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Abstract

This paper proposes a new control scheme for underwater vehicles. These sys-

tems are highly nonlinear and they often operate in a varyingenvironment. A

robust controller is therefore needed to deal with these challenges. The recently

developpedL1 adaptive controller is proposed to be designed and implemented

in real time for the first time on an underwater vehicle. Different experimental

scenarios are then conducted to test the performance of the closed-loop system

in two degrees of freedom. An interesting particularity of this controller lies in

its architecture where robustness and adaptation are decoupled enabling thus high

adaptation gains. This would result in a fast adaptation with a guaranteed smooth

transient response without any persistency of excitation.In order to validate the

choice of this controller, a comparative study is proposed to be conducted with

the well proven adaptive nonlinear state feedback controller (ANSF). Real-time

experimental results are proposed for different scenarios including nominal case,

external disturbances rejection and robustness towards parameters uncertainties.
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This comparative study highlights clearly the superiorityof theL1 adaptive con-

troller.

Keywords: Adaptive Control, Autonomous Systems, Underwater vehicles,

Robustness, Experimentations.

1. Introduction

Underwater vehicles have gained an increased interest in the last decades given

the multiple tasks they can accomplish in various fields ranging from scientific to

industrial and military applications. For this reason, it is less risky and more

advantageous to send robots in hazardous environments suchas deep seas and

oceans. In our study, we are particularly interested in the category of tethered

underwater vehicles also called Remotely Operated Vehicles (ROV). Different

challenges in autonomous control of such systems arise fromthe inherent high

nonlinearities and time varying behavior of the vehicle’s dynamics subject to hy-

drodynamic effects and external disturbances. To deal with these problems, vari-

ous advanced control techniques have been proposed in litterature such as robust

H∞ approaches (Roche et al., 2011), backstepping control (Lapierre & Soetanto,

2007), predictive control (Steenson et al., 2012) and sliding mode control (Pisano

& Usai, 2004). Intelligent control methods using reinforcement learning or ar-

tifical intelligence have also been proposed (Kim & Yuh, 2001)(Chang et al.,

2003)(Carreras et al., 2002). A more detailed overview of the proposed con-

trollers for underwater vehicles can be found in (Yuh, 2000)and (Yildiz et al.,

2009). In all of these cited articles, the need for robustness and adaptation is
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highlighted since the robot’s parameters are hard to identify and the environment

where it operates is likely to change. For example, the addition of sensors or pay-

loads modifies the weight and the position of the center of mass of the vehicle,

furthermore the experimental conditions vary whether the vehicle operates in a

sea or in a river resulting in a different buoyancy for each case. In order to avoid a

degradation in the performance of the controlled system during a specific mission,

the vehicle is expected to possess a self tuning ability and compensate for different

kind of disturbances. That is why adaptive controllers are very popular for such

systems (Fjellstad & Fossen, 1994a)(Antonelli et al., 1999)(Antonelli, 2003)(An-

tonelli, 2006). Since adaptation was found to be a necessity, it was combined

with other techniques such as sliding mode control (Fossen &Sagatun, 1991),

fuzzy logic control (Marzbanrad et al., 2011) or backstepping control (Lapierre,

2009). However, various problems are related to the implementation of an adap-

tive controller on an underwater vehicle. For instance, we notice that most of these

adaptive schemes require regressor matrices based on a knowledge of the dynamic

model and a large set of parameters to be estimated. In order to remediate to this

problem, some non-regressor based controllers emerged such as the one proposed

in (Yuh et al., 1999) also detailed in (Yuh & Nie, 2000) where acombination

of unknown bounded constants are estimated. In (Zhao & Yuh, 2000), a distur-

bance observer has been added to the initial controller of (Yuh & Nie, 2000) and

interesting experimental results have been obtained in nominal conditions as well

as in case of external disturbances rejection and robustness towards parameters’

uncertainties. The advantage of this method is that it does not require anya priori
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knowledge about the system; furthermore the update of the parameters is based

on the performances of the closed-loop system. However, thedrawbacks of such

a method lies in the neglect of the coupling effects between the degrees of free-

dom due to the spherical shape of the used robot. The model parameters of the

dynamic model can be initialized randomly, but the control parameters governing

this method are very critical to be tuned and highly dependent on the initial con-

figuration of the robot. In (Sun & Chea, 2003), an adaptive control scheme based

on a saturated proportional derivative feedback law was proposed for a setpoint

control case. The contribution of this last paper lies in theuse of only one regres-

sor being for gravity instead of a full regressor for the whole dynamic model. In

addition to that, an approximation was made when the transpose of the transfor-

mation matrix between the body frame and the earth frame was used instead of

its inverse. Six adaptive controllers, including the threepreviously cited (Fjell-

stad & Fossen, 1994a)(Yuh & Nie, 2000)(Sun & Chea, 2003), were compared

in (Antonelli, 2007) in simulation within a study that focuses on the ability of the

controllers to compensate for the persistent effects (restoring forces and ocean cur-

rents). The non-regressor-based methods (Yuh & Nie, 2000)(Sun & Chea, 2003)

were unable to compensate for the restoring forces and the model-based methods

(Fjellstad & Fossen, 1994a)(Fossen & Balchen, 1991)(Fjellstad & Fossen, 1994b)

needed adequate persistent excitation. This will generatea problem at steady

state when a static error occurs in presence of waves or current. Indeed, in this

scenario, the parameter excitation will be reduced since the error on the velocity

is zero while the position error is not, and therefore a corrective adaptive con-
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trol action cannot be triggered. The adaptive control law introduced in (Antonelli

et al., 2001) was the one defended in the comparative study of(Antonelli, 2007)

because it accomplishes the desired full compensation, however it still requires

the adaptation of nine parameters with a suitable initialization of the restoring pa-

rameter vector and a reasonable choice for the adaptation gain. The simulations

were performed on an ellipsoidal autonomous vehicle weighing 225kg. Another

comparative study between adaptive controllers was made in(Fossen & Fjell-

stad, 1996) where the two adaptive controllers previously presented in (Slotine &

Benedetto, 1990) and (Sadegh & Horowitz, 1990) were compared in simulations

in presence of unknown model parameters and noisy measurements. The con-

clusion was that by replacing the regressor with the desiredstate trajectories in

(Sadegh & Horowitz, 1990) a better robustness towards measurement noise was

noticed. All of the previously cited papers on adaptive schemes reveal that de-

spite their numerous advantages, these controllers hold some drawbacks that have

been highlighted above for our specific application. Without a loss of generality,

we notice that the same problems are present in other applications and therefore

based on the above discussion we can list some of the main commun drawbacks

of adaptive control:

i) A wide range of such controllers exhibit undesirable frequency characteristics

and are often used with restrictive assumptions (Rohrs et al., 1982). The

authors showed that sinusoidal reference inputs at certainfrequencies and/or

sinusoidal output disturbances at any frequency will causethe adaptation gain

to significantly increase which will destabilize the control system.
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ii) The need for the persistency in excitation can lead to a bad transient behav-

ior (Zang & Bitmead, 1990).

iii) An increase in the adaptation gain drives the closed-loop system closer to in-

stability while a small gain would slow down the convergencerate (Narendra

& Annaswamy, 1987).

iv) Any parameter vector to be adapted must be adequately initialized and this

choice would depend on the specific configuration of the system. This would

be even more critical for the non-model-based controllers (Antonelli, 2007).

That is why a control approach that can ensure a robustness decoupled from

adaptation would be highly desirable. Such a scheme would drive the closed-loop

system to its desired trajectory while overcoming the drawbacks listed above. This

decoupling has recently been proven to be achievable by theL1 adaptive control

scheme presented in (Hovakimyan & Cao, 2010). It can be compared to a Model

Reference Adaptive Controller (MRAC) modified in two ways: astate predictor

is used instead of a reference model and a low-pass filter is inserted in the feed-

back loop to cancel out undesirable high frequencies in the control input. This

controller can ensure a good performance with zero parameter initialization and

without any necessity for a specific excitation. It is worth to note that, to the

best knowledge of the authors, this control scheme was mainly applied to aerial

vehicles (Dobrokhodov et al., 2010)(Kaminer et al., 2010) and mechatronic sys-

tems (Techy et al., 2007)(Fan & Smith, 2008) and has never been applied yet to

underwater vehicles. We propose in this paper the theoretical aspects of the de-
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sign of anL1 adaptive controller to be applied for the first time on an underwater

vehicle. Moreover, we experimentally compare this new controller, in underwa-

ter robotics, with the well proven nonlinear state feedbackcontroller proposed in

(Fossen, 2002). Various scenarios allow us to compare each controller’s perfor-

mances in nominal conditions and in presence of external disturbances, as well as

their robustness towards parameter uncertainties. Furthermore, the vehicles used

in the previously cited papers are significantly bigger and heavier than the one

used for our study (it weighs only 3kg). Indeed, a small vehicle is more sensitive

to any kind of disturbance compared to a larger one thus placing us in difficult

experimental conditions. The tether alone, given its weight and diameter rela-

tive to the dimensions of the robot, constitutes in itself a persistant disturbance to

be compensated. This paper is an extension of the work presented in (Maalouf

et al., 2012) where only depth and pitch were controlled withanL1 adaptive con-

troller. In the actual work, not only new experimental results are introduced to

highlight the capacity of theL1 adaptive controller to reject external disturbances,

but a thorough quantitative comparative study with the nonlinear adaptive state

feedback controller is also provided for different experimental scenarios. This

study emphasizes the superiority of theL1 adaptive controller in terms of fast

adaptation and robustness. This paper is organized as follows: in the second sec-

tion we present the dynamic modeling of the system, the thirdsection describes

the two proposed control schemes, the forth section presents the prototype and

its experimental setup, in the fifth section the obtained experimental results will

be presented and discussed, and in the sixth section the performance of the two

7



controllers will be analyzed and compared. Finally the paper ends with some

concluding remarks.

2. Dynamic modeling of the underwater vehicle

2.1. Modeling Background

The dynamics of an underwater vehicle involves two frames ofreference: the

body-fixed frame and the earth-fixed frame (cf. Figure 1). Thevectors with the

variables put at stake areν = [u, v,w, p, q, r]T andη = [x, y, z, φ, ϑ, ψ]T being the

vectors of velocities (in the body-fixed frame) and position/Euler angles (in the

earth-fixed frame) respectively. By considering the inertial generalized forces,

the hydrodynamic effects, the gravity, and buoyancy contributions as well as the

effects of the actuators (i.e thrusters), the dynamic model of an underwater vehicle

in matrix form, using the SNAME notation and the representation described in

(Fossen, 2002), can be written as follows:

η̇ = J(η)ν (1)

Mν̇ +C(ν)ν + D(ν)ν + g(η) = τ + wd (2)

J(η) ∈ R6×6 is the transformation matrix mapping the body-fixed frame tothe

earth-fixed one. The model matricesM, C, andD denote inertia (including added

mass), Coriolis-centripetal (including added mass), and damping respectively,

while g is a vector of gravitational/buoyancy forces.τ is the vector of control
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inputs andwd the vector of external disturbances. In the case of our study, the

vehicle used has a slow dynamics, and hence it will be moving at velocities low

enough to make the Coriolis terms negligible (C(ν) ≈ 0). Considering this as-

sumption, the dynamics (2) can be rewritten as:

Mν̇ + n(ν, η) = τ + wd (3)

with n(ν, η) = D(ν)ν + g(η).

Equation (2) describes the dynamics of the system in 6 degrees of freedom taking

into account the 3 translations and 3 rotations. The input vectorτ ∈ R6 considers 6

actions on the system to fully control it. The presented formulation of the robot’s

dynamics is expressed in the body-fixed frame and can be transformed to the earth-

fixed frame by using the kinematic transformations of the state variables and the

model parameters as follows:

η̇ = J(η)ν

η̈ = J(η)ν̇ + J̇(η)ν

M∗(η) = J−T (η) M J−1(η)

D∗(ν, η) = J−T (η) D(ν) J−1(η)

g∗(η) = J−T (η) g(η)

τ∗ = J−T (η) τ

w∗d = J−T (η) wd

(4)
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Equation (2) can therefore be expressed in the earth fixed frame as:

M∗(η)η̈ + D∗(ν, η)η̇ + g∗(η) = τ∗ + w∗d (5)

2.2. Modeling of the Studied Dynamics

The previous section describes the dynamics of an underwater vehicle in its full

six degrees of freedom. In this paper, the proposed controllers will target two de-

grees of freedom due to the limitations we have in terms of sensors and actuators.

Therefore, we have chosen to study a trajectory of motion in depth which is the

vertical translational motion (along thez axis) and in pitchϑ which is the rotation

around they axis. In fact, the inertial measurement unit (IMU) is the only sen-

sor giving information concerning surge and sway (translational motion alongx

andy respectively). This information is the acceleration whichis not enough to

give an adequate estimate of the needed position values: integrations need to be

done leading to a drift that cannot be corrected since no other sensor is available

on board for this purpose. On the other hand, yaw measurementcannot be used

due to the very short distance between the magnetic sensor and motors inducing

strong magnetic disturbances. Due to the small size of the vehicle, this distance

cannot be increased. The roll is not actuated in this robot and therefore we were

left with the depth and pitch to control. These two degrees offreedom are coupled

and hold high nonlinearities. For this reason, in the case where the adequate in-

strumentation would be available (i.e. x, y, and yaw measurements), the controller

could easily be extended to other degrees of freedom. We can easily extract our
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studied dynamics from (2) to get the reduced model of interest in the body-fixed

frame as:


Mz 0

0 Mϑ




ẇ

q̇

 +


Dz 0

0 Dϑ




w

q

 +


−cos(ϕ)cos(ϑ)(W − B)

Wrgz sin(ϑ)

 =


τz + wdz

τϑ + wdϑ

 (6)

The matrices of mass and damping constituted of the termsMz, Mϑ andDz, Dϑ

respectively are considered as diagonal given the symmetrical cubic shape of our

robot. W is the weight of the robot,B its buoyancy andrgz is thez coordinate of

the robot’s center of mass.τr =


τz

τϑ

 is expressed in Newton and is given by:

τr = T Ku (7)

whereu ∈ R2 is the vector of control inputs in volts generated by the two vertical

thrusters acting simultaneously on the depth and pitch,K is the force coefficient in

Newton/Volt that has been identified after several tests performed on the motors.

T ∈ R2×2 is the actuators configuration matrix taking into account the position and

orientation of the motors, thus allowing to determine the associated forces in the

body frame.

Similarly, we extract from (5) the studied dynamics in the earth frame to be:


M∗z 0

0 M∗
ϑ




z̈

ϑ̈

+


D∗z 0

0 D∗
ϑ




ż

ϑ̇

+


−(W − B)

Wrgzcos(ϕ)sin(ϑ)

 =


τ∗z + w∗dz

τ∗
ϑ
+ w∗dϑ

 (8)
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All the starred terms can be computed in a straightforward manner using transfor-

mations in (4).

3. Proposed adaptive control schemes

Before introducing the design of the proposedL1 adaptive controller, we briefly

remind the design of the well-known Adaptive Nonlinear State Feedback Con-

troller (ANSF) and its formulation to our application. In fact, this well proven

controller will be used in our experiments as a basis of comparison in order to

highlight the performances of theL1 adaptive controller. In the rest of the paper,

the subscriptr in the model matrices refers to the reduced model (8) pertaining to

the studied dynamics.

3.1. Adaptive Nonlinear State Feedback Controller

3.1.1. Background

The adaptive state feedback controller provides an online estimation of the

unknown model parameters in order to ensure a good trajectory following by the

closed-loop system (Fossen, 2002). The control law obtained based on the dy-

namics of the robot presented in equation (3) and given by:

τ = M̂ab + n̂(ν, η) (9)

where the hat symbol denotes the parameters’ estimates,ab the commanded ac-

celeration described in the body-fixed frame, and ˆn(ν, η) the estimate ofn(ν, η) in
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(3). Given that the dynamic model is linear in its parameters, the adaptive control

law (9) can then be rewritten as:

τ = Φ(ab, ν, η) θ̂ (10)

whereΦ is the regressor matrix and̂θ is the vector of the estimated parameters.

The computed input is calculated in the body-fixed frame but the trajectory fol-

lowing is performed in the earth-fixed frame and thereforeab is calculated from

a simple transformation between the body and the earth fixed frames and is given

by:

ab = J−1(an − J̇ν) (11)

wherean is the commanded acceleration in the earth-fixed frame andJ the trans-

formation matrix from the body-fixed frame to the earth-fixedframe withJ̇ its first

derivative. To guarantee that the error converges to zero,an is chosen as follows:

an = η̈des − KPη̃ − KI

∫ t

0
η̃ dt − KD ˙̃η (12)

with η̃ = η − ηdes and ˙̃η is its first derivative,ηdes is the desired trajectory and ¨ηdes

is its corresponding acceleration.

The vector of the estimated parameters is updated accordingto the following up-

date law:

˙̂θ = −ΓΦT (ab, ν, η)J−1yA (13)
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whereΓ is a diagonal positive definite matrix representing the adaptation gain,

andyA the combined error defined as follows:

yA = c0η̃ + c1 ˙̃η (14)

c0 andc1 are constant positive gains. The choice of their values is governed by the

algorithm presented in (Fossen, 2002) guaranteeing the convergence of the error

to zero. The proof of stability is made by applying Barbalat’s lemma.

3.1.2. Application to the studied dynamics

The vector of parameters to be estimated includes the elements of the matrices

M∗r andD∗r and the parameters in the vectorg∗r . From equations (9) to (14), we

extract the explicit formulation of our controller as:

τr = Φrθ̂r (15)

with the vector of the estimated parameters being:

θ̂r =

[
M̂z D̂z Ŵ − B M̂ϑ D̂ϑ

̂xGW − xBB ̂zGW − zBB
]T

(16)

(W − B) is the parameter representing the difference between the weight and the

buoyancy.xG andzG are the coordinates of the center of gravity in the body-fixed

frame andxB andzB are the ones of the center of buoyancy. Given that the origin
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of our body-fixed frame is in fact the center of buoyancy and that we consider

both centers of gravity and buoyancy aligned due to the symmetry of the robot,

we havexG = xB = zB = 0 and we can therefore simplify our parameters’ vector

to the following:

θ̂r =

[
M̂z D̂z Ŵ − B M̂ϑ D̂ϑ ẑGW

]T

(17)

with this simplification taken into account, the regressor matrix takes the form:

Φr =


ab

z w −cos(ϑ)cos(ϕ) 0 0 0

0 0 0 ab
ϑ

q sin(ϑ)

 (18)

the commanded acceleration in the earth frame is given by:

an
r =


z̈des

ϑ̈des

 − KP


z − zdes

ϑ − ϑdes

 − KI

∫ t

0


z − zdes

ϑ − ϑdes

 dt − KD


ż − żdes

ϑ̇ − ϑ̇des

 (19)

KP,KI and KD ∈ R
2×2 are diagonal positive constant matrices representing re-

spectively the proportional, the integral and the derivative gains. The commanded

acceleration in the body-fixed frame is:

ab
r =


cos(ϕ)cos(ϑ) 0

0 cos(ϕ)

 .

(
an

r −


−qsin(ϑ) − pcos(ϑ)sin(ϕ) 0

0 −ϕ̇sin(ϕ)




w

q



)
(20)
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the parameters adaptation law writes:

˙̂θr = −ΓrΦ
T
r


cos(ϕ)cos(ϑ) 0

0 cos(ϕ)

 yAr (21)

the combined error is expressed by:

yAr = c0


z − zdes

ϑ − ϑdes

 + c1


ż − żdes

ϑ̇ − ϑ̇des

 (22)

Finally, given the configuration matrixT and the force coefficientK explained in

equation (7) the control input will take the form:

u =
T−1τr

K
(23)

It is important to emphasize that a good parameter convergence is more guaranteed

to occur when the reference trajectory is rich enough to excite the parameters to be

estimated (Slotine & Weiping, 1991). These parameters willconverge to a set of

values that allows trajectory following. Moreover, the vector of parameters is seen

to be bounded according to Barbalat’s lemma as shown in the proof of stability

given by (Fossen, 2002).
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3.2. L1 adaptive controller

3.2.1. Background

To control the system described in (5), anL1 adaptive controller is proposed.

The choice of this controller is motivated by its architecture characterized by the

decoupling between adaptation and robustness. High adaptation gains can then

be chosen securing a fast convergence with a smooth transient response. This

architecture described in (Hovakimyan & Cao, 2010) is shownin the following

block-diagram (cf. Figure 2). The closed-loop system holdsa prediction phase

and an adaptation phase. In the feebdack, a low pass filter is added to cancel out

the high frequencies that might occur in the control input. This last component

ensures fast adaptation without harming the robustness. The details of the different

blocks of Figure 2 are the following:

• Controlled System:We will start by considering the following class of non-

linear systems which including our underwater vehicle:

ẋ1(t) = x2(t) x1(0) = x10

ẋ2(t) = f (t, x(t)) + B2ωu x2(0) = x20

y(t) = Cx(t)

(24)

wherex1 ∈ R
n and x2 ∈ R

n are the states of the system forming the com-

plete state vector:x(t) = [xT
1 (t), xT

2 (t)]T . u(t) ∈ Rm is the control input

vector (m ≤ n) andω ∈ Rm×m is the uncertainty on the input gain.B2 ∈ R
n×m

is a constant full rank matrix.C ∈ Rm×n is a known full rank constant ma-
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trix, y ∈ Rm is the vector of measured outputs andf (t, x(t)) is an unknown

nonlinear function representing the nonlinear dynamics. The partial deriva-

tives of this function are assumed to be semiglobaly uniformly bounded

and f (t, 0) is assumed to be bounded. The previous system of equations

can be transformed into a semi linear one with some assumptions on the

boundedness of the parameters and functionf (t, x(t)) as described in (Cao

& Hovakimyan, 2008). It is concluded that this function can be rewritten

as f (t, x(t) = A2x2 + θ(t)||x(t)||L∞ +σ(t) with θ(t) andσ(t) unknown varying

parameters. Therefore the system can be rewritten as follows:

ẋ(t) =


0n×n In

0n×n A2




x1

x2

+


0n×1

θ

||x||L∞+


0n×1

σ

+


0n×m

B2

ωu (25)

y(t) = Cx(t) (26)

Let A =


0n×n In

0n×n A2

 be the state matrix describing the actual open-loop

system dynamics. It should be modified into a Hurwitz matrix describing

the desired closed-loop dynamics using a static feedback gain km. We would

therefore getAm = A − Bmkm with Bm =


0n×m

B2

. The system can then be
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finally rewritten in compact form as:

ẋ(t) = Amx(t) + Bm

(
ωua + θ(t)||x(t)||L∞ + σ(t)

)
; x(0) = x0

y(t) = Cx(t)
(27)

Given their structure, the vectorsθ andσ can be summed to the control input

as shown above. In case the vectorB2 is not an identity matrix, these two

uncertain varying parameters would be scaled by the constants contained in

B2. Since they are unknown, the notation for these two variables will not be

changed.ua is the control input used for adaptation after the transformation

of the matrixA into Am. The final control input to be applied to the system

is u = um + ua with um = −km x.

• State Predictor:The states of the system are calculated at each iteration us-

ing the estimated parameters obtained from the adaptation phase along with

the control input. The prediction equation is then written as:

˙̂x(t) = Am x̂(t) + Bm

(
ω̂(t)ua(t) + θ̂(t)||x(t)||L∞ + σ̂(t)

)
(28)

• Adaptation Phase:This stage uses the error between the measured states and

the estimated ones to adapt the parameters while considering a projection

method in order to ensure their boundedness. In fact, a projection operator

avoids the parameter drift using the gradient of a convex function and a

maximal bound on the parameters to be estimated. The adapation law for
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each estimated parameter is given by:

˙̂θ(t)=ΓPro j(θ̂(t),−(x̃T (t)PBm)T ||x(t)||L∞)

˙̂σ(t)=ΓPro j(σ̂(t),−(x̃T (t)PBm)T )

˙̂ω(t)=ΓPro j(ω̂(t),−(x̃T (t)PBm)T uT
a (t))

(29)

The parameterP is the solution to the algebraic Lyapunov equation:AT
mP +

PAT
m = −Q for any arbitrary symmetric matrixQ = QT > 0. Γ is the

adaptation gain and ˜x(t) the prediction error.

• Control law formulation:The last stage pertains to the formulation of the

control input characterized by the addition of a low pass filter. It is written

as:

ua(s) = −kD(s)(η̂l(s) − kgr) (30)

D(s) is an m × m strictly proper transfer function leading to the stable

closed-loop filter:C(s) = ωkD(s)
Im+ωkD(s) . k is a positive feedback gain,kg =

−(CA−1
m Bm)−1 is a feedforward prefilter applied to the reference signalr(t)

and η̂l = ω̂(t)ua(t) + θ̂||x(t)||L∞. To ensure the stability of the closed-loop

system, the feedback gaink and the filterD(s) must be chosen in order to

fulfill the L1 norm condition. The reader can refer to (Hovakimyan & Cao,

2010) for a detailed proof of stability.

This control architecture with the equations included can be summarized in Figure

3.
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3.2.2. Application to the studied dynamics

This control architecture is applied on two degrees of freedom: the depthz

and the pitchϑ of our underwater vehicle. Combining (8), (25) and (26) we get

the full dynamics in the earth frame to be:


η̇1

η̇2

 =


02×2 I2

02×2
−D∗r
M∗r




η1

η2

 −


02×1

g∗r
M∗r
−

w∗dr

M∗r

 +


02×2

1
M∗r

ωτ
∗
r (31)

with η1 = [z ϑ]T andη2 = [ż, ϑ̇]T . In this caseω ∈ R2×2 is considered to be an

identity matrix. Rewriting (31) in the form of (28) in terms of the state matrixAm

and the parametersω, θ andσ, we get:


η̇1

η̇2

 = Am


η1

η2

 +


02×2

1
M∗r


(
ωua + θ(t)||η(t)||L∞ + σ(t)

)
(32)

y =


1 0 0 0

0 1 0 0




η1

η2

 =


z

ϑ

 (33)

whereAm is obtained from a choice ofkm rendering the state matrix Hurwitz,

with Am ∈ R
4×4 and Bm = [02×2,

1
M∗r

]T ∈ R4×2. The parameters’ vectorθ ∈

R
2 includes the uncertainties on the damping coefficients and is given by:θ =

[
∆(−D∗z ) , ∆(−D∗

ϑ
)
]T

. The parameterσ ∈ R2 is a lumped parameter regroup-

ing the gravitational and buoyancy forces as well as the external disturbances

σ =
[
−g∗z + w∗dz

, −g∗
ϑ
+ w∗dϑ

]T
. The parameterω ∈ R2×2 is considered constant

and will not be adapted for this study as we have a precise knowledge of the
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motors’ features. The expression||η(t)||L∞ refers to the infinity norm of the state

vectorη at instantt. As shown in equation (33), the outputs of the system arez

andϑ. The control input is computed in the earth fixed frame and consequently

should be transformed into the body fixed frame. The system’scontrol input is

computed as follows:u = K−1T−1JT (ua + um) ∈ R2, with ua andum as explained

above.

Remark 1: In the matricesA2 andB2, the elementsM∗z , M∗
ϑ

andD∗z ,D
∗
ϑ

are likely

to vary since they depend on the orientation of the vehicle given that they are

computed in the earth frame. We have mentioned before thatAm andBm should be

constant and for the sake of consistency, we replace these starred model elements

with Mz, Mϑ,Dz andDϑ. This will guarantee forAm a constant desired dynamics.

All the uncertainties will be compensated in the vectors of the controlled parame-

tersθ̂ andσ̂ that are to be adapted. It has to be noticed that unlike for theANSF,

no a priori knowledge of these parameters is required and they have beeninitial-

ized to zero.

4. Experimental testbed

The AC-ROV submarine (cf. Figure 4) is an underactuated vehicle. Its propulsion

system consists of six thrusters driven by DC motors and controlling five degrees

of freedom. The motors 1, 2, 3 and 4 control simultaneously translations alongx

andy axes and rotation around thez axis (yaw angle). Motors 5 and 6 control

depth and pitch. Roll is left uncontrolled but remains naturally stable due to the
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Table 1: Parameters’ values of the ANSF controller used in the experiments.

Parameter Description Value Parameter Description Value
co Constant gain 0.1 KPz Proportional gain ofz 0.42

c1 Constant gain 0.05 KIz Integral gain ofz 0.055

Mzinitial Initial value of mass ofz 1 kg KDz Derivative gain ofz 0.05

Dzinitial Initial value of damping ofz 0.2 N.s/m KPϑ Proportional gain ofϑ 0.2

Mϑinitial Initial value of mass ofϑ 0.117 kg.m KIϑ Integral gain ofϑ 0.055

Dϑinitial Initial value of mass of damping ofϑ 0.01 N.s/m KDϑ Derivative gain ofϑ 0.05

(W − B)initial Initial value of the floatability 0.7 N Γz Adaptation gain ofz 0.2

zGWinitial Initial value of the restoring torque ofϑ 0.055 N.m Γϑ Adaptation gain ofϑ 1

Table 2: Parameters’ values of theL1 adaptive controller used in the experiments.

Parameter Description Value Parameter Description Value
σzinitial Initial value for the nonlinear parameter ofz 0 kz Feedback gain ofz 0.4

σϑinitial Initial value for the nonlinear parameter ofϑ 0 kϑ Feedback gain ofϑ 0.3

θzinitial Initial value for the parameterθ of z 0 Γz Adaptation gain ofz 10000

θϑinitial Initial value for the parameterθ of ϑ 0 Γϑ Adaptation gain ofϑ 1300

relative position of buoyancy and gravity centers. The robot weighs 3kg and

has a rectangular shape with height 203mm, length 152mm and width 146mm.

For measurement purposes, the prototype is equipped with different sensors. A

6-DOF IMU (Inertial Measurement Unit) measures roll, pitch, and yaw along

with their respective velocities. A pressure sensor is usedfor depth measurement.

Once the control law has been computed by the control PC, the control inputs

are transmitted to the power stage. Then, six PWM modulated signals are sent to

the motors of the AC-ROV through a 40-meter long tether. Figure 4-(b) shows

a schematic view summarizing the various components of the system’s hardware
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and their interactions.

The real-time experiments have been performed in a 5m3 pool. The tether has

been sufficiently deployed to avoid inducing additional drag into thedynamics

of the vehicle. The feedback gains have been tuned for the nominal conditions

and kept unchanged for the rest of the experimental scenarios despite the eventual

changes in the model or its environment in order to evaluate the robustness of the

proposed controller. The information concerning the velocity in the z direction is

estimated by an alpha-beta observer.

5. Real-time experimental results

In this section, the obtained experimental results are presented and discussed.

They result from the application of the controllers detailed in section III to the

underwater vehicle testbed described in section IV. The different performed sce-

narios are explained and then the obtained results are presented through Figures

5 to 10 and analyzed. The considered initial position of the vehicle is the surface

(horizontal static position) then it is controlled to reacha depth of 0.8 m and a

pitch angle of 10 deg. In fact, the tested trajectories (in pitch and depth) have been

chosen so as to avoid thrusters’ saturation (i.e a maximum force of 1N) and that

is why the desired depth and pitch are reached within 40 seconds and the pitch is

limited to 10deg. It is worth to note that these results can easily be extendedto

larger scale and faster trajectories in case of more powerful actuators. For each

experimental scenario, the evolution of the control inputs, generated by thrusters

5 and 6 (cf. Figure 4-(a)) controlling these two degrees of freedom as well as the
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evolution of the estimated parameters are plotted. Only parameters pertaining to

gravity and buoyancy are retained for the ANSF controller since they are the ones

with a great impact on the dynamical model. The other parameters did not vary

enough and therefore are not displayed. Tables 1 and 2 summarizes the values of

all the parameters and gains used in these experiments.

The reader can refer to the following internet link for a video with experimental

results: www.lirmm.fr/∼creuze/ocean/

5.1. Proposed Experimental Scenarios

Three experimental scenarios were performed, namely:

i) Scenario 1: Control in nominal conditions

The objective of this scenario is to control the depth of the AC-ROV with-

out considering any external disturbances. The gains for each controller have

been tuned (cf. Tables 1 and 2 to accomodate this case and werekept un-

changed for the rest of the experiments.

ii) Scenario 2: Punctual external disturbance rejection

In this scenario, when the robot reached its steady state position, an external

punctual disturbance was applied by giving the robot a quickkick pushing it

downwards. The objective of this experiment is to see whether the controllers

are able to drive the system back to its regulated position. Such a situation

corresponds to the case where the vehicle hits a rock or an underwater struc-

ture, or collides with another vehicle or floating obstacle.
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iii) Scenario 3: Robustness towards parameter uncertainty

The model of the vehicle was changed right before starting this scenario by

the addition of a rectangular piece of polyester introducing then a change

of buoyancy of+0.2 N and bringing a variation of approximately 15% with

respect to the minimal value of the parameter (W − B). Such a variation cor-

responds for instance to the situation where the vehicle encounters a sudden

change in the water’s salinity.

5.2. Control in nominal conditions

Figures 5 and 6 display the evolution of the vehicle’s position for each of the pro-

posed controllers. The robot is expected to follow a trajectory in depth going from

the surface and reaching 0.8 m in 40 s and another one in pitch going from 0deg

at t=100s and reachingϑ = 10deg in 40 s. The ANSF controller in Figures 5-(a)

needs around 85s to reach the steady state depth (5% of the final value) with no

significant overshoot. The desired pitch of the same controller was reached much

faster (⋍ 65 s) with no significant overshoot either. TheL1 adaptive controller re-

veals to have a similar convergence slope for the depth but remains slightly faster

with 75 s while the pitch angle was able to follow the desired trajectory. Both

degrees of freedom do not exhibit any overshoot. The similarity in the responses

of these two controllers is seen through the root mean squareerrors (cf. Table 3),

but we can still deduce that theL1 adaptive controller was faster and this is due

to the better trajectory following achieved. We observe that for both controllers

we have a smooth response of the thrusters that exert a total force of 1.25 N (cf.

Figures 5-(b), 6-(b)) as well as a parameter convergence to steady state values
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(cf. Figures 5-(c), 6-(c)). On the latter two figures we observe that the parameters

of the ANSF were initialized with a rough knowledge of the system. Moreover,

small adaptation gains have been used in order to converge easily to a suitable

set of parameters. The controlled parameters of theL1 adaptive controller were

all initialized to zero and although the adaptation gains were very high a smooth

convergence is observed. We conclude from this scenario that theL1 adaptive

controller is able to ensure a faster output convergence without the necessity of

having anya priori knowledge of the model parameters. It has to be noticed that

regardless of the considered controller, the pitch angle shows some oscillations

during the first 40s. This behavior is due to the fact that the vehicle starts its tra-

jectory from the surface, thus leading to disturbances thatcannot be compensated

since the propellers are not fully immersed during this initial period of time.

5.3. Punctual external disturbance rejection

As specified earlier, an external punctual disturbance has been applied on the ve-

hicle after it reached the steady state position (cf. Figures 7, 8. Due to the experi-

mental setup of this scenario, the desired pitch angle was set to 0. The disturbance

was applied at timet = 245 s to cause a positive depth error of 15cm. The re-

covery time was of 15s for the ANSF controller against 10s for theL1 adaptive

controller. A small overshoot can be noticed with theL1 adaptive controller for

the depth whereas the ANSF converged with no overshoot but a static error of

about 5cm is conserved for 30s; the pitch angle for this controller was more

severely affected by this disturbance but it was also able to stabilize again in 15s.
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The root mean square errors in this scenario favours the ANSFcontroller for the

pitch since it maintained its stable position more accurately whereas the depth

was better compensated with theL1 adaptive controller. These differences in the

system’s response of each controller are also reflected in Figures 7-(b) and 8-(b)

where the control input of theL1 adaptive controller is seen to react smoothly

with a more significant change in its estimated parameters asseen in Figure 8-(c).

5.4. Robustness towards parameter uncertainty

The additional buoyancy added to the system disturbs in a persistant way the mo-

tion of the vehicle that would tend to float more. The depth response of the ANSF

is seen to have a delay of 10s compared to the nominal case (cf. Figure 9) fur-

thermore the slope of the response of this degree of freedom was attenuated at the

middle of the trajectory due to the additional time needed for a complete parame-

ter convergence of the parameter (W − B) as seen in Figure 9-(c). This parameter

influencing greatly the dynamics in depth converged to−1.1 N in this scenario

compared to−0.95 N in the nominal case. This parameter is the most dominant

one for the dynamics studied. The pitch angle’s convergencetime was delayed by

20 s and the parameterzGW showed a change from 0.035mN to 0.015mN, since

the position of the center of buoyancy is the center of our frame of reference and

it gets modified with this added persistent disturbance. On the contrary, when the

L1 adaptive controller was applied, the system reponse times for both degrees of

freedom were kept unchanged. However, we observed a stronger level of noise

in the response of the pitch angle. The differences in the root mean square errors
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between the controllers are significant on the depth compared to the nominal case.

Given that no static erros are observed at steady state, thisshows how the sys-

tem was slowed down with the ANSF. As for the depth, the residual oscillations

made the RMSE for this degree of freedom not very relevant after the average

was made for both controllers. The fact that no additional delays were observed

for theL1 adaptive controller despite the added buoyancy, can be explained by

its fast adaptation that guarantees the convergence of the parameters to their new

values. (In the nominal case we hadθ̂ = [7,−26]T andσ̂ = [10,−100]T becoming

θ̂ = [6,−22]T andσ̂ = [12,−135]T with added buoyancy). As stated in (Slotine

& Weiping, 1991), It is worth to note that adaptative controllers do not necessarly

ensure the convergence of the updated parameters to their desired values to obtain

the convergence of the system to its desired position. The control law itself (13) in

the case of the ANSF controller, and the parameter projection (29) in the case of

theL1 adaptive controller ensure the boundedness of the parameters but not nec-

essarily their convergence to the real values. The control inputs generated by both

controllers, are depicted in Figures 9-(b) and 10-(b). Compared to the nominal

case, we can observe that the robot’s actuators are exertingmore effort in order to

immerse the vehicle while keeping the desired pitch angle; we have a combined

force of 1.45 N compared to 1.25 N in the nominal case.

6. Comparison study of the proposed adaptive control schemes

Table 3 below summarizes in a quantitative manner the comparisons performed

above between the two proposed controllers for the different proposed experimen-
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tal scenarios. Some relevant criteria have been chosen to perform this comparison.

Indeed, throughout the performed experiments, it was noticed that theL1 adaptive

controller drived the system faster to the desired state dueto the decoupling aspect

between robustness and adaptation. On the contrary, the adaptation gains of the

ANSF controller had to be chosen relatively small in order toavoid oscillating

responses and even instability of the system. For this reason, we found important

discrepancies among both controllers’ behaviors when a parameter of the model

was modified. Both showed to be robust to this persistant disturbance but the

ANSF controller needs more time to overcome this variation while no signifi-

cant difference compared to the nominal case was observed with theL1 adaptive

controller. For this reason, the latter controller reactedalso faster in presence of

an external disturbance and therefore recovered faster. Animportant point to be

reminded concerns the initialization of the parameters’ vector to be estimated for

each controller. The ANSF controller’s parameters need to be initialzed with some

suitable values requiring a sufficient knowledge of the system while the parame-

ters of theL1 adaptive controller can be initialized to 0.

7. Conclusion and Future Work

This paper deals with control of an underwater vehicle considering the challenges

arising from the high nonlinearities of the system’s dynamics and the variations

of its parameters. The proposed solution includes the design and real-time imple-

mentation of anL1 adaptive controller known by its particular architecture where

robustness and adaptation are decoupled. To the best knowledge of the authors,
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Table 3: Controllers Performance Comparison

Nominal Conditions ANSF L1 Controller
zzz ϑϑϑ zzz ϑϑϑ

Settling Time 85s 65 s 75 s 40 s

Maximum Overshoot 0% 0% 0% 0%

Root Mean Square Error25.3 cm 5.6 deg 24.4 cm 5.1 deg

Punctual Disturbance
zzz ϑϑϑ zzz ϑϑϑ

Recovery Time 15 s 15 s 10 s 10 s

Maximum Overshoot 0% 50% 6% 50%

Root Mean Square Error 5.8 cm 0.6 deg 2.7 cm 1.5 deg

Change in Buoyancy
zzz ϑϑϑ zzz ϑϑϑ

Settling Time 95 s 85 s 75 s 40 s

Maximum Overshoot 0% 0% 0% 0%

Root Mean Square Error30.1 cm 5.3 deg 26.1 cm 5.3 deg

this is the first study evaluating the performance of such a controller on an un-

derwater vehicle. Indeed, to highlight the advantages of this controller it was ex-

perimentally compared with the well proven ANSF controller. Various scenarios

are proposed to evaluate the closed-loop system behavior innominal conditions as

well as in presence of parameters’ changes and external disturbances. This study

showed that both controllers are capable of compensating the introduced uncer-

tainties and external disturbances. However, theL1 adaptive controller was faster

in adaptation despite the zero initialization of its parameters. Future work could

involve the modeling of the thrusters’s dynamics and their incorporation in the
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controlled system.
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Figure 1: View of the AC-ROV and its reference frames (xiyizi: earth-fixed
frame, xbybzb: body-fixed frame).
Figure 2: Block diagram of the closed-loop L1 adaptive controller.
Figure 3: Detailed block-diagram of the L1 adaptive control architecture.
Figure 4: (a): Description of the AC-ROV and its components, (b): Schematic
view of its hardware architecture.
Figure 5: ANSF controller (control in nominal case): (a) the system outputs’

responses (z and ϑ), (b) the control inputs, and (c) the estimated parameters M̂r

and ĝr.
Figure 5-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 5-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 5-(c): Time history of the evolution of the parameters M̂r = [M̂z M̂ϑ]
T

and ĝr = [Ŵ − B ẑGW]
T
.

Figure 6: L1L1L1 Adaptive Controller (control in nominal case): (a) the system
outputs’ responses (z and ϑ), (b) the control inputs, and (c) the estimated pa-

rameters θ̂ and σ̂ (c).
Figure 6-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 6-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 6-(c): Time history of the evolution of the parameters θ̂ = [θ̂z θ̂ϑ]
T

and

the nonlinear terms σ̂ = [σ̂z σ̂ϑ]T
.

Figure 7: ANSF Controller (punctual external disturbance rejection): (a) the
system outputs’ responses (z andϑ), (b) the control inputs, and (c) the estimated

parameters M̂r and ĝr.
Figure 7-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 7-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 7-(c): Time history of the evolution of the parameters M̂r = [M̂z M̂ϑ]
T

and ĝr = [Ŵ − B ẑGW]
T
.

Figure 8: L1L1L1 Adaptive Controller (punctual external disturbance rejection):
(a) the system outputs’ responses (z and ϑ), (b) the control inputs, and (c) the

estimated parameters θ̂ and σ̂.
Figure 8-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 8-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 8-(c): Time history of the evolution of the parameters θ̂ = [θ̂z θ̂ϑ]
T

and

the nonlinear terms σ̂ = [σ̂z σ̂ϑ]T
.

Figure 9: ANSF Controller (robustness towards parameter uncertainty): (a)

1

Figure



the system outputs’ responses (z and ϑ) are slower than those observed in the
nominal case. The change of buoyancy is observed through the plots of the

control inputs (b) and the estimated parameters M̂r and ĝr (c).
Figure 9-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 9-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 9-(c): Time history of the evolution of the parameters M̂r = [M̂z M̂ϑ]
T

and ĝr = [Ŵ − B ẑGW]
T
.

Figure 10: L1L1L1 Adaptive Controller (robustness towards parameter uncer-
tainty): (a) the system outputs’ responses (z and ϑ) have the same convergence
rate as the one in the nominal case. The change of buoyancy is observed through
the plots of the control inputs (b) and the estimated parameters (c).
Figure 10-(a): Time history of the measured depth position z and pitch angle ϑ
as well as their respective desired trajectories.
Figure 10-(b): Time history of the force generated by the two thrusters control-
ling z and ϑ.

Figure 10-(c): Time history of the evolution of the parametersθ̂ = [θ̂z θ̂ϑ]
T

and

the nonlinear terms σ̂ = [σ̂z σ̂ϑ]T
.

2



Figure



Figure



Figure



Figure



Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 

Desired Trajectory

Measured Pitch

Figure



0

0.2

0.4

0.6

0.8

1

T
h
ru

st
e
r

5
(N

)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (s)

T
h
ru

st
er

6
(N

)
Figure



−1.5

−1

−0.5

0

0.5

1

1.5

M
a
ss

 

 

M
z

M
ϑ

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5

Time (s)

G
ra

vi
ta

ti
on

al
,
b
u
oy

an
cy

 

 

W−B

z
G

W

Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 

Desired Trajectory

Measured Pitch

Figure



0

0.2

0.4

0.6

0.8

1

T
h
ru

st
e
r

5
(N

)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (s)

T
h
ru

st
er

6
(N

)
Figure



−35
−30
−25
−20
−15
−10

−5
0
5

10

P
a
ra

m
e
te

rs
( θ̂

)

 

 

θ̂z

θ̂ϑ

0 50 100 150 200 250 300 350
−120

−100

−80

−60

−40

−20

0

20

Time (s)

D
is
tu

rb
a
n
ce

s
(σ̂

)

 

 
σ̂z

σ̂ϑ

Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

200 220 240 260 280 300
−20

−15

−10

−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 
Desired Trajectory

Measured Pitch

Figure



0

0.2

0.4

0.6

0.8

1

T
h
ru

st
e
r

5
(N

)

200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

Time (s)

T
h
ru

st
er

6
(N

)
Figure



0

0.2

0.4

0.6

0.8

1

1.2

M
a
ss

 

 

M
z

M
ϑ

200 220 240 260 280 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

G
ra

vi
ta

ti
on

al
,
b
u
oy

an
cy

 

 

W−B

z
G

W

Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

200 220 240 260 280 300
−20

−15

−10

−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 

Desired Trajectory

Measured Pitch

Figure



0

0.2

0.4

0.6

0.8

1

T
h
ru

st
e
r

5
(N

)

200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

Time (s)

T
h
ru

st
er

6
(N

)
Figure



−35
−30
−25
−20
−15
−10

−5
0
5

10

P
a
ra

m
e
te

rs
(θ̂

)

 

 

θ̂z

θ̂ϑ

200 220 240 260 280 300
−120

−100

−80

−60

−40

−20

0

20

Time (s)

D
is
tu

rb
a
n
ce

s
(σ̂

)

 

 

σ̂z

σ̂ϑ

Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 

Desired Trajectory

Measured Pitch

Figure



0 50 100 150 200 250 300 350
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

C
o

n
tr

o
l 

In
p

u
t 

(N
e

w
to

n
) Motor 5

Motor 6

Figure



−1.5

−1

−0.5

0

0.5

1

1.5

M
a
ss

 

 

M
z

M
ϑ

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5

Time (s)

G
ra

vi
ta

ti
on

al
,
b
u
oy

an
cy

 

 

W−B

z
G

W

Figure



0

0.2

0.4

0.6

0.8

1

D
e

p
th

 (
m

)

 

 

Desired Trajectory

Measured Depth

0 50 100 150 200 250 300 350
−5

0

5

10

15

20

Time (s)

P
it

ch
 a

n
g

le
 
ϑ

 (
d

e
g

)

 

 

Desired Trajectory

Measured Pitch

Figure



0

0.2

0.4

0.6

0.8

1

1.2

T
h
ru

st
e
r

5
(N

)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (s)

T
h
ru

st
er

6
(N

)
Figure



−40

−30

−20

−10

0

10

P
a
ra

m
e
te

rs
(θ̂

)

 

 

θ̂z

θ̂ϑ

0 50 100 150 200 250 300 350
−160
−140
−120
−100

−80
−60
−40
−20

0
20

Time (s)

D
is
tu

rb
a
n
ce

s
(σ̂

)

 

 
σ̂z

σ̂ϑ

Figure


