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Abstract: The study of residual stresses in metallic superlattices is of great importance. 
Properties of these materials are a consequence of their extreme strain states. With respect to 
single films, both the determination methods and the magnitude of the stresses may differ in 
multilayers. X-ray strain determination must be used with caution because of possible 
interference effects. The large amount of disorder tends to suppress the modulation on 
asymmetrical peaks. Stress deduced from wafer bending experiments may contain a non 
negligible interfacial contribution. The very large stresses (11Gpa) determined in the 
superlattices imply very high yield stresses, possibly related to size effects. Anomalous 
strain free lattice parameters are frequently reported. They may be related to the occurrence 
of segregation during the growth. 

Superlattices are of considerable industrial interest because of their specific properties [1,2] 
(magnetic, electronic, tribological, mechanical, optical, ...). Multilayer stackings are very often in a very 
high state of intrinsic stress (some GPa) and for reliable integrated devices to be made it is capital to control 
and understand these intrinsic as well as extrinsic stresses. Beyond these issues of reliability, stress and the 
resulting strain can be used to tune the properties of thin film materials. For instance, strain coupled with the 
magnetoelastic effect, can be utilized to induce the preferred magnetization direction [3]. One of the reasons 
which have been put forward for the anomalous mechanical properties of multilayered materials were the 
extreme strain states in the constituents. Indeed, the mechanical properties of multilayers have attracted 
interest because of the so-called supermodulus effect >>[4]: a very large enhancement (100%) of the 
elastic moduli has been observed in a number of systems (Au-Ni, Cu-Pd, Ag-Pd, ... ) for short modulation 
wavelengths, of the order of 2 nm. There is presently a growing consensus to attribute these results to an 
experimental artifact [5,6]. Finally, one should not forget that in these systems the stored mechanical energy 
is a non negligible part of the total energy. In particular the stress level can affect the miscibility [7] or even 
the stability of a given structure [S]. 

Many good review papers have been written on residual stresses in thin films [9-111. This 
communication will focus more specifically on metallic multilayers, with an emphasis on the difference in 
behaviour with what is observed in thin films. and on the specific experimental strategies to be applied for 
multilayers. 

2.EXPERIMENTAL METHODS 

The most common ways to determine residual stresses in thin coatings are the measurement of the 
substrate bending and the measurement of interplanar spacings by x-ray diffraction. The important point 
here is the applicability of the methods to metallic multilayers. 
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2.1 Substrate bending 

A biaxially stressed film adhering to a substrate causes the film-substrate composite to deform 
elastically in biaxial bending. This mechanical equilibrium can be decribed in two different ways: either by 
writing the momentum and force balance [12-141 or by minimizing the total mechanical energy [15,16]. An 
important assumption is the elastic behaviour of the substrate which forbids the use of metallic substrates. 
AU theses derivations agree for the thin film case, i.e. when the film thickness is much smaller than the 
substrate thickness. The corresponding expression is the Stoney formula: 

t,' l 
o t ,  = Y,-- 

6 R 

where o is the biaxial stress, t, the film thickness, t, the substrate thickness and R the radius of curvature. Y, 
is the biaxial modulus of the substrate which depends on both the Young modulus E and the Poisson ratio 
v, both of the substrate: Y, = E / (1- v ). For (100) silicon Y, = 180 GPa [17]. 
This expression shows that the film-substrate composite curvature is directly proportional to the force per 
unit length applied by the film on the substrate. From the knowledge of the film thickness one can then 
deduce the biaxial stress in the film. Because of the thin film approximation, i.e. because the flexural 
modulus of the composite is completely dominated by the substrate, the curvature does not depend on the 
elastic properties of the film. In the thin film limit the curvature method is thus a direct film stress 
measurement through the measurement of the substrate elastic strain. The bending strain in the film, of the 
order of t,/R, is generally negligible compared to the residual strains. 

One can distinguish two different ways of measuring the curvature, either by measuring the 
curvature of the substrate lattice planes or by measuring the surface curvature. The first method 118,191 
uses transmission x-ray diffraction from the substrate lattice planes perpendicular to the surface. Its main 
disadvantage is that it is limited to single crystal substrates; it is rather slow which makes it unsuitable for 
in-situ measurements. It has the advantage to be relatively insensitive to the initial substrate topography 
because it measures directly the curvature of the lattice planes. The second class of methods relies generally 
on optical techniques [15, 20,2l](interferometry, laser scanning, ...) to measure the top surface 
topography. The most popular one is a laser scanning technique developed by Flinn et a1 [U]. The sample 
surface is scanned by a laser beam and the reflected beam is detected on a position sensitive photodiode 
located in the focal plane of a lens. This is a very fast technique (the curvature is measured within 5 ms) 
which makes it perfectly compatible with in-situ measurements [22,23]. It is, however, by principle very 
sensitive to the initial substrate topography: the substrate radius of curvature has to be measured before 
deposition. A schematic view of the set-up built in MATOP [24] is shown in figure 1. 

Concerning multilayered materials the measurement of substrate bending yields the average stress 
<m. Indeed what is measured is the total force per unit length applied by the coating on the substrate: 

where oi and ti are respectively the stress and the thickness of the ith layer. 
Moreover, the high density of interfaces present in superlattices make the contribution of interface stresses 
no more negligible. This will add an additionnal term in expression (2) that will be discussed in section 2.3. 

2.2 X ray diffraction 

X-ray diffraction and the elastic response of materials provide a powerful method for determining 
stresses. Stresses alter the spacing of crystallographic planes in crystals by amounts easily measured by 
diffraction. Let us consider an isotropic body submitted to a biaxial isotropic stress in the X,-X, plane (see 
figure 2 for the reference frame): G,, = o,, = o. The elastic response of the material is fully determined by 
two elastic coefficients, the Young modulus E and the Poisson ratio v. It is easy to show that the strain 
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Figure 1: Schematic drawing of the laser scanning experiment 

measured in a direction making an angle y (figure 2) with the normal to the X,-X, plane is given by: 

I c v  v 
E,, = ---osin2y-2-0 

E E 

This is the basis of the sin2y and related methods. The relation (3) is very general as it applies even to an 
amorphous material and is a direct consequence of the Poisson elastic effect. The sin2y method is generally 
associated with x-rays because crystals lattice spacings, and thus strains, are easily measured by x-ray 
diffraction. Equation (3) is then used in the new form: 

By plotting 4, vs sin2y, one should get a straight line . The slope is directly related to the biaxial stress o 
and the unstrained lattice spacing d, corresponds to sinz~,, = 2 v / (l+ v). 
It is not the purpose of this review to go too much into the details of the stress measurements by x-ray 
diffraction, which is a very specialised and technical subject. Very good books [25] or review papers [26] 
exist and the interested reader should dig into these references. The very simple approach presented above 
has been used to outline the general principles underlying the method. The problem is generally more 
complicate because: 1) A more general state of stress oij generally occurs. One gets now a system of 
equations which are solved using as many d,,, measurements as possible. It should be noted that it is not 
possible to derive simultaneously G,, and a,, the unstressed lattice parameter, independently. Usually the 
reasonable assumption: o,, = 0, that the free surface is not subjected to a normal force, is made. 2)  The 
films or multilayers to be studied are generally highly textured or even single crystals. In the case of single 
crystals, the problem is quite simple. One has to choose the right combination of elastic constants in 
accordance with the crystal orientation. This case has been excellently reviewed by Clemens and Bain [27]. 
For example in the case of a cubic material with [l 1 l] texture, quite common for fcc metals, one gets: 
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where the Cij are the elastic constants in the crystallographic reference frame. In the case of a textured 
polycrystal the problem is more complex. What is the appropriate elastic constants tensor ? How to extract 
the average stress tensor from measurements which, by essence, select a family of crystallites in a given 
orientation? This problem is solved through the use of x-ray elastic constants which are determined from the 
orientation distribution function of the sample. One has to use an averaging scheme for the elastic constants. 
The Reuss method assumes that all the crystallites are subjected to the same stress whereas the Voigt 
method assumes an isostrain state. A more realistic approach is the Kriiner-Eshelby self consistent method 
[28-301 which allows for the continuity of stresses and displacements. 

Figure 2: Specimen coordinate system 

As was stated above, the sin2y method as such is valid as long as linear elasticity applies. An 
important concern, however, in multilayers, is the applicability of x-ray diffraction to the measurement of 
lattice spacings. A symmetric 8/28 scan on a (1 11) Au/Ni multilayer is given in figure 3. One can clearly 
see a serie of superlattice peaks, equidistant in the reciprocal lattice, whose intensity is modulated. Although 
the details of the spectrum call for an understanding of the different kind of disorder present in the stacking 
[3 1-34], the general features can easily be understood through the concept of an ideal superlattice consisting 
of N bilayers with a period A. Each bilayer is made of n,, planes of Au with spacing d,, and nNi planes of 
Ni with spacing d,,. One has thus: A = (n,-l) d,, + (nNi-l) dNi + 2 din, where d,, is the interfacial distance. 

dAu + dNi Assuming, for simplification, dint = - one gets A = n,, d,, + nNi dNi. In the kinematical 
L 

approximation, the amplitude scattered by such a structure is: 
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Figure 3: Symmetric 8/28 scan (Fe Ka) from a (l  l l) Au/Ni multilayer (A = 52 A). Experimental data 
(squares) and least squares fit (continuous line) using the algorithm of Fullerton et al [32] are 
superimposed. 

where q is the scattering vector (q = (4 n sin 0) 1 h where 0 is the Bragg angle and h is the wavelength of 
the incident radiation) and f,, the scattering factor for plane n. This simplifies to F(q) = S(q) B(q) and the 

scattered intensity is I(q) = IS(q)12 IB(q)12. IS(q)I2 = - is a Laue function corresponding to the 
2 9A sin (T) 

L 

superlattice. IB(q)12 is the scattering term which comes from the bilayer and which gives rise to the smooth 
intensity envelope which appears in the experimental spectrum. An example is given in figure 4 where the 
different terms are explicited. 

2 a  
In summary the symmetric spectrum consists of a series of peaks separated by Aq = 7 and whose 

11 

intensity is proportional to IB(q)I2. This means that the information on d,, and dNi lies in the intensity of the 
superlattice peaks. The position of the peaks is related to the superperiod A but not to the lattice spacings in 
the bilayer. One is confronted with a situation very similar to the one of crystallographers looking for 
interatomic spacings within the crystal basis. Indeed one has to perform intensity refinement and a number 
of kinematic modeling schemes do exist in the literature [32-341. In a perfect superlattice , the presence of 
satellite peaks occurs around every reciprocal lattice node. One should then expect a shift of the Bragg peak 
positions deduced from diffraction on asymmetrical lines. This would mean that strain measurements on 
multilayers by x-ray diffraction are not possible unless one performs a full modeling of q, scans. Should 
one conclude that (4 classical B x-ray diffraction strain measurements on metallic multilayers are not valid? 
A detailed comparison of stress determination by two different methods [35] has been made on Au/Ni 
multilayers. The first method is a standard strain analysis from the Bragg shift of asymmetrical lines (sin2y 
method), while the second one uses the perpendicular lattice parameter extracted from the kinematic 
modeling of a symmetric scan and parallel parameters directly measured from grazing incidence diffraction 
measurements. The measurement of lattice spacings from planes perpendicular to the multilayer stacking is 
free from interference fringes. The comparison between these two different methods revealed a good 
agreement. This means that asymmetric lines are unsensitive to the superlattice modulation whereas 
symmetric ones are. This results from the large amount of disorder present in these multilayers compared to 
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the almost perfect superlattices which are made from semiconductors. The distribution in the number of 
lattice planes and the small coherence lengths [35] tend to smear out the satellite peaks. On the other hand, 
the presence of a strong perpendicular preferred orientation ensures a good coherence in the perpendicular 
direction. 

Figure 4: Intensity I(q) diffracted from an ideal AuINi superlattice. B(q) is the interference term 
corresponding to one bilayer and S(q) is the interference function from the superlattice. No disorder was 
introduced. The peak width (S(q) and I(q)) is a size effect: only two bilayers are diffracting. Solid vertical 
lines indicate the positions expected in the absence of any interferences. 

There exist, however, examples of metallic superlattices which exhibit modulated structures away from v = 
0". This is the case of MoN multilayers [36] which, for small enough superperiods, are perfectly epitaxial. 
One ends up with a beautiful modulated reciprocal superlattice which calls for a detailed refinement. 
In conclusion, one should be aware of possible interference effects in metallic superlattices. Reciprocal 
space mapping is the right way to check for the occurrence of such effects which may strongly influence the 
stress analysis. The high degree of disorder present in metallic multilayers makes, however, the use of 
standard stress analysis techniques still valid. 

2.3 Comparison between the two methods 

As pointed out by Nix [9], surface and interface stresses do not result in a film stress but cause 
substrate bending. The surface stress is the work required to deform elastically a unit area of surface by a 
unit strain [39]. Whereas in liquids surface stress and surface free energy are numerically equal, they are not 
in solids. Generally unless one does a careful experimental observation [40], surface stress is a rather 
negligible quantity for a thin film-substrate composite. In multilayers the great number of interfaces may 
make the contribution of interfacial stresses no more negligible. The comparison between the substrate 
interaction stress (deduced from curvature measurements) and the average stress (derived from x-ray 
diffraction measurements in the two constituents) should yield the interface stress [37,38]. Ruud [37] has 
measured the interfacial stress in Ag/Ni multilayers by using the following expression: 

Where GA is the stress, as measured by x-ray diffraction, in element A; t~ is the total thickness of element A 
and f is the interfacial stress and osc is the substrate interaction stress deduced from curvature 
measurements. f can thus be extracted via a plot of ox - <a>,, vs A. It relies, however, on a rather drastic 
assumption: the interfacial structure is assumed to be the same when the superperiod is decreased. As will 
be discussed below this is not generally the case. Bain et al [41] did not find any evidence for an interfacial 
stress contribution in Mo/Ni superlattices. There is clearly a need for detailed measurements of the stress 



state in metallic multilayers in order to get a better knowledge of the interface stress contribution. From the 
order of magnitude of interfacial stresses quoted by Carnmarata 1381, i.e. 1 J/m2, one gets a 2 f/A term of 
about 1 GPa for a 20 A period, far from being negligible. 

3. MICROSTRUCTURE 

In small period metallic superlattices the high density of interfaces may dominate the microstructure. 
When the period is reduced, any lattice plane is a few interatomic distances away from an interface. One 
ends up with a material which is generally very different from what one would expect from a naive abrupt- 
interface picture. The knowledge of the interfacial structure (roughness, lattice strain gradient, 
interdiffusion, ...) is a fundamental problem. Indeed most of the properties of the superlattices do depend 
directly on what is going on at interfaces. It calls for the comparison of different kind of measurements (x- 
ray scattering, transmission electron microscopy, ...) in order to get information on the 1 W scale. 

It is not possible to discuss here all the different kinds of chemical and structural disorder which 
may occur in metallic superlattices. There is one phenomenon which seems independent of the growth 
method and may be intrinsic to multilayers: the unstrained lattice parameter of at least one constituent may 
differ markedly from the bulk one 142-471. One may wonder whether reports of a c< violation of Poisson 
effect [48,49] belong to this kind of effect. Stress analysis through the measurement of asymmetrical 
lattice parameters is a good way to extract the unstrained lattice spacing. Using this methodology, a number 
of authors have reported a large shift of the lattice parameter of Ni in Au/Ni [43-461 and in Ag/Ni 1481, Pt in 
CoPt 1471, Fe in Fe/Pt [42] multilayers. The in-plane lattice parameters of Au and Ni in (1 11) Au/Ni 
mulilayers are presented in figure 5 as a function of the superperiod. The intended Au:Ni ratio was 1: 1. The 
steeper slope for Ni may seem surprising, considering the larger biaxial modulus of Ni. It is a consequence 
of a systematic inflation of the Ni unit cell when the period decreases. For a 52 W period the unstrained Ni 
parameter is 1.5% larger, compared to the bulk. The in-plane tensile strain is 0.38 %. This shows clearly 
that the major effect is the dilatation. What is the origin of this lattice expansion ? This is still under debate. 
One possibility is a mixing between the two constituents. Other authors tend to favor other interpretations in 
order to explain the lattice parameter shift electronic effects in these periodic systems have been put forward 
[52-541 as a possible explanation. 

Figure 5: In-plane lattice spacings in (1 11) Au-Ni multilayers. The values corresponding 
to an infinite period are the bulk spacings from the literature. 

The Au/Ni system, with a limited mutual solubility, has been particularly studied 143-461. All the authors 
agree on a systematic shift of the Ni strain free lattice parameter when the superperiod decreases, whatever 
the growth technique employed. This large unstrained lattice parameter of Ni can be consistently interpreted 
as being a consequence of Au intermixing. Lattice strain analysis from HREM images and EELS analyses 
[46] tend to support this hypothesis. The Au concentrations needed to support such an interpretation are, 
however, much larger than the known solubility limit. One may invoke a modification of the phase diagram 
by the high stress levels present in these superlattices [7]. These multilayers, deposited at - or close to - 
room temperature are probably very far from equilibrium. It is possible therefore that Au segregation during 
growth is the reason for the observed Au:Ni intermixing. Molecular Dynamics calculations [51] support this 
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hypothesis. A lot of work remains to be done in order to evaluate more quantitatively the effect of 
segregation during the growth of metallic superlattices, in particular the interplay between growth 
temperature and growth rate. 

4. RESIDUAL STRESSES 

Very large residual strains, sometimes in excess of l%, are reported [41-451 in metallic multilayers. 
This corresponds to stresses in excess of 1 GPa, if bulk elastic moduli are used. For the very large strains 
encountered this approach may be questioned. Fermi surface and Brillouin zone interaction [55] or large 
strains [56] have been put forward as possible causes of substantial changes of the elastic constants in 
metallic superlattices. On the experimental side, as already written in the introduction, the supermodulus 
effect is no more considered real. Direct measurements of the elastic constants [57-591 show rather modest 
changes although a softening of C, in Ag/Ni superlattices, up to 40%, is observed when the period is 
decreased. The very large strains encountered should affect the elastic constants: the asymmetry of 
interatomic potentials should lead to a stiffening under compression and a softening under tension [56]. 
When available, one should use second order constants 1371. 

What is the mechanism responsible for the very high yield stresses encountered in multilayers? We 
have determined residual stresses as high as 3.9 GPa in Au layers 9A thick within AuINi multilayers [65]. 
This is indeed much lar er than the reported yield stress for bulk Au: 200 MPa. A stress as high as 6.4 GPa 
has been reported in 42% thick W layers within WlCu multilayers [66]. The small grain size is not the only 
responsible mechanism. In single films on substrates, the yield strength has been shown to depend on the 
film thickness. Few detailed studies exist [60-631 where a systematic evaluation of the biaxial yield strength 
in thin Pb, A1 or Cu layers with thicknesses in the 0.1 - 2 pm range has been done. AU these studies 
indicate a clear dependence on thickness in addition to the more usual grain size strengthening mechanism. 
Several models [10, 641 have been proposed which explain high thin film flow stresses and the inverse 
thickness effect in terms of the stress required for dislocation glide in the constraining presence of the 
filmlsubstrate interface. In order for flow by dislocation glide to occur, the work done by the stress in the 
film must also be sufficient to deposit interfacial dislocations. According to Nix [10], this leads to a biaxial 
yield strength of the form: 

sin Q, 
Oyield = cosQ,cos A 2n(l- v)tf p, + pS 

where Q, is the angle between the substrate normal and the slip plane, h is the angle between the Burger 
vector and the substrate normal, b is the Burger vector, tf is the film thickness, pp p, are the the elastic shear 
moduli of the film, and substrate and P, is a constant. Doerner [63] has added a grain size strengthening 
term corresponding to the Hall-Petch relation: 

where d is the grain size. It should be noted, however, that there is some evidence for a lld dependance in 
metallic films rather than the lld'" dependance described by the Hall-Petch relationship. The approach by 
Thompson [64], takes specifically into account the grain size and leads to the following relationship: 

Theses models provide at least a qualititative explanation for the very impressing stress levels found in 
metallic multilayers. Detailed studies where the superperiod and the thickness ratio would be varied are 
welcome. Studies performed on ultra thin films (less than 100 A) should be helpful to learn what is really 
specific to superlattices. Theoretical studies concerning the behaviour of dislocations in ultra thin films 
would be welcome. 



Conclusion 

In conclusion, the study of residual stresses in metallic multilayers raises a number of interesting problems. 
Huge strains are encountered and elastic constants calculations are clearly needed. Several thickness 
dependent phenomena are encountered: residual stresses depend strongly on the thickness of individual 
films. Strain free lattice parameters, probably linked to segregation during growth, do depend also on the 
relative thicknesses of the constituents. A great deal of work is still needed to study these phenomena. It is 
of importance since one is very often looking for period dependent effects in superlattices, as for example 
interfacial anisotropy (NCel term) in magnetic systems. As was rightly pointed out by [64], one may 
misinterpret period dependent anisotropy. 
Finally, it is a truism to say that multilayers are systems where interfaces are playing a major role. The 
development of experimental tools for the analysis of the interfacial structure is therefore of paramount 
importance. 
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