Diophantine Approximation, Ostrowski Numeration and the Double-Base Number System - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2009

Diophantine Approximation, Ostrowski Numeration and the Double-Base Number System

Résumé

A partition of $x > 0$ of the form $x = \sum_i 2^{a_i}3^{b_i}$ with distinct parts is called a double-base expansion of $x$. Such a representation can be obtained using a greedy approach, assuming one can efficiently compute the largest \mbox{$\{2,3\}$-integer}, i.e., a number of the form $2^a3^b$, less than or equal to $x$. In order to solve this problem, we propose an algorithm based on continued fractions in the vein of the Ostrowski number system, we prove its correctness and we analyse its complexity. In a second part, we present some experimental results on the length of double-base expansions when only a few iterations of our algorithm are performed.
Fichier principal
Vignette du fichier
1011-4184-2-PB.pdf (200.05 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

lirmm-00374066 , version 1 (03-06-2014)

Identifiants

Citer

Valerie Berthe, Laurent Imbert. Diophantine Approximation, Ostrowski Numeration and the Double-Base Number System. Discrete Mathematics and Theoretical Computer Science, 2009, Vol. 11 no. 1 (1), pp.153-172. ⟨10.46298/dmtcs.450⟩. ⟨lirmm-00374066⟩
212 Consultations
2621 Téléchargements

Altmetric

Partager

More