errors is shown in
the middle of Fig. 5 and the numerical expression of the errors are shown in
Tables 5 and 6. The evolution of the input signals is displayed at the bottom
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of Fig. 5. As expected, at the beginning of the test, the improved version of
the controllers demands more energy than the nominal designs, but once the
reference is reached, the behaviors are similar for both schemes. The values
of the integral of the control inputs for the tracking test using the BS and
ABS control shows that the energy consumption is similar for both cases,
and the following ratios also illustrate this:

INTz =
INTz(ABS)

INTz(BS)
= 1.01; INTψ =

INTψ(ABS)

INTψ(BS)
= 1.0

For the case of the depth and yaw tracking using the NLPD and ANLPD,
the ratios are given by

INTz =
INTz(NLPD)

INTz(ANLPD)
= 1.04; INTψ =

INTψ(ANLPD)

INTψ(NLPD)
= 1.02

This means that the energy consumption of the NLPD control is only 1.04360

times higher than the consumption of the ANLPD. Moreover, the energy361

consumption for the heading tracking is also very similar for both method-362

ologies.363

The adaptive gains of the proposed observer for the ABS and ANLPD364

controllers are shown in the middle of the Figures 6 and 8, respectively. The365

estimated disturbance for the ABS is displayed at the middle of the Fig. 10,366

while the estimation made by the ANLPD is shown at the middle of the Fig.367

10. Again, the estimated disturbance shape is similar for both methods.368

5.6. Scenario 3:Rejection of external disturbances369

This test is inspired by a more realistic situation where the submarine370

is equipped with a robotic manipulator. The main objective is to transport371

an object from a certain depth to another where the submarine will release372

the load. In this context, to simulate an object, we tie a metallic 1 kg block373

to Leonard with a 20 cm-long line. In this test, the maximal depth has374

been set to 40 cm. As the maximum depth of the basin is 50 cm, the robot375

will be suddenly disturbed when it will reach 30 cm, because the metallic376

block will touch the floor, thus suddenly canceling its weight’s effect. The377

disturbance will be acting on the robot until it starts to move up and reaches378

30 cm. Then, the action of the extra weight will influence the trajectory of379

the submarine again (see Fig. 3). This action simulates both the sudden380

release and recovery of a load by the robot.381
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Figure 2: Modification of system parameters, increasing the buoyancy force and damping
along z axis.

The performance of the proposed controllers is shown at the top of Fig.
7. From this figure, it can be noticed that although the behavior of the BS
and the ABS is similar at the beginning of the test, the BS fails to track the
reference signal efficiently when the robot tries to reach the 20 centimeters
in depth. Moreover, the BS control has a 10 cm offset in the steady-state
behavior. In contrast, the ABS takes some time to tune its gains itself,
but once is achieved, the robot is able to follow the trajectory efficiently
despite the weight of the load. In the same way, the NLPD fails to follow the
reference. Indeed, this controller has the worst performance compared to all
the others methodologies. Again, the introduction of the observer improves
the behavior of the NLPD as can be seen in the top of Fig. 7. Concerning
the trajectory tracking in yaw, the whole set of controllers show a good
performance. The plot of the errors for both tracking tasks is displayed in
the middle of Fig. 7, and its numerical representation is shown in Tables
5 and 6. At the bottom of Fig. 7, the evolution of the control inputs is
displayed. While the performance of the BS and the ABS controllers are very
similar, the ANLPD shows an aggressive behavior compared to the NLPD.
Regarding energy consumption, using the BS requires 1.03 time more energy
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than using the ABS for both tracking tests, as illustrated by the ratio below:

INTz =
INTz(BS)

INTz(ABS)
= 1.03; INTψ =

INTψ(BS)

INTψ(ABS)
= 1.03

The energy consumption using the ANLPD is 1.12 time the energy consump-
tion using the NLPD for the depth tracking test. For the heading tracking
task, the energy consumption employing the ANLPD is 1.09 times the energy
consumption using the NLPD. The ratios are computed as:

INTz =
INTz(ANLPD)

INTz(NLPD)
= 1.12; INTψ =

INTψ(ANLPD)

INTψ(NLPD)
= 1.09

The plots of the adaption of the observer gains for the BS and NLPD382

techniques are shown in Figs. 6 and 8, respectively. The estimation of the383

disturbance made by the observer using the ABS and ANLPD, respectively,384

is displayed at the bottom of Fig. 9.385

Remark 9. It is worth to note that in this manuscript, we have considered386

constant disturbances on the real-time experiments to test the robustness of387

the proposed controller. However, based on the results of Theorem 1, the388

algorithm is robust towards bounded time-varying external disturbances the-389

oretically. This scenario will be part of a future research in this topic.390

6. Conclusion391

In this paper, an adaptive disturbance observer based on the extended392

state observer and high order sliding mode technique has been proposed. The393

adaptive disturbance observer is introduced into the Backstepping and non-394

linear PD controllers to improve the performance of these techniques. The395

stability analysis for the resulting closed-loop system for trajectory track-396

ing has been addressed. The proposed controller has been implemented for397

trajectory tracking in depth and yaw motions with the Leonard underwa-398

ter vehicle and have been compared to the nominal design proposed in our399

previous works. The real-time experiments results demonstrate the effective-400

ness, robustness, and improvement of the proposed scheme to uncertainties401

on the parameters of the system (damping and buoyancy changes) and to402

external disturbances, as well. In this manuscript, constant disturbances403

were considered, the robustness of the proposed towards time-varying exter-404

nal disturbances and the improvement of the proposed scheme are part of405

the future work.406
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Figure 3: Description of the third scenario. (a) A1 kg load is attached to the Submarine.
When the robot reaches 30 cm, the influence of the weight disappears (b). Finally, the
robot comes up again and the influence of the weight acts again on the robot (c).
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Figure 4: Performance of the NLPD and BS and their adaptive schemes for the depth and
yaw tracking trajectory task in the nominal case.
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Figure 5: Robustness of the BS and NLPD and their adaptive versions behavior to para-
metric uncertainties. The floatability of the submarine was increased +100%, while the
damping along z-axis was modify up to 90% with respect to the nominal case.
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Figure 6: Robustness of the BS, ANLPD and their adaptive versions to external distur-
bances: Release and recovery of a load.
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Figure 7: The dynamic gains evolution of the adaptive Backstepping disturbance observer:
The nominal case (blue line), scenario 2 (red line) and scenario 3 (green line).
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Figure 8: Evolution of the ANLPD disturbance observer gains: Nominal case (blue line),
scenario 2 (red line) and scenario 3 (green line).

0 10 20 30 40 50 60 70

N
o
m
in
a
l:
d̂
z

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70

d̂
ψ

-5

0

5

0 10 20 30 40 50 60 70

R
P
U
:
d̂
z

-0.5

0

0.5

0 10 20 30 40 50 60 70

d̂
ψ

-20

0

20

40

Time[s]
0 10 20 30 40 50 60 70

R
E
D
:
d̂
z

0

0.5

1

Time[s]
0 10 20 30 40 50 60 70

d̂
ψ

-10

-5

0

5

Figure 9: Disturbances estimated by the ABS: Nominal case (upper), robustness towards
parametric uncertainties (middle) and robustness towards external disturbances (bottom).
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Figure 10: Disturbances estimated by the ANLPD: Nominal case (upper), robustness
towards parametric uncertainties (middle) and robustness towards external disturbances
(bottom).
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Case
BS ABS

RMSEz[m] RMSEψ[deg] RMSEz[m] RMSEψ[deg]

Nominal
0.0043 0.1041 0.0001 0.1071

Parametric
Uncertainties

0.0530 0.4891 0.0031 0.1487

External
Disturbances

0.0476 0.1210 0.0053 0.0661

Table 5: Root Mean Square Error for BS and ABS design.

Case
NLPD ANLPD

RMSEz[m] RMSEψ[deg] RMSEz[m] RMSEψ[deg]

Nominal
0.0023 0.0265 0.0007 0.0099

Parametric
Uncertainties

0.0374 0.3371 0.0018 0.4068

External
Disturbances

0.0522 0.0571 0.0079 0.0170

Table 6: Root Mean Square Error for NLPD and ANLPD designs.

Case
BS ABS

INTz INTψ INTz INTψ

Nominal
546 33 557 28

Parametric
Uncertainties

1064 48 1077 48

External
Disturbances

373 28 361 27

Table 7: Integral control of inputs for BS and ABS designs.
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Case
NLPD ANLPD

INTz INTψ INTz INTψ

Nominal
567 25 557 29

Parametric
Uncertainties

1099 51 1054 52

External
Disturbances

361 32 405 35

Table 8: Integral control of inputs for NLPD and ANLPD designs.
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