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Numerous studies have demonstrated the influence of elastic and plastic strain energies on the 
martensitic transformation in shape memory alloys. In recent years the Finite Element Method 
(FEM) has been applied to a wide range of elastic and plastic problems, however, few FEM 
analyses of shape memory phenomena have been reported. In this paper the FEM method has been 
used to model the martensitic transformation. The model assumes a two variant shear 
transfornation in a two dimensional grain. Plastic deformation accompanying the transformation is 
accounted for using the Estrin-Mecking constitutive model. The spatial distribution of elastic and 
plastic strain energies developed during the transformation is shown to determine variant structure. 
Calculations of the effect of applied stress on variant structure and the effect of stress and repeated 
thermal cycling on the transformation temperatures are presented. 

1 INTRODUCTION 

In recent years a number of models for shape memory alloys have been proposed based on Landau's 
theory of phase transition, statistics and continuum mechanics and thermodynamics [I-61. However, few 
Finite Element Method (FEM) analyses of shape memory phenomena have been reported [7,8]. Xu [7,8] 
reported a model which describes the martensitic transformation process with or without an applied stress 
based on the linear elastic model developed by Khachaturyan [9]. In this paper the FEM method has 
been developed to model the martensitic transformation in NiTi. In order to simulate a simple case, it is 
assumed that there are only two types of martensitic variants and the transformation strain is pure shear 
in a two dimensional grain. Using the Estrin-Mecking constitutive model, calculation of plastic 
deformation accompanying the transformation is carried out. The spatial distribution of elastic and 
plastic strain energies developed during the transformation is shown to determine variant structure and 
the transformation process and temperature. 

2 FINITE ELEMENT METHOD MODEL 

2.1 Finite element model 

It is assumed that the transformation occurs in a grain modelled by an (n x n) square grid in two- 
dimensional space surrounded by a boundary consisting of an untransformed layer of material elastically 
coupled to the outer rigid boundary. Each square represents the minimum unit that can transform and 
this unit is called the elementary cell of the transformation. 

Each square in the grain is an isoparametric and quadratic finite element of eight nodes. If the 
relationship between stress o and strain E is written in the form 

o = D(E - EO) + (30 (1) 
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where D is an elastic matrix, o o  and EO are the initial stress and strain respectively, according to elastic 
FEM theory [lo], we have a system of ordinary equations 

K a = r - f  (2) 

where K =  I BTDBdV, and f = - I N T b d ~ - ~ T f d ~ - ~ B T D e o d V -  BToodV I 
where t is the boundary loads V the volume of the whole body, B is the differential operator matrix and 
N is a shape finction required from the FEM. The a and r are the nodal displacements and external 
forces applied on the nodes respectively. 

For a non-linear plastic FEM problem, we have 
d o  = D, d~ (3) 

where the elasto-plastic matrix D, is dependent on the yield criterion, the hardening function and the 
elastic matrix D. Solving eqs. (1) - (3) using the Newton-Raphson method for iteration, the strain and 
stress increment AE and Ao for each equilibrium solution and the final strain and stress E and o can be 
obtained. 

2.2 The transformation strain and the mechanical energy 

For simplicity, a two variant model is assumed. Since there is a very small volume change of the 
martensitic transformation in shape memory alloys, only the shear components of the transformation are 
taken into account. So the initial strains in eq. (1) contain the engineering shear strain component yl = yo 
for variant 1, and yz = -yo for variant 2. 

With initial stress oo, the transformation strain EO occurs in a grain of volume V. In order to 
calculate the system energy change induced by the transformation, there are three steps in this elastic 
model [9]. 

(1) Cut the region vo in which the transformation will happen from the matrix (the grain) and 
remove it. At the moment, the transformation occurs under initial stress GO and is boundary-fiee, no 
elastic energy is produced but the work due to the initial stress o o  and the transformation strain EO exists - 
and is equal to (4) 

(2) In order to put the transformed region into original position, apply a force on the region and 
restore its original shape, then put it back into the matrix. The increase of elastic energy stored in the 
transformed region is obtained in this step and can be written as 

mStoE = ( ~ E : D E ~  - ~ : a , ) d v .  ( 5 )  

It should be noted that there is not any elastic energy change in the matrix as yet. 
(3) Remove the force applied in step (2) from the region. The relaxation of the transformed region 

gives the elastic strain energy change in both the transformed region and the matrix 
* .  * 

The combination of equations (4), (5) and (6) gives the total elastic and transformation energies produced 
by the transformation. 

In all shape memory alloys plastic deformation invariably accompanies the martensitic 
transformation [l 1 - 151. In this model, the Estrin-Mecking constitutive model [16- 171 for plastic 
deformation is used. Using the Estrin-Mecking plastic model gives the relationship between stress and 
the plastic strain. When the plastic deformation is considered, the mechanical energy change due to the 
transformation can be expressed in the form [I 81 



where AE, is the elastic and plastic energy produced by the transformation, AE, Ao and o represent the 
strain and stress increment as well as the stress of each step for equilibrium respectively. The Von Mises 
yield criterion for plastic deformation is employed. 

2.3 The free energy and the transformation path 

The total Gibbs free energy change AG due to the transformation can be written as 
AG = AG, + mota, (8) 

where the chemical free energy, AG,, is assumed to be proportional to temperature T 
AGc = K(To - T) (9) 

where To is the equilibrium temperature and K is equal to entropy change AS,. Therefore, for an elastic 
matrix, the total free energy change due to the transformation is given by eqs. (4), (S), (6) and (9). For 
the plastic case, the use of eqs. (7), (8) and (9) yields the total free energy change. It is assumed that the 
irreversible energy of the transformation is produced by plastic deformation only. 

In a grain with an (n x n) square grid, there are n plates, each plate contains n squares and is parallel 
to the one edge of the boundary. If an elementary plate is the smallest unit that can transform, the 
transformation proceeds plate by plate. At the beginning, there are 2n choices for the first plate to 
transform since two kinds of martensitic variants are assumed in this model. After calculating the Gibbs 
free energy change for each position and each variant respectively, the position and variant with the 
minium free energy change will be the first plate to transform. The transformation temperature for this 
variant is calculated from eq. (9) with AG = 0. When the first plate is transformed, the same procedure is 
repeated for the second plate but the choices that can be taken will be reduced by 2, that is, there are 2(n- 
1) remaining choices for the second plate. For the other plates to transform, this procedure is followed 
until the whole grain is transformed. The reverse transformation is treated in the same way. 

3 RESULTS AND DISCUSSION 

In this section the results of a simulation of the forward and reverse martensitic transformation during a 
thermal cycle under constant stress are given. The properties of NiTi shape memory alloys and other 
parameters used in the simulation are shown in table 1. 

Using the minimum energy method described above, the first martensite plate transformed as 
variant 1 at the top of the grain, variant 1 being favoured by the applied stress. The elastic and plastic 
strain fields accompanying the formation of the variant were concentrated in the boundary adjacent the 
ends of the variant. The second martensite plate was also variant I and was located at the bottom of the 
grain. The elastic, plastic and total strain fields produced by the second plate were similar to the strain 
fields produced by the first plate. Following the minimum energy procedure the entire grain was 
transformed plate by plate to martensite. 

Fig. 1 shows the spatial distribution of the elastic and plastic strain energies after the forward 
transformation. It is seen that the elastic and plastic strain fields are located mainly in the untransformed 
boundary at the end of the plates. The elastic strain energy opposes the transformation and is limited by 
the occurrence of plastic deformation.. With an applied stress of 250 MPa all of the variants were of type 
1. It was found that stresses greater than 200 MPa were required to obtain 100% of variant 1. With 
lower stresses increasing self accommodation occurred as the stress was lowered. 

The elastic and plastic strain energies after a complete forward and reverse transformation cycle are 
shown in Fig. 2. The strain fields remain concentrated in the boundary region. It is noted that the 
residual elastic strain energy is the result of the plastic strain induced by the transformation, as in the 
absence of any plastic strain the transformation must be hlly reversible. The residual elastic strain fields 
occur in the direction to assist the forward transformation of variant 1 under zero stress, a requirement 
for two-way shape memory behaviour. It is seen that little change in the plastic energy occurred during 
the reverse cycle. 
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In Fig. 3 the fraction of transformed martensite is plotted as a function of the temperature. The 
curve exhibits the experimentally observed features of transformation hysteresis and a temperature 
interval between the transformation start and finish. The hysteresis clearly results from the (irreversible) 
plastic deformation caused by the transformation. The sequence of transforming plates for the reverse 
transformation was exactly opposite to that for the forward transformation, as expected for a 
thermoelastic transformation. 

The effect of repeated thermal cycling on the hysteresis is shown in Fig. 4. The hysteresis, ATh, 
decreases progressively with increasing number of cycles due to the effect of strain hardening, which is 
accounted for in the simulation by the Estrin-Mecking model. Similar behaviour is observed 
experimentally [IS], however, ATh, normally does not decrease to zero as shown in Fig. 4. A non-zero 
value of ATh after a large number of cycles may be modelled by inclusion of a constant energy term which 
is associated with the frictional and other irreversible transformation energy losses. 

The effect of the applied stress on the transformation temperature has also been modelled. In Fig. 5 
the applied stress is plotted as a hnction of the temperature required for the first martensitic variant to 
form. Also shown in Fig. 5 is the stress-temperature curve obtained using an elastic model, ie. no plastic 
deformation. It is seen that the two curves diverge at high stresses. 

The temperature dependence of the transformation stress is usually modelled by the Classius- 
Clapeyron like relation 

The slope of the elastic curve is identical with that calculated from eq. (10) using the parameters in Table 
1. Eq. (10) does not take into account any stress dependence of the plastic energy as would be expected 
for strain hardening. To take strain hardening into account, eq. (10) may be rewritten as [19]: 

where AE,, is the plastic energy. The second term in the denominator of eq.' (10) increases with 
increasing stress and is of opposite sign to EO, thus explaining why the two curves diverge. 

(a) (b) 
Fig. 1 Distribution of energy after the forward transformation (a) Elastic, (b) Plastic (external shear stress: 250 MPa) 



(a) (b) 
Fig.2 Distribution of energy after the reverse transformation (a) Elastic, (b) Plastic (external shear stress: 250 MPa) 
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Fig.3 Curves of temperature and mensit ic  &action Fig.4 Effect of thermal cycling with load on the hysteresis 
(applied shear stress 300 MPa) (applied shear stress 300 MPa) 
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Fig.5 Effect of applied stress on Ms 
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4 CONCLUSIONS 

This paper illustrates a few of the insights that can be obtained from FEM modelling of the martensitic 
transformation and shape memory behaviour. Although the results of the FEM model are in qualitative 
agreement with experiment, it is clear that a number of refinements are necessary to more closely model 
experimentally observed behaviour. In particular, a much larger array needs to be used. With the present 
work, the available computing facilities limited the analysis to only a 1 1x1 1 array and two variants. It is 
well known that there are 24 variants in shape memory alloys and the combination of different 
deformations produced by the different variants gives the macroscopic deformation behaviour of these 
alloys. Account needs to be taken of the differing elastic and plastic properties of the parent and 
martensitic phases. The boundary conditions also need to be examined in detail as they can significantly 
influence the results of the simulation. Nonetheless, as well as being in qualitative agreement with 
experiment, the results obtained here illustrate the interplay of the elastic and plastic response to the 
martensitic transformation. 
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