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Abstract: The modeling of necking occurrence in sheet metal forming is a real challenge 
for the engineer concerned with processing of new geometries and materials. As fracture 
in metal forming is mainly due to the development of ductile damage and to represent the 
failure of anisotropic sheet-metals, an extension of the Gurson-Tvergaard model is 
presented and implemented in the context of plane-stress for shell elements. A one 
dimensional problem is solved and compared with the exact solution of the literature. The 
paper closes with a numerical and experimental study of the necking of a square cup deep- 
drawing using the modified Gurson's model to described the constitutive behavior of the 
material. Finally, a numerical necking criterion is proposed. 

1. INTRODUCTION 

There are several ways to achieve analysis of necking occurrence in sheet-metal forming. One way 
consists in carry out a conventional F.E. simulation and by postprocessing the F.E. results, in 
using a theoretical or experimental necking criterion, to detect the zones where risks of necking 
can occur. It is the approach we have employed in [I] and [2] introducing the concept of Forming 
Limit Stress Surfaces for anisotropic sheets. It has been found that the Forming Limit Stress 
Diagrams are much more intrinsic that the conventional F. L. Strain Diagrams strongly influenced 
by the strain path which may vary significantly from the direct strain path in the case of 
complex sheet-metal forming processes. If experimental F.L.D. are not available , the strains of 
elements calculated in every steps by F.E. analysis are compared with the necking limits obtained 
by formulas based on plastic-instability theories such that the Storen-Rice criterion [3]. 
However, many Limiting Dome Height (L.D.H.) tests [4] on steel-sheets have shown that theoretical 
formulas give smaller heights than the measured values, except for aluminum alloys. 
On the other hand, a large number of macroscopic fracture criteria for failure which occurs after 
necking have been evaluated by Doege and co-workers [5],[6], consisting of products, integrals 
and sums of macroscopic stresses and strains. To determine the values of these criteria at the 
onset of failure, both experiments and F.E. simulations are needed. When applying these criteria, 
it was found that the main factor affecting the accuracy is the mode in which failure takes 
place, mainly under deep-drawing or under stretching conditions. The equivalent Mises stress was 
judged best for the prediction of both deep-drawing and stretch-drawing cracks but the locus of 
maximum equivalent stress does not necessarily coincides with the locus of failure in the sheet 
[6]. Moreover, the thickness distribution may also indicate the wrong locus of failure since this 
parameter is operation dependant and there is no material dependant critical sheet thickness 
reduction. 
Since deformation after necking up to fracture consists of sheet thinning within the neck 
together with complementary tensile stretching perpendicular to the neck and no straining along 
the neck, in many forming operations, the onset of necking is considered to be limiting. Also 
there is a need in the simulation process to achieve better localization of the onset of necking. 
This can be expected by the coupled approach where the damage process is incorporated into the 
constitutive relations. Many investigations have shown that ductile fracture involves four 
successive damage processes which are the nucleation of voids from inclusions, void growth, void 
coalescence and cracking propagation. One constitutive equation to account for these processes is 
the Gurson-Tvergaard model [7],[8], which was derived in an attempt to model a porous isotropic 
plastic material containing randomly disposed voids. As suggested by Doege and co-workers [9], we 
have extended the Gurson-Tvergaard model to anisotropic matrix behavior and implemented with our 
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simplified triangular shell element suitable for simulating sheet-metal forming processes [lo]. 
After localization by the iso-value curves of the porosity which acts as an macroscopic internal 
damage variable, the onset of necking may be found numerically by geometrical considerations due 
to the fact that the stress state becomes triaxial in the neck. Comparisons between experiments 
and coupled numerical analysis of a square cup deep-drawing of an anisotropic steel-sheet are 
presented. 

2. DAMAGE MODEL 

The proposed damage model is based on an extension of the Gurson-Tvergaard model [7],[8] in which 
microvoid volume fraction evolution in the constitutive matrix is described. The proposed yield 
condition takes the form : 

@ =q2/c; +2q,fcosh(-3q2P/~Y)-(1 + q,f) =O (1) 
if em=-p > 0 where p is the hydrostatic pressure and : 

o =q2/c;+2q,f-(1 +q3f) =O if ems 0 (2) 
f is the state variable available for microvoided material, called microvoid volume fraction or 
porosity and defined by : 

f = (V, - V,) / V, (3) 
with V, elementary apparent volume of material and V, the corresponding matrix one. In relations 
(1) and (2) q is the effective stress of the macroscopic Cauchy stress tensor c which, instead of 
the original Mises stress is replaced by the orthotropic Hill effective stress : 

q= = cTT M c 
where for plane-stress condition and in the orthotropic axes 1 and 2 : 

(4) 

& = [,, , c12] and 

The anisotropic plastic behavior of the metal is described by the anisotropy parameters G,H,F and 
N which are defined in terms of the Lankford parameters r0,r9,,and r,, as : 

H r 0  r )  G= 1 -H F=roI[r9,(l +ro)] N = (r,, +ro)(2r45 + 1)/[2r,,(l +ro)] (6) 
The Lankford parameters are determined by three experiments in the various directions as pointed 
out by their different indices. This model is often preferred for industrial applications with 
steel sheets. If H = G = F = 112 and N = 312 Eq. (4) abridges to standard Mises isotropy. Due to the Hill 
function and the associated flow rule not being isotropic, the direct Eulerian constitutive law 
based on this criterion is not objective. In order to assure the objectivity, the rotating frame 
formalism is applied. The axes of orthotropy of the Hill criterion can be updated by a rotation 
which can be chosen as the material spin rate w (co-rotational stress rate) or from the polar 
decomposition F=RU (Green-Nagdi stress rate). Since the elastic strain are assumed to be small 
and from practical sheet forming applications, the differences between these different rotations 
are very small. 
Tvergaard [8] introduced the constant %, q, and q,=qT as coefficients of the void volume 
fraction and pressure terms in order to make the predictions of the Gurson model agree with 
numerical studies of ordered voided materials in plane strain tensile fields, typically : %=1.5 
q,= 1 and q3=2.25 instead of q, =q2=q3 = 1 in the original Gurson model. The flow rule is derived 
from the yield potential Eq.(l) and (2), the presence of the hydrostatic pressure in the yield 
function results in non-deviatoric plastic strains : 

The hardening of the fully dense matrix material is described through cy=h(EP). The evolution of 

EP is assumed to be governed by the equivalent plastic work relation : 
(1-0 cydEP = e T  d&P 

The damage model takes into account the three main phases of damage evolution. The microvoid 
volume fraction is given by : 

df = df, + df, + df, (9) 



Considering a random distribution of second phase particles, microvoid volume fraction increment 
due to nucleation is expressed by 1131: 

The normal distribution of the nucleation strain has a mean value s, , standard deviation S, and 
nucleates voids with volume fraction f,. For steel-sheet metals the possible values are f,=0.04 , 
0.01 3 S, 3 0.1 and 0.3 5 c, 3 0.7 [13]. Growth of existing voids is based on the apparent volume 
change and the law of conservation of mass and is expressed as : 

df, = (14 )  (dc;, +dc:,+de:,) (11) 
Finally, it is assumed that the volume fraction increment due to coalescence depends on effective 
plastic strain increment such that : 

dfc=~deP  if f 2 fm and dfc=O if f<fc, (12) 
where f,, is the critical fraction at incipient coalescence and A a material parameter which can 
be written as : 

A = (f, - fo) I As,  (13) 
where f, is the ultimate microvoid volume fraction at ductile rupture and asE is the additional 
effective strain increment leading to ductile rupture. It is worth noticing that if the damage 
evolution takes place in small areas as in the case of sheet metal forming, large values of 
porosity up to 25% can be only found on a micro level. 

3. COMPUTATIONAL ASPECTS 

3.1 Explicit solution procedure 

The three node simplified shell element [lo] with only translational degree of freedom but with 
bending capability is adopted for the spatial discretization of the sheet. A large numbers of 
analysis have shown that sheet forming processes can be analyzed successfully by both the 
implicit static method and explicit dynamic procedure if the latter is run at a relatively low 
speed (310 mls). With the use of lumped mass matrix, the advantages of the explicit dynamic 
algorithm is that the stiffness matrix does not need to be formed and the contact conditions are 
modelled accurately in a simple manner because of the requirements of small time steps. Moreover 
the material behavior can be complex which is the case with internal damage variable leading to 
softening of the material. 

3.2 Integration of constitutive equations 

It is known that one of the best algorithm for integrating constitutive equations is the Backward 
Euler or implicit scheme [I l l .  However, in case of plane-stress condition, the out of plane 
component of strain is not defined kinematically and must be added as an extra unknown in the 
local Newton iteration scheme. This fact and the presence of "cosh" terms in the yield function 
and flow rule may lead to numerical difficulties when the damage variable increases rapidly. The 
authors have chosen a substepping scheme on the modified Euler algorithm which incorporates error 
control where the details can be found in [12]. This approach is suitable with explicit dynamic 
analysis since it takes advantage of the small time step required by the overall stability limit. 
Then on each substep, the following set of incremental forms of equations are used to compute the 
stress increments : 

dc = he- D dsP (14) 

where be is the elastic stress increment vector and D the elastic (3x3) matrix satisfying the 
plane stress assumption. From the flow rule Eq.(7), the plastic multiplier dh is eliminated with 
the following two equations : 

A s P =  -dh a6Iap and heq= dh a6Iaq with A s P  a6Iaq + A s q  aalap = 0 (15) 

Eq.(l) and Eq.(2) are used to yield : 

AeP=O if (r 5 0 and ~ c ~ = c ~ n c ~  if c m > O  with a = [3q,qzfsinh(-3q2p/%Y)] I 2q (16) m 
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Noticing the gradient vector a so that : 

a = aqlac = q-l M c and dq = aT dc = aT he - 6 ncq (17) 
where it is found that for plane-stress : 

6 = aE(al1+a2,)/[3(1-v)] + aT D a (18) 
The equivalent plastic work Eq.(8) gives the effective strain increment : 

dsP = ~&~(q-ap)l[(l-f)ff~] (19) 

Use of h'=&,/dGP the hardening modulus of the matrix in Eq.(18) and in Eq.(19) leads to : 
A E ~  = aTdre (I-f)eyl[(h9+iy)(q-ap)] where iy = B(l-f)~~l(q-ap) (20) 

The plastic out-of-plane strain increment can be now written as : 
d&E3 = oAeq-(d&:l +dg2) (21) 

Notice that if the porosity f=O then a = O  and the plastic incompressibility is obtained. 
For the first order Euler algorithm, the stress at the end of a substep is given by : 

f f ~ + l  = CK + &I (22) 
and it is the same for each internal state variable : the effective strain and porosity f where 
all quantities have been evaluated at the stress state o,. A more accurate estimate of cK+, and 
state variables may be obtained from the modified Euler scheme which gives : 

vK + (dcl+dc2)/2 (23) 
where ds2 and all quantities are evaluated at the stress state c,+,. The global error in the 
solution may be controlled by ensuring that the relative error for each substep is less than some 
specified tolerance : 

fl(dr,- &,)I2 111lIc~+~ ll < TOL (24) 
The size of each substep is continually updated during the integration procedure to satisfy 
Eq.(24) where TOL is a small positive number in the range l.E-02 to l.E-05 . 

4. NUMERICAL EXAMPLES 

4.1 Uniaxial tension 

The first test is a uniaxial tensile test with two triangular shell elements making a unit square 
4-node plane stress element. The test is velocity controlled with a tolerance factor TOL=l.E-05 . 

Figure 1 : Uniaxial stress-strain curves 



The uniaxial stress-strain curve of the matrix is : cry = B(c + E P ) ~  with: B= 1.5 , c= 1.32775E-06 
and n=2.99633E-02 .The elastic properties of the matrix material are specified by the ratio 
cy0= 1/E= 11300 and v=0.3 . The plastic strain controlled nucleation is described by the void 
volume fraction f,-0.04 of void nucleating particles, the mean strain for nucleation ~ , = 0 . 3  and 
the standard deviation S,=0.1 . The initial porosity is 0.001 . 
In Fig.(l) the cry and cl1 true stresses are plotted for each time interval At=l.E-02s as a 
function of the logarithmic strain s=ln(l +u/l,) where u = v ~ t  the prescribed displacement and lo= 1 
is the element length in the undeformed state. The void volume fraction f is plotted as a 
function of E in Fig.(2). The results of the finite element analysis agree very well with the 
finding of Aravas [ll] .  

POROSITY 

- - 
0 0.1 0.2 0 . 3  0 .4  0 . 5  0.6 0 . 7  0.8 0.9 1 

UNIAXIAL TRUE STRAIN 

Figure 2 : Porosity versus uniaxial strain 

4.2 Square-cup deep-drawing 

The damage constitutive law is applied on a simulation of the deep-drawing of a square cup with 
dimensions according to the NUMISHEET'93 Benchmark where the geometry is given in Fig.(3) . 

The material is a mild-steel sheet of 
thickness 0.67 mm with the following 

-p 0.1908 properties cry = 533.38(1.8193E-03 + s ) 
Young's modulus E = 198000 MPa and Poisson's 
coefficient v=0.3 with the anisotropic Hill's 
coefficients: H=0.654 G=0.346 F=0.317 
N= 1.220 .Because the authors do not have the 
tools to perform the NUMISHEET'93 experiment, 
it was Hoogovens Corporate Laboratory who have 
performed the experiment on their equipment. A 
square grid of 2.5 mm was applied to be able 
to measure the strain distribution of a 
product by mean of a video camera system. 

Figure 3 : Square-cup deep-drawing geometry 

Hoogovens performed the following experiments: 

1: Deep-drawing of a square-cup with a height of 26 mm and an applied blank holder force 
(B.H.F.) of 19.6 KN which correspond to a maximum punch force of 52.9 KN. The major and minor 
strain distribution are presented as they are measured on products in Fig.(4a). 
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Figure 4 : Measured strain distribution (a) B.H.F. = 19.6 KN (b) B.H.F. =70.0 KN 

2: The blank holder force had to be raised to 70 KN before the first necking appeared to produce 
a cup with a height of 26 mm which corresponds to a maximum punch force of 59.7 KN. The major and 
minor strain distributions are presented as they are measured on product in Fig.(4b). 

puncn f o r c e  
Box height 26 mm 

blank holder force 

20 --20 

punch displacement 

Figure 5(a): Experimental Punch force versus displacement 



NUMERICAL PUNCH FORCE (BHF=70KN) 

Figure 5(b): Numerical Punch force versus displacement 

One quarter of the 150x150 mm square sheet was modelled by 1250 3-node simplified shell elements, 
with the tooling described by patches of surfaces (N.U.R.B.S.) generated with a C.A.D. system. It 
must be keep in mind that for the plane-stress state considered in the numerical analysis of 
sheet forming processes, the porosity f must be seen as a macroscopic damage variable rather than 
the real fraction of void volume to matrix volume. Also it is assumed that one type of particle 
nucleates voids essentially at the beginning of the deformation history, giving rise to an 
initial porosity fo , here taken as f0=0.03. 
The other type of particle has a distribution of nucleation strains obeying Eq.(lO) with mean 
nucleation strain ~ ,=0 .5  and standard deviation SN=O.O1 corresponding to nucleation taking place 
over a narrow range of strain and amplitude fN=0.04 . 
For a value of the coefficient of friction p=0.12 and a blank holder force of 70 KN, the 
numerical punch force curve shown on Fig.(5b) is in a very good agreement with the experimental 
curve displayed in Fig.(Sa). 

Figure 6 : (a) Adaptive mesh refinement with damage growth (b) Thickness distribution 
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Shown in Fig.(6a) is the adaptive mesh refinement based on the damage variable growth and 
localization where the maximum value fMq,=0.0702 coincides very well with the experimental 
formation of a marked thickness trough lead~ng to fracture. 

".= 
0 20 40 60 80 100 120 

INITIAL POSITION 13H 

Figure 7 : Strains distribution along line OB 

On the other hand, as illustrated in Fig.(6b) by the iso-values, the thickness strain 
distribution just before mesh refinement gives a much larger endangered area. Displayed in 
Fig.(7) are the principal strains distribution along line OB which may be compared to the 
experimental values in Fig.(4). However, we have found that the additional straining due to the 
coupled damage analysis is only more than 3% of major strain than that for the case without 
damage considered. Other numerical analyses with hemispherical punch in order to be in biaxially 
stretching conditions have shown the same results. 
The level of the maximum damage variable depends significantly on the initial value of f,, and 
whether the damage variable alone may work as a localized necking criterion seems to be 
difficult. 
We propose a numerical necking criterion based on the fact that the stress state in the neck 
which is localized by the damage variable is becoming triaxial. It can be shown by analyzing the 
triaxial stress state in the neck of a sheet undergoing plastic deformations that the stresses 
along the thickness direction follows the equation [14]: 

where s, is the major principal stress in the neck calculated by the F.E. analysis disregarding 
the presence of three dimensional stress state. This stress s, varies over the thickness t of the 
neck, it is zero at the surface of the sheet where z = a = t/2 and attains its highest value at 
the center of the sheet (z=O). R is the radius of curvature of the neck in the plane containing 
the major principal stress. Based on experimental observations and geometrical considerations, we 
proposed the following simple relation for calculating the function a/2R in Eq.(25) : 

where t,, is the initial thickness of the sheet. 1 is the width of the neck in the direction of 
the major principal stress and t is the minimum thickness in the neck. For a precise evaluation 
of 1 and t by surface fitting, an adaptive mesh refinement in the critical area is required in 
the numerical analysis. Broadly speaking, the enrichment process is based on a simple side 
splitting operation, where-by nodes are generated in the middle of those sides that belong to 
elements with damage variable exceeding a given value for each remeshing procedure. Moreover, 
from geometrical considerations, an additional algorithm is required to ensure that nodes are 
connected in best possible manner. 



Comparisons between numerical and experimental analysis for both deep-drawing conditions and 
stretching conditions have shown that typical values of the ratio t l l  are in the range 
0.2=t,,/150.8 and the onset of necking in the most critical area may be determined when the 
following stress ratio : 

c,Max. / c, 2 0.05 (27) 
and then the stress state is assumed to become triaxial in the neck. For the above square-cup 
deep-drawing study, a ratio t l l  = 0.473 has been found numerically for the proposed criterion. 
The value 1 may be considered a characteristic of the material dependent on the forming 
conditions but independent of the thickness. The following figure (8) shows the example of two 
deformed meshes with refinement at necking corresponding to the simulation of Marciniack's tests 
on a XES mild-steel sheet of thickness 0.68 mm ( B=550.05, c=0.9386 E-02, n=0.278 and H=0.610, 
G=0.390, F =0.3, N = 1.4 are the Swift's and Hill's coefficients respectively). Figure (9) displays 
the experimental and numerical Forming Limit Strain curves obtained where a reasonable good 
agreement is found. 

Figure (8): Deformed meshes at necking (width 150 mm and 60 mm) 
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Figure (9): Forming Limit Strain Diagram 

5. CONCLUSION 

The method presented in this paper shows how the Gurson-Tvergaard's model can be extended to 
anisotropic sheets. The capabilities of finding localized necking by a coupled damage analysis of 
3D. sheet forming processes have been demonstrated. Moreover, a necking criterion is proposed 
based on the fact that the stress state becomes triaxial in the neck localized by the damage 
variable. 
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