Electric and Magnetic Properties of Ta-Doped Polycrystalline Mn-Zn Ferrite
Y. Yamamoto, A. Makino, T. Nikaidou

To cite this version:

HAL Id: jpa-00255085
https://hal.science/jpa-00255085
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Electric and Magnetic Properties of Ta-Doped Polycrystalline Mn-Zn Ferrite

Y. Yamamoto, A. Makino and T. Nikaidou

Central Research Laboratory, Alps Electric Co., Ltd., 1-3-5 Higashitakami, Nagaoka 940, Japan

Abstract. The effect of Ta₂O₅ additive on the electric and magnetic properties of MnZn ferrites with fine grain size was studied. Adding small amounts of Ta₂O₅ to the MnZn ferrite increased electric resistivity, while an excessive addition of Ta₂O₅ caused decrease in resistivity without significant grain growth. In a small amount of Ta₂O₅ the change in the electric resistivity can be explained by Ta⁺⁺ substitution for Fe⁺⁺ entailing disappearance of the oxygen defects. The excessive addition of Ta₂O₅ created the oxygen defects and the electrons which are promoted by the metallic ion defects and the thermal dissociation of oxygen.

1. Introduction

It is well known [1] that MnZn ferrites with small amounts of the additives such as SiO₂ and CaO have good magnetic properties at high frequency because of their high electric resistivity. These effects of CaO and SiO₂ are generally described [1] that a glassy high resistivity layer envelops the grains. The excessive addition of additives makes the grain size large and the resistivity decreases [2]. However, TEM and AES analyses have shown that the presence of a high-resistivity glassy layer has not been proved and the high resistivity is caused by segregation of Ca [3]. Furthermore, EELS and STEM-EDX analyses have shown [4] that the Ca⁺⁺ segregation to boundaries and a decrease in Fe⁺⁺ content and thus high resistivity of boundaries caused by the inhibition of the Fe⁺⁺ → Fe⁺⁺ + e⁻ equilibrium. We have already reported [5] that the addition of a small amount of Ta₂O₅ to the MnZn ferrite improves the core losses at the frequency range of 0.5 to 2 MHz. In this study, we used the sintered MnZn ferrite with a composition of 53.2 mol% Fe₂O₃, 37.1 mol% MnO and 9.7 mol% ZnO, which were made from hydrothermal-precipitated ferrite powders with spinel structure. The purpose of this study is to understand the additional effect of Ta₂O₅ on the resistivity and the core loss for the MnZn ferrite.

2. Experimental Procedure

The MnZn ferrite powder for the sintered bodies was prepared by the hydrothermal method. Figure 1 shows a TEM image of the hydrothermal ferrite powder and Table 1 shows composition of the powder. The powder was annealed at 973 K in nitrogen for 10.8 ks. Ta₂O₅ was added to the ferrite powder in 0, 0.03, 0.05, 0.10 mol % and the powder was mixed by ball-milling method, mixed with proper quantity of an organic binder, pelletized and sintered at different temperatures in the interval 1273 K - 1473 K for 14.4 ks in a reduced atmosphere. The microstructure was observed with a scanning electron microscope. The resistivity (ρ) was measured by the four-point probe method. The coercive force (Hc) was measured under a field of 800 A/m with a dc B-H loop tracer, and the core loss was measured with Ryowa dc loop tracer MMS-0375-2.1B. The samples were ring-shaped, with outer and inner diameters of 10 and 6 mm respectively, and a thickness of 1.5 mm. All measurements were carried out at room temperature.

Table 1 Composition and particle size of the powder prepared by hydrothermal method.

<table>
<thead>
<tr>
<th>Particle size (μm)</th>
<th>0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃ (mol%)</td>
<td>53.17</td>
</tr>
<tr>
<td>MnO (mol%)</td>
<td>37.08</td>
</tr>
<tr>
<td>ZnO (mol%)</td>
<td>9.75</td>
</tr>
<tr>
<td>FeO (wt%)</td>
<td>0.96</td>
</tr>
<tr>
<td>SiO₂ (wt%)</td>
<td>0.007</td>
</tr>
<tr>
<td>CaO (wt%)</td>
<td>0.012</td>
</tr>
<tr>
<td>Na₂O (wt%)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Fig. 1 TEM image of the powder prepared by hydrothermal method.
3. Results and Discussion

Figure 2 shows the effect of Ta2O5 addition on the grain size and the \(\rho \) of the samples sintered between 1273K to 1473K. The sintered samples had the porosity less than 2.2\% because the powders are relatively easy to sinter. The grain size is strongly dependent on the sintering temperature and in the lower sintering temperature below 1373K the Ta2O5 content dependence of grain size was negligible and the grain sizes were almost constant. At higher sintering temperatures, 1423K and 1473K, an exaggerate grain growth was observed in the amount of Ta2O5 less than 0.05mol\% and no exaggerate grain growth was observed at 0.10mol\%. The \(\rho \) increases with increasing of the amount of Ta2O5 and decrease in 0.10mol\% after indicating the maximum value with 0.05mol\%. The \(\rho \) of 0.10mol\% indicated lower value than 0mol\% of Ta2O5 at each sintering temperature. The increase of \(\rho \) in the amount of Ta2O5 not more than 0.05mol\% can explain the inhibition of the hopping mechanism [4], Fe\(^{3+}\) \(\leftrightarrow \) Fe\(^{3+}\) + e\(^{-}\), owing to the Ta\(^{6+}\) segregation to boundaries. However, the \(\rho \) decreases without grain growth in the amount of Ta2O5 more than 0.05mol\%.

Figure 3 shows the Ta2O5 quantity dependence of Hc and the core loss. Hc decreases as the sintering temperature becomes higher. At the low sintering temperature between 1273K-1323K, Hc decreases as a amount of Ta2O5 becomes much and shows minimum value in higher than an amount of Ta2O5. The increase of Hc is assumed that the domain wall moving is damped with precipitating Ta2O5 on boundaries. The change of core losses show the minimum value upon the amount of Ta2O5 and indicates the similar dependence of \(\rho \).

Therefore, we may propose the following mechanism to explain the effects of Ta2O5 on \(\rho \) and magnetic properties. (A) On doping Ta\(^{6+}\) onto ferrite, the oxygen vacancies disappear to compensate for the excess plus charge originated from replacing Ta\(^{6+}\) for Fe\(^{3+}\).

\[
2\text{Vo} + \text{Ta}_2\text{O}_5 \rightarrow 2\text{Ta}^{3+} + \text{O}_2
\]

(B) Ta is consumed for the production of vacancies \(V_{\text{Fe}^3+} \) to maintain the electroneutrality. Vacancies \(V_{\text{Fe}^3+} \) invite the thermal dissociation of Oxygen and the thermal formation of Oxygen vacancies can occur more easily.

\[
3\text{Ta}_2\text{O}_5 \rightarrow 6\text{Ta}^{3+} + 4\text{V}_{\text{Fe}^3+} + \text{O}_2
\]

\[
\text{O}_2 \rightarrow \frac{1}{2}\text{O}_2 + \text{Vo} + 2\text{e}^-
\]

It is important to note that eq.(1) does not create electrons and eqs. (2,3) create electrons. In the range of small amount of Ta2O5, the \(\rho \) increases because the Fe\(^{3+}\) \(\leftrightarrow \) Fe\(^{3+}\) + e\(^{-}\) equilibrium was inhibited with Ta\(^{6+}\) substitution for Fe\(^{3+}\). On the other hand, in the amount of Ta2O5 more than 0.05mol\%.

References