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J.L. Minot and C. Fressengeas 

Laboratoire de Physique et Mkcanique des Matkriaux, URA NO1215 du CNRS, Universitd de ~ ~ t ~ ,  
~ , p .  80794, Ile du Saulcy, 57012 Metz cedex 01, France 

Abstract. The attention is focused on the influence of boundary conditions on the critical nominal swain to failure 
in adiabatic shear banding. First, the influence of mixed velocity-stress conditions for a Knowles constitutive law is 
investigated, then stress controlled and velocity controlled conditions are discussed for a multiplicative power law 
form. It is shown with an analyticaVnumerical method that the critical strain is not sensitive to the boundary 
condition when a Knowles constitutive relation is used, but that it is less under stress controlled conditions than for 
velocity boundary conditions, when a multiplicative form of the thermoviscoplastic constitutive law is employed. 

R6um6. On s'intiresse h I'influence de conditions aux limites sur la diformation nominale critique A rupture en 
cisaillement adiabatique. Dans un premier temps, I'influence des conditions de chargernent mixtes pour la fonction 
de Knowles est ttudiie, ensuite les contr6les en vitesse et en contrainte sont discutis pour une loi puissance 
multiplicative. I1 est rnontri avec une mithode analytiquelnurnirique que la contrainte critique est insensible aux 
conditions aux limites quand une loi de comporternent de Knowles est utilisie, mais qu'elle est plus faible sous un 
contrBle en vitesse que sous un contr6le en contrainte lorsque une forme multiplicative de la loi 
thermoviscoplastique est employte. 

1. INTRODUCTION. 

Thermomechanical coupling and thermal softening are at the origin of the localization of plastic flow into 
Adiabatic Shear Bands (ASBs). It is well known that the onset of the localization process can be traced 
back without ambiguity to the maximum in the shear stress T vs. shear strain y diagram. However a 
significant scatter in the critical nominal shear strain to failure is observed under constant material 
conditions. A part of this scatter can be ascribed to the lack of control of the materiel imperfections [I]. In 
the present paper, the influence of the boundary conditions on the critical shear strain is investigated. 

2. MODEL FORMULATION. 

Let us consider a slab of material of half height h along the (0,x) axis, of infinite extension along (O,z), 
and of width l(x) in the direction (O,y)(Figure 1.a). The slab is subject to simple shear parallel to ( 0 , ~ ) .  It 
is assumed that the only non-zero particle velocity component is v along the (0,z) axis (Figure 1.b) ; in 
addition, one assumes that every quantity depends on the abscissa x and on the time t only. The problem 
thus defined is ID ; it is designed to model the torsion of a thin walled tubular specimen in the torsional 
Kolsky bar experiment. Inertial effects being neglected, the shear force does not depend on x, and the 
equilibrium equation reads 

b'x E [ -h , +h ] T(X , t) 1(x) = ~ ( 0  , t) 1(0) (1) 
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a) Velocity b) Geornehical defect 

Figure I : Profile of velocity and defect 

The material behavior is assumed to be thermoviscoplastic, and the flow stress is taken to be of the 
general form 

= P(X) F(y,8) j (2) 
where m is the strain rate sensivity parameter. The shear modulus is assumed to be x-dependent in ordei 
to account for a material inhomogeneity or a metallurgical defect. The coefficients used in the Knowles 
constitutive law 

were identified by [2] for the HY-100 steel (b=8000, &.49)..~or the multiplicative power law form oi 
the function F(y,B(y)) 

F(y,O) = " 1P (41 
the material parameters (n the hardening coefficient, v the thermal softening parameter and m) were also 
identified in [2] for the CRS 1018 steel (V = -0.38 ; n = 0.015 ; m = 0.019). Under the assumed adiabatic 
conditions, the energy conservation law is written as 

av 
where p denotes the mass density, c the massic thermal capacity, 8 the temperature, j = - the local strain ax 
rate, p the Taylor-Quimey coupling constant, the value of which is roughly fk0.9. Using the relation@) 
and (4) allows the integration of the energy equation (5) for either stress controlled : ~(h , t )  = .to, or velocig 
controlled boundary conditions : v(h,t) = vo 

The temperature 8 is then obtained as a function of the plastic deformation y and of the initial 
temperature 8,. Substituting 8(y) in (4) leads respectively to : 

F(y,B(y)) = f(y) = €loV (l+a,y)" yn with a, = Bz(x) 
P C ~ O  

(61 

for stress controlled boundaries and 

under velocity conditions. The inequalities n < !h for the Knowles function and v+n < 0 for the 
multiplicative form indicate that a maximum in the shear stress occurs, beyond which softening 1s 

predominant. 
Using f(y) as defined by (3), (6 )  or (7) in (2) and substituting the shear stress z in the equilibri~l~ 

equation ( 1 )  leads, after integration, to the localization equation : 



where the initial plastic deformation yo is supposed to be uniform. Asymptotic L, localization of the 
plastic deformation occurs in the cross-section x=O if the deformation becomes unbounded for x d ,  while 
remaining finite for every other x 131 Therefore an asymptotic L, localization criterion is obtained by 
writing that the r.h.s. integral in (8) exists when y(0) becomes unbounded : 

(9) 

~t is respectively, for f(6) defined by (3), (6) and (7) : 
2n+m- 1 <0 (Knowles) (lO.a) 
v+n+m<O (stress controlled boundaries) (10.b) 

v+n+m( 1 -v)<O (velocity controlled conditions) (1O.c) 
Assuming that the L, localization criterion (10) is fulfilled, the relation (8) appears to be an implicit 

integral equation for the unknown y(x). TWO different solution procedures can be used : one is based on 
local asymptotic expansions valid in the neighborhood of the defect, the other is an exact analytical 
solution obtained by means of convergent series developments of the integrals involved in eq. (8): These 
developments are written in terms of the hypergeometric function ,F,. The sample geometry and the 
material non uniformity are specified by the local developments (1 1) and (13). The sample shear modulus 
~.l(x) in a neighborhood of the defect is given by the local development : 

Vx E [-xI>+xII P(X) = CL(O)+P,(O)IXI~ (1 1) 
where r represents the sharpness. When r satisfies r<l, sharp defects resulting from a material singularity 
are described ; r>l leads to smoother defects. Outside [-xl,+xl] a fifth order polynomial expansion 
matching the local one takes account of the defects size. The relative defect size is equal to : 

Geometrical defects are described by a similar development, excepted that in this case, the acuteness 
r must be larger than 1 to avoid two dimensional effects. 

Vx E [-xl,+xl] 1(x) = l(0)+lr(O)~x~' (13) 

When the asymptotic L, localization criterion is satisfied, the integrals involved in eq. (8) can be 
calculated by using equivalents valid if the plastic deformations y(0) and y(x) are large enough ; these 
conditions are fulfilled when x is small enough. The first order development of the deformation y(x) then 
turns out to be of the form 

y(x) E ax -P (14) 
If it is now required the nominal shear strain be bounded, the integrability of the local plastic 

deformation yields : 

1: y(x) dx < - (15) 

This boundedness condition is satisfied if and only if p<l : it is called an asymptotic LmJ localization 
criterion under finite nominal strain. It reads respectively, for (3), (6) and (7) : 

2n+m(l +r)- 1 <0 (Knowles form) (16.a) 
v+n+m( 1 +r)<O (stress controlled boundaries) (16.b) 

v+n+m( l+r)( 1 -v)<O (velocity controlled conditions) (16.c) 
When the L , r  localization criterion is satisfied, the critical nominal strain is defined equivalently as one of 
the limits : 

.. , 
Using equation (14), the contribution to yc of the localization region can be computed with high accuracy. 
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3. MIXED VELOCITY 1 STRESS BOUNDARY CONDITION WITH KNOWLES 
CONSTITUTIVE LAW 

Let us suppose a specimen with a geometric defect (Figure 1.b) submitted to mixed velocity/srress 
boundary conditions : 

at x = 0 v(0,t) = 0 

where (g is a negative parameter. When $ tends to zero or minus infinity, the boundary conditions [end 
respectively to velocity controlled conditions (v, ) or to stress controlled conditions ( T,) (Figure 2.a) 

Substituting eq. (2) in eq. (I), the shear strain rate j(x,t) as well as the shear stress at the edge of the 
specimen can be computed as a function of the shear strain at the center of the band y(0,t) and of the shear 

strain rate j(0,t). Thus we obtain the velocity and shear stress at the edge : 
1 

rn rn 
~(h , t )  = l(h) r(O,t) = ,(h) ~ ( 0 )  f(~(0S)) ?(O,t)"' (20) 

Using the Knowles form (3) of the function f(y), y(x,t) can be obtained from the computation of the 
implicit integral equation (8) with only one term of the hypergeometric function ,F, for large enough 
plastic deformation. Substituting (19) and (20) in (18), a differential equation for the unknown y(0,t) is 
obtained : 

If the shear strain y(0,t) is given, the shear strain rate j(0,t) at the center of the band can be computed 
from eq. (21) ; then the shear stress z(h,t) is obtained from eq. (20) and the nominal shear strain ynnm(t) can 
be computed. The shear strain at an instant dt later y(O,t+dt) is obtained by a first order Taylor 
development. The shear stress-nominal shear strain curve is plotted in Figure 2.b. 

nominal shear strain y,,, (70) 

a) Edge shear stress-velocity curves b) shear stress-nominal shear strain curves with different prnn~el~no 

Figure 2 : Edge shear stress-velocity curves and shear stress-nominal shear strain curves with different parameters @ 

For the material parameters n=0.49, b=8000, m=0.08 and loading parameters zo = 22.5Mpa and v, = 
2.5ms", the Figure 2.a shows that the loading conditions are nearly stress controlled for +-ID' and 
velocity controlled for @-lO.'. Thus this study does not need an interval larger than [-lo-'; -10.~1. Figure 
2.b shows that five curves for different parameters 4 exhibit different stress-strain histories but have the 
same critical nominal shear strain ye, which, therefore, does not to depend on the imposed bountlan 



condition. Such a conclusion has been drawn in [4] after finite element calculations with a linearized 
activated constitutive law of the form : 

F(y,e(y)) = f(y) = eve y n  (22) 
However this conclusion may depend on the form of the thermoviscoplastic function F(y,B(y)) used in the 
formulation. Therefore, a multiplicative form is employed in the next part of this paper. 

4. MULTIPLICATIVE POWER LAW FORM 
With the multiplicative power law form (4), an analytical investigation of mixed velocity/stress 

is impossible because the function f(y) is different for stress controlled boundaries (6) or 
velocity controlled conditions (7). To compare the two loading conditions, an imposed shear stress T,, and 
a velocity vo must be found such that the two experiments use the same amount of energy during the 
deformation process: 

w = J ' r d y  o (23) 

Using for instance the material identified by [2], with a material defect (p(h)=0.3579 1 0 ' 9 1 ,  
H(O)Ip(h)=0.04, r=2, ~=0.04,  x,/h=0.2, h=0.0025m) and submitted to either velocity condition vo =2,5ms" 
or stress controlled boundary condition zo = 423MPa, a same amount of energy is used in the shear band 
development. The Figure 3 shows that the critical nominal strains are nearly identical. 

Nominal shear strain (%) 

4.5e+08 

4,0e+08 - 
r ., 3 
8 8 3.5e+08 

3.5e+O8 

Figure 3 : Shear strain-nominal shear strain curve 

We can notice however that the L,, localization criteria are different in these two cases (stress controlled 
boundaries : v+n+m(l+r)cO ; velocity controlled conditions : v+n+m(l+r)(l-v)<O). Recall that if the 
criterion is satisfied, the critical nominal strain ye has a finite value, while, if not, y, tends to infinity. For 
example, if the parameters n, m and r are kept constant, a plot of the critical nominal strain vs. v displays 
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(velocity an asymptotic increase either at v = -n-m(l+r) (stress controlled conditions) or at v = l-m(l+r) 

controlled conditions), as shown in Figure 4.a 
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Figure 4 : Influence of the boundary conditions on the critical nominal strain 

Between these two asymptots, 

b) Maps showing areas where boundary conditions ylelda 
significant dispersion of the critical shear stnln 

yc has a finite value for the controlled velocity and an infinite value in the other case. Therefore, in this 
area and close to it, the critical nominal strain necessarily depends on the boundary conditions. For the 
C.R.S. 1018 steel and the acuteness r=2, the parameter v=-0.38 is far of this interval and the influence of 
the loading condition due to the L,,c localization criterion can be neglected. However, in the shaded areas 
of Figure 4.b, the inequalities (24) are satisfied. In these areas and in their neighborhood, the critical 
nominal shear strain significantly depends on the loading conditions of the specimen. 

5. CONCLUSION 

By using the thermally activated law (22) or the Knowles hardeninglsoftening function (3), it is found that 
the critical nominal shear strain does not depend on the boundary conditions applied to the specimen. In 
addition, it can be shown that the LYrcriteria are identical in both cases [5], regardless of the boundary 
conditions that are being used. This is in fact the basic reason why boundary conditions have no influence 
on the critical shear strain. However, if the material behavior is modeled by a multiplicative power law, 
boundary conditions may yield significant variations in the critical nominal strain. 

Since the control of boundary conditions may prove difficult in most experimental set ups, this result 
suggests that at least a part of the scatter observed in the critical nominal strain may be ascribed to their 
unchecked variations. 
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