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Dynamic Axisymmetric and Non-Axisymmetric Buckling of Finite 
cylindrical Shells in Propagating and Reflecting of Axial Stress Waves 

X. XU, J. Xu, S. Liu and K. Liu 

Institute ofEngineering Mechanics, Dalian University of Technology, Dalian 116023, P.R China 

Abstract. In this paper, the axisymmetric and non-axisymmetric buckling of finite elastic cylindrical shell, which 

is impacted on the end by axial step loads, is discussed with the aid of the stress wave propagating and reflecting. 

By solving the disturbed equations, the bifurcation condition of the dynamic buckling, critical buckling load and 

buckling mode are obtained. The results show that when the thickness is not very small, non-&symmetric critical 

buckling load is higher than axisymmetric one; that when the thickness is very small, non-axisymmetric buckling 

can occur first and that since the wave is reflected on the other end of the shell, the critical buckling load decreases 

further. The results are in agreement with the physical phenomenon in experiments. 

R6sum6: Dans cet article on discute, A I'aide de la propagation et de la reflexion des ondes, le flambage symktrique 
axial et non-symkbique d'une coque cylindrique tlastique et de dimensions finies, impactke il une extrkmitk par un 
echelon de force axiale. En resolvant les kquations de perturbations, on obtient la condition de bifurcation du 
flambage dynamique, la charge critique de flambage et le mode de flambage. Les rksultats montrent que dans le cas 
oh I'kpaisseur de la coque n'est pas tr&s mince, un flambage non symktrique peut d'abord appmAtre et lorsque l'onde 
est rkflkchie A l'aube exbkmitt de la coque, la charge critique de flambage continue de d6croitre. Les r6sultat.s 
th6oriques sont en bon accord avec le phknomene physique dans les expkriences. 

1. INTRODUCTION 

Since the 60s, the elastic dynamic buckling of shells has been paid more attentions than state problem. The 
axial impact problem has been studied concentrically in the dynamic buckling, and many properties have 
been found. Coppa [ l ]  discovered in experiment that the mode of dynamic buckling is similar to that of 
static buckling. Alrnroth [2] and Lindberg [3] found that the buckling corrugations of shell take their forms 
in the initial stage. Their results implicate that no unloading exists when the buckling begins in originally 
plastic state. Zimcik [4], Tamura [5], Fisher [6] and Simitses [7] investigated the axial critical impact load 
under the condition of different initial imperfections. Xu [8] put a method to determine critical buckling 
loads of elastic-plastic shells with the aid of waves. Gordienko [9] took notice of non-axisymmetric 
buckling of shells subjected to impact axial load in the experiment. Since the ratio of the wall thickness to 
the radius of the shells he studied is only R/h > 50, it is the non-axisymmetric mode that buckling takes 
place with. Wang [lo] conducted systematic experiments to investigate the dynamic plastic buckling of 
cylindrical shells under axial impact. They obtained some important and usehl results, e.g. the existence of 
the first and the second critical velocities and the conclusion that, if the impact velocity is lower than the 
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first critical velocity, the shell was uniformly compressed only, if it is lower than the second one and 
reaches the first one, it corresponds to a uniformly axisymmetric buckling mode, and if it is greater than or 
equal to the second critical velocity, non-axisymmetric and non-uniform buckling mode will appear. Han 
[ I  11 pointed that with the increasing of ratio the critical buckling velocities decrease and approach to 
elastic one and that when the ratio reaches some value, non-axisymmetric buckling modes appears only, 
Chen [12] considered the effect of the stress wave in the experiment and their result showed that: the 
axisymmetric buckling modes occurs first, then two blade and three blade non-axisymmetric modes do and 
SO on. 

In this paper, we consider that the assumption of the initial imperfection is not indispensable. The 
bifurcation phenomenon and the effect of the propagation and the reflection of waves are important factors 
on the dynamic buckling of perfect cylindrical shells impacted by an axial load. On building the disturbance 
equations in propagating and reflecting of longitudinal waves, we can solve and obtain general solutions of 
the equation. Considered boundary conditions and the consistence conditions at wave fronts, the 
bihrcation condition of the dynamic buckling is obtained. Thus the condition can be used for critical 
buckling loads and the solution for buckling modes corresponding to a particular time. The results are in 
agreement with the physical phenomenon above. 

2. DISTURBANCE EQUATIONS AND SOLUTIONS 

Consider a the finite elastic cylindrical shell which is impacted by the axial step load on the one end ( x = 

0  ). The thickness is h, the medium surface radius R, the density P,  the elastic modulus E  and Poison ratio 
u .  The axial step load N,(O,t) = -No H ( t )  where No is a constant, t  denotes time and H(t) is step 
function: H ( t )  = 1 if t  2 0; H ( t )  = 0  if t  < 0 .  The axial wave induced by the impact load is longitudinal 
wave Let x, = c, t  be elastic wave fronts, where c, is wave speed, and it can be written as [9] 

c, = [ E  lp(1- u ~ ) ] " ~  . Let us consider first reflecting only. For the ideal perfect shell the axial internal 

force, in the process of the propagation and reflection of wave, can be expressed as [ 9 ] .  
N x = N  O l x l x , , t < l l c , ;  N,=O x , < x < l  , t g l l c , ;  N x = N  O < x < x , ,  t > I l c , ;  N X = 2 N  
xr 5 x < I , t  > I Ice . The governing equation expressed by the radial displacements w ( x ,  8 , t )  is 

where D = Eh3 I 12(1- u 2 )  . Considering that in the impact period before the buckling occurs, the shell is 
a initial equilibrium and well-distributed stage, wo(x,  8, t )  = URN, l  E h  . The radial displacement can be 
expressed as G(x,  8, t )  = w(x ,  8, t )  - w,  ( x ,  8, t ) ,  where w(x ,  8, t )  is disturbed displacement. Let 

W = 9 / 1 ,  X = x l l ,  T = c , t l l ,  A = p ~ , l E h ,  p = ~ / 1 2 ( 1 - u 2 ) ,  J a p = h l l  and @ ~ ~ = R I I .  Eq.(l) 

can be rewritten as 

In disturbed initial stage, W ( X ,  0, T )  = d W ( X ,  0, T )  I d T  = 0. Let W ( X ,  8, T )  = F ( X ,  T )  . g(0, T). 
Considering the fact that 0 =  0 and 0= 2~ are one position, the continuous conditions about hnction 

g( 8, T)  are 



d a 8 8 8 a' 
g(0,Q = s (2s  T )  ; ~ s ( 0 ,  7) = zg(Zz> T )  ; -g(O. T )  = -g(25 T )  ; --g(0, T)  =-g(2q 7). (3) a$ a@ as' a@ 
g(0, T) can be expressed as 

where qn = n (n = 0,1,2;--), Ck = Ck (T) (k = 1,2). Equation (2) in terms of W(X, 0, T )  is transfiormed 
into an equation in terms of F(X, T) : 

When n= 0, g is a constant and Eq.(4) degenerates into the axisymmetric problem [9]. The solution of 

Eq.(5) can be given by 

a, cos(a, X) +az sin(a, X) +a3 cos(p, X) + a, sin@, X) (A r A,) 
F = {  

a, eazX cos(p,X) +a2 eazX sin(p,X) + a, e-°lx c o a x )  +a4 e-azx sin(p,X) (A < A,) (6) 

wherep,,a, ={(Ala-2apn2 lp)*[(Ala-2apn21p)2 -4p(1+dpn41~]11/2)1/21(2p)112, f12,a2 =[(I 

+dp n4/p)112 +(A/ a - 2 a p  nZ lP)]'~2 l(21u)'1Z , Aq = 2 ap112[1+(alp)2pn4]"2 + 2 p n 2 d  /fl , a, (k 

= 1,2,3,4)is a finction of time T. 

3. BOUNDARY, CONSISTENCE AND BIFURCATION CONDITIONS 

When the step load impacts the end of the shell, the shell is partitioned into several regions for propagating 
and reflecting of the wave. Before the reflection, the solution is equal to zero in the non-disturbed region 
ofthe wave since wave does not reach, i.e. W,(X, 8 ,  T )  = 0, or F,(X , 7') = 0. In the region of impacted 
end, the solution (6) should satis@ the boundary conditions. Considered simple support in this paper, the 
boundary condition can be expressed as W(O,8, T )  = 0, d2 W(O,0, T )  1 BX2 = 0, or 

Owing to Eq.(6), (7) can be combined into 

B, a,  = O  

where a, = (a, ,a2 , a, , a,)', B, is the matrix of coefficients determined by Eqs. (6) and (7). At the wave 
front X, , The consistence conditions about F and F, can be obtained 

and written in a simple form as 

B, a, = O  , (10) 

BZ = B2(A, X,). After reflection of wave, there is no harm in taking the end conditions ofthe reflection as: 
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B, = ~ , ( i ,  I), i = 2R,  a, = (a, , a, , a, , a,)=, and written as 

B, a, = O  . (12) 

On the wave front X, of the reflection, the consistence conditions can be expressed as 

where k is a finction in Xr I X I I , = 2;1 . Eqs.(l3) are 

B4 a, =B, a, . 

Eqs.(6), (lo), (12) and (14) can be rewritten as 

where a = (a: , Before reflecting, Eq.(15) is hold too and it is taken a = a, =a, , = 1 and 
B, = B, . If a = 0, W = 0, namely the buckling does not appear. The condition that Eq.(6) has non-zero 

solution is transformed into Eq.(15), i.e., at the bifircation point, the determinant of coefficients is zero: 

From the bifbrcation condition (16) and Eqs.(6) and (15), the critical buckling load and mode 
corresponding to a specific time can be determined. 

4. CRlTICAL BUCKLING LOAD AND MODE 

When the end of the shell is impacted by the step load, 
the critical buckling load and mode can be determined 0 . 4  

by Eqs. (15) and (16). Let P= 0.001 and a = 0.1, we 

can get the relation curves between the critical load 
and time in Fig.1. We define that n is the order in 0'3 

Eq.(S), which shows the stage of the non- 
axisyrnmetric buckling. In fact, it can be known that n 
represents the number of corrugations about the circle 
buckling. For fixed n, the critical load is of multi- 
branches, we call them the first branch, the second 

0. I 
branch and so on from the lowest one. The branch o 0.5 I 1.5 z 
expresses the number of corrugations about the axial T 

Figure 1 curves of Rcr - T .  buckling. Figure 1 gives the first three orders and 

- 0 order ---- l order - -- 2 order 

branches of critical load curves. From these curves, it 
can be known that the critical loads decrease with time T and tend to static one ( n = 0 ) [13]; For each 
branches, the critical load is greater to higher order. This phenomenon shows that non-axisyrnmetric 
critical load is larger than axisyrnmetric one and is agreement with experiments; Besides, that T = 1 is the 
time that the wave reaches the other end of the shell and when T >  1, it shows the case after reflecting 



Figure 2 (n=O, 1, 2; a) for T = 0.5; b) for T = 1.5) shows two things: First, when a is larger, every order 
and branch critical loads is the bigger and the high order load is larger than the low order one; Then, the 
less the ratio of the wall thickness to the radius of the shells is, the easier the non-axisymmetric buckling 

a a 

a) b) 
Figure 2 curves of /Zc, - a. 

will take place, which is found in the experiment [12]. In this case, critical loads are concentrated 
considerably and when the time T takes a large value, these phenomena are more obvious after reflection. 

According to the critical buckling loads, we can obtain the initial buckling modes at time T. Figure 3 a) 
gives three distributions of W ( X ,  0 ,  T) in n=O, 1 ,  2 respectively before wave reflecting 
@= 0.01; a = 0.1; T = 0.5). In this Figure, first one is the form of axisymrnetric buckling. After wave 
reflecting (p= 0.01; a = 0.1; T = 1.5), buckling modes are shown for n=3, 4, 5 respectively in Fig.3 b). 

With order n increasing, circle buckling corrugations ( 6  -direction) raise, which can be showed in Eq.(4). 
The corrugations are more concentrated after wave reflecting and the degree of concentration depends on 
the order and branch of the critical buckling load. 

a) 
Figure 3 buckling modes 
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5. CONCLUSION 

It is for the propagation and reflection of longitudinal wave that the buckling of the shell takes place and 
grows. The buckling can be axisymmetric and non-axisymmetric; The time of buckling relates to the 
impact load. In general, when the load is large, the buckling occurs in short time; The critical load is 
determined by the condition of bihrcation and is dependent on properties of the material, geometric 
parameters and time; With the wall thicknesses increasing, non-axisymmetric critical load is larger than 
axisymmetric one and with it decreasing, non-axisymmetric buckling can appear first; Axial and circle 
buckling fonns are dependent on the load, wall thickness, and so on; When the order of the non- 
axisymmetric buckling increases, the circle buckling cormgations raise; Close the end impacted, axial 
buckling corrugations are the more concentrated than that near the elastic wave fiont or reflected end; 
Since the wave is reflected on the other end of the shell, the critical buckling load decreases further; The 
theory and the experiment are identical. 
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