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Re'sumC : Des multicouches Au/Ni ont CtC ClaborCes par EJM (Epitaxie par Jet MolCculaire) sur une couche 
tampon de cuivre lui m6me dCpos6 sur silicium (001). Les contraintes internes de ces multicouches ont CtC 
dCterminCes par diffraction des rayons X ainsi que par n5flectomCtrie laser. Elles montrent un &tat de coherence 
entre les couches. D'autre part les mesures par rayons X monuent une forte dilatation de la maille du nickel. Ceci 
peut 6tre interpr6te c o m e  un effet de melange orlnickel. 

1 INTRODUCTION 

The knowledge of the microstructure and strain in metallic multilayers is of great interest to 
explain their specific properties (magnetic, mechanical...). Most of the studies have been 
performed on samples prepared by sputtering. The present paper is devoted to MBE AuINi 
multilayers. Their structure and state of strain were investigated by x-ray diffraction. 

2 EXPERIMENTAL 

2.1 Growth 

Au-Ni m~ltilayers were grown by Molecular Beam Epitaxy (M.B.E.) on a Cu buffer (500 A 
thick) deposited on (100) Si, 100 pm thick. Prior to the multilayer deposition the Cu buffer was 
in-sih~ annealed at 150 "C to get a smoother surface. To induce a strong < l  1 l >  axis texture for 
the multilayer, the first deposited layer was Au. Six different samples have been grown with the 
same thickness ratio between Au and Ni (1:l). All the multilayers are 1200 A thick except the 
39 A period one which is 850 A thick. From the superlattice lines spacings it is possible to 
extract the superperiod with an accuracy less than one angstrom. Superperiods have been 
determined for the 6 samples : 9, 19,27,35,39 and 52 A. 

2.2 Laser scanning 

The residual stresses of the multilayered fiIm acts on the substrate and bends it. The 
measurement of the sample curvature yields the biaxial stress of the film [I]. For this 
measurement the scanning laser method described by Flinn and Gardner [2] was used. For our 
samples which are 2 cm long this device provides an accuracy better than 1% on the radius of 
curvature for uniform spherical curvatures of 70 meters and allows radii up to 7 kms to be 
measured. The Stoney formula, taking into account the initial curvature, was used to deduced 
the average film stress. The difference of curvature only represent the action of the residual 
stresses of the film on the substrate. 
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2.3 X-ray diffraction 

The technique for lattice parameters determination which is more convenient is X-ray 
diffraction. The interatomic spacing dhkl is taken as a strain gauge and Bragg's law provides a 
direct relationship between the strain E and the diffraction angle 8 of the film: 

This equation shows that the measurement of the deformation is made by the measurement of 
the shift A8 = 8-80 of the layer's Bragg angle where 80 and 8 are respectively the diffraction 
angle before and after deformation. Therefore, the strain can not be determined if the angle 80 
is not known. This angle depends on the crystallographic structure of the analysed material 
and on the cell parameters. These parameters depend themselves on the chemical composition 
and of the density of point defects of the material. As internal strains induce also a variation of 
the interatomic spacing, and thus of the diffraction angle, the main problem consists in 
separating the contribution of the lattice parameter and that of the internal strains. 
The classical method for stress and strain determination using X-ray diffraction is the well- 
known sin'yr method. It is based on the research of the interatomic spacing of one hkl family 
in different ($,v) directions. 

Figure l : Definition of the measurement direction as a function of @ and v. 
In a randomly oriented polycrystalline material, one can find a diffracted signal in any ($,W) 
direction and the relation between the measured deformation and sin2yi is linear or elliptic. 
From this plot, the stress can be easily deduced. It is no more the case for a textured material. 
On one hand, the sin2yr law is no more linear because the elastic constants will vary from one 
direction to an other, and on the other hand, if the texture is very strong the peak intensity can 
be too weak to be measured in any (+,W) direction. In this case, one can use the crystallite 
group method [3], and in particular, if the texture is so strong that one can define one or 
several separate crystallographic orientations, the crystallite group method can be reduced to a 
single crystal stress analysis. This method is described elsewhere [4,5]. To summarize it, the 
stress determination is based on the measurements of different hkl planes belonging to the 
same crystallographic orientation. From at least six independant measurements, the metric 
tensor of the deformed state can be calculated. Knowing the undeformed metric tensor (the 
metric tensor before or without stress), the elastic strain tensor can be deduced and then using 



the Hooke's law all the stress tensor components. For a high enough accuracy , a minimum of 
fifteen peaks must be obtained. Thus, it is a quite long method. Furthermore, in the case of a 
cubic crystal the undeformed metric tensor is decribed only by the lattice parameter q. So 
using the hypothesis 03, =O (no stress applied in the direction of the normal to the surface), the 
unstressed lattice parameter of the material can be calculated without ambiguity. 
For few cases, the analysis can be strongly simplified. When the normal of the film is parallel 
to specific crystallographic directions like the [ l  1 l] of the cubic crystal, the mathematical 
analysis can be easily rewritten. The strain and stress are then related by the following 
relations : 

- The general Hooke's law is: &ij=Sijkl*okl where Sijkl is the elastic constants tensor 
of the crystal. Using the Voigt notation, this equation can also be written as : 

Ei=Sij*Oj where Ei = Eij when i = j, = Eij when i j. For a cubic crystal, the 
elastic constants tensor can be described by only three terms : S,,, S,, and S,. 

- For a crystal oriented ( I  11)[1 101 in the sample basis, the relation between ESi and 

: expressed in the sample basis as followed : 

ssjj ssj2 ss1, ss,, 0 

ss,, c ssl, c 0 

ss,, ss,, ss,, 0 0 

ss,, ss, 0 %ss# 0 

0 0 0 0 %ss, 

0 0 0 0 0 

OSj can be 

In an orthonormal coordinate system (i, j, k), the strain E+,,, in a (@,v) direction can be defined 
by : 
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where n is a vector depending on the angles @ and v. 

= 

I 

n, = cos Q, sin v n, = sin @ sin n, = cos (3) 

As X-ray diffraction only concerns a very thin layer of matter near the surface, it is reasonable 
to assume that no stress are applied on the free surface of the sample, i. e : oS3=0. Moreover, 
in most cases the symmetry of the substrate and of the deposition process leads to an isotropic 
biaxial state of stress in the plane of the thin film oS, = oS, = C. This implies that the stress 
components oS, , oS, and oS, are also null (no compensation of the shear stresses between 
crystallites or between phases). Developping the relation (2) with (3), we obtain the following 
relations : 
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This relation can be rewritten using the elastic constants expressed in the crystallographic 
basis : 

E$, = ( %S, sinZy + 2.SI2 + 2/, (S,, -Sl2 -95 S,, ) ) G (5) 

One can thus observe that the strain versus sin2v plot is linear, and that the slope of the 
straitgh line is proportionnal to the stress multiplied by elastic constants. Moreover, assuming 
the upper hypothesis on the stress components and rewriting the equation (5), we can define a 
value of sin2v where the strain &p,, is null. 

sin2vo = - ( 2 S,, + 7, (S,, -S,, -!h S, ) ) ( s s u )  (6) 

For this particular angle v,,, the interatomic spacing dv is thus equal to the unstressed 
interatomic spacing d,, giving us, for a cubic crystal, the unstressed lattice parameter of the 
crystal $. 
So by plotting the strain E$,,, versus sin2v, the linearity of the curve implies or verifies the 
hypothesis of isotropic stress on the surface of the specimen. The slope of the straight line 
gives the stress, and from the strain at v,, the unstressed lattice parameter of the cubic crystal 
can be deduced. 

Experimental conditions : 

The measurements have been performed using the two methods. As a first approach, we used 
on one sample the method based on the metric tensor determination in order to verify the 
isotropic biaxial state of stress. At least 12 d-spacings have been measured belonging to the 
following hkl families : (3 1 l), (222), (220) and (200). Then, we used the relation (5) with only 
four or five planes. 
These measurements have been obtained on different four circles diffractometers, with 
different wavelengths (Cu, CO, Fe), and with a position sensitive detector or a point detector. 
In some cases, the separation of superimposed peaks from nickel and from gold was achieved 
using a profile fitting procedure with a pseudo-voigt function. 

3 RESULTS 

3.1 Microstructure 

A symmetrical 8/28 scan explores only a small part of the reciprocal space, it probes only 
lattice planes parallel to the surface of the sample. It is not sufficient to determine the 
crystallites orientations present in the film. Firstly the symmetrical scan allows only the 
determination of the axis texture and doesn't give any information on the crystallographic 
distribution around this axis. 

On copper the 220 pole figure (fig2a) shows a unique (100) [OOl] orientation of the 
layer // to X2 axis, and on gold the 11 1 pole figure (fig2b) shows 4 different orientations 

around the < l  1 l >  axis. Their in-plane [l 01 directions are rotated by 15",45", 75" and 105" 
from the X2 axis of the poles figure. The same texture has been found for nickel layers. Thus 
the following epitaxial relationship are deduced: (100)Cu <Oll>Cu l/ (lOO)Si<OlO>Si, and 
four differents variants for Au and Ni : (1 1 l)Au,Ni < l  10> Au,Ni N (100)Cu 4 1  1>Cu are 
explained by the four directions <01 l >  of the (100) Cu plane. The 6 samples have the same 
texture. 



Figure 2a : Copper 220 pole figure Figure 2b : Gold 111 pole figure 
y~ {0..80°) v {0..80°] 

3.2 Stress 

Figure 3 shows the stress measurement by laser scanning i.e. the substrate interaction stress. 
This average stress is tensile unlike the compressive stress found in sputtered AuINi multilayers 
[6].  The large error bars on the value of stress for multilayers with a 39A superperiod is due to 
an initial curvature sligthly stronger than for the other substrate. 
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Figure 3: Average stress in multilayers film measured via the substrate curvature. 
The resulting curvature variation is thus smaller, giving rise to a decreased accuracy in the 
measurement. Nevertheless a variation of the stress in the film with the period is evidenced. The 
stress decreases when the superperiod decreases. 
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Figure 4: Stresses measured by X-Ray diffraction. 

X-ray diffraction allows one to separate the contribution from each constituent of the film. 
Copper is always under tensile stress of about 200MPa for each sample. The variations of the 
stress for gold and for nickel are reported in figure 4. Nickel is found under tension while gold 
is under compression. For a superperiod lower than 27A, the stresses in nickel can not be 
determined due to the weak intensity of the diffraction peaks. The sign of these residual stresses 
is in agreeement with an in-plane lattice coherency effect. But the stress is relaxed because if 
coherency was present between the two layers, the forces equilibrium applied at the interfaces 
would imply a 17 800 MPa compressive stress in gold and an identical tensile stress in nickel. 

3.3 Strain 

The unstressed parameters (figure 5a) have been deduced from the straight line sin2y vs & at the 
particular angle yo. This angle calculated from the elastic constants [7] is equal to 36.7' for pure 
nickel and 48.1' for pure gold. In the case of mixing the elastic constants are calculated as a 
concentration weighted average and the stress free lattice parameter is determined self 
consistently. For gold the unstressed lattice parameter remains near the bulk value 4.0786& 
while the nickel one is rather far from its bulk value 3.5238A and reaches a maximum of 3.65A 
for A =19A. 

Period (A) Period (A) 

Figure 5a : Unstressed lattice parameters for gold Figure 5b : in-plane extrapolated 
and nickel. lattice parameters. 



From the extrapolation of the sin2yr straight line to yr=90° the in-plane parameter can be 
deduced. This value was not determined for nickel for a superperiod lower than 2711 for the 
same reason stated above. Figure 5b evidences the incoherency between gold and nickel in- 
plane lattice parameter (parameters averaged over the thickness of the layers). The variation of 
the in-plane lattice parameters for nickel is essentially due to the increase of the unstressed 
parameter, it is not coming from an elastic strain effect because the stress in Ni would be 
increasing too, that is not the case. 

4 DISCUSSION 

In the preceding paragraph, the expansion of the Ni unit cell has been attributed to the existence 
of a Au-Ni solid solution. According to Vegard law this would correspond to Au concentrations 
in Ni between 9 and 20 %. The solubility of Au in NI is, however, 1% at room temperature (the 
deposition temperature). This implies that we would be dealing with out-of-equilibrium 
solutions. In the used deposition technique (MBE), the kinetic energy of the deposited atoms is 
too low to allow mixing via knock-in effects. Moreover our results would indicate that Ni is not 
incorporated in Au layers although Ni is more soluble in Au than Au is in Ni. One possible 
interpretation for these results could be that Au segregates during growth on top of the 
deposited Ni. Indeed, Au surface energy is smaller than the Ni one. 

Figure 6 reports on the variation of the tensile stress in nickel versus the gold concentration in 
the nickel layers. The gold concentration is extracted from the Ni unstressed parameter and the 
application of Vegard's law. The incorporation of gold atoms in the nickel layers leads to the 
relaxation of the tensile stress and thus of the elastic energy. This minimization of the elastic 
energy could be one of the driving force for intermixing. 

k" 
Figure 6: Stresses in nickel layer versus the gold concentration in nickel. 

The role of the interfacial stress may be evidenced by comparing the substrate interaction stress 
with the stress determined by X ray diffraction in nickel, gold and copper layers. Using the 
expression introduced by Ruud [8] establishing a force equilibrium : 

where CC, , CA, , c r ~ i  , are respectively the stress in copper, gold and nickel, osc the substrate 
interaction stress ; tf , tc, , t ~ ,  , t ~ i  are respectively the total thickness of the film , copper, gold 
and nickel ; f the interfacial stress ; A the superperiod. 
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Figure 7: Interfacial S tress 

The values of 2 f /A are reported versus 1/A in figure 7. The thickness of gold and nickel layers 
are recalculated from the original ratio and taking into account the decrease of the gold layer 
thickness due to gold incorporation in nickel layers. We find f=1.7 J/m2 that it is three times 
more than the value calculated by Streitz & al [9] for non coherent interfaces: 0.58 J/m2. A 
similar discrepancy with calculation was reported by [8]. 

5 CONCLUSION 

We evidence a systematic increase of the lattice parameter of nickel in MBE deposited AuINi 
multilayers. Gold is always under compressive stress while nickel is under tensile stress. The 
relaxation of stress in nickel follows the increase of gold concentration in nickel. 
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