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Micromechanical Modelling of the Damage and Toughness Behaviour of
Nodular Cast Iron Materials

W. Brocks, S. Hao and D. Steglich
Department WMG, GKSS-Forschungszentrum Geesthacht, Postfach 1160, 21494 Geesthacht, Germany

Abstract. The strength and toughness of nodular cast iron materials is described by a micromechanically based
damage model for porous plastic materials. Two ferritic nodular cast iron materials of the type GGG-40 with diffe-
rent graphite morphology are investigated. Quantitative metallurgy and cell model calculations are used to deter-
mine the characteristic parameters of the Gurson-Tvergaard-Needleman-model (GTN-model). The stress strain be-
haviour of the matrix is obtained from tensile tests on a pure ferritic material. The influence of stress triaxiality
and void shape on the critical void volume fraction is studied. Tensile tests with smooth and notched specimens are
simulated to verify the load-deformation behaviour. The effect of the graphite morphology on fracture toughness is
studied by tests and simulations of SE(B)-specimens.. Fracture resistance curves can be well predicted. A correla-
tion between element size and particle distance is found.

1. INTRODUCTION

The increasing application of nodular cast iron in structures and components requires a detailed characteri-
zation of this material to predict its toughness and damage behaviour at static loading in dependence on the
graphite morphology. The application of micromechanical damage models extended the methods of safety
assessment avoiding the problems of geometry dependent parameters as in conventional fracture mechanics.

The general advantage of micromechanical damage models, is that, in principle, the parameters are
only material and not geometry dependent. The identification and determination of the required mi-
cromechanical parameters is still a rather new approach and no generally accepted recommendations exist.
One way to determine these parameters is the use of a hybrid methodology of combined testing and numeri-
cal simulation [1]. Another way is based on the idea, that the physical process of damage in ductile media
can be described by the structural behaviour of relatively simple unit cells [2]. Seperating the effects of in-
tervoid matrix yield behaviour and void size and shape is one main advantage of this method.

Nodular cast iron has a nearly ideal microstructure for microscopical investigations. The diameter of
the spherical or ellipsoidal graphite inclusions is about 10 pm to 100 um. Thus, material damage can be
determined by optical microscopy and the results can be compared with numerical predictions based on mi-
cromechanical damage models. Additionally, nodular cast iron has a rather high void volume fraction of
graphite, so that the inclusions cause a significant drop of the load carrying capacity. By testing both, a spe-
cially designed matrix alloy without graphite inclusions and the nodular cast iron material, it is possible to
study the effects of matrix yield behaviour and graphite morphology separately.
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2. TEST MATERIALS

Two different materials with different graphite morphology were investigated which had been taken from
transport containers for waste nuclear fuel rods. First, a material with nearly spherical inclusions (GGG-
40/1AZ) was tested to investigate the effect of particle size on the evolution of damage. A second material
with more ellipsoidal inclusions (GGG-40/3AZ) was studied with respect to the effects of the particle
shape. Figure 1 shows the two different materials. GGG-40/1AZ has a void volume fraction of graphite of
11.4 %, which is assumed to be the initial value of damage, f,. The shape of the inclusions was described
in terms of its shape factor S, defined as the ratio of cross section and circumference of the particle,
S=4TtA/C ?, which has the value of S;=0.85 for GGG-40/1AZ. The second material, GGG-40/3AZ, has a
void volume fraction of 12 % and a shape factor of S;=0.7. Due to the larger diameter of the inclusions the
nearest neighbour distance is the double compared to GGG-40/1AZ, which can be seen in Figure 1.

I —
100 pm

Figure 1: Microstructure of GGG-40/1AZ (left) and GGG-40/3AZ (right)

A separate description of the mechanical behaviour of the matrix material and the graphite inclusions is
necessary for the micromechanical modelling. The manufacturing of a ferritic bulk material which has the
same mechanical properties as the matrix material in cast iron was performed. Its yield curve was verified
by comparing experimental results with numerical simulations using the von Mises yield condition. The
experimental part of the present study was done at the TU Bergakademie Freiberg, FRG.

3. CONSTITUTIVE EQUATIONS

The constitutive equations which are used to describe ductile fracture processes are based on relatively sim-
ple models of microvoid nucleation, growth and coalescence [3, 4]. The application of these simple mi-
cromechanical models is justified by a statistical averaging effect over a large number of "unit cells” on the
macrosco=pic scale, see Fl;gure 2.
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Figure 2: Unit cell representing a part of a structure

The constitutive equations of porous plastic solids base on a model which Rice and Tracey [3] devel-
oped for the early stages of void growth in terms of a single spherical cavity in an infinite plastic solid. The
basic relationship that the growth rate of the cavity depends exponentially on the triaxiality of the stress state
was used by Gurson [4] to describe the plastic yielding of a porous continuum. Plastic flow does not only
depend on the accumulated plastic strain, £° , but, according to this model, on a second internal variable, the
void volume fraction, f, which is defined as the ratio of the total volume of all cavities to the volume of the
body and is introduced as an internal variable to characterize the damage. Its evolution equation consists in
general of two terms due to nucleation and growth

f = fgrowt.h + f;mcl With f(tO) = .ﬁ)

7/, is the initial void volume fraction. It was assumed that f; is equal to the initial volume of the graph-
ite inclusions and that the voids will grow around these inclusions, so no nucleation contribution has to be
considered. After a microvoid has nucleated in a plastically deforming matrix it undergoes a volumetric
growth and a shape change. Only the volumetric change, however, can be described by the scalar quantity
f. The void growth rate is proportional to the plastic volume dilatation rate

Joron == HHUD?

where D is the plastic part of the strain rate tensor. The original assuption that the microvoids do not
interact is not justified for modelling the final stage of void growth when coalescence of voids by localized
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internal necking of the intervoid matrix occurs. Tvergaard [S], Tvergaard and Needleman [6] therefore in-
troduced an empirical modification of Gurson’s yield function with three additional parameters, g,, ¢, and

Vg
38'..8

CI>(S,f,o') = 20_2

] S S
+2q,f cosh(q2 —2%) ~(1+g,£?)=0.

S and 8’ are the (mesoscopic) Cauchy stress tensor and its deviator, respectively, o(€”) is the actual
flow stress of the matrix material which follows the evolution equation

& = H(e") &

In many applications the parameters g, and g, are set to g,=1, ¢,= q,”. The remaining parameter g,
holds for an earlier loss of the stress carrying capacity of the materials as in Gurson’s original yield func-
tion. Additionally, a damage variable, f*, is introduced by

f for f<f,

f= L+K(f-f) for f>f with K=f;—fc
;=1

accounting for the coalescence of voids which occurs after a critical void volume fraction, f, is
reached. This modification will be referenced as GTN-model in the following. The crack appears if the
final void volume fraction, f;, is reached, where the material looses its stress carrying capacity and where
the damage variable achieves ist ultimate value, f,*, which equals 1/g,. For this state, K can be calculated if
the void volume fraction at final fracture is known from experiments.

As void nucleation is not considered for the present materials the parameters which have to be deter-
mined reduce to simply £,, and g,. In this case, cell model calculations provide an easy method to determine
them.,

4. CELL MODEL CALCULATIONS

Cell model calculations are widely used to simulate and study the behaviour of porous solids, see e.g. Kop-
lik and Needleman [2], Becker et al. [7], Brocks et al. [8]. The continuum is considered to consist of a pe-
riodic assemblage of hexagonal cylindrical unit cells which are approximated by spherical cylinders, Figure
2, which allow for a simple axisymmetric calculation. Every cell of initial length 2L, and radius R, contains
a spherical or ellipsoidal cavity of radius 7, or principle axes a,, b,, respectively. It is subjected to homoge-
neous radial and axial displacements, u,, , .

The "mesoscopic” principal strains and the effective strain, respectively, are given by

R L 2
El = E2 = ll’l(?) : E’3 = ln(z—) 5 Ee =‘§'IE3 _Ell

o 0

The correspondent "mesoscopic” true principal stresses, X,=%,, X, are the average reaction forces at
the cell boundaries over deformed cell face areas. Here and in the following, capital letters, X, E;, denote
quantities on a "mesoscopic” length scale and small letters, o, &;, quantities on a "microscopic” scale, re-

spectively. Effective stress, hydrostatic stress and triaxiality result from
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The current void volume fraction, f, is defined as the ratio of the total void volume and the cell vol-
ume, V = R’L. For an elastic-plastic matrix material there is just one structural void in the center of the cell
and, hence, f can be computed via the condition of incompressibility for plastic deformations

A-HNV-AV =(1- )V, .
where AV” is the increase in the volume of the cylindrical cell due to the elastic dilatation arising from

the imposed hydrostatic stress which is approximated by [2]
. 31-2v
ave=a- =Mz,

The initial void volume fraction, f;, is simply given by
_ 2a5b,

3RL,

23
hosmn b

in the case of a spherical or ellipsoidal void, respectively.
An axisymmetric FE model of 480 isoparametric quadratic 8-node elements and 1530 nodes as shown
in Figure 3 was used for the calculations. The structure is subject to a homogeneous elongation, u,, in axial

direction and the radial displacement is kept homogeneous, too, by constraint conditions.
If triaxiality shall be kept constant during the loading history the ratio of
X, _3T-1
Z, 3T+2

has to remain constant. This is realized by the Riks algorithm in ABAQUS, which can easily be ap-
plied to cell model calculations, as described in detail in [9].
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Figure 3: FE-models (one quarter of a cell): £;=0.114, S;=1.0 (/1AZ) (a), f;=0.114, $z=0.7 (/1AZ) (b), £;=0.12,
S=0.7 (13AZ) (c)
As a reduction of the void diameter occurred in the course of loading for low triaxialities the graphite
particle was simulated by a rigid surface in some of the calculations to study the influence of this additional

constraint condition on the defomation behaviour of the cell.
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The FE calculations yield the mesoscopic deformation behaviour of the cell from which a mesoscopic
effective stress vs strain curve and a void volume fraction vs strain curve can be determined. The critical
strain and the critical void volume fraction, E, and f,, when plastic collapse occurs is obtained as shown in
Figure 4a. The mesoscopic radial reduction, E,, of the cell remains constant beyond the collapse point
whereas the effective strain, E,, and the void volume keep increasing. The values of f, depend on the
triaxiality of the loading, in general, see Figure 4b where the solid points denote the calculations with a rigid
inclusion.
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Figure 4: determining plastic collapse of a cell (a), critical void volume fraction as a function of triaxiality (b)

The parameter ¢, can also be determined from the cell model results at the point of initial plastic
yielding of the ferritic bulk material, 6= R,;™, where the GTN yield function supplies the quadratic equa-
tion

2
) 2 (3 2) 1 (2)
g, ——gq,coshl =T—& |+ ——| —%| =0
CRTT\2 RY)REOARE

It depends much less on the triaxiality. Calculating ¢, for different triaxialities yields to an average
value of g,=1.5. The GTN-model as described above assumes that ¢, and f;, do not depend on the triaxial-
ity. Hence, average values have to be found which fit the various cell model calculations over the whole
range of deformation. Figure 5a compares the mesoscopic effective stress vs strain curves of the cell model
with spherical inclusion of GGG 40/1AZ for various triaxialities with the uniaxial solutions of the GTN-
model using a "best fit" parameter set, £,=0.175 and ¢,=1.2. It was found later by FE simulations of round
tensile bars that ¢,=1.5 fits the experimental results much better than g,=1.2. In the following, ¢,=1.5 is
used.
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Figure 5: uniaxial solutions of the GTN-model compared to cell model calculations (a), behaviour of a unit cell under uni-
axial tension compared to tensile test of GGG-40/1AZ (b)

In Figure 5b the influence of different form factors, S, and of a rigid inclusion is shown. The critical
strain is reduced by both, ellipsoidal cavity and inclusion (gr. in Figure 5b). For one cell a second popula-
tion of voids (f,=0.0004) was assumed, which did not show any effect.

S. FE SIMULATIONS

The GTN-model and its parameters obtained from the cell model calculations are now verified by the simu-
lation of "full scale” tests using the ABAQUS program with a special user supplied routine [10]. The first
specimen is a standard tensile bar. Due to the high volume fraction of the graphite particles, the initial yield
strengths of the GGG and the ferrite matrix material, R ,,°°° and R,,"™, vary significantly. This gives an-
other possibility of determining g, by the above equation with T=1/3 and £ =R,,,°°® from the tensile test
data. A g, value of 1.95 is obtained from this. However, the numerical results show that ¢,=1.5 overesti-
mates the experimentally measured forces only slightly and, hence, this value is taken for all the following
calculations.

Tvergaard and Needleman [6] referred to the phenomenon that the onset of macroscopic fracture in a
tensile test is associated with a sudden drop of the load. Fitting the numerical results to the experimental data
at this point has therefore become a common technique to determine f,. Varying the value f, showed that
elongation, AL, and reduction of diameter, Ad, at fracture could not be met by the calculations at the same
time. If AL is met Ad is overestimated, if Ad is met AL is underestimated. Hence, Poisson's ratio of Ad/AL
in the tests must differ from the numerical simulations which is displayed in Fig 6. Below maximum load
the numerical and experimental data coincide but beyond that point the cross section necking: in the simula-
tion is greater than in the experiment. The GTN-model follows approximately the line of the "plastic” Pois-
son's ratio of 0.5 whereas the test data follow a line of the slope 1/3. Remarkably, the cell model repro-
duces the experimental effect and follows the test data. This means that the growth of voids as large as in
the present material cannot be adequately described by the isotropic plastic potential of the GTN-mode} and
its scalar damage variable if the triaxiality is low. The spherical void does not remain spherical whereas the
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evolution law for the void volume still assumes a self-similar shape. This effect is independent of the inclu-
sions shape, it can be observed at spherical and ellipsoidal inclusions as well. The more dominant this influ-
ence is at low triaxialities, the less important it will become at higher triaxialities. This was shown by simu-
lating the load vs elongation behaviour of notched tensile specimen and SE(B)-specimen, where the hydro-
static part of the stress tensor is significantly higher.

0.12
i I
3
0.08 |-
B E,
B~ 0.06 |-
0.04 o o tensile test
. = = FE-simulation (GTN-model)
T R v=1/3
- v=0.5
0.00 « 1 1 1 ; 1 \
0.00 0.10 0.20 0.30 0.40
E;

Figure 6: structural behaviour of a tensile bar and a unit cell with ellipsoidal inclusion (S=0.85)

While “macroscopic” quantities cause the troubles of matching the fracture point as described above
(see Figure 7a), Figure 7b shows the variation of damage f along the axis of a round tensile bar which was
determined by means of metallographical investigations in comparison to the results of the numerical simu-
lation. A high gradient of damage with a maximum value of 19 % is observed in the region of localized de-
formation of the broken specimen. The FE simulation also shows a gradient of damage in radial direction in
a way that damage decreases from the centre to the surface of the specimen. This means that cracking starts
in the centre of the bar which is well-known from experiments.

Finally, the load displacement behaviour and the fracture resistance of a SE(B) specimen have been
simulated. A comparison of experimental and numerical results is displayed in Figure 8. The load is overes-
timated in the FE calculation due to the assumption of plane strain, see Figure 8a. Figure 8b shows the nu-
merically predicted J, curves which coincide quite well with the experimental results. Fracture resistance
increases with increasing spacing of graphite inclusions. Of course, the same set of material parameters has
been used in the simulations of the fracture mechanics tests as for the tensile tests. While the size of the fi-
nite elements at the crack tip for simulation of the material GGG-40/1AZ was 0.3 * 0.4 mm?, it was set to
0.6 * 0.8 mm?” for simulating the specimen made of GGG-40/3AZ. Thus, the element length correlates with
the microstructure and is six times the nearest neighbour distance of the inclusions in both cases.
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Figure 7: round tensile bar: Force vs reduction of diameter curves of GGG40/1AZ and /3AZ (a), variation of damage along
the axis of a round tensile bar (GGG-40/3AZ), (b)
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Figure 8: Load displacement curves (a) and fracture resistance curves (b) of a 4-point bend specimen

6. CONCLUSIONS

Strength and toughness of two ferritic nodular cast iron materials of the type GGG-40 with different graph-
ite morphology have been characterized by the stress-strain-curve of the ferritic matrix material and particle
related parameters like nodule size, spacing and shape. These data allow to identify micromechanical dam-
age parameters used in the GTN-model.
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Whereas the ferritic matrix material and the volume fraction of graphite particles of the two investi-
gated materials is nearly the same they differ by the shape, i. e. spherical or ellipsoidal, size, and distance of
the inclusions. The differences in the graphite morphology have little effect on the strength, but a large ef-
fect on fracture toughness, as is found experimentally.

To determine the required parameters for the GTN-model FE calculations of a cylindrical cell con-
taining a cavity which represents the void after debonding from the graphite particle have been performed
under large strain conditions for different triaxialities. The effect of the graphite particles at low triaxialities
was modeled by a rigid surface in the void. It was shown that one gets significant differences at low
triaxialities, while at high triaxialities the influence of the graphite can be neglected.

The shape of the inclusion is of major interest for the response of a unit cell. An ellipsoidal reduces
the critical void volume fraction, f,, compared with a sphere of the same volume, if the major principal axis
is perpendicular to the load axis.

Simulations of tensile tests with smooth and notched specimens provide additional information to
verify the micromechanical parameters obtained from metallographic observations and cell modell calcula-
tions. It was found, that the ratio of elongation of the specimem and its reduction of diameter differs signifi-
cantly between experiment and FE simulation. This means that the isotropic plastic potential of the GTN-
model and its scalar damage variable are not able to describe the deformation behaviour adequately for voids
as large as in the present material if the triaxiality is low.

J; curves can be predicted by FE calculations of SE(B) specimens. The predictions fit the experimen-
tal data quite well. The different particle size and distance of the two GGG-materials is taken into account by
varying the element size in the ligament. The element length correlates with the microstructure and is six
times the nearest neighbour distance of the inclusions in both cases.
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