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France 

ABSTRACT. It is known for long time that the size of a structure has an important effect on its fracture stress. This 
phenomenon is called size effect and it seems that it can be attributed to the influence of a damaged zone which 
develops around the fracture area. Investigations have been made on size effect in shear fracture on two species of 
wood : Maritime Pine and Norway Spruce. The experimental fracture stresses and energy release rates of 
geometrically similar specimens of different sizes are analysed according to the size effect law of Bazant. This 
theoretical model allows an estimation of the evolution of fracture stress and energy release rate in terms of structural 
size but also an estimation of the dimensional validity areas respectively attributed to non-linear fracture mechanics 
and to linear elastic fracture mechanics. A comparison of the results was made in order to determine the relative 
brittleness of Pine and Spruce. 

1. INTRODUCTION 

In a building material such as wood, the fracture characteristics obtained in laboratory with small 
specimens must be applied to structures with large dimension. So, it is necessary to know the evolution of 
fracture characteristics according to the size of the structure. Indeed, when the volume of a structure 
increases, the strength generally decreases and it appears that this increase of specimen size produced an 
increasing brittleness. Several works based on the well-known Weibull's weakest-link theory have been 
made to describe the size effect in wood [5, 71. This theory governs the size effect in unnotched wood 
structures failing at the initiation of the first macrocrack from the worst defect (knot, resin pocket...). In 
this work, this statistical size effect is assumed to play only a minor role. Indeed, the notched fracture 
specimens used here, show a stable crack growth before the failure. Linear elastic fracture mechanics 
(LEFM) takes into account the scale effect but is not sufficient to explain the evolution of fracture 
characteristics. Another approach, "the size effect law" proposed by Bazant [3] and established from 
LEFM, allows the description of a large part of these phenomena, and mainly the scaling of small to large 
structures. This method initially proposed for concrete and ceramics [3] can also be applied to wood 
failure [I ,  93. In this approach, it is assumed that a damaged zone in front of the crack tip originates some 
modifications of the stress and displacement fields surrounding this zone. According to the size of the 
structure, these modifications are more or less important and give rise to modifications of macroscopic 
behaviour of the structures. In this paper, the size effect law is employed for explaining experimental 
results of shear fracture in Maritime Pine and Norway Spruce. Geometrically similar specimens of 
sufficiently different sizes were tested. 

2. SIZE EFFECT LAW. 
In linear elastic fracture mechanics (LEFM), assumption is made that the material is elastic at every point 
and especially at the crack tip where infinite stresses are analytically obtained. This assumption is never 
completely fulfilled with real materials. Physically, there always should exist a zone in front of crack tip 
(fracture process zone) which is in state of progressive damage. In an infinitely large specimen, this zone 
occupies only an infinitesimal volume of the body; the entire body can be considered as elastic which is 
the assumption of LEFM. Now, if the fracture process zone occupies an important volume of the 
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structure, the stress and displacement fields surrounding this zone are highly perturbed, leading to a 
behaviour looking like ductility. So, LEFM cannot be used. 

Independently of the type of the real toughening mechanism in fracture process zone, the size effect law 
takes into account this area by assuming an equivalent crack length a at failure: 

a = a o + c  

where a. is the initial crack length and c is the elastically equivalent process zone length. 

By inserting this equivalent crack length in some equations of LEFM, Bazant obtains an analytic 
expression of fracture stress as a function of a characteristic dimension d of the structure. The expression 
(I), called size effect law has been successfully applied to wood in shearing mode 191. 

where Zc is the critical shear stress at failure 

d is a characteristic dimension of the structure 

B, do, and Zref are empirical constants 

A similar expression (with shear stress replaced by normal stress) has been applied to describe the failure 
of ceramics, concrete and rocks [3] and wood in opening mode [I]  

Moreover, the size effect law allows to determine the evolution of the critical energy release rate GIIc as a 
function of the fracture energy GIIF and the characteristic dimension d (equation 2) : 

G, = ~ m . % d + d , )  (2) 

with do is an empirical constant. 

3. EXPERIMENTAL INVESTIGATIONS. 
Investigations have been made on size effect in shear fracture of wood. In order to obtain an evolution of 
the fracture characteristics, geometrically similar specimens of sufficiently different sizes have been 
fractured by shear. 

3.1. Material and specimen 
Two species of wood, Maritime Pine (Pinus pinaster Ait) and Norway Spruce (Picea abies L.) have been 
tested. Average oven dry specific weights were respectively 560 and 390 kg/m3. Tests were made on 
Linear Tapered End Notched Flexure specimens (LTENF) displaying a stable crack growth. Six 
geometrically similar specimens characterised by their height (d) : 25, 37,5, 50, 75, 100 and 200 mm 
(Annex 1) have been used. 
The thickness (b) was kept equal to 40 mm for all specimens except the larger specimens (d=200 mm) 
which thickness is equal to 70 mm for stability reasons. 
In each dimension, between 6 to 8 specimens were cut, in the longitudinal-tangential directions, from 
planks 75 by 225 mm. Moisture content of all specimens was found to fall between 11 and 13 %. A 
chevron notch with a 90" angle was machined with a band saw and prolonged on 4 mm with a razor blade 
as crack starter. The dimensions of LTENF specimens are given in Annex 2. 
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Figure 1 : Test set-up with loading arrangement and optical displacement measurements. 

3.2. Testing 
Tests were made in three points bending at constant cross head displacement rate. Testing arrangements 
have been described in a proposal by RACOIS [8]. During tests, load-deflection values were continuously 
recorded. Deflection was measured with an optical extensometer without contact with the specimen. 
Figure 1 displays the general arrangements with the two targets, one glued at the centre bottom of the 
specimen, and the other fixed on a rubber string pined by two small nails near the neutral axis of the beam 
at the straight above its supports. Figure 2-a shows a typical load-displacement curve. On such a curve, 
the part at quasi constant load is obtained during crack growth. The fracture load Pu (ultimate load) is 
defined as the point at the beginning of the constant load part corresponding to the crack growth. 

a) b) c) 

Figure 2 : Typical load-displacement curve of LTENF specimen and calculation of fracture energy. 

The critical shearing stress is estimated by : 

where : - PU is the ultimate load (fig.2-a) 
- b is the thickness of specimen 
- h is the height of the specimen at the end of chevron. 
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Moreover, these curves allow to determine the critical energy release rate GIIc and the fracture energy GIIF 
according to the following relations : 

where : - Uc and UF are the energies calculated according to figures 2-b and 2-c 
- A is the cracked surface of the specimen. 

3.3. Results. 

The values of Zc obtained for both species are given for each specimen dimension in figure 3. 

Values of strain energy release rate GIIc and fracture energy GIIF are given in annex 3. 

Figure 3 : Critical stresses (MPa) versus height d (mm) of specimens. 

4. RESULTS AND DISCUSSION 

4.1 Results and discussion for Maritime Pine. 

In relation (I), the empirical constants B, do, and Zref can be computed from experimental values (best-fit 

method). 

Taking: Y = ( T r e f / Z c ) 2 ,  C = l / B 2 ,  A = 1 / ( B 2 . d o ) = C / d o  

relation (1) becomes : Y = A.d + C 

In this last relation, Zref and B are linked by the expression B.Tref = Zmax 

So, only Tmax has a physical meaning. 

Choosing a value for Zref (for example Z E ~ 6  MPa), a least square method on experimental values 

(Zc,d) gives 'I;,,, and do (Figure 4). 

The following values are obtained for the size effect law parameter : 

'I;,, = 6,3 MPa and do = 21 mm 
These values are obtained without the biggest specimen (d = 200 mm) because the thickness is 70 mm 

instead of 40 mm and this fact alters the results. 



Figure 4 : (Tref I 'Cc )2 versus height d (mm) of specimens (Maritime Pine) 

Effectively, relation (1) has only been established for homothetic plane specimen ( ie identical thickness). 
However, these experimental stresses are not very far from the best of fit line as can be seen on figure 4. 

Using these values in equation (1) gives a prediction of the size effect in Maritime Pine (Fig.5). 

Figure 5 : Size effect on stresses in Maritime Pine : Tc 1 Tma, versus d (mm) (T,, = 6,3 MPa) 

Strength criterion 

In figure 5, three areas can be distinguished : 

1 

X e 

i! 
i: 
II - - 
e 
s . 
I? 

0,l 7 

- height d of the specimen < 2,l mm 
Theoretical curve becomes asymptotic to an horizontal line. In such structures, there is no size effect, the 
ultimate load is proportional to a strength criterion. However, these dimensions have not a physical sense 
for wood material whose heterogeneities dimensions are of this order. 

- - - - - - - - 
7\ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I I I 
1 I do=21 mm I I 

I 291 10 100 210 I000 

d (mm) 



C6-390 JOURNAL DE PHYSIQUE IV 

- height d > 210 mm 
The theoretical curve tends toward a straight line with -1J2 slope which is the size effect exhibited by 
LEFM. For these large structures, the fracture process zone can be neglected because it occupies an 
infinitesimal volume of the body. Therefore, the entire body can be treated as elastic. The stress and 
displacement fields surrounding the process zone are the asymptotic elastic fields and consequently the 
failure load can be given by LEFM. Theoretically, these large structures display brittle failures. 

- 2,1< d < 210 mm 
These dimensions are generally used in wood design, so they have an economical interest. In such 
structures, the fracture process zone must be taken into account. The size effect is transitional between 
strength criterion analysis and LEFM. In this range, the ultimate loads can be determined by non-linear 
fracture mechanics and relation (1). 

The abscissa of intersection point do between the straight lines representative of LEFM and strength 
criterion analysis depends on the geometry of the structure and will be used to determine the relative 
brittleness of Pine and of Spruce. 

The main consequence of the size effect law is the influence of the size of the structures on the stress at 
failure. But theoretically, this size effect is caused by the evolution of the energy release rates according to 
the size of the specimens. 
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Figure 6 : Size effect on energies in Maritime Pine : GIIc and GIF (Nlm) versus d (mm) 

Specimens whose crack surfaces deviate from the initial crack plane have not been taken into account in 
the calculations of the energy release rates GIIc All experimental GIIc and GIIF values are given in 
Annex 3. Figure 6 displays experimental values of GIIc and average value of fracture energy GIlF for 
specimens of various dimensions. GIIC appears to be a function of the structural size d. The progressive 
increase of the specimen size produced an increase of the energy release rate up to an asymptotic value 
equal to the fracture energy GIIF. Indeed, in an infinitely large specimen, the influence of the process zone 
on the stress and displacement fields can be neglected. In such structure, the stress and displacement fields 
are known to be the same for any specimen geometry. In the same way, GIIF is defined as the limit of GIIc 
for an infinitely large specimen. 
In figure 6, GIIC is assumed to be predicted by relation (2). In this method (method l), GIIC is computed 
from GIIF = 1160 Nlm (mean of experimental GIIF) and d0=21 rnm computed from relation (1) and the 
experimental Zc values. 



In a second method (method 2), a best-fit method is applied directly to experimental GIIc values and 
relation (2). So, optimum values GIIF = 1090 Nlrn and do = 7 mm are obtained. 
The optimum value of GIIF (1090 Nlrn) obtained by the method 2 is near to the mean of the experimental 
GIIF (1 160 N/m).It can be noticed that these mean values are near to the fracture energy obtained by 
Aicher [2] ( G I I ~ 1 0 9 8  Nlrn) on the LTENF specimens of 50 cm length on a similar wood species. 
Moreover, the evolution of the energy release rate GIIc obtained by method 2 appears more realistic than 
by method 1. 
However, the difference between the values of do obtained from the stress analysis (do=21 mm) and from 
the energy release rates analysis (do=7 mm) seems to point out that this parameter must be taken 
cautiously. This last point is discussed in the next section. 

4.2 Results and discussion for Norway Spruce. 

Parameters B and do can be obtained according to the method used for Pine. Employing Zref = 4 MPa, 
best-fit method gives : A=0,0417 and C=1,2093 with correlation coefficient r2=0,67 (32sp), and so : 

Zmax = 3,6 MPa and do = 29 mm 

The predicted size effect of Norway Spruce is given in figure 7. 

Figure 7 : Size effect on stresses in Norway Spruce : Zc I 'T,, versus d (mm) (Z,, = 3,6 MPa) 
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Experimental values of GIIc are drawn in figure 8 with average value of GIIF. Like for Pine, the 
experimental fracture energies remain constant on the range of dimensions studied (GIIF=850 Nlrn cf 
Annex 3) and the optimum value of GIIF (800 Nlm) obtained by the method 2 is near to this value. 
However, energy release rate GIrc appears to be a function of the structural size d but it seems that this 
evolution is less important than for Maritime Pine. Moreover, method 2 (best-fit method) gives a very low 
value of do (4mm) compared to method 1 in which do=29 mm is deduced from the stress approach. 
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Figure 8 : Size effect on energies in Norway Spruce : GIIc and GI= (Nlm) versus d (mm) 
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This difference seems to point out that energy release rates are overestimated. In computations of energy 
release rates we ignore the roughness of the crack surface. Indeed, it can be assumed that the real crack 
surface is more important than the projected surface used in the computations and that the roughness vary 
according to the specimen size. A study of this result by an other approach, the multifractal scaling [4], is 
in prospect. On the other hand, the parameter do is calculated according to methods which are different by 
nature. In calculations from the stresses, the value of do is determined from the stresses corresponding to 
the starting of the crack growth, when, in calculations from the energy, do is calculated after the crack 
propagation. 
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At last, a previous work [6] has been performed on the effects of varying dimensions on the same fracture 
specimen but no significant size effect has been shown. In fact, the dimensions range studied (specimen 
length between 37 and 75 cm) was not sufficiently large to show a size effect. 
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5. CONCLUSIONS. 
The size effect law displays the characteristic dimension d0=21 mm for Pine and do=29 mm for Spruce. 
The difference between these values ( do(Pine) < do(Spruce) ) shows that the experimental stresses 
obtained for Pine are closer to the area of LEFM than the stresses obtained for Spruce. This difference 
seems to establish that Pine appears more brittle than Spruce. Experimentally it has been noticed that 
crack speeds were faster in Pine than in Spruce specimens. 
The size effect has been explained by the differences between the energy release rates of small and large 
structures. It can be established that GIIC is a function of the structural size d. It appears that the 
progressive increase of specimen size produces an increase of the energy release rate up to the asymptotic 
value GIF 
On the other hand, the fracture energy and the shear fracture stresses of Pine are higher than for Spruce. 
The anatomical characteristics of both species being the same, the difference between specific weights of 
Pine (560 kglm3) and Spruce (390 kglm3) and the intracellular fracture mode can explain the difference 
of these fracture characteristics. 
The study performed from the stresses shows that the knowledge of the size effect law allows an 
estimation of the evolution of fracture stress and also an estimation of the dimensional validity areas 
respectively attributed to non-linear fracture mechanics and to linear elastic fracture mechanics. 
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Annex 

Annex 1 : LTENF specimens. 

Annex 2 : Dimensions of LTENF specimens (mm). 
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Annex 3 : Results obtained with Maritime Pine and Norway Spruce. 
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