Temperature Dependent Re L3-Edge X-Ray Absorption Study of Crystalline Rhenium Trioxide ReO3
A. Kuzmin, J. Purans, G. Dalba, P. Fornasini, F. Rocca

To cite this version:

HAL Id: jpa-00255215
https://hal.science/jpa-00255215
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Temperature Dependent Re L\(_3\)-Edge X-Ray Absorption Study of Crystalline Rhenium Trioxide ReO\(_3\)

A. Kuzmin, J. Purans, G. Dalba*, P. Fornasini* and F. Rocca**

* Institute of Solid State Physics, 8 Kengaraga str., 1063 Riga, Latvia
** INFM, Università di Trento, 38050 Povo (Trento), Italy

Abstract. X-ray absorption spectroscopy study of crystalline ReO\(_3\) was performed at the Re L\(_3\)-edge in the temperature interval from 77 to 670 K. The analysis of both XANES and EXAFS regions shows that in ReO\(_3\), a progressive localization of the 5\(d\) states following the temperature increase is accompanied at \(T > 350\) K by a distortion of the ReO\(_6\) octahedra. The distortion increases continuously up to the ReO\(_3\) decomposition temperature \(T_d = 673\) K and leads to the lowering of the rhenium site symmetry from \(O_\text{h}\) \((T \leq 350\) K) \(\rightarrow\) \(D_\text{Oh}\) \((T = 513\) K) \(\rightarrow\) \(C_\text{v}\) \((T = 668\) K). The observed distortion is explained by (i) the strong electron-phonon coupling of the 5\(d\) electron with the \(M_1^e\) and \(M_2^e\) phonons and (ii) the Jahn-Teller-like effect caused by the rhenium 5\(d\) electron which becomes localized at high temperature.

X-ray absorption spectroscopy study of polycrystalline rhenium trioxide ReO\(_3\) has been performed on the Re L\(_3\)-edge in the temperature range from 77 K up to the ReO\(_3\) decomposition point \(T_d = 673\) K. The x-ray absorption spectra were measured in transmission mode at the ADONE (Frascati) and DCI (Orsay) storage rings, and the experimental details can be found in [1]. ReO\(_3\) has a perovskite-type cubic structure composed of regular ReO\(_6\) octahedra joined by vertices. Rhenium ions Re\(^{5+}\) in ReO\(_3\) have 5\(d^1\) electronic configuration resulting in the partially filled 5\(d\)-band and metallic conductivity [2]. The presence of 5\(d\)-electron is responsible for the stability of the ReO\(_3\) lattice and the absence of any structural phase transitions at atmospheric pressure that is opposite to many other perovskites (BaTiO\(_3\), SrTiO\(_3\) etc) and perovskite-like compounds (WO\(_3\)).

The XANES analysis shows that a strong modification of the local electronic structure occurs with increasing temperature. It can be explained (1) by a progressive narrowing of the \(t_{2g}\) and \(e_g\) sub-bands with a localization of the electron states (especially having \(e_g\) character) at rhenium sites due to the electron-phonon coupling (Figure 1(a)) and (2) by an increase at \(T > 470\) K of the effective charge on rhenium ions leading to a shift in the position of the absorption edge and the white line (WL) maximum (Figure 1(b)).

The analysis of EXAFS suggests that a distortion of the ReO\(_6\) octahedra occurs at \(T = 380\) K while the sub-lattice formed by Re atoms remains regular. This conclusion is supported by the dependence of the average mean square relative displacements (MSRD) \(\Delta^2 = \langle \delta^2 \rangle = \langle \delta^2 \rangle_0 + \langle \delta^2 \rangle_\text{a} \) on the temperature (Figure 2). The deviation of the MSRD \(\Delta^2(\text{Re-O})\) in the 1st shell from the Debye model behaviour means that for \(T > 350\) K, both thermal \(\delta^2\) and static \(\delta^2\) disorder are present (Figure 2(a)). At the same time, the MSRD \(\Delta^4(\text{Re-Re})\) in the 4th shell follows the Debye law (Figure 2(b)) so that the static distortion of the rhenium sub-lattice is expected only near the decomposition temperature \(T_d\) (see the last point in Figure 2(b)). The results of the MSRD analysis agree well with the radial distribution functions (RDF) obtained for the 1st shell of rhenium (Figure 3(a)). Thus, we suggest the following model for the modifications occurring within the ReO\(_3\) structure upon heating. The electron-phonon coupling, caused by the \(M_1^e\) phonon mode, leads already at low-temperatures to the progressive localization of the 5\(d\) states at rhenium sites. This process results at \(T > 350\) K in the localization of the 5\(d^1\) electron and the Jahn-Teller-like distortion (Figure 3(a)) leading to the lowering of the local symmetry at rhenium sites from \(O_\text{h}\) to \(D_{\text{Oh}}\). On temperature increase, at \(T = 563\) K, the further distortion of the ReO\(_6\) octahedra from \(D_{\text{Oh}}\) to \(C_{\text{v}}\) local symmetry appears which can be explained by the coupling of the 5\(d\) electron with the \(M_2^e\) phonons.

The obtained results suggest that the stability of the ReO\(_3\) lattice, caused by the presence of the 5\(d^1\)-electron, can be broken by temperature increase and, thus, the temperature dependence of the ReO\(_3\) conductivity at high temperatures \((500 < T < 670\) K) could deviate from its low-temperature behaviour.

Acknowledgments

The authors are grateful to the staff of the ADONE PWA laboratory and of the LURE DCI EXAFS-3 beamline for the support of the experiments. A.K. and J.P. wish to thank partial support of this work from the Centro CNR-ITC (Trento) and the Università di Trento. This work was also supported in part by the NATO Guest Fellowship No. 218.1596 (A.K.) and the International Science Foundation, Grants LF8000 and LJ8100 (A.K. and J.P.).
Figure 1: (a) Temperature dependence of the ratio t_d/c_g:
$$
t_d/c_g = \left(\frac{t_2}{c_g} \right) \times \frac{N_0(c_g)E}{N_0(t_2)E} = \left(\frac{t_2}{c_g} \right) \times \frac{1}{10}
$$
which shows the variation of the number of the free states and the localization degree for two sub-bands. The dashed line corresponds to the fully localized orbitals with the number of unoccupied states equal to five in t_2 and four in c_g sub-bands.

(b) Temperature dependence of the WL maximum shift ΔE. Dotted line is a guide for eye. Vertical dashed line shows the ReO$_3$ decomposition temperature $T_d = 673$ K.

Figure 2: (a) Temperature dependence of the average MSRD σ^2 in the first shell of rhenium. Solid line correspond to the MSRD given by the Debye model with $\Theta_d = 780$ K. Dotted line is a guide for eye. (b) Temperature dependence of the MSRD for the Re-Re$_4$ ($R = 5.3$ Å) atom pair. Solid line corresponds to the correlated Debye model with $\Theta_d = 333$ K. Vertical dashed line shows the ReO$_3$ decomposition temperature $T_d = 673$ K.

Figure 3: (a) RDF $G(R)$ for the first shell of rhenium in ReO$_3$ at various temperatures. An asymmetry of the RDF $G(R)$, consisting of the tail at the left side of the peak (at $R \approx 1.7$ Å), progressively increases with temperature passing to the double-peak shape at $T = 668$ K. (b) A model of the high-temperature behaviour of ReO$_3$ within the first coordination shell: the local symmetry at the rhenium site decreases successively from O_h to D_{4h} and C_{4v}. The rhenium atom is shown by open circle and the oxygen atoms by solid circles. The displacements, caused by the M_3 and M_4 phonon modes, of oxygen atoms leading to the distortion of the 1st shell are shown by arrows.

References
