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Abstract: A gradient-enhanced damage is formulated in which the Laplacian of the internal variable which memo- 
rises the damage enters the damage loading function in addition to the conventional dependence on this internal 
variable itself. The computational setting for this higher-order continuum model is fully elaborated. Its embed- 
ment in thermodynamics is discussed and some remarks are made on the additional boundary conditions that arise. 
Finally, the special case is discussed for which there is a linear relation between the damage variable and the inter- 
nal variable that memorises the damage evolution. 

1. INTRODUCTION 
Damage mechanics theories can be used to describe degradation and failure of structural materials and 
components. In its simplest form, it degrades the elastic properties, in particular Young's modulus with 
the accumulation of damage. Often, and this is the approach that will also be used here, the damage is 
linked to the existing strain level [I]. 
A particular difficulty that is inherent in damage mechanics theories, and in fact in all continuum 
mechanics models that try to capture degradation and failure of materials, is the observation that at a cer- 
tain threshold level of loading the governing differential equations locally lose ellipticity (or hyperbolic- 
ity if dynamic loading conditions are considered). Consequently, the boundary or initial value problem 
becomes ill-posed [2] and analytical or numerical solutions become meaningless. 
A host of solutions has been suggested to remedy this deficiency of the standard continuum approach. 
For high-speed phenomena the inclusion of the inherent rate dependence of a material seems natural 
[3-71. For granular materials a revival of the Cosserat continuum seems meaningful. For this case 
micromechanical foundations for applying such a theory exist [8] and numerical approaches have been 
elaborated that can be implemented in standard finite element codes in a straightforward fashion [9,10]. 
For cracking in concrete and ceramics, and for describing void growth in metals nonlocal theories either 
in an integral format or in a differential format seem most appropriate. Within the context of a simple 
elastic-damaging material a fully nonlocal theory has been proposed by Pijaudier-Cabot and Bazant 
[11,12]. Aifantis [13-151, Coleman and Hodgdon [16], Schreyer and Chen [17], Lasry and Belytschko 
[18] and Vardoulakis and his colleagues [19,20] have proposed gradient theories in a plasticity-based 
format, while, motivated by the work of Miihlhaus and Aifantis [21], de Borst and his colleagues [22-241 
have derived algorithms for finite element implementations of a gradient-enhanced plasticity theory. 
Recently, a gradient theory has been proposed within a damage mechanics framework [25]. A different 
formalism, in which a nonstandard equivalent strain was introduced, was advocated by Peerlings [26] 
and successfully implemented in a finite element code. 
In this contribution a gradient-enhanced damage theory will be elaborated that is quite similar to the one 
proposed in Reference [25]. First, some remarks are made about the possible thermodynamic restrictions 
that can apply to such a theory. Then, the theory is elaborated and the finite element equations are pre- 
sented in detail. Finally, a special case is considered in which there exists a linear relation between the 
damage variable and the history parameter that measures the maximum damage experienced by the 
material. 
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2. THEORY AND CONSEQUENCES FROM THERMODYNAMICS 
We consider an elastic-damaging material for which the free or Helmholtz energy Y depends on the 
strain tensor E ~ ,  a scalar-valued damage variable w and its spatial gradient wSi, the comma denoting dif- 
ferentiation with respect to xi: 

The damage variable w has an initial value 0 for a complete intact material and attains the value 1 for 
complete loss of coherence. In consideration of eq. ( 1 )  the differential change of the free energy can be 
written as 

We now substitute this identity into the Clausius-Duhem inequality for isothermal processes: 

where p is the mass density and o,, is the stress tensor. The result reads: 

and by standard thermodynamic arguments we obtain 

the thermodynamic force conjugate to the damage variable w ,  

and the thermodynamic force conjugate to the gradient of the damage variable, 

Similar relations were obtained in Reference [25]. 
In the remainder of this study we consider a particular elastic-damage type relation, where the free 
energy is given by 

1 1 
pY = - ( 1  - w ) E ~ D ~ ~ ~ E ~ ~  + - C W , ~ W , ~  , 

2 2 
(8) 

with DW the fourth-order tensor that contains the virgin elastic moduli and c a gradient constant, which 
is a measure for the influence of the gradient terms in eq. (8). Note that the gradient terms act as a singu- 
lar perturbation of the standard free energy function, which depends only on the strain qj and the dam- 
age variable w [25].  Now, relations (5)-(7) take the form: 

and the damage flux vector, 

Upon substitution of eqs (5), (10) and (1 1 )  into the Clausius-Duhem identity (4), we obtain the standard 



result that the dissipation rate 4 should be non-negative: 

The requirement of a non-negative dissipation rate leads to the result that ri, 2 0 in absence of gradients, 
since the thermodynamic force Y conjugate to the damage variable w is a quadratic form for the given 
choice (8) of the free energy. However, the presence of gradients relaxes the requirement ri, 2 0, so that 
we can observe a temporal decrease of damage during the process. 
Next, we introduce a damage loading function, 

such that during progressive damage evolution, the identity f = 0 holds, else f < 0. In eq. (13) & is an 
equivalent strain, which is a function of the strain tensor, E= .F(sij), for instance, 

The nonlocal history variable t measures the largest value that has been attained by E: Accordingly, it is 
a non-decreasing function and grows only when f =O. The requirements on the damage loading function 
f and the history variable t can be described conveniently by the Kuhn-Tucker relations: 

An example of FT. is the full nonlocal expression, 

with g a weighting function [ll,12] and K the local history parameter. Herein we shall adopt a gradient 
approximation of (16), that can be obtained by developing w into a Taylor series, e.g. [21]. For an 
isotropic, infinite medium and truncating after the second term we then have 

where the gradient constant c depends on the weighting function and on the dimension of the medium. 
In principle, eq. (1 3) could now be replaced by 

but we will consider K as an independent variable in the finite element implementation to be discussed 
next, and therefore we shall retain the form (13) for the damage loading function, where 5 is given by 
(17). 
We finally define a nonlocal damage variable which is a function of the nonlocal history variable 2, 

in a fashion similar to the conventional dependence of the local damage variable w on the local history 
variable K: 

Using eq. (19), the Kuhn-Tucker conditions can also be written as: 



C6-494 JOURNAL DE PHYSIQUE IV 

3. FINITE ELEMENT DESCRIPTION 
For the finite element implementation we consider the equilibrium condition at iteration n + 1 : 

with g the gravity acceleration vector and L an operator matrix which, for the three-dimensional case, 
reads: 

Multiplying the equilibrium equation with Su, where u  is the continuous displacement field vector and 
the symbol 6  denotes the variation of a quantity, and integrating over the entire volume occupied by the 
body, one obtains the corresponding weak form: 

Similarly, the weak form of the Helmholtz equation for the distribution of the local history parameter K, 

eq. (17), can be derived as: 

We now introduce the decompositions 

on+, = on + d o  , 

and 

K,+, = K, + d~ , 

for the stress o and the history parameter K, respectively. The d-symbol signifies the iterative 
improvement of a quantity between two successive iterations. With aid of these decompositions and 
applying the divergence theorem to eqs (24)-(25) one obtains 

where t is the boundary-traction vector and 

where the non-standard natural boundary condition 

n T V K  = 0 

has been adopted, n being the outward normal to the body surface. Since K can be directly related to the 
damage variable w this condition can be interpreted as no damage flux through the boundary of the body. 
Finally we interpolate displacements u  and the history parameter K as 

u=Ha  (31) 



with a and k the vectors that contain the nodal values of u and K, respectively. H and H contain the 
interpolation polynomials of u and K, respectively. The gradient of K is then computed as 

Substitution of eqs (31)-(33) into eqs (28) and (29) and using the fact that the ensuing relations must 
hold for any admissible 6u and 6~ then yields 

where B = LH, and 

and the identity 

where 

We now adopt the standard elastic-damage stress-strain relation of eq. (9) and cast it into an incremental 
format: 

Restricting the treatment to small displacement gradients we introduce the linear kinematic relation 

& = L I B ,  (40) 

with L as defined in the preceding, or using eq. (3 1) and B = LH, 

& = B a .  (41) 

Furthermore, the local damage o is a function of the local history parameter K: w = w ( ~ ) ,  so that 

Taking also into account eqs (32) and (41), eq. (39) is elaborated as: 

am I 
d o  = (1 - w,)Dd~ - DE, - Hdk . 

a K  
(43) 

To complete the formulation the iterative improvement of the non-standard history parameter dK- is elab- 
orated using eqs (40) as 

where aK-/dE"= 1 for loading and akla&= 0 otherwise. Inserting the above expressions for d o  and dK- into 
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eqs (34) and (37) yields the following set of equations that describe the incremental process in the dis- 
cretised gradient-enhanced elastic-damaging continuum: 

where fex,, fin,, and Kkk are defined in accordance with eqs (35)-(38) and 

K, = j ( i  - U , ) B ~ D B ~ V  , 
v 

and 

After solution of the set (454, we proceed as follows: 

1. Update a and k at the nodal points: 

a,l = a n + d a ,  

k,+, = k, + dk . 
2. Compute in the integration points: 

strains: E,+, = Ban+, , 

equivalent strain: = E(E,+~) , 

damage loading function: f = - h-, , 

else: iTn+l = F, , 

- 
Interpolate: K,+I = EIkn+l , 

Compute: u,+~ = U(K,+~) , 

Compute: = (1 - W,+~)DE,+~ 

3. Update the internal forces: 

fint,n+l = j ~ ~ o n + l d v  * 
v 



as well as the new tangential stiffness matrix, and enter a new iteration if the process has not yet con- 
verged. 
It is noted that because the basic variables are differentiated only once in the above expressions, a simple 
co-continuity of the interpolation polynomials suffices. Of course, the displacements should be interpo- 
lated one order higher than the history variable in order to avoid stress oscillations, cf. the Babuska- 
Brezzi condition for mixed finite elements in incompressible solids. 

4. LINEAR DEPENDENCE ON DAMAGE VARIABLE 
We shall now consider a special case of the above theory, namely for which there exists a linear relation 
between the local history parameter K and the local damage variable w :  

with KO representing a threshold damage below which there is no damage growth, and M a constant. In 
addition, we assume that the equivalent strain is given by the thermodynamic force conjugate to the 
damage variable with the free energy as defined in eq. (8). Then, 

1 
g = Y =  - E T ~ E ,  

2 

cf. eq. (14). As a direct consequence of this choice we have 

which symmetrises the set of equations (45). 
Returning to the linear relation (50) we observe that by virtue of the nonlocal generalisation (16) 

K = K ~ + M G ,  (51) 

since by definition 

Furthermore, we have 

and in view of eq. (51) 

where now aGlaY = 1/M during loading, otherwise 0. Finally, eq. (50) must also hold at the nodes, so 
that 

and 

'dk = Mdw , (56) 

with o the vector that assembles the nodal values of the damage w, which is now being interpolated 
instead of the history parameter K. Substitution of the latter two identities in eqs (45) and dividing the 
second equation of (45) by M yields 
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Defining 

and considering eqs (53) and (54) one then obtains instead of eqs (57): 

where Kkk = K,,. Observing that ko is a constant vector, ko = ~ ~ i ,  where iT = [ I ,  1 , . . . . . . . ,I] ,  we 
have that K,,ko = J H ~ K ~ ~ v ,  and eqs (60) reduce to 

v 

where 

The ensuing update algorithm now marginally changes, as follows: 

1. Update a and w at the nodal points: 

a,+, = a, + d a  , 

0,+' = W ,  + dm . 
2. Compute in the integration points: 

strains: = Ban+' , 

1 
equivalent strain: Yn+, = ; E ~ + , D E , + ~  , 

damage loading function: f = Yn+l - Yo - MG, (Yo = K ~ )  , 

else: G,+' = a, , 

- 
Interpolate: a,+, = Hw,+' , 



Compute: = (1 - w ~ + ~ ) D E ~ + ~  . 
3. Update the internal forces: 

as well as the new tangential stiffness matrix, and enter a new iteration if the process has not yet con- 
verged. 
The present case can be used to simulate void growth in ductile metals, including plasticity-like effects. 
Consider the uniaxial case. The requirement that during damage evolution the loading function equals 
zero then gives 

E being Young's modulus. The uniaxial stress-strain relation CT = (1 - W)EE can then be elaborated as 

This is a cubic relation, which starts at a strain level EO = d m  (until this strain level we have purely 
elastic behaviour), exhibits an ascending branch to mirnick plasticity-like effects, and after passing the 
peak stress level shows a rapid decrease to a zero stress level at E, = .I-. For E > E, the load- 
carrying capacity has vanished. 

5. NUMERICAL EXAMPLES 
We shall now illustrate the characteristics of the theory and the performance of the algorithm by a simple 
one-dimensional example of a bar loaded in pure tension. The length of the bar is L = 100 mrn with a 
10% reduced cross-section of the centre 10 mm of the bar. 
The computations have been carried out for the case that we have a linear relation between the history 
variable K and the damage parameter w, so that the cubic stress-strain relation (64) holds. A Young's 
modulus E = 200,000 MPa has been adopted, while the parameters for the damage law read: Yo = 0.4 
MPa, M = 25 MPa and c = 3 mm2 unless stated otherwise. 
Results have been obtained for meshes consisting of 60, 120 and 240 one-dimensional elements with a 
quadratic interpolation of the displacements and a linear interpolation of the damage. The load- 
displacement curves for these three discretisations are depicted in Figure 1 and show a rapid conver- 
gence towards physically meaningful solution in the sense that a finite energy dissipation is obtained. 
The return to the origin is a property of the theory, which can only be remedied by making the gradient 
parameter c a function of the damage evolution. Of particular interest are the damage and strain evolu- 
tions along the bar which have been plotted in Figures 2 and 3. A narrowing of the localisation zone is 
observed upon continued loading. This narrowing is more pronounced than for an averaging of the 
equivalent strain E; cf. Peerlings et al. [26]. Finally, the effect of the gradient parameter c is shown in 
Figure 4 and 5. A larger value of c evidently leads to a higher peak load and more energ dissipation as d well as to a broadening of the localisation zone. For the smallest value of c = 0.2 rnm a non-smooth 
strain profile is observed, which is due to the discretisation which is too coarse for this relatively narrow 
localisation zone. 

6. CONCLUDING REMARKS 
A gradient-enhanced damage theory has been elaborated which features the Laplacian of the history 
parameter in addition to the history parameter itself. A full finite element algorithm has been given and 
the particular case of a linear relation between the history parameter and the damage variable has been 
discussed. 
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Figure 1. Load versus end displacement of the bar for three different discretisations. 

Figure 2. Damage evolution along the bar for progressive loading. 

Figure 3. Strain evolution along the bar for progressive loading. 
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Figure 4. Load versus end displacement of the bar for different values of the gradient parameter. 

Figure 5. Strain distribution along the bar for different values of the gradient parameter. 


