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Dynamic Necking of Rods at High Strain Rates 

V. Jeanclaude and C. Fressengeas 

L.P.M.M., U.R.A. NO1 215 du C.N.R.S., Universite' de Metz, BP. 80794, Ile du Saulcy, 
57012 Metz cedex 1, France 

Abstract. The dynamic necking instability of a rod of a non-linear viscoplastic material as formed in shaped 
charges is investigated. A two-dimensional linear Lagrangian perturbation method leads to a single fourth order 
partial differential equation with time-dependent coefficients. The growth of disturbancies depends of the interplay 
between the stabilizing inertial and viscous effects, and the destabilizing geometrical softening of the rod. Inertia 
slows down the growth of long wavelengths, while viscosity damps preferentially the short wavelengths. A time- 
increasing critical wavelength of maximum perturbation growth is selected at each moment. The latter is 
characteristic of the length scale of a multiple necking phenomenom. 

RCsum6. On ttudie la striction dynamique d'un jet (comportement viscoplastique non lineaire), obtenu par exemple 
it I'aide de charges creuses. Une mtthode de perturbation lineaire Lagrangienne bi-dimensionnelle permet d'obtenir 
une equation aux derivtes partielles du quatrihne ordre B coefficients dependant du temps. La croissance des 
perturbations depend d'une part des effets stabilisants de la viscositt et de I'inenie, et d'autre part des effets 
destabilisants de I'adoucissement gComCtrique. L'inenie ralentit la croissance des grandes longueurs d'onde, alors que 
la viscosite influe plut8t sur les courtes longueurs d'onde. A chaque instant, il existe une longueur d'onde critique de 
croissance maximum des perturbations, caracttrisant I'ichelle de longueur d'un phinomine de striction multiple. 

1. INTRODUCTION 

High speed metallic jets are generated by the axisyrnmetric collapse of conical shells under explosive 
loading; during their flight, these jets experience large amounts of stretching at velocity gradients amounting 
to lo4-105s-1. However, beyond a certain flight distance, they neck down in a series of locations, and 
break up into closely similar fragments. This particulation process is known to limit their perforating 
capabilities. 
Here, the jet breakup is described as a dynamic necking phenomenon: a two dimensional dynamic necking 
instability analysis of a rod of a non linear viscoplastic material is carried out. Such a model can be traced 
back piecewise through the literature, but with assumptions which are not totally relevant herein: for a 
quasistatic deformation in Hutchinson and Obrecht [ I ] ,  by neglecting the 2D features of the necking 
phenomenon in Chou and Carleone [2] or Yarin [3], for a Newtonian fluid in Frankel and Weihs [4], for 
perfectly plastic materials in Curtis [ 5 ]  or Romero [6], and for a sheet in Fressengeas and Molinari [7]. 

In this paper, the influence of geometrical softening, inertial effects and of material rate-sensitivity 
qn the necking morphology is investigated. It is believed that, although destabilizing thermal effects are 
likely to be significant, geometrical effects are responsible for the instability in the first place. Therefore, 
thermal effects, as well as deformation history prior to the jet formation, and material anisotropy are not 
consjdered. Surface tension and aerodynamic yield very small rates of growth of disturbancies [I];. lfke 
elastic waves, they are neglected. By using the perturbations relative amplification measure, the stabilizing 
effects of inertia and strain rate sensitivity on the growth of disturbances is evidenced. The pian of the paper 
!s as follows: first, the exact non-linear Lagrangian formulation of the problem is set UP and the ?lc?ow 
1s described. Next, the stability of the basic tension solution is investigated by using a Lagrangla! linear 
pemrbation analysis, and finally basic properties of the non uniform two-dimensional dynarmc stran field 
are given. 

2. PROBLEM FORMULATION 

To describe the evolution of deformation instabilities that follow the overall material stretching, the 
Lagraglan framework seems more suitable and will be used hereafter. It is convenient to use non- 
dimensional variables: all length variables are scaled by the length L of the specimen In the reference 
cOnfifigurati~n, velocity variables are scaled by the constant velocity V of the specimen tip relative to I ~ S  rear 
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end. The velocity gradients are scaled by the characteristic stretching rate V L ,  and time by L N .  To scale 
stresses, the initial axial stress &* of a rod stretching uniformly at the rate V L  is used. All field quantities 
are considered to be functions of the Lagrangian cylindric coordinates X = (ro, 80, ZO), which serve as 

particle labels, and of the time t. Let 3 = (r, 8, z) be the Eulerian coordinates, and g = (u,, ue, u,) the 
velocity components. According to the symmetry of the rod, all quantities are assumed to be independant of 
80 and ue = 0. The rod is subjected to the velocity boundary conditions 

uz = 0 at zo = 0, u, = 1 at zo = 1 (2-1) 
and to the symmetry condition 

u, = 0 at ro = 0 (2-2) 
At any instant t and position z0, the outer surface is symmetrically disposed about the rod midline rg = 0. 
according to ro = p with p = R,L (R, is the radius of the rod). It is further assumed that the stress vector ! 
vanishes on the outer surface. 

g=g._v=g._v,=O at r o = p  (2-3) 

!? and 5 denote respectively the Cauchy stress tensor and the transpose of the nominal stress tensor 
(Boussinesq tensor); y and yo are the outer surface normals in the present and reference configurations. 
In addition, it is required that the shear stress be zero on the rest of the boundaries 

orZ=O at zo=O, zo= 1, ro=O (2-4) 
The material is assumed to be incompressible 

aur + ur +aU.=o 
ar r az 

(2-5) 

Using the Boussinesq tensor n, the Lagrangian momentum equations are written as 

v2 . 
where Ro = po 1s the Reynolds number (po is the mass density). 

0 
Let us denote by D the strain rate tensor, by s the Cauchy stress tensor deviator, and let us use in addition 

the equivalent stresss 0, = and the equivalent strain rate d, = . The material strain 

rate sensitivity being m, the "iscoplastic behavior is specified by 

*m 
The relation 0: = pd, , with p = 

GO* , is the dimensional counterpart of (2-7-c). 
(V / L ) ~  

It is straightforward to find the homogeneous solution of the equations (2-1,2-7) 
0 r =r0E1 112 zO = z0&'- 1 

0 3  3 2  2 1 where o0 = &Irn, p = - RO&' (p - 6 ) , with de = - = E' , 0, = E'"". The homogeneous associated 
8 l + t  
E' 2 stream function is: y~ = - ro z0 . 
2 - 

In this paper, we consider situations where the inertial pressure value amounts to the viscoplastic 
characteristic stress 00. In such a case, inertial and viscoplastic effects are of comparable magnitude. It is 
worth noting that these inertial effects do no stem from any transient loading of the rod, but from the 
unsteadiness of the uniform tensile loading itself. The stability of that unsteady fundamental solution is now 
investigated by using a linear perturbation analysis. 



3. LINEAR PERTURBATION ANALYSIS 

~ e t  us neglect higher order terms and search for pertubed solutions in the form 

f = f 0 + 6 f  (3-1) 
where f stands for every variable r, z, u,, UZ, oij, nij, v. The substitution of these variables into the 

(2-1,2-7), substraction of terms belonging to the fundamental solution (2-8) and retention of the 
f i t  order terms lead to a set of linear differential equations. Using the linearized incompre~~ibil i t~ relation, 
let us introduce the pertubed stream function 6 v  such as 

cross-differentiating the linearized momentum equations, and combining them in such a way that the 
pressure perturbation is eliminated, one obtains a single fourth-order partial differential equation with time- 
dependent coefficients which governs the evolution of 6141 : 

a26v 1 aw 
Here R = R ~ E ' - ~  and the differential operator 0 is defined by 0 6 ~  = - - --. 

ar,2 ro a~ 
The linearization of the velocity boundary conditions (2-1) and their expression using the pertubed stream 
function lead to 

which also enforces the zero shear stress condition (2-4) at the ends; similarly, the midplane symmetry 
conditions (2-2,2-4) on the velocity and shear stress imply 

a 1 asv 6v=0 and - ( - - )=06~=0 at ro=O ab ro ab 
From (2-3), the linearized stress-free boundary condition is 

6n, = 6na = 6nr, = 0 at ro = p 
or, using the pertubed stream function 

where, using (3-2), 6r is given by 

&O denotes the initial value for 6r. 
Although the problem has been stated in terms of the pertubed stream function, the main interest here 

i5 in the growth of the non-uniformity of the Eulerian radius r = r (p, zo, t). Let US use a = (r - P)/P as a 
relative measure of the non-uniformity of the evolving radius (more meaningful when the change in the 
uniform radius P is large). Using (3-8), it is found that 
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4. RESULTS AND DISCUSSION 

In the one-dimensional long wavelength quasi-static approximation, the instantaneous rate of growth 
a l / a = e ' / m  (4- 1) 

is obtained from (3-8) and (3-9). Accordingly, all perturbations increase with time, and are uniformly 
damped by the material rate sensitivity. We shall consider the normalized relative rate of growth G = m a4/a 
in what follows. In the one-dimensional dynamic case, the long wavelength value of G is given, as a 
function of the Lagrangian wave number kg, as 

m ~ '  
G = - [ - ( 2 ~ ~  + mka) + ( ( 2 ~ ~  + + 4 ~ ~ k i } ~ ' ~ ]  

2Ro 
(4-2) 

which retrieves the result given in [8] (see fig. 1). In the two-dimensional case, we now look for solutions 
of (3-3) in the form 

Gy(r0,zo, t) = ro~(t)sin(kozo) ~ e [ ~ ( t ) ~ ,  rO)] (4-3) 
where ko (resp. lo) is the Lagrangian longitudinal (resp. radial) wave number of a perturbation which 
stretches with the material. I1 is the modified Bessel function of the first kind and order 1; Re[.] means the 
real part. This form allows to satisfy the boundary condition (3-6), but, in order to satisfy (3-S) ,  ko has to 
be a multiple of .n. In the dynamic case, we have to resort to an approximation on the time derivative of (4- 
3): indeed the relation (4-1) suggests that, for m small enough, the rate of growth of the perturbations is 
much larger than the rate of change E' of the uniform stretching, therefore we assume 

-- a'' -- A'(t)6v = M 6'. That condition being fulfilled, the substitution of (4-3) into (3-3) leads to a 
at ~ ( t )  

fourth order algebraic equation for lo 

1; + [(1 - 3m)ki - ~ R ( I  + 2)]li + kd - 3 ~ k a ( l -  h) = 0 

The growth parameter h as well as four complex solutions for lo are found such that 6' satisfies (3-3) and 
the problemboundary conditions. In the quasi-static case (R=O), the growth rate G is obtained exactly in 
closed form. At the initial time t=O, this result reduces to that provided by Hutchinson and Obrecht [I]  (see 
fig. I), which it extends at later times. In the dynamic case, the dynamic growth rate G is provided with 
satisfying accuracy when m is small enough 

-- -e - - Dynamic R M . 4  
-A- - Long wavelength dynamic RO=0.4 

I-\ - Dynamic Rw 

1 / \G -EI - ~uasistatic - t - Long wavelength dynamic R e 4  

0 0,5 1 1,5 2 2,5 3 3,5 4 
Wavenumber Rho*kO 

Figure 1: Initial dispersion curves (m = 0.05, Rg = 0.4, 4). Comparison with ID and quasi-static approximations. 



The dispersion curve G vs. kop is plotted in Figure 1 for Ro = 0.4,4, and m = 0.05, together with 
the one-dimensional dynamic approximation [81 and the two-dimensional quasi-static approximation [ l ]  at 
time t = 0. In the long wavelength limit, that is for kop < 0.4, G merges with the one-dimensional dynamic 

(see eq. (4-2)), thus giving bounds for the validity of that simplier model. In the short 
wavelength limit (for kop > 1.8), G merges with the two-dimensional quasistatic approximation [I], and 
inertial effects can be neglected. At intermediate wavelengths (0.4 < kop < 1.8), a non-zero finite 
wavelength of maximum growth rate is selected. It is fundamental to note here that a maximum in the 
dispersion curves at a finite wavelength signals the occurrence of a multiple necking phenomenon, and the 
fragmentation of the rod at the outcome. 

It can be seen also in Figure 1 that the larger the Reynolds number Ro, the wider the range of 
pembations affected by inertial effects and the shorter the Lagrangian wavelength of maximum growth. In 
coneast, increasing the material rate sensitivity leads to longer critical wavelengths. This can be seen in 
Figure 2, where the initial dynamic dispersion curves are plotted for Ro = 4, and for several rate-sensitivity 
values : m = 0.05, 0.1, 0.2 and 0.5. The larger the rate-sensitivity, the longer the critical wavelength of 
maximum growth, the smaller the range of significant inertial effects. 

4 - m=0.1 - 
- + - m=0.2 - 
--x--m=0.5 - - 

- 

0 0,5 1 1,5 2 2 5  3 3,s 4 
Wavenumber I2hoAk0 

Figure 2: Influence of non-linear viscosity on the dynamic dispersion curve (Ro = 4, t = 0); m = 0.05,0.1,0.2,0.5. 

It is shown in addition that he time evolution of the relative growth rate G is such that the dynamic 
Lagrangian wavenumber k, of the dominant perturbation is shifted to larger values as time goes on. 
Therefore, there is not a single dominant perturbation throughout the process, as in the quasistatic 
approximation, but rather a new one at each moment. The delayed modes will be infine more significant of 
the observed instability pattern than the initially dominant modes. 

5. CONCLUSION 

In this paper, the dynamic necking instability of a uniformly stretching rod of a nonljnear viscoplastic 
material is investigated. A linear Lagrangian perturbation method accounting for lnertial and two- 
$menSional effects is used. The growth of disturbancies depends of the interplay between the stablllzlng 
inertial and two-dimensional viscoplastic effects, and the destabilizing geometr~cal softening of. the rod 
stemming from its section reduction. Inertia slows down the growth of long wavelengths, whlle two- 
dimensional viscoplasticity damps preferentially the short wavelengths. Thus, at each moment, a dom?ant 
Perturbation characterizes the structure of the velocity field. This critical wavelength IS shlfted w~th tlme 
towards larger values: therefore the initially dominant perturbations are not those who finally shape the 
fragmentation and provide the fragments size ratio. 
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The model implies the following trends. Inertial and two-dimensional field effects are both 
stabilizing, since they delay the growth of all perturbations, compared to their quasi-static one-dimensional 
approximations. However, rods with higher rate-sensitivity, higher material strength or lower density yield 
larger critical wavelengths. Thus, if the material rate-sensitivity consistendy favors the rod continuity, since 
fragments will come out later and longer, inertia plays a more ambiguous role by shortening the critical 
wavelength, as well as the fragments size at the outcome. 
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