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Abstract. The dispersion of longitudinal stress waves as they propagate in pressure bars distorts the shape of the 
pulse, and so can be a limitation to the accuracy of high strain rate tests such as the compressive split Bopkinson 
pressure bar (SHPB). The method of dispersion correction described in this paper is based on a bar phase 
characteristic which is derived entirely from measured stress pulses generated by the elastic Impact of small spheres. 
This method does not depend on any theoretical model of wave propagation, and automatically includes all 
distortions that could arise in mechanical or electronic aspects of the test. It is quick and convenient enough to be 
used on a routine basis to improve the accuracy of SHPB tests. 

RbumC : La dispersion des ondes de conuainte longitudinales transportkes dans des barres deforme l'impulsion, 
ce qui peut restreindre la precision des essais grande vitesse de deformation, tels que ceux rkalises i la barre d'Hopkinson en 
compression. Les modalites de la correction de la dispersion dkcrites dans le present article sont fondees sur des caracteristiques 
de phases derivees entikrement d'irnpulsions mesurkes, crCtSes par I'impact Clastique de petites spheres. Cette methode ne depend 
d'aucun modele theorique de propagation d'ondes, et prend automatiquement en compte toutes les erreurs possibles dues aux 
aspects mecaniques ou klectroniques de I'essai. Elle est suflisamment rapide et facile pour @ue u ~ i l i d e  regulibrement afin 
d'ameliorer la precision des essais 2 la barre d'Hoplunson. 

1. INTRODUCTION 

In the compressive version of the split Hopkinson pressure bar (SHPB), measurements of stress pulses at 
some distance along the bars are used to determine conditions at the specimen interfaces, and hence derive a 
stress-strain history using the theory of one-dimensional elastic wave propagation [l]. The propagation of 
longitudinal stress waves is, however, dispersive for wavelengths which are of the same order of 
magnitude as the bar diameter. This causes distortion of short stress pulses, and hence the signals 
registered by the gauges in both bars are not necessarily an accurate indication of conditions at the specimen 
boundary. With a given bar diameter, this limitation to the accuracy with which specimen stress and strain 
can be measured becomes more important as the strain rate, and hence the high frequency content of the 
signals, increases. 

However, since the dispersive distortion is created by the spread of phase velocities over the signal 
SpeCtrUm, it should in principle be possible to reverse the effects of propagation by applying appropriate 
phase shifts to each frequency component. Several authors, including Hsieh and Kolsky [2], Gorham [3], 
Follansbee and Frantz [4], Gong et al. [S], Gary et a/. [6] ,  Safford [7], Lee and Crawford [8], and Lifshitz 
and Leber [9] ,  have carried out this procedure using phase corrections derived from the theoretical analysis 
of wave propagation in bars. This technique is successful for moderately dispersed signals, but becomes 
Inaccurate for large amounts of dispersion. The inaccuracies arise largely because of the differences 
between the theoretical and experimental conditions, such as end effects and the distribution of loading, and 
errors in the empirically determined material constants. 

Direct measurement of the phase characteristics of the bar under the conditions in which it is to be used 
avoids these inaccuracies, and is in principle a more reliable basis for correction. Lee et a1 [IO] have used a 
comparatively complex time of arrival analysis of shock signals to derive an empirical dispersion relation 
for a bar, and demonstrated an improved accuracy of correction over the theoretical methods of Gorham 131 
and others. Gorham and Wu [ l  11 have described a simpler method for deriving a dispersion characteristic 
ffom measurements of elastic impact stress from small spheres, and have applied it to the correction of 
Signals from larger particle impacts. This method is a direct measurement of phase that makes no theorehcd 
asufnptions about the nature of the wave propagation. The present paper describes the application of this 
empuicd method to the SHPB, and demonstrates a considerable improvement over earlier techniques based 
on theoretical models. 
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2. THE IDEAL PULSE FROM THE ELASTIC IMPACT OF SPHERES 

In our method, the phase characteristic is found from measurements of the elastic impact of small sphere5 
on the end of the bar. Classical Hertzian theory predicts that the force history arising from an elastic 
collision between a sphere and a flat is approximately of cosine shape, as sketched in Figure 1. The 
magnitude and phase spectra obtained from a Fast Fourier Transform (FFT) operation on this ideal form of 
signal are shown in Figure 2, where the frequency axis is marked in units of component number. Only the 
first 200 points are shown here, each point representing a frequency interval of 9.765 kHz, and so giving ;I 
maximum abscissa value of 1.953 MHz. Notice that the magnitude spectrum in the figure displays a series 
of well defined minima, while the phase consists of a series of n steps which correspond to these 
magnitude minima. 
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Figure 1: Elastic impact force history of a sphere on a Figure 2: Phase and magnitude spectra for the signal of 
plate, according the Hertzian theory. Figure I. 

This simple variation of phase arises from the symmetry of the waveform about the time origin. Groups of 
frequency components between the steps add up in phase, to create a symmetrical sum with either a positive 
going maximum at time zero (@ = n) or a negative going maximum (@ = 0 or 2n). Any phase value which 
is not a multiple of n would not contribute to a symmetrical waveform. The exact shape of the pulse, which 
is the total of all these contributing sums, is then determined by the positions at which the n steps occur. 

If the collision involves plastic deformation, then the stress pulse may be slightly asymmetric. A 
similar phase spectrum is found in this case, but the phase values may vary a little between the steps 
(Gorham & Wu [ l l ] ) .  These simple forms of phase spectra found with ideal pulses and their link to the 
magnitude spectrum provide the key to empirical correction of experimental signals. 

3. STRESS PULSE MEASUREMENTS 

The technique for dispersion correction will be illustrated by a 6.7 mrn diameter SHPB system, using 
Ti6A14V bars instrumented with unbacked, silicon strain gauges located approximately 100 mm from the 
specimen ends. The gauges had a physical length of 1 mm, a gauge length of 0.5 mm and a width of 0.15 
mm. The rise time of their response, about 0.1 ps, is fast enough not to create a bandwidth limitation for 
the signals measured in this work. Two gauges were mounted on opposite sides of the bar, and connected 
in series so that unsymmetrical bending waves would be cancelled out. The gauges were energised from a 
constant d.c. voltage source in series with a resistance. The signal was acquired with an 8-bit 200 MS s-I 
digital recorder, and data was transferred to a PC for rocessing with Matlab analysis software. 

Measurement of impact force signals was carrielout with the bars mounted venically. Steel sphescs io  
the diameter range of 0.6 rnrn to 4 mm were dropped from a height of less than 0.5 In onto thc ccntrc ofthi' 
end face of the bar. Collision velocities were less than 2 ms-1, low enough for impacts to be largely elasric 
and hence the pulses to be almost symmetrical. 



TWO typical examples of these signals are shown in Figure 3. The larger size (4 mm) shows comparatively 
small effects of dispersion, with only a small oscillatory overshoot after the main pulse. However, the 
smaller size (0.6 rnrn) is dominated by its effects, with large oscillations carrying on for a long time after a 
barely discernible main pulse. Note that the time origin in the measured traces has been shifted to the centre 
of the main pulse. 
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Figure 3: Force measurement from the elastic impact of spheres. (a) 4 mm diameter; (b) 0.6 mm diameter. 

The magnitude and phase spectra for each of signals of Figure 3 are presented in Figure 4. Again, the 
frequency axis corresponds to a maximum value of 1.953 MHz. The magnitude spectra show much more 
irregular structures than the ideal pulse does. In the case of the larger sphere, there are two well defined 
minima within the first 30 components, but then the magnitudes reach the level of the underlying noise and 
become essentially random. The spectrum from the smaller sphere is above the noise level until a much 
higher frequency, and the plot shows a number of small peaks and minima up to at least component 160 
when the noise begins to be significant. 

The phase spectra have been subjected to the numerical procedure known as unwrapping, in which, 
because phase values are periodic in 2n, an appropriate number of 2n increments are added to each 
calculated value to yield a monotonic change of phase with frequency. Without unwrapping, the arctan 
function used to calculate the phase returns values within the interval of 0 to 2n and the shape of the 
characteristic is lost. 

The unwrapped phase spectra from each size of sphere impact display a similar shape of curve, but 
with individual differences of detail. In fact, close comparison of the phase spectra in Figure 4 and those 
from intermediate sizes of sphere shows that the main differences are steps of n or of 2n. The 2n steps 
represent inaccuracies in the unwrapping process, and they can be removed individually if necessary. The 
smaller steps of about n represent the phase information which defines the pulse shape, as in the ideal case 
of Figure 1. 

The theoretical pulse of Figure 1 has a phase value of n up to the first step. Assuming that the 
experimental sphere impact force follows a similar, symmetrical form, then any deviation of phase away 
from n in the early part of the record results from the dispersive propagation in the bar. Hence, in principle, 
the phase characteristics of the bar are given directly by the measured phase spectra up to the first step. 
Cancellation of dispersion is achieved simply by deriving an accurate representation of this underlying 
phase characteristic and subtracting it from the phase spectra of measured signals. 

In Figure 4(a) both the magnitude and phase spectra for the 4 rnrn sphere clearly show the first step to 
be at component 16. The smaller sphere in Figure 4(b) shows a much more complicated magnitude 
spectrum in which the minima are not clearly defined, but the phase spectrum shows a very clear n step at 
component 118. Further work with various forms of model pulse have shown that the frequency of the first 
step is inversely proportional to the pulse width, although the position of other steps depends on the exact 
pulse shape. This supports the observation that the positions of the first minima for the 4 rnrn and 0.6 mrn 
spheres are approximately at points 16 and 118 respectively. Therefore, the first 118 components of the 0.6 
mm sphere phase spectrum should directly represent the dispersive phase shift of the bar, and higher 
components can be used if TC is subtracted from them. In practice the measured phase data needs to be 
ad~usted slightly, and this is described in the following section. 
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Figure 4: Phase and magnitude spectra, (a) from the 4 mm sphere impact signal of Figure 3(a); (b) from the 0.6 mm sphere 
impact signal of Figure 3(b) 

4. DISPERSION CORRECTION WITH EMPIRICAL PHASE DATA 

If the raw phase data from the 0.6 mrn pulse is simply subtracted from an SHPB signal, then the dispersion 
correction is not very successful. Close examination of the phase spectra from small particles often reveals 
the presence of significant oscillations in the first few phase values, which can have a large effect on the 
reconstructed waveform and are responsible for the poor correction. These are probably the result of 
aliasing, in which contributions from higher frequency components are added to these low frequency 
values due to the process of sampling. Some of this arises from noise internally generated in the signal 
recorder, and so cannot be completely avoided by restricting the signal bandwidth. Hence to achieve 
successful correction of dispersion, the oscillations need to be removed from the phase spectrum. 

Three procedures have been used to derive good quality phase data from the measured signals of small 
sphere impacts. Fist ,  if the oscillations in the phase characteristic are limited to a few values, then these can 
be manually edited to an appropriate average value. Second, it is found that problems of noise or aliasing 
affect different parts of the phase spectra from different sized spheres. Hence a hybrid curve can be 
constructed by joining clean sections of two or more sets of data. Third, an appropriate curve fit can 
smooth irregularities very effectively. As an example, equation (1) was used to fit the first 50 points of 
phase data from the 0.6 mrn sphere impact, 

where cp is the phase deviation, n is the component number and a, to a6 are constants. The values for this 
tested bar are a ,  = 76.61, a2= 0.1406, a3= 53.28, ad=  0.9386, a5= 76.63 and a6= 0.0693. A fit over 50 
points was enough to cover the frequency content of measured signals in our SHPB system. 

An example of an experimental signal corrected with this data is shown in Figure 5. This is the stress 
pulse from the collinear impact of a short rod on a long, 6.7 mm diameter pressure bar, recorded at 
position about 100 mm from the impact end. The dotted trace is the measured signal, where frequency 
dispersion has caused the rise time to be lengthened and significant oscillations to be added to the 



approximately flat-topped loading pulse. The phase data represented by equation 1 has been subtracted 
from the signal spectrum, to give the corrected waveform shown by the full line. The oscillations have been 
very considerably reduced, and the rise time decreased. Note, however, the spurious oscillations which 
have been added just before the main rise, which are a characteristic of this type of correction. 

Figure 6 shows the head of this pulse corrected by the present empirical method, compared with that 
using the theoretical phase characteristics of the bar [3]. The older method does not work well on this type 
of signal, and although the oscillations are reduced by a factor of 2, the correction is very much better with 
the new method. 

Another example, shown in Figure 7, is from a high strain rate material test using the 6.7 mm S Y B  
system. The specimen was pure copper, 4.7 mm diameter, and the average strain rate was 2.5 x 10 il. 
Dispersion in the loading pulse was minimised experimentally by attaching a double layer of 80 g m-2 paper 
to the impact face of the incident bar. This limits the rise time of the load, and the incident pulse showed 
virtually no evidence of oscillations. The stress-stain relations obtained from the raw signals and from those 
corrected by the new empirical technique described above are presented by broken and solid lines 
respectively. Although oscillations are not very prominent in either stress-strain curve, the correction has 
introduced a significant difference between them, especially within 4% of strain. This result indicates that 
the dispersion of stress pulses can have a significant effect on the stress-strain relations derived from SHPB 
tests, even if dispersive oscillations are not apparent in the measured signals. 
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Figure 5: Measured signal from the axial impact of a Figure 6: A comparison of the present empirical 
short rod, corrected by the empirical method. dispersion technique with the method of Gorham [3] 

based on the theoretical characteristics of the bar. 
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Figure 7: Stress strain curves for copper at a strain rate of 2.5 x 10's". 
with and without the empirical dispersion correction. 
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5. DISCUSSION 

This work has shown that large phase values, known to a comparatively high accuracy, are required for a 
reliable correction for dispersion in pressure bar signals. Most previous work on dispersion correction in 
bars has been based on a theoretical bar response, and it is not surprising that mismatch between the 
idealised models and the experimental situation leads to corrections of limited accuracy. A measured phase 
characteristic automatically takes into account the precise mechanical arrangement of the test, as well as 
including any dispersive effects from the electronic circuitry. Any change in mode of propagation is also 
included automatically. The accuracy of the correction is affected by the resolution of the digitisation and by 
noise, and improvements in these areas would lead to better corrections. 

The most accurate phase response is obtained from impacts which are as close to elastic conditions as 
possible, as this gives a symmetrical pulse and hence a simple ideal phase characteristic. Spheres must be 
small to allow a sufficient number of phase data points to be obtained, but large enough to give low noise 
signals. 

6. CONCLUSION 

An accurate, measured dispersion curve for a pressure bar has been derived from the phase characteristics 
of small sphere impact stress. Dispersion correction of SHPB signals using this empirical curve gives much 
better results than techniques using wave propagation theory. The new dispersion correction method can 
effectively and routinely improve the accuracy of stress-strain relations derived from SHPB tests, even 
when dispersive effects are not prominent in the measured signals. 
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